WO2017199479A1 - アンテナ装置、電波センサ及びそれを備えた水栓装置 - Google Patents

アンテナ装置、電波センサ及びそれを備えた水栓装置 Download PDF

Info

Publication number
WO2017199479A1
WO2017199479A1 PCT/JP2017/003771 JP2017003771W WO2017199479A1 WO 2017199479 A1 WO2017199479 A1 WO 2017199479A1 JP 2017003771 W JP2017003771 W JP 2017003771W WO 2017199479 A1 WO2017199479 A1 WO 2017199479A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dielectric
unit
radio wave
planar
Prior art date
Application number
PCT/JP2017/003771
Other languages
English (en)
French (fr)
Inventor
敦 諏訪
山本 泰子
健一 入江
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018518077A priority Critical patent/JP6587200B2/ja
Publication of WO2017199479A1 publication Critical patent/WO2017199479A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Definitions

  • the present invention relates to an antenna device, a radio wave sensor, and a faucet device including the antenna device.
  • Patent Document 1 Japanese Patent Document 1
  • the radio wave sensor includes, for example, a transmission unit, an antenna (transmission antenna) connected to the transmission unit, a reception unit, an antenna (reception antenna) connected to the reception unit, and a mixer unit.
  • JP 2000-22423 A Japanese Patent No. 5212908
  • An object of the present invention is to provide an antenna device, a radio wave sensor, and a faucet device including the antenna device that can further enhance the directivity of radio waves while achieving downsizing.
  • the antenna device includes an antenna unit and a dielectric unit.
  • the antenna unit has two planar antennas.
  • the dielectric unit faces the antenna unit.
  • One of the two planar antennas is a transmitting antenna that transmits radio waves.
  • the other planar antenna of the two planar antennas is a receiving antenna that receives a radio wave transmitted from the transmitting antenna and reflected by an object.
  • the dielectric unit has two dielectric portions that have a cross-sectional area that becomes smaller as the distance from the opposing planar antenna increases. In the dielectric unit, a groove is formed between the two dielectric portions on the side opposite to the antenna unit side.
  • the radio wave sensor includes a detection unit and a processing unit.
  • the detection unit transmits radio waves to the detection area and receives radio waves from the detection area.
  • the processing unit includes a determination unit and an output unit.
  • the determination unit determines whether or not there is an object moving within the detection area by performing signal processing on the sensor signal output from the detection unit.
  • the output unit outputs a control signal corresponding to a determination result of the determination unit.
  • the detection unit includes the antenna device described above.
  • the faucet device includes a spout that is a water discharge pipe, a hose, an on-off valve, and the radio wave sensor.
  • the hose is disposed in the spout.
  • the on-off valve is arranged on the upstream side of the hose.
  • the open / close valve is switched between an open state and a closed state by a control signal output from an output unit in the radio wave sensor.
  • FIG. 1A is a perspective view of an antenna device according to an embodiment of the present invention as seen from the front left diagonal side.
  • FIG. 1B is a perspective view of the antenna device as seen from the front right diagonal side.
  • FIG. 2A is a front view of the above antenna device.
  • FIG. 2B is a plan view of the antenna device.
  • FIG. 2C is a left side view of the above antenna device.
  • FIG. 2D is a right side view of the antenna device.
  • FIG. 5A is a cross-sectional view corresponding to the cross section along line X2-X2 of FIG.
  • FIG. 5B is a perspective cross-sectional view corresponding to the cross section taken along line X2-X2 of FIG.
  • FIG. 6A is a cross-sectional view corresponding to the cross section along line Y1-Y1 of FIG. 6B is a cross-sectional view corresponding to the cross section along line Y2-Y2 of FIG.
  • FIG. 7 is a perspective view of an antenna unit in the antenna device.
  • FIG. 8A is a right side view of an antenna apparatus according to Modification 1 of the embodiment of the present invention.
  • FIG. 8B is a graph showing a simulation result of directivity characteristics of the antenna device.
  • FIG. 9A is a right side view of an antenna apparatus according to Modification 2 of the embodiment of the present invention.
  • FIG. 9B is a graph showing a simulation result of the directivity of the antenna device.
  • FIG. 10A is a right side view of an antenna apparatus according to Modification 3 of the embodiment of the present invention.
  • FIG. 10B is a graph showing a simulation result of the directivity of the antenna device.
  • FIG. 11A is a right side view of an antenna apparatus according to Modification 4 of the embodiment of the present invention.
  • FIG. 11B is a graph showing a simulation result of the directivity of the antenna device.
  • FIG. 12 is a block diagram of a radio wave sensor provided with an antenna device according to an embodiment of the present invention.
  • FIG. 13 is a perspective view of a faucet device including a radio wave sensor provided with an antenna device according to an embodiment of the present invention, in a state of being arranged on a sink.
  • FIG. 14 is a cross-sectional view of an essential part of the faucet device according to the above.
  • FIG. 15 is a cross-sectional view of a sink in which the faucet device is arranged.
  • the antenna device 1 of the present embodiment will be described with reference to FIGS. 1A to 7.
  • the antenna device 1 includes an antenna unit 2 and a dielectric unit 3.
  • the antenna unit 2 has two planar antennas 20.
  • the dielectric unit 3 faces the antenna unit 2.
  • One of the two planar antennas 20 is a transmission antenna 21 that transmits radio waves.
  • the other planar antenna 20 of the two planar antennas 20 is a receiving antenna 22 that receives a radio wave transmitted from the transmitting antenna 21 and reflected by an object.
  • the dielectric unit 3 includes two dielectric portions 30 that have a cross-sectional area that becomes smaller as the distance from the planar antenna 20 that faces and faces the two planar antennas 20 on a one-to-one basis increases. In the dielectric unit 3, a groove 33 is formed between the two dielectric parts 30 on the side opposite to the antenna unit 2 side.
  • the antenna device 1 can further enhance the directivity of the radio wave while reducing the size.
  • the distance between the antenna unit 2 and the dielectric unit 3 is preferably shorter than, for example, the free space wavelength of the radio wave transmitted from the transmission antenna 21.
  • the directivity of radio waves radiated from the transmission antenna 21 by the dielectric part 30 (hereinafter also referred to as “transmission dielectric part 31”) facing the transmission antenna 21 of the two dielectric parts 30.
  • transmission dielectric part 31 facing the transmission antenna 21 of the two dielectric parts 30.
  • the radio wave received by the receiving antenna 22 by the dielectric unit 30 (hereinafter also referred to as “receiving dielectric unit 32”) facing the receiving antenna 22 of the two dielectric units 30.
  • receiveiving dielectric unit 32 has the function of strengthening the directivity of the camera (the function of narrowing the directivity).
  • the antenna device 1 includes a second dielectric part 40 arranged so as to cover the two first dielectric parts 30 separately from the two dielectric parts 30 (hereinafter also referred to as “first dielectric part 30”). Is preferably further provided.
  • the distance between the second dielectric part 40 and the antenna unit 2 is longer than the distance between the dielectric unit 3 and the antenna unit 2.
  • the second dielectric portion 40 has a shape in which the cross-sectional area decreases as the distance from the antenna unit 2 increases. Thereby, the antenna device 1 can further enhance the directivity of the radio wave.
  • Each component of the antenna device 1 will be described in more detail below.
  • the antenna device 1 includes the antenna unit 2, the dielectric unit 3, and the second dielectric unit 40.
  • the antenna unit 2 has two planar antennas 20.
  • the planar antenna 20 is a patch antenna.
  • two planar antennas 20 are formed on one dielectric substrate 201.
  • the dielectric substrate 201 has a front surface 211 and a back surface 212 that are opposite to each other in the thickness direction.
  • the planar view shape of the dielectric substrate 201 (the shape viewed from the surface 211 side in the thickness direction) is a rectangular shape.
  • the dielectric substrate 201 is a substrate formed of a dielectric. More specifically, the dielectric substrate 201 is, for example, a glass epoxy resin substrate.
  • the glass epoxy resin substrate preferably satisfies, for example, the FR-4.0 grade according to the UL746E standard.
  • the thickness of the dielectric substrate 201 is 1 mm, for example.
  • the relative dielectric constant of the dielectric substrate 201 is, for example, 4.2.
  • the two planar antennas 20 are arranged in the longitudinal direction of the dielectric substrate 201 when viewed from the thickness direction of the dielectric substrate 201.
  • the planar view shape of each of the two planar antennas 20 is a square shape.
  • Each of the two planar antennas 20 includes a conductor layer 221 formed on the front surface 211 of the dielectric substrate 201, a ground layer 222 formed on the back surface 212 of the dielectric substrate 201, and a feeding point.
  • the feeding point is a portion of the conductor layer 221 exposed by a hole (not shown) penetrating in the thickness direction of the dielectric substrate 201 in a region overlapping the conductor layer 221 in the dielectric substrate 201.
  • the planar view shape of the conductor layer 221 is a square shape.
  • the conductor layer 221 is made of metal foil on the surface 211 of the dielectric substrate 201.
  • the material of the metal foil is copper.
  • the conductor layer 221 is formed of a conductor.
  • the ground layer 222 is made of metal foil formed on the back surface 212 of the dielectric substrate 201.
  • the material of the metal foil is copper.
  • the ground layer 222 is formed of a conductor.
  • one of the two planar antennas 20 is the transmitting antenna 21, and the other planar antenna 20 is the receiving antenna 22.
  • the transmission antenna 21 transmits radio waves to space.
  • the receiving antenna 22 receives radio waves from the space. More specifically, the reception antenna 22 receives, for example, a radio wave transmitted from the transmission antenna 21 and reflected by an object.
  • the frequency of the radio wave transmitted from the transmission antenna 21 is, for example, 24 GHz.
  • the wavelength of the radio wave transmitted from the transmission antenna 21 and the radio wave received by the reception antenna 22 is 12.5 mm.
  • the planar size of the conductor layer 221 of the two planar antennas 20 is preferably 2.7 mm ⁇ 2.7 mm.
  • the central axis 200 of the planar antenna 20 passes through the center point of the surface of the conductor layer 221. More specifically, the central axis 2001 of the transmission antenna 21 passes through the center point of the surface of the conductor layer 221 in the transmission antenna 21. The central axis 2002 of the receiving antenna 22 passes through the center point of the surface of the conductor layer 221 in the receiving antenna 22.
  • orthogonal coordinate systems C1 and C2 are shown. However, the orthogonal coordinate systems C1 and C2 are not accompanied by an entity, but are merely shown for explanation.
  • the orthogonal coordinate system C ⁇ b> 1 defines an x axis and a y axis that are orthogonal to each other on the surface of the conductor layer 221 with the center point of the surface of the conductor layer 221 as the origin in the transmitting antenna 21, and is orthogonal to the surface of the conductor layer 221.
  • the z axis is defined. Therefore, the z axis in the orthogonal coordinate system C1 is defined on the central axis 2001 of the transmitting antenna 21.
  • the orthogonal coordinate system C2 defines the x axis and the y axis orthogonal to each other on the surface of the conductor layer 221 with the center point of the surface of the conductor layer 221 in the receiving antenna 22 as the origin, and is orthogonal to the surface of the conductor layer 221.
  • the z axis is defined. Therefore, the z axis in the orthogonal coordinate system C2 is defined on the central axis 2002 of the receiving antenna 22.
  • the orthogonal coordinate system C1 is a left-handed orthogonal coordinate system.
  • the orthogonal coordinate system C2 is a right-handed orthogonal coordinate system, and the direction of the y-axis is opposite to that of the orthogonal coordinate system C1.
  • the dielectric unit 3 is arranged in front of the antenna unit 2 (the back surface of the surface 211 in the thickness direction of the dielectric substrate 201) in order to make the directivity stronger than the directivity of each of the two planar antennas 20 in the antenna unit 2. It is arranged on the opposite side to the 212 side.
  • the dielectric unit 3 is formed of a dielectric having a dielectric constant higher than that of air.
  • the dielectric unit 3 is formed of a black ABS resin.
  • the dielectric constant of the dielectric unit 3 is approximately 2.5.
  • the dielectric unit 3 is one member (resin molded body) including two dielectric parts 30. For this reason, in the dielectric unit 3, the two dielectric parts 30 are connected by a part of the dielectric unit 3.
  • the groove 33 is formed between the two dielectric parts 30 on the side opposite to the antenna unit 2 side.
  • the dielectric unit 3 has two dielectric parts 30. Further, in the dielectric unit 3, a groove 33 is formed between the two dielectric parts 30 on the side opposite to the antenna unit 2 side. In the dielectric unit 3, one of the two dielectric parts 30 (the transmission dielectric part 31) faces the transmission antenna 21, and the other dielectric part 30 (the reception dielectric part 32). Faces the receiving antenna 22.
  • the central axes 300 of the two dielectric parts 30 are distinguished from each other, they may be referred to as the central axis 301 of the transmitting dielectric part 31 and the central axis 302 of the receiving dielectric part 32. .
