WO2020130109A1 - Laser machining method and production method for semiconductor member - Google Patents

Laser machining method and production method for semiconductor member Download PDF

Info

Publication number
WO2020130109A1
WO2020130109A1 PCT/JP2019/049956 JP2019049956W WO2020130109A1 WO 2020130109 A1 WO2020130109 A1 WO 2020130109A1 JP 2019049956 W JP2019049956 W JP 2019049956W WO 2020130109 A1 WO2020130109 A1 WO 2020130109A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
laser light
modified spots
modified
laser processing
Prior art date
Application number
PCT/JP2019/049956
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 河口
陽太郎 和仁
泰則 伊ケ崎
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2020130109A1 publication Critical patent/WO2020130109A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a laser processing method and a semiconductor member manufacturing method.
  • a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer.
  • a processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
  • the method of forming the modified region greatly affects the state of the obtained semiconductor member.
  • the present disclosure has an object to provide a laser processing method and a semiconductor member manufacturing method capable of obtaining a suitable semiconductor member.
  • the present inventor found the following problems in the course of earnest studies for solving the above problems. That is, as described above, a modified spot is formed along the virtual surface inside the semiconductor object by irradiation of the laser beam, and a crack extending from the modified spot is propagated to cut out the semiconductor member from the semiconductor object. Considering the case, it is effective to reduce the energy of the laser light on the virtual plane in order to reduce the unevenness of the cut surface. Quality spots and cracks cannot be generated.
  • the present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser beam is irradiated again in a later step, even if the energy of the laser beam on the virtual surface is lowered below the processing threshold of the semiconductor object, the region containing gallium formed in advance can be expanded. it can. As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface. The present disclosure has been made based on such findings.
  • the laser processing method by irradiating the inside of the semiconductor object with laser light from the surface of the semiconductor object containing gallium, along a virtual surface facing the surface inside the semiconductor object, A first step of forming a plurality of modified spots and a plurality of deposited regions containing gallium deposited in the plurality of modified spots, and after the first step, the energy on the virtual surface changes the processing threshold of the semiconductor object.
  • a plurality of modified spots and precipitations are formed along an imaginary plane facing the surface that is the incident plane of the laser beam. Forming a plurality of deposited regions containing the deposited gallium. Then, in a subsequent step, the deposition region is enlarged by irradiating the inside of the semiconductor object with laser light so that the energy on the virtual surface falls below the processing threshold value of the semiconductor object.
  • laser light may be irradiated from the surface to the inside of the semiconductor object so that the converging point does not overlap the modified spot when viewed from the direction intersecting the surface. ..
  • this method it is possible to obtain a suitable semiconductor member with reduced unevenness.
  • the precipitation region may be irradiated with laser light in the second step.
  • the deposition area can be surely expanded.
  • a plurality of modified spots may be formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other.
  • the converging point of the laser light can be prevented from overlapping not only the modified spot but also the crack extending from the modified spot.
  • the second step it is possible to avoid formation of a new modified spot, a crack, or a region where gallium is deposited at an unintended position. That is, it is possible to obtain a suitable semiconductor member in which unevenness is further reduced.
  • a plurality of rows of modified spots are formed as a plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface.
  • the condensing point of the pulsed laser light may be moved along the virtual plane between the rows of the reforming spots of a plurality of rows. In this case, it is possible to reliably prevent the focal point of the laser light in the second step from overlapping the plurality of modified spots.
  • the object may include gallium nitride.
  • the pressure (internal pressure) of the nitrogen gas generated along with the deposition of gallium can be used to easily form a crack over the virtual surface.
  • a semiconductor member manufacturing method includes a first step and a second step included in the above laser processing method, and a third step of obtaining a semiconductor member from a semiconductor object with a crack extending across a virtual surface as a boundary. ..
  • This method includes the first step and the second step of the above laser processing method. Therefore, for the same reason, it is possible to obtain a suitable semiconductor member in which unevenness is further reduced.
  • a plurality of virtual planes may be set so as to be arranged along the direction intersecting the surface. In this case, it is possible to obtain a plurality of semiconductor members from one semiconductor object.
  • the semiconductor object may be a semiconductor ingot, and each of the plurality of semiconductor members may be a semiconductor wafer.
  • a plurality of suitable semiconductor wafers can be obtained.
  • a plurality of virtual surfaces may be set so as to be aligned in the direction along the surface. In this case, it is possible to obtain a plurality of semiconductor members from one semiconductor object.
  • the semiconductor object may be a semiconductor wafer, and each of the plurality of semiconductor members may be a semiconductor device. In this case, it is possible to obtain a plurality of suitable semiconductor devices.
  • FIG. 3 is a plan view of the GaN ingot shown in FIG. 2. It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example.
  • FIG. 6 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments. It is a top view of a GaN wafer which is an object of a laser processing method and a semiconductor member manufacturing method of the 2nd example. It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. It is a side view of a semiconductor device in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example.
  • 6 is a photograph showing the relationship between the energy of laser light and the formation of modified spots. It is a photograph which shows the relationship between the energy of a laser beam and formation of a precipitation field. It is a photograph which shows a mode that a deposition area is expanded.
  • the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6.
  • the laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L.
  • the first horizontal direction will be referred to as the X direction
  • the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction.
  • the vertical direction is called the Z direction.
  • the stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11.
  • the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
  • the light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method.
  • the spatial light modulator 4 modulates the laser light L output from the light source 3.
  • the spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4.
  • the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
  • the modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region.
  • the modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row.
  • One modified spot 13 is formed by irradiation with one pulse of laser light L.
  • the one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row.
  • the adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
  • the control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5.
  • the control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
  • the target 11 is a GaN ingot (semiconductor ingot, semiconductor target) 20 formed of gallium nitride (GaN) in a disk shape, for example.
  • the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm.
  • the laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20.
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20 inside the GaN ingot 20, and is set to be aligned in a direction facing the surface 20a.
  • each of the plurality of virtual surfaces 15 is a surface parallel to the surface 20a and has, for example, a circular shape.
  • Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side.
  • a plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15.
  • each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20.
  • the distance between the adjacent virtual surfaces 15 is 100 ⁇ m
  • the width of the peripheral region 16 in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11.
  • the arrow indicates the locus of the condensing point C of the laser light L.
  • the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13
  • the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual plane 15 (for example, a virtual plane).
  • a plurality of modified spots 13a are formed (two-dimensionally arranged along the entire surface 15) (step S1).
  • the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15.
  • the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11). Further, at this time, the gallium deposited in each of the modified spots 13a spreads so as to enter the crack 14a, so that a deposition region R containing the deposited gallium is formed around the modified spot 13a. ..
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L).
  • the divided value is 10 ⁇ m.
  • the pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13a in the X direction is 10 ⁇ m.
  • the cracks 14a extending from the modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiates the laser light L along the virtual surface 15 (for example, A plurality of modified spots (second modified spots) 13b are formed so as to be arranged two-dimensionally along the entire virtual surface 15 (step S2). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows.
  • the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11).
  • the gallium deposited in each of the modified spots 13b spreads so as to enter the crack 14b, so that a deposition region R containing the deposited gallium is formed around the modified spot 13b. ..
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13b in the X direction is 10 ⁇ m.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, A plurality of modified spots (third modified spots) 13c are formed so as to be two-dimensionally arranged along the entire virtual surface 15 (step S3). Further, as shown in FIGS. 10 and 11, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the front surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, a virtual surface). A plurality of modified spots (third modified spots) 13d are formed so as to be two-dimensionally arranged along the entire surface 15 (step S4). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows.
  • the spots 13c and 13d are formed.
  • the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b.
  • the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11).
  • the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines.
  • the gallium deposited in each of the reformed spots 13c and 13d spreads so as to enter the cracks 14c and 14d, so that the deposited gallium is deposited around the reformed spots 13c and 13d. Region R is formed.
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13c in the X direction is 5 ⁇ m.
  • the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 ⁇ m
  • the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 ⁇ m.
  • a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG.
  • a crack 17 (hereinafter, simply referred to as “crack 17”) that extends over the virtual surface 15 is formed in each of the plurality of virtual surfaces 15.
  • a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the GaN ingot 20 nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 ⁇ m or more.
  • the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG.
  • a plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (step S5). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15.
  • portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
  • the laser processing method of the first example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the first example.
  • the plurality of modified spots 13a are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Then, a plurality of modified spots 13b are formed along each of the plurality of virtual surfaces 15. Furthermore, in the laser processing method of the first example, a plurality of modified spots 13c and 13d are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and 13b. Thereby, the plurality of modified spots 13 can be accurately formed along each of the plurality of virtual surfaces 15, and as a result, the crack 17 can be formed accurately along each of the plurality of virtual surfaces 15. It will be possible.
  • the laser processing method of the first example it is possible to obtain a plurality of suitable GaN wafers 30 by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. ..
  • the laser processing apparatus 1 that implements the laser processing method of the first example, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus a plurality of suitable GaN layers can be formed.
  • the wafer 30 can be acquired.
  • the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
  • the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form the modified spots 13a in a plurality of rows and pulsed.
  • the plurality of rows of modified spots 13b are formed.
  • gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser beam L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the deposition region R is formed, and the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
  • the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the first example.
  • the plurality of virtual surfaces 15 are set to be aligned in the direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
  • FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example
  • FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. By moving, a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between adjacent condensing points C in the Y direction was 10 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1 ⁇ J.
  • irregularities of about 25 ⁇ m appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
  • FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example
  • FIGS. 17A and 17B show the peeled surface of FIG. It is a height profile.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first and second steps of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • the plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • unevenness of about 5 ⁇ m appeared on the separated surface of the GaN wafer 30.
  • the irregularities appearing on the separated surface of the GaN wafer 30 are small, that is, the cracks 17 along the virtual surface 15. Was found to be formed with high precision. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
  • a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side.
  • a plurality of modified spots 13b are formed along the surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a.
  • the modified spot 13b is easily formed on the incident side of the light L.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b.
  • the modified spot 13c is easily formed on the incident side of the light L.
  • the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
  • a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof.
  • a plurality of modified spots 13b are formed along the virtual surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
  • a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
  • FIG. 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example
  • FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1.33 ⁇ J.
  • the laser processing was stopped in the middle of the virtual surface 15.
  • the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
  • FIG. 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example, and FIG. 21(b) is FIG. 21(a). It is an enlarged image in the rectangular frame in.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13.
  • the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
  • FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example.
  • a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction.
  • the plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to.
  • the distance between the condensing points C adjacent to each other in the Y direction is 2 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • Quality spot 13 was formed.
  • the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 ⁇ m.
  • FIG. 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 23A is an image in plan view
  • FIG. I is an image in side view.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction.
  • a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • the modified spot 13a of No. 1 was formed.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • a plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 ⁇ J.
  • the distance between the converging points C adjacent to each other in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is changed.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 ⁇ m and 0.3 ⁇ J.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is 5 ⁇ m.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 ⁇ J.
  • the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 ⁇ m.
  • FIG. 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second embodiment, and FIG. 24A is a plan view.
  • the image, (b) of FIG. 24, is an image in a side view.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first step and the first step of the laser processing method and the semiconductor member manufacturing method of the first example. Similar to the two steps, a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 ⁇ m.
  • FIG. 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view.
  • An image, (d) of FIG. 24, is an image in a side view.
  • a plurality of modified spots 13 were formed. Specifically, first, the distance between adjacent condensing points C in the Y direction is 8 ⁇ m, the pulse pitch of the laser light L is 5 ⁇ m, and the pulse energy of the laser light L is 0.1 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 ⁇ m.
  • the object 11 of the laser processing method and the semiconductor member manufacturing method of the second example is a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example, as shown in FIG.
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • the laser processing method and the semiconductor member manufacturing method of the second example are performed to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30.
  • the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm ⁇ 1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens ⁇ m.
  • the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends.
  • each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape.
  • Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31.
  • a plurality of peripheral regions 16 are set so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30.
  • the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as steps S1 to S4 of the laser processing method and the semiconductor member manufacturing method of the first example.
  • a plurality of modified spots 13 that is, modified spots 13a, 13b, 13c, 13d
  • a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15.
  • 14 that is, the cracks 14a, 14b, 14c, 14d
  • the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by a broken line.
  • the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG.
  • Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30.
  • the functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
  • the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other, a crack 17 (that is, a crack 17 across the virtual surface 15) is formed in each of the plurality of virtual surfaces 15. In FIG. 27, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the crack 17 can be formed by utilizing the pressure of the nitrogen gas.
  • the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 ⁇ m or more.
  • the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, as shown in FIG. 28.
  • a plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (step S6). In this way, the GaN wafer 30 is cut along each of the plurality of virtual planes 15. In this step, the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
  • the laser processing method of the second example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the second example.
  • the laser processing method of the second example As described above, according to the laser processing method of the second example, as in the laser processing method of the first example, it is possible to accurately form the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. As a result, the crack 17 can be accurately formed along each of the plurality of virtual surfaces 15. Therefore, according to the laser processing method of the second example, it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. .. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
  • the laser processing apparatus 1 that implements the laser processing method of the second example, it is possible to accurately form the crack 17 along each of the virtual surfaces 15, and thus a plurality of suitable semiconductors can be formed.
  • the device 40 can be acquired.
  • the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
  • the condensing point C of the pulsed laser light L is moved along the virtual plane 15 to form a plurality of rows of modified spots 13a and pulsed.
  • the plurality of rows of modified spots 13b are formed.
  • gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
  • the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
  • the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
  • the various numerical values regarding the laser light L are not limited to those described above.
  • the pulse energy of the laser light L is 0.1 ⁇ J to 1 ⁇ J and the pulse of the laser light L is The width can be 200 fs to 1 ns.
  • the semiconductor object processed by the laser processing method and the semiconductor member manufacturing method is not limited to the GaN ingot 20 of the first example and the GaN wafer 30 of the second example.
  • the semiconductor member manufactured by the semiconductor member manufacturing method is not limited to the GaN wafer 30 of the first example and the semiconductor device 40 of the second example.
  • One virtual surface may be set for one semiconductor object.
  • the material of the semiconductor object may be SiC. Even in that case, according to the laser processing method and the semiconductor member manufacturing method, as described below, it is possible to accurately form a crack extending over the virtual surface along the virtual surface.
  • FIG. 29A and 29B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 29A is an enlarged image within a rectangular frame in FIG.
  • laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface.
  • the distance between the condensing points C adjacent to each other in the Y direction was 2 ⁇ m
  • the pulse pitch of the laser light was 15 ⁇ m
  • the pulse energy of the laser light was 4 ⁇ J.
  • a crack extending in a direction inclined by 4° to 5° with respect to the virtual plane occurred.
  • FIG. 30A and 30B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 30 is an enlarged image in the rectangular frame in FIG.
  • a laser beam having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the laser processing method and the semiconductor member manufacturing method according to the first embodiment have the same first and second steps.
  • a plurality of modified spots were formed along the virtual plane.
  • FIG. 31 is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIGS. 32A and 32B show the height of the peeled surface shown in FIG. It is a profile. In this case, the unevenness appearing on the peeled surface of the SiC wafer was suppressed to about 2 ⁇ m.
  • the SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4 ⁇ 0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
  • the method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above.
  • the plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other.
  • the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15.
  • the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed.
  • FIG. 33 for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (dashed-dotted arrows), and a plurality of rows of modified spots are formed.
  • the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the front surface 20a side, and the one or more GaN wafers. After the 30 is cut out, the surface 20a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20a side.
  • the peripheral region 16 may not be formed.
  • the peripheral region 16 is not formed in the laser processing method and the semiconductor member manufacturing method of the first example, after forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15, for example, the GaN ingot 20 is formed. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on them.
  • the laser processing apparatus 1 is not limited to the one having the above-described configuration.
  • the laser processing device 1 may not include the spatial light modulator 4.
  • the modified spots 13a to 13d are formed by the irradiation of the laser light L. Even in this case, a suitable semiconductor member can be obtained as described above.
  • the present inventor discovered the following problems during the earnest study. That is, while forming a modified spot along the virtual surface inside the semiconductor object by irradiation of the laser light, when considering a case of cutting out a semiconductor member from the semiconductor object by developing a crack extending from the modified spot, In order to reduce the unevenness of the cut surface, it is effective to reduce the energy of the virtual surface of the laser light, while if the energy of the virtual surface of the laser light is too low, the modified spots and cracks will be formed. It cannot be caused.
  • the present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser light is irradiated again in a later step, even if the energy of the laser light on the virtual surface is lowered below the processing threshold value of the semiconductor object, the deposition region containing gallium formed in advance is expanded. You can As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface.
  • the laser processing method and the semiconductor member manufacturing method according to the following embodiments are based on such knowledge.
  • steps S1 to S3 are carried out in the same manner as the first example described above. That is, by irradiating the inside of the GaN ingot 20 with the laser light L from the surface 20 a of the GaN ingot 20, a plurality of modified spots 13 (modified) are formed along the virtual surface 15 facing the surface 20 a inside the GaN ingot 20. Quality spots 13a to modified spots 13c) and a plurality of deposition regions R containing gallium deposited in the plurality of modified spots 13 are formed (first step).
  • the irradiation conditions of the laser light L when forming the modified spots 13a to 13c can be specified as follows, for example. First, as the pulse energy of the laser light L increases, the deposition region R formed around the modified spot 13 tends to increase. Therefore, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively increased (the modified spot 13 and the deposition region R are relatively coarsely formed), the subsequent laser is used.
  • the pulse energy of the laser light L can be increased from the viewpoint of enlarging the deposition region R by irradiation with light.
  • the laser light is used. Even if the pulse energy of is reduced, the deposition region R can be enlarged by irradiation with laser light in a later step.
  • the pulse pitch of the laser light L is fixed to 10 ⁇ m
  • the pulse energy of the laser light L is set to about 2 ⁇ J.
  • the deposition region R can be enlarged by irradiation with laser light in a later step.
  • the pulse energy of the laser light L is set to about 0.67 ⁇ J, so that the deposition area is formed by the irradiation of the laser light in the subsequent step.
  • R can be expanded.
  • the pulse energy of the laser light L is set to about 0.33 ⁇ J, so that the deposition region is formed by the irradiation of the laser light in a later step. R can be expanded.
  • the converging point of the laser light L is arranged so as not to overlap the modified spot 13 when viewed from the direction (Z direction) crossing the surface 20 a of the GaN ingot 20.
  • each of the plurality of condensing points C is arranged between the modified spot 13a and the modified spot 13b adjacent to each other in the Y direction.
  • the condensing point C may be arranged so as not to overlap the crack 14 and the deposition region R in addition to the modified spot 13.
  • the condensing point C may be arranged so as to overlap the deposition region R.
  • the energy on the virtual surface 15 is set to be lower than the processing threshold of the GaN ingot 20. In this state, the laser light L is applied to the inside of the GaN ingot 20 from the surface 20a.
  • the laser processing apparatus 1 moves the focal point C of the pulsed laser light L along the virtual surface 15. Further, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction.
  • the distance between the condensing points C adjacent to each other in the Y direction is 1 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J. According to this irradiation condition, although the modified spot is not formed at the position corresponding to the condensing point C of the laser light L, the deposition region R is enlarged.
  • the subsequent steps are the same as those in the above first example.
  • the energy of the laser beam L is set to 0.67 ⁇ J.
  • a plurality of modified spots 13 are formed.
  • the energy of the laser light L is set to 0.23 ⁇ J.
  • the modified spot 13 is hardly formed.
  • the processing threshold value is considered to be around 0.23 ⁇ J, and formation of a modified spot was not confirmed at an energy of 0.2 ⁇ J.
  • FIG. 38A shows that the modified step 13a to the modified spot 13a are modified by performing the first process under the irradiation conditions described above (for example, the conditions of the second embodiment according to FIGS. 24A and 24B).
  • the state where the second step is not performed after the quality spot 13c is formed is shown.
  • FIG. 39A after the first step is performed under the same irradiation condition, the second step is further performed under the irradiation condition of the third embodiment according to FIGS. 24C and 24D, for example. It shows the state of being done.
  • FIG. 39(a) a large number of precipitation regions R are confirmed. Comparing (a) of FIG. 38 with (a) of FIG. 39, the deposition region R including the deposited gallium is enlarged by performing the second step of irradiating the laser beam L below the processing threshold value. Is confirmed.
  • FIGS. 38(b) and 39(b) show a state in which the GaN ingot 20 is heated from the states of FIGS. 38(a) and 39(a). According to FIG. 38(b), no particular change is observed before and after heating. On the other hand, according to (b) of FIG. 39, it is understood that the deposition region R is further expanded by heating and contributes to the formation of the crack 17 over the virtual surface 15.
  • the deposition region R is enlarged by irradiating the inside of the GaN ingot 20 with the laser light L so that the energy on the virtual plane 15 falls below the processing threshold of the GaN ingot 20.
  • the laser light L is irradiated from the surface 20a to the inside of the GaN ingot 20 so that the condensing point C does not overlap the modified spot 13 when viewed from the direction intersecting the surface 20a. Good. In this case, it is possible to obtain a suitable semiconductor member with reduced unevenness.
  • the precipitation region R may be irradiated with the laser beam L in the second step. In this case, the deposition region R can be surely expanded.
  • the above embodiments describe one example of the laser processing method and the semiconductor member manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor member manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
  • the elements of the first example, the second example, and the respective modified examples can be arbitrarily applied to the method according to the above embodiment.
  • the plurality of modified spots 13 can be formed so that the plurality of cracks 14 extending from the plurality of modified spots 13 are not connected to each other.
  • the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form a plurality of modified spots 13 as a plurality of modified spots 13.
  • the condensing point C of the pulsed laser light L can be moved along the virtual surface 15 between the rows of the modified spots 13 in a plurality of rows.
  • the third step of obtaining the GaN wafer 30 from the GaN ingot 20 with the crack 17 across the virtual plane 15 as a boundary can be started.
  • a plurality of virtual surfaces 15 may be set so as to be arranged along the direction intersecting the surface 20a.
  • a plurality of virtual surfaces 15a may be set so as to be aligned in the direction along the surface 30a.
  • each of the obtained semiconductor members may be a semiconductor device.
  • a laser processing method capable of obtaining a suitable semiconductor member and a semiconductor member manufacturing method.

