WO2020130053A1 - Laser machining method, semiconductor member manufacturing method, and laser machining device - Google Patents

Laser machining method, semiconductor member manufacturing method, and laser machining device Download PDF

Info

Publication number
WO2020130053A1
WO2020130053A1 PCT/JP2019/049699 JP2019049699W WO2020130053A1 WO 2020130053 A1 WO2020130053 A1 WO 2020130053A1 JP 2019049699 W JP2019049699 W JP 2019049699W WO 2020130053 A1 WO2020130053 A1 WO 2020130053A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor
laser processing
virtual surface
processing method
Prior art date
Application number
PCT/JP2019/049699
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 河口
陽太郎 和仁
泰則 伊ケ崎
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2020130053A1 publication Critical patent/WO2020130053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a laser processing method, a semiconductor member manufacturing method, and a laser processing apparatus.
  • a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer.
  • a processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
  • the method of forming the modified region greatly affects the state of the obtained semiconductor member.
  • the present disclosure has an object to provide a laser processing method, a semiconductor member manufacturing method, and a laser processing apparatus that enable acquisition of a suitable semiconductor member.
  • a laser processing method is a laser processing method for cutting a semiconductor object inside a semiconductor object along a virtual surface that faces a surface of the semiconductor object.
  • a first step of preparing and a second step of forming a plurality of modified spots along a virtual surface by injecting laser light into the inside of the semiconductor object from the surface are provided.
  • the laser light is made incident such that the implantation energy per unit area in the first region of the virtual surface is larger than the implantation energy per unit area in the second region of the virtual surface.
  • the laser light is made incident so that the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region, so that a plurality of modifications are made along the virtual plane.
  • Form quality spots As a result, when a plurality of cracks respectively extending from the plurality of modified spots are connected to each other and a crack extending over the virtual surface is formed, the crack progresses so that the crack propagates from the first region to the second region. Can be controlled, and as a result, it is possible to accurately form a crack across the virtual surface along the virtual surface. Therefore, according to this laser processing method, it is possible to obtain a suitable semiconductor member by obtaining the semiconductor member from the semiconductor object with the crack across the virtual surface as the boundary.
  • the peripheral area that prevents the development of the plurality of cracks extending from the plurality of modified spots may be set so as to surround the virtual surface. According to this, since the growth of a plurality of cracks to the outside of the virtual surface surrounded by the peripheral region is blocked, for example, when gas is generated in the plurality of cracks, the gas is prevented from escaping to the outside of the virtual surface. can do. Therefore, the crack (internal pressure) of the gas can be utilized to easily form a crack over the virtual surface.
  • the pulse energy of laser light per one condensing point in the first region is changed to the pulse energy of laser light per one converging point in the second region. May be larger than. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
  • the pulse pitch of the laser light in the first region may be smaller than the pulse pitch of the laser light in the second region in the second step. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
  • the condensing point of the laser light is moved along each of the plurality of rows on the virtual surface, and the inter-row pitch of the laser light in the first region is set to the first row. It may be smaller than the inter-row pitch of the laser light in the two regions. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
  • the first region may be the outer edge region of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates inward from the outer edge region.
  • the second area may be an outer edge area of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates from the inner side to the outer edge region.
  • the virtual surface has a rectangular shape, and the first area may be a plurality of corner areas of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates inward from the plurality of corner regions.
  • the virtual surface may have a rectangular shape, and the second area may be a plurality of corner areas of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates from the inner side to the plurality of corner regions.
  • the material of the semiconductor object may include gallium nitride.
  • gallium nitride when gallium nitride is decomposed by the irradiation of laser light, nitrogen gas is generated in a plurality of cracks extending from the plurality of modified spots. Therefore, the pressure (internal pressure) of the nitrogen gas can be used to easily form a crack over the virtual surface.
  • a semiconductor member manufacturing method includes a first step and a second step included in the above-described laser processing method, and a plurality of cracks respectively extending from a plurality of modified spots, which are connected to each other to form a crack across a virtual surface. And a fourth step of obtaining a semiconductor member from a semiconductor object with a crack across a virtual surface as a boundary.
  • the third step it is possible to accurately form a crack extending over the virtual surface along the virtual surface, and thus it is possible to obtain a suitable semiconductor member.
  • the semiconductor object may be heated in the third step.
  • the gas when gas is generated in a plurality of cracks respectively extending from the plurality of reforming spots, the gas can be expanded. Therefore, the crack (internal pressure) of the gas can be utilized to easily form a crack over the virtual surface.
  • a plurality of virtual surfaces may be set so as to be aligned in a direction facing the surface. According to this, a plurality of semiconductor members can be obtained from one semiconductor object.
  • the semiconductor object may be a semiconductor ingot, and the semiconductor member may be a semiconductor wafer. According to this, a plurality of suitable semiconductor wafers can be obtained.
  • a plurality of virtual surfaces may be set so as to be arranged in the direction in which the surface extends. According to this, a plurality of semiconductor members can be obtained from one semiconductor object.
  • the semiconductor object may be a semiconductor wafer, and the semiconductor member may be a semiconductor device. According to this, a plurality of suitable semiconductor devices can be obtained.
  • a laser processing apparatus is a laser processing apparatus for cutting a semiconductor object inside a semiconductor object along a virtual surface that faces a surface of the semiconductor object.
  • the laser irradiation unit includes a supporting stage and a laser irradiation unit that forms a plurality of modified spots along the virtual surface by making a laser beam enter the inside of the semiconductor object from the surface.
  • the laser light is made incident so that the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region of the virtual surface.
  • FIG. 1 is a configuration diagram of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a side view of a GaN ingot which is an object of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 3 is a plan view of the GaN ingot shown in FIG.
  • FIG. 4 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 5 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 1 is a configuration diagram of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a side view of a GaN ingot which is an object of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 3 is a plan view of the GaN ingot shown in FIG.
  • FIG. 4 is a vertical cross-sectional view of
  • FIG. 6 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 7 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 8 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 9 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 10 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 11 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 12 is a side view of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 13 is a side view of a GaN wafer in one step of the laser processing method and semiconductor member manufacturing method of the first embodiment.
  • FIG. 14 is an image of a separated surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example.
  • FIG. 15 is a height profile of the peeled surface shown in FIG.
  • FIG. 16 is an image of the separated surface of the GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of another example.
  • FIG. 17 is a height profile of the peeled surface shown in FIG.
  • FIG. 18 is a schematic diagram for explaining the principle of forming a peeled surface by an example laser processing method and semiconductor member manufacturing method.
  • FIG. 19 is a schematic view for explaining the principle of forming a peeled surface by a laser processing method and a semiconductor member manufacturing method of another example.
  • FIG. 20 is an image of a crack formed in the course of an example laser processing method and semiconductor member manufacturing method.
  • FIG. 21 is an image of a crack formed during the laser processing method and the semiconductor member manufacturing method of another example.
  • FIG. 22 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example.
  • FIG. 23 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 24 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments.
  • FIG. 25 is a plan view of a GaN wafer which is an object of the laser processing method and the semiconductor member manufacturing method of the second embodiment.
  • FIG. 26 is a plan view of the virtual surface shown in FIG.
  • FIG. 27 is a side view of a part of the GaN wafer in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment.
  • FIG. 28 is a side view of a part of the GaN wafer in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment.
  • FIG. 29 is a side view of the semiconductor device in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment.
  • FIG. 30 is an image of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example.
  • FIG. 31 is an image of a crack of a SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example.
  • FIG. 32 is an image of the separated surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example.
  • 33 is a height profile of the peeled surface shown in FIG. 32.
  • FIG. 34 is a plan view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the modified example.
  • FIG. 35 is a plan view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the modified example.
  • FIG. 36 is a plan view of a modified GaN ingot.
  • FIG. 37 is a plan view of a virtual surface of the modified example.
  • the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6.
  • the laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L.
  • the first horizontal direction will be referred to as the X direction
  • the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction.
  • the vertical direction is called the Z direction.
  • the stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11.
  • the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
  • the light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method.
  • the spatial light modulator 4 modulates the laser light L output from the light source 3.
  • the spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4.
  • the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
  • the modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region.
  • the modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row.
  • One modified spot 13 is formed by irradiation with one pulse of laser light L.
  • the one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row.
  • the adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
  • the control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5.
  • the control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
  • the object 11 of the laser processing method and the semiconductor member manufacturing method of the first embodiment is, as shown in FIGS. 2 and 3, a GaN ingot (semiconductor ingot, formed of gallium nitride (GaN), for example, in a disk shape.
  • Semiconductor object) 20 As an example, the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm.
  • the laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20.
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • a GaN ingot 20 is prepared (first step), and the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20, and is set so as to be aligned in a direction facing the surface 20a.
  • each of the plurality of virtual planes 15 is a plane parallel to the surface 20a inside the GaN ingot 20, and has, for example, a circular shape.
  • Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side.
  • Each of the plurality of virtual surfaces 15 includes a first region R1 and a second region R2.
  • the second region R2 is an outer edge region along the outer edge of the virtual surface 15.
  • the first region R1 is a region surrounded by the second region R2.
  • the first region R1 has, for example, a circular shape
  • the second region R2 has, for example, an annular shape.
  • a plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20.
  • the distance between the adjacent virtual surfaces 15 is 100 ⁇ m
  • the width of the peripheral region 16 (in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b) is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11.
  • the arrow indicates the locus of the condensing point C of the laser light L.
  • the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13
  • the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
  • the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the front surface 20 a, so that the laser light L is incident along the virtual surface 15 (for example, in the virtual surface 15).
  • a plurality of modified spots 13a are formed (two-dimensionally arranged along the whole) (second step).
  • the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15.
  • the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • the laser processing apparatus 1 determines the pulse energy of the laser light L per one focus point C in the first region R1 as the pulse energy of the laser light L per one focus point C in the second region R2. Bigger than. 4 and 5, the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11).
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L).
  • the divided value is 10 ⁇ m.
  • the pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.4 ⁇ J in the first region R1, and is 0.4 ⁇ J in the second region R2. It is 33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13a in the X direction is 10 ⁇ m.
  • the cracks 14a extending from the modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20a as shown in FIGS. 6 and 7, and along the virtual plane 15 (for example, the virtual plane 15).
  • a plurality of modified spots 13b are formed so as to be two-dimensionally arranged along the entire area (second step).
  • the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows. To form.
  • the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • the laser processing apparatus 1 makes the pulse energy of the laser light L in the first region R1 larger than the pulse energy of the laser light L in the second region R2.
  • the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11).
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • the pulse energy of the laser light L is 0.4 ⁇ J in the first region R1 and 0.33 ⁇ J in the second region R2.
  • the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13b in the X direction is 10 ⁇ m.
  • the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20a as shown in FIGS.
  • a plurality of modified spots 13c are formed so as to be arranged two-dimensionally along the entire area (second step).
  • the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20 a, so that the laser light L is incident along the virtual surface 15 (for example, the virtual surface 15
  • a plurality of modified spots 13d are formed so as to be two-dimensionally arranged along the whole (second step).
  • the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows.
  • the spots 13c and 13d are formed.
  • the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • the laser processing apparatus 1 makes the pulse energy of the laser light L in the first region R1 larger than the pulse energy of the laser light L in the second region R2.
  • the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b.
  • the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11).
  • the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines. There is.
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J in the first region R1 and the second region R2.
  • the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13c in the X direction is 5 ⁇ m.
  • the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 ⁇ m
  • the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 ⁇ m.
  • a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG.
  • the crack 17 (hereinafter, simply referred to as “crack 17”) across the virtual plane 15 is formed (third step).
  • a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the GaN ingot 20 nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 is preferably 30 ⁇ m or more. Furthermore, by irradiating the laser light L so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2, a plurality of modifications are performed along the virtual surface 15. A quality spot 13 is formed.
  • a crack (a crack that connects the plurality of cracks 14 to each other and finally becomes a crack 17) is generated from the first region R1 to the second region. Propagation of the crack is controlled so as to propagate to R2.
  • the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG.
  • a plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (fourth step). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15.
  • portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
  • the steps up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 are the laser processing method of the first embodiment. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as boundaries are the semiconductor member manufacturing method of the first embodiment.
  • the laser light L is irradiated so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • a plurality of modified spots 13 are formed along each of the plurality of virtual surfaces 15.
  • a crack (the plurality of cracks 14 are connected to each other and finally The crack can be controlled so that the crack 17 becomes a crack 17) from the first region R1 to the second region R2, and as a result, the crack 17 can be accurately aligned along each of the plurality of virtual planes 15. It becomes possible to form well. Therefore, according to the laser processing method of the first embodiment, a plurality of suitable GaN wafers 30 can be obtained by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. Become.
  • the laser processing apparatus 1 that implements the laser processing method of the first embodiment, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus it is possible to perform a plurality of preferable operations.
  • the GaN wafer 30 can be acquired.
  • the peripheral region 16 that prevents the development of the cracks 14 extending from the modified spots 13 is set so as to surround each of the virtual surfaces 15.
  • the growth of the plurality of cracks 14 to the outside of the virtual surface 15 surrounded by the peripheral region 16 is prevented, so that, for example, when gas is generated in the plurality of cracks 14, the gas escapes to the outside of the virtual surface 15. Can be suppressed. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas.
  • gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the laser light L is irradiated so that the pulse energy of the laser light L in the first region R1 is larger than the pulse energy of the laser light L in the second region R2. This makes it possible to appropriately realize a state in which the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • the second region R2 is the outer edge region of the virtual surface 15 in each of the virtual surfaces 15.
  • the semiconductor member manufacturing method of the first embodiment it is possible to accurately form the crack 17 along each of the virtual surfaces 15 by the steps included in the laser processing method of the first embodiment. Therefore, it is possible to obtain a plurality of suitable GaN wafers 30.
  • the GaN ingot 20 is heated to connect the plurality of cracks 14 to each other to form the crack 17.
  • the gas can be expanded. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas.
  • gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the plurality of virtual surfaces 15 are set so as to be arranged in a direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
  • FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example
  • FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. By moving, a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between adjacent condensing points C in the Y direction was 10 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1 ⁇ J.
  • irregularities of about 25 ⁇ m appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
  • FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example, and FIGS. 17A and 17B show the peeled surface of FIG. It is a height profile.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed.
  • a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • unevenness of about 5 ⁇ m appeared on the separated surface of the GaN wafer 30.
  • the irregularities appearing on the separated surface of the GaN wafer 30 become small, that is, cracks occur along the virtual surface 15. It was found that 17 was accurately formed. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
  • a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side.
  • a plurality of modified spots 13b are formed along the surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a.
  • the modified spot 13b is easily formed on the incident side of the light L.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b.
  • the modified spot 13c is easily formed on the incident side of the light L.
  • the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
  • a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof.
  • a plurality of modified spots 13b are formed along the virtual surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
  • a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the quality spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
  • FIG. 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example
  • FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1.33 ⁇ J.
  • the laser processing was stopped in the middle of the virtual surface 15.
  • the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
  • FIG. 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example, and FIG. 21(b) is FIG. 21(a). It is an enlarged image in the rectangular frame in.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13.
  • the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
  • FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example.
  • a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction.
  • the plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to.
  • the distance between the condensing points C adjacent to each other in the Y direction is 2 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • Quality spot 13 was formed.
  • the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 ⁇ m.
  • FIG. 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 23A is an image in plan view
  • FIG. I is an image in side view.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction.
  • a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • the modified spot 13a of No. 1 was formed.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • a plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 ⁇ J.
  • the distance between the converging points C adjacent to each other in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is changed.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 ⁇ m and 0.3 ⁇ J.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is 5 ⁇ m.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 ⁇ J.
  • the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 ⁇ m.
  • FIG. 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second embodiment, and FIG. 24A is a plan view.
  • the image, (b) of FIG. 24, is an image in a side view.
  • a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed.
  • a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 ⁇ m.
  • FIG. 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view.
  • An image, (d) of FIG. 24, is an image in a side view.
  • a plurality of modified spots 13 were formed. Specifically, first, the distance between adjacent condensing points C in the Y direction is 8 ⁇ m, the pulse pitch of the laser light L is 5 ⁇ m, and the pulse energy of the laser light L is 0.1 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 ⁇ m.
  • the modified spots 13b are formed along the virtual surface 15 so as not to overlap the modified spots 13a and the cracks 14a already formed along the virtual surface 15 (( 1st Example, 2nd Example, and 3rd Example), it turned out that the extension amount of the crack 14 extended from the modification spot 13 to the incident side of the laser beam L and the opposite side is suppressed.
  • the modified surface 13 is formed on the virtual surface 15 so as not to overlap the modified spots 13a and 13b already formed along the virtual surface 15. If a plurality of modified spots 13 are formed along the lines (second and third embodiments), it becomes easy to form a crack over the virtual surface 15.
  • the object 11 of the laser processing method and the semiconductor member manufacturing method of the second embodiment is, as shown in FIG. 25, a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example. ..
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • the laser processing method and the semiconductor member manufacturing method of the second embodiment are carried out to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30.
  • the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm ⁇ 1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens ⁇ m.
  • a GaN wafer 30 is prepared (first step), and the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends.
  • each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape.
  • Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31. As shown in FIG.
  • each of the plurality of virtual surfaces 15 includes a first region R1 and a second region R2.
  • the first region R1 is a plurality of corner regions of the virtual surface 15.
  • the second region R2 is a region of the virtual surface 15 other than the first region R1.
  • the first region R1 has, for example, a rectangular shape.
  • a plurality of peripheral regions 16 are set on the GaN wafer 30 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30.
  • the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • a plurality of modified spots 13 that is, modified spots 13a, 13b, 13c, 13d
  • a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15.
  • 14 that is, the cracks 14a, 14b, 14c, 14d
  • the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by broken lines.
  • the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG.
  • Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30.
  • the functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
  • the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other to form a crack 17 (that is, a crack 17 across the virtual surface 15) in each of the plurality of virtual surfaces 15 (third step). In FIG. 28, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the crack 17 can be formed by utilizing the pressure of the nitrogen gas.
  • the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 is preferably 30 ⁇ m or more. Furthermore, by irradiating the laser light L so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2, a plurality of modifications are performed along the virtual surface 15. A quality spot 13 is formed.
  • a crack (a crack that connects the plurality of cracks 14 to each other and finally becomes a crack 17) is generated from the first region R1 to the second region. Propagation of the crack is controlled so as to propagate to R2.
  • the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, so that as shown in FIG.
  • a plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (fourth step).
  • the GaN wafer 30 is cut along each of the plurality of virtual planes 15.
  • the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
  • the steps up to the step of forming a plurality of modified spots 13 along each of a plurality of virtual surfaces 15 is the laser processing method of the second embodiment. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as boundaries are the semiconductor member manufacturing method of the second embodiment.
  • a plurality of cracks extending from the plurality of modified spots 13 are formed on each of the plurality of virtual surfaces 15.
  • the crack (a crack in which a plurality of cracks 14 are connected to each other to finally become the crack 17) propagates from the first region R1 to the second region R2.
  • the crack 17 can be accurately formed along each of the virtual surfaces 15.
  • the laser processing method of the second embodiment it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. Become. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
  • the laser processing apparatus 1 that implements the laser processing method of the second embodiment, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus it is possible to perform a plurality of preferable operations.
  • the semiconductor device 40 can be acquired.
  • the peripheral region 16 that prevents the development of the cracks 14 extending from the modified spots 13 is set so as to surround each of the virtual surfaces 15.
  • the growth of the plurality of cracks 14 to the outside of the virtual surface 15 surrounded by the peripheral region 16 is prevented, so that, for example, when gas is generated in the plurality of cracks 14, the gas escapes to the outside of the virtual surface 15. Can be suppressed. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas.
  • gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the laser light L is applied so that the pulse energy of the laser light L in the first region R1 is larger than the pulse energy of the laser light L in the second region R2. This makes it possible to appropriately realize a state in which the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
  • each of the plurality of virtual surfaces 15 has a rectangular shape, and in each of the plurality of virtual surfaces 15, the first region R1 is a plurality of virtual surfaces 15. It is a corner area. Thereby, in each of the plurality of virtual planes 15, the progress of the crack is controlled so that the crack (the crack that connects the plurality of cracks 14 to each other and finally becomes the crack 17) propagates inward from the plurality of corner regions. can do.
  • the semiconductor member manufacturing method of the second embodiment it is possible to accurately form the crack 17 along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
  • the GaN wafer 30 is heated to connect the plurality of cracks 14 to each other to form the crack 17.
  • the gas can be expanded. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas.
  • gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
  • the present disclosure is not limited to the above embodiments.
  • the various numerical values regarding the laser light L are not limited to those described above.
  • the pulse energy of the laser light L is 0.1 ⁇ J to 1 ⁇ J and the pulse of the laser light L is The width is preferably 200 fs to 1 ns.
  • the semiconductor object processed by the laser processing method and the semiconductor member manufacturing method according to the one aspect of the present disclosure is not limited to the GaN ingot 20 of the first embodiment and the GaN wafer 30 of the second embodiment.
  • the semiconductor member manufactured by the semiconductor member manufacturing method according to the one aspect of the present disclosure is not limited to the GaN wafer 30 of the first embodiment and the semiconductor device 40 of the second embodiment.
  • One virtual surface may be set for one semiconductor object.
  • the material of the semiconductor object may be SiC. Even in that case, if a plurality of modified spots 13 are formed stepwise as in the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment, as will be described below, cracks extending over an imaginary plane. Can be accurately formed along the virtual surface.
  • FIG. 30A and 30B are images (images in side view) of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 30 is an enlarged image in the rectangular frame in FIG.
  • laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface.
  • the distance between the condensing points C adjacent to each other in the Y direction was 2 ⁇ m
  • the pulse pitch of the laser light was 15 ⁇ m
  • the pulse energy of the laser light was 4 ⁇ J.
  • a crack extending in a direction inclined by 4° to 5° with respect to the imaginary plane occurred.
  • FIG. 31A and 31B are images (images in side view) of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 31 is an enlarged image in the rectangular frame in FIG.
  • laser light having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the virtual surface is formed on the virtual surface similarly to the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. A plurality of modified spots were formed along it.
  • the SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4 ⁇ 0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
  • the method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above.
  • the plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other.
  • the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15.
  • the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed.
  • FIG. 34 for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (arrows indicated by a chain line), and a plurality of rows of modified spots are formed. 35, and further, as shown in FIG. 35, a plurality of condensing points arranged in the radial direction with each of the plurality of condensing points positioned between the rows of the modified spots 13 in a plurality of rows.
  • the stepwise formation of the plurality of modified spots 13 as in the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed by the laser processing method and the semiconductor member manufacturing method according to one aspect of the present disclosure. It is not essential in the method.
  • the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first embodiment, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the surface 20a side, and the one or more GaN. After the wafer 30 is cut out, the surface 20 a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20 a side.
  • the peripheral region 16 may not be formed.
  • the GaN ingot 20 is formed after forming the modified spots 13 along each of the virtual surfaces 15. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on.
  • the method of adjusting the implantation energy per unit area in the first region R1 and the second region R2 is not limited to that described above.
  • the laser light L may be irradiated such that the pulse pitch of the laser light L in the first region R1 is smaller than the pulse pitch of the laser light L in the second region R2.
  • the laser light L may be irradiated such that the inter-row pitch of the laser light L in the first region R1 is smaller than the inter-row pitch of the laser light L in the second region R2.
  • the inter-row pitch means the “distance between adjacent rows of the plurality of rows” when the condensing point C of the laser light L is moved along each of the plurality of rows on the virtual surface 15.
  • the first region R1 may be an outer edge region along the outer edge of the virtual surface 15, and the second region R2 may be a region surrounded by the first region R1. That is, the first region R1 may be the outer edge region of the virtual surface 15.
  • the progress of the crack can be controlled so that the crack (the crack that connects the plurality of cracks 14 to each other and finally becomes the crack 17) propagates inward from the outer edge region.
  • the crack the crack that connects the plurality of cracks 14 to each other and finally becomes the crack 17 propagates inward from the outer edge region.
  • the virtual plane 15 further includes a third region R3 along the orientation flat 21 of the GaN ingot 20, and the implantation energy per unit area in the third region R3 is the first region R1 and The laser light L is irradiated so as to be larger than the implantation energy per unit area in the second region R2.
  • a crack a crack in which a plurality of cracks 14 are connected to each other to finally become a crack 17
  • the rectangular virtual surface 15 has a rectangular annular second region R2 along the outer edge of the virtual surface 15 and a rectangular first region surrounded by the second region R2.
  • R1 may be included.
  • the rectangular virtual surface 15 includes a second area R2 that is a plurality of corner areas of the virtual surface 15 and a first area R1 that is an area other than the second area R2 of the virtual surface 15. You can leave. In that case, the progress of the cracks can be controlled so that the cracks (the cracks in which the plurality of cracks 14 are connected to each other and finally become the cracks 17) propagate from the inside to the plurality of corner regions.
  • the laser processing apparatus 1 is not limited to the one having the above-described configuration.
  • the laser processing device 1 may not include the spatial light modulator 4.
  • the materials and shapes described above are not limited to the materials and shapes described in the above embodiments, and various materials and shapes can be applied. Moreover, each configuration in the above-described one embodiment or modification can be arbitrarily applied to each configuration in the other embodiment or modification.

