JP6902186B2 - How to cut the material to be processed - Google Patents

How to cut the material to be processed Download PDF

Info

Publication number
JP6902186B2
JP6902186B2 JP2017216228A JP2017216228A JP6902186B2 JP 6902186 B2 JP6902186 B2 JP 6902186B2 JP 2017216228 A JP2017216228 A JP 2017216228A JP 2017216228 A JP2017216228 A JP 2017216228A JP 6902186 B2 JP6902186 B2 JP 6902186B2
Authority
JP
Japan
Prior art keywords
processed
along
modified region
laser beam
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216228A
Other languages
Japanese (ja)
Other versions
JP2018050066A (en
Inventor
山下 憲二
憲二 山下
宏一 難波江
宏一 難波江
Original Assignee
シセルカルビド イー ストックホルム アクチボラゲット
シセルカルビド イー ストックホルム アクチボラゲット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シセルカルビド イー ストックホルム アクチボラゲット, シセルカルビド イー ストックホルム アクチボラゲット filed Critical シセルカルビド イー ストックホルム アクチボラゲット
Publication of JP2018050066A publication Critical patent/JP2018050066A/en
Application granted granted Critical
Publication of JP6902186B2 publication Critical patent/JP6902186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Description

本発明は、加工対象材料の切断方法に関する。 The present invention relates to a method for cutting a material to be processed.

SiC等の加工対象材料の切断は、ワイヤーソー等を用いて機械的に切断することが一般的である。しかし、ワイヤーソー等を用いた加工では、低速度での加工となってしまいスループットが低下するという問題点がある。 The material to be processed such as SiC is generally cut mechanically using a wire saw or the like. However, processing using a wire saw or the like has a problem that the processing is performed at a low speed and the throughput is lowered.

この問題点を解消するため、加工対象材料の切断予定面に沿ってパルスレーザ光を照射することにより内部に改質領域を形成し、切断予定面に沿って加工対象材料を切断する加工対象材料の切断方法が提案されている(特許文献1参照)。特許文献1に記載の方法では、SiC材料の内部において切断予定面上に集光点を合わせた状態で、レーザ光を所定のラインに沿って相対的に移動させている。特許文献1では、切断予定面はSiC結晶のc面とオフ角分の角度をなしており、レーザ光の一の照射点と該一の照射点に最も近い他の照射点とのピッチが1μm以上10μm未満の範囲であるときに、改質領域からのc面割れが好適に生じるとされている。 In order to solve this problem, a modified region is formed inside by irradiating a pulsed laser beam along the planned cutting surface of the material to be processed, and the material to be processed is cut along the planned cutting surface. (See Patent Document 1). In the method described in Patent Document 1, the laser beam is relatively moved along a predetermined line in a state where the condensing point is aligned on the planned cutting surface inside the SiC material. In Patent Document 1, the planned cutting surface has an angle corresponding to the off angle with the c-plane of the SiC crystal, and the pitch between one irradiation point of the laser beam and the other irradiation point closest to the one irradiation point is 1 μm. It is said that c-plane cracking from the modified region preferably occurs when the range is less than 10 μm.

しかし、実際に特許文献1に示されているようにライン状の改質領域を並べて形成したところ、1本のライン状の改質領域のみでは改質領域からc面に沿って延びる割れは確認されず、2本のライン状の改質領域を形成した際にこれらの改質領域間にc面に沿った割れが確認された。 However, when the line-shaped modified regions were actually formed side by side as shown in Patent Document 1, cracks extending from the modified region along the c-plane were confirmed only in one line-shaped modified region. However, when two line-shaped modified regions were formed, cracks along the c-plane were confirmed between these modified regions.

特開2013−49161号公報Japanese Unexamined Patent Publication No. 2013-49161

ところで、切断予定面の法線が所定の低指数面の法線とオフ角分の角度をなしている場合に、ライン状の改質領域を並べて形成した際に、所定の領域で生じた所定の低指数面に沿って延びる割れがレーザ加工前の加工予定領域まで伸展してしまうと、この領域においてはオフ角分だけ切断予定面からずれた位置に割れが生じてしまう。そして、この領域をレーザ加工すると、割れが生じた位置にレーザ光が吸収されやすいことから、切断予定面からずれた位置に改質領域が形成されてしまう。これを繰り返すことにより、初期に生じた割れが所定の低指数面に沿って際限なく伸展してしまい、最終的に得られる切断面が切断予定面から大きくずれてしまうおそれがあった。 By the way, when the normal of the planned cutting surface is formed at an angle corresponding to the off-angle with the normal of the predetermined low exponential surface, when the linear modified regions are formed side by side, the predetermined region occurs in the predetermined region. If the crack extending along the low exponential surface of the above extends to the planned processing region before laser machining, the crack will occur at a position deviated from the planned cutting plane by the off angle in this region. Then, when this region is laser-processed, the laser beam is easily absorbed at the position where the crack occurs, so that the modified region is formed at a position deviated from the planned cutting surface. By repeating this, the cracks initially generated may extend endlessly along the predetermined low exponential surface, and the finally obtained cut surface may be significantly deviated from the planned cut surface.

