WO2020130108A1 - Laser machining method, and semiconductor device manufacturing method - Google Patents

Laser machining method, and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2020130108A1
WO2020130108A1 PCT/JP2019/049955 JP2019049955W WO2020130108A1 WO 2020130108 A1 WO2020130108 A1 WO 2020130108A1 JP 2019049955 W JP2019049955 W JP 2019049955W WO 2020130108 A1 WO2020130108 A1 WO 2020130108A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
modified spots
laser light
processing method
semiconductor
Prior art date
Application number
PCT/JP2019/049955
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 河口
陽太郎 和仁
泰則 伊ケ崎
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2020130108A1 publication Critical patent/WO2020130108A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a laser processing method and a semiconductor device manufacturing method.
  • a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer.
  • a processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
  • the semiconductor member to be thinned may include an epitaxial growth layer for a semiconductor device to be cut out later.
  • the leaked light may damage the epitaxial growth layer, resulting in deterioration of the quality of the semiconductor device.
  • the present disclosure aims to provide a laser processing method and a semiconductor device manufacturing method that enable acquisition of a suitable semiconductor device.
  • a laser processing method is a laser processing method for cutting a semiconductor wafer along a virtual surface facing the surface of the semiconductor wafer inside the semiconductor wafer.
  • a modified spot is formed inside the semiconductor wafer by irradiation with laser light prior to forming a semiconductor layer for a semiconductor device by epitaxial growth. Therefore, the semiconductor layer cannot be damaged when the modified spot is formed. Therefore, it is possible to obtain a suitable semiconductor device in which damage is suppressed by advancing a crack extending from the modified spot and cutting (eg, peeling) the semiconductor wafer along the virtual surface.
  • the semiconductor is changed from a surface different from the surface on which the semiconductor layer is formed in the semiconductor wafer so that the converging point does not overlap the modified spot when viewed from the direction intersecting the surface.
  • a third step of forming a crack across the virtual surface by irradiating the inside of the wafer with laser light may be provided. As described above, the irradiation of the laser light may form a crack along the virtual surface that is the origin of the peeling. Even in this case, since the modified spot is formed prior to the formation of the semiconductor layer, the damage to the semiconductor layer is less likely to occur as compared with the case where all the laser processing is performed after the formation of the semiconductor layer. Suppressed.
  • a modified spot is formed along the virtual surface inside the semiconductor wafer by irradiation with laser light, and a crack extending from the modified spot is developed to cut out a semiconductor device from the semiconductor wafer (peeling).
  • peeling In order to reduce the unevenness of the peeled surface and obtain a more suitable semiconductor device, it is effective to reduce the energy of the laser light on the virtual surface. If the energy on the virtual surface is too low, modified spots and cracks cannot be generated.
  • the present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor wafer containing gallium with a laser beam, a plurality of modified spots and a deposition region containing gallium deposited in the plurality of modified spots are provided along the virtual surface. Form. Then, when the laser light is irradiated again in a later step, the modification spots formed in advance do not overlap the condensing point of the laser light, and the energy of the laser light on the virtual surface is set to the processing threshold of the semiconductor wafer. The region containing pre-formed gallium can be expanded even if the amount is lowered below the range. As a result, when the semiconductor wafer is peeled off by forming a crack across the virtual surface, the unevenness of the peeled surface can be reduced.
  • the following invention was made based on such knowledge.
  • the semiconductor wafer contains gallium
  • a plurality of modified spots and a plurality of modified spots are formed by irradiating the inside of the semiconductor wafer with laser light from the surface.
  • Forming a plurality of deposition regions containing gallium deposited in the modified spots and in the third step, irradiating the inside of the semiconductor wafer with laser light so that the energy on the virtual surface falls below the processing threshold of the semiconductor wafer.
  • the precipitation region may be enlarged and a crack may be formed across the virtual surface.
  • a plurality of modified spots and deposited gallium are formed along a virtual surface facing the surface that is the incident surface of laser light. Forming a plurality of deposition regions including. Then, in a later step, the inside of the semiconductor wafer is irradiated with laser light so that the condensing point does not overlap with the modified spot and the energy on the virtual surface falls below the processing threshold of the semiconductor wafer. Expand the area and create a crack across the virtual plane. As a result, as described above, it becomes possible to obtain a suitable semiconductor device in which unevenness is reduced due to peeling at the boundary of the crack across the virtual surface.
  • the second step by heating the semiconductor wafer for epitaxial growth, a plurality of cracks respectively extending from the plurality of modified spots are propagated to form a crack across the virtual surface. You may. In this case, the formation of the semiconductor layer and the formation of the crack over the virtual surface can be performed at the same time.
  • the semiconductor wafer in the first step, may be provided with a peripheral region that prevents the development of a plurality of cracks extending from the plurality of modified spots. In this case, during the epitaxial growth in the second step, unintentional formation of cracks across the imaginary plane and peeling are suppressed.
  • the laser processing method includes a fourth step between the first step and the second step, which measures the transmittance of the semiconductor wafer, and a fourth step between the fourth step and the second step.
  • the modified spots can be sufficiently formed inside the semiconductor wafer prior to the second step of forming the semiconductor layer.
  • a plurality of modified spots may be formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other.
  • the focus point of the laser light can be prevented from overlapping not only with the modified spot but also with the crack extending from the modified spot.
  • a plurality of rows of modified spots are formed as a plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface.
  • the condensing point of the pulsed laser light may be moved along the virtual plane between the rows of the reforming spots of a plurality of rows. In this case, it is possible to reliably prevent the converging points of the laser light in the third step from overlapping the plurality of modified spots.
  • the semiconductor wafer may contain gallium nitride.
  • the pressure (internal pressure) of the nitrogen gas generated along with the deposition of gallium can be used to easily form a crack over the virtual surface.
  • a semiconductor device manufacturing method includes a step of performing any one of the above laser processing methods, and a step of acquiring a plurality of semiconductor devices from a semiconductor wafer with a crack across a virtual surface as a boundary. This method implements the laser processing method described above. Therefore, a suitable semiconductor device can be obtained for the same reason.
  • a plurality of virtual planes may be set so as to be aligned in the direction along the surface.
  • a plurality of semiconductor devices can be acquired from one semiconductor wafer.
  • FIG. 3 is a plan view of the GaN ingot shown in FIG. 2. It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example.
  • FIG. 6 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments. It is a top view of a GaN wafer which is an object of a laser processing method and a semiconductor member manufacturing method of the 2nd example. It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. It is a side view of a semiconductor device in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example.
  • the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6.
  • the laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L.
  • the first horizontal direction will be referred to as the X direction
  • the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction.
  • the vertical direction is called the Z direction.
  • the stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11.
  • the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
  • the light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method.
  • the spatial light modulator 4 modulates the laser light L output from the light source 3.
  • the spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
  • the condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4.
  • the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
  • the modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region.
  • the modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
  • a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row.
  • One modified spot 13 is formed by irradiation with one pulse of laser light L.
  • the one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row.
  • the adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
  • the control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5.
  • the control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
  • the target 11 is a GaN ingot (semiconductor ingot, semiconductor target) 20 formed of gallium nitride (GaN) in a disk shape, for example.
  • the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm.
  • the laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20.
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20 inside the GaN ingot 20, and is set to be aligned in a direction facing the surface 20a.
  • each of the plurality of virtual surfaces 15 is a surface parallel to the surface 20a and has, for example, a circular shape.
  • Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side.
  • a plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15.
  • each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20.
  • the distance between the adjacent virtual surfaces 15 is 100 ⁇ m
  • the width of the peripheral region 16 in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11.
  • the arrow indicates the locus of the condensing point C of the laser light L.
  • the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13
  • the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual plane 15 (for example, a virtual plane).
  • a plurality of modified spots 13a are formed (two-dimensionally arranged along the entire surface 15) (step S1).
  • the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15.
  • the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11). Further, at this time, the gallium deposited in each of the modified spots 13a spreads so as to enter the crack 14a, so that a deposition region R containing the deposited gallium is formed around the modified spot 13a. ..
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L).
  • the divided value is 10 ⁇ m.
  • the pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13a in the X direction is 10 ⁇ m.
  • the cracks 14a extending from the modified spots 13a are not connected to each other.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiates the laser light L along the virtual surface 15 (for example, A plurality of modified spots (second modified spots) 13b are formed so as to be arranged two-dimensionally along the entire virtual surface 15 (step S2). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows.
  • the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11).
  • the gallium deposited in each of the modified spots 13b spreads so as to enter the crack 14b, so that a deposition region R containing the deposited gallium is formed around the modified spot 13b. ..
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13b in the X direction is 10 ⁇ m.
  • the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, A plurality of modified spots (third modified spots) 13c are formed so as to be two-dimensionally arranged along the entire virtual surface 15 (step S3). Further, as shown in FIGS. 10 and 11, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the front surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, a virtual surface). A plurality of modified spots (third modified spots) 13d are formed so as to be two-dimensionally arranged along the entire surface 15 (step S4). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b.
  • the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows.
  • the spots 13c and 13d are formed.
  • the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b.
  • the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11).
  • the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines.
  • the gallium deposited in each of the reformed spots 13c and 13d spreads so as to enter the cracks 14c and 14d, so that the deposited gallium is deposited around the reformed spots 13c and 13d. Region R is formed.
  • the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 ⁇ m
  • the center-to-center distance between adjacent modified spots 13c in the X direction is 5 ⁇ m.
  • the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 ⁇ m
  • the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 ⁇ m.
  • a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG.
  • a crack 17 (hereinafter, simply referred to as “crack 17”) that extends over the virtual surface 15 is formed in each of the plurality of virtual surfaces 15.
  • a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the GaN ingot 20 nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 ⁇ m or more.
  • the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG.
  • a plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (step S5). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15.
  • portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
  • the laser processing method of the first example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the first example.
  • the plurality of modified spots 13a are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Then, a plurality of modified spots 13b are formed along each of the plurality of virtual surfaces 15. Furthermore, in the laser processing method of the first example, a plurality of modified spots 13c and 13d are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and 13b. Thereby, the plurality of modified spots 13 can be accurately formed along each of the plurality of virtual surfaces 15, and as a result, the crack 17 can be formed accurately along each of the plurality of virtual surfaces 15. It will be possible.
  • the laser processing method of the first example it is possible to obtain a plurality of suitable GaN wafers 30 by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. ..
  • the laser processing apparatus 1 that implements the laser processing method of the first example, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus a plurality of suitable GaN layers can be formed.
  • the wafer 30 can be acquired.
  • the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
  • the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form the modified spots 13a in a plurality of rows and pulsed.
  • the plurality of rows of modified spots 13b are formed.
  • gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser beam L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the deposition region R is formed, and the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
  • the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the first example.
  • the plurality of virtual surfaces 15 are set to be aligned in the direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
  • FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example
  • FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C arranged in the Y direction is placed on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the distance between adjacent condensing points C in the Y direction was 10 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1 ⁇ J.
  • irregularities of about 25 ⁇ m appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
  • FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example, and FIGS. 17(a) and 17(b) are shown in FIG. It is a height profile of a peeling surface.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first and second steps of the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • the plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ k
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.33 ⁇ J.
  • unevenness of about 5 ⁇ m appeared on the separated surface of the GaN wafer 30.
  • the irregularities appearing on the separated surface of the GaN wafer 30 are small, that is, the cracks 17 along the virtual surface 15. Was found to be formed with high precision. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
  • a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side.
  • a plurality of modified spots 13b are formed along the surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a.
  • the modified spot 13b is easily formed on the incident side of the light L.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b.
  • the modified spot 13c is easily formed on the incident side of the light L.
  • the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
  • a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof.
  • a plurality of modified spots 13b are formed along the virtual surface 15.
  • the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a.
  • a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof.
  • the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
  • a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
  • FIG. 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example
  • FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame.
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 6 ⁇ m
  • the pulse pitch of the laser light L was 1 ⁇ m
  • the pulse energy of the laser light L was 1.33 ⁇ J.
  • the laser processing was stopped in the middle of the virtual surface 15.
  • the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
  • FIG. 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example of the embodiment
  • FIG. 21(b) is an image of FIG. It is an enlarged image in a rectangular frame in (a).
  • laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15.
  • the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m, the pulse pitch of the laser light L is 10 ⁇ m, and the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13.
  • the distance between the condensing points C adjacent to each other in the Y direction is 6 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
  • FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example.
  • a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction.
  • the plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to.
  • the distance between the condensing points C adjacent to each other in the Y direction is 2 ⁇ m
  • the pulse pitch of the laser light L is 5 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • Quality spot 13 was formed.
  • the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 ⁇ m.
  • FIG. 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment.
  • FIG. 23A is an image in plan view
  • FIG. I is an image in side view.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction.
  • a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m
  • the pulse energy of the laser light L is 0.3 ⁇ J.
  • the modified spot 13a of No. 1 was formed.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • a plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 ⁇ J.
  • the distance between the converging points C adjacent to each other in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is changed.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 ⁇ m and 0.3 ⁇ J.
  • the distance between the converging points C adjacent in the Y direction is 8 ⁇ m, and the pulse pitch of the laser light L is 5 ⁇ m.
  • a plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 ⁇ J.
  • the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 ⁇ m.
  • 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second example, and FIG. 24A is a plan view. 24B is an image in a side view.
  • laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first step and the first step of the laser processing method and the semiconductor member manufacturing method of the first example. Similar to the two steps, a plurality of modified spots 13 were formed along the virtual surface 15.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 10 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the distance between the condensing points C adjacent to each other in the Y direction was 8 ⁇ m
  • the pulse pitch of the laser light L was 5 ⁇ m
  • the pulse energy of the laser light L was 0.3 ⁇ J.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 ⁇ m.
  • FIG. 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view.
  • An image, (d) of FIG. 24, is an image in a side view.
  • a plurality of modified spots 13 are further formed along the virtual surface 15 in the state shown in FIG. 23 (that is, the virtual surface 15 on which a plurality of rows of modified spots 13 have already been formed). .. Specifically, first, first, the distance between adjacent condensing points C in the Y direction is 8 ⁇ m, the pulse pitch of the laser light L is 5 ⁇ m, and the pulse energy of the laser light L is 0.1 ⁇ J.
  • a plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13.
  • the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 ⁇ m.
  • the object 11 of the laser processing method and the semiconductor member manufacturing method of the second example is a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example, as shown in FIG.
  • the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 ⁇ m.
  • the laser processing method and the semiconductor member manufacturing method of the second example are performed to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30.
  • the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm ⁇ 1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens ⁇ m.
  • the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15.
  • Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends.
  • each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape.
  • Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31.
  • a plurality of peripheral regions 16 are set so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30.
  • the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 is 30 ⁇ m or more.
  • the formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as steps S1 to S4 of the laser processing method and the semiconductor member manufacturing method of the first example.
  • a plurality of modified spots 13 that is, modified spots 13a, 13b, 13c, 13d
  • a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15.
  • 14 that is, the cracks 14a, 14b, 14c, 14d
  • the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by a broken line.
  • the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG.
  • Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30.
  • the functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
  • the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other, a crack 17 (that is, a crack 17 across the virtual surface 15) is formed in each of the plurality of virtual surfaces 15. In FIG. 27, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used.
  • the cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
  • the crack 17 can be formed by utilizing the pressure of the nitrogen gas.
  • the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15.
  • the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 ⁇ m or more.
  • the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, as shown in FIG. 28.
  • a plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (step S6). In this way, the GaN wafer 30 is cut along each of the plurality of virtual planes 15. In this step, the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
  • the laser processing method of the second example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the second example.
  • the laser processing method of the second example As described above, according to the laser processing method of the second example, as in the laser processing method of the first example, it is possible to accurately form the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. As a result, the crack 17 can be accurately formed along each of the plurality of virtual surfaces 15. Therefore, according to the laser processing method of the second example, it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. .. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
  • the laser processing apparatus 1 that implements the laser processing method of the second example, it is possible to accurately form the crack 17 along each of the virtual surfaces 15, and thus a plurality of suitable semiconductors can be formed.
  • the device 40 can be acquired.
  • the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
  • the condensing point C of the pulsed laser light L is moved along the virtual plane 15 to form a plurality of rows of modified spots 13a and pulsed.
  • the plurality of rows of modified spots 13b are formed.
  • gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
  • the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
  • the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
  • the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
  • the various numerical values regarding the laser light L are not limited to those described above.
  • the pulse energy of the laser light L is 0.1 ⁇ J to 1 ⁇ J and the pulse of the laser light L is The width can be 200 fs to 1 ns.
  • the semiconductor object processed by the laser processing method and the semiconductor member manufacturing method is not limited to the GaN ingot 20 of the first example and the GaN wafer 30 of the second example.
  • the semiconductor member manufactured by the semiconductor member manufacturing method is not limited to the GaN wafer 30 of the first example and the semiconductor device 40 of the second example.
  • One virtual surface may be set for one semiconductor object.
  • the material of the semiconductor object may be SiC. Even in that case, according to the laser processing method and the semiconductor member manufacturing method, as described below, it is possible to accurately form a crack extending over the virtual surface along the virtual surface.
  • FIG. 29A and 29B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 29A is an enlarged image within a rectangular frame in FIG.
  • laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface.
  • the distance between the condensing points C adjacent to each other in the Y direction was 2 ⁇ m
  • the pulse pitch of the laser light was 15 ⁇ m
  • the pulse energy of the laser light was 4 ⁇ J.
  • a crack extending in a direction inclined by 4° to 5° with respect to the virtual plane occurred.
  • FIG. 30A and 30B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 30 is an enlarged image in the rectangular frame in FIG.
  • a laser beam having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the laser processing method and the semiconductor member manufacturing method according to the first embodiment have the same first and second steps.
  • a plurality of modified spots were formed along the virtual plane.
  • FIG. 31 is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIGS. 32A and 32B show the height of the peeled surface shown in FIG. It is a profile. In this case, the unevenness appearing on the peeled surface of the SiC wafer was suppressed to about 2 ⁇ m.
  • the SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4 ⁇ 0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
  • the method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above.
  • the plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other.
  • the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15.
  • the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed.
  • FIG. 33 for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (dashed-dotted arrows), and a plurality of rows of modified spots are formed.
  • the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the front surface 20a side, and the one or more GaN wafers. After the 30 is cut out, the surface 20a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20a side.
  • the peripheral region 16 may not be formed.
  • the peripheral region 16 is not formed in the laser processing method and the semiconductor member manufacturing method of the first example, after forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15, for example, the GaN ingot 20 is formed. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on them.
  • the laser processing device 1 is not limited to the one having the above-mentioned configuration.
  • the laser processing device 1 may not include the spatial light modulator 4. [Laser Processing Method According to Embodiment and Semiconductor Device Manufacturing Method]
  • FIG. 35 is a diagram showing a laser processing device.
  • the laser processing apparatus 1A is different from the laser processing apparatus 1 shown in FIG. 1 in that the laser processing apparatus 1A further includes a measuring unit 50 and that the laser processing apparatus 1A includes a stage 2A instead of the stage 2.
  • the laser processing apparatus 1 is different.
  • the light source 3, the spatial light modulator 4, and the condenser lens 5 form an irradiation unit 45.
  • the laser processing apparatus 1A includes the stage 2A that supports the GaN wafer 30, the irradiation unit 45 that irradiates the GaN wafer 30 supported by the stage 2A with the laser light L, and the measurement unit that measures the transmittance of the GaN wafer 30. 50 and a control unit 6 that controls the irradiation unit 45 and the measurement unit 50.
  • the stage 2A includes a transmission part 2T that transmits the measurement light IL used for measurement.
  • the measurement unit 50 includes a light source 51 that irradiates the GaN wafer 30 supported by the stage 2A with the measurement light IL, and a photodetector 52 that detects the measurement light IL transmitted through the GaN wafer 30 and the transmission unit 2T. Then, the transmittance of the GaN wafer 30 is measured based on the detection result of the photodetector 52.
  • steps S1 to S3 are carried out in the same manner as the above-mentioned first example. That is, as shown in FIG. 36, by irradiating the laser light L from the surface 30 a of the GaN wafer 30 (in place of the GaN ingot 20) to the inside of the GaN wafer 30, the surface 30 a is opposed to the inside of the GaN wafer 30.
  • a plurality of reforming spots 13 (reforming spots 13a to 13c) and a plurality of deposition regions R containing gallium deposited in the plurality of reforming spots 13 are formed along the virtual surface 15 ( First step). In the first step, of course, the energy of the laser light L on the virtual surface 15 exceeds the processing threshold of the GaN wafer 30.
  • the irradiation conditions of the laser light L when forming the modified spots 13a to 13c can be specified as follows, for example. First, as the pulse energy of the laser light L increases, the deposition region R formed around the modified spot 13 tends to increase. Therefore, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively increased (the modified spot 13 and the deposition region R are relatively coarsely formed), the subsequent laser is used.
  • the pulse energy of the laser light L can be increased from the viewpoint of enlarging the deposition region R by irradiation with light.
  • the laser light is used. Even if the pulse energy of is reduced, the deposition region R can be enlarged by irradiation with laser light in a later step.
  • the pulse pitch of the laser light L is fixed to 10 ⁇ m
  • the pulse energy of the laser light L is set to about 2 ⁇ J.
  • the deposition region R can be enlarged by irradiation with laser light in a later step.
  • the pulse energy of the laser light L is set to about 0.67 ⁇ J, so that the deposition area is formed by the irradiation of the laser light in the subsequent step.
  • R can be expanded.
  • the pulse energy of the laser light L is set to about 0.33 ⁇ J, so that the deposition region is formed by the irradiation of the laser light in a later step. R can be expanded.
  • the transmittance of the GaN wafer 30 is measured (fourth step). Then, it is determined whether the transmittance measured in the fourth step is higher than the reference value (fifth step).
  • the reference value of the transmittance of the GaN wafer 30 can be set to 0.5 (50%), for example. Then, as a result of the determination in the fifth step, if the transmittance is higher than the reference value, the formation of the modified spots 13 is considered to be insufficient, and the first step is performed again. On the other hand, as a result of the determination in the fifth step, if the transmittance is equal to or less than the reference value, the process proceeds to the subsequent step.
  • the GaN wafer 30 is placed in the chamber H of the semiconductor manufacturing apparatus. Then, a semiconductor layer (epitaxial growth layer) 70 for a semiconductor device is formed on the GaN wafer 30 by epitaxial growth.
  • the semiconductor layer 70 is formed on the surface 30 a of the GaN wafer 30.
  • the GaN wafer 30 can be heated to, for example, about 1030° C.
  • the GaN wafer 30 provided with the semiconductor layer 70 is taken out from the chamber H.
  • the condensing point C of the laser light L is arranged so as not to overlap the modified spot 13 when viewed from the direction (Z direction) crossing the surface 30 a of the GaN wafer 30. ..
  • each of the plurality of condensing points C is arranged between the modified spot 13a and the modified spot 13b which are adjacent to each other in the Y direction.
  • the condensing point C may be arranged so as not to overlap the crack 14 and the deposition region R in addition to the modified spot 13.
  • the energy on the virtual surface 15 is set to be lower than the processing threshold of the GaN wafer 30.
  • the laser light L is irradiated to the inside of the GaN wafer 30 from the back surface (the surface of the GaN wafer 30 different from the surface on which the semiconductor layer 70 is formed) 30r opposite to the front surface 30a.
  • This process is based on the following findings. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser light is irradiated again in a later step, the energy of the laser light on the virtual plane is changed (while preventing the modified spots formed in advance from overlapping the focused spots of the laser light). Even if it is lowered below the processing threshold value, the deposition region containing gallium formed in advance can be expanded. As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface.
  • the laser processing apparatus 1 moves the focal point C of the pulsed laser light L along the virtual surface 15. Further, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction.
  • the distance between the condensing points C adjacent to each other in the Y direction is 1 ⁇ m
  • the pulse pitch of the laser light L is 10 ⁇ m.
  • the pulse energy of the laser light L is 0.33 ⁇ J.
  • the deposition region R is enlarged.
  • the subsequent steps are the same as those in the above first example. As a result, a semiconductor device including the semiconductor layer 70 is obtained from the GaN wafer 30.
  • the modified spots 13 are formed inside the GaN wafer 30 by the irradiation of the laser light L before the formation of the semiconductor layer 70 for the semiconductor device by the epitaxial growth. .. Therefore, the semiconductor layer 70 cannot be damaged when the modified spot 13 is formed. Therefore, by advancing the crack extending from the modified spot 13 and peeling the GaN wafer 30, a suitable semiconductor device in which damage is suppressed can be obtained.
  • the semiconductor layer 70 in the GaN wafer 30 is formed after the second step so that the condensing point C does not overlap the modified spot 13 when viewed from the direction intersecting the surface 30a.
  • a third step of forming a crack across the virtual surface 15 by irradiating the inside of the GaN wafer 30 with the laser light L from the back surface 30r different from the surface is provided.
  • the irradiation of the laser beam L may form a crack along the virtual surface 15 that is the starting point of peeling.
  • the semiconductor layer 70 is compared with the case where all the laser processing is performed after the formation of the semiconductor layer 70. Damage is suppressed.
  • the laser light L is irradiated from the surface 30a to the inside of the GaN wafer, so that the plurality of modified spots 13 and the plurality of modified spots 13 are formed.
  • the plurality of modified spots 13 are formed along the virtual surface 15 facing the surface 30a that is the incident surface of the laser light L. , And a plurality of deposition regions R containing the deposited gallium.
  • the laser light L is introduced inside the GaN wafer 30 so that the converging point C does not overlap the modified spot 13 and the energy on the virtual surface 15 falls below the processing threshold of the GaN wafer 30. Is irradiated to expand the precipitation region R and form a crack across the virtual surface 15.
  • the above embodiments describe one example of the laser processing method and the semiconductor device manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor device manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
  • the second step by heating the GaN wafer 30 for epitaxial growth, a plurality of cracks respectively extending from the plurality of modified spots 13 are propagated to form a crack across the virtual surface 15. You may. In this case, the formation of the semiconductor layer 70 and the formation of the crack over the virtual surface 15 can be performed at the same time.
  • the GaN wafer 30 may be provided with the peripheral region 16 that prevents the development of the plurality of cracks 14 extending from the plurality of modified spots 13, respectively.
  • the GaN wafer 30 may be provided with the peripheral region 16 that prevents the development of the plurality of cracks 14 extending from the plurality of modified spots 13, respectively.
  • the transmittance of the GaN wafer 30 is measured in the fourth step, and if the transmittance is determined to be higher than the reference value in the fifth step, the first step is performed again.
  • the case in which the modified spots 13 are sufficiently formed by the above-described example has been described. In this case, damage to the semiconductor layer 70 could be suppressed by lowering the energy of laser processing after forming the semiconductor layer 70 or by refraining from irradiation with laser light.
  • the semiconductor layer 70 is formed in the second step while maintaining the transmittance higher than the reference value, and then in the third step, with the energy exceeding the processing threshold of the GaN wafer 30.
  • Laser processing may be performed.
  • the amount of the modified spots 13 formed in advance is small, it is possible to suppress the warp of the semiconductor layer 70 during the epitaxial growth in the second step. Even in this case, damage to the semiconductor layer 70 is suppressed as compared with the case where all laser processing is performed after the formation of the semiconductor layer 70.
  • the measurement and determination of the transmittance of the GaN wafer 30 are not essential.
  • the above embodiments describe one example of the laser processing method and the semiconductor device manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor device manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
  • the elements of the first example, the second example, and the respective modified examples can be arbitrarily applied to the method according to the above embodiment.
  • the plurality of modified spots 13 can be formed so that the plurality of cracks 14 extending from the plurality of modified spots 13 are not connected to each other.
  • the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form a plurality of modified spots 13 as a plurality of modified spots 13.
  • the condensing point C of the pulsed laser light L can be moved along the virtual surface 15 between the rows of the reforming spots 13 in a plurality of rows.
  • a laser processing method capable of obtaining a suitable semiconductor device and a semiconductor device manufacturing method.
  • Reference numeral 13 is a modified spot
  • 15 is a virtual surface
  • 30 is a GaN wafer (semiconductor wafer)
  • 30a is a surface
  • 70 is a semiconductor layer
  • L is a laser beam
  • R is a deposition region.