Abstract

A laser machining method for cutting a semiconductor target along a virtual plane that is inside the semiconductor target and faces the surface of the semiconductor target, said method comprising: a first step for preparing the semiconductor target; and a second step for forming a plurality of modified spots along the virtual plane by causing laser light to enter into the semiconductor target from the surface thereof. At the second step, the laser light is made incident such that the implantation energy per unit area in a first region among the virtual plane is greater than the implantation energy per unit area in a second region among the virtual plane.

Description

レーザ加工方法、半導体部材製造方法及びレーザ加工装置Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
 本開示は、レーザ加工方法、半導体部材製造方法及びレーザ加工装置に関する。 The present disclosure relates to a laser processing method, a semiconductor member manufacturing method, and a laser processing apparatus.
 半導体インゴット等の半導体対象物にレーザ光を照射することにより、半導体対象物の内部に改質領域を形成し、改質領域から延びる亀裂を進展させることにより、半導体対象物から半導体ウェハ等の半導体部材を切り出す加工方法が知られている(例えば、特許文献1,2参照)。 By irradiating a semiconductor object such as a semiconductor ingot with a laser beam, a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer. A processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
特開2017-183600号公報JP, 2017-183600, A 特開2017-057103号公報JP, 2017-057103, A
 上述したような加工方法では、改質領域の形成の仕方が、得られる半導体部材の状態に大きく影響する。 In the processing method as described above, the method of forming the modified region greatly affects the state of the obtained semiconductor member.
 本開示は、好適な半導体部材の取得を可能にするレーザ加工方法、半導体部材製造方法及びレーザ加工装置を提供することを目的とする。 The present disclosure has an object to provide a laser processing method, a semiconductor member manufacturing method, and a laser processing apparatus that enable acquisition of a suitable semiconductor member.
 本開示の一側面のレーザ加工方法は、半導体対象物の内部において半導体対象物の表面に対向する仮想面に沿って、半導体対象物を切断するためのレーザ加工方法であって、半導体対象物を用意する第1工程と、表面から半導体対象物の内部にレーザ光を入射させることにより、仮想面に沿って複数の改質スポットを形成する第2工程と、を備え、第2工程においては、仮想面のうちの第1領域における単位面積当たりの注入エネルギーが仮想面のうちの第2領域における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光を入射させる。 A laser processing method according to one aspect of the present disclosure is a laser processing method for cutting a semiconductor object inside a semiconductor object along a virtual surface that faces a surface of the semiconductor object. A first step of preparing and a second step of forming a plurality of modified spots along a virtual surface by injecting laser light into the inside of the semiconductor object from the surface are provided. In the second step, The laser light is made incident such that the implantation energy per unit area in the first region of the virtual surface is larger than the implantation energy per unit area in the second region of the virtual surface.
 このレーザ加工方法では、第1領域における単位面積当たりの注入エネルギーが第2領域における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光を入射させることにより、仮想面に沿って複数の改質スポットを形成する。これにより、複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がって、仮想面に渡る亀裂が形成される際に、当該亀裂が第1領域から第2領域に進展するように当該亀裂の進展を制御することができ、その結果、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となる。よって、このレーザ加工方法によれば、仮想面に渡る亀裂を境界として半導体対象物から半導体部材を取得することにより、好適な半導体部材の取得が可能となる。 In this laser processing method, the laser light is made incident so that the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region, so that a plurality of modifications are made along the virtual plane. Form quality spots. As a result, when a plurality of cracks respectively extending from the plurality of modified spots are connected to each other and a crack extending over the virtual surface is formed, the crack progresses so that the crack propagates from the first region to the second region. Can be controlled, and as a result, it is possible to accurately form a crack across the virtual surface along the virtual surface. Therefore, according to this laser processing method, it is possible to obtain a suitable semiconductor member by obtaining the semiconductor member from the semiconductor object with the crack across the virtual surface as the boundary.
 本開示の一側面のレーザ加工方法では、第2工程においては、複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を、仮想面を囲むように設定してもよい。これによれば、周縁領域が囲む仮想面の外部への複数の亀裂の進展が阻まれるため、例えば複数の亀裂内にガスが生じた場合に、当該ガスが仮想面の外部に逃げるのを抑制することができる。したがって、当該ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。 In the laser processing method according to the one aspect of the present disclosure, in the second step, the peripheral area that prevents the development of the plurality of cracks extending from the plurality of modified spots may be set so as to surround the virtual surface. According to this, since the growth of a plurality of cracks to the outside of the virtual surface surrounded by the peripheral region is blocked, for example, when gas is generated in the plurality of cracks, the gas is prevented from escaping to the outside of the virtual surface. can do. Therefore, the crack (internal pressure) of the gas can be utilized to easily form a crack over the virtual surface.
 本開示の一側面のレーザ加工方法では、第2工程においては、第1領域における1つの集光点当たりのレーザ光のパルスエネルギーを第2領域における1つの集光点当たりのレーザ光のパルスエネルギーよりも大きくしてもよい。これによれば、第1領域における単位面積当たりの注入エネルギーが第2領域における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。 In the laser processing method according to one aspect of the present disclosure, in the second step, the pulse energy of laser light per one condensing point in the first region is changed to the pulse energy of laser light per one converging point in the second region. May be larger than. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
 本開示の一側面のレーザ加工方法では、第2工程においては、第1領域におけるレーザ光のパルスピッチを第2領域におけるレーザ光のパルスピッチよりも小さくしてもよい。これによれば、第1領域における単位面積当たりの注入エネルギーが第2領域における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。 In the laser processing method according to one aspect of the present disclosure, the pulse pitch of the laser light in the first region may be smaller than the pulse pitch of the laser light in the second region in the second step. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
 本開示の一側面のレーザ加工方法では、第2工程においては、レーザ光の集光点を仮想面上の複数列のそれぞれに沿って移動させ、第1領域におけるレーザ光の列間ピッチを第2領域におけるレーザ光の列間ピッチよりも小さくしてもよい。これによれば、第1領域における単位面積当たりの注入エネルギーが第2領域における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。 In the laser processing method according to the one aspect of the present disclosure, in the second step, the condensing point of the laser light is moved along each of the plurality of rows on the virtual surface, and the inter-row pitch of the laser light in the first region is set to the first row. It may be smaller than the inter-row pitch of the laser light in the two regions. According to this, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region.
 本開示の一側面のレーザ加工方法では、第1領域は、仮想面のうちの外縁領域であってもよい。これによれば、外縁領域から内側に亀裂が進展するように、当該亀裂の進展を制御することができる。 In the laser processing method according to one aspect of the present disclosure, the first region may be the outer edge region of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates inward from the outer edge region.
 本開示の一側面のレーザ加工方法では、第2領域は、仮想面のうちの外縁領域であってもよい。これによれば、内側から外縁領域に亀裂が進展するように、当該亀裂の進展を制御することができる。 In the laser processing method according to one aspect of the present disclosure, the second area may be an outer edge area of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates from the inner side to the outer edge region.
 本開示の一側面のレーザ加工方法では、仮想面は、矩形状を呈しており、第1領域は、仮想面のうちの複数の角領域であってもよい。これによれば、複数の角領域から内側に亀裂が進展するように、当該亀裂の進展を制御することができる。 In the laser processing method according to one aspect of the present disclosure, the virtual surface has a rectangular shape, and the first area may be a plurality of corner areas of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates inward from the plurality of corner regions.
 本開示の一側面のレーザ加工方法では、仮想面は、矩形状を呈しており、第2領域は、仮想面のうちの複数の角領域であってもよい。これによれば、内側から複数の角領域に亀裂が進展するように、当該亀裂の進展を制御することができる。 In the laser processing method according to one aspect of the present disclosure, the virtual surface may have a rectangular shape, and the second area may be a plurality of corner areas of the virtual surface. According to this, the progress of the crack can be controlled so that the crack propagates from the inner side to the plurality of corner regions.
 本開示の一側面のレーザ加工方法では、半導体対象物の材料は、窒化ガリウムを含んでもよい。この場合、レーザ光の照射によって窒化ガリウムが分解されると、複数の改質スポットからそれぞれ延びる複数の亀裂内に窒素ガスが生じる。そのため、当該窒素ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。 In the laser processing method according to one aspect of the present disclosure, the material of the semiconductor object may include gallium nitride. In this case, when gallium nitride is decomposed by the irradiation of laser light, nitrogen gas is generated in a plurality of cracks extending from the plurality of modified spots. Therefore, the pressure (internal pressure) of the nitrogen gas can be used to easily form a crack over the virtual surface.
 本開示の一側面の半導体部材製造方法は、上述したレーザ加工方法が備える第1工程及び第2工程と、複数の改質スポットからそれぞれ延びる複数の亀裂を互いに繋げることにより、仮想面に渡る亀裂を形成する第3工程と、仮想面に渡る亀裂を境界として半導体対象物から半導体部材を取得する第4工程と、を備える。 A semiconductor member manufacturing method according to one aspect of the present disclosure includes a first step and a second step included in the above-described laser processing method, and a plurality of cracks respectively extending from a plurality of modified spots, which are connected to each other to form a crack across a virtual surface. And a fourth step of obtaining a semiconductor member from a semiconductor object with a crack across a virtual surface as a boundary.
 この半導体部材製造方法によれば、第3工程において、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となるため、好適な半導体部材の取得が可能となる。 According to this semiconductor member manufacturing method, in the third step, it is possible to accurately form a crack extending over the virtual surface along the virtual surface, and thus it is possible to obtain a suitable semiconductor member.
 本開示の一側面の半導体部材製造方法では、第3工程においては、半導体対象物を加熱してもよい。これによれば、例えば、複数の改質スポットからそれぞれ延びる複数の亀裂内にガスが生じた場合に、当該ガスを膨張させることができる。したがって、当該ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。 In the semiconductor member manufacturing method according to the one aspect of the present disclosure, the semiconductor object may be heated in the third step. According to this, for example, when gas is generated in a plurality of cracks respectively extending from the plurality of reforming spots, the gas can be expanded. Therefore, the crack (internal pressure) of the gas can be utilized to easily form a crack over the virtual surface.
 本開示の一側面の半導体部材製造方法では、仮想面は、表面に対向する方向に並ぶように複数設定されていてもよい。これによれば、1つの半導体対象物から複数の半導体部材の取得が可能となる。 In the semiconductor member manufacturing method according to one aspect of the present disclosure, a plurality of virtual surfaces may be set so as to be aligned in a direction facing the surface. According to this, a plurality of semiconductor members can be obtained from one semiconductor object.
 本開示の一側面の半導体部材製造方法では、半導体対象物は、半導体インゴットであり、半導体部材は、半導体ウェハであってもよい。これによれば、複数の好適な半導体ウェハの取得が可能となる。 In the method for manufacturing a semiconductor member according to one aspect of the present disclosure, the semiconductor object may be a semiconductor ingot, and the semiconductor member may be a semiconductor wafer. According to this, a plurality of suitable semiconductor wafers can be obtained.
 本開示の一側面の半導体部材製造方法では、仮想面は、表面が延在する方向に並ぶように複数設定されていてもよい。これによれば、1つの半導体対象物から複数の半導体部材の取得が可能となる。 In the semiconductor member manufacturing method according to one aspect of the present disclosure, a plurality of virtual surfaces may be set so as to be arranged in the direction in which the surface extends. According to this, a plurality of semiconductor members can be obtained from one semiconductor object.
 本開示の一側面の半導体部材製造方法では、半導体対象物は、半導体ウェハであり、半導体部材は、半導体デバイスであってもよい。これによれば、複数の好適な半導体デバイスの取得が可能となる。 In the semiconductor member manufacturing method according to one aspect of the present disclosure, the semiconductor object may be a semiconductor wafer, and the semiconductor member may be a semiconductor device. According to this, a plurality of suitable semiconductor devices can be obtained.
 本開示の一側面のレーザ加工装置は、半導体対象物の内部において半導体対象物の表面に対向する仮想面に沿って、半導体対象物を切断するためのレーザ加工装置であって、半導体対象物を支持するステージと、表面から半導体対象物の内部にレーザ光を入射させることにより、仮想面に沿って複数の改質スポットを形成するレーザ照射ユニットと、を備え、レーザ照射ユニットは、仮想面のうちの第1領域における単位面積当たりの注入エネルギーが仮想面のうちの第2領域における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光を入射させる。 A laser processing apparatus according to one aspect of the present disclosure is a laser processing apparatus for cutting a semiconductor object inside a semiconductor object along a virtual surface that faces a surface of the semiconductor object. The laser irradiation unit includes a supporting stage and a laser irradiation unit that forms a plurality of modified spots along the virtual surface by making a laser beam enter the inside of the semiconductor object from the surface. The laser light is made incident so that the implantation energy per unit area in the first region is larger than the implantation energy per unit area in the second region of the virtual surface.
 このレーザ加工装置によれば、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となるため、好適な半導体部材の取得が可能となる。 With this laser processing apparatus, it is possible to accurately form a crack across a virtual surface along the virtual surface, and thus it is possible to obtain a suitable semiconductor member.
 本開示によれば、好適な半導体部材の取得を可能にするレーザ加工方法、半導体部材製造方法及びレーザ加工装置を提供することができる。 According to the present disclosure, it is possible to provide a laser processing method, a semiconductor member manufacturing method, and a laser processing apparatus capable of obtaining a suitable semiconductor member.