本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、最終的に得られる切断面が切断予定面から大きくずれることのない加工対象材料の切断方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for cutting a material to be processed so that the finally obtained cut surface does not deviate significantly from the planned cut surface. is there.

前記目的を達成するため、本発明では、六方晶系のSiCからなる加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、前記切断予定面の法線は、前記加工対象材料のc面の法線と所定の角度をなし、前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法が提供される。 In order to achieve the above object, in the present invention, after forming a modified region by absorbing laser light on the planned cutting surface of the material to be processed made of hexagonal SiC, the material to be processed is subjected to the planned cutting surface. A method of cutting a material to be processed, in which the normal of the planned cutting surface is at a predetermined angle with the normal of the c-plane of the material to be processed, and the distance between the laser beam irradiation lines. Between the crack suppressing processing step of arranging a plurality of line-shaped modified regions and the line-shaped modified regions formed in the crack suppressing processing step as the distance along the c-plane where the cracks do not extend. In addition, cutting of the material to be processed includes a crack promoting processing step of forming an additional line-shaped modified region as a distance between adjacent laser beam irradiation lines as a distance at which cracks extend along the c-plane. The method is provided.

上記SiC材料の加工方法において、前記c面に沿った割れが伸展しない距離は、前記改質領域の幅寸法の4倍以上とすることができる。 In the above-mentioned processing method of the SiC material, the distance at which the cracks along the c-plane do not extend can be four times or more the width dimension of the modified region.

上記SiC材料の加工方法において、前記c面に沿った割れが伸展する距離は、前記改質領域の幅寸法の4倍未満とすることができる。 In the above-mentioned processing method of the SiC material, the distance at which the crack extends along the c-plane can be less than four times the width dimension of the modified region.

また、本発明では、加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、前記切断予定面の法線は、前記加工対象材料の所定の低指数面の法線と所定の角度をなし、前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を、隣接する前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展する距離として形成する割れ促進加工工程と、を含む加工対象材料の切断方法が提供される。 Further, in the present invention, the processing target material is cut along the planned cutting surface after the modified region is formed by absorbing the laser beam on the planned cutting surface of the processing target material. Therefore, the normal of the planned cutting surface forms a predetermined angle with the normal of the predetermined low exponential surface of the material to be processed, and the distance between the irradiation lines of the laser beam is along the predetermined low exponential surface. An additional line is provided between the crack suppressing processing step of arranging a plurality of line-shaped modified regions and the line-shaped modified regions formed in the crack suppressing processing step as the distance at which the cracks do not extend. A method for cutting a material to be processed, which comprises a crack promoting processing step of forming a modified region having a shape as a distance between adjacent laser beam irradiation lines as a distance at which cracks extend along a predetermined low exponential surface. Is provided.

本発明の加工対象材料の切断方法によれば、最終的に得られる切断面が切断予定面から大きくずれることはない。 According to the cutting method of the material to be processed of the present invention, the finally obtained cut surface does not deviate significantly from the planned cutting surface.

図1は、本発明の一実施形態を示すSiC材料の概略斜視説明図である。FIG. 1 is a schematic perspective explanatory view of a SiC material showing an embodiment of the present invention. 図2は、レーザ照射装置の概略説明図である。FIG. 2 is a schematic explanatory view of the laser irradiation device. 図3は、先行改質領域が形成された状態のSiC材料の一部平面図である。FIG. 3 is a partial plan view of the SiC material in a state where the pre-modified region is formed. 図4は変形例を示し、先行改質領域が形成された状態のSiC材料の一部平面図である。FIG. 4 shows a modified example, and is a partial plan view of the SiC material in a state where the pre-modified region is formed. 図5は、追加改質領域が形成された状態のSiC材料の一部平面図である。FIG. 5 is a partial plan view of the SiC material in a state where the additional modification region is formed. 図6は変形例を示し、追加改質領域が形成された状態のSiC材料の一部平面図である。FIG. 6 shows a modified example, and is a partial plan view of the SiC material in a state where an additional modified region is formed. 図7は、先行改質領域が形成された状態のSiC材料の一部断面図である。FIG. 7 is a partial cross-sectional view of the SiC material in a state where the pre-modified region is formed. 図8は、追加改質領域が形成された状態のSiC材料の一部断面図である。FIG. 8 is a partial cross-sectional view of the SiC material in a state where an additional modified region is formed. 図9は、比較例を示すSiC材料の一部断面図である。FIG. 9 is a partial cross-sectional view of a SiC material showing a comparative example.