  • the transmission dielectric portion 31 is disposed in front of the transmission antenna 21 (on the side opposite to the ground layer 222 side of the conductor layer 221 in the thickness direction of the transmission antenna 21). As a result, the transmission dielectric portion 31 and the conductor layer 221 of the transmission antenna 21 face each other. As shown in FIGS. 3 and 6A, the transmission dielectric portion 31 is disposed so as to intersect the central axis 2001 of the opposed transmission antenna 21. More specifically, the transmission dielectric portion 31 is disposed so that the surface facing the transmission antenna 21 is orthogonal to the central axis 2001 of the transmission antenna 21.
  • the term “orthogonal” is not limited to the case where they intersect each other at right angles, but may be substantially orthogonal (the angle at which they intersect each other is 90 ° ⁇ 10 °, for example).
  • the transmission dielectric portion 31 is formed in a shape in which the cross-sectional area decreases as the distance from the transmission antenna 21 increases.
  • the antenna device 1 can increase the directivity of the radio wave radiated from the transmission antenna 21 by including the transmission dielectric portion 31.
  • the transmission dielectric portion 31 is a part of a hemispherical shape cut by one plane (the inner surface 331 of the groove 33) orthogonal to the y-axis in the orthogonal coordinate system C1 defined for the transmission antenna 21. It is formed into a shape.
  • the surface of the transmitting dielectric portion 31 opposite to the transmitting antenna 21 side includes the curved surface 311 (see FIGS. 3 and 6A).
  • the central axis 301 of the transmission dielectric portion 31 is the central axis of the first virtual hemisphere including the curved surface 311 as a part of the surface.
  • the transmission dielectric portion 31 has a hemispherical shape partly divided into one plane orthogonal to the z axis and one plane orthogonal to the x axis in the orthogonal coordinate system C1 defined for the transmission antenna 21. It is formed into a cut shape. Therefore, the curved surface 311 in the transmission dielectric portion 31 is C-shaped when viewed from one direction of the thickness direction of the dielectric unit 3.
  • the receiving dielectric portion 32 is disposed in front of the receiving antenna 22. As shown in FIGS. 3 and 6B, the reception dielectric portion 32 is disposed so as to intersect the central axis 2002 of the reception antenna 22 that faces the reception dielectric portion 32. More specifically, the receiving dielectric portion 32 is disposed so that the surface facing the receiving antenna 22 is orthogonal to the central axis 2002 of the receiving antenna 22.
  • the term “orthogonal” is not limited to the case where they intersect each other at right angles, but may be substantially orthogonal (the angle at which they intersect each other is 90 ° ⁇ 10 °, for example).
  • the receiving dielectric portion 32 is formed in a shape in which the cross-sectional area decreases as the distance from the receiving antenna 22 increases.
  • the antenna device 1 can increase the directivity of radio waves received by the receiving antenna 22 by including the receiving dielectric portion 32.
  • the receiving dielectric portion 32 has a part of a hemispherical shape cut by a single plane (inner surface 332 of the groove 33) orthogonal to the y-axis in the orthogonal coordinate system C2 defined for the receiving antenna 22. It is formed into a shape.
  • the surface of the receiving dielectric portion 32 opposite to the receiving antenna 22 side includes a curved surface 312 (see FIGS. 3 and 6B).
  • the central axis 302 of the receiving dielectric portion 32 is the central axis of the second virtual hemisphere that includes the curved surface 312 as part of the surface.
  • the diameter of the second virtual hemisphere is preferably the same as the diameter of the first virtual hemisphere.
  • the receiving dielectric portion 32 has a hemispherical shape partly composed of one plane orthogonal to the z-axis and one plane orthogonal to the x-axis in the orthogonal coordinate system C2 defined for the receiving antenna 22. It is formed into a cut shape. Therefore, the curved surface 312 in the receiving dielectric portion 32 is C-shaped when viewed from one direction in the thickness direction of the dielectric unit 3.
  • the dielectric unit 3 has a groove 33 formed between two dielectric parts 30 on the side opposite to the antenna unit 2 side. Thereby, in the dielectric unit 3, the two dielectric parts 30 are separated on the side opposite to the antenna unit 2 side. Thereby, in the dielectric unit 3, as shown in FIG. 3, the curved surfaces 311 and 312 of the two dielectric parts 30 do not intersect each other.
  • the groove 33 is formed along a direction orthogonal to the direction in which the two dielectric portions 30 are arranged in a plan view as viewed from the side opposite to the antenna unit 2 side in the dielectric unit 3.
  • the center axis 300 of each of the two dielectric portions 30 is shifted from the center axis 200 of the corresponding planar antenna 20 out of the two planar antennas 20. is there.
  • the direction in which the gain is maximized with respect to each of the two antenna systems including one planar antenna 20 and one dielectric part 30 is inclined with respect to the central axis 200 of the planar antenna 20. It becomes possible.
  • the central axis 301 of the transmission dielectric portion 31 is shifted from the central axis 2001 of the transmission antenna 21 in the direction along the x axis of the orthogonal coordinate system C1. Further, in the antenna device 1, the center axis 302 of the receiving dielectric portion 32 is shifted in the direction along the x-axis of the orthogonal coordinate system C2.
  • the antenna device 1 preferably includes a body 5 holding the antenna unit 2, the dielectric unit 3, and the second dielectric part 40.
  • the body 5 is preferably formed of a material that transmits radio waves transmitted from the transmission antenna 21.
  • the body 5 is made of, for example, ABS resin.
  • the dielectric unit 3 and the second dielectric part 40 are formed integrally with the body 5. Thereby, the antenna device 1 can improve the relative positional accuracy of the antenna unit 2, the dielectric unit 3, and the second dielectric part 40.
  • the antenna device 1 preferably further includes a circuit board 6.
  • the antenna unit 2 is held by the body 5 via the circuit board 6. In other words, the antenna unit 2 is mounted on the circuit board 6 held by the body 5.
  • FDTD method Finite-Difference Time-Domain method
  • the “FDTD method” is called a time domain difference method or a finite difference time domain method.
  • the horizontal axis is an angle formed with the z axis in the yz plane in the orthogonal coordinate system C1, and an angle formed in the counterclockwise direction is denoted by a symbol “ ⁇ ”.
  • 8B, 9B, 10B, and 11B the vertical axis represents the gain.
  • the gain is a gain of a radio wave to be transmitted in an antenna system including the transmission antenna 21, and is a gain of a radio wave to be received in an antenna system including a reception antenna 22.
  • FIG. 8A is a right side view of the antenna device 1a according to the first modification of the embodiment.
  • the antenna device 1a of Modification 1 does not include the second dielectric portion 40 in the antenna device 1 of the embodiment.
  • the shape of the two dielectric portions 30 in the dielectric unit 3 is a shape obtained by cutting a hemispherical shape by only one plane orthogonal to the y-axis.
  • the two dielectric parts 30 have the same shape.
  • the dielectric portion 30 of the dielectric unit 3 and the planar antenna 20 of the antenna unit 2 are arranged apart from each other by a distance L1 (for example, 3 mm) in the z-axis direction. .
  • the central axis 200 of the planar antenna 20 and the central axis 300 of the dielectric portion 30 facing the planar antenna 20 are aligned on a straight line.
  • there are two types of antenna systems including one planar antenna 20 and one dielectric portion 30 facing it.
  • the directivity characteristics of one antenna system including one planar antenna 20 (transmitting antenna 21) and the directivity characteristics of one antenna system including the other planar antenna 20 (receiving antenna 22) are: It will be the same.
  • “B0” in FIG. 8B indicates the simulation result of the directivity of the planar antenna 20 when the dielectric unit 3 is not disposed in front of the antenna unit 2.
  • the dielectric unit 3 is disposed in front of the antenna unit 2, and thus the dielectric unit 3 is not disposed (that is, the planar antenna 20). Directivity is stronger than in the case of a single unit. More specifically, in the antenna device 1a of the first modification, the dielectric unit 3 is disposed in front of the antenna unit 2, and therefore, for example, an antenna system is compared with the case where the dielectric unit 3 is not disposed. It is possible to narrow the angle range in which the gain becomes ⁇ 10 dB from the maximum value.
  • the angle range in which the gain of the planar antenna 20 is ⁇ 10 dB from the maximum value is approximately 188 °.
  • the angle range in which the gain of the planar antenna 20 is ⁇ 10 dB from the maximum value is approximately 124 °. is there.
  • the half-value angle at which the gain is ⁇ 3 dB from the maximum value is narrower than that in the case where the dielectric portion 30 is not disposed in front of the planar antenna 20.
  • the second peak and the third peak at angles other than the desired angle range. Etc. occur.
  • FIG. 9A is a right side view of the antenna device 1b according to the second modification of the embodiment.
  • the basic configuration of the antenna device 1b of the second modification is the same as that of the antenna device 1a of the first modification.
  • the center axis 300 of the dielectric part 30 is only a distance L2 (for example, 4 mm) in the direction opposite to the y axis with respect to the center axis 200 of the planar antenna 20 facing the dielectric part 30.
  • the shifted point is different from the antenna device 1a of the first modification.
  • “Y-4” in FIG. 9B shows the simulation result of the directivity of one antenna system.
  • “Y0” in FIG. 9B indicates a simulation result of the directivity characteristics of the antenna system when the distance L2 is 0 mm.
  • the direction in which the gain is maximum is a direction inclined with respect to the central axis 200 of the planar antenna 20.
  • the maximum value of the gain is reduced, and the angle is not in a desired angle range.
  • FIG. 10A is a right side view of the antenna device 1c according to Modification 3 of the embodiment.
  • the antenna device 1c of the third modification is different from the antenna device 1a of the first modification in that the second dielectric unit 40 includes the second dielectric unit 40 and the second dielectric unit 40 is separated from the dielectric unit 3 by a distance L3.
  • the antenna device 1c there are two systems of antenna systems including the planar antenna 20, the first dielectric part 30, and the second dielectric part 40.
  • “Z1” and “Z4” in FIG. 10B indicate simulation results of the directivity characteristics of the antenna system.
  • the directivity characteristics of one antenna system including one planar antenna 20 (transmitting antenna 21) and the directivity characteristics of one antenna system including the other planar antenna 20 (receiving antenna 22) are the same. It becomes.
  • “Z-1” in FIG. 10B is a shape in which the first dielectric portion 30 is cut by one plane orthogonal to the z-axis as in the embodiment, and the second dielectric portion 40 and the dielectric This is a simulation result of directivity when the body unit 3 is directly connected.
  • FIG. 11A is a right side view of the antenna device 1d according to Modification 4 of the embodiment.
  • the basic configuration of the antenna device 1d according to Modification 4 is substantially the same as the basic configuration of the antenna device 1 according to the first embodiment.
  • the antenna device 1d according to the fourth modification there are two systems of antenna systems including one planar antenna 20, the first dielectric part 30 and the second dielectric part 40 facing the planar antenna 20.
  • the central axis 400 of the second dielectric part 40 is set in one direction from the middle line H1 of the two first dielectric parts 30 in the juxtaposition direction of the two first dielectric parts 30. It is shifted.
  • the direction in which the gain of each antenna system is maximized is a direction inclined with respect to the central axis 200 of the planar antenna 20.
  • the midpoint P1 of the two first dielectric portions 30 is the middle point of the line connecting the central axes 300 of the two first dielectric portions 30 on the bottom surface of the groove 33 of the dielectric unit 3.
  • the middle line H1 is a normal line standing at the middle point P1 on the bottom surface of the groove 33 of the dielectric unit 3.
  • the distance L4 becomes too large, the maximum gain becomes too low in each antenna system.
  • the radio wave sensor 10 includes a detection unit 11 and a processing unit 13 as shown in FIG.
  • the detection unit 11 transmits radio waves to the detection area and receives radio waves from the detection area.
  • the processing unit 13 performs signal processing on the sensor signal output from the detection unit 11 to determine whether there is an object Ob moving in the detection area, and outputs a control signal according to the determination result of the determination unit 132. And an output unit 133.
  • the detection unit 11 includes the antenna device 1 described above. Thereby, the radio wave sensor 10 can further enhance the directivity of the radio wave while reducing the size.
  • the detection unit 11 intermittently emits radio waves to the detection area and receives the radio waves reflected by the object Ob existing in the detection area.
  • the processing unit 13 extracts spatial information in the detection area based on the sensor signal output from the detection unit 11.