図1は、一実施形態のレーザ加工装置の構成図である。FIG. 1 is a configuration diagram of a laser processing apparatus according to an embodiment. 図2は、第1実施形態のレーザ加工方法及び半導体部材製造方法の対象物であるGaNインゴットの側面図である。FIG. 2 is a side view of a GaN ingot which is an object of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図3は、図2に示されるGaNインゴットの平面図である。FIG. 3 is a plan view of the GaN ingot shown in FIG. 図4は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。FIG. 4 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図5は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。FIG. 5 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図6は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。FIG. 6 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図7は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。FIG. 7 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図8は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。FIG. 8 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図9は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。FIG. 9 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図10は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。FIG. 10 is a vertical cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図11は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。FIG. 11 is a cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図12は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの側面図である。FIG. 12 is a side view of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図13は、第1実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの側面図である。FIG. 13 is a side view of a GaN wafer in one step of the laser processing method and semiconductor member manufacturing method of the first embodiment. 図14は、一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。FIG. 14 is an image of a separated surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example. 図15は、図14に示される剥離面の高さプロファイルである。FIG. 15 is a height profile of the peeled surface shown in FIG. 図16は、他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。FIG. 16 is an image of the separated surface of the GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of another example. 図17は、図16に示される剥離面の高さプロファイルである。FIG. 17 is a height profile of the peeled surface shown in FIG. 図18は、一例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。FIG. 18 is a schematic diagram for explaining the principle of forming a peeled surface by an example laser processing method and semiconductor member manufacturing method. 図19は、他の例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。FIG. 19 is a schematic view for explaining the principle of forming a peeled surface by a laser processing method and a semiconductor member manufacturing method of another example. 図20は、一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。FIG. 20 is an image of a crack formed in the course of an example laser processing method and semiconductor member manufacturing method. 図21は、他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。FIG. 21 is an image of a crack formed during the laser processing method and the semiconductor member manufacturing method of another example. 図22は、比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。FIG. 22 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example. 図23は、第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。FIG. 23 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. 図24は、第2実施例及び第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。FIG. 24 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments. 図25は、第2実施形態のレーザ加工方法及び半導体部材製造方法の対象物であるGaNウェハの平面図である。FIG. 25 is a plan view of a GaN wafer which is an object of the laser processing method and the semiconductor member manufacturing method of the second embodiment. 図26は、図25に示される仮想面の平面図である。FIG. 26 is a plan view of the virtual surface shown in FIG. 図27は、第2実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。FIG. 27 is a side view of a part of the GaN wafer in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment. 図28は、第2実施形態のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。FIG. 28 is a side view of a part of the GaN wafer in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment. 図29は、第2実施形態のレーザ加工方法及び半導体部材製造方法の一工程における半導体デバイスの側面図である。FIG. 29 is a side view of the semiconductor device in one step of the laser processing method and the semiconductor member manufacturing method of the second embodiment. 図30は、比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。FIG. 30 is an image of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example. 図31は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。FIG. 31 is an image of a crack of a SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example. 図32は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像である。FIG. 32 is an image of the separated surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example. 図33は、図32に示される剥離面の高さプロファイルである。33 is a height profile of the peeled surface shown in FIG. 32. 図34は、変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。FIG. 34 is a plan view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the modified example. 図35は、変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。FIG. 35 is a plan view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the modified example. 図36は、変形例のGaNインゴットの平面図である。FIG. 36 is a plan view of a modified GaN ingot. 図37は、変形例の仮想面の平面図である。FIG. 37 is a plan view of a virtual surface of the modified example.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
[Configuration of laser processing equipment]
 図1に示されるように、レーザ加工装置1は、ステージ2と、光源3と、空間光変調器4と、集光レンズ5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することにより、対象物11に改質領域12を形成する装置である。以下、第1水平方向をX方向といい、第1水平方向に垂直な第2水平方向をY方向という。また、鉛直方向をZ方向という。 As shown in FIG. 1, the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6. The laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L. Hereinafter, the first horizontal direction will be referred to as the X direction, and the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction. The vertical direction is called the Z direction.
 ステージ2は、例えば対象物11に貼り付けられたフィルムを吸着することにより、対象物11を支持する。本実施形態では、ステージ2は、X方向及びY方向のそれぞれに沿って移動可能である。また、ステージ2は、Z方向に平行な軸線を中心線として回転可能である。 The stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11. In the present embodiment, the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
 光源3は、例えばパルス発振方式によって、対象物11に対して透過性を有するレーザ光Lを出力する。空間光変調器4は、光源3から出力されたレーザ光Lを変調する。空間光変調器4は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。集光レンズ5は、空間光変調器4によって変調されたレーザ光Lを集光する。本実施形態では、空間光変調器4及び集光レンズ5は、レーザ照射ユニットとして、Z方向に沿って移動可能である。 The light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method. The spatial light modulator 4 modulates the laser light L output from the light source 3. The spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4. In this embodiment, the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
 ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 When the laser light L is condensed inside the target object 11 supported by the stage 2, the laser light L is particularly absorbed at a portion corresponding to the condensing point C of the laser light L, and the inside of the target object 11 is modified. A quality region 12 is formed. The modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region. The modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット13がX方向に沿って1列に並ぶように形成される。1つの改質スポット13は、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット13の集合である。隣り合う改質スポット13は、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。 As an example, when the stage 2 is moved along the X direction and the condensing point C is moved relative to the target object 11 along the X direction, a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row. One modified spot 13 is formed by irradiation with one pulse of laser light L. The one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row. The adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
 制御部6は、ステージ2、光源3、空間光変調器4及び集光レンズ5を制御する。制御部6は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部6では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部6は、各種機能を実現する。
[第1実施形態のレーザ加工方法及び半導体部材製造方法]
The control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5. The control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 6, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
[Laser Processing Method and Semiconductor Member Manufacturing Method of First Embodiment]
 第1実施形態のレーザ加工方法及び半導体部材製造方法の対象物11は、図2及び図3に示されるように、窒化ガリウム(GaN)によって例えば円板状に形成されたGaNインゴット(半導体インゴット、半導体対象物)20である。一例として、GaNインゴット20の直径は2inであり、GaNインゴット20の厚さは2mmである。第1実施形態のレーザ加工方法及び半導体部材製造方法は、GaNインゴット20から複数のGaNウェハ(半導体ウェハ、半導体部材)30を切り出すために実施される。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。 The object 11 of the laser processing method and the semiconductor member manufacturing method of the first embodiment is, as shown in FIGS. 2 and 3, a GaN ingot (semiconductor ingot, formed of gallium nitride (GaN), for example, in a disk shape. Semiconductor object) 20. As an example, the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm. The laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm.
 まず、GaNインゴット20が用意され(第1工程)、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNインゴット20の表面20aに対向する面であり、表面20aに対向する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、GaNインゴット20の内部において表面20aに平行な面であり、例えば円形状を呈している。複数の仮想面15のそれぞれは、表面20a側から見た場合に互いに重なるように設定されている。複数の仮想面15のそれぞれは、第1領域R1及び第2領域R2を含んでいる。第2領域R2は、仮想面15の外縁に沿った外縁領域である。第1領域R1は、第2領域R2に囲まれた領域である。本実施形態では、第1領域R1は、例えば円形状を呈しており、第2領域R2は、例えば円環状を呈している。GaNインゴット20には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNインゴット20の側面20bに至っていない。一例として、隣り合う仮想面15間の距離は100μmであり、周縁領域16の幅(本実施形態では、仮想面15の外縁と側面20bとの距離)は30μm以上である。 First, a GaN ingot 20 is prepared (first step), and the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20, and is set so as to be aligned in a direction facing the surface 20a. In the present embodiment, each of the plurality of virtual planes 15 is a plane parallel to the surface 20a inside the GaN ingot 20, and has, for example, a circular shape. Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side. Each of the plurality of virtual surfaces 15 includes a first region R1 and a second region R2. The second region R2 is an outer edge region along the outer edge of the virtual surface 15. The first region R1 is a region surrounded by the second region R2. In the present embodiment, the first region R1 has, for example, a circular shape, and the second region R2 has, for example, an annular shape. A plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20. As an example, the distance between the adjacent virtual surfaces 15 is 100 μm, and the width of the peripheral region 16 (in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b) is 30 μm or more.
 複数の改質スポット13の形成は、例えば532nmの波長を有するレーザ光Lの照射によって、表面20aとは反対側から1つの仮想面15ごとに順次に実施される。複数の改質スポット13の形成は、複数の仮想面15のそれぞれにおいて同様であるため、以下、表面20aに最も近い仮想面15に沿った複数の改質スポット13の形成について、図4~図11を参照して詳細に説明する。なお、図5、図7、図9及び図11において、矢印は、レーザ光Lの集光点Cの軌跡を示している。また、後述する改質スポット13a,13b,13c,13dを包括して改質スポット13といい、後述する亀裂14a,14b,14c,14dを包括して亀裂14という場合がある。 The formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11. In addition, in FIG. 5, FIG. 7, FIG. 9, and FIG. 11, the arrow indicates the locus of the condensing point C of the laser light L. Further, the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13, and the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
 まず、レーザ加工装置1が、図4及び図5に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させることにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13aを形成する(第2工程)。このとき、レーザ加工装置1は、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成する。更に、レーザ加工装置1は、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光Lを入射させる。本実施形態では、レーザ加工装置1は、第1領域R1における1つの集光点C当たりのレーザ光Lのパルスエネルギーを第2領域R2における1つの集光点C当たりのレーザ光Lのパルスエネルギーよりも大きくする。なお、図4及び図5では、改質スポット13aが白抜き(ハッチングなし)で示されており、亀裂14aが延びる範囲が破線で示されている(図6~図11でも同様)。 First, as shown in FIGS. 4 and 5, the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the front surface 20 a, so that the laser light L is incident along the virtual surface 15 (for example, in the virtual surface 15). A plurality of modified spots 13a are formed (two-dimensionally arranged along the whole) (second step). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Further, the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15. Further, the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2. In the present embodiment, the laser processing apparatus 1 determines the pulse energy of the laser light L per one focus point C in the first region R1 as the pulse energy of the laser light L per one focus point C in the second region R2. Bigger than. 4 and 5, the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11).
 本実施形態では、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチ(すなわち、複数の集光点Cの相対的な移動速度を、レーザ光Lの繰り返し周波数で除した値)は10μmである。また、1つの集光点C当たりのレーザ光Lのパルスエネルギー(以下、単に「レーザ光Lのパルスエネルギー」という)は、第1領域R1では0.4μJであり、第2領域R2では0.33μJである。この場合、Y方向において隣り合う改質スポット13aの中心間距離は8μmとなり、X方向において隣り合う改質スポット13aの中心間距離は10μmとなる。また、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aは互いに繋がらない。 In the present embodiment, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L (that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L). The divided value) is 10 μm. In addition, the pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.4 μJ in the first region R1, and is 0.4 μJ in the second region R2. It is 33 μJ. In this case, the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13a in the X direction is 10 μm. Further, the cracks 14a extending from the modified spots 13a are not connected to each other.
 続いて、レーザ加工装置1が、図6及び図7に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させることにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13bを形成する(第2工程)。このとき、レーザ加工装置1は、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の改質スポット13bを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。更に、レーザ加工装置1は、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光Lを入射させる。本実施形態では、レーザ加工装置1は、第1領域R1におけるレーザ光Lのパルスエネルギーを第2領域R2におけるレーザ光Lのパルスエネルギーよりも大きくする。この工程では、複数の改質スポット13bからそれぞれ延びる複数の亀裂14bが、複数の亀裂14aに繋がってもよい。なお、図6及び図7では、改質スポット13bがドットハッチングで示されており、亀裂14bが延びる範囲が破線で示されている(図8~図11でも同様)。 Then, the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20a as shown in FIGS. 6 and 7, and along the virtual plane 15 (for example, the virtual plane 15). A plurality of modified spots 13b are formed so as to be two-dimensionally arranged along the entire area (second step). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Moreover, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows. To form. Further, the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2. In the present embodiment, the laser processing apparatus 1 makes the pulse energy of the laser light L in the first region R1 larger than the pulse energy of the laser light L in the second region R2. In this step, the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11).
 本実施形態では、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13aの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、第1領域R1では0.4μJであり、第2領域R2では0.33μJである。この場合、Y方向において隣り合う改質スポット13bの中心間距離は8μmとなり、X方向において隣り合う改質スポット13bの中心間距離は10μmとなる。 In the present embodiment, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. The pulse energy of the laser light L is 0.4 μJ in the first region R1 and 0.33 μJ in the second region R2. In this case, the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13b in the X direction is 10 μm.
 続いて、レーザ加工装置1が、図8及び図9に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させることにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13cを形成する(第2工程)。更に、レーザ加工装置1が、図10及び図11に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させることにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13dを形成する(第2工程)。このとき、レーザ加工装置1は、複数の改質スポット13a,13bに重ならないように、複数の改質スポット13c,13dを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13a,13bの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13c,13dを形成する。更に、レーザ加工装置1は、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光Lを入射させる。本実施形態では、レーザ加工装置1は、第1領域R1におけるレーザ光Lのパルスエネルギーを第2領域R2におけるレーザ光Lのパルスエネルギーよりも大きくする。この工程では、複数の改質スポット13c,13dからそれぞれ延びる複数の亀裂14c,14dが、複数の亀裂14a,14bに繋がってもよい。なお、図8及び図9では、改質スポット13cが実線ハッチングで示されており、亀裂14cが延びる範囲が破線で示されている(図10及び図11でも同様)。また、図10及び図11では、改質スポット13dが実線ハッチング(改質スポット13cの実線ハッチングとは逆に傾斜する実線ハッチング)で示されており、亀裂14dが延びる範囲が破線で示されている。 Then, the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20a as shown in FIGS. A plurality of modified spots 13c are formed so as to be arranged two-dimensionally along the entire area (second step). Further, as shown in FIGS. 10 and 11, the laser processing apparatus 1 causes the laser light L to enter the inside of the GaN ingot 20 from the surface 20 a, so that the laser light L is incident along the virtual surface 15 (for example, the virtual surface 15 A plurality of modified spots 13d are formed so as to be two-dimensionally arranged along the whole (second step). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b. Further, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows. The spots 13c and 13d are formed. Further, the laser processing apparatus 1 makes the laser light L enter such that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2. In the present embodiment, the laser processing apparatus 1 makes the pulse energy of the laser light L in the first region R1 larger than the pulse energy of the laser light L in the second region R2. In this step, the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b. 8 and 9, the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11). 10 and 11, the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines. There is.