Abstract

A laser machining method for cutting a semiconductor wafer along a virtual plane that is inside the semiconductor wafer and faces the surface of the semiconductor wafer, said method comprising: a first step for forming a plurality of modified spots along the virtual plane inside the semiconductor wafer by radiating laser light into the semiconductor wafer from the surface thereof; and a second step for forming by epitaxial growth, on the semiconductor wafer after the first step, a semiconductor layer for a semiconductor device.

Description

レーザ加工方法、及び、半導体デバイス製造方法Laser processing method and semiconductor device manufacturing method
 本開示は、レーザ加工方法、及び、半導体デバイス製造方法に関する。 The present disclosure relates to a laser processing method and a semiconductor device manufacturing method.
 半導体インゴット等の半導体対象物にレーザ光を照射することにより、半導体対象物の内部に改質領域を形成し、改質領域から延びる亀裂を進展させることによって、半導体対象物から半導体ウェハ等の半導体部材を切り出す加工方法が知られている(例えば、特許文献1,2参照)。 By irradiating a semiconductor object such as a semiconductor ingot with a laser beam, a modified region is formed inside the semiconductor object, and a crack extending from the modified region is propagated, so that the semiconductor object is a semiconductor such as a semiconductor wafer. A processing method for cutting out a member is known (see, for example, Patent Documents 1 and 2).
特開2017-183600号公報JP, 2017-183600, A 特開2017-057103号公報JP, 2017-057103, A
 ところで、改質領域から延びる亀裂を進展させて半導体部材から不要部分を剥離する(切り出す)ことにより、半導体部材を薄化する要求がある。薄化の対象となる半導体部材は、後に切り出される半導体デバイスのためのエピタキシャル成長層を含む場合がある。この場合、半導体部材の内部に改質領域を形成するためにレーザ光を照射すると、その漏れ光によってエピタキシャル成長層にダメージが生じ、半導体デバイスの品質が低下するおそれがある。 By the way, there is a demand for thinning the semiconductor member by advancing cracks extending from the modified region and peeling (cutting) unnecessary portions from the semiconductor member. The semiconductor member to be thinned may include an epitaxial growth layer for a semiconductor device to be cut out later. In this case, when laser light is irradiated to form the modified region inside the semiconductor member, the leaked light may damage the epitaxial growth layer, resulting in deterioration of the quality of the semiconductor device.
 本開示は、好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法を提供することを目的とする。 The present disclosure aims to provide a laser processing method and a semiconductor device manufacturing method that enable acquisition of a suitable semiconductor device.
 本開示に係るレーザ加工方法は、半導体ウェハの内部において前記半導体ウェハの表面に対向する仮想面に沿って、半導体ウェハを切断するためのレーザ加工方法であって、表面から半導体ウェハの内部にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットを形成する第1工程と、第1工程の後に、半導体ウェハに対して、エピタキシャル成長によって半導体デバイスのための半導体層を形成する第2工程と、を備える。 A laser processing method according to the present disclosure is a laser processing method for cutting a semiconductor wafer along a virtual surface facing the surface of the semiconductor wafer inside the semiconductor wafer. A first step of forming a plurality of modified spots along an imaginary plane by irradiating light, and after the first step, a semiconductor layer for a semiconductor device is formed by epitaxial growth on a semiconductor wafer. A second step.
 この方法においては、エピタキシャル成長による半導体デバイスのための半導体層の形成に先立って、レーザ光の照射によって半導体ウェハの内部に改質スポットを形成する。したがって、改質スポットの形成に際して半導体層に対してダメージが生じ得ない。よって、当該改質スポットから延びる亀裂を進展させて半導体ウェハを仮想面に沿って切断(例えば剥離)することにより、ダメージが抑制された好適な半導体デバイスが取得可能である。 In this method, a modified spot is formed inside the semiconductor wafer by irradiation with laser light prior to forming a semiconductor layer for a semiconductor device by epitaxial growth. Therefore, the semiconductor layer cannot be damaged when the modified spot is formed. Therefore, it is possible to obtain a suitable semiconductor device in which damage is suppressed by advancing a crack extending from the modified spot and cutting (eg, peeling) the semiconductor wafer along the virtual surface.
 本開示に係るレーザ加工方法は、第2工程の後に、表面に交差する方向からみて集光点が改質スポットに重ならないように、半導体ウェハにおける半導体層が形成された面と異なる面から半導体ウェハの内部にレーザ光を照射することにより、仮想面に渡る亀裂を形成する第3工程を備えてもよい。このように、レーザ光の照射によって、剥離の起点となる仮想面に沿った亀裂を形成してもよい。なお、この場合であっても、半導体層の形成に先立って改質スポットを形成しているので、全てのレーザ加工を半導体層の形成の後に行う場合と比較して、半導体層へのダメージが抑制される。 In the laser processing method according to the present disclosure, after the second step, the semiconductor is changed from a surface different from the surface on which the semiconductor layer is formed in the semiconductor wafer so that the converging point does not overlap the modified spot when viewed from the direction intersecting the surface. A third step of forming a crack across the virtual surface by irradiating the inside of the wafer with laser light may be provided. As described above, the irradiation of the laser light may form a crack along the virtual surface that is the origin of the peeling. Even in this case, since the modified spot is formed prior to the formation of the semiconductor layer, the damage to the semiconductor layer is less likely to occur as compared with the case where all the laser processing is performed after the formation of the semiconductor layer. Suppressed.
 ここで、本発明者は、上記課題を解決するために鋭意検討を進めるなかで、次のような問題点を見出した。すなわち、上記のように、レーザ光の照射によって半導体ウェハの内部の仮想面に沿って改質スポットを形成すると共に、当該改質スポットから延びる亀裂を進展させて半導体ウェハから半導体デバイスを切り出す(剥離する)場合を検討すると、剥離された面の凹凸を減らしてより好適な半導体デバイスを取得すためには、レーザ光の仮想面でのエネルギーを低減することが有効である一方で、レーザ光の仮想面でのエネルギーが低すぎると、改質スポット及び亀裂を生じさせることができなくなる。 Here, the present inventor found the following problems in the course of diligent studies to solve the above problems. That is, as described above, a modified spot is formed along the virtual surface inside the semiconductor wafer by irradiation with laser light, and a crack extending from the modified spot is developed to cut out a semiconductor device from the semiconductor wafer (peeling). In order to reduce the unevenness of the peeled surface and obtain a more suitable semiconductor device, it is effective to reduce the energy of the laser light on the virtual surface. If the energy on the virtual surface is too low, modified spots and cracks cannot be generated.
 本発明者は、このような問題点に着目し、さらなる検討を進めることにより、以下の知見を得るに至った。すなわち、まず、ガリウムを含む半導体ウェハにレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、レーザ光の集光点が予め形成された改質スポットが重ならないようにすると共に、仮想面におけるレーザ光のエネルギーを半導体ウェハの加工閾値を下回るほど低下させても、予め形成されたガリウムを含む領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体ウェハを剥離したときに、剥離された面の凹凸を低減できる。次の発明は、このような知見に基づいてなされたものである。 The present inventor has obtained the following knowledge by paying attention to such a problem and proceeding with further studies. That is, first, by irradiating a semiconductor wafer containing gallium with a laser beam, a plurality of modified spots and a deposition region containing gallium deposited in the plurality of modified spots are provided along the virtual surface. Form. Then, when the laser light is irradiated again in a later step, the modification spots formed in advance do not overlap the condensing point of the laser light, and the energy of the laser light on the virtual surface is set to the processing threshold of the semiconductor wafer. The region containing pre-formed gallium can be expanded even if the amount is lowered below the range. As a result, when the semiconductor wafer is peeled off by forming a crack across the virtual surface, the unevenness of the peeled surface can be reduced. The following invention was made based on such knowledge.
 すなわち、本開示に係るレーザ加工方法においては、半導体ウェハは、ガリウムを含み、第1工程においては、表面から半導体ウェハの内部にレーザ光を照射することにより、複数の改質スポット、及び、複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成し、第3工程においては、仮想面におけるエネルギーが半導体ウェハの加工閾値を下回るように半導体ウェハの内部にレーザ光を照射することにより、析出領域を拡大し、仮想面に渡る亀裂を形成してもよい。 That is, in the laser processing method according to the present disclosure, the semiconductor wafer contains gallium, and in the first step, a plurality of modified spots and a plurality of modified spots are formed by irradiating the inside of the semiconductor wafer with laser light from the surface. Forming a plurality of deposition regions containing gallium deposited in the modified spots, and in the third step, irradiating the inside of the semiconductor wafer with laser light so that the energy on the virtual surface falls below the processing threshold of the semiconductor wafer. By this, the precipitation region may be enlarged and a crack may be formed across the virtual surface.
 この場合、まず、ガリウムを含む半導体ウェハの内部にレーザ光を照射することにより、レーザ光の入射面である表面に対向する仮想面に沿って、複数の改質スポット、及び、析出されたガリウムを含む複数の析出領域を形成する。そして、後の工程において、集光点が改質スポットに重ならないように、且つ、仮想面におけるエネルギーが半導体ウェハの加工閾値を下回るように、半導体ウェハの内部にレーザ光を照射することにより析出領域を拡大し、仮想面に渡る亀裂を形成する。この結果、上記知見のとおり、仮想面に渡る亀裂を境界とした剥離により、凹凸の低減された好適な半導体デバイスを得ることが可能となる。 In this case, first, by irradiating the inside of a semiconductor wafer containing gallium with laser light, a plurality of modified spots and deposited gallium are formed along a virtual surface facing the surface that is the incident surface of laser light. Forming a plurality of deposition regions including. Then, in a later step, the inside of the semiconductor wafer is irradiated with laser light so that the condensing point does not overlap with the modified spot and the energy on the virtual surface falls below the processing threshold of the semiconductor wafer. Expand the area and create a crack across the virtual plane. As a result, as described above, it becomes possible to obtain a suitable semiconductor device in which unevenness is reduced due to peeling at the boundary of the crack across the virtual surface.
 本開示に係るレーザ加工方法においては、第2工程においては、エピタキシャル成長のための半導体ウェハの加熱によって、複数の改質スポットからそれぞれ延びる複数の亀裂を進展させることにより、仮想面に渡る亀裂を形成してもよい。この場合、半導体層の形成と、仮想面に渡る亀裂の形成とを、同時に行うことが可能となる。 In the laser processing method according to the present disclosure, in the second step, by heating the semiconductor wafer for epitaxial growth, a plurality of cracks respectively extending from the plurality of modified spots are propagated to form a crack across the virtual surface. You may. In this case, the formation of the semiconductor layer and the formation of the crack over the virtual surface can be performed at the same time.
 本開示に係るレーザ加工方法においては、第1工程においては、半導体ウェハに対して、複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を設けてもよい。この場合、第2工程でのエピタキシャル成長の際に、仮想面に渡る亀裂が意図せずに形成されて剥離が生じることが抑制される。 In the laser processing method according to the present disclosure, in the first step, the semiconductor wafer may be provided with a peripheral region that prevents the development of a plurality of cracks extending from the plurality of modified spots. In this case, during the epitaxial growth in the second step, unintentional formation of cracks across the imaginary plane and peeling are suppressed.
 本開示に係るレーザ加工方法は、第1工程と第2工程との間において、半導体ウェハの透過率を測定する第4工程と、第4工程と第2工程との間において、第4工程において測定された透過率が基準値よりも高いか否かを判定する第5工程と、をさらに備え、第5工程の判定の結果、当該透過率が基準値よりも高い場合には、第1工程を再び実施してもよい。この場合、半導体層を形成する第2工程に先立って、半導体ウェハの内部に十分に改質スポットを形成できる。 The laser processing method according to the present disclosure includes a fourth step between the first step and the second step, which measures the transmittance of the semiconductor wafer, and a fourth step between the fourth step and the second step. A fifth step of determining whether or not the measured transmittance is higher than a reference value, and if the result of the determination in the fifth step is that the transmittance is higher than the reference value, the first step May be carried out again. In this case, the modified spots can be sufficiently formed inside the semiconductor wafer prior to the second step of forming the semiconductor layer.
 本開示に係るレーザ加工方法においては、第1工程においては、複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、複数の改質スポットを形成してもよい。この場合、後のレーザ光の照射の際に、レーザ光の集光点を、改質スポットのみならず、改質スポットから延びる亀裂に重ならないようにできる。この結果、後のレーザ光の照射の際に、意図しない位置に新たな改質スポットや亀裂やガリウムの析出した領域が形成されることを避けることが可能となる。すなわち、より好適な半導体部材を得ることが可能となる。 In the laser processing method according to the present disclosure, in the first step, a plurality of modified spots may be formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other. In this case, at the time of subsequent irradiation with laser light, the focus point of the laser light can be prevented from overlapping not only with the modified spot but also with the crack extending from the modified spot. As a result, it becomes possible to avoid formation of a new modified spot, a crack, or a region in which gallium is deposited at an unintended position during subsequent laser light irradiation. That is, a more suitable semiconductor member can be obtained.
 本開示に係るレーザ加工方法においては、第1工程においては、パルス発振されたレーザ光の集光点を仮想面に沿って移動させることにより、複数の改質スポットとして複数列の改質スポットを形成し、第3工程においては、パルス発振されたレーザ光の集光点を複数列の改質スポットの列間において仮想面に沿って移動させてもよい。この場合、複数の改質スポットに対して第3工程でのレーザ光の集光点が重なるのを確実に防止できる。 In the laser processing method according to the present disclosure, in the first step, a plurality of rows of modified spots are formed as a plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface. In the third step, the condensing point of the pulsed laser light may be moved along the virtual plane between the rows of the reforming spots of a plurality of rows. In this case, it is possible to reliably prevent the converging points of the laser light in the third step from overlapping the plurality of modified spots.
 本開示に係るレーザ加工方法においては、半導体ウェハは、窒化ガリウムを含んでもよい。この場合、ガリウムの析出と共に生じた窒素ガスの圧力(内圧)を利用して、仮想面に渡る亀裂を容易に形成することができる。 In the laser processing method according to the present disclosure, the semiconductor wafer may contain gallium nitride. In this case, the pressure (internal pressure) of the nitrogen gas generated along with the deposition of gallium can be used to easily form a crack over the virtual surface.
 本開示に係る半導体デバイス製造方法は、上記のいずれかのレーザ加工方法を実施する工程と、仮想面に渡る亀裂を境界として半導体ウェハから複数の半導体デバイスを取得する工程と、を備える。この方法は、上記のレーザ加工方法を実施する。よって、同様の理由から、好適な半導体デバイスの取得が可能である。 A semiconductor device manufacturing method according to the present disclosure includes a step of performing any one of the above laser processing methods, and a step of acquiring a plurality of semiconductor devices from a semiconductor wafer with a crack across a virtual surface as a boundary. This method implements the laser processing method described above. Therefore, a suitable semiconductor device can be obtained for the same reason.
 本開示に係る半導体デバイス製造方法においては、仮想面は、表面に沿った方向に並ぶように複数設定されていてもよい。この場合、1つの半導体ウェハから複数の半導体デバイスの取得が可能となる。 In the semiconductor device manufacturing method according to the present disclosure, a plurality of virtual planes may be set so as to be aligned in the direction along the surface. In this case, a plurality of semiconductor devices can be acquired from one semiconductor wafer.
 本開示によれば、好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法を提供できる。 According to the present disclosure, it is possible to provide a laser processing method capable of obtaining a suitable semiconductor device and a semiconductor device manufacturing method.
レーザ加工装置の構成図である。It is a block diagram of a laser processing apparatus. 第1例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNインゴットの側面図である。It is a side view of a GaN ingot which is an object of the laser processing method and the semiconductor member manufacturing method of the first example. 図2に示されるGaNインゴットの平面図である。FIG. 3 is a plan view of the GaN ingot shown in FIG. 2. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。It is a transverse cross section of a part of GaN ingot in one process of the laser processing method and semiconductor member manufacturing method of the 1st example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの側面図である。It is a side view of a GaN ingot in one step of the laser processing method and the semiconductor member manufacturing method of the first example. 第1例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの側面図である。It is a side view of a GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 1st example. 一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。It is an image of the exfoliation surface of a GaN wafer formed by an example laser processing method and a semiconductor member manufacturing method. 図14に示される剥離面の高さプロファイルである。It is the height profile of the peeled surface shown in FIG. 他の例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像である。It is an image of the exfoliation surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of other examples. 図16に示される剥離面の高さプロファイルである。It is the height profile of the peeling surface shown in FIG. 一例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。It is a schematic diagram for demonstrating the formation principle of the peeling surface by a laser processing method and a semiconductor member manufacturing method of an example. 他の例のレーザ加工方法及び半導体部材製造方法による剥離面の形成原理を説明するための模式図である。It is a schematic diagram for demonstrating the formation principle of the peeling surface by the laser processing method and semiconductor member manufacturing method of another example. 一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。It is an image of a crack formed during the laser processing method and the semiconductor member manufacturing method of an example. 他の例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像である。It is an image of a crack formed in the middle of the laser processing method and the semiconductor member manufacturing method of another example. 比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。5 is an image of modified spots and cracks formed by a laser processing method and a semiconductor member manufacturing method of a comparative example. 第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。3 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. 第2実施例及び第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像である。6 is an image of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second and third embodiments. 第2例のレーザ加工方法及び半導体部材製造方法の対象物であるGaNウェハの平面図である。It is a top view of a GaN wafer which is an object of a laser processing method and a semiconductor member manufacturing method of the 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNウェハの一部分の側面図である。It is a side view of a part of GaN wafer in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 第2例のレーザ加工方法及び半導体部材製造方法の一工程における半導体デバイスの側面図である。It is a side view of a semiconductor device in one process of a laser processing method and a semiconductor member manufacturing method of a 2nd example. 比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。It is an image of a crack of a SiC wafer formed by a laser processing method and a semiconductor member manufacturing method of a comparative example. 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像である。It is an image of a crack of a SiC wafer formed by a laser processing method and a semiconductor member manufacturing method of an example. 実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像である。It is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example. 図31に示される剥離面の高さプロファイルである。It is the height profile of the peeled surface shown in FIG. 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。It is a top view of a GaN ingot in one process of a laser processing method and a semiconductor member manufacturing method of a modification. 変形例のレーザ加工方法及び半導体部材製造方法の一工程におけるGaNインゴットの平面図である。It is a top view of a GaN ingot in one process of a laser processing method and a semiconductor member manufacturing method of a modification. レーザ加工装置の構成図である。It is a block diagram of a laser processing apparatus. 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN wafer in one step of the laser processing method and the semiconductor device manufacturing method of the embodiment. 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の横断面図である。It is a cross-sectional view of a part of the GaN wafer in one step of the laser processing method and the semiconductor device manufacturing method of the embodiment. 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of the GaN wafer in one step of the laser processing method and the semiconductor device manufacturing method of the embodiment. 実施形態のレーザ加工方法及び半導体デバイス製造方法の一工程におけるGaNウェハの一部分の横断面図である。It is a cross-sectional view of a part of the GaN wafer in one step of the laser processing method and the semiconductor device manufacturing method of the embodiment.
 以下、図面を参照した詳細な説明が提供される。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Hereinafter, a detailed description will be provided with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
[Configuration of laser processing equipment]
 図1に示されるように、レーザ加工装置1は、ステージ2と、光源3と、空間光変調器4と、集光レンズ5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することにより、対象物11に改質領域12を形成する装置である。以下、第1水平方向をX方向といい、第1水平方向に垂直な第2水平方向をY方向という。また、鉛直方向をZ方向という。 As shown in FIG. 1, the laser processing apparatus 1 includes a stage 2, a light source 3, a spatial light modulator 4, a condenser lens 5, and a control unit 6. The laser processing apparatus 1 is an apparatus that forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L. Hereinafter, the first horizontal direction will be referred to as the X direction, and the second horizontal direction perpendicular to the first horizontal direction will be referred to as the Y direction. The vertical direction is called the Z direction.
 ステージ2は、例えば対象物11に貼り付けられたフィルムを吸着することにより、対象物11を支持する。本実施形態では、ステージ2は、X方向及びY方向のそれぞれに沿って移動可能である。また、ステージ2は、Z方向に平行な軸線を中心線として回転可能である。 The stage 2 supports the target object 11 by, for example, adsorbing a film attached to the target object 11. In the present embodiment, the stage 2 is movable along each of the X direction and the Y direction. Further, the stage 2 can rotate about an axis parallel to the Z direction as a center line.