  • the spatial information is the presence or absence of an object Ob that moves within the detection area.
  • the detection unit 11 includes a high-frequency circuit 110 including a high-frequency transmission circuit and a reception circuit, and a transmission antenna 21 and a reception antenna 22 connected to the high-frequency circuit 110.
  • the high-frequency circuit 110 gives a transmission signal to the transmission antenna 21 to radiate radio waves into the space, and extracts a signal including spatial information from the reception signal output from the reception antenna 22 that has received the radio waves from the space.
  • the transmission antenna 21 and the reception antenna 22 are arranged close to each other so that the difference between the distance from the transmission antenna 21 to the detection area and the distance from the reception antenna 22 to the detection area is relatively small.
  • the high-frequency circuit 110 is configured by a one-chip integrated circuit that monitors spatial information using an FMCW (Frequency-Modulated-Continuous-Wave) method.
  • the high frequency circuit 110 includes a mixing circuit 111 and a signal generation circuit 112.
  • the signal generation circuit 112 is realized by a PLL (Phase Locked Loop) synthesizer and outputs an FMCW signal.
  • PLL Phase Locked Loop
  • the detection unit 11 when an FMCW signal is input to the transmission antenna 21, radio waves are radiated from the transmission antenna 21 into space.
  • the receiving antenna 22 converts radio waves received from space into received signals.
  • the reception signal output from the reception antenna 22 is given to the mixing circuit 111.
  • the mixing circuit 111 mixes the FMCW signal input from the signal generation circuit 112 and the received signal.
  • the mixing circuit 111 functions as a multiplier. Therefore, the mixing circuit 111 outputs a signal obtained by multiplying the FMCW signal and the reception signal. That is, the signal output from the mixing circuit 111 includes a beat signal having a frequency difference between the frequency of the radio wave radiated from the transmission antenna 21 and the frequency of the radio wave received by the reception antenna 22.
  • the high-frequency circuit 110 includes an A / D converter 113 for converting the signal output from the mixing circuit 111 into a digital signal.
  • a filter circuit 114 is provided between the mixing circuit 111 and the A / D converter 113.
  • the filter circuit 114 is configured by a low pass filter or a band pass filter.
  • the filter circuit 114 is designed so as to remove a frequency component unnecessary for extracting the beat signal from the signal output from the mixing circuit 111.
  • the signal that has passed through the filter circuit 114 is input to the A / D converter 113, and the analog signal including the component of the beat signal is converted into a digital signal.
  • the A / D converter 113 is configured to output serial data, and a digital signal output from the A / D converter 113 is provided to the processing unit 13 as a sensor signal output from the detection unit 11.
  • the processing unit 13 includes a determination unit 132 and an output unit 133.
  • the determination unit 132 performs signal processing on the sensor signal output from the detection unit 11 and determines whether or not there is an object Ob that moves within the detection area of the detection unit 11.
  • the output unit 133 outputs a control signal corresponding to the determination result of the determination unit 132.
  • the processing unit 13 is composed of a microcomputer.
  • the microcomputer is configured as a one-chip device including a processor that operates according to a program, a memory that stores a program that operates the processor, and a working memory.
  • the processing unit 13 may be configured by a device selected from an FPGA (Field-Programmable Gate Array), a DSP (Digital Signal Processor), a PIC (Peripheral Interface Controller), or the like instead of a microcomputer.
  • FPGA Field-Programmable Gate Array
  • DSP Digital Signal Processor
  • PIC Peripheral Interface Controller
  • the program can be provided in a state of being stored in a ROM (Read Only Memory) of the memory, or can be provided on a recording medium such as an optical disk or an external storage device readable by a computer.
  • the program may be provided through an electric communication line such as the Internet.
  • a program that is not stored in the ROM but provided through a storage medium or a telecommunication line is stored in a rewritable nonvolatile memory.
  • the antenna unit 2 of the antenna device 1 includes a transmission antenna 21 and a reception antenna 22 in the detection unit 11.
  • electronic components constituting the high-frequency circuit 110 and the processing unit 13 in the detection unit 11 are mounted on the circuit board 6 (see FIGS. 1, 2, 4 to 6).
  • the circuit board 6 is a printed board.
  • the circuit board 6 is formed in a rectangular plate shape. The circuit board 6 is held by the body 5 of the antenna device 1.
  • the radio wave sensor 10 includes the antenna device 1 having the dielectric unit 3 and the second dielectric part 40 as described above. As a result, the radio wave sensor 10 can strengthen (squeeze) the directivity characteristics of the antenna system including the transmission antenna 21 while reducing the size and height of the radio wave sensor 10, and the antenna including the reception antenna 22. It becomes possible to strengthen (squeeze) the directivity of the system.
  • the radio wave sensor 10 since the radio wave sensor 10 includes the output unit 133 that outputs a control signal according to the determination result of the determination unit 132, the operation of the device can be controlled by outputting the control signal.
  • the faucet device 100 described below with reference to FIGS. 13 to 15 as an application example of the radio wave sensor 10 includes an on-off valve 140 (see FIG. 12).
  • the opening / closing valve 140 is a device to be controlled by the control signal of the radio wave sensor 10, and the opening / closing valve 140 can be switched between the open state and the closed state by the control signal.
  • the faucet device 100 is, for example, configured to be used in combination with a kitchen sink 1002, and is disposed on a counter 1001 surrounding the kitchen sink 1002.
  • the water faucet device 100 includes a spout 101 that is a water discharge pipe, a hose 102 (see FIG. 14), an on-off valve 140, and the radio wave sensor 10 described above.
  • the hose 102 is disposed in the spout 101.
  • the on-off valve 140 is disposed on the upstream side of the hose 102.
  • the on-off valve 140 is switched between an open state and a closed state by a control signal output from the output unit 133 (see FIG. 12) in the radio wave sensor 10.
  • the faucet device 100 switches between water discharge and water stop when a control signal is given from the radio wave sensor 10 to the on-off valve 140.
  • the processing unit 13 (see FIG. 12) of the radio wave sensor 10 opens the on-off valve 140 when there is an object Ob (see FIG. 12) that moves within the detection area A1 (see FIG. 13) of the radio wave sensor 10.
  • a control signal for setting the state is applied to the on-off valve 140.
  • the processing unit 13 gives the on / off valve 140 a control signal for closing the on / off valve 140 when there is no moving object Ob in the detection area A1. Therefore, the faucet device 100 can automatically perform water discharge and water stoppage.
  • the faucet device 100 can prevent water from being discharged when there is no moving object Ob in the detection area A 1 of the radio wave sensor 10, so that water is discharged when washing is placed in the sink 1002. It is possible to prevent the occurrence of malfunction.
  • the faucet device 100 by providing the radio wave sensor 10 including the antenna device 1, it is possible to further increase the directivity of the radio wave while reducing the size of the radio wave sensor 10. Thereby, the faucet device 100 reduces the possibility of unnecessarily discharging water and contributes to water saving.
  • the spout 101 includes a spout body formed of ABS resin, and a plating layer is provided on the outer peripheral surface of the spout body.
  • the water faucet device 100 includes a base 106 that is formed integrally with the spout 101.
  • the base 106 is fixed at a fixed position of the counter 1001 and protrudes from the upper surface of the counter 1001.
  • the hose 102 disposed in the spout 101 forms a flow path for water (or hot water).
  • the downstream end of the hose 102 is fixed to the spout 101 with a screw in the spout 101.
  • a water supply pipe connected to the upstream end of the hose 102, an on-off valve 140, and the like are arranged.
  • the on-off valve 140 is, for example, an electromagnetic valve.
  • the radio wave sensor 10 is disposed near the water outlet 105, so that the radio wave sensor 10 can be miniaturized, and water discharge and water stop can be performed according to the presence or absence of the object Ob moving in the detection area A1. Can be switched.
  • a water discharge member 108 is attached to a first end 1011 of the spout 101 opposite to the base 106 side via a tubular water discharge joint 107. Therefore, the water discharge port 105 of the water faucet device 100 is provided in the water discharge member 108.
  • the water discharge member 108 is, for example, a water discharge fitting.
  • the faucet device 100 includes a water discharge nozzle 103 (see FIG. 14) connected to the downstream end of the hose 102.
  • the nozzle 103 is disposed in the water discharge joint 107.
  • the radio wave sensor 10 is disposed adjacent to the hose 102 near the water outlet 105 in the spout 101.
  • the radio wave sensor 10 extracts information as to whether or not there is an object Ob (see FIG. 12) that moves within the detection area A1 (see FIG. 13) as spatial information.
  • the object Ob is, for example, hands, tableware, cooking utensils, vegetables, fruits, and the like.
  • the detection area A1 of the radio wave sensor 10 is, for example, a cylindrical space having a diameter of 100 mm and a height of 185 mm below the water outlet of the faucet device 100, and 50 mm from the water outlet 105 below the water outlet of the water faucet device 100. Only set apart.
  • the spout 101 has an inverted U shape, and has a first end 1011 on the side of the spout 105 and a second end 1012 opposite to the first end 1011.
  • the radio wave sensor 10 is disposed at the first end 1011 of the spout 101 so as to face the second end 1012. Thereby, the faucet device 100 can suppress the occurrence of malfunctions while enhancing the aesthetic appearance.
  • the faucet device 100 is provided with a bulging portion 1111 bulging toward the second end 1012 at the first end 1011 of the spout 101, and the radio wave sensor 10 is disposed in the bulging portion 1111.
  • the faucet device 100 includes a cover 104 that is disposed inside the first end 1011 of the spout 101 and covers the radio wave sensor 10 as shown in FIG.
  • the cover 104 includes a first storage unit 1041 that stores a part of the nozzle 103 and a second storage unit 1042 that stores the radio wave sensor 10.
  • the cover 104 is formed of a dielectric (for example, ABS resin).
  • a hole 1043 through which the nozzle 103 passes is formed in the first storage portion 1041 of the cover 104.
  • the cover 104 is detachably attached to the downstream end of the hose 102 with two screws.
  • the radio wave sensor 10 is detachably attached to the cover 104.
  • the faucet device 100 there is a gap between the spout 101 and the hose 102, and an electric wire that connects the radio wave sensor 10 and the on-off valve 140, an electric power supply wire to the radio wave sensor 10, and the like are connected to the spout 101 and the hose 102. It is arranged in the gap between.
  • the central axis 300 of at least one dielectric part 30 of the two dielectric parts 30 may be shifted from the central axis 200 of the corresponding planar antenna 20 of the two planar antennas 20. .
  • the central axis of the dielectric part 30 is shifted from the central axis 200 of the corresponding planar antenna 20, whereby an antenna system including one planar antenna 20 and one dielectric part 30. It is possible to make the direction in which the gain becomes maximum with respect to the central axis 200.
  • the central axis 300 of the dielectric portion 30 may be shifted from the central axis 200 of the planar antenna 20 along the direction in which the gain is to be maximized.
  • the frequency of the radio wave radiated from the transmitting antenna 21 is not limited to 24 GHz, and may be 2.4 GHz, for example.
  • the transmitting antenna 21 when the frequency of the radio wave is 2.4 GHz, it is preferable to set the plane size of the conductor layer 221 to 10 times (that is, 27 mm ⁇ 27 mm) compared to the case where the frequency of the radio wave is 24 GHz.
  • the configuration and operation of the detection unit 11 other than the antenna device 1 may be changed as appropriate.
  • the configuration and operation of the processing unit 13 may be changed as appropriate.
  • the radio wave sensor 10 may be configured to include any one of the antenna devices 1a to 1d according to the modified examples 1 to 4 instead of the antenna device 1.
  • the faucet device 100 is not limited to a configuration that is arranged in a kitchen or the like, and may be a configuration that is arranged in a bathroom, a bathroom, or the like.
  • the opening / closing valve 140 in the faucet device 100 is not limited to the configuration arranged in the base 106, and may not be arranged in the base 106.
  • the application example of the radio wave sensor 10 is not limited to the faucet device 100 but may be, for example, an alarm device.
  • Antenna apparatus Antenna unit 20 Planar antenna 200 Center axis 21 Transmitting antenna 22 Receiving antenna 3 Dielectric unit 30 Dielectric part (1st dielectric part) 300 central axis 31 dielectric part for transmission 32 dielectric part for reception 33 groove 40 second dielectric part 400 central axis 10 radio wave sensor 11 detection part 13 processing part 132 judgment part 133 output part 100 faucet device 101 spout 1011 first End 1012 Second end 102 Hose 105 Water outlet 140 On-off valve P1 Middle point H1 Middle line A1 Detection area Ob Object