 本実施形態では、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13a,13bの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは5μmである。また、レーザ光Lのパルスエネルギーは、第1領域R1及び第2領域R2において、0.33μJである。この場合、Y方向において隣り合う改質スポット13cの中心間距離は8μmとなり、X方向において隣り合う改質スポット13cの中心間距離は5μmとなる。また、Y方向において隣り合う改質スポット13dの中心間距離は8μmとなり、X方向において隣り合う改質スポット13dの中心間距離は5μmとなる。 In the present embodiment, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. The pulse energy of the laser light L is 0.33 μJ in the first region R1 and the second region R2. In this case, the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13c in the X direction is 5 μm. Further, the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 μm, and the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 μm.
 続いて、ヒータ等を備える加熱装置が、GaNインゴット20を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、図12に示されるように、複数の仮想面15のそれぞれにおいて、仮想面15に渡る亀裂17(以下、単に「亀裂17」という)を形成する(第3工程)。図12では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、加熱以外の方法でGaNインゴット20に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 Subsequently, a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG. As described above, in each of the plurality of virtual planes 15, the crack 17 (hereinafter, simply referred to as “crack 17”) across the virtual plane 15 is formed (third step). In FIG. 12, a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNインゴット20においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力(内圧)を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、GaNインゴット20の側面20b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることが好ましい。更に、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるようにレーザ光Lが照射されることにより、仮想面15に沿って複数の改質スポット13が形成されている。これにより、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がる際に、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が第1領域R1から第2領域R2に進展するように当該亀裂の進展が制御される。 Here, in the GaN ingot 20, nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 is preferably 30 μm or more. Furthermore, by irradiating the laser light L so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2, a plurality of modifications are performed along the virtual surface 15. A quality spot 13 is formed. Thereby, when the plurality of cracks 14 respectively extending from the plurality of modified spots 13 are connected to each other, a crack (a crack that connects the plurality of cracks 14 to each other and finally becomes a crack 17) is generated from the first region R1 to the second region. Propagation of the crack is controlled so as to propagate to R2.
 続いて、研削装置が、GaNインゴット20のうち複数の周縁領域16及び複数の仮想面15のそれぞれに対応する部分を研削(研磨)することにより、図13に示されるように、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する(第4工程)。このように、GaNインゴット20は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、研削以外の機械加工、レーザ加工等によって、GaNインゴット20のうち複数の周縁領域16に対応する部分を除去してもよい。 Then, the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG. A plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (fourth step). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15. In this step, portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第1実施形態のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する工程までが、第1実施形態の半導体部材製造方法である。 Among the above steps, up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is the laser processing method of the first embodiment. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as boundaries are the semiconductor member manufacturing method of the first embodiment.
 以上説明したように、第1実施形態のレーザ加工方法では、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるように、レーザ光Lを入射させることにより、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。これにより、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がって亀裂17が形成される際に、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が第1領域R1から第2領域R2に進展するように当該亀裂の進展を制御することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第1実施形態のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得することにより、複数の好適なGaNウェハ30の取得が可能となる。 As described above, in the laser processing method according to the first embodiment, the laser light L is irradiated so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2. By making it enter, a plurality of modified spots 13 are formed along each of the plurality of virtual surfaces 15. Thereby, in each of the plurality of virtual surfaces 15, when the plurality of cracks 14 extending from the plurality of modified spots 13 are connected to each other to form the crack 17, a crack (the plurality of cracks 14 are connected to each other and finally The crack can be controlled so that the crack 17 becomes a crack 17) from the first region R1 to the second region R2, and as a result, the crack 17 can be accurately aligned along each of the plurality of virtual planes 15. It becomes possible to form well. Therefore, according to the laser processing method of the first embodiment, a plurality of suitable GaN wafers 30 can be obtained by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. Become.
 同様に、第1実施形態のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the first embodiment, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus it is possible to perform a plurality of preferable operations. The GaN wafer 30 can be acquired.
 また、第1実施形態のレーザ加工方法では、複数の改質スポット13からそれぞれ延びる複数の亀裂14の進展を阻む周縁領域16が、複数の仮想面15のそれぞれを囲むように設定される。これにより、周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展が阻まれるため、例えば複数の亀裂14内にガスが生じた場合に、当該ガスが仮想面15の外部に逃げるのを抑制することができる。したがって、当該ガスの圧力を利用して、亀裂17を容易に形成することができる。本実施形態では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することができる。 Further, in the laser processing method of the first embodiment, the peripheral region 16 that prevents the development of the cracks 14 extending from the modified spots 13 is set so as to surround each of the virtual surfaces 15. As a result, the growth of the plurality of cracks 14 to the outside of the virtual surface 15 surrounded by the peripheral region 16 is prevented, so that, for example, when gas is generated in the plurality of cracks 14, the gas escapes to the outside of the virtual surface 15. Can be suppressed. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas. In this embodiment, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第1実施形態のレーザ加工方法では、第1領域R1におけるレーザ光Lのパルスエネルギーが第2領域R2におけるレーザ光Lのパルスエネルギーよりも大きくなるようにレーザ光Lが照射される。これにより、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。 Further, in the laser processing method of the first embodiment, the laser light L is irradiated so that the pulse energy of the laser light L in the first region R1 is larger than the pulse energy of the laser light L in the second region R2. This makes it possible to appropriately realize a state in which the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
 また、第1実施形態のレーザ加工方法では、複数の仮想面15のそれぞれにおいて、第2領域R2が、仮想面15のうちの外縁領域である。これにより、複数の仮想面15のそれぞれにおいて、内側から外縁領域に亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が進展するように、当該亀裂の進展を制御することができる。 Further, in the laser processing method of the first embodiment, the second region R2 is the outer edge region of the virtual surface 15 in each of the virtual surfaces 15. Thereby, in each of the plurality of virtual surfaces 15, the progress of the crack is controlled so that the crack (the crack that connects the plurality of cracks 14 and finally becomes the crack 17) propagates from the inner side to the outer edge region. You can
 また、第1実施形態の半導体部材製造方法によれば、第1実施形態のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the first embodiment, it is possible to accurately form the crack 17 along each of the virtual surfaces 15 by the steps included in the laser processing method of the first embodiment. Therefore, it is possible to obtain a plurality of suitable GaN wafers 30.
 また、第1実施形態の半導体部材製造方法では、GaNインゴット20を加熱することにより、複数の亀裂14を互いに繋げて亀裂17を形成する。これにより、例えば、複数の改質スポット13からそれぞれ延びる複数の亀裂14内にガスが生じた場合に、当該ガスを膨張させることができる。したがって、当該ガスの圧力を利用して、亀裂17を容易に形成することができる。本実施形態では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することができる。なお、上述したように、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)の進展を制御することにより、加熱時間の短縮化、加熱温度の低温化等を期待することができる。 Further, in the semiconductor member manufacturing method of the first embodiment, the GaN ingot 20 is heated to connect the plurality of cracks 14 to each other to form the crack 17. Thereby, for example, when gas is generated in the plurality of cracks 14 extending from the plurality of reforming spots 13, the gas can be expanded. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas. In this embodiment, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas. As described above, by controlling the progress of cracks (cracks in which a plurality of cracks 14 are connected to each other to finally become the cracks 17), it is expected that the heating time is shortened, the heating temperature is lowered, and the like. You can
 また、第1実施形態の半導体部材製造方法では、複数の仮想面15が、GaNインゴット20の表面20aに対向する方向に並ぶように設定されている。これにより、1つのGaNインゴット20から複数のGaNウェハ30の取得が可能となる。 Further, in the semiconductor member manufacturing method of the first embodiment, the plurality of virtual surfaces 15 are set so as to be arranged in a direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
 ここで、第1実施形態のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハ30では、GaNウェハ30の剥離面に現れる凹凸が小さくなることを示す実験結果について説明する。 Here, an explanation will be given of an experimental result showing that the GaN wafer 30 formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment has a smaller unevenness on the separated surface of the GaN wafer 30.
 図14は、一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図15の(a)及び(b)は、図14に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を10μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1μJとした。この場合、図15の(a)及び(b)に示されるように、GaNウェハ30の剥離面(亀裂17によって形成された面)に25μm程度の凹凸が現れた。 FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example, and FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile. In this example, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. By moving, a plurality of modified spots 13 were formed along the virtual surface 15. At this time, the distance between adjacent condensing points C in the Y direction was 10 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1 μJ. In this case, as shown in (a) and (b) of FIG. 15, irregularities of about 25 μm appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
 図16は、他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図17の(a)及び(b)は、図16に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。この場合、図17の(a)及び(b)に示されるように、GaNウェハ30の剥離面に5μm程度の凹凸が現れた。 FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example, and FIGS. 17A and 17B show the peeled surface of FIG. It is a height profile. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed. A plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. In this case, as shown in FIGS. 17A and 17B, unevenness of about 5 μm appeared on the separated surface of the GaN wafer 30.
 以上の実験結果から、第1実施形態のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハでは、GaNウェハ30の剥離面に現れる凹凸が小さくなること、すなわち、仮想面15に沿って亀裂17が精度良く形成されることが分かった。なお、GaNウェハ30の剥離面に現れる凹凸が小さくなると、当該剥離面を平坦化するための研削量が少なくて済む。したがって、GaNウェハ30の剥離面に現れる凹凸が小さくなることは、材料の利用効率的にも生産効率的にも有利である。 From the above experimental results, in the GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment, the irregularities appearing on the separated surface of the GaN wafer 30 become small, that is, cracks occur along the virtual surface 15. It was found that 17 was accurately formed. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
 次に、GaNウェハ30の剥離面に凹凸が現れる原理について説明する。 Next, the principle that unevenness appears on the peeled surface of the GaN wafer 30 will be described.
 例えば、図18に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその一方の側の改質スポット13aから延びる亀裂14aに重なるように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13aに対してレーザ光Lの入射側に改質スポット13bが形成され易くなる。続いて、改質スポット13cがその一方の側の改質スポット13bから延びる亀裂14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。この場合にも、複数の亀裂14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13bに対してレーザ光Lの入射側に改質スポット13cが形成され易くなる。このように、この例では、複数の改質スポット13bが複数の改質スポット13aに対してレーザ光Lの入射側に形成され、更に、複数の改質スポット13cが複数の改質スポット13bに対してレーザ光Lの入射側に形成され易くなる。 For example, as shown in FIG. 18, a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side. A plurality of modified spots 13b are formed along the surface 15. In this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a. The modified spot 13b is easily formed on the incident side of the light L. Then, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side. Also in this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b. The modified spot 13c is easily formed on the incident side of the light L. As described above, in this example, the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
 それに対し、例えば、図19に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその両側の改質スポット13aから延びる亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるものの、改質スポット13bが亀裂14aに重ならないため、改質スポット13bも、改質スポット13aと同様に仮想面15上に形成される。続いて、改質スポット13cがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。更に、改質スポット13dがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13dを形成する。これらの場合には、複数の亀裂14a,14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13a,13bに対してレーザ光Lの入射側に改質スポット13c,13dが形成され易くなる。このように、この例では、複数の改質スポット13c,13dが複数の改質スポット13a,13bに対してレーザ光Lの入射側に形成され易くなるだけである。 On the other hand, for example, as shown in FIG. 19, a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof. , A plurality of modified spots 13b are formed along the virtual surface 15. In this case, although the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a. Are formed on the virtual surface 15. Subsequently, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. Further, a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. In these cases, since the laser light L is easily absorbed by the gallium deposited on the plurality of cracks 14a and 14b, even if the condensing point C is located on the virtual surface 15, the modified spots 13a, The modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
 以上の原理から、第1実施形態のレーザ加工方法及び半導体部材製造方法においては、複数の改質スポット13a及び複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに重ならないように、複数の改質スポット13bを形成することが、GaNウェハ30の剥離面に現れる凹凸を小さくする上で極めて重要であることが分かる。 From the above principle, in the laser processing method and the semiconductor member manufacturing method of the first embodiment, a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the quality spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
 次に、第1実施形態のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method according to the first embodiment, an experimental result showing that the crack 17 propagates along the virtual surface 15 with high accuracy will be described.
 図20の(a)及び(b)は、一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図20の(b)は、図20の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1.33μJとした。そして、レーザ加工を仮想面15の途中で停止させた。この場合、図20の(a)及び(b)に示されるように、加工領域から未加工領域に進展した亀裂が、未加工領域において仮想面15から大きく外れた。 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example, and FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1.33 μJ. Then, the laser processing was stopped in the middle of the virtual surface 15. In this case, as shown in (a) and (b) of FIG. 20, the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
 図21の(a)及び(b)は、他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図21の(b)は、図21の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1のみに、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図21の(a)及び(b)に示されるように、加工領域1から加工領域2に進展した亀裂が、加工領域2において仮想面15から大きく外れなかった。 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example, and FIG. 21(b) is FIG. 21(a). It is an enlarged image in the rectangular frame in. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. Specifically, first, the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
 以上の実験結果から、第1実施形態のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することが分かった。これは、加工領域2に先に形成された複数の改質スポット13が、亀裂が進展する際にガイドになったためと想定される。 From the above experimental results, it was found that in the laser processing method and the semiconductor member manufacturing method of the first embodiment, the crack 17 propagates along the virtual surface 15 with high accuracy. It is assumed that this is because the plurality of modified spots 13 previously formed in the processed region 2 served as guides when the crack propagated.