Abstract

A laser machining method comprising: a first step in which the inside of a semiconductor object containing gallium is irradiated with laser light from the surface of the semiconductor object, thereby forming, along a virtual plane on the inside of the semiconductor object facing the surface thereof, a plurality of modified spots and a plurality of deposition areas containing gallium that has been deposited in the plurality of modified spots; and a second step in which, after the first step, the deposition areas are expanded by irradiating the inside of the semiconductor object with laser light from the surface thereof such that energy in the virtual plane is less than the machining threshold of the semiconductor object.

Description

レーザ加工方法、及び、半導体部材製造方法Laser processing method and semiconductor member manufacturing method
 本開示は、レーザ加工方法、及び、半導体部材製造方法に関する。 The present disclosure relates to a laser processing method and a semiconductor member manufacturing method.
 半導体インゴット等の半導体対象物にレーザ光を照射することにより、半導体対象物の内部に改質領域を形成し、改質領域から延びる亀裂を進展させることによって、半導体対象物から半導体ウェハ等の半導体部材を切り出す加工方法が知られている(例えば、特許文献1,2参照)。 By irradiating a semiconductor object such as a semiconductor ingot with a laser beam, a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer. A processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
特開2017-183600号公報JP, 2017-183600, A 特開2017-057103号公報JP, 2017-057103, A
 上述したような加工方法では、改質領域の形成の仕方が、得られる半導体部材の状態に大きく影響する。 In the processing method as described above, the method of forming the modified region greatly affects the state of the obtained semiconductor member.
 本開示は、好適な半導体部材の取得を可能とするレーザ加工方法、及び、半導体部材製造方法を提供することを目的とする。 The present disclosure has an object to provide a laser processing method and a semiconductor member manufacturing method capable of obtaining a suitable semiconductor member.
 本発明者は、上記課題を解決するために鋭意検討を進めるなかで、次のような問題点を見出した。すなわち、上記のように、レーザ光の照射によって半導体対象物の内部の仮想面に沿って改質スポットを形成すると共に、当該改質スポットから延びる亀裂を進展させて半導体対象物から半導体部材を切り出す場合を検討すると、切り出された面の凹凸を減らすためには、レーザ光の仮想面でのエネルギーを低減することが有効である一方で、レーザ光の仮想面でのエネルギーが低すぎると、改質スポット及び亀裂を生じさせることができなくなる。 The present inventor found the following problems in the course of earnest studies for solving the above problems. That is, as described above, a modified spot is formed along the virtual surface inside the semiconductor object by irradiation of the laser beam, and a crack extending from the modified spot is propagated to cut out the semiconductor member from the semiconductor object. Considering the case, it is effective to reduce the energy of the laser light on the virtual plane in order to reduce the unevenness of the cut surface. Quality spots and cracks cannot be generated.
 本発明者は、このような問題点に着目し、さらなる検討を進めることにより、以下の知見を得るに至った。すなわち、まず、ガリウムを含む半導体対象物にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、仮想面におけるレーザ光のエネルギーを半導体対象物の加工閾値を下回るほど低下させても、予め形成されたガリウムを含む領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体部材を切り出したときに、切り出された面の凹凸を低減できる。本開示は、このような知見に基づいてなされたものである。 The present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser beam is irradiated again in a later step, even if the energy of the laser beam on the virtual surface is lowered below the processing threshold of the semiconductor object, the region containing gallium formed in advance can be expanded. it can. As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface. The present disclosure has been made based on such findings.
 すなわち、本開示に係るレーザ加工方法は、ガリウムを含む半導体対象物の表面から半導体対象物の内部にレーザ光を照射することにより、半導体対象物の内部において表面に対向する仮想面に沿って、複数の改質スポット、及び、複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成する第1工程と、第1工程の後に、仮想面におけるエネルギーが半導体対象物の加工閾値を下回るように、表面から半導体対象物の内部にレーザ光を照射することにより析出領域を拡大する第2工程と、を備える。 That is, the laser processing method according to the present disclosure, by irradiating the inside of the semiconductor object with laser light from the surface of the semiconductor object containing gallium, along a virtual surface facing the surface inside the semiconductor object, A first step of forming a plurality of modified spots and a plurality of deposited regions containing gallium deposited in the plurality of modified spots, and after the first step, the energy on the virtual surface changes the processing threshold of the semiconductor object. A second step of enlarging the deposition region by irradiating the inside of the semiconductor object with a laser beam from below so as to fall below.
 この方法においては、まず、ガリウムを含む半導体対象物の内部にレーザ光を照射することにより、レーザ光の入射面である表面に対向する仮想面に沿って、複数の改質スポット、及び、析出されたガリウムを含む複数の析出領域を形成する。そして、後の工程において、仮想面におけるエネルギーが半導体対象物の加工閾値を下回るように、半導体対象物の内部にレーザ光を照射することにより析出領域を拡大する。この結果、上記知見のとおり、仮想面に渡る亀裂を境界とした切り出しにより、凹凸の低減された好適な半導体部材を得ることが可能となる。 In this method, first, by irradiating the inside of a semiconductor object containing gallium with a laser beam, a plurality of modified spots and precipitations are formed along an imaginary plane facing the surface that is the incident plane of the laser beam. Forming a plurality of deposited regions containing the deposited gallium. Then, in a subsequent step, the deposition region is enlarged by irradiating the inside of the semiconductor object with laser light so that the energy on the virtual surface falls below the processing threshold value of the semiconductor object. As a result, as described above, it is possible to obtain a suitable semiconductor member with reduced unevenness by cutting out with the crack extending over the virtual surface as the boundary.
 本開示に係るレーザ加工方法においては、第2工程において、表面に交差する方向からみて集光点が改質スポットに重ならないように表面から半導体対象物の内部にレーザ光を照射してもよい。このように、この方法によれば、より凹凸の低減された好適な半導体部材を得ることが可能となる。 In the laser processing method according to the present disclosure, in the second step, laser light may be irradiated from the surface to the inside of the semiconductor object so that the converging point does not overlap the modified spot when viewed from the direction intersecting the surface. .. As described above, according to this method, it is possible to obtain a suitable semiconductor member with reduced unevenness.
 本開示に係るレーザ加工方法においては、第2工程において、析出領域にレーザ光を照射してもよい。この場合、析出領域を確実に拡大可能である。 In the laser processing method according to the present disclosure, the precipitation region may be irradiated with laser light in the second step. In this case, the deposition area can be surely expanded.
 本開示に係るレーザ加工方法においては、第1工程においては、複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、複数の改質スポットを形成してもよい。この場合、第2工程におけるレーザ光の照射の際に、レーザ光の集光点を、改質スポットのみならず、改質スポットから延びる亀裂に重ならないようにできる。この結果、第2工程において、意図しない位置に新たな改質スポットや亀裂やガリウムの析出した領域が形成されることを避けることが可能となる。すなわち、凹凸がより低減された好適な半導体部材を得ることが可能となる。 In the laser processing method according to the present disclosure, in the first step, a plurality of modified spots may be formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other. In this case, when the laser light is irradiated in the second step, the converging point of the laser light can be prevented from overlapping not only the modified spot but also the crack extending from the modified spot. As a result, in the second step, it is possible to avoid formation of a new modified spot, a crack, or a region where gallium is deposited at an unintended position. That is, it is possible to obtain a suitable semiconductor member in which unevenness is further reduced.
 本開示に係るレーザ加工方法においては、第1工程においては、パルス発振されたレーザ光の集光点を仮想面に沿って移動させることにより、複数の改質スポットとして複数列の改質スポットを形成し、第2工程においては、パルス発振されたレーザ光の集光点を複数列の改質スポットの列間において仮想面に沿って移動させてもよい。この場合、複数の改質スポットに対して第2工程でのレーザ光の集光点が重なるのを確実に防止できる。 In the laser processing method according to the present disclosure, in the first step, a plurality of rows of modified spots are formed as a plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface. In the second step, the condensing point of the pulsed laser light may be moved along the virtual plane between the rows of the reforming spots of a plurality of rows. In this case, it is possible to reliably prevent the focal point of the laser light in the second step from overlapping the plurality of modified spots.
 本開示に係るレーザ加工方法においては、対象物は、窒化ガリウムを含んでもよい。この場合、ガリウムの析出と共に生じた窒素ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。 In the laser processing method according to the present disclosure, the object may include gallium nitride. In this case, the pressure (internal pressure) of the nitrogen gas generated along with the deposition of gallium can be used to easily form a crack over the virtual surface.
 本開示に係る半導体部材製造方法は、上記のレーザ加工方法が備える第1工程及び第2工程と、仮想面に渡る亀裂を境界として半導体対象物から半導体部材を取得する第3工程と、を備える。この方法は、上記のレーザ加工方法の第1工程及び第2工程を備える。よって、同様の理由から、凹凸がより低減された好適な半導体部材を得ることができる。 A semiconductor member manufacturing method according to the present disclosure includes a first step and a second step included in the above laser processing method, and a third step of obtaining a semiconductor member from a semiconductor object with a crack extending across a virtual surface as a boundary. .. This method includes the first step and the second step of the above laser processing method. Therefore, for the same reason, it is possible to obtain a suitable semiconductor member in which unevenness is further reduced.
 本開示に係る半導体部材製造方法においては、仮想面は、表面に交差する方向に沿って並ぶように複数設定されていてもよい。この場合、1つの半導体対象物から複数の半導体部材の取得が可能となる。 In the semiconductor member manufacturing method according to the present disclosure, a plurality of virtual planes may be set so as to be arranged along the direction intersecting the surface. In this case, it is possible to obtain a plurality of semiconductor members from one semiconductor object.
 本開示に係る半導体部材製造方法においては、半導体対象物は、半導体インゴットであり、複数の半導体部材のそれぞれは、半導体ウェハであってもよい。この場合、複数の好適な半導体ウェハの取得が可能となる。 In the semiconductor member manufacturing method according to the present disclosure, the semiconductor object may be a semiconductor ingot, and each of the plurality of semiconductor members may be a semiconductor wafer. In this case, a plurality of suitable semiconductor wafers can be obtained.
 本開示に係る半導体部材製造方法においては、仮想面は、表面に沿った方向に並ぶように複数設定されていてもよい。この場合、1つの半導体対象物から複数の半導体部材の取得が可能となる。 In the semiconductor member manufacturing method according to the present disclosure, a plurality of virtual surfaces may be set so as to be aligned in the direction along the surface. In this case, it is possible to obtain a plurality of semiconductor members from one semiconductor object.
 本開示に係る半導体部材製造方法においては、半導体対象物は、半導体ウェハであり、複数の半導体部材のそれぞれは、半導体デバイスであってもよい。この場合、複数の好適な半導体デバイスの取得が可能となる。 In the semiconductor member manufacturing method according to the present disclosure, the semiconductor object may be a semiconductor wafer, and each of the plurality of semiconductor members may be a semiconductor device. In this case, it is possible to obtain a plurality of suitable semiconductor devices.
 本開示によれば、好適な半導体部材の取得を可能とするレーザ加工方法、及び、半導体部材製造方法を提供できる。 According to the present disclosure, it is possible to provide a laser processing method capable of obtaining a suitable semiconductor member and a semiconductor member manufacturing method.
レーザ加工装置の構成図である。It is a block diagram of a laser processing apparatus. 第1例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNインゴットの側面図である。It is a side view of a GaN ingot which is an object of the laser processing method and the semiconductor member manufacturing method of the first example. 図2に示されるGaNインゴットの平面図である。FIG. 3 is a plan view of the GaN ingot shown in FIG. 2. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの側面図である。It is a side view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの側面図である。It is a side view of a GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 1st example. 一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。It is an image of the exfoliation surface of a GaN wafer formed by an example laser processing method and a semiconductor member manufacturing method. 図14に示される剥離面の高さプロファイルである。It is the height profile of the peeled surface shown in FIG. 他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。It is an image of the exfoliation surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of other examples. 図16に示される剥離面の高さプロファイルである。It is the height profile of the peeling surface shown in FIG. 一例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。It is a schematic diagram for demonstrating the formation principle of the peeling surface by a laser processing method and a semiconductor member manufacturing method of an example. 他の例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。It is a schematic diagram for demonstrating the formation principle of the peeling surface by the laser processing method and semiconductor member manufacturing method of another example. 一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。It is an image of a crack formed during the laser processing method and the semiconductor member manufacturing method of an example. 他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。It is an image of a crack formed in the middle of the laser processing method and the semiconductor member manufacturing method of another example. 比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。5 is an image of modified spots and cracks formed by a laser processing method and a semiconductor member manufacturing method of a comparative example. 第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。3 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. 第2実施例及び第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。6 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments. 第2例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNウェハの平面図である。It is a top view of a GaN wafer which is an object of a laser processing method and a semiconductor member manufacturing method of the 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程における半導体デバイスの側面図である。It is a side view of a semiconductor device in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。It is an image of a crack of a SiC wafer formed by a laser processing method and a semiconductor member manufacturing method of a comparative example. 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。It is an image of a crack of a SiC wafer formed by a laser processing method and a semiconductor member manufacturing method of an example. 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像である。It is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example. 図31に示される剥離面の高さプロファイルである。It is the height profile of the peeled surface shown in FIG. 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。It is a top view of a GaN ingot in one process of a laser processing method and a semiconductor member manufacturing method of a modification. 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。It is a top view of a GaN ingot in one process of a laser processing method and a semiconductor member manufacturing method of a modification. 実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the embodiment. 実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the embodiment. レーザ光のエネルギーと改質スポットの形成との関係を示す写真である。6 is a photograph showing the relationship between the energy of laser light and the formation of modified spots. レーザ光のエネルギーと析出領域の形成との関係を示す写真である。It is a photograph which shows the relationship between the energy of a laser beam and formation of a precipitation field. 析出領域を拡大する様子を示す写真である。It is a photograph which shows a mode that a deposition area is expanded.