 光源3は、例えばパルス発振方式によって、対象物11に対して透過性を有するレーザ光Lを出力する。空間光変調器4は、光源3から出力されたレーザ光Lを変調する。空間光変調器4は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。集光レンズ5は、空間光変調器4によって変調されたレーザ光Lを集光する。本実施形態では、空間光変調器4及び集光レンズ5は、レーザ照射ユニットとして、Z方向に沿って移動可能である。 The light source 3 outputs a laser beam L that is transparent to the object 11 by using, for example, a pulse oscillation method. The spatial light modulator 4 modulates the laser light L output from the light source 3. The spatial light modulator 4 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The condenser lens 5 condenses the laser light L modulated by the spatial light modulator 4. In this embodiment, the spatial light modulator 4 and the condenser lens 5 are movable as a laser irradiation unit along the Z direction.
 ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。 When the laser light L is condensed inside the target object 11 supported by the stage 2, the laser light L is particularly absorbed at a portion corresponding to the condensing point C of the laser light L, and the inside of the target object 11 is modified. A quality region 12 is formed. The modified region 12 is a region in which density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region. The modified region 12 includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
 一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット13がX方向に沿って1列に並ぶように形成される。1つの改質スポット13は、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット13の集合である。隣り合う改質スポット13は、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。 As an example, when the stage 2 is moved along the X direction and the condensing point C is moved relative to the target object 11 along the X direction, a plurality of modified spots 13 are moved along the X direction by 1. It is formed so as to line up in a row. One modified spot 13 is formed by irradiation with one pulse of laser light L. The one-row reforming region 12 is a set of a plurality of reforming spots 13 arranged in one row. The adjacent modified spots 13 may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point C with respect to the object 11 and the repetition frequency of the laser light L.
 制御部6は、ステージ2、光源3、空間光変調器4及び集光レンズ5を制御する。制御部6は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部6では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部6は、各種機能を実現する。
[第1例に係るレーザ加工方法及び半導体部材製造方法]
The control unit 6 controls the stage 2, the light source 3, the spatial light modulator 4, and the condenser lens 5. The control unit 6 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 6, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 6 realizes various functions.
[Laser Processing Method and Semiconductor Member Manufacturing Method According to First Example]
 ここでは、対象物11は、図2及び図3に示されるように、窒化ガリウム(GaN)によって例えば円板状に形成されたGaNインゴット(半導体インゴット、半導体対象物)20である。一例として、GaNインゴット20の直径は2inであり、GaNインゴット20の厚さは2mmである。第1実施形態のレーザ加工方法及び半導体部材製造方法は、GaNインゴット20から複数のGaNウェハ(半導体ウェハ、半導体部材)30を切り出すために実施される。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。 Here, as shown in FIGS. 2 and 3, the target 11 is a GaN ingot (semiconductor ingot, semiconductor target) 20 formed of gallium nitride (GaN) in a disk shape, for example. As an example, the GaN ingot 20 has a diameter of 2 inches and the GaN ingot 20 has a thickness of 2 mm. The laser processing method and the semiconductor member manufacturing method of the first embodiment are performed to cut out a plurality of GaN wafers (semiconductor wafers, semiconductor members) 30 from the GaN ingot 20. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm.
 まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNインゴット20の内部においてGaNインゴット20の表面20aに対向する面であり、表面20aに対向する方向に並ぶように設定されている。ここでは、複数の仮想面15のそれぞれは、表面20aに平行な面であり、例えば円形状を呈している。複数の仮想面15のそれぞれは、表面20a側から見た場合に互いに重なるように設定されている。GaNインゴット20には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNインゴット20の側面20bに至っていない。一例として、隣り合う仮想面15間の距離は100μmであり、周縁領域16の幅(本実施形態では、仮想面15の外縁と側面20bとの距離)は30μm以上である。 First, the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 20a of the GaN ingot 20 inside the GaN ingot 20, and is set to be aligned in a direction facing the surface 20a. Here, each of the plurality of virtual surfaces 15 is a surface parallel to the surface 20a and has, for example, a circular shape. Each of the plurality of virtual surfaces 15 is set so as to overlap each other when viewed from the front surface 20a side. A plurality of peripheral regions 16 are set in the GaN ingot 20 so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 20b of the GaN ingot 20. As an example, the distance between the adjacent virtual surfaces 15 is 100 μm, and the width of the peripheral region 16 (in the present embodiment, the distance between the outer edge of the virtual surface 15 and the side surface 20b) is 30 μm or more.
 複数の改質スポット13の形成は、例えば532nmの波長を有するレーザ光Lの照射によって、表面20aとは反対側から1つの仮想面15ごとに順次に実施される。複数の改質スポット13の形成は、複数の仮想面15のそれぞれにおいて同様であるため、以下、表面20aに最も近い仮想面15に沿った複数の改質スポット13の形成について、図4~図11を参照して詳細に説明する。なお、図5、図7、図9及び図11において、矢印は、レーザ光Lの集光点Cの軌跡を示している。また、後述する改質スポット13a,13b,13c,13dを包括して改質スポット13といい、後述する亀裂14a,14b,14c,14dを包括して亀裂14という場合がある。 The formation of the plurality of modified spots 13 is sequentially performed for each one virtual surface 15 from the side opposite to the surface 20a by the irradiation of the laser light L having a wavelength of 532 nm, for example. Since the formation of the plurality of modified spots 13 is the same on each of the plurality of virtual surfaces 15, the formation of the plurality of modified spots 13 along the virtual surface 15 closest to the surface 20a will be described below with reference to FIGS. This will be described in detail with reference to 11. In addition, in FIG. 5, FIG. 7, FIG. 9, and FIG. 11, the arrow indicates the locus of the condensing point C of the laser light L. Further, the modified spots 13a, 13b, 13c, 13d described later may be collectively referred to as the modified spot 13, and the cracks 14a, 14b, 14c, 14d described later may be collectively referred to as the crack 14.
 まず、レーザ加工装置1が、図4及び図5に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13a(第1改質スポット)を形成する(工程S1)。このとき、レーザ加工装置1は、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成する。なお、図4及び図5では、改質スポット13aが白抜き(ハッチングなし)で示されており、亀裂14aが延びる範囲が破線で示されている(図6~図11でも同様)。また、このとき、改質スポット13aのそれぞれにおいて析出されたガリウムが、亀裂14a内に入り込むように拡がることによって、改質スポット13aの周囲に、析出されたガリウムを含む析出領域Rが形成される。 First, as shown in FIGS. 4 and 5, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual plane 15 (for example, a virtual plane). A plurality of modified spots 13a (first modified spots) are formed (two-dimensionally arranged along the entire surface 15) (step S1). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13a so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Further, the laser processing apparatus 1 forms the modified spots 13a in a plurality of rows by moving the condensing point C of the pulsed laser light L along the virtual surface 15. 4 and 5, the modified spot 13a is shown in white (no hatching), and the range in which the crack 14a extends is shown by broken lines (the same applies to FIGS. 6 to 11). Further, at this time, the gallium deposited in each of the modified spots 13a spreads so as to enter the crack 14a, so that a deposition region R containing the deposited gallium is formed around the modified spot 13a. ..
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチ(すなわち、複数の集光点Cの相対的な移動速度を、レーザ光Lの繰り返し周波数で除した値)は10μmである。また、1つの集光点C当たりのレーザ光Lのパルスエネルギー(以下、単に「レーザ光Lのパルスエネルギー」という)は、0.33μJである。この場合、Y方向において隣り合う改質スポット13aの中心間距離は8μmとなり、X方向において隣り合う改質スポット13aの中心間距離は10μmとなる。また、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aは互いに繋がらない。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L (that is, the relative moving speed of the plurality of condensing points C is determined by the repetition frequency of the laser light L). The divided value) is 10 μm. The pulse energy of the laser light L per one condensing point C (hereinafter, simply referred to as “pulse energy of the laser light L”) is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13a in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13a in the X direction is 10 μm. Further, the cracks 14a extending from the modified spots 13a are not connected to each other.
 続いて、レーザ加工装置1が、図6及び図7に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第2改質スポット)13bを形成する(工程S2)。このとき、レーザ加工装置1は、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の改質スポット13bを形成する。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。この工程では、複数の改質スポット13bからそれぞれ延びる複数の亀裂14bが、複数の亀裂14aに繋がってもよい。なお、図6及び図7では、改質スポット13bがドットハッチングで示されており、亀裂14bが延びる範囲が破線で示されている(図8~図11でも同様)。また、このとき、改質スポット13bのそれぞれにおいて析出されたガリウムが、亀裂14b内に入り込むように拡がることによって、改質スポット13bの周囲に、析出されたガリウムを含む析出領域Rが形成される。 Subsequently, as shown in FIGS. 6 and 7, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiates the laser light L along the virtual surface 15 (for example, A plurality of modified spots (second modified spots) 13b are formed so as to be arranged two-dimensionally along the entire virtual surface 15 (step S2). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13b so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Moreover, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a of the plurality of rows to thereby form the reforming spots 13b of the plurality of rows. To form. In this step, the cracks 14b extending from the modified spots 13b may be connected to the cracks 14a. 6 and 7, the modified spot 13b is shown by dot hatching, and the range in which the crack 14b extends is shown by broken lines (the same applies to FIGS. 8 to 11). Further, at this time, the gallium deposited in each of the modified spots 13b spreads so as to enter the crack 14b, so that a deposition region R containing the deposited gallium is formed around the modified spot 13b. ..
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13aの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13bの中心間距離は8μmとなり、X方向において隣り合う改質スポット13bの中心間距離は10μmとなる。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction at the centers between the rows of the reformed spots 13a. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. The pulse energy of the laser light L is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13b in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13b in the X direction is 10 μm.
 続いて、レーザ加工装置1が、図8及び図9に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13cを形成する(工程S3)。更に、レーザ加工装置1が、図10及び図11に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させて照射することにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット(第3改質スポット)13dを形成する(工程S4)。このとき、レーザ加工装置1は、複数の改質スポット13a,13bに重ならないように、複数の改質スポット13c,13dを形成する。 Then, as shown in FIGS. 8 and 9, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, A plurality of modified spots (third modified spots) 13c are formed so as to be two-dimensionally arranged along the entire virtual surface 15 (step S3). Further, as shown in FIGS. 10 and 11, the laser processing apparatus 1 causes the laser light L to enter the GaN ingot 20 from the front surface 20 a and irradiate the laser light L along the virtual surface 15 (for example, a virtual surface). A plurality of modified spots (third modified spots) 13d are formed so as to be two-dimensionally arranged along the entire surface 15 (step S4). At this time, the laser processing apparatus 1 forms the plurality of modified spots 13c and 13d so as not to overlap the plurality of modified spots 13a and 13b.
 また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13a,13bの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13c,13dを形成する。この工程では、複数の改質スポット13c,13dからそれぞれ延びる複数の亀裂14c,14dが、複数の亀裂14a,14bに繋がってもよい。なお、図8及び図9では、改質スポット13cが実線ハッチングで示されており、亀裂14cが延びる範囲が破線で示されている(図10及び図11でも同様)。また、図10及び図11では、改質スポット13dが実線ハッチング(改質スポット13cの実線ハッチングとは逆に傾斜する実線ハッチング)で示されており、亀裂14dが延びる範囲が破線で示されている。また、このとき、改質スポット13c,13dのそれぞれにおいて析出されたガリウムが、亀裂14c,14d内に入り込むように拡がることによって、改質スポット13c,13dの周囲に、析出されたガリウムを含む析出領域Rが形成される。 Further, the laser processing apparatus 1 moves the condensing point C of the pulsed laser light L along the virtual plane 15 between the rows of the reforming spots 13a and 13b of the plurality of rows, thereby reforming the plurality of rows. The spots 13c and 13d are formed. In this step, the cracks 14c and 14d extending from the modified spots 13c and 13d may be connected to the cracks 14a and 14b. 8 and 9, the modified spot 13c is shown by solid line hatching, and the range in which the crack 14c extends is shown by broken lines (also in FIGS. 10 and 11). 10 and 11, the modified spot 13d is shown by solid line hatching (solid line hatching that is the reverse of the solid line hatching of the modified spot 13c), and the range in which the crack 14d extends is shown by broken lines. There is. Further, at this time, the gallium deposited in each of the reformed spots 13c and 13d spreads so as to enter the cracks 14c and 14d, so that the deposited gallium is deposited around the reformed spots 13c and 13d. Region R is formed.
 ここでは、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、複数列の改質スポット13a,13bの列間の中心において、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は8μmであり、レーザ光Lのパルスピッチは5μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この場合、Y方向において隣り合う改質スポット13cの中心間距離は8μmとなり、X方向において隣り合う改質スポット13cの中心間距離は5μmとなる。また、Y方向において隣り合う改質スポット13dの中心間距離は8μmとなり、X方向において隣り合う改質スポット13dの中心間距離は5μmとなる。 Here, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of converging points C are relatively moved on the virtual surface 15 along the X direction at the center between the rows of the reformed spots 13a and 13b of the plurality of rows. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. The pulse energy of the laser light L is 0.33 μJ. In this case, the center-to-center distance between adjacent modified spots 13c in the Y direction is 8 μm, and the center-to-center distance between adjacent modified spots 13c in the X direction is 5 μm. Further, the center-to-center distance between the modified spots 13d adjacent to each other in the Y direction is 8 μm, and the center-to-center distance between the modified spots 13d adjacent to each other in the X-direction is 5 μm.
 続いて、ヒータ等を備える加熱装置が、GaNインゴット20を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、図12に示されるように、複数の仮想面15のそれぞれにおいて、仮想面15に渡る亀裂17(以下、単に「亀裂17」という)を形成する。図12では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、加熱以外の方法でGaNインゴット20に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 Subsequently, a heating device including a heater or the like heats the GaN ingot 20 to connect the plurality of cracks 14 extending from the plurality of modified spots 13 to each other on each of the plurality of virtual planes 15, thereby being shown in FIG. As described above, a crack 17 (hereinafter, simply referred to as “crack 17”) that extends over the virtual surface 15 is formed in each of the plurality of virtual surfaces 15. In FIG. 12, a range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is shown by a broken line. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN ingot 20 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNインゴット20においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力(内圧)を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、GaNインゴット20の側面20b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることができる。 Here, in the GaN ingot 20, nitrogen gas is generated in a plurality of cracks 14 extending from the plurality of modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure (internal pressure) of the nitrogen gas. Moreover, since the peripheral region 16 prevents the cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the side surface 20b of the GaN ingot 20), nitrogen generated in the cracks 14 is prevented. It is possible to prevent the gas from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 μm or more.
 続いて、研削装置が、GaNインゴット20のうち複数の周縁領域16及び複数の仮想面15のそれぞれに対応する部分を研削(研磨)することにより、図13に示されるように、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する(工程S5)。このように、GaNインゴット20は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、研削以外の機械加工、レーザ加工等によって、GaNインゴット20のうち複数の周縁領域16に対応する部分を除去してもよい。 Then, the grinding device grinds (polishs) the portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 and the plurality of virtual surfaces 15, respectively, so that a plurality of cracks 17 are formed as shown in FIG. A plurality of GaN wafers 30 are obtained from the GaN ingot 20 with each of them as a boundary (step S5). In this way, the GaN ingot 20 is cut along each of the virtual surfaces 15. In this step, portions of the GaN ingot 20 corresponding to the plurality of peripheral regions 16 may be removed by mechanical processing other than grinding, laser processing, or the like.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第1例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する工程までが、第1例の半導体部材製造方法である。 Among the above steps, the laser processing method of the first example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the first example.
 以上説明したように、第1例のレーザ加工方法では、複数の仮想面15のそれぞれに沿って複数の改質スポット13aを形成し、複数の改質スポット13a及び複数の亀裂14aに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13bを形成する。更に、第1例のレーザ加工方法では、複数の改質スポット13a,13bに重ならないように、複数の仮想面15のそれぞれに沿って複数の改質スポット13c,13dを形成する。これにより、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第1例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得することにより、複数の好適なGaNウェハ30の取得が可能となる。 As described above, in the laser processing method of the first example, the plurality of modified spots 13a are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and the plurality of cracks 14a. Then, a plurality of modified spots 13b are formed along each of the plurality of virtual surfaces 15. Furthermore, in the laser processing method of the first example, a plurality of modified spots 13c and 13d are formed along each of the plurality of virtual surfaces 15 so as not to overlap the plurality of modified spots 13a and 13b. Thereby, the plurality of modified spots 13 can be accurately formed along each of the plurality of virtual surfaces 15, and as a result, the crack 17 can be formed accurately along each of the plurality of virtual surfaces 15. It will be possible. Therefore, according to the laser processing method of the first example, it is possible to obtain a plurality of suitable GaN wafers 30 by obtaining a plurality of GaN wafers 30 from the GaN ingot 20 with each of the plurality of cracks 17 as a boundary. ..
 同様に、第1例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the first example, it is possible to accurately form the crack 17 along each of the plurality of virtual surfaces 15, and thus a plurality of suitable GaN layers can be formed. The wafer 30 can be acquired.
 また、第1例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 In the laser processing method of the first example, the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
 また、第1例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Further, in the laser processing method of the first example, the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form the modified spots 13a in a plurality of rows and pulsed. By moving the condensing point C of the laser light L along the virtual surface 15 between the rows of the plurality of rows of modified spots 13a, the plurality of rows of modified spots 13b are formed. Thereby, it is possible to reliably prevent the plurality of reformed spots 13b from overlapping the plurality of reformed spots 13a and the plurality of cracks 14a, and to form the plurality of reformed spots 13b along the virtual surface 15 with higher accuracy. You can
 特に、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し(析出領域Rが形成され)、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。 Particularly, in the laser processing method of the first example, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser beam L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the deposition region R is formed, and the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
 また、第1例のレーザ加工方法では、GaNインゴット20の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。 Further, in the laser processing method of the first example, when gallium nitride contained in the material of the GaN ingot 20 is decomposed by the irradiation of the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第1例の半導体部材製造方法によれば、第1例のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適なGaNウェハ30の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the first example, the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the first example. Thus, it is possible to obtain a plurality of suitable GaN wafers 30.
 また、第1例の半導体部材製造方法では、複数の仮想面15が、GaNインゴット20の表面20aに対向する方向に並ぶように設定されている。これにより、1つのGaNインゴット20から複数のGaNウェハ30の取得が可能となる。 In addition, in the semiconductor member manufacturing method of the first example, the plurality of virtual surfaces 15 are set to be aligned in the direction facing the surface 20 a of the GaN ingot 20. This makes it possible to obtain a plurality of GaN wafers 30 from one GaN ingot 20.