 次に、第1実施形態のレーザ加工方法及び半導体部材製造方法においては、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method of the first embodiment, an experimental result showing that the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof is suppressed. Will be described.
 図22は、比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像(側面視での画像)である。この比較例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、Y方向において隣り合う集光点C間の距離を2μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。この場合、図22に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が100μm程度となった。 FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example. In this comparative example, a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. The plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to. Specifically, the distance between the condensing points C adjacent to each other in the Y direction is 2 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.3 μJ. Quality spot 13 was formed. In this case, as shown in FIG. 22, the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 μm.
 図23は、第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図23の(a)は平面視での画像、図23の(b)は側面視での画像である。この第1実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13aを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13bを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に-4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。これにより、1回目に形成した改質スポット13aと3回目に形成した改質スポット13とが互いに重なり、2回目に形成した改質スポット13bと4回目に形成した改質スポット13とが互いに重なっていると想定される。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が70μm程度となった。 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. FIG. 23A is an image in plan view, and FIG. Is an image in side view. In the first embodiment, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction. By relatively moving on the surface 15, a plurality of modified spots 13 were formed along the virtual surface 15. Specifically, first, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.3 μJ. The modified spot 13a of No. 1 was formed. Then, with the six condensing points C aligned in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. A plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 μJ. Then, with the six converging points C arranged in the Y direction shifted from the previous state by -4 μm in the Y direction, the distance between the converging points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is changed. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 μm and 0.3 μJ. Subsequently, with the six condensing points C arranged in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 μJ. As a result, the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 μm.
 図24の(a)及び(b)は、第2実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(a)は平面視での画像、図24の(b)は側面視での画像である。この第2実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。この場合、図24の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が50μm程度となった。 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second embodiment, and FIG. 24A is a plan view. The image, (b) of FIG. 24, is an image in a side view. In this second example, a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed. Similarly, a plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. In this case, as shown in (b) of FIG. 24, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 μm.
 図24の(c)及び(d)は、第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(c)は平面視での画像、図24の(d)は側面視での画像である。この第3実施例では、図24の(a)及び(b)に示される状態にある仮想面15(すなわち、複数列の改質スポット13が既に形成された仮想面15)に沿って、更に、複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.1μJとして、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図24の(d)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が60μm程度となった。 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view. An image, (d) of FIG. 24, is an image in a side view. In the third embodiment, further along the virtual plane 15 in the state shown in (a) and (b) of FIG. 24 (that is, the virtual plane 15 on which a plurality of rows of modified spots 13 have already been formed), A plurality of modified spots 13 were formed. Specifically, first, the distance between adjacent condensing points C in the Y direction is 8 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.1 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in FIG. 24D, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 μm.
 以上の実験結果から、仮想面15に沿って既に形成された複数の改質スポット13a及び複数の亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成すれば(第1実施例、第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることが分かった。なお、仮想面15に沿って更に複数の改質スポット13を形成する場合には、仮想面15に沿って既に形成された複数の改質スポット13a,13bに重ならないように、仮想面15に沿って複数の改質スポット13を形成すれば(第2実施例及び第3実施例)、仮想面15に渡る亀裂を形成し易くなる。
[第2実施形態のレーザ加工方法及び半導体部材製造方法]
From the above experimental results, if the modified spots 13b are formed along the virtual surface 15 so as not to overlap the modified spots 13a and the cracks 14a already formed along the virtual surface 15 (( 1st Example, 2nd Example, and 3rd Example), it turned out that the extension amount of the crack 14 extended from the modification spot 13 to the incident side of the laser beam L and the opposite side is suppressed. When forming a plurality of modified spots 13 along the virtual surface 15, the modified surface 13 is formed on the virtual surface 15 so as not to overlap the modified spots 13a and 13b already formed along the virtual surface 15. If a plurality of modified spots 13 are formed along the lines (second and third embodiments), it becomes easy to form a crack over the virtual surface 15.
[Laser Processing Method and Semiconductor Member Manufacturing Method of Second Embodiment]
 第2実施形態のレーザ加工方法及び半導体部材製造方法の対象物11は、図25に示されるように、GaNによって例えば円板状に形成されたGaNウェハ(半導体ウェハ、半導体対象物)30である。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。第2実施形態のレーザ加工方法及び半導体部材製造方法は、GaNウェハ30から複数の半導体デバイス(半導体部材)40を切り出すために実施される。一例として、半導体デバイス40のGaN基板部分の外形は1mm×1mmであり、半導体デバイス40のGaN基板部分の厚さは数十μmである。 The object 11 of the laser processing method and the semiconductor member manufacturing method of the second embodiment is, as shown in FIG. 25, a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example. .. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm. The laser processing method and the semiconductor member manufacturing method of the second embodiment are carried out to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30. As an example, the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm×1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens μm.
 まず、GaNウェハ30が用意され(第1工程)、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNウェハ30の内部においてGaNウェハ30の表面30aに対向する面であり、表面30aが延在する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、表面30aに平行な面であり、例えば矩形状を呈している。複数の仮想面15のそれぞれは、GaNウェハ30のオリエンテーションフラット31に平行な方向及び垂直な方向に2次元状に並ぶように設定されている。図26に示されるように、複数の仮想面15のそれぞれは、第1領域R1及び第2領域R2を含んでいる。第1領域R1は、仮想面15のうちの複数の角領域である。第2領域R2は、仮想面15のうちの第1領域R1以外の領域である。本実施形態では、第1領域R1は、例えば矩形状を呈している。図25に示されるように、GaNウェハ30には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNウェハ30の側面30bに至っていない。一例として、複数の仮想面15のそれぞれに対応する周縁領域16の幅(本実施形態では、隣り合う仮想面15間の距離の半分)は30μm以上である。 First, a GaN wafer 30 is prepared (first step), and the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends. In the present embodiment, each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape. Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31. As shown in FIG. 26, each of the plurality of virtual surfaces 15 includes a first region R1 and a second region R2. The first region R1 is a plurality of corner regions of the virtual surface 15. The second region R2 is a region of the virtual surface 15 other than the first region R1. In the present embodiment, the first region R1 has, for example, a rectangular shape. As shown in FIG. 25, a plurality of peripheral regions 16 are set on the GaN wafer 30 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30. As an example, the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 (half the distance between the adjacent virtual surfaces 15 in the present embodiment) is 30 μm or more.
 複数の仮想面15のそれぞれに沿った複数の改質スポット13の形成は、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に、実施される。これにより、GaNウェハ30においては、図27に示されるように、複数の仮想面15のそれぞれに沿って、複数の改質スポット13(すなわち、改質スポット13a,13b,13c,13d)及び複数の亀裂14(すなわち、亀裂14a,14b,14c,14d)が形成される。図27では、複数の改質スポット13及び複数の亀裂14が形成される範囲が破線で示されている。 The formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. As a result, in the GaN wafer 30, as shown in FIG. 27, a plurality of modified spots 13 (that is, modified spots 13a, 13b, 13c, 13d) and a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15. 14 (that is, the cracks 14a, 14b, 14c, 14d) are formed. In FIG. 27, the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by broken lines.
 続いて、半導体製造装置が、図28に示されるように、GaNウェハ30の表面30aに複数の機能素子32を形成する。複数の機能素子32のそれぞれは、GaNウェハ30の厚さ方向から見た場合に1つの機能素子32が1つの仮想面15に含まれるように、形成される。機能素子32は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。 Subsequently, the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG. Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30. The functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
 本実施形態では、表面30aに複数の機能素子32を形成する際に、半導体製造装置が加熱装置として機能する。つまり、表面30aに複数の機能素子32を形成する際に、半導体製造装置が、GaNウェハ30を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、複数の仮想面15のそれぞれにおいて、亀裂17(すなわち、仮想面15に渡る亀裂17)を形成する(第3工程)。図28では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、半導体製造装置とは別の加熱装置が用いられてもよい。また、加熱以外の方法でGaNウェハ30に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 In the present embodiment, the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other to form a crack 17 (that is, a crack 17 across the virtual surface 15) in each of the plurality of virtual surfaces 15 (third step). In FIG. 28, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNウェハ30においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、隣り合う仮想面15、GaNウェハ30の側面30b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることが好ましい。更に、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるようにレーザ光Lが照射されることにより、仮想面15に沿って複数の改質スポット13が形成されている。これにより、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がる際に、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が第1領域R1から第2領域R2に進展するように当該亀裂の進展が制御される。 Here, in the GaN wafer 30, nitrogen gas is generated in the cracks 14 extending from the modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure of the nitrogen gas. Moreover, since the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 is preferably 30 μm or more. Furthermore, by irradiating the laser light L so that the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2, a plurality of modifications are performed along the virtual surface 15. A quality spot 13 is formed. Thereby, when the plurality of cracks 14 respectively extending from the plurality of modified spots 13 are connected to each other, a crack (a crack that connects the plurality of cracks 14 to each other and finally becomes a crack 17) is generated from the first region R1 to the second region. Propagation of the crack is controlled so as to propagate to R2.
 続いて、レーザ加工装置が、GaNウェハ30を機能素子32ごとに切断すると共に、研削装置が、複数の仮想面15のそれぞれに対応する部分を研削することにより、図29に示されるように、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する(第4工程)。このように、GaNウェハ30は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、レーザ加工以外の機械加工(例えばブレードダイシング)等によって、GaNウェハ30を機能素子32ごとに切断してもよい。 Subsequently, the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, so that as shown in FIG. A plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (fourth step). In this way, the GaN wafer 30 is cut along each of the plurality of virtual planes 15. In this step, the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第2実施形態のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する工程までが、第2実施形態の半導体部材製造方法である。 Among the above steps, up to the step of forming a plurality of modified spots 13 along each of a plurality of virtual surfaces 15 is the laser processing method of the second embodiment. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as boundaries are the semiconductor member manufacturing method of the second embodiment.
 以上説明したように、第2実施形態のレーザ加工方法よれば、第1実施形態のレーザ加工方法と同様に、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がって亀裂17が形成される際に、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が第1領域R1から第2領域R2に進展するように当該亀裂の進展を制御することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第2実施形態のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得することにより、複数の好適な半導体デバイス40の取得が可能となる。また、複数の半導体デバイス40を切り出した後のGaNウェハ30を再利用することも可能となる。 As described above, according to the laser processing method of the second embodiment, as in the laser processing method of the first embodiment, a plurality of cracks extending from the plurality of modified spots 13 are formed on each of the plurality of virtual surfaces 15. When 14 are connected to each other and a crack 17 is formed, the crack (a crack in which a plurality of cracks 14 are connected to each other to finally become the crack 17) propagates from the first region R1 to the second region R2. Can be controlled, and as a result, the crack 17 can be accurately formed along each of the virtual surfaces 15. Therefore, according to the laser processing method of the second embodiment, it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. Become. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
 同様に、第2実施形態のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the second embodiment, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus it is possible to perform a plurality of preferable operations. The semiconductor device 40 can be acquired.
 また、第2実施形態のレーザ加工方法では、複数の改質スポット13からそれぞれ延びる複数の亀裂14の進展を阻む周縁領域16が、複数の仮想面15のそれぞれを囲むように設定される。これにより、周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展が阻まれるため、例えば複数の亀裂14内にガスが生じた場合に、当該ガスが仮想面15の外部に逃げるのを抑制することができる。したがって、当該ガスの圧力を利用して、亀裂17を容易に形成することができる。本実施形態では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することができる。 Further, in the laser processing method of the second embodiment, the peripheral region 16 that prevents the development of the cracks 14 extending from the modified spots 13 is set so as to surround each of the virtual surfaces 15. As a result, the growth of the plurality of cracks 14 to the outside of the virtual surface 15 surrounded by the peripheral region 16 is prevented, so that, for example, when gas is generated in the plurality of cracks 14, the gas escapes to the outside of the virtual surface 15. Can be suppressed. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas. In this embodiment, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第2実施形態のレーザ加工方法では、第1領域R1におけるレーザ光Lのパルスエネルギーが第2領域R2におけるレーザ光Lのパルスエネルギーよりも大きくなるようにレーザ光Lが照射される。これにより、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。 Further, in the laser processing method of the second embodiment, the laser light L is applied so that the pulse energy of the laser light L in the first region R1 is larger than the pulse energy of the laser light L in the second region R2. This makes it possible to appropriately realize a state in which the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2.
 また、第2実施形態のレーザ加工方法では、複数の仮想面15のそれぞれが矩形状を呈しており、複数の仮想面15のそれぞれにおいて、第1領域R1が、仮想面15のうちの複数の角領域である。これにより、複数の仮想面15のそれぞれにおいて、複数の角領域から内側に亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が進展するように、当該亀裂の進展を制御することができる。 Further, in the laser processing method of the second embodiment, each of the plurality of virtual surfaces 15 has a rectangular shape, and in each of the plurality of virtual surfaces 15, the first region R1 is a plurality of virtual surfaces 15. It is a corner area. Thereby, in each of the plurality of virtual planes 15, the progress of the crack is controlled so that the crack (the crack that connects the plurality of cracks 14 to each other and finally becomes the crack 17) propagates inward from the plurality of corner regions. can do.