図1、図2、図3、図5、図7及び図8は本発明の一実施形態を示すものであり、図1はSiC材料の概略斜視説明図である。
図1に示すように、SiC材料1は、円筒状に形成され、所定の切断予定面100で切断されることにより、複数のSiC基板210に分割される。本実施形態においては、SiC材料1は6H型SiCからなり、直径を例えば3インチとすることができる。また、分割された各SiC基板210は、例えば半導体デバイスの基板として利用される。
1, FIG. 2, FIG. 3, FIG. 5, FIG. 7, and FIG. 8 show an embodiment of the present invention, and FIG. 1 is a schematic perspective explanatory view of a SiC material.
As shown in FIG. 1, the SiC material 1 is formed into a cylindrical shape and is divided into a plurality of SiC substrates 210 by being cut at a predetermined cut surface 100. In this embodiment, the SiC material 1 is made of 6H type SiC and can have a diameter of, for example, 3 inches. Further, each of the divided SiC substrates 210 is used, for example, as a substrate for a semiconductor device.

ここで、各切断予定面100は6H型SiCのc軸に直交するc面とオフ角分の角度をなしている。したがって、各切断予定面100に沿ってSiC材料1を切断することにより、c面とオフ角分の角度を成す主面を有するSiC基板210を製造することができる。尚、オフ角は、例えば4°程度である。 Here, each planned cutting surface 100 forms an angle corresponding to the off angle with the c surface orthogonal to the c axis of the 6H type SiC. Therefore, by cutting the SiC material 1 along each planned cutting surface 100, it is possible to manufacture the SiC substrate 210 having a main surface having an angle corresponding to the off angle with the c surface. The off angle is, for example, about 4 °.

図2は、レーザ照射装置の概略説明図である。
図2に示すように、レーザ照射装置300は、レーザ光をパルス発振するレーザ発振器310と、発振されたレーザ光の方向を変えるミラー320と、レーザ光をフォーカシングする光学レンズ330と、レーザ光の照射対象であるSiC積層体1を支持するステージ340と、を備えている。尚、図2には特に細かい光学系は図示していないが、レーザ照射装置300は、焦点位置調整、ビーム形状調整、収差補正等が可能となっている。また、レーザ照射装置300は、レーザ光の経路を真空状態に維持するハウジング350を有している。本実施形態においては、このレーザ照射装置300を用い、6H型SiCのSiC材料1にレーザ光を照射して、SiC材料1の内部に改質領域を形成し、SiC材料1を切断する。
FIG. 2 is a schematic explanatory view of the laser irradiation device.
As shown in FIG. 2, the laser irradiation device 300 includes a laser oscillator 310 that pulse-oscillates a laser beam, a mirror 320 that changes the direction of the oscillated laser beam, an optical lens 330 that focuses the laser beam, and a laser beam. It includes a stage 340 that supports the SiC laminated body 1 to be irradiated. Although a particularly detailed optical system is not shown in FIG. 2, the laser irradiation device 300 is capable of adjusting the focal position, adjusting the beam shape, correcting aberrations, and the like. Further, the laser irradiation device 300 has a housing 350 that maintains the path of the laser beam in a vacuum state. In the present embodiment, the laser irradiation device 300 is used to irradiate the SiC material 1 of the 6H type SiC with a laser beam to form a modified region inside the SiC material 1 and cut the SiC material 1.

レーザ発振器310から発振されるレーザ光のパルス幅、波長は任意に選択することができるが、例えば、パルス幅がピコ秒で波長域が近赤外のものとすることができる。レーザ発振器310で放出されたレーザ光は、ミラー320で反射されて方向が変更される。ミラー320は、レーザ光の方向を変更するために複数設けられる。また、光学レンズ330は、ステージ340の上方に位置し、SiC材料1に入射されるレーザ光をフォーカシングする。 The pulse width and wavelength of the laser beam oscillated from the laser oscillator 310 can be arbitrarily selected. For example, the pulse width can be picoseconds and the wavelength range can be near infrared. The laser light emitted by the laser oscillator 310 is reflected by the mirror 320 to change the direction. A plurality of mirrors 320 are provided to change the direction of the laser beam. Further, the optical lens 330 is located above the stage 340 and focuses the laser beam incident on the SiC material 1.

ステージ340は、図示しない移動手段によりx方向及び/又はy方向に移動し、その上に載置されたSiC材料1を移動する。さらに、ステージ340をz方向を軸として回転可能としてもよい。すなわち、SiC材料1をレーザ光に対して相対的に移動することができ、これによりSiC材料1の所定深さにレーザ光による加工面を形成することができる。 The stage 340 moves in the x direction and / or the y direction by a moving means (not shown), and moves the SiC material 1 placed on the stage 340. Further, the stage 340 may be rotatable about the z direction. That is, the SiC material 1 can be moved relative to the laser beam, whereby a processed surface formed by the laser beam can be formed at a predetermined depth of the SiC material 1.