 ここで、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハ30では、GaNウェハ30の剥離面に現れる凹凸が小さくなることを示す実験結果について説明する。 Here, an explanation will be given of the experimental results showing that the GaN wafer 30 formed by the laser processing method and the semiconductor member manufacturing method of the first example has smaller irregularities on the separated surface of the GaN wafer 30.
 図14は、一例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図15の(a)及び(b)は、図14に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を10μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1μJとした。この場合、図15の(a)及び(b)に示されるように、GaNウェハ30の剥離面(亀裂17によって形成された面)に25μm程度の凹凸が現れた。 FIG. 14 is an image of a peeled surface of a GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of an example, and FIGS. 15A and 15B show the height of the peeled surface shown in FIG. It is a profile. In this example, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C arranged in the Y direction is placed on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. At this time, the distance between adjacent condensing points C in the Y direction was 10 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1 μJ. In this case, as shown in (a) and (b) of FIG. 15, irregularities of about 25 μm appeared on the separated surface (surface formed by the crack 17) of the GaN wafer 30.
 図16は、他の例の実施例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハの剥離面の画像であり、図17の(a)及び(b)は、図16に示される剥離面の高さプロファイルである。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μk、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとした。この場合、図17の(a)及び(b)に示されるように、GaNウェハ30の剥離面に5μm程度の凹凸が現れた。 FIG. 16 is an image of a peeled surface of a GaN wafer formed by a laser processing method and a semiconductor member manufacturing method of another example, and FIGS. 17(a) and 17(b) are shown in FIG. It is a height profile of a peeling surface. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first and second steps of the laser processing method and the semiconductor member manufacturing method of the first embodiment. Similarly, the plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μk, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.33 μJ. In this case, as shown in FIGS. 17A and 17B, unevenness of about 5 μm appeared on the separated surface of the GaN wafer 30.
 以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法によって形成されたGaNウェハでは、GaNウェハ30の剥離面に現れる凹凸が小さくなること、すなわち、仮想面15に沿って亀裂17が精度良く形成されることが分かった。なお、GaNウェハ30の剥離面に現れる凹凸が小さくなると、当該剥離面を平坦化するための研削量が少なくて済む。したがって、GaNウェハ30の剥離面に現れる凹凸が小さくなることは、材料の利用効率的にも生産効率的にも有利である。 From the above experimental results, in the GaN wafer formed by the laser processing method and the semiconductor member manufacturing method of the first example, the irregularities appearing on the separated surface of the GaN wafer 30 are small, that is, the cracks 17 along the virtual surface 15. Was found to be formed with high precision. It should be noted that if the irregularities appearing on the peeled surface of the GaN wafer 30 become small, the amount of grinding for flattening the peeled surface will be small. Therefore, it is advantageous in terms of material utilization efficiency and production efficiency that the irregularities appearing on the separated surface of the GaN wafer 30 become small.
 次に、GaNウェハ30の剥離面に凹凸が現れる原理について説明する。 Next, the principle that unevenness appears on the peeled surface of the GaN wafer 30 will be described.
 例えば、図18に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその一方の側の改質スポット13aから延びる亀裂14aに重なるように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13aに対してレーザ光Lの入射側に改質スポット13bが形成され易くなる。続いて、改質スポット13cがその一方の側の改質スポット13bから延びる亀裂14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。この場合にも、複数の亀裂14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13bに対してレーザ光Lの入射側に改質スポット13cが形成され易くなる。このように、この例では、複数の改質スポット13bが複数の改質スポット13aに対してレーザ光Lの入射側に形成され、更に、複数の改質スポット13cが複数の改質スポット13bに対してレーザ光Lの入射側に形成され易くなる。 For example, as shown in FIG. 18, a plurality of modified spots 13a are formed along a virtual surface 15, and the modified spots 13b are virtual so that the modified spots 13b overlap the cracks 14a extending from the modified spots 13a on one side. A plurality of modified spots 13b are formed along the surface 15. In this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13a. The modified spot 13b is easily formed on the incident side of the light L. Then, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14b extending from the modified spots 13b on one side. Also in this case, since the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14b, even if the condensing point C is located on the virtual surface 15, the laser is not applied to the modified spot 13b. The modified spot 13c is easily formed on the incident side of the light L. As described above, in this example, the plurality of modified spots 13b are formed on the incident side of the laser light L with respect to the plurality of modified spots 13a, and further, the plurality of modified spots 13c are formed into the plurality of modified spots 13b. On the other hand, it tends to be formed on the incident side of the laser light L.
 それに対し、例えば、図19に示されるように、仮想面15に沿って複数の改質スポット13aを形成し、改質スポット13bがその両側の改質スポット13aから延びる亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成する。この場合には、複数の亀裂14aに析出したガリウムによってレーザ光Lが吸収され易い状態にあるものの、改質スポット13bが亀裂14aに重ならないため、改質スポット13bも、改質スポット13aと同様に仮想面15上に形成される。続いて、改質スポット13cがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13cを形成する。更に、改質スポット13dがその両側の改質スポット13a,13bのそれぞれから延びる亀裂14a,14bに重なるように、仮想面15に沿って複数の改質スポット13dを形成する。これらの場合には、複数の亀裂14a,14bに析出したガリウムによってレーザ光Lが吸収され易い状態にあるため、集光点Cが仮想面15上に位置していても、改質スポット13a,13bに対してレーザ光Lの入射側に改質スポット13c,13dが形成され易くなる。このように、この例では、複数の改質スポット13c,13dが複数の改質スポット13a,13bに対してレーザ光Lの入射側に形成され易くなるだけである。 On the other hand, for example, as shown in FIG. 19, a plurality of modified spots 13a are formed along the virtual surface 15 so that the modified spots 13b do not overlap the cracks 14a extending from the modified spots 13a on both sides thereof. , A plurality of modified spots 13b are formed along the virtual surface 15. In this case, although the laser light L is easily absorbed by the gallium deposited in the plurality of cracks 14a, the modified spot 13b does not overlap the crack 14a, so the modified spot 13b is similar to the modified spot 13a. Are formed on the virtual surface 15. Subsequently, a plurality of modified spots 13c are formed along the virtual surface 15 so that the modified spots 13c overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. Further, a plurality of modified spots 13d are formed along the virtual surface 15 so that the modified spots 13d overlap the cracks 14a and 14b extending from the modified spots 13a and 13b on both sides thereof. In these cases, since the laser light L is easily absorbed by the gallium deposited on the plurality of cracks 14a and 14b, even if the condensing point C is located on the virtual surface 15, the modified spots 13a, The modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to 13b. As described above, in this example, the modified spots 13c and 13d are easily formed on the incident side of the laser light L with respect to the modified spots 13a and 13b.
 以上の原理から、第1例のレーザ加工方法及び半導体部材製造方法においては、複数の改質スポット13a及び複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに重ならないように、複数の改質スポット13bを形成することが、GaNウェハ30の剥離面に現れる凹凸を小さくする上で極めて重要であることが分かる。 From the above principle, in the laser processing method and the semiconductor member manufacturing method of the first example, a plurality of modified spots 13a and a plurality of modified spots 13a are provided so as not to overlap the cracks 14a extending from the modified spots 13a. It can be seen that the formation of the spots 13b is extremely important in reducing the unevenness appearing on the separated surface of the GaN wafer 30.
 次に、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method of the first example, an experimental result showing that the crack 17 propagates along the virtual surface 15 with high accuracy will be described.
 図20の(a)及び(b)は、一例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図20の(b)は、図20の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。このとき、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを1μm、レーザ光Lのパルスエネルギーを1.33μJとした。そして、レーザ加工を仮想面15の途中で停止させた。この場合、図20の(a)及び(b)に示されるように、加工領域から未加工領域に進展した亀裂が、未加工領域において仮想面15から大きく外れた。 20A and 20B are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of an example, and FIG. 20B is a rectangle in FIG. 20A. It is an enlarged image in the frame. In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 6 μm, the pulse pitch of the laser light L was 1 μm, and the pulse energy of the laser light L was 1.33 μJ. Then, the laser processing was stopped in the middle of the virtual surface 15. In this case, as shown in (a) and (b) of FIG. 20, the crack that propagated from the processed region to the unprocessed region largely deviated from the virtual surface 15 in the unprocessed region.
 図21の(a)及び(b)は、他の例の実施例のレーザ加工方法及び半導体部材製造方法の途中で形成された亀裂の画像であり、図21の(b)は、図21の(a)における矩形枠内の拡大画像である。この例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1及び加工領域2に、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。続いて、Y方向において隣り合う集光点C間の距離を6μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.33μJとして、加工領域1のみに、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図21の(a)及び(b)に示されるように、加工領域1から加工領域2に進展した亀裂が、加工領域2において仮想面15から大きく外れなかった。 21(a) and 21(b) are images of cracks formed during the laser processing method and the semiconductor member manufacturing method of another example of the embodiment, and FIG. 21(b) is an image of FIG. It is an enlarged image in a rectangular frame in (a). In this example, laser light L having a wavelength of 532 nm is made to enter the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are arranged on the virtual surface 15 along the X direction. Were relatively moved to form a plurality of modified spots 13 along the virtual surface 15. Specifically, first, the processing area 1 and the processing area 2 are set such that the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed on the surface. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of modified spots 13 were formed such that each row was positioned in the center between the plurality of rows of modified spots 13. Then, the distance between the condensing points C adjacent to each other in the Y direction is 6 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.33 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in (a) and (b) of FIG. 21, the crack propagated from the processing region 1 to the processing region 2 was not largely deviated from the virtual surface 15 in the processing region 2.
 以上の実験結果から、第1例のレーザ加工方法及び半導体部材製造方法においては、仮想面15に沿って亀裂17が精度良く進展することが分かった。これは、加工領域2に先に形成された複数の改質スポット13が、亀裂が進展する際にガイドになったためと想定される。 From the above experimental results, it was found that in the laser processing method and the semiconductor member manufacturing method of the first example, the crack 17 propagates along the virtual surface 15 with high accuracy. It is assumed that this is because the plurality of modified spots 13 previously formed in the processed region 2 served as guides when the crack propagated.
 次に、第1例のレーザ加工方法及び半導体部材製造方法においては、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることを示す実験結果について説明する。 Next, in the laser processing method and the semiconductor member manufacturing method of the first example, the experimental results showing that the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof is suppressed. explain.
 図22は、比較例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像(側面視での画像)である。この比較例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、1つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、Y方向において隣り合う集光点C間の距離を2μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。この場合、図22に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が100μm程度となった。 FIG. 22 is an image (side view image) of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the comparative example. In this comparative example, a laser beam L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and one condensing point C is relatively moved on the virtual plane 15 along the X direction. The plurality of modified spots 13 were formed along the imaginary plane 15 by moving the modified spots 13 to. Specifically, the distance between the condensing points C adjacent to each other in the Y direction is 2 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.3 μJ. Quality spot 13 was formed. In this case, as shown in FIG. 22, the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side was about 100 μm.
 図23は、第1実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図23の(a)は平面視での画像、図23の(b)は側面視での画像である。この第1実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、Y方向に並ぶ6つの集光点Cを、X方向に沿って仮想面15上を相対的に移動させることにより、仮想面15に沿って複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13aを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13bを形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に-4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。続いて、Y方向に並ぶ6つの集光点Cを先の状態からY方向に+4μmずらした状態で、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとして、仮想面15に沿って複数の改質スポット13を形成した。これにより、1回目に形成した改質スポット13aと3回目に形成した改質スポット13とが互いに重なり、2回目に形成した改質スポット13bと4回目に形成した改質スポット13とが互いに重なっていると想定される。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が70μm程度となった。 23A and 23B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the first embodiment. FIG. 23A is an image in plan view, and FIG. Is an image in side view. In the first embodiment, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the six condensing points C arranged in the Y direction are virtual along the X direction. By relatively moving on the surface 15, a plurality of modified spots 13 were formed along the virtual surface 15. Specifically, first, the distance between the condensing points C adjacent to each other in the Y direction is 8 μm, the pulse pitch of the laser light L is 10 μm, and the pulse energy of the laser light L is 0.3 μJ. The modified spot 13a of No. 1 was formed. Then, with the six condensing points C aligned in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 10 μm. A plurality of modified spots 13b were formed along the virtual surface 15 by setting the pulse energy of the laser light L to 0.3 μJ. Then, with the six converging points C arranged in the Y direction shifted from the previous state by -4 μm in the Y direction, the distance between the converging points C adjacent to each other in the Y direction is 8 μm, and the pulse pitch of the laser light L is changed. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser beam L being 5 μm and 0.3 μJ. Subsequently, with the six condensing points C arranged in the Y direction shifted from the previous state by +4 μm in the Y direction, the distance between the converging points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is 5 μm. A plurality of modified spots 13 were formed along the virtual surface 15 with the pulse energy of the laser light L set to 0.3 μJ. As a result, the first modified spot 13a and the third modified spot 13 overlap each other, and the second modified spot 13b and the fourth modified spot 13 overlap each other. It is assumed that In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 70 μm.
 図24の(a)及び(b)は、第2例の実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(a)は平面視での画像、図24の(b)は側面視での画像である。この第2実施例では、532nmの波長を有するレーザ光LをGaNインゴット20の表面20aからGaNインゴット20の内部に入射させ、第1例のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面15に沿って複数の改質スポット13を形成した。複数の改質スポット13aを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13bを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを10μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13cを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。複数の改質スポット13dを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.3μJとした。この場合、図23の(b)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が50μm程度となった。 24A and 24B are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the second example, and FIG. 24A is a plan view. 24B is an image in a side view. In the second embodiment, laser light L having a wavelength of 532 nm is made incident on the inside of the GaN ingot 20 from the surface 20a of the GaN ingot 20, and the first step and the first step of the laser processing method and the semiconductor member manufacturing method of the first example. Similar to the two steps, a plurality of modified spots 13 were formed along the virtual surface 15. When forming the plurality of modified spots 13a, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13b, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 10 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13c, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. When forming the plurality of modified spots 13d, the distance between the condensing points C adjacent to each other in the Y direction was 8 μm, the pulse pitch of the laser light L was 5 μm, and the pulse energy of the laser light L was 0.3 μJ. In this case, as shown in (b) of FIG. 23, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof was about 50 μm.
 図24の(c)及び(d)は、第3実施例のレーザ加工方法及び半導体部材製造方法によって形成された改質スポット及び亀裂の画像であり、図24の(c)は平面視での画像、図24の(d)は側面視での画像である。この実施例では、図23に示される状態にある仮想面15(すなわち、複数列の改質スポット13が既に形成された仮想面15)に沿って、更に、複数の改質スポット13を形成した。具体的には、まず、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを5μm、レーザ光Lのパルスエネルギーを0.1μJとして、既に形成された複数列の改質スポット13の列間の中心にそれぞれの列が位置するように複数列の改質スポット13を形成した。この場合、図24の(d)に示されるように、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が60μm程度となった。 24C and 24D are images of modified spots and cracks formed by the laser processing method and the semiconductor member manufacturing method of the third embodiment, and FIG. 24C is a plan view. An image, (d) of FIG. 24, is an image in a side view. In this embodiment, a plurality of modified spots 13 are further formed along the virtual surface 15 in the state shown in FIG. 23 (that is, the virtual surface 15 on which a plurality of rows of modified spots 13 have already been formed). .. Specifically, first, the distance between adjacent condensing points C in the Y direction is 8 μm, the pulse pitch of the laser light L is 5 μm, and the pulse energy of the laser light L is 0.1 μJ. A plurality of rows of reforming spots 13 were formed such that each row was positioned at the center between the rows of reforming spots 13. In this case, as shown in FIG. 24D, the extension amount of the crack 14 extending from the modified spot 13 to the incident side of the laser beam L and the opposite side thereof was about 60 μm.
 以上の実験結果から、仮想面15に沿って既に形成された複数の改質スポット13a及び複数の亀裂14aに重ならないように、仮想面15に沿って複数の改質スポット13bを形成すれば(第1実施例、第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量が抑制されることが分かった。仮想面15に沿って更に複数の改質スポット13を形成する場合には、仮想面15に沿って既に形成された複数の改質スポット13a,13bに重ならないように、仮想面15に沿って複数の改質スポット13すれば(第2実施例及び第3実施例)、改質スポット13からレーザ光Lの入射側及びその反対側に延びる亀裂14の延び量がより一層抑制されることが分かった。
[第2例のレーザ加工方法及び半導体部材製造方法]
From the above experimental results, if the modified spots 13b are formed along the virtual surface 15 so as not to overlap the modified spots 13a and the cracks 14a already formed along the virtual surface 15 (( 1st Example, 2nd Example, and 3rd Example), it turned out that the extension amount of the crack 14 extended from the modification spot 13 to the incident side of the laser beam L and the opposite side is suppressed. When further forming a plurality of modified spots 13 along the virtual surface 15, along the virtual surface 15 so as not to overlap the plurality of modified spots 13a and 13b already formed along the virtual surface 15. With a plurality of modified spots 13 (second and third embodiments), the extension amount of the crack 14 extending from the modified spot 13 to the laser light L incident side and the opposite side can be further suppressed. Do you get it.
[Laser Processing Method and Semiconductor Member Manufacturing Method of Second Example]
 第2例のレーザ加工方法及び半導体部材製造方法の対象物11は、図25に示されるように、GaNによって例えば円板状に形成されたGaNウェハ(半導体ウェハ、半導体対象物)30である。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。第2例のレーザ加工方法及び半導体部材製造方法は、GaNウェハ30から複数の半導体デバイス(半導体部材)40を切り出すために実施される。一例として、半導体デバイス40のGaN基板部分の外形は1mm×1mmであり、半導体デバイス40のGaN基板部分の厚さは数十μmである。 The object 11 of the laser processing method and the semiconductor member manufacturing method of the second example is a GaN wafer (semiconductor wafer, semiconductor object) 30 formed of GaN in a disk shape, for example, as shown in FIG. As an example, the GaN wafer 30 has a diameter of 2 inches and the GaN wafer 30 has a thickness of 100 μm. The laser processing method and the semiconductor member manufacturing method of the second example are performed to cut out a plurality of semiconductor devices (semiconductor members) 40 from the GaN wafer 30. As an example, the outer shape of the GaN substrate portion of the semiconductor device 40 is 1 mm×1 mm, and the thickness of the GaN substrate portion of the semiconductor device 40 is several tens μm.
 まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNウェハ30の内部においてGaNウェハ30の表面30aに対向する面であり、表面30aが延在する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、表面30aに平行な面であり、例えば矩形状を呈している。複数の仮想面15のそれぞれは、GaNウェハ30のオリエンテーションフラット31に平行な方向及び垂直な方向に2次元状に並ぶように設定されている。GaNウェハ30には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNウェハ30の側面30bに至っていない。一例として、複数の仮想面15のそれぞれに対応する周縁領域16の幅(第2例では、隣り合う仮想面15間の距離の半分)は30μm以上である。 First, the laser processing apparatus 1 described above forms a plurality of modified spots 13 along each of a plurality of virtual surfaces 15. Each of the plurality of virtual surfaces 15 is a surface facing the surface 30a of the GaN wafer 30 inside the GaN wafer 30, and is set so as to be aligned in the direction in which the surface 30a extends. In the present embodiment, each of the plurality of virtual surfaces 15 is a surface parallel to the surface 30a and has, for example, a rectangular shape. Each of the plurality of virtual planes 15 is set to be arranged two-dimensionally in a direction parallel to the orientation flat 31 of the GaN wafer 30 and a direction perpendicular to the orientation flat 31. In the GaN wafer 30, a plurality of peripheral regions 16 are set so as to surround each of the plurality of virtual surfaces 15. That is, each of the plurality of virtual surfaces 15 does not reach the side surface 30b of the GaN wafer 30. As an example, the width of the peripheral region 16 corresponding to each of the plurality of virtual surfaces 15 (half the distance between the adjacent virtual surfaces 15 in the second example) is 30 μm or more.
 複数の仮想面15のそれぞれに沿った複数の改質スポット13の形成は、第1例のレーザ加工方法及び半導体部材製造方法の工程S1~工程S4と同様に、実施される。これにより、GaNウェハ30においては、図26に示されるように、複数の仮想面15のそれぞれに沿って、複数の改質スポット13(すなわち、改質スポット13a,13b,13c,13d)及び複数の亀裂14(すなわち、亀裂14a,14b,14c,14d)が形成される。図26では、複数の改質スポット13及び複数の亀裂14が形成される範囲が破線で示されている。 The formation of the plurality of modified spots 13 along each of the plurality of virtual surfaces 15 is performed in the same manner as steps S1 to S4 of the laser processing method and the semiconductor member manufacturing method of the first example. As a result, in the GaN wafer 30, as shown in FIG. 26, a plurality of modified spots 13 (that is, modified spots 13a, 13b, 13c, 13d) and a plurality of modified spots 13 are provided along each of the plurality of virtual planes 15. 14 (that is, the cracks 14a, 14b, 14c, 14d) are formed. In FIG. 26, the range in which the plurality of modified spots 13 and the plurality of cracks 14 are formed is indicated by a broken line.
 続いて、半導体製造装置が、図27に示されるように、GaNウェハ30の表面30aに複数の機能素子32を形成する。複数の機能素子32のそれぞれは、GaNウェハ30の厚さ方向から見た場合に1つの機能素子32が1つの仮想面15に含まれるように、形成される。機能素子32は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。 Subsequently, the semiconductor manufacturing apparatus forms a plurality of functional elements 32 on the surface 30a of the GaN wafer 30, as shown in FIG. Each of the plurality of functional elements 32 is formed such that one functional element 32 is included in one virtual surface 15 when viewed from the thickness direction of the GaN wafer 30. The functional element 32 is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
 第2例では、表面30aに複数の機能素子32を形成する際に、半導体製造装置が加熱装置として機能する。つまり、表面30aに複数の機能素子32を形成する際に、半導体製造装置が、GaNウェハ30を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、複数の仮想面15のそれぞれにおいて、亀裂17(すなわち、仮想面15に渡る亀裂17)を形成する。図27では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、半導体製造装置とは別の加熱装置が用いられてもよい。また、加熱以外の方法でGaNウェハ30に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。 In the second example, the semiconductor manufacturing apparatus functions as a heating device when forming the plurality of functional elements 32 on the surface 30a. That is, when forming the plurality of functional elements 32 on the surface 30 a, the semiconductor manufacturing apparatus heats the GaN wafer 30, and the plurality of cracks 14 extending from the plurality of modified spots 13 on each of the plurality of virtual surfaces 15 are formed. Are connected to each other, a crack 17 (that is, a crack 17 across the virtual surface 15) is formed in each of the plurality of virtual surfaces 15. In FIG. 27, the range in which the plurality of modified spots 13, the plurality of cracks 14, and the crack 17 are formed is indicated by broken lines. A heating device different from the semiconductor manufacturing device may be used. The cracks 17 may be formed by connecting the plurality of cracks 14 to each other by applying some force to the GaN wafer 30 by a method other than heating. Further, by forming the plurality of modified spots 13 along the virtual surface 15, the plurality of cracks 14 may be connected to each other to form the crack 17.
 ここで、GaNウェハ30においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、隣り合う仮想面15、GaNウェハ30の側面30b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることができる。 Here, in the GaN wafer 30, nitrogen gas is generated in the cracks 14 extending from the modified spots 13, respectively. Therefore, by heating the GaN ingot 20 and expanding the nitrogen gas, the crack 17 can be formed by utilizing the pressure of the nitrogen gas. Moreover, since the peripheral region 16 prevents the plurality of cracks 14 from propagating to the outside of the virtual surface 15 surrounded by the peripheral region 16 (for example, the adjacent virtual surface 15 and the side surface 30b of the GaN wafer 30), the plurality of cracks is prevented. It is possible to prevent the nitrogen gas generated in 14 from escaping to the outside of the virtual surface 15. That is, the peripheral area 16 is a non-modified area that does not include the modified spot 13, and when the crack 17 is formed on the virtual surface 15 surrounded by the peripheral area 16, the virtual surface 15 surrounded by the peripheral area 16 is formed. It is a region that prevents the plurality of cracks 14 from propagating to the outside. Therefore, the width of the peripheral region 16 can be set to 30 μm or more.
 続いて、レーザ加工装置が、GaNウェハ30を機能素子32ごとに切断すると共に、研削装置が、複数の仮想面15のそれぞれに対応する部分を研削することにより、図28に示されるように、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する(工程S6)。このように、GaNウェハ30は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、レーザ加工以外の機械加工(例えばブレードダイシング)等によって、GaNウェハ30を機能素子32ごとに切断してもよい。 Then, the laser processing device cuts the GaN wafer 30 into each functional element 32, and the grinding device grinds the portions corresponding to each of the plurality of virtual planes 15, as shown in FIG. 28. A plurality of semiconductor devices 40 are obtained from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary (step S6). In this way, the GaN wafer 30 is cut along each of the plurality of virtual planes 15. In this step, the GaN wafer 30 may be cut into each functional element 32 by mechanical processing (for example, blade dicing) other than laser processing.
 以上の工程のうち、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する工程までが、第2例のレーザ加工方法である。また、以上の工程のうち、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得する工程までが、第2例の半導体部材製造方法である。 Among the above steps, the laser processing method of the second example includes up to the step of forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. Further, among the above steps, the steps up to the step of obtaining the plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as the boundary are the semiconductor member manufacturing method of the second example.
 以上説明したように、第2例のレーザ加工方法よれば、第1例のレーザ加工方法と同様に、複数の仮想面15のそれぞれに沿って複数の改質スポット13を精度良く形成することができ、その結果、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となる。よって、第2例のレーザ加工方法によれば、複数の亀裂17のそれぞれを境界としてGaNウェハ30から複数の半導体デバイス40を取得することにより、複数の好適な半導体デバイス40の取得が可能となる。また、複数の半導体デバイス40を切り出した後のGaNウェハ30を再利用することも可能となる。 As described above, according to the laser processing method of the second example, as in the laser processing method of the first example, it is possible to accurately form the plurality of modified spots 13 along each of the plurality of virtual surfaces 15. As a result, the crack 17 can be accurately formed along each of the plurality of virtual surfaces 15. Therefore, according to the laser processing method of the second example, it is possible to obtain a plurality of suitable semiconductor devices 40 by obtaining a plurality of semiconductor devices 40 from the GaN wafer 30 with each of the plurality of cracks 17 as a boundary. .. It is also possible to reuse the GaN wafer 30 after cutting out the plurality of semiconductor devices 40.
 同様に、第2例のレーザ加工方法を実施するレーザ加工装置1によれば、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Similarly, according to the laser processing apparatus 1 that implements the laser processing method of the second example, it is possible to accurately form the crack 17 along each of the virtual surfaces 15, and thus a plurality of suitable semiconductors can be formed. The device 40 can be acquired.
 また、第2例のレーザ加工方法では、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がらないように、複数の改質スポット13aを形成する。これにより、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Further, in the laser processing method of the second example, the plurality of modified spots 13a are formed so that the plurality of cracks 14a extending from the plurality of modified spots 13a are not connected to each other. Thereby, the plurality of modified spots 13b can be formed more accurately along the virtual surface 15.
 また、第2例のレーザ加工方法では、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13aを形成し、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13aの列間において仮想面15に沿って移動させることにより、複数列の改質スポット13bを形成する。これにより、複数の改質スポット13a及び複数の亀裂14aに複数の改質スポット13bが重なるのを確実に防止して、複数の改質スポット13bを仮想面15に沿ってより精度良く形成することができる。 Moreover, in the laser processing method of the second example, the condensing point C of the pulsed laser light L is moved along the virtual plane 15 to form a plurality of rows of modified spots 13a and pulsed. By moving the condensing point C of the laser light L along the virtual surface 15 between the rows of the plurality of rows of modified spots 13a, the plurality of rows of modified spots 13b are formed. Thereby, it is possible to reliably prevent the plurality of reformed spots 13b from overlapping the plurality of reformed spots 13a and the plurality of cracks 14a, and to form the plurality of reformed spots 13b along the virtual surface 15 with higher accuracy. You can
 特に、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aにガリウムが析出し、当該ガリウムによってレーザ光Lが吸収され易い状態となる。そのため、当該亀裂14aに重ならないように複数の改質スポット13bを形成することは、複数の改質スポット13bを仮想面15に沿って精度良く形成する上で有効である。 Particularly, in the laser processing method of the second example, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by the irradiation of the laser light L, gallium is deposited in the cracks 14a extending from the modified spots 13a. Then, the laser light L is easily absorbed by the gallium. Therefore, forming the plurality of modified spots 13b so as not to overlap the crack 14a is effective in accurately forming the plurality of modified spots 13b along the virtual surface 15.
 また、第2例のレーザ加工方法では、GaNウェハ30の材料に含まれる窒化ガリウムがレーザ光Lの照射によって分解されると、複数の亀裂14内に窒素ガスが生じる。そのため、当該窒素ガスの圧力を利用して、亀裂17を容易に形成することが可能となる。 Further, in the laser processing method of the second example, when gallium nitride contained in the material of the GaN wafer 30 is decomposed by irradiation with the laser light L, nitrogen gas is generated in the plurality of cracks 14. Therefore, the crack 17 can be easily formed by utilizing the pressure of the nitrogen gas.
 また、第2例の半導体部材製造方法によれば、第2実施形態のレーザ加工方法に含まれる工程によって、複数の仮想面15のそれぞれに沿って亀裂17を精度良く形成することが可能となるため、複数の好適な半導体デバイス40の取得が可能となる。 Further, according to the semiconductor member manufacturing method of the second example, the cracks 17 can be accurately formed along each of the virtual surfaces 15 by the steps included in the laser processing method of the second embodiment. Therefore, it is possible to obtain a plurality of suitable semiconductor devices 40.
 また、第2例の半導体部材製造方法では、複数の仮想面15が、GaNウェハ30の表面30aが延在する方向に並ぶように設定されている。これにより、1つのGaNウェハ30から複数の半導体デバイス40の取得が可能となる。
[変形例]
Further, in the semiconductor member manufacturing method of the second example, the plurality of virtual surfaces 15 are set to be aligned in the direction in which the surface 30a of the GaN wafer 30 extends. This makes it possible to obtain a plurality of semiconductor devices 40 from one GaN wafer 30.
[Modification]
 上述した例は、任意に変形可能である。例えば、レーザ光Lに関する各種数値は、上述したものに限定されない。ただし、亀裂14が改質スポット13からレーザ光Lの入射側及びその反対側に延びるのを抑制するためには、レーザ光Lのパルスエネルギーが0.1μJ~1μJであり且つレーザ光Lのパルス幅が200fs~1nsとされ得る。 The above example can be modified arbitrarily. For example, the various numerical values regarding the laser light L are not limited to those described above. However, in order to prevent the crack 14 from extending from the modified spot 13 to the incident side of the laser light L and the opposite side thereof, the pulse energy of the laser light L is 0.1 μJ to 1 μJ and the pulse of the laser light L is The width can be 200 fs to 1 ns.
 また、レーザ加工方法及び半導体部材製造方法によって加工される半導体対象物は、第1例のGaNインゴット20及び第2例のGaNウェハ30に限定されない。半導体部材製造方法によって製造される半導体部材は、第1例のGaNウェハ30及び第2例の半導体デバイス40に限定されない。1つの半導体対象物に1つの仮想面が設定されてもよい。 The semiconductor object processed by the laser processing method and the semiconductor member manufacturing method is not limited to the GaN ingot 20 of the first example and the GaN wafer 30 of the second example. The semiconductor member manufactured by the semiconductor member manufacturing method is not limited to the GaN wafer 30 of the first example and the semiconductor device 40 of the second example. One virtual surface may be set for one semiconductor object.
 一例として、半導体対象物の材料は、SiCであってもよい。その場合にも、レーザ加工方法及び半導体部材製造方法によれば、次に述べるように、仮想面に渡る亀裂を仮想面に沿って精度良く形成することが可能となる。 As an example, the material of the semiconductor object may be SiC. Even in that case, according to the laser processing method and the semiconductor member manufacturing method, as described below, it is possible to accurately form a crack extending over the virtual surface along the virtual surface.
 図29の(a)及び(b)は、比較例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図29の(b)は、図29の(a)における矩形枠内の拡大画像である。この比較例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、Y方向に並ぶ6つの集光点を、X方向に沿って仮想面上を相対的に移動させることにより、仮想面に沿って複数の改質スポットを形成した。このとき、Y方向において隣り合う集光点C間の距離を2μm、レーザ光のパルスピッチを15μm、レーザ光のパルスエネルギーを4μJとした。この場合、図29の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂が発生した。 29A and 29B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the comparative example, and FIG. 29A is an enlarged image within a rectangular frame in FIG. In this comparative example, laser light having a wavelength of 532 nm is made incident on the inside of the SiC wafer from the surface of the SiC wafer, and the six converging points arranged in the Y direction are relatively moved on the virtual surface along the X direction. By doing so, a plurality of modified spots were formed along the virtual surface. At this time, the distance between the condensing points C adjacent to each other in the Y direction was 2 μm, the pulse pitch of the laser light was 15 μm, and the pulse energy of the laser light was 4 μJ. In this case, as shown in (a) and (b) of FIG. 29, a crack extending in a direction inclined by 4° to 5° with respect to the virtual plane occurred.
 図30の(a)及び(b)は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの亀裂の画像(側面視での画像)であり、図30の(b)は、図30の(a)における矩形枠内の拡大画像である。この実施例では、532nmの波長を有するレーザ光をSiCウェハの表面からSiCウェハの内部に入射させ、第1実施形態のレーザ加工方法及び半導体部材製造方法の第1工程及び第2工程と同様に、仮想面に沿って複数の改質スポットを形成した。複数の改質スポット13a,13b,13c,13dのそれぞれに相当する複数の改質スポットを形成する際には、Y方向において隣り合う集光点C間の距離を8μm、レーザ光Lのパルスピッチを15μm、レーザ光Lのパルスエネルギーを4μJとした。この場合、図30の(a)及び(b)に示されるように、仮想面に対して4°~5°傾斜する方向に延びる亀裂の発生が抑制された。図31は、実施例のレーザ加工方法及び半導体部材製造方法によって形成されたSiCウェハの剥離面の画像であり、図32の(a)及び(b)は、図31に示される剥離面の高さプロファイルである。この場合、SiCウェハの剥離面に現れる凹凸は2μm程度に抑えられた。 30A and 30B are images (images in side view) of the cracks of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIG. 30 is an enlarged image in the rectangular frame in FIG. In this example, a laser beam having a wavelength of 532 nm is made to enter the inside of the SiC wafer from the surface of the SiC wafer, and the laser processing method and the semiconductor member manufacturing method according to the first embodiment have the same first and second steps. , A plurality of modified spots were formed along the virtual plane. When forming a plurality of modified spots corresponding to the respective modified spots 13a, 13b, 13c, 13d, the distance between the condensing points C adjacent in the Y direction is 8 μm, and the pulse pitch of the laser light L is set. Was 15 μm, and the pulse energy of the laser beam L was 4 μJ. In this case, as shown in (a) and (b) of FIG. 30, the generation of cracks extending in the direction inclined by 4° to 5° with respect to the virtual plane was suppressed. FIG. 31 is an image of the peeled surface of the SiC wafer formed by the laser processing method and the semiconductor member manufacturing method of the example, and FIGS. 32A and 32B show the height of the peeled surface shown in FIG. It is a profile. In this case, the unevenness appearing on the peeled surface of the SiC wafer was suppressed to about 2 μm.
 以上の実験結果から、半導体対象物の材料がSiCである場合にも、レーザ加工方法及び半導体部材製造方法によれば、仮想面に渡る亀裂が仮想面に沿って精度良く形成されることが分かった。なお、上述した比較例及び実施例で用いたSiCウェハは、4±0.5°のオフ角を有する4H-SiCウェハであり、レーザ光の集光点を移動させた方向は、m軸方向である。 From the above experimental results, it is found that even when the material of the semiconductor object is SiC, according to the laser processing method and the semiconductor member manufacturing method, the cracks extending over the virtual surface are accurately formed along the virtual surface. It was The SiC wafers used in the above-described comparative examples and examples are 4H-SiC wafers having an off angle of 4±0.5°, and the direction in which the focusing point of the laser light is moved is the m-axis direction. Is.
 また、複数の改質スポット13a,13b,13c,13dの形成の仕方は、上述したものに限定されない。複数の改質スポット13aは、複数の改質スポット13aからそれぞれ延びる複数の亀裂14aが互いに繋がるように形成されてもよい。また、複数の改質スポット13bは、複数の改質スポット13aに重ならないように形成されればよい。複数の改質スポット13aからそれぞれ延びる複数の亀裂14aに複数の改質スポット13bが重なったとしても、複数の改質スポット13bが複数の改質スポット13aに重ならなければ、複数の改質スポット13a,13bが仮想面15に沿って精度良く形成される。また、複数の改質スポット13c,13dの形成の仕方は任意であり、複数の改質スポット13c,13dは、形成されなくてもよい。また、図33に示されるように、例えばGaNインゴット20を回転させることにより、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成し、更に、図34に示されるように、複数列の改質スポット13の列間に複数の集光点のそれぞれを位置させた状態で、径方向に並んだ複数の集光点を相対的に回転させて(一点鎖線の矢印)、複数列の改質スポット13を形成してもよい。 The method of forming the plurality of modified spots 13a, 13b, 13c, 13d is not limited to the above. The plurality of modified spots 13a may be formed such that the plurality of cracks 14a extending from the plurality of modified spots 13a are connected to each other. Further, the plurality of modified spots 13b may be formed so as not to overlap the plurality of modified spots 13a. Even if the plurality of reforming spots 13b overlap the plurality of cracks 14a extending from the plurality of reforming spots 13a, if the plurality of reforming spots 13b do not overlap the plurality of reforming spots 13a, the plurality of reforming spots 13b do not overlap. 13a and 13b are accurately formed along the virtual surface 15. Further, the method of forming the plurality of modified spots 13c and 13d is arbitrary, and the plurality of modified spots 13c and 13d may not be formed. Further, as shown in FIG. 33, for example, by rotating the GaN ingot 20, a plurality of condensing points arranged in the radial direction are relatively rotated (dashed-dotted arrows), and a plurality of rows of modified spots are formed. 34, and further, as shown in FIG. 34, a plurality of condensing points arranged in the radial direction with each of the plurality of condensing points positioned between the rows of the modified spots 13 in a plurality of rows. May be relatively rotated (arrows indicated by alternate long and short dash lines) to form a plurality of rows of modified spots 13.
 また、第1例のレーザ加工方法及び半導体部材製造方法において、複数の改質スポット13の形成は、表面20aとは反対側から複数の仮想面15ごとに順次に実施されてもよい。また、第1例のレーザ加工方法及び半導体部材製造方法では、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施され、1つ又は複数のGaNウェハ30が切り出された後に、GaNインゴット20の表面20aが研削され、再び、複数の改質スポット13の形成が表面20a側の1つ又は複数の仮想面15に沿って実施されてもよい。 In addition, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 may be sequentially performed for each of the plurality of virtual surfaces 15 from the side opposite to the surface 20a. Further, in the laser processing method and the semiconductor member manufacturing method of the first example, the formation of the plurality of modified spots 13 is performed along the one or more virtual surfaces 15 on the front surface 20a side, and the one or more GaN wafers. After the 30 is cut out, the surface 20a of the GaN ingot 20 may be ground, and again, the plurality of modified spots 13 may be formed along the one or more virtual surfaces 15 on the surface 20a side.
 また、第1例及び第2例のレーザ加工方法及び半導体部材製造方法では、周縁領域16が形成されなくてもよい。第1例のレーザ加工方法及び半導体部材製造方法において周縁領域16を形成しない場合には、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成した後に、例えば、GaNインゴット20に対してエッチングを施すことにより、複数のGaNウェハ30を取得することも可能である。 Further, in the laser processing method and the semiconductor member manufacturing method of the first and second examples, the peripheral region 16 may not be formed. In the case where the peripheral region 16 is not formed in the laser processing method and the semiconductor member manufacturing method of the first example, after forming the plurality of modified spots 13 along each of the plurality of virtual surfaces 15, for example, the GaN ingot 20 is formed. It is also possible to obtain a plurality of GaN wafers 30 by performing etching on them.