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本発明の課題は、小型化を図りながらも電波の指向性をより強くすることが可能なアンテナ装置、電波センサ及びそれを備えた水栓装置を提供することである。アンテナ装置(1)は、アンテナユニット(2)及び誘電体ユニット(3)を備える。アンテナユニット(2)は、2つの平面アンテナ(20)を有する。誘電体ユニット(3)は、アンテナユニット(2)に対向する。一方の平面アンテナ(20)が送信アンテナ(21)であり、他方の平面アンテナ(20)が受信アンテナ(22)である。誘電体ユニット(3)は、それぞれ対向する平面アンテナ(20)からの距離が長くなるにつれて断面積が小さくなる2つの誘電体部(30)を有する。誘電体ユニット(3)は、アンテナユニット(2)側と反対側において、2つの誘電体部(30)の間に溝(33)が形成されている。

Description

アンテナ装置、電波センサ及びそれを備えた水栓装置
 本発明は、アンテナ装置、電波センサ及びそれを備えた水栓装置に関する。
 従来、アンテナ装置として、2つの1次放射器と、2つの1次放射器に一対一に対応し対応する1次放射器の位置を焦点面とする2つの誘電体レンズと、を備えた送受信装置が提案されている(特許文献1)。
 また、水栓装置として、電波センサを用いて吐水流の吐水を制御する水栓装置が提案されている(特許文献2)。ここにおいて、電波センサは、例えば、送信部と、送信部に接続されたアンテナ(送信アンテナ)と、受信部と、受信部に接続されたアンテナ(受信アンテナ)と、ミキサ部と、を備えている。
 アンテナ装置の分野では、小型化を図りながらも電波の指向性をより強くすることが望まれる場合がある。
特開2000-22423号公報 特許第5212908号公報
 本発明の目的は、小型化を図りながらも電波の指向性をより強くすることが可能なアンテナ装置、電波センサ及びそれを備えた水栓装置を提供することにある。
 本発明に係る一態様のアンテナ装置は、アンテナユニットと、誘電体ユニットと、を備える。前記アンテナユニットは、2つの平面アンテナを有する。前記誘電体ユニットは、前記アンテナユニットに対向する。前記2つの平面アンテナのうち一方の平面アンテナは、電波を送信する送信アンテナである。前記2つの平面アンテナのうち他方の平面アンテナは、前記送信アンテナから送波され物体で反射された電波を受信する受信アンテナである。前記誘電体ユニットは、前記2つの平面アンテナに一対一で対向し対向する平面アンテナからの距離が長くなるにつれて断面積が小さくなる2つの誘電体部を有する。前記誘電体ユニットは、前記アンテナユニット側と反対側において、前記2つの誘電体部の間に溝が形成されている。
 本発明に係る一態様の電波センサは、検知部と、処理部と、を備える。前記検知部は、電波を検知エリアに送信し、前記検知エリアから電波を受信する。前記処理部は、判断部と、出力部と、を備える。前記判断部は、前記検知部から出力されるセンサ信号を信号処理して前記検知エリア内において移動する物体の有無を判断する。前記出力部は、前記判断部の判断結果に応じた制御信号を出力する。前記検知部は、上記のアンテナ装置を含んでいる。
 本発明に係る一態様の水栓装置は、吐水用の管であるスパウトと、ホースと、開閉弁と、上記の電波センサと、を備える。前記ホースは、前記スパウト内に配置されている。前記開閉弁は、前記ホースの上流側に配置されている。前記開閉弁は、上記の電波センサにおける出力部から出力される制御信号によって開状態と閉状態とが切り替わる。
図1Aは、本発明の一実施形態に係るアンテナ装置の正面左斜め側から見た斜視図である。図1Bは、同上のアンテナ装置の正面右斜め側から見た斜視図である。 図2Aは、同上のアンテナ装置の正面図である。図2Bは、同上のアンテナ装置の平面図である。図2Cは、同上のアンテナ装置の左側面図である。図2Dは、同上のアンテナ装置の右側面図である。 図3は、同上のアンテナ装置に関し、図2AのZ1-Z1線断面図である。 図4Aは、同上のアンテナ装置に関し、図3のX1-X1線断面に対応する断面図である。図4Bは、同上のアンテナ装置に関し、図3のX1-X1線断面に対応する斜視断面図である。 図5Aは、同上のアンテナ装置に関し、図3のX2-X2線断面に対応する断面図である。図5Bは、同上のアンテナ装置に関し、図3のX2-X2線断面に対応する斜視断面図である。 図6Aは、同上のアンテナ装置に関し、図3のY1-Y1線断面に対応する断面図である。図6Bは、同上のアンテナ装置に関し、図3のY2-Y2線断面に対応する断面図である。 図7は、同上のアンテナ装置におけるアンテナユニットの斜視図である。 図8Aは、本発明の一実施形態の変形例1に係るアンテナ装置の右側面図である。図8Bは、同上のアンテナ装置の指向特性のシミュレーション結果を示すグラフである。 図9Aは、本発明の一実施形態の変形例2に係るアンテナ装置の右側面図である。図9Bは、同上のアンテナ装置の指向特性のシミュレーション結果を示すグラフである。 図10Aは、本発明の一実施形態の変形例3に係るアンテナ装置の右側面図である。図10Bは、同上のアンテナ装置の指向特性のシミュレーション結果を示すグラフである。 図11Aは、本発明の一実施形態の変形例4に係るアンテナ装置の右側面図である。図11Bは、同上のアンテナ装置の指向特性のシミュレーション結果を示すグラフである。 図12は、本発明の一実施形態に係るアンテナ装置を備えた電波センサのブロック図である。 図13は、本発明の一実施形態に係るアンテナ装置を備えた電波センサを含む水栓装置に関し、流し台に配置した状態の斜視図である。 図14は、同上の水栓装置の要部断面図である。 図15は、同上の水栓装置を配置した流し台の断面図である。
 下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 以下では、本実施形態のアンテナ装置1について図1A~7に基づいて説明する。
 アンテナ装置1は、アンテナユニット2と、誘電体ユニット3と、を備える。アンテナユニット2は、2つの平面アンテナ20を有する。誘電体ユニット3は、アンテナユニット2に対向する。2つの平面アンテナ20のうち一方の平面アンテナ20が電波を送信する送信アンテナ21である。2つの平面アンテナ20のうち他方の平面アンテナ20が送信アンテナ21から送波され物体で反射された電波を受信する受信アンテナ22である。誘電体ユニット3は、2つの平面アンテナ20に一対一で対向し対向する平面アンテナ20からの距離が長くなるにつれて断面積が小さくなる2つの誘電体部30を有する。誘電体ユニット3では、アンテナユニット2側と反対側において、2つの誘電体部30の間に溝33が形成されている。
 以上の構成により、アンテナ装置1は、小型化を図りながらも電波の指向性をより強くすることが可能となる。アンテナ装置1では、アンテナユニット2と誘電体ユニット3との距離が、例えば、送信アンテナ21から送波する電波の自由空間波長よりも短いのが好ましい。誘電体ユニット3では、2つの誘電体部30のうち送信アンテナ21に対向する誘電体部30(以下、「送信用誘電体部31」ともいう)が、送信アンテナ21から放射させる電波の指向性を強める機能(指向性を絞る機能)を有する。また、誘電体ユニット3では、2つの誘電体部30のうち受信アンテナ22に対向する誘電体部30(以下、「受信用誘電体部32」ともいう)が、受信アンテナ22で受波する電波の指向性を強める機能(指向性を絞る機能)を有する。
 アンテナ装置1は、2つの誘電体部30(以下、「第1誘電体部30」ともいう)とは別に、2つの第1誘電体部30を覆うように配置される第2誘電体部40を更に備えるのが好ましい。ここにおいて、第2誘電体部40とアンテナユニット2との距離は、誘電体ユニット3とアンテナユニット2との距離よりも長い。また、第2誘電体部40は、アンテナユニット2からの距離が長くなるにつれて断面積が小さくなる形状であるのが好ましい。これにより、アンテナ装置1は、電波の指向性を更に強くすることが可能となる。
 アンテナ装置1の各構成要素については、以下に、より詳細に説明する。
 上述のように、アンテナ装置1は、アンテナユニット2と、誘電体ユニット3と、第2誘電体部40と、を備える。
 アンテナユニット2は、2つの平面アンテナ20を有する。平面アンテナ20は、パッチアンテナである。アンテナユニット2では、図7に示すように、1枚の誘電体基板201に、2つの平面アンテナ20が形成されている。誘電体基板201は、厚さ方向において互いに反対側にある表面211及び裏面212を有する。誘電体基板201の平面視形状(厚さ方向において表面211側から見た形状)は、長方形状である。誘電体基板201は、誘電体により形成された基板である。より詳細には、誘電体基板201は、例えば、ガラスエポキシ樹脂基板である。ガラスエポキシ樹脂基板は、例えば、UL746E規格によるFR-4.0のグレードを満たすのが好ましい。誘電体基板201の厚さは、例えば、1mmである。誘電体基板201の比誘電率は、例えば、4.2である。
 2つの平面アンテナ20は、誘電体基板201の厚さ方向から見て、誘電体基板201の長手方向に配列されている。2つの平面アンテナ20それぞれの平面視形状は、正方形状である。2つの平面アンテナ20の各々は、誘電体基板201の表面211に形成された導体層221、誘電体基板201の裏面212に形成されたグラウンド層222と、給電点と、を含む。給電点は、例えば、導体層221のうち、誘電体基板201において導体層221に重なる領域内で誘電体基板201の厚さ方向に貫通した孔(図示せず)により露出した部位である。導体層221の平面視形状は、正方形状である。導体層221は、誘電体基板201の表面211上の金属はくにより構成されている。ここにおいて、金属はくの材質は、銅である。要するに、導体層221は、導体により形成されている。
 グラウンド層222は、誘電体基板201の裏面212上に形成された金属はくにより構成されている。ここにおいて、金属はくの材質は、銅である。要するに、グラウンド層222は、導体により形成されている。
 上述のように、アンテナユニット2では、2つの平面アンテナ20のうち一方の平面アンテナ20が送信アンテナ21であり、他方の平面アンテナ20が受信アンテナ22である。
 送信アンテナ21は、電波を空間に送信する。受信アンテナ22は、空間からの電波を受信する。より詳細には、受信アンテナ22は、例えば、送信アンテナ21から送信され物体で反射された電波を受信する。送信アンテナ21から送信する電波の周波数は、例えば、24GHzである。この場合、送信アンテナ21から送信する電波及び受信アンテナ22で受信する電波の波長は、12.5mmである。ここにおいて、2つの平面アンテナ20の導体層221の平面サイズは、2.7mm×2.7mmであるのが好ましい。
 平面アンテナ20の中心軸200(図3、6A及び6B参照)は、導体層221の表面の中心点を通る。より詳細には、送信アンテナ21の中心軸2001は、送信アンテナ21における導体層221の表面の中心点を通る。また、受信アンテナ22の中心軸2002は、受信アンテナ22における導体層221の表面の中心点を通る。図3には、直交座標系C1、C2を表記してある。ただし、直交座標系C1及びC2は、実体を伴うわけではなく、説明のために表記しているに過ぎない。