レーザ光は、SiC材料1内の集光点近傍にて特に吸収され、これによりSiC材料1に改質領域が形成される。本実施形態においては、レーザ光を所定のラインに沿って相対的に移動させることにより、各切断予定面100に複数のライン状の改質領域からなる改質パターンが形成される。なお、レーザ光を相対移動させる方向は直線状に限定されず、例えば曲線状に移動させることも可能である。 The laser light is particularly absorbed in the vicinity of the condensing point in the SiC material 1, which forms a modified region in the SiC material 1. In the present embodiment, by relatively moving the laser beam along a predetermined line, a modification pattern composed of a plurality of line-shaped modification regions is formed on each planned cutting surface 100. The direction in which the laser beam is relatively moved is not limited to a linear shape, and can be moved in a curved line, for example.

また、本実施形態においては、各切断予定面100に沿って、所定間隔でワンパルスショットを行うことによりライン状の改質領域を形成している。ワンパルスショットが行われた部分には加工スポットが形成され、このような加工スポットとして、クラックスポット、溶融処理スポット、屈折率変化スポット又はこれらの少なくとも2つが混在するもの等が挙げられる。 Further, in the present embodiment, a line-shaped modified region is formed by performing one-pulse shots at predetermined intervals along each planned cutting surface 100. Processing spots are formed in the portion where the one-pulse shot is performed, and examples of such processing spots include crack spots, melting processing spots, refractive index change spots, or a mixture of at least two of these.

SiC材料1の切断にあたっては、まず、レーザ光の入射側に位置する軸方向一端側の切断予定面100に改質領域が形成されるようレーザ光を調整し、当該切断予定面100にレーザ光を吸収させて改質パターンを形成する。このとき、SiC材料1中へのレーザ光の入射が妨げられないように、SiC材料1の入射側の表面を研磨しておくことが好ましい。 When cutting the SiC material 1, first, the laser beam is adjusted so that a modified region is formed on the planned cutting surface 100 on one end side in the axial direction located on the incident side of the laser light, and the laser light is applied to the planned cutting surface 100. Is absorbed to form a modified pattern. At this time, it is preferable to polish the surface of the SiC material 1 on the incident side so that the incident of the laser beam into the SiC material 1 is not hindered.

図3は先行改質領域が形成された状態のSiC材料の一部平面図である。
改質パターンの形成にあたり、まず、図3に示すように、レーザ光の集光点を直線的に移動させることで、レーザ光の照射ライン10に沿って先行改質領域12を形成する。先行改質領域12は、パルスレーザ光のワンパルスショットで形成される改質スポットの集合として形成されている。本実施形態においては、レーザ光のワンパルスショットの間隔は、隣接する集光点の一部が重なるように設定されており、レーザ光の照射ライン10は連続的に形成される。尚、図4に示すように、レーザ光のワンパルスショットの間隔を隣接する集光点が重ならないように設定し、レーザ光の照射ライン11を間欠的とすることもできる。各先行改質領域12の幅寸法は任意であるが、例えば10μm以上50μm以下とすることができる。本実施形態では、レーザ光の照射ライン10同士の距離をc面に沿った割れが伸展しない距離P1として、複数のライン状の先行改質領域12が並べて形成される(割れ抑制加工工程)。本実施形態においては、各先行改質領域12の並び方向は、オフ方向とほぼ直交する方向である。各先行改質領域12の並び方向は任意であるが、例えば、各先行改質領域12の並び方向と、オフ方向と直交する方向と、のなす角を30度以内とすることができる。c面に沿った割れが伸展しない距離P1は、例えば、各先行改質領域12の幅寸法の4倍以上である。
FIG. 3 is a partial plan view of the SiC material in which the pre-modified region is formed.
In forming the modification pattern, first, as shown in FIG. 3, the pre-modification region 12 is formed along the laser beam irradiation line 10 by linearly moving the focusing point of the laser beam. The pre-modification region 12 is formed as a set of modification spots formed by a one-pulse shot of pulsed laser light. In the present embodiment, the interval between the one-pulse shots of the laser beam is set so that a part of the adjacent condensing points overlaps, and the irradiation line 10 of the laser beam is continuously formed. As shown in FIG. 4, the interval between the one-pulse shots of the laser beam can be set so that the adjacent condensing points do not overlap, and the irradiation line 11 of the laser beam can be made intermittent. The width dimension of each pre-modified region 12 is arbitrary, but can be, for example, 10 μm or more and 50 μm or less. In the present embodiment, a plurality of line-shaped pre-modification regions 12 are formed side by side with the distance between the laser beam irradiation lines 10 as the distance P1 at which cracks do not extend along the c-plane (crack suppression processing step). In the present embodiment, the arrangement direction of each prior modification region 12 is a direction substantially orthogonal to the off direction. The arrangement direction of each preceding modification region 12 is arbitrary, but for example, the angle formed by the arrangement direction of each preceding modification region 12 and the direction orthogonal to the off direction can be within 30 degrees. The distance P1 at which the cracks along the c-plane do not extend is, for example, four times or more the width dimension of each pre-modified region 12.