 また、上述した例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した一の例又は変形例における各構成は、他の例又は変形例における各構成に任意に適用することができる。 Also, various materials and shapes can be applied to each configuration in the above-described examples without being limited to the above-described materials and shapes. Further, each configuration in the above-described one example or modified example can be arbitrarily applied to each configuration in another example or modified example.
 また、レーザ加工装置1は、上述した構成を有するものに限定されない。例えば、レーザ加工装置1は、空間光変調器4を備えていなくてもよい。
[実施形態に係るレーザ加工方法、及び、半導体デバイス製造方法]
Further, the laser processing device 1 is not limited to the one having the above-mentioned configuration. For example, the laser processing device 1 may not include the spatial light modulator 4.
[Laser Processing Method According to Embodiment and Semiconductor Device Manufacturing Method]
 図35は、レーザ加工装置を示す図である。図35に示されるように、レーザ加工装置1Aは、図1に示されたレーザ加工装置1と比較して、測定部50をさらに備える点、及び、ステージ2に代えてステージ2Aを備える点において、レーザ加工装置1と相違している。レーザ加工装置1Aにおいては、光源3、空間光変調器4、及び、集光レンズ5によって、照射部45が構成されている。すなわち、レーザ加工装置1Aは、GaNウェハ30を支持するステージ2Aと、ステージ2Aに支持されたGaNウェハ30にレーザ光Lを照射する照射部45と、GaNウェハ30の透過率を測定する測定部50と、照射部45及び測定部50を制御する制御部6と、を備えている。 FIG. 35 is a diagram showing a laser processing device. As shown in FIG. 35, the laser processing apparatus 1A is different from the laser processing apparatus 1 shown in FIG. 1 in that the laser processing apparatus 1A further includes a measuring unit 50 and that the laser processing apparatus 1A includes a stage 2A instead of the stage 2. , The laser processing apparatus 1 is different. In the laser processing apparatus 1</b>A, the light source 3, the spatial light modulator 4, and the condenser lens 5 form an irradiation unit 45. That is, the laser processing apparatus 1A includes the stage 2A that supports the GaN wafer 30, the irradiation unit 45 that irradiates the GaN wafer 30 supported by the stage 2A with the laser light L, and the measurement unit that measures the transmittance of the GaN wafer 30. 50 and a control unit 6 that controls the irradiation unit 45 and the measurement unit 50.
 ステージ2Aは、測定に用いられる測定光ILを透過する透過部2Tを含む。測定部50は、ステージ2Aに支持されたGaNウェハ30に向けて測定光ILを照射する光源51と、GaNウェハ30及び透過部2Tを透過した測定光ILを検出する光検出器52と、を有し、光検出器52の検出結果に基づいてGaNウェハ30の透過率を測定する。 The stage 2A includes a transmission part 2T that transmits the measurement light IL used for measurement. The measurement unit 50 includes a light source 51 that irradiates the GaN wafer 30 supported by the stage 2A with the measurement light IL, and a photodetector 52 that detects the measurement light IL transmitted through the GaN wafer 30 and the transmission unit 2T. Then, the transmittance of the GaN wafer 30 is measured based on the detection result of the photodetector 52.
 本実施形態に係る方法においては、まず、上記の第1例と同様にして、工程S1~工程S3を実施する。すなわち、図36に示されるように、(GaNインゴット20に代えて)GaNウェハ30の表面30aからGaNウェハ30の内部にレーザ光Lを照射することにより、GaNウェハ30の内部において表面30aに対向する仮想面15に沿って、複数の改質スポット13(改質スポット13a~改質スポット13c)、及び、複数の改質スポット13において析出されたガリウムを含む複数の析出領域Rを形成する(第1工程)。この第1工程においては、当然ながら、仮想面15におけるレーザ光Lのエネルギーは、GaNウェハ30の加工閾値を上回っている。 In the method according to the present embodiment, first, steps S1 to S3 are carried out in the same manner as the above-mentioned first example. That is, as shown in FIG. 36, by irradiating the laser light L from the surface 30 a of the GaN wafer 30 (in place of the GaN ingot 20) to the inside of the GaN wafer 30, the surface 30 a is opposed to the inside of the GaN wafer 30. A plurality of reforming spots 13 (reforming spots 13a to 13c) and a plurality of deposition regions R containing gallium deposited in the plurality of reforming spots 13 are formed along the virtual surface 15 ( First step). In the first step, of course, the energy of the laser light L on the virtual surface 15 exceeds the processing threshold of the GaN wafer 30.
 改質スポット13a~改質スポット13cを形成するときのレーザ光Lの照射条件は、例えば次のように規定することができる。まず、レーザ光Lのパルスエネルギーが大きくなると、改質スポット13の周辺に形成される析出領域Rが大きくなる傾向にある。したがって、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に大きくする(改質スポット13及び析出領域Rを相対的に粗に形成する)場合には、後のレーザ光の照射による析出領域Rの拡大の観点から、レーザ光Lのパルスエネルギーを大きくすることができる。一方で、(例えばY方向における)レーザ光Lの集光点C間の距離を相対的に小さくする(改質スポット13及び析出領域Rを相対的に密に形成する)場合には、レーザ光のパルスエネルギーを小さくしても、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。一例として、レーザ光Lのパルスピッチを10μmと一定とすると、Y方向において隣り合う集光点C間の距離を8μmとする場合には、レーザ光Lのパルスエネルギーを2μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。また、Y方向において隣り合う集光点C間の距離を4μmとする場合には、レーザ光Lのパルスエネルギーを0.67μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。さらに、Y方向において隣り合う集光点C間の距離を2μmとする場合には、レーザ光Lのパルスエネルギーを0.33μJ程度とすることにより、後の工程でのレーザ光の照射によって析出領域Rを拡大し得る。 The irradiation conditions of the laser light L when forming the modified spots 13a to 13c can be specified as follows, for example. First, as the pulse energy of the laser light L increases, the deposition region R formed around the modified spot 13 tends to increase. Therefore, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively increased (the modified spot 13 and the deposition region R are relatively coarsely formed), the subsequent laser is used. The pulse energy of the laser light L can be increased from the viewpoint of enlarging the deposition region R by irradiation with light. On the other hand, when the distance between the condensing points C of the laser light L (for example, in the Y direction) is relatively small (the modified spots 13 and the deposition regions R are relatively densely formed), the laser light is used. Even if the pulse energy of is reduced, the deposition region R can be enlarged by irradiation with laser light in a later step. As an example, when the pulse pitch of the laser light L is fixed to 10 μm, when the distance between the condensing points C adjacent in the Y direction is 8 μm, the pulse energy of the laser light L is set to about 2 μJ. The deposition region R can be enlarged by irradiation with laser light in a later step. Further, when the distance between the condensing points C adjacent to each other in the Y direction is 4 μm, the pulse energy of the laser light L is set to about 0.67 μJ, so that the deposition area is formed by the irradiation of the laser light in the subsequent step. R can be expanded. Further, when the distance between the condensing points C adjacent to each other in the Y direction is 2 μm, the pulse energy of the laser light L is set to about 0.33 μJ, so that the deposition region is formed by the irradiation of the laser light in a later step. R can be expanded.
 続いて、GaNウェハ30の透過率を測定する(第4工程)。続いて、第4工程において測定された透過率が基準値よりも高いか否かを判定する(第5工程)。GaNウェハ30の透過率の基準値は、例えば0.5(50%)とすることができる。そして、第5工程の判定の結果、当該透過率が基準値よりも高い場合には、改質スポット13の形成が不十分であるとして、第1工程を再び実施する。一方、第5工程の判定の結果、当該透過率が基準値以下である場合には、続く工程に進む。 Subsequently, the transmittance of the GaN wafer 30 is measured (fourth step). Then, it is determined whether the transmittance measured in the fourth step is higher than the reference value (fifth step). The reference value of the transmittance of the GaN wafer 30 can be set to 0.5 (50%), for example. Then, as a result of the determination in the fifth step, if the transmittance is higher than the reference value, the formation of the modified spots 13 is considered to be insufficient, and the first step is performed again. On the other hand, as a result of the determination in the fifth step, if the transmittance is equal to or less than the reference value, the process proceeds to the subsequent step.
 すなわち、続く工程においては、図37に示されるように、GaNウェハ30を半導体製造装置のチャンバH内に配置する。そして、GaNウェハ30に対して、エピタキシャル成長によって半導体デバイスのための半導体層(エピタキシャル成長層)70を形成する。ここでは、GaNウェハ30の表面30aに半導体層70を形成する。ここでのエピタキシャル成長は、任意の方法を用いることができるが、GaNウェハ30が例えば1030℃程度に加熱され得る。 That is, in the subsequent step, as shown in FIG. 37, the GaN wafer 30 is placed in the chamber H of the semiconductor manufacturing apparatus. Then, a semiconductor layer (epitaxial growth layer) 70 for a semiconductor device is formed on the GaN wafer 30 by epitaxial growth. Here, the semiconductor layer 70 is formed on the surface 30 a of the GaN wafer 30. Although any method can be used for the epitaxial growth here, the GaN wafer 30 can be heated to, for example, about 1030° C.
 続いて、半導体層70が設けられたGaNウェハ30をチャンバHから取り出す。そして、図38及び図39に示されるように、GaNウェハ30の表面30aに交差する方向(Z方向)からみて、レーザ光Lの集光点Cを改質スポット13に重ならないように配置する。ここでは、複数の集光点Cのそれぞれを、Y方向に互いに隣り合う改質スポット13a及び改質スポット13bとの間に配置する。また、ここでは、一例として、集光点Cは、改質スポット13に加えて、亀裂14及び析出領域Rに重ならないように配置され得る。そのうえで、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るようにする。その状態において、表面30aの反対側の裏面(GaNウェハ30における半導体層70が形成された面と異なる面)30rからGaNウェハ30の内部にレーザ光Lを照射する。 Subsequently, the GaN wafer 30 provided with the semiconductor layer 70 is taken out from the chamber H. Then, as shown in FIGS. 38 and 39, the condensing point C of the laser light L is arranged so as not to overlap the modified spot 13 when viewed from the direction (Z direction) crossing the surface 30 a of the GaN wafer 30. .. Here, each of the plurality of condensing points C is arranged between the modified spot 13a and the modified spot 13b which are adjacent to each other in the Y direction. Further, here, as an example, the condensing point C may be arranged so as not to overlap the crack 14 and the deposition region R in addition to the modified spot 13. Then, the energy on the virtual surface 15 is set to be lower than the processing threshold of the GaN wafer 30. In that state, the laser light L is irradiated to the inside of the GaN wafer 30 from the back surface (the surface of the GaN wafer 30 different from the surface on which the semiconductor layer 70 is formed) 30r opposite to the front surface 30a.
 この工程は、以下の知見に基づいている。すなわち、まず、ガリウムを含む半導体対象物にレーザ光を照射することにより、仮想面に沿って、複数の改質スポットと、それらの複数の改質スポットにおいて析出されたガリウムを含む析出領域と、を形成する。そうすると、後の工程においてレーザ光を再度照射するときに、(レーザ光の集光点が予め形成された改質スポットが重ならないようにすると共に)仮想面におけるレーザ光のエネルギーを半導体対象物の加工閾値を下回るほど低下させても、予め形成されたガリウムを含む析出領域を拡大させることができる。その結果、仮想面に渡る亀裂を形成して半導体部材を切り出したときに、切り出された面の凹凸を低減できる。 -This process is based on the following findings. That is, first, by irradiating a semiconductor object containing gallium with laser light, along a virtual plane, a plurality of modified spots, and a deposition region containing gallium deposited in the plurality of modified spots, To form. Then, when the laser light is irradiated again in a later step, the energy of the laser light on the virtual plane is changed (while preventing the modified spots formed in advance from overlapping the focused spots of the laser light). Even if it is lowered below the processing threshold value, the deposition region containing gallium formed in advance can be expanded. As a result, when a semiconductor member is cut out by forming a crack across a virtual surface, it is possible to reduce the unevenness of the cut surface.
 ここでは、レーザ加工装置1が、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させる。また、パルス発振されたレーザ光Lが、Y方向に並ぶ複数(例えば6つ)の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、Y方向において隣り合う集光点C間の距離は1μmであり、レーザ光Lのパルスピッチは10μmである。また、レーザ光Lのパルスエネルギーは、0.33μJである。この照射条件によれば、レーザ光Lの集光点Cに対応する位置に改質スポットが形成されないものの、析出領域Rが拡大される。この後の工程については、上記の第1例と同様である。これにより、GaNウェハ30から半導体層70を含む半導体デバイスが取得される。 Here, the laser processing apparatus 1 moves the focal point C of the pulsed laser light L along the virtual surface 15. Further, the pulsed laser light L is modulated by the spatial light modulator 4 so as to be condensed at a plurality of (for example, six) condensing points C arranged in the Y direction. Then, the plurality of condensing points C are relatively moved on the virtual surface 15 along the X direction. As an example, the distance between the condensing points C adjacent to each other in the Y direction is 1 μm, and the pulse pitch of the laser light L is 10 μm. The pulse energy of the laser light L is 0.33 μJ. According to this irradiation condition, although the modified spot is not formed at the position corresponding to the condensing point C of the laser light L, the deposition region R is enlarged. The subsequent steps are the same as those in the above first example. As a result, a semiconductor device including the semiconductor layer 70 is obtained from the GaN wafer 30.
 以上説明した様に、本実施形態に係る方法においては、エピタキシャル成長による半導体デバイスのための半導体層70の形成に先立って、レーザ光Lの照射によってGaNウェハ30の内部に改質スポット13を形成する。したがって、改質スポット13の形成に際して半導体層70に対してダメージが生じ得ない。よって、当該改質スポット13から延びる亀裂を進展させてGaNウェハ30を剥離することにより、ダメージが抑制された好適な半導体デバイスが取得可能である。 As described above, in the method according to the present embodiment, the modified spots 13 are formed inside the GaN wafer 30 by the irradiation of the laser light L before the formation of the semiconductor layer 70 for the semiconductor device by the epitaxial growth. .. Therefore, the semiconductor layer 70 cannot be damaged when the modified spot 13 is formed. Therefore, by advancing the crack extending from the modified spot 13 and peeling the GaN wafer 30, a suitable semiconductor device in which damage is suppressed can be obtained.
 また、本実施形態に係る方法は、第2工程の後に、表面30aに交差する方向からみて集光点Cが改質スポット13に重ならないように、GaNウェハ30における半導体層70が形成された面と異なる裏面30rからGaNウェハ30の内部にレーザ光Lを照射することにより、仮想面15に渡る亀裂を形成する第3工程を備えている。このように、レーザ光Lの照射によって、剥離の起点となる仮想面15に沿った亀裂を形成してもよい。なお、この場合であっても、半導体層70の形成に先立って改質スポット13を形成しているので、全てのレーザ加工を半導体層70の形成の後に行う場合と比較して、半導体層70へのダメージが抑制される。 In the method according to the present embodiment, the semiconductor layer 70 in the GaN wafer 30 is formed after the second step so that the condensing point C does not overlap the modified spot 13 when viewed from the direction intersecting the surface 30a. A third step of forming a crack across the virtual surface 15 by irradiating the inside of the GaN wafer 30 with the laser light L from the back surface 30r different from the surface is provided. As described above, the irradiation of the laser beam L may form a crack along the virtual surface 15 that is the starting point of peeling. Even in this case, since the modified spot 13 is formed prior to the formation of the semiconductor layer 70, the semiconductor layer 70 is compared with the case where all the laser processing is performed after the formation of the semiconductor layer 70. Damage is suppressed.
 また、本実施形態に係る方法においては、第1工程においては、表面30aからGaNウェハの内部にレーザ光Lを照射することにより、複数の改質スポット13、及び、複数の改質スポット13において析出されたガリウムを含む複数の析出領域Rを形成し、第3工程においては、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るようにGaNウェハ30の内部にレーザ光Lを照射することにより、析出領域Rを拡大し、仮想面15に渡る亀裂を形成する。 Further, in the method according to the present embodiment, in the first step, the laser light L is irradiated from the surface 30a to the inside of the GaN wafer, so that the plurality of modified spots 13 and the plurality of modified spots 13 are formed. Forming a plurality of deposition regions R containing deposited gallium, and in the third step, irradiating the inside of the GaN wafer 30 with laser light L such that the energy on the virtual surface 15 falls below the processing threshold of the GaN wafer 30. Thereby, the deposition region R is enlarged and a crack is formed across the virtual surface 15.
 このように、まず、ガリウムを含むGaNウェハ30の内部にレーザ光Lを照射することにより、レーザ光Lの入射面である表面30aに対向する仮想面15に沿って、複数の改質スポット13、及び、析出されたガリウムを含む複数の析出領域Rを形成する。そして、後の工程において、集光点Cが改質スポット13に重ならないように、且つ、仮想面15におけるエネルギーがGaNウェハ30の加工閾値を下回るように、GaNウェハ30の内部にレーザ光Lを照射することにより析出領域Rを拡大し、仮想面15に渡る亀裂を形成する。この結果、上記知見のとおり、仮想面15に渡る亀裂を境界とした剥離により、凹凸の低減された好適な半導体デバイスを得ることが可能となる。 As described above, first, by irradiating the inside of the GaN wafer 30 containing gallium with the laser light L, the plurality of modified spots 13 are formed along the virtual surface 15 facing the surface 30a that is the incident surface of the laser light L. , And a plurality of deposition regions R containing the deposited gallium. Then, in a later step, the laser light L is introduced inside the GaN wafer 30 so that the converging point C does not overlap the modified spot 13 and the energy on the virtual surface 15 falls below the processing threshold of the GaN wafer 30. Is irradiated to expand the precipitation region R and form a crack across the virtual surface 15. As a result, as described above, it becomes possible to obtain a suitable semiconductor device in which unevenness is reduced by peeling with the crack extending over the virtual surface 15 as a boundary.
 以上の実施形態は、本開示に係るレーザ加工方法及び半導体デバイス製造方法の一例を説明したものである。したがって、本開示に係るレーザ加工方法及び半導デイバス製造方法は、上記実施形態に限定されず、種々の変更が適用され得る。 The above embodiments describe one example of the laser processing method and the semiconductor device manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor device manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
 例えば、レーザ加工方法においては、第2工程において、エピタキシャル成長のためのGaNウェハ30の加熱によって、複数の改質スポット13からそれぞれ延びる複数の亀裂を進展させることにより、仮想面15に渡る亀裂を形成してもよい。この場合、半導体層70の形成と、仮想面15に渡る亀裂の形成とを、同時に行うことが可能となる。 For example, in the laser processing method, in the second step, by heating the GaN wafer 30 for epitaxial growth, a plurality of cracks respectively extending from the plurality of modified spots 13 are propagated to form a crack across the virtual surface 15. You may. In this case, the formation of the semiconductor layer 70 and the formation of the crack over the virtual surface 15 can be performed at the same time.
 このとき、第1工程においては、GaNウェハ30に対して、複数の改質スポット13からそれぞれ延びる複数の亀裂14の進展を阻む周縁領域16を設けてもよい。この場合、第2工程でのエピタキシャル成長の際に、仮想面15に渡る亀裂が意図せずに形成されて剥離が生じることが抑制される。 At this time, in the first step, the GaN wafer 30 may be provided with the peripheral region 16 that prevents the development of the plurality of cracks 14 extending from the plurality of modified spots 13, respectively. In this case, during the epitaxial growth in the second step, unintentional formation of cracks across the imaginary plane 15 and peeling are suppressed.
 また、上記の方法においては、第4工程においてGaNウェハ30の透過率を測定し、第5工程において当該透過率が基準値よりも高いと判定された場合には、改めて第1工程を実施して十分に改質スポット13を形成する場合について例示した。この場合には、半導体層70を形成した後のレーザ加工を低エネルギー化したり、レーザ光の照射を控えたりすることにより、半導体層70へのダメージを抑制できた。 In addition, in the above method, the transmittance of the GaN wafer 30 is measured in the fourth step, and if the transmittance is determined to be higher than the reference value in the fifth step, the first step is performed again. The case in which the modified spots 13 are sufficiently formed by the above-described example has been described. In this case, damage to the semiconductor layer 70 could be suppressed by lowering the energy of laser processing after forming the semiconductor layer 70 or by refraining from irradiation with laser light.
 一方で、第1工程において、透過率が基準値よりも高い状態を維持しつつ、第2工程において半導体層70を形成し、その後、第3工程において、GaNウェハ30の加工閾値を超えるエネルギーでのレーザ加工を実施してもよい。この場合、事前の改質スポット13の形成量が少なくなるので、第2工程のエピタキシャル成長の際に半導体層70の反りが生じることを抑制できる。なお、この場合であっても、全てのレーザ加工を半導体層70の形成の後に行う場合と比較して、半導体層70へのダメージが抑制される。また、この場合には、GaNウェハ30の透過率の測定及び判定は必須でない。 On the other hand, in the first step, the semiconductor layer 70 is formed in the second step while maintaining the transmittance higher than the reference value, and then in the third step, with the energy exceeding the processing threshold of the GaN wafer 30. Laser processing may be performed. In this case, since the amount of the modified spots 13 formed in advance is small, it is possible to suppress the warp of the semiconductor layer 70 during the epitaxial growth in the second step. Even in this case, damage to the semiconductor layer 70 is suppressed as compared with the case where all laser processing is performed after the formation of the semiconductor layer 70. Moreover, in this case, the measurement and determination of the transmittance of the GaN wafer 30 are not essential.
 以上の実施形態は、本開示に係るレーザ加工方法及び半導体デバイス製造方法の一例を説明したものである。したがって、本開示に係るレーザ加工方法及び半導体デバイス製造方法は、上記実施形態に限定されず、種々の変更が適用され得る。 The above embodiments describe one example of the laser processing method and the semiconductor device manufacturing method according to the present disclosure. Therefore, the laser processing method and the semiconductor device manufacturing method according to the present disclosure are not limited to the above embodiment, and various modifications can be applied.
 例えば、上記実施形態に係る方法に対して、第1例、第2例、及び、それぞれの変形例の要素を任意に適用できる。一例としては、第1工程においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がらないように、複数の改質スポット13を形成するこができる。また、第1工程においては、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数の改質スポット13として複数列の改質スポット13を形成すると共に、第3工程においては、パルス発振されたレーザ光Lの集光点Cを複数列の改質スポット13の列間において仮想面15に沿って移動させることができる。 For example, the elements of the first example, the second example, and the respective modified examples can be arbitrarily applied to the method according to the above embodiment. As an example, in the first step, the plurality of modified spots 13 can be formed so that the plurality of cracks 14 extending from the plurality of modified spots 13 are not connected to each other. In the first step, the condensing point C of the pulsed laser light L is moved along the virtual surface 15 to form a plurality of modified spots 13 as a plurality of modified spots 13. In the third step, the condensing point C of the pulsed laser light L can be moved along the virtual surface 15 between the rows of the reforming spots 13 in a plurality of rows.
 好適な半導体デバイスの取得を可能とするレーザ加工方法、及び、半導体デバイス製造方法が提供される。 Provided are a laser processing method capable of obtaining a suitable semiconductor device and a semiconductor device manufacturing method.
 13…改質スポット、15…仮想面、30…GaNウェハ(半導体ウェハ)、30a…表面、70…半導体層、L…レーザ光、R…析出領域。 Reference numeral 13 is a modified spot, 15 is a virtual surface, 30 is a GaN wafer (semiconductor wafer), 30a is a surface, 70 is a semiconductor layer, L is a laser beam, R is a deposition region.