 以下、図面を参照した詳細な説明が提供される。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Hereinafter, a detailed description will be provided with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
[Configuration of laser processing equipment]
 図1に示されるように、レーザ加工装置1は、ステージ2と、光源3と、空間光変調器4と、集光レンズ5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することにより、対象物11に改質領域12を形成する装置である。以下、第1水平方向をX方向といい、第1水平方向に垂直な第2水平方向をY方向という。また、鉛直方向をZ方向という。 As shown in FIG. 1, the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6. The laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L. Hereinafter, the first horizontal direction will be referred to as the X direction, and the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction. The vertical direction is called the Z direction.
 ステージ2は、例えば対象物11に貼り付けられたフィルムを吸着することにより、対象物11を支持する。本実施形態では、ステージ2は、X方向及びY方向のそれぞれに沿って移動可能である。また、ステージ2は、Z方向に平行な軸線を中心線として回転可能である。 The stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11. In the present embodiment, the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
 光源3は、例えばパルス発振方式によって、対象物11に対して透過性を有するレーザ光Lを出力する。空間光変調器4は、光源3から出力されたレーザ光Lを変調する。空間光変調器4は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。集光レンズ5は、空間光変調器4によって変調されたレーザ光Lを集光する。本実施形態では、空間光変調器4及び集光レンズ5は、レーザ照射ユニットとして、Z方向に沿って移動可能である。 The light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method. The spatial light modulator 4 modulates the laser light L output from the light source 3. The spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4. In this embodiment, the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
 ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 When the laser light L is condensed inside the target object 11 supported by the stage 2, the laser light L is particularly absorbed at a portion corresponding to the condensing point C of the laser light L, and the inside of the target object 11 is modified. A quality region 12 is formed. The modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region. The modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット13がX方向に沿って1列に並ぶように形成される。1つの改質スポット13は、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット13の集合である。隣り合う改質スポット13は、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。 As an example, when the stage 2 is moved along the X direction and the condensing point C is moved relative to the target object 11 along the X direction, a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row. One modified spot 13 is formed by irradiation with one pulse of laser light L. The one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row. The adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
 制御部6は、ステージ2、光源3、空間光変調器4及び集光レンズ5を制御する。制御部6は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部6では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部6は、各種機能を実現する。
[第1例に係るレーザ加工方法及び半導体部材製造方法]
The control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5. The control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 6, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
[Laser Processing Method and Semiconductor Member Manufacturing Method According to First Example]
 ここでは、対象物11は、図2及び図3に示されるように、窒化ガリウム(GaN)によって例えば円板状に形成されたGaNインゴット(半導体インゴット、半導体対象物)20である。一例として、GaNインゴット20の直径は2inであり、GaNインゴット20の厚さは2mmである。第1実施形態のレーザ加工方法及び半導体部材製造方法は、GaNインゴット20から複数のGaNウェハ(半導体ウェハ、半導体部材)30を切り出すために実施される。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。 Here, as shown in FIGS. 2 and 3, the target 11 is a GaN ingot (semiconductor ingot, semiconductor target) 20 formed of gallium nitride (GaN) in a disk shape, for example. As an example, the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm. The laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm.
 まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNインゴット20の内部においてGaNインゴット20の表面20aに対向する面であり、表面20aに対向する方向に並ぶように設定されている。ここでは、複数の仮想面15のそれぞれは、表面20aに平行な面であり、例えば円形状を呈している。複数の仮想面15のそれぞれは、表面20a側から見た場合に互いに重なるように設定されている。GaNインゴット20には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNインゴット20の側面20bに至っていない。一例として、隣り合う仮想面15間の距離は100μmであり、周縁領域16の幅(本実施形態では、仮想面15の外縁と側面20bとの距離)は30μm以上である。 First, the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20 inside the GaN ingot 20, and is set to be aligned in a direction facing the surface 20a. Here, each of the plurality of virtual surfaces 15 is a surface parallel to the surface 20a and has, for example, a circular shape. Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side. A plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20. As an example, the distance between the adjacent virtual surfaces 15 is 100 μm, and the width of the peripheral region 16 (in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b) is 30 μm or more.
 複数の改質スポット13の形成は、例えば532nmの波長を有するレーザ光Lの照射によって、表面20aとは反対側から1つの仮想面15ごとに順次に実施される。複数の改質スポット13の形成は、複数の仮想面15のそれぞれにおいて同様であるため、以下、表面20aに最も近い仮想面15に沿った複数の改質スポット13の形成について、図4~図11を参照して詳細に説明する。なお、図5、図7、図9及び図11において、矢印は、レーザ光Lの集光点Cの軌跡を示している。また、後述する改質スポット13a,13b,13c,13dを包括して改質スポット13といい、後述する亀裂14a,14b,14c,14dを包括して亀裂14という場合がある。 The formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11. In addition, in FIG. 5, FIG. 7, FIG. 9, and FIG. 11, the arrow indicates the locus of the condensing point C of the laser light L. Further, the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13, and the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
 まず、レーザ加工装置1が、図4及び図5に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13a(第1改質スポット)を形成する(工程S1)。このとき、レーザ加工装置1は、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成する。なお、図4及び図5では、改質スポット13aが白抜き(ハッチングなし)で示されており、亀裂14aが延びる範囲が破線で示されている(図6~図11でも同様)。また、このとき、改質スポット13aのそれぞれにおいて析出されたガリウムが、亀裂14a内に入り込むように拡がることによって、改質スポット13aの周囲に、析出されたガリウムを含む析出領域Rが形成される。 First, as shown in FIGS. 4 and 5, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual plane 15 (for example, a virtual plane). A plurality of modified spots 13a (first modified spots) are formed (two-dimensionally arranged along the entire surface 15) (step S1). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Further, the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15. 4 and 5, the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11). Further, at this time, the gallium deposited in each of the modified spots 13a spreads so as to enter the crack 14a, so that a deposition region R containing the deposited gallium is formed around the modified spot 13a. ..
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチ(すなわち、複数の集光点Cの相対的な移動速度を、レーザ光Lの繰り返し周波数で除した値)は10μmである。また、1つの集光点C当たりのレーザ光Lのパルスエネルギー(以下、単に「レーザ光Lのパルスエネルギー」という)は、0.33μJである。この場合、Y方向において隣り合う改質スポット13aの中心間距離は8μmとなり、X方向において隣り合う改質スポット13aの中心間距離は10μmとなる。また、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aは互いに繋がらない。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L (that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L). The divided value) is 10 μm. The pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13a in the X direction is 10 μm. Further, the cracks 14a extending from the modified spots 13a are not connected to each other.
 続いて、レーザ加工装置1が、図6及び図7に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第2改質スポット)13bを形成する(工程S2)。このとき、レーザ加工装置1は、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の改質スポット13bを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。この工程では、複数の改質スポット13bからそれぞれ延びる複数の亀裂14bが、複数の亀裂14aに繋がってもよい。なお、図6及び図7では、改質スポット13bがドットハッチングで示されており、亀裂14bが延びる範囲が破線で示されている(図8~図11でも同様)。また、このとき、改質スポット13bのそれぞれにおいて析出されたガリウムが、亀裂14b内に入り込むように拡がることによって、改質スポット13bの周囲に、析出されたガリウムを含む析出領域Rが形成される。 Subsequently, as shown in FIGS. 6 and 7, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiates the laser light L along the virtual surface 15 (for example, A plurality of modified spots (second modified spots) 13b are formed so as to be arranged two-dimensionally along the entire virtual surface 15 (step S2). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Moreover, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows. To form. In this step, the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11). Further, at this time, the gallium deposited in each of the modified spots 13b spreads so as to enter the crack 14b, so that a deposition region R containing the deposited gallium is formed around the modified spot 13b. ..
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13aの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13bの中心間距離は8μmとなり、X方向において隣り合う改質スポット13bの中心間距離は10μmとなる。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. The pulse energy of the laser light L is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13b in the X direction is 10 μm.
 続いて、レーザ加工装置1が、図8及び図9に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13cを形成する(工程S3)。更に、レーザ加工装置1が、図10及び図11に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13dを形成する(工程S4)。このとき、レーザ加工装置1は、複数の改質スポット13a,13bに重ならないように、複数の改質スポット13c,13dを形成する。 Then, as shown in FIGS. 8 and 9, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, A plurality of modified spots (third modified spots) 13c are formed so as to be two-dimensionally arranged along the entire virtual surface 15 (step S3). Further, as shown in FIGS. 10 and 11, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the front surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, a virtual surface). A plurality of modified spots (third modified spots) 13d are formed so as to be two-dimensionally arranged along the entire surface 15 (step S4). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b.
 また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13a,13bの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13c,13dを形成する。この工程では、複数の改質スポット13c,13dからそれぞれ延びる複数の亀裂14c,14dが、複数の亀裂14a,14bに繋がってもよい。なお、図8及び図9では、改質スポット13cが実線ハッチングで示されており、亀裂14cが延びる範囲が破線で示されている(図10及び図11でも同様)。また、図10及び図11では、改質スポット13dが実線ハッチング(改質スポット13cの実線ハッチングとは逆に傾斜する実線ハッチング)で示されており、亀裂14dが延びる範囲が破線で示されている。また、このとき、改質スポット13c,13dのそれぞれにおいて析出されたガリウムが、亀裂14c,14d内に入り込むように拡がることによって、改質スポット13c,13dの周囲に、析出されたガリウムを含む析出領域Rが形成される。 Further, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows. The spots 13c and 13d are formed. In this step, the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b. 8 and 9, the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11). 10 and 11, the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines. There is. Further, at this time, the gallium deposited in each of the reformed spots 13c and 13d spreads so as to enter the cracks 14c and 14d, so that the deposited gallium is deposited around the reformed spots 13c and 13d. Region R is formed.
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13a,13bの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは5μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13cの中心間距離は8μmとなり、X方向において隣り合う改質スポット13cの中心間距離は5μmとなる。また、Y方向において隣り合う改質スポット13dの中心間距離は8μmとなり、X方向において隣り合う改質スポット13dの中心間距離は5μmとなる。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. The pulse energy of the laser light L is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13c in the X direction is 5 μm. Further, the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 μm, and the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 μm.
 続いて、ヒータ等を備える加熱装置が、GaNインゴット20を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、図12に示されるように、複数の仮想面15のそれぞれにおいて、仮想面15に渡る亀裂17(以下、単に「亀裂17」という)を形成する。図12では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、加熱以外の方法でGaNインゴット20に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 Subsequently, a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG. As described above, a crack 17 (hereinafter, simply referred to as “crack 17”) that extends over the virtual surface 15 is formed in each of the plurality of virtual surfaces 15. In FIG. 12, a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNインゴット20においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力(内圧)を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、GaNインゴット20の側面20b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることができる。 Here, in the GaN ingot 20, nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 μm or more.
 続いて、研削装置が、GaNインゴット20のうち複数の周縁領域16及び複数の仮想面15のそれぞれに対応する部分を研削(研磨)することにより、図13に示されるように、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する(工程S5)。このように、GaNインゴット20は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、研削以外の機械加工、レーザ加工等によって、GaNインゴット20のうち複数の周縁領域16に対応する部分を除去してもよい。 Then, the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG. A plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (step S5). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15. In this step, portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第1例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する工程までが、第1例の半導体部材製造方法である。 Among the above steps, the laser processing method of the first example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the first example.
 以上説明したように、第1例のレーザ加工方法では、複数の仮想面15のそれぞれに沿って複数の改質スポット13aを形成し、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13bを形成する。更に、第1例のレーザ加工方法では、複数の改質スポット13a,13bに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13c,13dを形成する。これにより、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第1例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得することにより、複数の好適なGaNウェハ30の取得が可能となる。 As described above, in the laser processing method of the first example, the plurality of modified spots 13a are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Then, a plurality of modified spots 13b are formed along each of the plurality of virtual surfaces 15. Furthermore, in the laser processing method of the first example, a plurality of modified spots 13c and 13d are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and 13b. Thereby, the plurality of modified spots 13 can be accurately formed along each of the plurality of virtual surfaces 15, and as a result, the crack 17 can be formed accurately along each of the plurality of virtual surfaces 15. It will be possible. Therefore, according to the laser processing method of the first example, it is possible to obtain a plurality of suitable GaN wafers 30 by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. ..
 同様に、第1例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the first example, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus a plurality of suitable GaN layers can be formed. The wafer 30 can be acquired.
 また、第1例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 In the laser processing method of the first example, the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
 また、第1例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Further, in the laser processing method of the first example, the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form the modified spots 13a in a plurality of rows and pulsed. By moving the condensing point C of the laser light L along the virtual surface 15 between the rows of the plurality of rows of modified spots 13a, the plurality of rows of modified spots 13b are formed. Thereby, it is possible to reliably prevent the plurality of reformed spots 13b from overlapping the plurality of reformed spots 13a and the plurality of cracks 14a, and to form the plurality of reformed spots 13b along the virtual surface 15 with higher accuracy. You can