図5は追加改質領域が形成された状態のSiC材料の一部平面図である。
次いで、図5に示すように、割れ抑制加工工程にて形成された先行改質領域12の間に、ライン状の追加改質領域13を、隣接するレーザ光の照射ライン10同士の距離をc面に沿った割れが伸展する距離P2として形成する(割れ促進加工工程)。c面に沿った割れが伸展する距離P2は、例えば、各先行改質領域12の幅寸法の4倍未満である。本実施形態においては、追加改質領域13は、隣接する先行改質領域12の中間に形成される。追加改質領域13も先行改質領域12と同様に、パルスレーザ光のワンパルスショットで形成される改質スポットの集合として形成されている。本実施形態においては、レーザ光のワンパルスショットの間隔は、隣接する集光点の一部が重なるように設定されており、レーザ光の照射ライン10は連続的に形成される。尚、図6に示すように、レーザ光のワンパルスショットの間隔を隣接する集光点が重ならないように設定し、レーザ光の照射ライン11を間欠的とすることもできる。各追加改質領域13の幅寸法は任意であるが、例えば10μm以上50μm以下とすることができる。
FIG. 5 is a partial plan view of the SiC material in a state where the additional modification region is formed.
Next, as shown in FIG. 5, the distance between the line-shaped additional modification regions 13 and the adjacent laser beam irradiation lines 10 is set between the advance modification regions 12 formed in the crack suppression processing step. It is formed as a distance P2 at which cracks along the surface extend (crack promotion processing step). The distance P2 at which the crack along the c-plane extends is, for example, less than four times the width dimension of each pre-modified region 12. In this embodiment, the additional modification region 13 is formed in the middle of the adjacent preceding modification regions 12. Similar to the preceding modification region 12, the additional modification region 13 is also formed as a set of modification spots formed by one-pulse shot of pulsed laser light. In the present embodiment, the interval between the one-pulse shots of the laser beam is set so that a part of the adjacent condensing points overlaps, and the irradiation line 10 of the laser beam is continuously formed. As shown in FIG. 6, the interval between the one-pulse shots of the laser beam can be set so that the adjacent condensing points do not overlap, and the irradiation line 11 of the laser beam can be made intermittent. The width dimension of each additional modification region 13 is arbitrary, but can be, for example, 10 μm or more and 50 μm or less.

ここで、図7及び図8を参照して、SiC材料中のc面に沿った割れの伸展状態を説明する。図7は先行改質領域が形成された状態のSiC材料の一部断面図、図8は追加改質領域が形成された状態のSiC材料の一部断面図である。
図7に示すように、各先行改質領域12が形成された状態では、各先行改質領域12の近傍に、各先行改質領域12を起点としてc面に沿う方向へ割れ110は生じていない。尚、各先行改質領域12は、深さ方向(図7及び図8の上下方向)について所定の寸法で形成されている。この状態から追加改質領域13を形成すると、図8に示すように、各先行改質領域12及び各追加改質領域13の間に、各先行改質領域12及び各追加改質領域13を起点としてc面に沿う方向へ割れ110が独立して生じる。各割れ110は、切断予定面100に対してオフ角だけ傾斜している。ここで、各先行改質領域12及び各追加改質領域13は、図8に示すように、隣接する改質領域からc面に沿って延びる割れ110が到達可能な深さ寸法を有することが好ましい。各先行改質領域12及び各追加改質領域13の深さ寸法が短いと、c面に沿って延びる割れ110を、各改質領域間で適切に伸展させられないおそれがある。
Here, the extended state of the crack along the c-plane in the SiC material will be described with reference to FIGS. 7 and 8. FIG. 7 is a partial cross-sectional view of the SiC material in which the pre-modified region is formed, and FIG. 8 is a partial cross-sectional view of the SiC material in which the additional modified region is formed.
As shown in FIG. 7, in the state where each pre-modified region 12 is formed, cracks 110 are formed in the vicinity of each pre-modified region 12 in the direction along the c-plane starting from each pre-modified region 12. Absent. Each pre-modified region 12 is formed with predetermined dimensions in the depth direction (vertical direction of FIGS. 7 and 8). When the additional modification region 13 is formed from this state, as shown in FIG. 8, each advance modification region 12 and each additional modification region 13 are formed between each advance modification region 12 and each additional modification region 13. Cracks 110 are independently generated in the direction along the c-plane as a starting point. Each crack 110 is inclined by an off angle with respect to the planned cutting surface 100. Here, as shown in FIG. 8, each of the preceding modified regions 12 and each of the additional modified regions 13 has a depth dimension that can be reached by the crack 110 extending from the adjacent modified region along the c-plane. preferable. If the depth dimension of each pre-modified region 12 and each additional modified region 13 is short, the crack 110 extending along the c-plane may not be properly extended between the modified regions.