Claims (11)

  1.  半導体ウェハの内部において前記半導体ウェハの表面に対向する仮想面に沿って、前記半導体ウェハを切断するためのレーザ加工方法であって、
     前記表面から前記半導体ウェハの内部にレーザ光を照射することにより、前記半導体ウェハの内部において前記仮想面に沿って、複数の改質スポットを形成する第1工程と、
     前記第1工程の後に、前記半導体ウェハに対して、エピタキシャル成長によって半導体デバイスのための半導体層を形成する第2工程と、
     を備えるレーザ加工方法。
    A laser processing method for cutting the semiconductor wafer along a virtual surface facing the surface of the semiconductor wafer inside the semiconductor wafer,
    A first step of forming a plurality of modified spots along the virtual surface inside the semiconductor wafer by irradiating the inside of the semiconductor wafer with laser light from the surface,
    A second step of forming a semiconductor layer for a semiconductor device on the semiconductor wafer by epitaxial growth after the first step;
    A laser processing method comprising:
  2.  前記第2工程の後に、前記表面に交差する方向からみて集光点が前記改質スポットに重ならないように、前記半導体ウェハにおける前記半導体層が形成された面と異なる面から前記半導体ウェハの内部にレーザ光を照射することにより、前記仮想面に渡る亀裂を形成する第3工程を備える、
     請求項1に記載のレーザ加工方法。
    After the second step, the inside of the semiconductor wafer is viewed from a surface different from the surface on which the semiconductor layer is formed in the semiconductor wafer so that a converging point does not overlap the modified spot when viewed from a direction intersecting the surface. A third step of forming a crack across the virtual surface by irradiating a laser beam on
    The laser processing method according to claim 1.
  3.  前記半導体ウェハは、ガリウムを含み、
     前記第1工程においては、前記表面から前記半導体ウェハの内部にレーザ光を照射することにより、前記複数の改質スポット、及び、前記複数の改質スポットにおいて析出されたガリウムを含む複数の析出領域を形成し、
     前記第3工程においては、前記仮想面におけるエネルギーが前記半導体ウェハの加工閾値を下回るように前記半導体ウェハの内部にレーザ光を照射することにより、前記析出領域を拡大し、前記仮想面に渡る亀裂を形成する、
     請求項2に記載のレーザ加工方法。
    The semiconductor wafer contains gallium,
    In the first step, by irradiating the inside of the semiconductor wafer with laser light from the surface, the plurality of modified spots and a plurality of deposition regions containing gallium deposited at the plurality of modified spots. To form
    In the third step, by irradiating the inside of the semiconductor wafer with laser light so that the energy on the virtual surface falls below the processing threshold value of the semiconductor wafer, the deposition region is expanded, and cracks extend across the virtual surface. To form,
    The laser processing method according to claim 2.
  4.  前記第2工程においては、前記エピタキシャル成長のための前記半導体ウェハの加熱によって、前記複数の改質スポットからそれぞれ延びる複数の亀裂を進展させることにより、前記仮想面に渡る亀裂を形成する、
     請求項1に記載のレーザ加工方法。
    In the second step, by heating the semiconductor wafer for the epitaxial growth, a plurality of cracks respectively extending from the plurality of modified spots are propagated to form a crack across the virtual surface,
    The laser processing method according to claim 1.
  5.  前記第1工程においては、前記半導体ウェハに対して、前記複数の改質スポットからそれぞれ延びる複数の亀裂の進展を阻む周縁領域を設ける、
     請求項1~4のいずれか一項に記載のレーザ加工方法。
    In the first step, the semiconductor wafer is provided with peripheral regions that prevent the development of a plurality of cracks extending from the plurality of modified spots, respectively.
    The laser processing method according to any one of claims 1 to 4.
  6.  前記第1工程と前記第2工程との間において、前記半導体ウェハの透過率を測定する第4工程と、
     前記第4工程と前記第2工程との間において、前記第4工程において測定された透過率が基準値よりも高いか否かを判定する第5工程と、
     をさらに備え、
     前記第5工程の判定の結果、当該透過率が基準値よりも高い場合には、前記第1工程を再び実施する、
     請求項1~5のいずれか一項に記載のレーザ加工方法。
    A fourth step of measuring the transmittance of the semiconductor wafer between the first step and the second step;
    A fifth step of determining whether or not the transmittance measured in the fourth step is higher than a reference value between the fourth step and the second step,
    Further equipped with,
    As a result of the determination in the fifth step, when the transmittance is higher than the reference value, the first step is performed again,
    The laser processing method according to any one of claims 1 to 5.
  7.  前記第1工程においては、前記複数の改質スポットからそれぞれ延びる複数の亀裂が互いに繋がらないように、前記複数の改質スポットを形成する、
     請求項1~6のいずれか一項に記載のレーザ加工方法。
    In the first step, the plurality of modified spots are formed so that the plurality of cracks extending from the plurality of modified spots are not connected to each other.
    The laser processing method according to any one of claims 1 to 6.
  8.  前記第1工程においては、パルス発振されたレーザ光の集光点を前記仮想面に沿って移動させることにより、前記複数の改質スポットとして複数列の改質スポットを形成し、
     前記第3工程においては、パルス発振されたレーザ光の集光点を前記複数列の改質スポットの列間において前記仮想面に沿って移動させる、
     請求項2又は3に記載のレーザ加工方法。
    In the first step, a plurality of rows of modified spots are formed as the plurality of modified spots by moving the focal point of the pulsed laser light along the virtual surface,
    In the third step, the condensing point of the pulsed laser light is moved along the virtual plane between the rows of the reforming spots of the plurality of rows.
    The laser processing method according to claim 2 or 3.
  9.  前記半導体ウェハは、窒化ガリウムを含む、
     請求項1~8のいずれか一項に記載のレーザ加工方法。
    The semiconductor wafer includes gallium nitride,
    The laser processing method according to any one of claims 1 to 8.
  10.  請求項1~9のいずれか一項に記載のレーザ加工方法を実施する工程と、
     前記仮想面に渡る亀裂を境界として前記半導体ウェハから複数の半導体デバイスを取得する工程と、
     を備える半導体デバイス製造方法。
    Carrying out the laser processing method according to any one of claims 1 to 9;
    A step of obtaining a plurality of semiconductor devices from the semiconductor wafer with a crack across the virtual plane as a boundary;
    A semiconductor device manufacturing method comprising:
  11.  前記仮想面は、前記表面に沿った方向に並ぶように複数設定されている、
     請求項10に記載の半導体デバイス製造方法。
    A plurality of the virtual surfaces are set so as to be arranged in a direction along the surface,
    The semiconductor device manufacturing method according to claim 10.
PCT/JP2019/049955 2018-12-21 2019-12-19 Laser machining method, and semiconductor device manufacturing method WO2020130108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239492A JP7330695B2 (en) 2018-12-21 2018-12-21 LASER PROCESSING METHOD AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2018-239492 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130108A1 true WO2020130108A1 (en) 2020-06-25