 直交座標系C1は、送信アンテナ21において、導体層221の表面の中心点を原点として、導体層221の表面において互いに直交するx軸とy軸とを規定し、導体層221の表面に直交するz軸を規定してある。したがって、直交座標系C1におけるz軸は、送信アンテナ21の中心軸2001上に規定してある。
 直交座標系C2は、受信アンテナ22において、導体層221の表面の中心点を原点として、導体層221の表面において互いに直交するx軸とy軸とを規定し、導体層221の表面に直交するz軸を規定してある。したがって、直交座標系C2におけるz軸は、受信アンテナ22の中心軸2002上に規定してある。直交座標系C1は、左手系直交座標系である。直交座標系C2は、右手系直交座標系であり、直交座標系C1とはy軸の方向が逆方向である。
 誘電体ユニット3は、アンテナユニット2における2つの平面アンテナ20それぞれの単体での指向性よりも指向性を強くするためにアンテナユニット2の前方(誘電体基板201の厚さ方向において表面211の裏面212側とは反対側)に配置される。誘電体ユニット3は、空気よりも誘電率の高い誘電体により形成されている。一例として、誘電体ユニット3は、黒色のABS樹脂により形成されている。ここにおいて、誘電体ユニット3の比誘電率は、略2.5である。ここにおいて、誘電体ユニット3は、2つの誘電体部30を含む1つの部材(樹脂成形体)である。このため、誘電体ユニット3では、この誘電体ユニット3の一部により2つの誘電体部30が繋がっている。ここで、誘電体ユニット3では、上述のように、アンテナユニット2側と反対側において、2つの誘電体部30の間に溝33が形成されている。
 アンテナユニット2と誘電体ユニット3との距離L1(図5A、6A及び6B参照)は、送信アンテナ21から送波する電波の自由空間波長よりも短いのが好ましい。より詳細には、距離L1は、例えば、送信アンテナ21から送波する電波の自由空間波長(以下では、この電波の自由空間波長をλとする)の0.08倍~0.4倍(つまり、0.08λ~0.4λ)であるのが好ましい。一例として、距離L1は、3mm(=0.24λ)である。
 誘電体ユニット3は、2つの誘電体部30を有する。また、誘電体ユニット3は、アンテナユニット2側と反対側において、2つの誘電体部30の間に溝33が形成されている。誘電体ユニット3では、2つの誘電体部30のうち一方の誘電体部30(送信用誘電体部31)が送信アンテナ21に対向し、他方の誘電体部30(受信用誘電体部32)が受信アンテナ22に対向する。以下では、説明の便宜上、2つの誘電体部30それぞれの中心軸300を区別する場合には、送信用誘電体部31の中心軸301、受信用誘電体部32の中心軸302ということもある。
 送信用誘電体部31は、送信アンテナ21の前方(送信アンテナ21の厚さ方向において導体層221のグラウンド層222側とは反対側)に配置されている。これにより、送信用誘電体部31と送信アンテナ21の導体層221とが対向している。図3及び6Aに示すように、送信用誘電体部31は、対向する送信アンテナ21の中心軸2001に交差するように配置されている。より詳細には、送信用誘電体部31は、送信アンテナ21との対向面が送信アンテナ21の中心軸2001に直交するように配置されている。ここにおいて、「直交」とは、厳密に互いに直角に交わる場合のみに限定されず、略直交(互いに交わる角度が例えば90°±10°)でもよい。送信用誘電体部31は、送信アンテナ21からの距離が長くなるにつれて断面積が小さくなる形状に形成されている。アンテナ装置1は、送信用誘電体部31を備えることにより、送信アンテナ21から放射される電波の指向性を強くすることができる。
 送信用誘電体部31は、一例として、半球状の形状の一部を、送信アンテナ21に規定した直交座標系C1におけるy軸に直交する1つの平面(溝33の内側面331)によりカットした形状に形成されている。これにより、送信用誘電体部31における送信アンテナ21側とは反対側の表面は、曲面311(図3及び6A参照)を含んでいる。送信用誘電体部31の中心軸301は、曲面311を表面の一部として含む第1仮想半球の中心軸である。また、送信用誘電体部31は、半球状の形状の一部を、送信アンテナ21に規定した直交座標系C1におけるz軸に直交する1つの平面と、x軸に直交する1つの平面とでカットした形状に形成されている。したがって、送信用誘電体部31における曲面311は、誘電体ユニット3の厚さ方向の一方向から見てC字状である。
 受信用誘電体部32は、受信アンテナ22の前方に配置されている。図3及び6Bに示すように、受信用誘電体部32は、対向する受信アンテナ22の中心軸2002に交差するように配置されている。より詳細には、受信用誘電体部32は、受信アンテナ22との対向面が受信アンテナ22の中心軸2002に直交するように配置されている。ここにおいて、「直交」とは、厳密に互いに直角に交わる場合のみに限定されず、略直交(互いに交わる角度が例えば90°±10°)でもよい。受信用誘電体部32は、受信アンテナ22からの距離が長くなるにつれて断面積が小さくなる形状に形成されている。アンテナ装置1は、受信用誘電体部32を備えることにより、受信アンテナ22で受波する電波の指向性を強くすることができる。
 受信用誘電体部32は、一例として、半球状の形状の一部を、受信アンテナ22に規定した直交座標系C2におけるy軸に直交する1つの平面(溝33の内側面332)によりカットした形状に形成されている。これにより、受信用誘電体部32における受信アンテナ22側とは反対側の表面は、曲面312(図3及び6B参照)を含んでいる。受信用誘電体部32の中心軸302は、曲面312を表面の一部として含む第2仮想半球の中心軸である。第2仮想半球の直径は、第1仮想半球の直径と同じであるのが好ましい。また、受信用誘電体部32は、半球状の形状の一部を、受信アンテナ22に規定した直交座標系C2におけるz軸に直交する1つの平面と、x軸に直交する1つの平面とでカットした形状に形成されている。したがって、受信用誘電体部32における曲面312は、誘電体ユニット3の厚さ方向の一方向から見てC字状である。
 誘電体ユニット3では、2つの誘電体部30の並んでいる方向における2つの誘電体部30の中心軸300間の距離は、第1仮想半球の直径及び第2仮想半球の直径よりも短い。図1A~5Bに示すように、誘電体ユニット3は、アンテナユニット2側とは反対側において2つの誘電体部30の間に、溝33が形成されている。これにより、誘電体ユニット3では、アンテナユニット2側とは反対側において2つの誘電体部30が分離されている。これにより、誘電体ユニット3では、図3に示すように、2つの誘電体部30の曲面311、312同士が交差しない。溝33は、誘電体ユニット3におけるアンテナユニット2側とは反対側から見た平面視において、2つの誘電体部30の並ぶ方向とは直交する方向に沿って形成されている。
 アンテナ装置1では、例えば、図3、6A及び6Bに示すように、2つの誘電体部30それぞれの中心軸300を、2つの平面アンテナ20のうち対応する平面アンテナ20の中心軸200からずらしてある。これにより、アンテナ装置1では、1つの平面アンテナ20と1つの誘電体部30とを含む2つのアンテナ系それぞれについて、利得が最大となる方向を平面アンテナ20の中心軸200に対して傾いた方向とすることが可能となる。ここにおいて、アンテナ装置1では、送信用誘電体部31の中心軸301を送信アンテナ21の中心軸2001から直交座標系C1のx軸に沿った方向にずらしてある。また、アンテナ装置1では、受信用誘電体部32の中心軸302を直交座標系C2のx軸に沿った方向にずらしてある。
 アンテナ装置1は、アンテナユニット2と誘電体ユニット3と第2誘電体部40とを保持したボディ5を備えるのが好ましい。ボディ5は、送信アンテナ21から送信される電波を透過する材料により形成されているのが好ましい。ここにおいて、ボディ5は、例えば、ABS樹脂により形成されている。アンテナ装置1では、誘電体ユニット3及び第2誘電体部40が、ボディ5と一体に形成されている。これにより、アンテナ装置1は、アンテナユニット2と誘電体ユニット3及び第2誘電体部40それぞれとの相対的な位置精度の向上を図れる。ここにおいて、アンテナ装置1は、回路基板6を更に備えるのが好ましい。アンテナユニット2は、回路基板6を介してボディ5に保持されている。言い換えれば、アンテナユニット2は、ボディ5に保持された回路基板6に実装されている。
 次に、誘電体ユニット3の誘電体部30(第1誘電体部30)及び第2誘電体部40それぞれにより平面アンテナ20の指向特性が制御される点について図8A~11Bに基づいて説明する。図8B、9B、10B及び11Bは、送信アンテナ21に規定した直交座標系C1におけるy軸とz軸とを含むyz平面での指向特性を、FDTD法(Finite-Difference Time-Domain method)を利用してシミュレーションした結果である。「FDTD法」は、時間領域差分法又は有限差分時間領域法と呼ばれている。図8B、9B、10B及び11Bにおいて、横軸は、直交座標系C1におけるyz平面においてz軸とのなす角度であり、反時計回り方向においてなす角度に「-」の符号を付してある。図8B、9B、10B及び11Bにおいて、縦軸は利得である。利得は、送信アンテナ21を含むアンテナ系では、送波する電波の利得であり、受信アンテナ22を含むアンテナ系では、受波する電波の利得である。
 図8Aは、実施形態の変形例1のアンテナ装置1aの右側面図である。変形例1のアンテナ装置1aは、実施形態のアンテナ装置1における第2誘電体部40を備えていない。また、変形例1のアンテナ装置1aでは、誘電体ユニット3における2つの誘電体部30の形状は、半球状の形状をy軸に直交する1つの平面のみによりカットした形状である。ここにおいて、2つの誘電体部30は、同じ形状である。また、変形例1のアンテナ装置1aでは、誘電体ユニット3の誘電体部30とアンテナユニット2の平面アンテナ20とが、z軸の方向に距離L1(例えば、3mm)だけ離れて配置されている。また、変形例1のアンテナ装置1aは、平面アンテナ20の中心軸200と平面アンテナ20に対向する誘電体部30の中心軸300とを一直線上に揃えてある。アンテナ装置1aでは、1つの平面アンテナ20とそれに対向する1つの誘電体部30とで構成されるアンテナ系が2系統ある。
 図8Bの「Z3」は、変形例1のアンテナ装置1aに関し、距離L1=3mm(=0.24λ)の場合における1系統のアンテナ系の指向特性のシミュレーション結果を示している。このシミュレーション結果では、一方の平面アンテナ20(送信アンテナ21)を含む1系統のアンテナ系の指向特性と、他方の平面アンテナ20(受信アンテナ22)を含む1系統のアンテナ系の指向特性と、が同じとなる。図8Bの「B0」は、アンテナユニット2の前方に誘電体ユニット3が配置されていない場合の平面アンテナ20の指向特性のシミュレーション結果を示している。