切断予定面100に各先行改質領域12及び各追加改質領域13を形成した後、SiC材料1の軸方向他端側を固定し、軸方向一端側に軸方向他端側から離間させる方向に力を加えることによりSiC材料1が切断される。剥離後は、剥離された基板210の表面及びSiC材料1の新たな表面を研磨等により平坦とすることが好ましい。本実施形態においては、切断予定面100がc面と平行でなく剥離面がギザギザとなるので、平坦とすることが好ましい。 After forming each pre-modified region 12 and each additional modified region 13 on the planned cutting surface 100, the direction in which the other end side in the axial direction of the SiC material 1 is fixed and separated from the other end side in the axial direction on one end side in the axial direction. The SiC material 1 is cut by applying a force to. After the peeling, it is preferable that the surface of the peeled substrate 210 and the new surface of the SiC material 1 are flattened by polishing or the like. In the present embodiment, the planned cutting surface 100 is not parallel to the c-plane and the peeled surface is jagged, so it is preferable to make it flat.

この後、基板210が剥離されたSiC材料1における軸方向一端側の切断予定面100について、同様に各先行改質領域12及び各追加改質領域を形成して切断する。このように、SiC材料1を全ての切断予定面100において軸方向他端側から順次切断していくことにより、複数のSiC基板210を得ることができる。 After that, each pre-modified region 12 and each additional modified region are similarly formed and cut on the planned cutting surface 100 on one end side in the axial direction of the SiC material 1 from which the substrate 210 has been peeled off. In this way, a plurality of SiC substrates 210 can be obtained by sequentially cutting the SiC material 1 from the other end side in the axial direction on all the planned cutting surfaces 100.

このように、本実施形態のSiC材料の加工方法によれば、各先行改質領域12と各追加改質領域13で割れ110を独立的に生じさせ、各割れ110が隣接する改質領域を超えて伸展しないようにしたので、最終的な切断面が切断予定面100から大きくずれることはない。 As described above, according to the method for processing the SiC material of the present embodiment, the cracks 110 are independently generated in each of the prior modification regions 12 and the additional modification regions 13, and the modifications 110 adjacent to each other are formed. Since it is prevented from extending beyond the cut surface, the final cut surface does not deviate significantly from the planned cut surface 100.

これに対し、全ての改質領域412を並び順に形成していく場合、図9(a)に示すように最初に形成された改質領域412では割れ410が生じていないものの、隣接する改質領域412を加工している間にc面に沿って延びる割れが加工予定領域まで伸展する場合がある。この領域においてはオフ角分だけ切断予定面100からずれた位置に割れ110が生じており、この領域をレーザ加工すると、割れ110が生じた位置にレーザ光が吸収されやすいことから、図9(b)に示すように、切断予定面100からずれた位置に改質領域412が形成されてしまう。このように続けて改質領域412を形成していくと、図9(c)に示すように、初期に生じた割れ410がc面に沿って際限なく伸展してしまい、最終的に得られる切断面が切断予定面100から大きくずれてしまう On the other hand, when all the modified regions 412 are formed in the order of arrangement, as shown in FIG. 9A, the initially formed modified region 412 does not have a crack 410, but is adjacent to the modified region 412. While processing the region 412, cracks extending along the c-plane may extend to the region to be processed. In this region, cracks 110 are generated at positions deviated from the planned cutting surface 100 by the off angle, and when laser processing is performed on this region, laser light is easily absorbed at the positions where cracks 110 are generated. As shown in b), the modified region 412 is formed at a position deviated from the planned cutting surface 100. When the modified region 412 is continuously formed in this way, as shown in FIG. 9C, the initially generated crack 410 extends endlessly along the c-plane, and is finally obtained. The cut surface deviates significantly from the planned cut surface 100

尚、各先行改質領域12及び各追加改質領域13は、図3から図6に示すような直線状の他、曲線状とすることもできる。例えば、各先行改質領域及び各追加改質領域を渦巻き状に形成したり、所定間隔の同心円状とすることもできる。 The prior modified region 12 and the additional modified region 13 may have a curved shape as well as a linear shape as shown in FIGS. 3 to 6. For example, each pre-modified region and each additional modified region may be formed in a spiral shape or may be concentric circles at predetermined intervals.