 また、第2実施形態の半導体部材製造方法によれば、第2実施形態のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the second embodiment, it is possible to accurately form the crack 17 along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
 また、第2実施形態の半導体部材製造方法では、GaNウェハ30を加熱することにより、複数の亀裂14を互いに繋げて亀裂17を形成する。これにより、例えば、複数の改質スポット13からそれぞれ延びる複数の亀裂14内にガスが生じた場合に、当該ガスを膨張させることができる。したがって、当該ガスの圧力を利用して、亀裂17を容易に形成することができる。本実施形態では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することができる。なお、上述したように、亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)の進展を制御することにより、加熱時間の短縮化、加熱温度の低温化等を期待することができる。 In the semiconductor member manufacturing method of the second embodiment, the GaN wafer 30 is heated to connect the plurality of cracks 14 to each other to form the crack 17. Thereby, for example, when gas is generated in the plurality of cracks 14 extending from the plurality of reforming spots 13, the gas can be expanded. Therefore, the crack 17 can be easily formed by utilizing the pressure of the gas. In this embodiment, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas. As described above, by controlling the progress of cracks (cracks in which a plurality of cracks 14 are connected to each other to finally become the cracks 17), it is expected that the heating time is shortened, the heating temperature is lowered, and the like. You can
 また、第2実施形態の半導体部材製造方法では、複数の仮想面15が、GaNウェハ30の表面30aが延在する方向に並ぶように設定されている。これにより、1つのGaNウェハ30から複数の半導体デバイス40の取得が可能となる。
[変形例]
Further, in the semiconductor member manufacturing method of the second embodiment, the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
[Modification]
 本開示は、上述した実施形態に限定されない。例えば、レーザ光Lに関する各種数値は、上述したものに限定されない。ただし、亀裂14が改質スポット13からレーザ光Lの入射側及びその反対側に延びるのを抑制するためには、レーザ光Lのパルスエネルギーが0.1μJ~1μJであり且つレーザ光Lのパルス幅が200fs~1nsであることが好ましい。 The present disclosure is not limited to the above embodiments. For example, the various numerical values regarding the laser light L are not limited to those described above. However, in order to prevent the crack 14 from extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof, the pulse energy of the laser light L is 0.1 μJ to 1 μJ and the pulse of the laser light L is The width is preferably 200 fs to 1 ns.
 また、本開示の一側面のレーザ加工方法及び半導体部材製造方法によって加工される半導体対象物は、第1実施形態のGaNインゴット20及び第2実施形態のGaNウェハ30に限定されない。本開示の一側面の半導体部材製造方法によって製造される半導体部材は、第1実施形態のGaNウェハ30及び第2実施形態の半導体デバイス40に限定されない。1つの半導体対象物に1つの仮想面が設定されてもよい。 The semiconductor object processed by the laser processing method and the semiconductor member manufacturing method according to the one aspect of the present disclosure is not limited to the GaN ingot 20 of the first embodiment and the GaN wafer 30 of the second embodiment. The semiconductor member manufactured by the semiconductor member manufacturing method according to the one aspect of the present disclosure is not limited to the GaN wafer 30 of the first embodiment and the semiconductor device 40 of the second embodiment. One virtual surface may be set for one semiconductor object.
 一例として、半導体対象物の材料は、SiCであってもよい。その場合にも、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に複数の改質スポット13を段階的に形成すれば、次に述べるように、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となる。 As an example, the material of the semiconductor object may be SiC. Even in that case, if a plurality of modified spots 13 are formed stepwise as in the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment, as will be described below, cracks extending over an imaginary plane. Can be accurately formed along the virtual surface.
 図30の(a)及び(b)は、比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図30の(b)は、図30の(a)における矩形枠内の拡大画像である。この比較例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、Y方向に並ぶ6つの集光点を、X方向に沿って仮想面上を相対的に移動させることにより、仮想面に沿って複数の改質スポットを形成した。このとき、Y方向において隣り合う集光点C間の距離を2μm、レーザ光のパルスピッチを15μm、レーザ光のパルスエネルギーを4μJとした。この場合、図30の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂が発生した。 30A and 30B are images (images in side view) of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 30 is an enlarged image in the rectangular frame in FIG. In this comparative example, laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 2 μm, the pulse pitch of the laser light was 15 μm, and the pulse energy of the laser light was 4 μJ. In this case, as shown in (a) and (b) of FIG. 30, a crack extending in a direction inclined by 4° to 5° with respect to the imaginary plane occurred.
 図31の(a)及び(b)は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図31の(b)は、図31の(a)における矩形枠内の拡大画像である。この実施例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に、仮想面に沿って複数の改質スポットを形成した。複数の改質スポット13a,13b,13c,13dのそれぞれに相当する複数の改質スポットを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを15μm、レーザ光Lのパルスエネルギーを4μJとした。この場合、図31の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂の発生が抑制された。図32は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像であり、図33の(a)及び(b)は、図32に示される剥離面の高さプロファイルである。この場合、SiCウェハの剥離面に現れる凹凸は2μm程度に抑えられた。 31A and 31B are images (images in side view) of cracks in the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 31 is an enlarged image in the rectangular frame in FIG. In this example, laser light having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the virtual surface is formed on the virtual surface similarly to the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. A plurality of modified spots were formed along it. When forming a plurality of modified spots corresponding to each of the modified spots 13a, 13b, 13c, 13d, the distance between the condensing points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is set. Was 15 μm, and the pulse energy of the laser beam L was 4 μJ. In this case, as shown in (a) and (b) of FIG. 31, the generation of cracks extending in the direction inclined by 4° to 5° with respect to the virtual plane was suppressed. 32A and 32B are images of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIGS. 33A and 33B show the height of the peeled surface shown in FIG. It is a profile. In this case, the unevenness appearing on the peeled surface of the SiC wafer was suppressed to about 2 μm.
 以上の実験結果から、半導体対象物の材料がSiCである場合にも、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に複数の改質スポット13を段階的に形成すれば仮想面に渡る亀裂が仮想面に沿って精度良く形成されることが分かった。なお、上述した比較例及び実施例で用いたSiCウェハは、4±0.5°のオフ角を有する4H-SiCウェハであり、レーザ光の集光点を移動させた方向は、m軸方向である。 From the above experimental results, even when the material of the semiconductor object is SiC, a plurality of modified spots 13 are formed stepwise as in the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment. Then, it was found that cracks were formed along the virtual surface with high precision. The SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4±0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
 また、複数の改質スポット13a,13b,13c,13dの形成の仕方は、上述したものに限定されない。複数の改質スポット13aは、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がるように形成されてもよい。また、複数の改質スポット13bは、複数の改質スポット13aに重ならないように形成されればよい。複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに複数の改質スポット13bが重なったとしても、複数の改質スポット13bが複数の改質スポット13aに重ならなければ、複数の改質スポット13a,13bが仮想面15に沿って精度良く形成される。また、複数の改質スポット13c,13dの形成の仕方は任意であり、複数の改質スポット13c,13dは、形成されなくてもよい。また、図34に示されるように、例えばGaNインゴット20を回転させることにより、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成し、更に、図35に示されるように、複数列の改質スポット13の列間に複数の集光点のそれぞれを位置させた状態で、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成してもよい。なお、第1実施形態のレーザ加工方法及び半導体部材製造方法の第2工程と同様に複数の改質スポット13を段階的に形成することは、本開示の一側面のレーザ加工方法及び半導体部材製造方法において必須ではない。 The method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above. The plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other. Further, the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15. Further, the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed. Further, as shown in FIG. 34, for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (arrows indicated by a chain line), and a plurality of rows of modified spots are formed. 35, and further, as shown in FIG. 35, a plurality of condensing points arranged in the radial direction with each of the plurality of condensing points positioned between the rows of the modified spots 13 in a plurality of rows. May be relatively rotated (arrows indicated by alternate long and short dash lines) to form a plurality of rows of modified spots 13. The stepwise formation of the plurality of modified spots 13 as in the second step of the laser processing method and the semiconductor member manufacturing method of the first embodiment is performed by the laser processing method and the semiconductor member manufacturing method according to one aspect of the present disclosure. It is not essential in the method.
 また、第1実施形態のレーザ加工方法及び半導体部材製造方法において、複数の改質スポット13の形成は、表面20aとは反対側から複数の仮想面15ごとに順次に実施されてもよい。また、第1実施形態のレーザ加工方法及び半導体部材製造方法では、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施され、1つ又は複数のGaNウェハ30が切り出された後に、GaNインゴット20の表面20aが研削され、再び、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施されてもよい。 Further, in the laser processing method and the semiconductor member manufacturing method of the first embodiment, the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first embodiment, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the surface 20a side, and the one or more GaN. After the wafer 30 is cut out, the surface 20 a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20 a side.
 また、第1実施形態及び第2実施形態のレーザ加工方法及び半導体部材製造方法では、周縁領域16が形成されなくてもよい。第1実施形態のレーザ加工方法及び半導体部材製造方法において周縁領域16を形成しない場合には、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成した後に、例えば、GaNインゴット20に対してエッチングを施すことにより、複数のGaNウェハ30を取得することも可能である。 Further, in the laser processing method and the semiconductor member manufacturing method of the first and second embodiments, the peripheral region 16 may not be formed. In the case where the peripheral region 16 is not formed in the laser processing method and the semiconductor member manufacturing method of the first embodiment, for example, the GaN ingot 20 is formed after forming the modified spots 13 along each of the virtual surfaces 15. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on.
 また、第1領域R1及び第2領域R2における単位面積当たりの注入エネルギーの調整の仕方は、上述したものに限定されない。例えば、第1領域R1におけるレーザ光Lのパルスピッチが第2領域R2におけるレーザ光Lのパルスピッチよりも小さくなるようにレーザ光Lが照射されてもよい。或いは、第1領域R1におけるレーザ光Lの列間ピッチが第2領域R2におけるレーザ光Lの列間ピッチよりも小さくなるようにレーザ光Lが照射されてもよい。いずれによっても、第1領域R1における単位面積当たりの注入エネルギーが第2領域R2における単位面積当たりの注入エネルギーよりも大きくなる状態を適切に実現することができる。なお、列間ピッチとは、レーザ光Lの集光点Cを仮想面15上の複数列のそれぞれに沿って移動させる場合における「当該複数列のうち隣り合う列間の距離」を意味する。 Also, the method of adjusting the implantation energy per unit area in the first region R1 and the second region R2 is not limited to that described above. For example, the laser light L may be irradiated such that the pulse pitch of the laser light L in the first region R1 is smaller than the pulse pitch of the laser light L in the second region R2. Alternatively, the laser light L may be irradiated such that the inter-row pitch of the laser light L in the first region R1 is smaller than the inter-row pitch of the laser light L in the second region R2. In either case, it is possible to appropriately realize a state in which the implantation energy per unit area in the first region R1 is larger than the implantation energy per unit area in the second region R2. The inter-row pitch means the “distance between adjacent rows of the plurality of rows” when the condensing point C of the laser light L is moved along each of the plurality of rows on the virtual surface 15.
 また、図36に示されるように、第1領域R1が、仮想面15の外縁に沿った外縁領域であり、第2領域R2が、第1領域R1に囲まれた領域であってもよい。つまり、第1領域R1が、仮想面15のうちの外縁領域であってもよい。これにより、仮想面15において、外縁領域から内側に亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が進展するように、当該亀裂の進展を制御することができる。図36に示される例では、仮想面15が、GaNインゴット20のオリエンテーションフラット21に沿った第3領域R3を更に含んでおり、第3領域R3における単位面積当たりの注入エネルギーが第1領域R1及び第2領域R2における単位面積当たりの注入エネルギーよりも大きくなるようにレーザ光Lが照射される。オリエンテーションフラット21に沿った領域には亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が進展し難いものの、これにより、当該亀裂を第3領域R3に確実に進展させることができる。 Further, as shown in FIG. 36, the first region R1 may be an outer edge region along the outer edge of the virtual surface 15, and the second region R2 may be a region surrounded by the first region R1. That is, the first region R1 may be the outer edge region of the virtual surface 15. Thereby, in the virtual surface 15, the progress of the crack can be controlled so that the crack (the crack that connects the plurality of cracks 14 to each other and finally becomes the crack 17) propagates inward from the outer edge region. In the example shown in FIG. 36, the virtual plane 15 further includes a third region R3 along the orientation flat 21 of the GaN ingot 20, and the implantation energy per unit area in the third region R3 is the first region R1 and The laser light L is irradiated so as to be larger than the implantation energy per unit area in the second region R2. Although it is difficult for a crack (a crack in which a plurality of cracks 14 are connected to each other to finally become a crack 17) to propagate in a region along the orientation flat 21, it is possible to reliably propagate the crack to the third region R3. You can
 また、図37に示されるように、矩形状の仮想面15が、仮想面15の外縁に沿った矩形環状の第2領域R2、及び、第2領域R2に囲まれた矩形状の第1領域R1を含んでいてもよい。また、矩形状の仮想面15が、仮想面15のうちの複数の角領域である第2領域R2、及び、仮想面15のうちの第2領域R2以外の領域である第1領域R1を含んでいてもよい。その場合、内側から複数の角領域に亀裂(複数の亀裂14が互いに繋がって最終的に亀裂17となる亀裂)が進展するように、当該亀裂の進展を制御することができる。 Further, as shown in FIG. 37, the rectangular virtual surface 15 has a rectangular annular second region R2 along the outer edge of the virtual surface 15 and a rectangular first region surrounded by the second region R2. R1 may be included. The rectangular virtual surface 15 includes a second area R2 that is a plurality of corner areas of the virtual surface 15 and a first area R1 that is an area other than the second area R2 of the virtual surface 15. You can leave. In that case, the progress of the cracks can be controlled so that the cracks (the cracks in which the plurality of cracks 14 are connected to each other and finally become the cracks 17) propagate from the inside to the plurality of corner regions.
 また、レーザ加工装置1は、上述した構成を有するものに限定されない。例えば、レーザ加工装置1は、空間光変調器4を備えていなくてもよい。 Moreover, the laser processing apparatus 1 is not limited to the one having the above-described configuration. For example, the laser processing device 1 may not include the spatial light modulator 4.
 また、上述した実施形態における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した一の実施形態又は変形例における各構成は、他の実施形態又は変形例における各構成に任意に適用することができる。 Also, the materials and shapes described above are not limited to the materials and shapes described in the above embodiments, and various materials and shapes can be applied. Moreover, each configuration in the above-described one embodiment or modification can be arbitrarily applied to each configuration in the other embodiment or modification.
 1…レーザ加工装置、2…ステージ、4…空間光変調器(レーザ照射ユニット)、5…集光レンズ(レーザ照射ユニット)、13,13a,13b,13d…改質スポット、14,14a,14b,14c,14d…亀裂、15…仮想面、16…周縁領域、17…仮想面に渡る亀裂、20…GaNインゴット(半導体インゴット、半導体対象物)、20a…表面、30…GaNウェハ(半導体ウェハ、半導体部材、半導体対象物)、30a…表面、40…半導体デバイス(半導体部材)、L…レーザ光、R1…第1領域、R2…第2領域。 1... Laser processing device, 2... Stage, 4... Spatial light modulator (laser irradiation unit), 5... Condensing lens (laser irradiation unit), 13, 13a, 13b, 13d... Modification spot, 14, 14a, 14b. , 14c, 14d... Cracks, 15... Virtual plane, 16... Peripheral region, 17... Cracks extending over virtual plane, 20... GaN ingot (semiconductor ingot, semiconductor object), 20a... Surface, 30... GaN wafer (semiconductor wafer, Semiconductor member, semiconductor object), 30a... Surface, 40... Semiconductor device (semiconductor member), L... Laser light, R1... First region, R2... Second region.