 図8Bから分かるように、変形例1のアンテナ装置1aは、アンテナユニット2の前方に誘電体ユニット3が配置されていることにより、誘電体ユニット3が配置されていない場合(つまり、平面アンテナ20単体の場合)と比べて、指向性が強くなる。より詳細には、変形例1のアンテナ装置1aでは、アンテナユニット2の前方に誘電体ユニット3が配置されていることにより、誘電体ユニット3が配置されていない場合と比べて、例えば、アンテナ系の利得が最大値よりも-10dBとなる角度範囲を狭くすることが可能となる。ここにおいて、アンテナユニット2の前方に誘電体ユニット3が配置されていない場合、平面アンテナ20の利得が最大値よりも-10dBとなる角度範囲は、略188°である。これに対して、変形例1のアンテナ装置1aでは、距離L1が3mm(=0.24λ)であれば、平面アンテナ20の利得が最大値よりも-10dBとなる角度範囲は、略124°である。変形例1のアンテナ装置1aは、利得が最大値よりも-3dBとなる半値角も、平面アンテナ20の前方に誘電体部30が配置されていない場合と比べて狭くなる。
 図8Bでは、距離L1が3mm(=0.24λ)の場合のシミュレーション結果のみ示してあるが、シミュレーションは、距離L1を0mmから12mm(=0.96λ)まで1mm(=0.08λ)きざみで変化させた場合それぞれについて行った。その結果、変形例1のアンテナ装置1aでは、アンテナユニット2の前方に誘電体ユニット3が配置されていることにより、各アンテナ系それぞれにおいて、平面アンテナ20の正面方向(角度=0°)の利得が2~3dB向上することが確認された。また、変形例1のアンテナ装置1aでは、アンテナユニット2の前方に誘電体ユニット3が配置されていることで各アンテナ系それぞれの指向性を強くできることが確認された。ただし、変形例1のアンテナ装置1aにおける各アンテナ系の指向特性では、所望の角度範囲において発生する第1のピークの他に、所望の角度範囲以外の角度において第2のピーク、第3のピーク等が発生する。ここにおいて、変形例1のアンテナ装置1aでは、距離L1が長くなりすぎると、第2のピークのピーク値、第3のピークのピーク値それぞれが大きくなりすぎる。また、変形例1のアンテナ装置1aの低背化の観点からは、距離L1は、短いほうが好ましい。よって、変形例1のアンテナ装置1aでは、アンテナユニット2と誘電体ユニット3との距離L1は、例えば、1mm(=0.08λ)~5mm(=0.4λ)であるのが好ましい。
 図9Aは、実施形態の変形例2のアンテナ装置1bの右側面図である。変形例2のアンテナ装置1bの基本構成は、変形例1のアンテナ装置1aと同じである。変形例2のアンテナ装置1bは、誘電体部30の中心軸300を誘電体部30に対向する平面アンテナ20の中心軸200に対してy軸とは逆方向において距離L2(例えば、4mm)だけずらしてある点が変形例1のアンテナ装置1aと相違する。
 図9Bの「Y-4」は、1系統のアンテナ系の指向特性のシミュレーション結果を示している。また、図9Bの「Y0」は、距離L2を0mmとした場合のアンテナ系の指向特性のシミュレーション結果を示している。
 図9から、変形例2のアンテナ装置1bでは、利得が最大となる方向が平面アンテナ20の中心軸200に対して傾いた方向となっていることが分かる。ただし、変形例2のアンテナ装置1bでは、誘電体部30の中心軸300を平面アンテナ20の中心軸200に対してずらし過ぎると、利得の最大値が低下し、所望の角度範囲以外の角度における利得が大きくな傾向にある。よって、誘電体部30の中心軸300を誘電体部30に対向する平面アンテナ20の中心軸200に対してy軸とは逆方向にずらす場合、距離L2は、4mm(=0.32λ)以下であるのが好ましい。また、誘電体部30の中心軸300を誘電体部30に対向する平面アンテナ20の中心軸200に対してy軸と同じ方向にずらす場合、距離L2は、1mm(=0.08λ)以下であるのが好ましい。
 図10Aは、実施形態の変形例3のアンテナ装置1cの右側面図である。変形例3のアンテナ装置1cは、第2誘電体部40を備え、第2誘電体部40が誘電体ユニット3から距離L3だけ離れている点が変形例1のアンテナ装置1aと相違する。アンテナ装置1cでは、平面アンテナ20と第1誘電体部30と第2誘電体部40とで構成されるアンテナ系が2系統ある。
 図10Bの「Z1」及び「Z4」は、アンテナ系の指向特性のシミュレーション結果を示している。このシミュレーション結果では、一方の平面アンテナ20(送信アンテナ21)を含む1系統のアンテナ系の指向特性と、他方の平面アンテナ20(受信アンテナ22)を含む1系統のアンテナ系の指向特性とが同じとなる。図10Bの「Z1」は、距離L3=1mm(=0.08λ)の場合のアンテナ系の指向特性のシミュレーション結果である。また、図10Bの「Z4」は、距離L3=4mm(=0.32λ)の場合の指向特性のシミュレーション結果である。また、図10Bの「Z-1」は、第2誘電体部40がz軸の逆方向において誘電体ユニット3に1mm(=0.08λ)だけオーバーラップしている場合のアンテナ系の指向特性のシミュレーション結果である。要するに、図10Bの「Z-1」は、実施形態のように第1誘電体部30がz軸に直交する1つの平面でカットされた形状であり、かつ、第2誘電体部40と誘電体ユニット3とが直接繋がっている場合の指向特性のシミュレーション結果である。
 図8B及び図10Bから、変形例3のアンテナ装置1cのアンテナ系では、誘電体ユニット3及び第2誘電体部40を備えていない場合と比べて、平面アンテナ20の正面方向(角度=0°)の利得が5~6dB向上することが分かる。また、変形例3のアンテナ装置1cでは、変形例1のアンテナ装置1aと比べて、指向性を更に強くできることが分かる。ただし、変形例3のアンテナ装置1cでは、距離L3が長くなりすぎると、第2のピークのピーク値、第3のピークのピーク値が大きくなりすぎる。また、アンテナ装置1cの低背化の観点からは、距離L3は、短いほうが好ましい。このような観点から、距離L3は、例えば、4mm(=0.32λ)以下であるのが好ましい。
 図11Aは、実施形態の変形例4のアンテナ装置1dの右側面図である。変形例4のアンテナ装置1dの基本構成は、実施形態1のアンテナ装置1の基本構成と略同じである。変形例4のアンテナ装置1dでは、1つの平面アンテナ20とそれに対向する第1誘電体部30と第2誘電体部40とで構成されるアンテナ系が2系統ある。アンテナ装置1dでは、第2誘電体部40の中心軸400を、2つの第1誘電体部30の中点P1の中線H1から2つの第1誘電体部30の並設方向の一方向にずらしてある。これにより、アンテナ装置1dでは、各アンテナ系それぞれの利得が最大となる方向が、平面アンテナ20の中心軸200に対して傾いた方向になる。2つの第1誘電体部30の中点P1は、誘電体ユニット3の溝33の底面において、2つの第1誘電体部30の中心軸300同士を結んだ線の真ん中の点である。中線H1は、誘電体ユニット3の溝33の底面において中点P1に立てた法線である。
 図11Bの「Y-7」は、中線H1を基準として直交座標系C1におけるy軸の逆方向に中心軸400があり、かつ、中線H1と中心軸400との距離L4=7mm(=0.56λ)とした場合のアンテナ系の指向特性のシミュレーション結果を示している。また、図11Bの「Y0」は、距離L4=0mmとした場合のアンテナ系の指向特性のシミュレーション結果を示している。また、図11Bの「Y2」は、中線H1を基準として直交座標系C1におけるy軸の方向に中心軸400があり、かつ、距離L4=2mm(=0.16λ)の場合の指向特性のシミュレーション結果である。変形例4のアンテナ装置1dでは、距離L4が大きくなりすぎると、各アンテナ系それぞれにおいて最大利得が低くなりすぎる。このため、変形例4のアンテナ装置1dでは、中線H1を基準として直交座標系C1におけるy軸の逆方向に第2誘電体部40の中心軸400がある場合、距離L4は、7mm(=0.56λ)以下であるのが好ましい。また、変形例4のアンテナ装置1dでは、中線H1を基準として直交座標系C1におけるy軸の方向に第2誘電体部40の中心軸400がある場合、距離L4は、2mm(=0.16λ)以下であるのが好ましい。
 次に、アンテナ装置1を備えた電波センサ10について説明する。
 電波センサ10は、図12に示すように、検知部11と、処理部13と、を備える。検知部11は、電波を検知エリアに送信し、検知エリアから電波を受信する。処理部13は、検知部11から出力されるセンサ信号を信号処理して検知エリア内において移動する物体Obの有無を判断する判断部132と、判断部132の判断結果に応じた制御信号を出力する出力部133と、を備える。検知部11は、上述のアンテナ装置1を含んでいる。これにより、電波センサ10は、小型化を図りながらも電波の指向性をより強くすることが可能となる。
 検知部11は、検知エリアに電波を間欠的に放射し、検知エリアに存在する物体Obで反射された電波を受信する。処理部13は、検知部11から出力されるセンサ信号に基づいて検知エリア内の空間情報を抽出する。ここにおいて、空間情報は、検知エリア内において移動する物体Obの有無である。
 検知部11は、高周波の送信用回路と受信用回路とで構成される高周波回路110と、高周波回路110に接続された送信アンテナ21及び受信アンテナ22と、を備える。高周波回路110は、送信アンテナ21に送信信号を与えて空間に電波を放射させ、空間から電波を受信した受信アンテナ22が出力した受信信号から空間情報を含む信号を取り出す。送信アンテナ21と受信アンテナ22とは、送信アンテナ21から検知エリアまでの距離と、受信アンテナ22から検知エリアまでの距離との差が比較的小さくなるように互いに近づけて配置されている。
 高周波回路110は、一例として、FMCW(Frequency-Modulated Continuous-Wave)方式で空間情報を監視するワンチップ集積回路で構成されている。高周波回路110は、混合回路111と、信号発生回路112と、を備える。
 信号発生回路112は、PLL(Phase Locked Loop)シンセサイザで実現されており、FMCW信号を出力する。
 検知部11では、FMCW信号が送信アンテナ21に入力されると、送信アンテナ21から空間に電波が放射される。一方、受信アンテナ22は、空間から受信した電波を、受信信号に変換する。
 受信アンテナ22から出力された受信信号は混合回路111に与えられる。混合回路111は、信号発生回路112から入力されたFMCW信号と受信信号とを混合する。混合回路111は、乗算器として機能する。したがって、混合回路111からは、FMCW信号と受信信号とを掛け合わせた信号が出力される。すなわち、混合回路111が出力する信号には、送信アンテナ21から放射した電波の周波数と、受信アンテナ22が受信した電波の周波数との周波数差を持つビート信号が含まれる。