また、前記実施形態においては、6H型のSiC材料1に本発明を適用したものを示したが、例えば4H型等の他のポリタイプの六方晶系SiC材料はもちろん、六方晶系以外のSiC材料にも本発明を適用することが可能である。さらには、例えば、GaN、AlN、サファイア、ダイヤモンド等のSiC以外の材料にも適用が可能である。要は、切断予定面の法線が加工対象材料の所定の低指数面の法線と所定の角度をなしていればよい。例えば、前記実施形態においては、切断予定面100が低指数面であるc面とオフ角分の角度をなしているものを示したが、a面、m面等の他の低指数面とオフ角分の角度をなしているものであってもよい。 Further, in the above embodiment, the 6H type SiC material 1 to which the present invention is applied is shown, but for example, other polytype hexagonal SiC materials such as 4H type, as well as non-hexagonal SiCs. The present invention can also be applied to materials. Furthermore, it can be applied to materials other than SiC, such as GaN, AlN, sapphire, and diamond. In short, the normal of the planned cutting surface may be at a predetermined angle with the normal of the predetermined low exponential surface of the material to be processed. For example, in the above-described embodiment, the planned cutting surface 100 is shown to have an angle corresponding to the off angle with the c-plane which is a low exponential plane, but is off from other low-exponential planes such as the a-plane and m-plane. It may be an angle of an angle.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. It should also be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

以上のように、本発明の加工対象材料の切断方法は、最終的に得られる切断面が切断予定面から大きくずれることがなく、産業上有用である。 As described above, the cutting method of the material to be processed of the present invention is industrially useful because the finally obtained cut surface does not deviate significantly from the planned cutting surface.

1 SiC材料
12 先行改質領域
13 追加改質領域
100 切断予定面
110 割れ
210 SiC基板
300 レーザ照射装置
310 レーザ発振器
320 ミラー
330 光学レンズ
340 ステージ
350 ハウジング
410 割れ
412 改質領域
P1 c面に沿った割れが伸展しない距離
P2 c面に沿った割れが伸展する距離
1 SiC material 12 Preliminary modification area 13 Additional modification area 100 Planned cutting surface 110 Crack 210 SiC substrate 300 Laser irradiation device 310 Laser oscillator 320 Mirror 330 Optical lens 340 Stage 350 Housing 410 Crack 412 Modification area Along the P1 c plane Distance at which cracks do not extend Distance at which cracks extend along the P2c plane

Claims (3)

六方晶系のSiCからなる加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、
前記切断予定面の法線は、前記加工対象材料のc面の法線と所定の角度をなし、
前記レーザ光の照射ライン同士の距離をc面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、
前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を形成する割れ促進加工工程と、を含み、
前記各改質領域は、隣接する前記各改質領域からc面に沿って延びる割れが到達可能な深さ寸法に形成される加工対象材料の切断方法。
A method for cutting a material to be processed, which is formed by absorbing laser light on a planned cutting surface of a material to be processed made of hexagonal SiC to form a modified region, and then cutting the material to be processed along the planned cutting surface. And
The normal of the planned cutting surface forms a predetermined angle with the normal of the c surface of the material to be processed.
The crack suppression processing step of forming a plurality of line-shaped modified regions side by side by setting the distance between the laser beam irradiation lines as the distance at which the cracks along the c-plane do not extend.
A crack promoting processing step of forming an additional line-shaped modified region between the line-shaped modified regions formed in the crack suppressing processing step is included.
A method for cutting a material to be processed, wherein each of the modified regions is formed to a depth dimension in which cracks extending along the c-plane can be reached from the adjacent modified regions.
前記c面に沿った割れが伸展しない距離は、前記改質領域の幅寸法の4倍以上である請求項1に記載の加工対象材料の切断方法。 The method for cutting a material to be processed according to claim 1, wherein the distance at which the cracks along the c-plane do not extend is four times or more the width dimension of the modified region. 加工対象材料の切断予定面に対しレーザ光を吸収させて改質領域を形成した後、前記加工対象材料を前記切断予定面に沿って切断する加工対象材料の切断方法であって、
前記切断予定面の法線は、前記加工対象材料の所定の低指数面の法線と所定の角度をなし、
前記レーザ光の照射ライン同士の距離を前記所定の低指数面に沿った割れが伸展しない距離として、複数のライン状の改質領域を並べて形成する割れ抑制加工工程と、
前記割れ抑制加工工程にて形成されたライン状の各改質領域の間に、追加のライン状の改質領域を形成する割れ促進加工工程と、を含み、
前記各改質領域は、隣接する前記各改質領域から前記所定の低指数面に沿った割れが到達可能な深さ寸法に形成される加工対象材料の切断方法。
A method for cutting a material to be processed, in which a modified region is formed by absorbing a laser beam on a surface to be cut of the material to be processed, and then the material to be processed is cut along the surface to be cut.
The normal of the planned cutting surface forms a predetermined angle with the normal of a predetermined low exponential surface of the material to be processed.
A crack suppression processing step of forming a plurality of line-shaped modified regions side by side with the distance between the laser beam irradiation lines as the distance at which cracks do not extend along the predetermined low index plane.
A crack promoting processing step of forming an additional line-shaped modified region between the line-shaped modified regions formed in the crack suppressing processing step is included.
A method for cutting a material to be processed, wherein each of the modified regions is formed to a depth dimension in which cracks along the predetermined low exponential surface can be reached from the adjacent modified regions.
JP2017216228A 2016-05-17 2017-11-09 How to cut the material to be processed Active JP6902186B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016099161 2016-05-17
JP2016099161 2016-05-17
JP2017546747A JP6246444B1 (en) 2016-05-17 2017-05-09 Cutting method of material to be processed