 特に、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し(析出領域Rが形成され)、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。 Particularly, in the laser processing method of the first example, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser beam L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the deposition region R is formed, and the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
 また、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。 Further, in the laser processing method of the first example, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第1例の半導体部材製造方法によれば、第1例のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the first example, the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the first example. Thus, it is possible to obtain a plurality of suitable GaN wafers 30.
 また、第1例の半導体部材製造方法では、複数の仮想面15が、GaNインゴット20の表面20aに対向する方向に並ぶように設定されている。これにより、1つのGaNインゴット20から複数のGaNウェハ30の取得が可能となる。 In addition, in the semiconductor member manufacturing method of the first example, the plurality of virtual surfaces 15 are set to be aligned in the direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
 ここで、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハ30では、GaNウェハ30の剥離面に現れる凹凸が小さくなることを示す実験結果について説明する。 Here, an explanation will be given of the experimental results showing that the GaN wafer 30 formed by the laser processing method and the semiconductor member manufacturing method of the first example has smaller irregularities on the separated surface of the GaN wafer 30.
 図14は、一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図15の(a)及び(b)は、図14に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を10μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1μJとした。この場合、図15の(a)及び(b)に示されるように、GaNウェハ30の剥離面(亀裂17によって形成された面)に25μm程度の凹凸が現れた。 FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example, and FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile. In this example, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. By moving, a plurality of modified spots 13 were formed along the virtual surface 15. At this time, the distance between adjacent condensing points C in the Y direction was 10 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1 μJ. In this case, as shown in (a) and (b) of FIG. 15, irregularities of about 25 μm appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
 図16は、他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図17の(a)及び(b)は、図16に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。この場合、図17の(a)及び(b)に示されるように、GaNウェハ30の剥離面に5μm程度の凹凸が現れた。 FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example, and FIGS. 17A and 17B show the peeled surface of FIG. It is a height profile. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first and second steps of the laser processing method and the semiconductor member manufacturing method of the first embodiment. Similarly, the plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. In this case, as shown in FIGS. 17A and 17B, unevenness of about 5 μm appeared on the separated surface of the GaN wafer 30.
 以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハでは、GaNウェハ30の剥離面に現れる凹凸が小さくなること、すなわち、仮想面15に沿って亀裂17が精度良く形成されることが分かった。なお、GaNウェハ30の剥離面に現れる凹凸が小さくなると、当該剥離面を平坦化するための研削量が少なくて済む。したがって、GaNウェハ30の剥離面に現れる凹凸が小さくなることは、材料の利用効率的にも生産効率的にも有利である。 From the above experimental results, in the GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of the first example, the irregularities appearing on the separated surface of the GaN wafer 30 are small, that is, the cracks 17 along the virtual surface 15. Was found to be formed with high precision. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
 次に、GaNウェハ30の剥離面に凹凸が現れる原理について説明する。 Next, the principle that unevenness appears on the peeled surface of the GaN wafer 30 will be described.
 例えば、図18に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその一方の側の改質スポット13aから延びる亀裂14aに重なるように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13aに対してレーザ光Lの入射側に改質スポット13bが形成され易くなる。続いて、改質スポット13cがその一方の側の改質スポット13bから延びる亀裂14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。この場合にも、複数の亀裂14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13bに対してレーザ光Lの入射側に改質スポット13cが形成され易くなる。このように、この例では、複数の改質スポット13bが複数の改質スポット13aに対してレーザ光Lの入射側に形成され、更に、複数の改質スポット13cが複数の改質スポット13bに対してレーザ光Lの入射側に形成され易くなる。 For example, as shown in FIG. 18, a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side. A plurality of modified spots 13b are formed along the surface 15. In this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a. The modified spot 13b is easily formed on the incident side of the light L. Then, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side. Also in this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b. The modified spot 13c is easily formed on the incident side of the light L. As described above, in this example, the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
 それに対し、例えば、図19に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその両側の改質スポット13aから延びる亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるものの、改質スポット13bが亀裂14aに重ならないため、改質スポット13bも、改質スポット13aと同様に仮想面15上に形成される。続いて、改質スポット13cがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。更に、改質スポット13dがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13dを形成する。これらの場合には、複数の亀裂14a,14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13a,13bに対してレーザ光Lの入射側に改質スポット13c,13dが形成され易くなる。このように、この例では、複数の改質スポット13c,13dが複数の改質スポット13a,13bに対してレーザ光Lの入射側に形成され易くなるだけである。 On the other hand, for example, as shown in FIG. 19, a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof. , A plurality of modified spots 13b are formed along the virtual surface 15. In this case, although the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a. Are formed on the virtual surface 15. Subsequently, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. Further, a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. In these cases, since the laser light L is easily absorbed by the gallium deposited on the plurality of cracks 14a and 14b, even if the condensing point C is located on the virtual surface 15, the modified spots 13a, The modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
 以上の原理から、第1例のレーザ加工方法及び半導体部材製造方法においては、複数の改質スポット13a及び複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに重ならないように、複数の改質スポット13bを形成することが、GaNウェハ30の剥離面に現れる凹凸を小さくする上で極めて重要であることが分かる。 From the above principle, in the laser processing method and the semiconductor member manufacturing method of the first example, a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
 次に、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method of the first example, an experimental result showing that the crack 17 propagates along the virtual surface 15 with high accuracy will be described.
 図20の(a)及び(b)は、一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図20の(b)は、図20の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1.33μJとした。そして、レーザ加工を仮想面15の途中で停止させた。この場合、図20の(a)及び(b)に示されるように、加工領域から未加工領域に進展した亀裂が、未加工領域において仮想面15から大きく外れた。 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example, and FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1.33 μJ. Then, the laser processing was stopped in the middle of the virtual surface 15. In this case, as shown in (a) and (b) of FIG. 20, the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
 図21の(a)及び(b)は、他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図21の(b)は、図21の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1のみに、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図21の(a)及び(b)に示されるように、加工領域1から加工領域2に進展した亀裂が、加工領域2において仮想面15から大きく外れなかった。 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example, and FIG. 21(b) is FIG. 21(a). It is an enlarged image in the rectangular frame in. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. Specifically, first, the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
 以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することが分かった。これは、加工領域2に先に形成された複数の改質スポット13が、亀裂が進展する際にガイドになったためと想定される。 From the above experimental results, it was found that in the laser processing method and the semiconductor member manufacturing method of the first example, the crack 17 propagates along the virtual surface 15 with high accuracy. It is assumed that this is because the plurality of modified spots 13 previously formed in the processed region 2 served as guides when the crack propagated.
 次に、第1例のレーザ加工方法及び半導体部材製造方法においては、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method of the first example, the experimental results showing that the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof is suppressed. explain.
 図22は、比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像(側面視での画像)である。この比較例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、Y方向において隣り合う集光点C間の距離を2μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。この場合、図22に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が100μm程度となった。 FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example. In this comparative example, a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. The plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to. Specifically, the distance between the condensing points C adjacent to each other in the Y direction is 2 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.3 μJ. Quality spot 13 was formed. In this case, as shown in FIG. 22, the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 μm.
 図23は、第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図23の(a)は平面視での画像、図23の(b)は側面視での画像である。この第1実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13aを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13bを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に-4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。これにより、1回目に形成した改質スポット13aと3回目に形成した改質スポット13とが互いに重なり、2回目に形成した改質スポット13bと4回目に形成した改質スポット13とが互いに重なっていると想定される。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が70μm程度となった。 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. FIG. 23A is an image in plan view, and FIG. Is an image in side view. In the first embodiment, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction. By relatively moving on the surface 15, a plurality of modified spots 13 were formed along the virtual surface 15. Specifically, first, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.3 μJ. The modified spot 13a of No. 1 was formed. Then, with the six condensing points C aligned in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. A plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 μJ. Then, with the six converging points C arranged in the Y direction shifted from the previous state by -4 μm in the Y direction, the distance between the converging points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is changed. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 μm and 0.3 μJ. Subsequently, with the six condensing points C arranged in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 μJ. As a result, the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 μm.
 図24の(a)及び(b)は、第2実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(a)は平面視での画像、図24の(b)は側面視での画像である。この第2実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1例のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。この場合、図24の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が50μm程度となった。 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second embodiment, and FIG. 24A is a plan view. The image, (b) of FIG. 24, is an image in a side view. In the second embodiment, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first step and the first step of the laser processing method and the semiconductor member manufacturing method of the first example. Similar to the two steps, a plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. In this case, as shown in (b) of FIG. 24, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 μm.
 図24の(c)及び(d)は、第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(c)は平面視での画像、図24の(d)は側面視での画像である。この第3実施例では、図24の(a)及び(b)に示される状態にある仮想面15(すなわち、複数列の改質スポット13が既に形成された仮想面15)に沿って、更に、複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.1μJとして、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図24の(d)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が60μm程度となった。 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view. An image, (d) of FIG. 24, is an image in a side view. In the third embodiment, further along the virtual plane 15 in the state shown in (a) and (b) of FIG. 24 (that is, the virtual plane 15 on which a plurality of rows of modified spots 13 have already been formed), A plurality of modified spots 13 were formed. Specifically, first, the distance between adjacent condensing points C in the Y direction is 8 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.1 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in FIG. 24D, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 μm.
 以上の実験結果から、仮想面15に沿って既に形成された複数の改質スポット13a及び複数の亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成すれば(第1実施例、第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることが分かった。仮想面15に沿って更に複数の改質スポット13を形成する場合には、仮想面15に沿って既に形成された複数の改質スポット13a,13bに重ならないように、仮想面15に沿って複数の改質スポット13すれば(第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量がより一層抑制されることが分かった。
[第2例のレーザ加工方法及び半導体部材製造方法]
From the above experimental results, if the modified spots 13b are formed along the virtual surface 15 so as not to overlap the modified spots 13a and the cracks 14a already formed along the virtual surface 15 (( 1st Example, 2nd Example, and 3rd Example), it turned out that the extension amount of the crack 14 extended from the modification spot 13 to the incident side of the laser beam L and the opposite side is suppressed. When further forming a plurality of modified spots 13 along the virtual surface 15, along the virtual surface 15 so as not to overlap the plurality of modified spots 13a and 13b already formed along the virtual surface 15. With a plurality of modified spots 13 (second and third embodiments), the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side can be further suppressed. Do you get it.
[Laser Processing Method and Semiconductor Member Manufacturing Method of Second Example]
 第2例のレーザ加工方法及び半導体部材製造方法の対象物11は、図25に示されるように、GaNによって例えば円板状に形成されたGaNウェハ(半導体ウェハ、半導体対象物)30である。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。第2例のレーザ加工方法及び半導体部材製造方法は、GaNウェハ30から複数の半導体デバイス(半導体部材)40を切り出すために実施される。一例として、半導体デバイス40のGaN基板部分の外形は1mm×1mmであり、半導体デバイス40のGaN基板部分の厚さは数十μmである。 The object 11 of the laser processing method and the semiconductor member manufacturing method of the second example is a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example, as shown in FIG. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm. The laser processing method and the semiconductor member manufacturing method of the second example are performed to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30. As an example, the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm×1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens μm.
 まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNウェハ30の内部においてGaNウェハ30の表面30aに対向する面であり、表面30aが延在する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、表面30aに平行な面であり、例えば矩形状を呈している。複数の仮想面15のそれぞれは、GaNウェハ30のオリエンテーションフラット31に平行な方向及び垂直な方向に2次元状に並ぶように設定されている。GaNウェハ30には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNウェハ30の側面30bに至っていない。一例として、複数の仮想面15のそれぞれに対応する周縁領域16の幅(第2例では、隣り合う仮想面15間の距離の半分)は30μm以上である。 First, the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends. In the present embodiment, each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape. Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31. In the GaN wafer 30, a plurality of peripheral regions 16 are set so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30. As an example, the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 (half the distance between the adjacent virtual surfaces 15 in the second example) is 30 μm or more.
 複数の仮想面15のそれぞれに沿った複数の改質スポット13の形成は、第1例のレーザ加工方法及び半導体部材製造方法の工程S1~工程S4と同様に、実施される。これにより、GaNウェハ30においては、図26に示されるように、複数の仮想面15のそれぞれに沿って、複数の改質スポット13(すなわち、改質スポット13a,13b,13c,13d)及び複数の亀裂14(すなわち、亀裂14a,14b,14c,14d)が形成される。図26では、複数の改質スポット13及び複数の亀裂14が形成される範囲が破線で示されている。 The formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as steps S1 to S4 of the laser processing method and the semiconductor member manufacturing method of the first example. As a result, in the GaN wafer 30, as shown in FIG. 26, a plurality of modified spots 13 (that is, modified spots 13a, 13b, 13c, 13d) and a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15. 14 (that is, the cracks 14a, 14b, 14c, 14d) are formed. In FIG. 26, the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by a broken line.
 続いて、半導体製造装置が、図27に示されるように、GaNウェハ30の表面30aに複数の機能素子32を形成する。複数の機能素子32のそれぞれは、GaNウェハ30の厚さ方向から見た場合に1つの機能素子32が1つの仮想面15に含まれるように、形成される。機能素子32は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。 Subsequently, the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG. Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30. The functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
 第2例では、表面30aに複数の機能素子32を形成する際に、半導体製造装置が加熱装置として機能する。つまり、表面30aに複数の機能素子32を形成する際に、半導体製造装置が、GaNウェハ30を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、複数の仮想面15のそれぞれにおいて、亀裂17(すなわち、仮想面15に渡る亀裂17)を形成する。図27では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、半導体製造装置とは別の加熱装置が用いられてもよい。また、加熱以外の方法でGaNウェハ30に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 In the second example, the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other, a crack 17 (that is, a crack 17 across the virtual surface 15) is formed in each of the plurality of virtual surfaces 15. In FIG. 27, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNウェハ30においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、隣り合う仮想面15、GaNウェハ30の側面30b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることができる。 Here, in the GaN wafer 30, nitrogen gas is generated in the cracks 14 extending from the modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure of the nitrogen gas. Moreover, since the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 μm or more.
 続いて、レーザ加工装置が、GaNウェハ30を機能素子32ごとに切断すると共に、研削装置が、複数の仮想面15のそれぞれに対応する部分を研削することにより、図28に示されるように、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する(工程S6)。このように、GaNウェハ30は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、レーザ加工以外の機械加工(例えばブレードダイシング)等によって、GaNウェハ30を機能素子32ごとに切断してもよい。 Then, the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, as shown in FIG. 28. A plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (step S6). In this way, the GaN wafer 30 is cut along each of the plurality of virtual planes 15. In this step, the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第2例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する工程までが、第2例の半導体部材製造方法である。 Among the above steps, the laser processing method of the second example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the second example.
 以上説明したように、第2例のレーザ加工方法よれば、第1例のレーザ加工方法と同様に、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第2例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得することにより、複数の好適な半導体デバイス40の取得が可能となる。また、複数の半導体デバイス40を切り出した後のGaNウェハ30を再利用することも可能となる。 As described above, according to the laser processing method of the second example, as in the laser processing method of the first example, it is possible to accurately form the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. As a result, the crack 17 can be accurately formed along each of the plurality of virtual surfaces 15. Therefore, according to the laser processing method of the second example, it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. .. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
 同様に、第2例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the second example, it is possible to accurately form the crack 17 along each of the virtual surfaces 15, and thus a plurality of suitable semiconductors can be formed. The device 40 can be acquired.
 また、第2例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Further, in the laser processing method of the second example, the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
 また、第2例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Moreover, in the laser processing method of the second example, the condensing point C of the pulsed laser light L is moved along the virtual plane 15 to form a plurality of rows of modified spots 13a and pulsed. By moving the condensing point C of the laser light L along the virtual surface 15 between the rows of the plurality of rows of modified spots 13a, the plurality of rows of modified spots 13b are formed. Thereby, it is possible to reliably prevent the plurality of reformed spots 13b from overlapping the plurality of reformed spots 13a and the plurality of cracks 14a, and to form the plurality of reformed spots 13b along the virtual surface 15 with higher accuracy. You can
 特に、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。 Particularly, in the laser processing method of the second example, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
 また、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。 Further, in the laser processing method of the second example, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by irradiation with the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第2例の半導体部材製造方法によれば、第2実施形態のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the second example, the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
 また、第2例の半導体部材製造方法では、複数の仮想面15が、GaNウェハ30の表面30aが延在する方向に並ぶように設定されている。これにより、1つのGaNウェハ30から複数の半導体デバイス40の取得が可能となる。
[変形例]
Further, in the semiconductor member manufacturing method of the second example, the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
[Modification]
 上述した例は、任意に変形可能である。例えば、レーザ光Lに関する各種数値は、上述したものに限定されない。ただし、亀裂14が改質スポット13からレーザ光Lの入射側及びその反対側に延びるのを抑制するためには、レーザ光Lのパルスエネルギーが0.1μJ~1μJであり且つレーザ光Lのパルス幅が200fs~1nsとされ得る。 The above example can be modified arbitrarily. For example, the various numerical values regarding the laser light L are not limited to those described above. However, in order to prevent the crack 14 from extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof, the pulse energy of the laser light L is 0.1 μJ to 1 μJ and the pulse of the laser light L is The width can be 200 fs to 1 ns.
 また、レーザ加工方法及び半導体部材製造方法によって加工される半導体対象物は、第1例のGaNインゴット20及び第2例のGaNウェハ30に限定されない。半導体部材製造方法によって製造される半導体部材は、第1例のGaNウェハ30及び第2例の半導体デバイス40に限定されない。1つの半導体対象物に1つの仮想面が設定されてもよい。 The semiconductor object processed by the laser processing method and the semiconductor member manufacturing method is not limited to the GaN ingot 20 of the first example and the GaN wafer 30 of the second example. The semiconductor member manufactured by the semiconductor member manufacturing method is not limited to the GaN wafer 30 of the first example and the semiconductor device 40 of the second example. One virtual surface may be set for one semiconductor object.
 一例として、半導体対象物の材料は、SiCであってもよい。その場合にも、レーザ加工方法及び半導体部材製造方法によれば、次に述べるように、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となる。 As an example, the material of the semiconductor object may be SiC. Even in that case, according to the laser processing method and the semiconductor member manufacturing method, as described below, it is possible to accurately form a crack extending over the virtual surface along the virtual surface.
 図29の(a)及び(b)は、比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図29の(b)は、図29の(a)における矩形枠内の拡大画像である。この比較例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、Y方向に並ぶ6つの集光点を、X方向に沿って仮想面上を相対的に移動させることにより、仮想面に沿って複数の改質スポットを形成した。このとき、Y方向において隣り合う集光点C間の距離を2μm、レーザ光のパルスピッチを15μm、レーザ光のパルスエネルギーを4μJとした。この場合、図29の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂が発生した。 29A and 29B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 29A is an enlarged image within a rectangular frame in FIG. In this comparative example, laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 2 μm, the pulse pitch of the laser light was 15 μm, and the pulse energy of the laser light was 4 μJ. In this case, as shown in (a) and (b) of FIG. 29, a crack extending in a direction inclined by 4° to 5° with respect to the virtual plane occurred.
 図30の(a)及び(b)は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図30の(b)は、図30の(a)における矩形枠内の拡大画像である。この実施例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面に沿って複数の改質スポットを形成した。複数の改質スポット13a,13b,13c,13dのそれぞれに相当する複数の改質スポットを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを15μm、レーザ光Lのパルスエネルギーを4μJとした。この場合、図30の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂の発生が抑制された。図31は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像であり、図32の(a)及び(b)は、図31に示される剥離面の高さプロファイルである。この場合、SiCウェハの剥離面に現れる凹凸は2μm程度に抑えられた。 30A and 30B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 30 is an enlarged image in the rectangular frame in FIG. In this example, a laser beam having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the laser processing method and the semiconductor member manufacturing method according to the first embodiment have the same first and second steps. , A plurality of modified spots were formed along the virtual plane. When forming a plurality of modified spots corresponding to the respective modified spots 13a, 13b, 13c, 13d, the distance between the condensing points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is set. Was 15 μm, and the pulse energy of the laser beam L was 4 μJ. In this case, as shown in (a) and (b) of FIG. 30, the generation of cracks extending in the direction inclined by 4° to 5° with respect to the virtual plane was suppressed. FIG. 31 is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIGS. 32A and 32B show the height of the peeled surface shown in FIG. It is a profile. In this case, the unevenness appearing on the peeled surface of the SiC wafer was suppressed to about 2 μm.
 以上の実験結果から、半導体対象物の材料がSiCである場合にも、レーザ加工方法及び半導体部材製造方法によれば、仮想面に渡る亀裂が仮想面に沿って精度良く形成されることが分かった。なお、上述した比較例及び実施例で用いたSiCウェハは、4±0.5°のオフ角を有する4H-SiCウェハであり、レーザ光の集光点を移動させた方向は、m軸方向である。 From the above experimental results, it is found that even when the material of the semiconductor object is SiC, according to the laser processing method and the semiconductor member manufacturing method, the cracks extending over the virtual surface are accurately formed along the virtual surface. It was The SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4±0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
 また、複数の改質スポット13a,13b,13c,13dの形成の仕方は、上述したものに限定されない。複数の改質スポット13aは、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がるように形成されてもよい。また、複数の改質スポット13bは、複数の改質スポット13aに重ならないように形成されればよい。複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに複数の改質スポット13bが重なったとしても、複数の改質スポット13bが複数の改質スポット13aに重ならなければ、複数の改質スポット13a,13bが仮想面15に沿って精度良く形成される。また、複数の改質スポット13c,13dの形成の仕方は任意であり、複数の改質スポット13c,13dは、形成されなくてもよい。また、図33に示されるように、例えばGaNインゴット20を回転させることにより、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成し、更に、図34に示されるように、複数列の改質スポット13の列間に複数の集光点のそれぞれを位置させた状態で、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成してもよい。 The method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above. The plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other. Further, the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15. Further, the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed. Further, as shown in FIG. 33, for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (dashed-dotted arrows), and a plurality of rows of modified spots are formed. 34, and further, as shown in FIG. 34, a plurality of condensing points arranged in the radial direction with each of the plurality of condensing points positioned between the rows of the modified spots 13 in a plurality of rows. May be relatively rotated (arrows indicated by alternate long and short dash lines) to form a plurality of rows of modified spots 13.
 また、第1例のレーザ加工方法及び半導体部材製造方法において、複数の改質スポット13の形成は、表面20aとは反対側から複数の仮想面15ごとに順次に実施されてもよい。また、第1例のレーザ加工方法及び半導体部材製造方法では、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施され、1つ又は複数のGaNウェハ30が切り出された後に、GaNインゴット20の表面20aが研削され、再び、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施されてもよい。 In addition, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the front surface 20a side, and the one or more GaN wafers. After the 30 is cut out, the surface 20a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20a side.
 また、第1例及び第2例のレーザ加工方法及び半導体部材製造方法では、周縁領域16が形成されなくてもよい。第1例のレーザ加工方法及び半導体部材製造方法において周縁領域16を形成しない場合には、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成した後に、例えば、GaNインゴット20に対してエッチングを施すことにより、複数のGaNウェハ30を取得することも可能である。 Further, in the laser processing method and the semiconductor member manufacturing method of the first and second examples, the peripheral region 16 may not be formed. In the case where the peripheral region 16 is not formed in the laser processing method and the semiconductor member manufacturing method of the first example, after forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15, for example, the GaN ingot 20 is formed. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on them.
 また、レーザ加工装置1は、上述した構成を有するものに限定されない。例えば、レーザ加工装置1は、空間光変調器4を備えていなくてもよい。 Moreover, the laser processing apparatus 1 is not limited to the one having the above-described configuration. For example, the laser processing device 1 may not include the spatial light modulator 4.
 また、上述した例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した一の例又は変形例における各構成は、他の例又は変形例における各構成に任意に適用することができる。
[実施形態に係るレーザ加工方法、及び、半導体部材製造方法]
The materials and shapes described above are not limited to the materials and shapes described above, and various materials and shapes can be applied. Further, each configuration in the above-described one example or modified example can be arbitrarily applied to each configuration in another example or modified example.