 高周波回路110は、混合回路111から出力される信号をデジタル信号に変換するために、A/D変換器113を備える。また、混合回路111とA/D変換器113との間には、フィルタ回路114が設けられる。フィルタ回路114は、ローパスフィルタ或いはバンドパスフィルタで構成される。フィルタ回路114は、混合回路111から出力される信号のうち、ビート信号の抽出に不要な周波数成分を除去するように設計される。
 混合回路111から出力された信号のうちフィルタ回路114を通過した信号は、A/D変換器113に入力され、ビート信号の成分を含むアナログ信号がデジタル信号に変換される。A/D変換器113はシリアルデータを出力する構成であって、A/D変換器113から出力されるデジタル信号が、検知部11から出力されるセンサ信号として処理部13に与えられる。
 処理部13は、判断部132と、出力部133と、を備える。判断部132は、検知部11から出力されるセンサ信号を信号処理して検知部11の検知エリア内において移動する物体Obの有無を判断する。出力部133は、判断部132の判断結果に応じた制御信号を出力する。
 処理部13は、マイコン(Microcontroller)で構成されている。マイコンは、プログラムに従って動作するプロセッサと、プロセッサを動作させるプログラムを格納するためのメモリ及び作業用のメモリと、を備えた1チップのデバイスとして構成される。
 処理部13は、マイコンではなく、FPGA(Field-Programmable Gate Array)、DSP(Digital Signal Processor)、PIC(Peripheral Interface Controller)等から選択されるデバイスで構成されていてもよい。
 プログラムは、メモリのうちのROM(Read Only Memory)に格納された状態で提供されるほか、コンピュータで読取可能な光ディスク或いは外部記憶装置のような記録媒体で提供することも可能である。また、インターネットのような電気通信回線を通してプログラムが提供されてもよい。ROMに格納されておらず、記憶媒体又は電気通信回線を通して提供されるプログラムは、書換可能な不揮発性のメモリに格納される。
 電波センサ10では、アンテナ装置1のアンテナユニット2が、検知部11における送信アンテナ21及び受信アンテナ22を備えている。電波センサ10では、検知部11における高周波回路110及び処理部13それぞれを構成する電子部品が、上述の回路基板6(図1、2、4~6参照)に実装されている。回路基板6は、プリント基板である。回路基板6は、矩形板状に形成されている。回路基板6は、アンテナ装置1のボディ5に保持されている。
 電波センサ10は、上述のように、誘電体ユニット3と第2誘電体部40とを有するアンテナ装置1を備えている。これにより、電波センサ10は、電波センサ10の小型化及び低背化を図りながらも、送信アンテナ21を含むアンテナ系の指向特性を強める(絞る)ことができ、かつ、受信アンテナ22を含むアンテナ系の指向特性を強める(絞る)ことが可能となる。
 また、電波センサ10は、判断部132の判断結果に応じた制御信号を出力する出力部133を備えるので、制御信号を出力することによって、機器の動作を制御することが可能になる。例えば、以下に電波センサ10の一適用例として図13~15に基づいて説明する水栓装置100は、開閉弁140(図12参照)を備える。水栓装置100では、開閉弁140を電波センサ10の制御信号による制御対象の機器としており、制御信号により開閉弁140の開状態と閉状態とを切り替えることが可能となる。
 水栓装置100は、一例として、台所用のシンク1002と組み合わせて用いる構成であり、台所用のシンク1002を囲むカウンタ1001に配置される。
 水栓装置100は、吐水用の管であるスパウト101と、ホース102(図14参照)と、開閉弁140と、上述の電波センサ10と、を備える。ホース102は、スパウト101内に配置されている。開閉弁140は、ホース102の上流側に配置されている。開閉弁140は、電波センサ10における出力部133(図12参照)から出力される制御信号によって開状態と閉状態とが切り替わる。
 水栓装置100は、電波センサ10から開閉弁140に制御信号が与えられることによって、吐水と止水とが切り替わる。ここにおいて、電波センサ10の処理部13(図12参照)は、電波センサ10の検知エリアA1(図13参照)内において移動する物体Ob(図12参照)が存在するときに開閉弁140を開状態にする制御信号を開閉弁140に与える。また、処理部13は、検知エリアA1内において移動する物体Obが存在しないときに開閉弁140を閉状態にする制御信号を開閉弁140に与える。よって、水栓装置100は、吐水と止水とを自動的に行うことが可能になる。水栓装置100では、電波センサ10の検知エリアA1内において移動している物体Obが存在しないときに吐水されるのを防止することができるので、シンク1002に洗い物が置かれている場合に吐水する誤動作の発生を防止することができる。
 水栓装置100では、アンテナ装置1を含む電波センサ10を備えることにより、電波センサ10の小型化を図りながらも電波の指向性をより強くすることが可能となる。これにより、水栓装置100は、不必要に水を吐出させる可能性が低減され、節水にも寄与することになる。
 スパウト101は、一例として、ABS樹脂により形成されたスパウト本体を備え、スパウト本体の外周面にめっき層が設けられている。
 水栓装置100は、スパウト101と一体に形成されたベース106を備えている。ベース106は、カウンタ1001の定位置に固定され、カウンタ1001の上面から突出する。水栓装置100では、スパウト101内に配置されたホース102が、水(又は湯)の流路を形成する。ホース102の下流端は、スパウト101内においてスパウト101に対してねじにより固定されている。ベース106内には、ホース102の上流端に接続された給水管、開閉弁140等が配置されている。開閉弁140は、例えば、電磁弁である。
 水栓装置100では、電波センサ10を吐水口105付近に配置することにより、電波センサ10の小型化を図りながらも、検知エリアA1内において移動する物体Obの有無に応じて吐水と止水とが切り替えることができる。ここにおいて、水栓装置100では、スパウト101におけるベース106側とは反対側の第1端1011に、管状の吐水継手107を介して吐水部材108が取り付けられている。したがって、水栓装置100の吐水口105は、吐水部材108に設けられている。吐水部材108は、例えば、吐水金具である。水栓装置100は、ホース102の下流端に接続された吐水用のノズル103(図14参照)を備えている。ノズル103は、吐水継手107内に配置される。
 電波センサ10は、図14に示すように、スパウト101において吐水口105の近くでホース102に隣接して配置されている。電波センサ10は、検知エリアA1(図13参照)内において移動する物体Ob(図12参照)が存在するか否かの情報を空間情報として抽出する。ここにおいて、物体Obは、例えば、手、食器、調理器具、野菜、果物等である。電波センサ10の検知エリアA1は、例えば、水栓装置100の吐水口の下方において直径100mm、高さ185mmの円柱状の空間であり、水栓装置100の吐水口の下方において吐水口105から50mmだけ離れて設定されている。
 スパウト101は、逆U字状であり、吐水口105側の第1端1011と、第1端1011とは反対の第2端1012と、を有する。電波センサ10は、スパウト101の第1端1011において第2端1012と対向するように配置されている。これにより、水栓装置100は、美観を高めながらも、誤動作の発生を抑制することが可能となる。
 水栓装置100は、スパウト101の第1端1011に、第2端1012側へ膨らんだ膨出部1111が設けられており、膨出部1111内に電波センサ10が配置されている。
 水栓装置100は、図14に示すように、スパウト101の第1端1011の内側に配置されて電波センサ10を覆うカバー104を備えている。カバー104は、ノズル103の一部を収納する第1収納部1041と、電波センサ10を収納する第2収納部1042と、を備える。カバー104は、誘電体(例えば、ABS樹脂等)により形成されている。カバー104の第1収納部1041には、ノズル103を通す孔1043が形成されている。カバー104は、ホース102の下流端に対して2本のねじにより着脱可能に取り付けられている。電波センサ10は、カバー104に対して着脱可能に取り付けられている。
 水栓装置100では、スパウト101とホース102との間に隙間があり、電波センサ10と開閉弁140とを接続する電線、電波センサ10への給電用の電線等が、スパウト101とホース102との間の隙間に配置されている。
 上記の実施形態は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 例えば、アンテナ装置1では、2つの誘電体部30のうち少なくとも1つの誘電体部30の中心軸300を、2つの平面アンテナ20のうち対応する平面アンテナ20の中心軸200からずらしてあればよい。これにより、アンテナ装置1では、誘電体部30の中心軸を、対応する平面アンテナ20の中心軸200からずらしてあることにより、1つの平面アンテナ20と1つの誘電体部30とを含むアンテナ系の利得が最大となる方向を中心軸200に対して傾いた方向とすることが可能となる。要するに、アンテナ装置1では、利得を最大としたい方向に沿って誘電体部30の中心軸300を平面アンテナ20の中心軸200からずらせばよい。
 また、送信アンテナ21から放射させる電波の周波数は、24GHzに限らず、例えば、2.4GHzでもよい。送信アンテナ21では、電波の周波数が2.4GHzの場合、電波の周波数が24GHzの場合に比べて、導体層221の平面サイズを10倍(つまり、27mm×27mm)に設定するのが好ましい。
 また、電波センサ10において、検知部11におけるアンテナ装置1以外の構成及び動作は、適宜変更してもよい。また、電波センサ10において、処理部13の構成及び動作は、適宜変更してもよい。電波センサ10は、アンテナ装置1の代わりに、変形例1~4のアンテナ装置1a~1dのいずれか1つを備えた構成でもよい。
 水栓装置100は、台所等に配置される構成に限らず、例えば、洗面所、浴室等に配置される構成でもよい。
 また、水栓装置100における開閉弁140は、ベース106内に配置された構成に限らず、ベース106内に配置されていなくてもよい。
 電波センサ10の適用例は、水栓装置100に限らず、例えば、警報装置等でもよい。
 1 アンテナ装置
 2 アンテナユニット
 20 平面アンテナ
 200 中心軸
 21 送信アンテナ
 22 受信アンテナ
 3 誘電体ユニット
 30 誘電体部(第1誘電体部)
 300 中心軸
 31 送信用誘電体部
 32 受信用誘電体部
 33 溝
 40 第2誘電体部
 400 中心軸
 10 電波センサ
 11 検知部
 13 処理部
 132 判断部
 133 出力部
 100 水栓装置
 101 スパウト
 1011 第1端
 1012 第2端
 102 ホース
 105 吐水口
 140 開閉弁
 P1 中点
 H1 中線
 A1 検知エリア
 Ob 物体