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017546747A Division JP6246444B1 (en) 2016-05-17 2017-05-09 Cutting method of material to be processed

Publications (2)

Publication Number Publication Date
JP2018050066A JP2018050066A (en) 2018-03-29
JP6902186B2 true JP6902186B2 (en) 2021-07-14

Family

ID=60325837

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017546747A Active JP6246444B1 (en) 2016-05-17 2017-05-09 Cutting method of material to be processed
JP2017216228A Active JP6902186B2 (en) 2016-05-17 2017-11-09 How to cut the material to be processed

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017546747A Active JP6246444B1 (en) 2016-05-17 2017-05-09 Cutting method of material to be processed

Country Status (2)

Country Link
JP (2) JP6246444B1 (en)
WO (1) WO2017199784A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478821B2 (en) * 2015-06-05 2019-03-06 株式会社ディスコ Wafer generation method
JP7121941B2 (en) * 2018-03-09 2022-08-19 国立大学法人埼玉大学 Substrate manufacturing method
JP7327920B2 (en) * 2018-09-28 2023-08-16 株式会社ディスコ Diamond substrate production method
JP7182456B2 (en) * 2018-12-21 2022-12-02 浜松ホトニクス株式会社 LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
US20220093463A1 (en) * 2018-12-21 2022-03-24 National University Corporation Tokai National Higher Education And Research System Laser processing method, semiconductor member manufacturing method, and laser processing device
WO2020213478A1 (en) * 2019-04-19 2020-10-22 東京エレクトロン株式会社 Processing device and processing method
KR20210038335A (en) 2019-09-30 2021-04-07 니치아 카가쿠 고교 가부시키가이샤 Method of manufacturing light-emitting element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917862B2 (en) * 2011-08-30 2016-05-18 浜松ホトニクス株式会社 Processing object cutting method
JP6531885B2 (en) * 2013-10-07 2019-06-19 信越ポリマー株式会社 Internally processed layer forming single crystal member and method of manufacturing the same
JP2015123466A (en) * 2013-12-26 2015-07-06 信越ポリマー株式会社 Substrate processing device and substrate processing method
JP5917677B1 (en) * 2014-12-26 2016-05-18 エルシード株式会社 Processing method of SiC material
JP6494457B2 (en) * 2015-07-16 2019-04-03 株式会社ディスコ Wafer generation method
JP6602207B2 (en) * 2016-01-07 2019-11-06 株式会社ディスコ Method for generating SiC wafer
JP6604891B2 (en) * 2016-04-06 2019-11-13 株式会社ディスコ Wafer generation method

Also Published As

Publication number Publication date
JP2018050066A (en) 2018-03-29
JPWO2017199784A1 (en) 2018-05-31
WO2017199784A1 (en) 2017-11-23
JP6246444B1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6902186B2 (en) How to cut the material to be processed
JP5917677B1 (en) Processing method of SiC material
JP5480169B2 (en) Laser processing method
JP5670764B2 (en) Laser processing method
JP5917862B2 (en) Processing object cutting method
JP5670765B2 (en) Laser processing method
JP5597051B2 (en) Laser processing method
TWI552822B (en) Laser processing method
KR102566316B1 (en) Laser processing method
WO2012096092A1 (en) Laser processing method
JP5775312B2 (en) Laser processing method
KR101309803B1 (en) Laser drilling apparatus and laser drilling method
WO2017056769A1 (en) Laser processing method, and laser processing device
JP6752232B2 (en) How to cut the object to be processed
KR101884966B1 (en) Device for laser-machining glass substrate
CN113195185A (en) Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
JP6810951B2 (en) Laser processing method and laser processing equipment for brittle material substrates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210518

R150 Certificate of patent or registration of utility model

Ref document number: 6902186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150