[Laser Processing Method According to Embodiment and Semiconductor Member Manufacturing Method]
 上記の第1例及び第2例に係るレーザ加工方法においては、レーザ光Lの照射によって改質スポット13a~改質スポット13dを形成するものとした。この場合であっても、好適な半導体部材を取得できることは、上述したとおりである。 In the laser processing methods according to the first and second examples described above, the modified spots 13a to 13d are formed by the irradiation of the laser light L. Even in this case, a suitable semiconductor member can be obtained as described above.
 これに対して、本発明者は、鋭意検討を進めるなかで、次のような問題点を見出した。すなわち、レーザ光の照射によって半導体対象物の内部の仮想面に沿って改質スポットを形成すると共に、当該改質スポットから延びる亀裂を進展させて半導体対象物から半導体部材を切り出す場合を検討すると、切り出された面の凹凸を減らすためには、レーザ光の仮想面でのエネルギーを低減することが有効である一方で、レーザ光の仮想面でのエネルギーが低すぎると、改質スポット及び亀裂を生じさせることができなくなる。 On the other hand, the present inventor discovered the following problems during the earnest study. That is, while forming a modified spot along the virtual surface inside the semiconductor object by irradiation of the laser light, when considering a case of cutting out a semiconductor member from the semiconductor object by developing a crack extending from the modified spot, In order to reduce the unevenness of the cut surface, it is effective to reduce the energy of the virtual surface of the laser light, while if the energy of the virtual surface of the laser light is too low, the modified spots and cracks will be formed. It cannot be caused.
 本発明者は、このような問題点に着目し、さらなる検討を進めることにより、以下の知見を得るに至った。すなわち、まず、ガリウムを含む半導体対象物にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、仮想面におけるレーザ光のエネルギーを半導体対象物の加工閾値を下回るほど低下させても、予め形成されたガリウムを含む析出領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体部材を切り出したときに、切り出された面の凹凸を低減できる。以下の実施形態に係るレーザ加工方法、及び、半導体部材製造方法は、このような知見に基づいてなされたものである。 The present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser light is irradiated again in a later step, even if the energy of the laser light on the virtual surface is lowered below the processing threshold value of the semiconductor object, the deposition region containing gallium formed in advance is expanded. You can As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface. The laser processing method and the semiconductor member manufacturing method according to the following embodiments are based on such knowledge.
 この方法においては、まず、上記の第1例と同様にして、工程S1~工程S3を実施する。すなわち、GaNインゴット20の表面20aからGaNインゴット20の内部にレーザ光Lを照射することにより、GaNインゴット20の内部において表面20aに対向する仮想面15に沿って、複数の改質スポット13(改質スポット13a~改質スポット13c)、及び、複数の改質スポット13において析出されたガリウムを含む複数の析出領域Rを形成する(第1工程)。 In this method, first, steps S1 to S3 are carried out in the same manner as the first example described above. That is, by irradiating the inside of the GaN ingot 20 with the laser light L from the surface 20 a of the GaN ingot 20, a plurality of modified spots 13 (modified) are formed along the virtual surface 15 facing the surface 20 a inside the GaN ingot 20. Quality spots 13a to modified spots 13c) and a plurality of deposition regions R containing gallium deposited in the plurality of modified spots 13 are formed (first step).
 改質スポット13a~改質スポット13cを形成するときのレーザ光Lの照射条件は、例えば次のように規定することができる。まず、レーザ光Lのパルスエネルギーが大きくなると、改質スポット13の周辺に形成される析出領域Rが大きくなる傾向にある。したがって、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に大きくする(改質スポット13及び析出領域Rを相対的に粗に形成する)場合には、後のレーザ光の照射による析出領域Rの拡大の観点から、レーザ光Lのパルスエネルギーを大きくすることができる。一方で、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に小さくする(改質スポット13及び析出領域Rを相対的に密に形成する)場合には、レーザ光のパルスエネルギーを小さくしても、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。一例として、レーザ光Lのパルスピッチを10μmと一定とすると、Y方向において隣り合う集光点C間の距離を8μmとする場合には、レーザ光Lのパルスエネルギーを2μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。また、Y方向において隣り合う集光点C間の距離を4μmとする場合には、レーザ光Lのパルスエネルギーを0.67μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。さらに、Y方向において隣り合う集光点C間の距離を2μmとする場合には、レーザ光Lのパルスエネルギーを0.33μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。 The irradiation conditions of the laser light L when forming the modified spots 13a to 13c can be specified as follows, for example. First, as the pulse energy of the laser light L increases, the deposition region R formed around the modified spot 13 tends to increase. Therefore, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively increased (the modified spot 13 and the deposition region R are relatively coarsely formed), the subsequent laser is used. The pulse energy of the laser light L can be increased from the viewpoint of enlarging the deposition region R by irradiation with light. On the other hand, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively small (the modified spots 13 and the deposition regions R are relatively densely formed), the laser light is used. Even if the pulse energy of is reduced, the deposition region R can be enlarged by irradiation with laser light in a later step. As an example, when the pulse pitch of the laser light L is fixed to 10 μm, when the distance between the condensing points C adjacent in the Y direction is 8 μm, the pulse energy of the laser light L is set to about 2 μJ. The deposition region R can be enlarged by irradiation with laser light in a later step. Further, when the distance between the condensing points C adjacent to each other in the Y direction is 4 μm, the pulse energy of the laser light L is set to about 0.67 μJ, so that the deposition area is formed by the irradiation of the laser light in the subsequent step. R can be expanded. Further, when the distance between the condensing points C adjacent to each other in the Y direction is 2 μm, the pulse energy of the laser light L is set to about 0.33 μJ, so that the deposition region is formed by the irradiation of the laser light in a later step. R can be expanded.
 続いて、第2工程が実施される。すなわち、図36に示されるように、ここでは、一例としてGaNインゴット20の表面20aに交差する方向(Z方向)からみて、レーザ光Lの集光点を改質スポット13に重ならないように配置する。ここでは、図35に示されるように、複数の集光点Cのそれぞれを、Y方向に互いに隣り合う改質スポット13a及び改質スポット13bとの間に配置する。また、ここでは、一例として、集光点Cは、改質スポット13に加えて、亀裂14及び析出領域Rに重ならないように配置され得る。或いは、ここでは、別の例として、集光点Cは、析出領域Rに重なるように配置され得る。そのうえで、仮想面15におけるエネルギーがGaNインゴット20の加工閾値を下回るようにする。その状態において、表面20aからGaNインゴット20の内部にレーザ光Lを照射する。 Next, the second process is implemented. That is, as shown in FIG. 36, here, as an example, the converging point of the laser light L is arranged so as not to overlap the modified spot 13 when viewed from the direction (Z direction) crossing the surface 20 a of the GaN ingot 20. To do. Here, as shown in FIG. 35, each of the plurality of condensing points C is arranged between the modified spot 13a and the modified spot 13b adjacent to each other in the Y direction. Further, here, as an example, the condensing point C may be arranged so as not to overlap the crack 14 and the deposition region R in addition to the modified spot 13. Alternatively, here, as another example, the condensing point C may be arranged so as to overlap the deposition region R. Then, the energy on the virtual surface 15 is set to be lower than the processing threshold of the GaN ingot 20. In this state, the laser light L is applied to the inside of the GaN ingot 20 from the surface 20a.
 ここでは、レーザ加工装置1が、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させる。また、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は1μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この照射条件によれば、レーザ光Lの集光点Cに対応する位置に改質スポットが形成されないものの、析出領域Rが拡大される。この後の工程については、上記の第1例と同様である。 Here, the laser processing apparatus 1 moves the focal point C of the pulsed laser light L along the virtual surface 15. Further, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 1 μm, and the pulse pitch of the laser light L is 10 μm. The pulse energy of the laser light L is 0.33 μJ. According to this irradiation condition, although the modified spot is not formed at the position corresponding to the condensing point C of the laser light L, the deposition region R is enlarged. The subsequent steps are the same as those in the above first example.
 なお、図37の(a)に示される例では、レーザ光Lのエネルギーを0.67μJとしている。この場合には、複数の改質スポット13が形成される。一方、図37の(b)に示される例では、レーザ光Lのエネルギーを0.23μJとした。この場合には、改質スポット13がほとんど形成されない。GaNインゴット20の場合には、加工閾値が0.23μJ付近であると考えられ、0.2μJのエネルギーでは改質スポットの形成が確認されなかった。 Incidentally, in the example shown in FIG. 37(a), the energy of the laser beam L is set to 0.67 μJ. In this case, a plurality of modified spots 13 are formed. On the other hand, in the example shown in FIG. 37(b), the energy of the laser light L is set to 0.23 μJ. In this case, the modified spot 13 is hardly formed. In the case of the GaN ingot 20, the processing threshold value is considered to be around 0.23 μJ, and formation of a modified spot was not confirmed at an energy of 0.2 μJ.
 また、図38の(a)は、上記の照射条件(例えば、図24の(a),(b)に係る第2実施例の条件)によって第1工程を実施し、改質スポット13a~改質スポット13cを形成した後、第2工程を実施していない状態を示している。図39の(a)は、同様の照射条件によって第1工程を実施した後に、さらに、例えば図24の(c),(d)に係る第3実施例の照射条件によって第2工程をも実施した状態を示している。図39の(a)では、多数の析出領域Rが確認される。図38の(a)と図39の(a)とを比較すると、加工閾値を下回るレーザ光Lの照射である第2工程を行うことによって、析出したガリウムを含む析出領域Rが拡大されることが確認される。 Further, FIG. 38A shows that the modified step 13a to the modified spot 13a are modified by performing the first process under the irradiation conditions described above (for example, the conditions of the second embodiment according to FIGS. 24A and 24B). The state where the second step is not performed after the quality spot 13c is formed is shown. In FIG. 39A, after the first step is performed under the same irradiation condition, the second step is further performed under the irradiation condition of the third embodiment according to FIGS. 24C and 24D, for example. It shows the state of being done. In FIG. 39(a), a large number of precipitation regions R are confirmed. Comparing (a) of FIG. 38 with (a) of FIG. 39, the deposition region R including the deposited gallium is enlarged by performing the second step of irradiating the laser beam L below the processing threshold value. Is confirmed.
 さらに、図38の(b)及び図39の(b)は、図38の(a)及び図39の(a)の状態から、GaNインゴット20の加熱を行った状態を示している。図38の(b)によれば、加熱の前後において特に変化が見られない。一方、図39の(b)によれば、加熱によって析出領域Rがさらに拡大され、仮想面15にわたる亀裂17の形成に寄与していることが理解される。 Further, FIGS. 38(b) and 39(b) show a state in which the GaN ingot 20 is heated from the states of FIGS. 38(a) and 39(a). According to FIG. 38(b), no particular change is observed before and after heating. On the other hand, according to (b) of FIG. 39, it is understood that the deposition region R is further expanded by heating and contributes to the formation of the crack 17 over the virtual surface 15.
 以上説明したように、この方法においては、まず、GaNインゴット20の内部にレーザ光Lを照射することにより、レーザ光Lの入射面である表面20aに対向する仮想面15に沿って、複数の改質スポット13、及び、析出されたガリウムを含む複数の析出領域Rを形成する。そして、後の工程において、仮想面15におけるエネルギーがGaNインゴット20の加工閾値を下回るように、GaNインゴット20の内部にレーザ光Lを照射することにより析出領域Rを拡大する。この結果、上記知見のとおり、仮想面15に渡る亀裂17を境界とした切り出しにより、凹凸の低減された好適なGaNウェハ30を得ることが可能となる。 As described above, in this method, first, by irradiating the inside of the GaN ingot 20 with the laser light L, a plurality of GaN ingots 20 are provided along the virtual surface 15 facing the surface 20a that is the incident surface of the laser light L. The modified spot 13 and a plurality of deposition regions R containing the deposited gallium are formed. Then, in a later step, the deposition region R is enlarged by irradiating the inside of the GaN ingot 20 with the laser light L so that the energy on the virtual plane 15 falls below the processing threshold of the GaN ingot 20. As a result, as described above, it is possible to obtain a suitable GaN wafer 30 with reduced unevenness by cutting out with the crack 17 across the virtual surface 15 as a boundary.
 また、この方法においては、第2工程において、表面20aに交差する方向からみて集光点Cが改質スポット13に重ならないように表面20aからGaNインゴット20の内部にレーザ光Lを照射してもよい。この場合、より凹凸の低減された好適な半導体部材を得ることが可能となる。さらに、この方法においては、第2工程において、析出領域Rにレーザ光Lを照射してもよい。この場合、析出領域Rを確実に拡大可能である。 Further, in this method, in the second step, the laser light L is irradiated from the surface 20a to the inside of the GaN ingot 20 so that the condensing point C does not overlap the modified spot 13 when viewed from the direction intersecting the surface 20a. Good. In this case, it is possible to obtain a suitable semiconductor member with reduced unevenness. Further, in this method, the precipitation region R may be irradiated with the laser beam L in the second step. In this case, the deposition region R can be surely expanded.
 以上の実施形態は、本開示に係るレーザ加工方法及び半導体部材製造方法の一例を説明したものである。したがって、本開示に係るレーザ加工方法及び半導体部材製造方法は、上記実施形態に限定されず、種々の変更が適用され得る。 The above embodiments describe one example of the laser processing method and the semiconductor member manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor member manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
 例えば、上記実施形態に係る方法に対して、第1例、第2例、及び、それぞれの変形例の要素を任意に適用できる。一例としては、第1工程においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がらないように、複数の改質スポット13を形成するこができる。また、第1工程においては、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数の改質スポット13として複数列の改質スポット13を形成すると共に、第2工程においては、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13の列間において仮想面15に沿って移動させることができる。 For example, the elements of the first example, the second example, and the respective modified examples can be arbitrarily applied to the method according to the above embodiment. As an example, in the first step, the plurality of modified spots 13 can be formed so that the plurality of cracks 14 extending from the plurality of modified spots 13 are not connected to each other. In the first step, the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form a plurality of modified spots 13 as a plurality of modified spots 13. In the second step, the condensing point C of the pulsed laser light L can be moved along the virtual surface 15 between the rows of the modified spots 13 in a plurality of rows.
 半導体部材製造方法においては、上記の第1工程及び第2工程を実施したうえで、仮想面15に渡る亀裂17を境界としてGaNインゴット20からGaNウェハ30を取得する第3工程をじっしできる。この場合、仮想面15は、表面20aに交差する方向に沿って並ぶように複数設定されていてもよい。或いは、加工の対象物がGaNウェハ30である場合には、仮想面15aは、表面30aに沿った方向に並ぶように複数設定されていてもよい。また、加工の対象物がGaNウェハ30であった場合には、取得される半導体部材のそれぞれは、半導体デバイスであってもよい。 In the semiconductor member manufacturing method, after performing the first step and the second step described above, the third step of obtaining the GaN wafer 30 from the GaN ingot 20 with the crack 17 across the virtual plane 15 as a boundary can be started. In this case, a plurality of virtual surfaces 15 may be set so as to be arranged along the direction intersecting the surface 20a. Alternatively, when the object to be processed is the GaN wafer 30, a plurality of virtual surfaces 15a may be set so as to be aligned in the direction along the surface 30a. Further, when the processing target is the GaN wafer 30, each of the obtained semiconductor members may be a semiconductor device.
 好適な半導体部材の取得を可能とするレーザ加工方法、及び、半導体部材製造方法が提供される。 Provided are a laser processing method capable of obtaining a suitable semiconductor member and a semiconductor member manufacturing method.
 13…改質スポット、15…仮想面、20…GaNインゴット(半導体インゴット、半導体対象物)、20a…表面、30…GaNウェハ(半導体ウェハ、半導体部材、半導体対象物)、30a…表面、40…半導体デバイス(半導体部材)、L…レーザ光、R…析出領域。 13... Modified spot, 15... Virtual plane, 20... GaN ingot (semiconductor ingot, semiconductor object), 20a... Surface, 30... GaN wafer (semiconductor wafer, semiconductor member, semiconductor object), 30a... Surface, 40... Semiconductor device (semiconductor member), L... Laser light, R... Precipitation region.