Claims (7)

  1.  2つの平面アンテナを有するアンテナユニットと、前記アンテナユニットに対向する誘電体ユニットと、を備え、
     前記2つの平面アンテナのうち一方の平面アンテナが電波を送信する送信アンテナであり、他方の平面アンテナが前記送信アンテナから送波され物体で反射された電波を受信する受信アンテナであり、
     前記誘電体ユニットは、前記2つの平面アンテナに一対一で対向し対向する平面アンテナからの距離が長くなるにつれて断面積が小さくなる2つの誘電体部を有し、
     前記誘電体ユニットは、前記アンテナユニット側と反対側において、前記2つの誘電体部の間に溝が形成されている
     ことを特徴とするアンテナ装置。
  2.  前記2つの誘電体部のうち少なくとも1つの誘電体部の中心軸を、前記2つの平面アンテナのうち対応する平面アンテナの中心軸からずらしてある
     ことを特徴とする請求項1記載のアンテナ装置。
  3.  前記2つの誘電体部からなる2つの第1誘電体部とは別に、前記2つの第1誘電体部を覆うように配置される第2誘電体部を更に備え、
     前記第2誘電体部と前記アンテナユニットとの距離は、前記誘電体ユニットと前記アンテナユニットとの距離よりも長く、
     前記第2誘電体部は、前記アンテナユニットからの距離が長くなるにつれて断面積が小さくなる形状である
     ことを特徴とする請求項1又は2に記載のアンテナ装置。
  4.  前記第2誘電体部の中心軸を、前記2つの第1誘電体部の中点の中線から前記2つの第1誘電体部の並設方向の一方向にずらしてある
     ことを特徴とする請求項3記載のアンテナ装置。
  5.  電波を検知エリアに送信し、前記検知エリアから電波を受信する検知部と、処理部と、を備え、
     前記処理部は、前記検知部から出力されるセンサ信号を信号処理して前記検知エリア内において移動する物体の有無を判断する判断部と、前記判断部の判断結果に応じた制御信号を出力する出力部と、を備え、
     前記検知部は、請求項1乃至4のいずれか一項に記載のアンテナ装置を含んでいる
     ことを特徴とする電波センサ。
  6.  吐水用の管であるスパウトと、前記スパウト内に配置されたホースと、前記ホースの上流側に配置された開閉弁と、請求項5記載の電波センサと、を備え、前記開閉弁は、前記電波センサにおける前記出力部から出力される制御信号によって開状態と閉状態とが切り替わる
     ことを特徴とする水栓装置。
  7.  前記スパウトは、逆U字状であり、吐水口側の第1端と、前記第1端とは反対の第2端と、を有し、
     前記電波センサは、前記スパウトの前記第1端において前記第2端と対向するように配置されている
     ことを特徴とする請求項6記載の水栓装置。
PCT/JP2017/003771 2016-05-16 2017-02-02 アンテナ装置、電波センサ及びそれを備えた水栓装置 WO2017199479A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518077A JP6587200B2 (ja) 2016-05-16 2017-02-02 アンテナ装置、電波センサ及びそれを備えた水栓装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098315 2016-05-16
JP2016098315 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199479A1 true WO2017199479A1 (ja) 2017-11-23

Family

ID=60325797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003771 WO2017199479A1 (ja) 2016-05-16 2017-02-02 アンテナ装置、電波センサ及びそれを備えた水栓装置

Country Status (3)

Country Link
JP (1) JP6587200B2 (ja)
TW (1) TW201742313A (ja)
WO (1) WO2017199479A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193042A (ja) * 2018-04-23 2019-10-31 シャープ株式会社 高周波装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174543A (ja) * 1998-12-01 2000-06-23 Nippon Signal Co Ltd:The アンテナ装置及び自動列車制御装置
JP2001503579A (ja) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーダ波を収束させるためのレンズ装置
JP2016044434A (ja) * 2014-08-21 2016-04-04 Toto株式会社 吐水装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503579A (ja) * 1996-11-07 2001-03-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーダ波を収束させるためのレンズ装置
JP2000174543A (ja) * 1998-12-01 2000-06-23 Nippon Signal Co Ltd:The アンテナ装置及び自動列車制御装置
JP2016044434A (ja) * 2014-08-21 2016-04-04 Toto株式会社 吐水装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193042A (ja) * 2018-04-23 2019-10-31 シャープ株式会社 高周波装置

Also Published As

Publication number Publication date
JP6587200B2 (ja) 2019-10-09
TW201742313A (zh) 2017-12-01
JPWO2017199479A1 (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
US6791497B2 (en) Slot spiral miniaturized antenna
EP3149805B1 (en) Electronic device and antenna of the same
US20060016994A1 (en) System and method to prevent cross-talk between a transmitter and a receiver
KR20190058072A (ko) 차량용 레이더 장치
JP2006184144A5 (ja)
JP6264316B2 (ja) アンテナ装置
EP3544119B1 (en) Feed for dual band antenna
JP2006258449A (ja) レドーム
WO2018043027A1 (ja) 無線通信装置
EP2590264A1 (en) Dual band splashplate support for a reflector antenna
JP6587200B2 (ja) アンテナ装置、電波センサ及びそれを備えた水栓装置
JP7005549B2 (ja) レーダ装置、及びレーダ装置の寸法決定方法
WO2019101105A1 (zh) 天线组件、终端设备及改善天线辐射性能的方法
JP2011193421A (ja) アンテナ装置、レーダ装置、および導波管
JP2024517921A (ja) 自動車レーダアプリケーション用のアンテナ装置
JP6701603B2 (ja) 水周り装置
JP2009077369A (ja) マルチモード共振広帯域アンテナ
ES2785083T3 (es) Aparato de medición de cantidad de flujo y dispositivo inalámbrico para uso en el aparato de medición de cantidad de flujo
Yang et al. An Orthogonal Bidirectional Antenna Radar Sensing System for Smart Toilets
JP5671787B2 (ja) 電波センサ
JP6555610B2 (ja) アンテナ装置及びそれを備えたドップラセンサ
JP6923844B2 (ja) 水周り装置
TWI495191B (zh) 電子裝置
JP2005134183A (ja) センサ装置
JP6951934B2 (ja) 電力変換器及びこれを備えたアンテナ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798917

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798917

Country of ref document: EP

Kind code of ref document: A1