Claims (17)

  1.  半導体対象物の内部において前記半導体対象物の表面に対向する仮想面に沿って、前記半導体対象物を切断するためのレーザ加工方法であって、
     前記半導体対象物を用意する第1工程と、
     前記表面から前記半導体対象物の内部にレーザ光を入射させることにより、前記仮想面に沿って複数の改質スポットを形成する第2工程と、を備え、
     前記第2工程においては、前記仮想面のうちの第1領域における単位面積当たりの注入エネルギーが前記仮想面のうちの第2領域における単位面積当たりの注入エネルギーよりも大きくなるように、前記レーザ光を入射させる、レーザ加工方法。
    A laser processing method for cutting the semiconductor object along a virtual surface facing the surface of the semiconductor object inside the semiconductor object,
    A first step of preparing the semiconductor object;
    A second step of forming a plurality of modified spots along the virtual surface by making a laser beam enter the inside of the semiconductor object from the surface,
    In the second step, the laser beam is applied such that the implantation energy per unit area in the first region of the virtual surface is larger than the implantation energy per unit area in the second region of the virtual surface. Laser processing method.
  2.  前記第2工程においては、前記複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を、前記仮想面を囲むように設定する、請求項1に記載のレーザ加工方法。 The laser processing method according to claim 1, wherein, in the second step, a peripheral region that prevents the development of a plurality of cracks extending from the plurality of modified spots is set so as to surround the virtual surface.
  3.  前記第2工程においては、前記第1領域における1つの集光点当たりの前記レーザ光のパルスエネルギーを前記第2領域における1つの集光点当たりの前記レーザ光のパルスエネルギーよりも大きくする、請求項1又は2に記載のレーザ加工方法。 In the second step, the pulse energy of the laser light per one condensing point in the first region is made larger than the pulse energy of the laser light per one converging point in the second region. Item 3. The laser processing method according to Item 1 or 2.
  4.  前記第2工程においては、前記第1領域における前記レーザ光のパルスピッチを前記第2領域における前記レーザ光のパルスピッチよりも小さくする、請求項1~3のいずれか一項に記載のレーザ加工方法。 4. The laser processing according to claim 1, wherein in the second step, a pulse pitch of the laser light in the first region is made smaller than a pulse pitch of the laser light in the second region. Method.
  5.  前記第2工程においては、前記レーザ光の集光点を前記仮想面上の複数列のそれぞれに沿って移動させ、前記第1領域における前記レーザ光の列間ピッチを前記第2領域における前記レーザ光の列間ピッチよりも小さくする、請求項1~4のいずれか一項に記載のレーザ加工方法。 In the second step, the condensing point of the laser light is moved along each of a plurality of rows on the virtual surface, and the inter-row pitch of the laser light in the first area is set to the laser in the second area. The laser processing method according to any one of claims 1 to 4, wherein the pitch is smaller than the inter-row pitch of light.
  6.  前記第1領域は、前記仮想面のうちの外縁領域である、請求項1~5のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 5, wherein the first area is an outer edge area of the virtual surface.
  7.  前記第2領域は、前記仮想面のうちの外縁領域である、請求項1~5のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 5, wherein the second area is an outer edge area of the virtual surface.
  8.  前記仮想面は、矩形状を呈しており、
     前記第1領域は、前記仮想面のうちの複数の角領域である、請求項1~5のいずれか一項に記載のレーザ加工方法。
    The virtual surface has a rectangular shape,
    The laser processing method according to claim 1, wherein the first region is a plurality of corner regions of the virtual surface.
  9.  前記仮想面は、矩形状を呈しており、
     前記第2領域は、前記仮想面のうちの複数の角領域である、請求項1~5のいずれか一項に記載のレーザ加工方法。
    The virtual surface has a rectangular shape,
    The laser processing method according to claim 1, wherein the second region is a plurality of corner regions of the virtual surface.
  10.  前記半導体対象物の材料は、窒化ガリウムを含む、請求項1~9のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 9, wherein the material of the semiconductor object contains gallium nitride.
  11.  請求項1~10のいずれか一項に記載のレーザ加工方法が備える前記第1工程及び前記第2工程と、
     前記複数の改質スポットからそれぞれ延びる複数の亀裂を互いに繋げることにより、前記仮想面に渡る亀裂を形成する第3工程と、
     前記仮想面に渡る前記亀裂を境界として前記半導体対象物から半導体部材を取得する第4工程と、を備える、半導体部材製造方法。
    The first step and the second step, which are included in the laser processing method according to any one of claims 1 to 10,
    A third step of forming a crack across the virtual surface by connecting a plurality of cracks extending from the modified spots to each other,
    A fourth step of obtaining a semiconductor member from the semiconductor object with the crack extending over the virtual surface as a boundary.
  12.  前記第3工程においては、前記半導体対象物を加熱する、請求項11に記載の半導体部材製造方法。 The method for manufacturing a semiconductor member according to claim 11, wherein the semiconductor object is heated in the third step.
  13.  前記仮想面は、前記表面に対向する方向に並ぶように複数設定されている、請求項11又は12に記載の半導体部材製造方法。 The semiconductor member manufacturing method according to claim 11 or 12, wherein a plurality of the virtual surfaces are set so as to be arranged in a direction facing the surface.
  14.  前記半導体対象物は、半導体インゴットであり、
     前記半導体部材は、半導体ウェハである、請求項13に記載の半導体部材製造方法。
    The semiconductor object is a semiconductor ingot,
    The semiconductor member manufacturing method according to claim 13, wherein the semiconductor member is a semiconductor wafer.
  15.  前記仮想面は、前記表面が延在する方向に並ぶように複数設定されている、請求項11又は12に記載の半導体部材製造方法。 The semiconductor member manufacturing method according to claim 11 or 12, wherein a plurality of the virtual surfaces are set so as to be arranged in a direction in which the surface extends.
  16.  前記半導体対象物は、半導体ウェハであり、
     前記半導体部材は、半導体デバイスである、請求項15に記載の半導体部材製造方法。
    The semiconductor object is a semiconductor wafer,
    The semiconductor member manufacturing method according to claim 15, wherein the semiconductor member is a semiconductor device.
  17.  半導体対象物の内部において前記半導体対象物の表面に対向する仮想面に沿って、前記半導体対象物を切断するためのレーザ加工装置であって、
     前記半導体対象物を支持するステージと、
     前記表面から前記半導体対象物の内部にレーザ光を入射させることにより、前記仮想面に沿って複数の改質スポットを形成するレーザ照射ユニットと、を備え、
     前記レーザ照射ユニットは、前記仮想面のうちの第1領域における単位面積当たりの注入エネルギーが前記仮想面のうちの第2領域における単位面積当たりの注入エネルギーよりも大きくなるように、前記レーザ光を入射させる、レーザ加工装置。
    A laser processing apparatus for cutting the semiconductor object along a virtual surface facing the surface of the semiconductor object inside the semiconductor object,
    A stage for supporting the semiconductor object,
    A laser irradiation unit that forms a plurality of modified spots along the virtual surface by causing a laser beam to enter the inside of the semiconductor object from the surface,
    The laser irradiation unit emits the laser light so that the implantation energy per unit area in the first region of the virtual surface is larger than the implantation energy per unit area in the second region of the virtual surface. Laser processing equipment to make incident.
PCT/JP2019/049699 2018-12-21 2019-12-18 Laser machining method, semiconductor member manufacturing method, and laser machining device WO2020130053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239888 2018-12-21
JP2018239888A JP7246919B2 (en) 2018-12-21 2018-12-21 Laser processing method, semiconductor member manufacturing method, and laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2020130053A1 true WO2020130053A1 (en) 2020-06-25