Claims (11)

  1.  ガリウムを含む半導体対象物の表面から前記半導体対象物の内部にレーザ光を照射することにより、前記半導体対象物の内部において前記表面に対向する仮想面に沿って、複数の改質スポット、及び、前記複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成する第1工程と、
     前記第1工程の後に、前記仮想面におけるエネルギーが前記半導体対象物の加工閾値を下回るように、前記表面から前記半導体対象物の内部にレーザ光を照射することにより前記析出領域を拡大する第2工程と、
     を備えるレーザ加工方法。
    By irradiating the inside of the semiconductor object with laser light from the surface of the semiconductor object containing gallium, along the virtual surface facing the surface inside the semiconductor object, a plurality of modified spots, and A first step of forming a plurality of deposition regions containing gallium deposited in the plurality of modified spots;
    After the first step, the deposition area is enlarged by irradiating the inside of the semiconductor object with laser light from the surface so that energy on the virtual surface falls below a processing threshold value of the semiconductor object. Process,
    A laser processing method comprising:
  2.  前記第2工程においては、前記表面に交差する方向からみて集光点が前記改質スポットに重ならないように前記表面から前記半導体対象物の内部にレーザ光を照射する、
     請求項1に記載のレーザ加工方法。
    In the second step, irradiating the inside of the semiconductor object with laser light from the surface so that a converging point does not overlap the modified spot when viewed from a direction intersecting the surface,
    The laser processing method according to claim 1.
  3.  前記第2工程においては、前記析出領域にレーザ光を照射する、
     請求項1又は2に記載のレーザ加工方法。
    In the second step, the deposition area is irradiated with laser light,
    The laser processing method according to claim 1.
  4.  前記第1工程においては、前記複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、前記複数の改質スポットを形成する、
     請求項1~3のいずれか一項に記載のレーザ加工方法。
    In the first step, the plurality of modified spots are formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other.
    The laser processing method according to any one of claims 1 to 3.
  5.  前記第1工程においては、パルス発振されたレーザ光の集光点を前記仮想面に沿って移動させることにより、前記複数の改質スポットとして複数列の改質スポットを形成し、
     前記第2工程においては、パルス発振されたレーザ光の集光点を前記複数列の改質スポットの列間において前記仮想面に沿って移動させる、
     請求項1~4のいずれか一項に記載のレーザ加工方法。
    In the first step, a plurality of rows of modified spots are formed as the plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface,
    In the second step, the condensing point of the pulsed laser light is moved along the virtual surface between the rows of the reforming spots of the plurality of rows.
    The laser processing method according to any one of claims 1 to 4.
  6.  前記対象物は、窒化ガリウムを含む、
     請求項1~5のいずれか一項に記載のレーザ加工方法。
    The object includes gallium nitride,
    The laser processing method according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載のレーザ加工方法が備える前記第1工程及び前記第2工程と、
     前記仮想面に渡る亀裂を境界として前記半導体対象物から複数の半導体部材を取得する第3工程と、
     を備える半導体部材製造方法。
    The first step and the second step, which are included in the laser processing method according to any one of claims 1 to 6,
    A third step of obtaining a plurality of semiconductor members from the semiconductor object with a crack across the virtual surface as a boundary;
    A method for manufacturing a semiconductor member, comprising:
  8.  前記仮想面は、前記表面に交差する方向に沿って並ぶように複数設定されている、
     請求項7に記載の半導体部材製造方法。
    A plurality of the virtual surfaces are set to be lined up in a direction intersecting the surface,
    The method for manufacturing a semiconductor member according to claim 7.
  9.  前記半導体対象物は、半導体インゴットであり、
     前記複数の半導体部材のそれぞれは、半導体ウェハである、
     請求項8に記載の半導体部材製造方法。
    The semiconductor object is a semiconductor ingot,
    Each of the plurality of semiconductor members is a semiconductor wafer,
    The method for manufacturing a semiconductor member according to claim 8.
  10.  前記仮想面は、前記表面に沿った方向に並ぶように複数設定されている、
     請求項7に記載の半導体部材製造方法。
    A plurality of the virtual surfaces are set so as to be arranged in a direction along the surface,
    The method for manufacturing a semiconductor member according to claim 7.
  11.  前記半導体対象物は、半導体ウェハであり、
     前記複数の半導体部材のそれぞれは、半導体デバイスである、
     請求項10に記載の半導体部材製造方法。
    The semiconductor object is a semiconductor wafer,
    Each of the plurality of semiconductor members is a semiconductor device,
    The method for manufacturing a semiconductor member according to claim 10.
PCT/JP2019/049956 2018-12-21 2019-12-19 Laser machining method and production method for semiconductor member WO2020130109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239490A JP7182456B2 (en) 2018-12-21 2018-12-21 LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
JP2018-239490 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130109A1 true WO2020130109A1 (en) 2020-06-25