Family

ID=71101283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049955 WO2020130108A1 (en) 2018-12-21 2019-12-19 Laser machining method, and semiconductor device manufacturing method

Country Status (3)

Country Link
JP (1) JP7330695B2 (en)
TW (1) TW202108275A (en)
WO (1) WO2020130108A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369677B (en) * 2021-05-31 2022-05-31 深圳赛意法微电子有限公司 Wafer cutting method and cutting equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535472A (en) * 2000-05-30 2003-11-25 コミツサリア タ レネルジー アトミーク Vulnerable substrate and method of manufacturing such a substrate
WO2010082267A1 (en) * 2009-01-15 2010-07-22 並木精密宝石株式会社 Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same
WO2011108698A1 (en) * 2010-03-05 2011-09-09 並木精密宝石株式会社 Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
JP2012169363A (en) * 2011-02-10 2012-09-06 Saitama Univ Substrate processing method
WO2017163548A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Production method for seed crystal substrate, production method for group-13 element nitride crystal, and seed crystal substrate
JP2017183600A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Slice method and slice device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535472A (en) * 2000-05-30 2003-11-25 コミツサリア タ レネルジー アトミーク Vulnerable substrate and method of manufacturing such a substrate
WO2010082267A1 (en) * 2009-01-15 2010-07-22 並木精密宝石株式会社 Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same
WO2011108698A1 (en) * 2010-03-05 2011-09-09 並木精密宝石株式会社 Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor
JP2012169363A (en) * 2011-02-10 2012-09-06 Saitama Univ Substrate processing method
WO2017163548A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Production method for seed crystal substrate, production method for group-13 element nitride crystal, and seed crystal substrate
JP2017183600A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Slice method and slice device

Also Published As

Publication number Publication date
TW202108275A (en) 2021-03-01
JP2020102521A (en) 2020-07-02
JP7330695B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2020130109A1 (en) Laser machining method and production method for semiconductor member
JP5905274B2 (en) Manufacturing method of semiconductor device
KR102128416B1 (en) Laser machining device and laser machining method
KR20150135262A (en) Laser machining device and laser machining method
JP6012185B2 (en) Manufacturing method of semiconductor device
JP7123759B2 (en) Laser slicing device and laser slicing method
WO2020130108A1 (en) Laser machining method, and semiconductor device manufacturing method
JP5361916B2 (en) Laser scribing method
WO2020130054A1 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
WO2020130110A1 (en) Laser machining apparatus
WO2020129569A1 (en) Laser machining method, semiconductor member production method, and semiconductor object
JP7246919B2 (en) Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
WO2021153353A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
WO2021153354A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
US20230123795A1 (en) Singulation of optical devices from optical device substrates via laser ablation
JP2023183070A (en) Laser processing method, method of manufacturing semiconductor device and laser processing device
KR20230123917A (en) Laser processing device and laser processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898446

Country of ref document: EP

Kind code of ref document: A1