Family

ID=71101927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049699 WO2020130053A1 (en) 2018-12-21 2019-12-18 Laser machining method, semiconductor member manufacturing method, and laser machining device

Country Status (3)

Country Link
JP (1) JP7246919B2 (en)
TW (1) TW202032645A (en)
WO (1) WO2020130053A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015447A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Wafer manufacturing method and apparatus
JP2017526161A (en) * 2014-11-27 2017-09-07 シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Solid separation by substance change
WO2019044588A1 (en) * 2017-09-04 2019-03-07 リンテック株式会社 Thinned plate member production method and thinned plate member production device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015447A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Wafer manufacturing method and apparatus
JP2017526161A (en) * 2014-11-27 2017-09-07 シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Solid separation by substance change
WO2019044588A1 (en) * 2017-09-04 2019-03-07 リンテック株式会社 Thinned plate member production method and thinned plate member production device

Also Published As

Publication number Publication date
JP7246919B2 (en) 2023-03-28
JP2020102534A (en) 2020-07-02
TW202032645A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
KR101757937B1 (en) Workpiece cutting method
JP7182456B2 (en) LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
JP5905274B2 (en) Manufacturing method of semiconductor device
JP6012185B2 (en) Manufacturing method of semiconductor device
WO2020130054A1 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
JP5969214B2 (en) Manufacturing method of semiconductor device
WO2020130108A1 (en) Laser machining method, and semiconductor device manufacturing method
WO2020130053A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
JP2012240107A (en) Laser processing method
WO2020129569A1 (en) Laser machining method, semiconductor member production method, and semiconductor object
WO2020130110A1 (en) Laser machining apparatus
JP7427189B2 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
JP2013157449A (en) Method for manufacturing semiconductor device
WO2021153353A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
US20230123795A1 (en) Singulation of optical devices from optical device substrates via laser ablation
JP2023183070A (en) Laser processing method, method of manufacturing semiconductor device and laser processing device
JP2020189493A (en) Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP2013157455A (en) Method for manufacturing semiconductor device
JP2011134799A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898044

Country of ref document: EP

Kind code of ref document: A1