Family

ID=71101322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049956 WO2020130109A1 (en) 2018-12-21 2019-12-19 Laser machining method and production method for semiconductor member

Country Status (3)

Country Link
JP (1) JP7182456B2 (en)
TW (1) TW202032647A (en)
WO (1) WO2020130109A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022171303A (en) 2021-04-30 2022-11-11 株式会社デンソー Method for manufacturing semiconductor device
JP2023034334A (en) 2021-08-30 2023-03-13 株式会社デンソー Method for manufacturing semiconductor device
JP2023034335A (en) 2021-08-30 2023-03-13 株式会社デンソー Alteration layer formation device, and method for manufacturing semiconductor device
JP2023047981A (en) 2021-09-27 2023-04-06 株式会社デンソー Manufacturing method of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098916A1 (en) * 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
JP2017183600A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Slice method and slice device
WO2017199784A1 (en) * 2016-05-17 2017-11-23 エルシード株式会社 Cutting method for processing material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000636A (en) * 2010-06-16 2012-01-05 Showa Denko Kk Laser beam machining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098916A1 (en) * 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
JP2017183600A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Slice method and slice device
WO2017199784A1 (en) * 2016-05-17 2017-11-23 エルシード株式会社 Cutting method for processing material

Also Published As

Publication number Publication date
TW202032647A (en) 2020-09-01
JP7182456B2 (en) 2022-12-02
JP2020102520A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020130109A1 (en) Laser machining method and production method for semiconductor member
JP5905274B2 (en) Manufacturing method of semiconductor device
JP6012185B2 (en) Manufacturing method of semiconductor device
JP2016134427A (en) Semiconductor wafer and manufacturing method of the same
WO2020130108A1 (en) Laser machining method, and semiconductor device manufacturing method
WO2020130054A1 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
JP5969214B2 (en) Manufacturing method of semiconductor device
WO2020130110A1 (en) Laser machining apparatus
WO2020129569A1 (en) Laser machining method, semiconductor member production method, and semiconductor object
WO2020130053A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
WO2021153354A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
WO2021153353A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
JP2013157449A (en) Method for manufacturing semiconductor device
US20230123795A1 (en) Singulation of optical devices from optical device substrates via laser ablation
JP2023183070A (en) Laser processing method, method of manufacturing semiconductor device and laser processing device
JP2013157455A (en) Method for manufacturing semiconductor device
JP2011134799A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898209

Country of ref document: EP

Kind code of ref document: A1