WO2017199328A1 - 漏電遮断器 - Google Patents

漏電遮断器 Download PDF

Info

Publication number
WO2017199328A1
WO2017199328A1 PCT/JP2016/064578 JP2016064578W WO2017199328A1 WO 2017199328 A1 WO2017199328 A1 WO 2017199328A1 JP 2016064578 W JP2016064578 W JP 2016064578W WO 2017199328 A1 WO2017199328 A1 WO 2017199328A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
leakage
output
leakage test
Prior art date
Application number
PCT/JP2016/064578
Other languages
English (en)
French (fr)
Inventor
大橋 博章
岳志 板倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680085647.6A priority Critical patent/CN109196746B/zh
Priority to PCT/JP2016/064578 priority patent/WO2017199328A1/ja
Priority to JP2018517962A priority patent/JP6591056B2/ja
Priority to EP16902348.8A priority patent/EP3460934B1/en
Priority to KR1020187025329A priority patent/KR102095406B1/ko
Publication of WO2017199328A1 publication Critical patent/WO2017199328A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • H02H3/347Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system using summation current transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • H02H3/335Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control the main function being self testing of the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a leakage breaker capable of outputting a leakage test signal from two ports of a built-in IC or microcontroller and changing the duty ratio and phase of the leakage test signal.
  • an earth leakage test function is provided as a means for confirming whether the operation when the earth leakage is detected is sound.
  • a leakage breaker having a leakage test function a zero-phase current transformer that detects a leakage current, a detection resistor that converts a secondary-side output current of the zero-phase current transformer into a voltage, and the detection resistor are generated.
  • a signal detection circuit that takes in the voltage using A / D conversion; and a leakage test circuit that outputs a leakage test signal to the tertiary winding of the zero-phase current transformer, and the leakage test signal is received from the leakage test circuit.
  • the signal detection circuit By applying to the tertiary winding of the zero-phase current transformer, the signal detection circuit detects the secondary-side output current of the zero-phase current transformer according to the leakage test signal, and the electric circuit according to the leakage characteristics There is a ground fault circuit breaker configured to shut off or to output a ground fault alarm alarm.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-219923
  • Patent Document 2 Japanese Utility Model Laid-Open No. 6-84380
  • Patent Document 3 Japanese Patent Laid-Open No. 2014-11909
  • the normal leakage current waveform is an AC waveform
  • the test signal is a simple rectangular waveform
  • the AC waveform cannot be simulated as a simulated waveform. It was insufficient.
  • the present invention has been made to solve the problems of the conventional earth leakage circuit breaker as described above, and enables the output of a simulated waveform close to an AC waveform, and also simulates a special waveform such as a thyristor load waveform.
  • the purpose is to obtain a possible earth leakage breaker.
  • An earth leakage breaker includes a zero-phase current transformer for detecting a leakage current flowing in an AC circuit, a detection resistor for converting a secondary side output current of the zero-phase current transformer into a voltage, and the detection resistor.
  • a / D conversion of the generated voltage, and a detection circuit that outputs a trip signal or alarm signal if the detected voltage is above a certain level, and a leakage test that outputs two or more leakage test signals with different phases A circuit, an alarm output circuit that operates in response to the trip signal or alarm output signal, and a trigger circuit that outputs the leakage test signal.
  • An earth leakage breaker includes a zero-phase current transformer for detecting a leakage current flowing in an AC circuit, a detection resistor for converting a secondary side output current of the zero-phase current transformer into a voltage, and the detection resistor.
  • FIG. 1 is a block diagram showing an earth leakage circuit breaker according to Embodiment 1 of the present invention.
  • an earth leakage circuit breaker 100 includes an open / close contact 2 for opening / closing an AC circuit 1 including a first phase AC circuit 1a, a second phase AC circuit 1b, and a third phase AC circuit 1c, which are unit circuits, and an AC circuit. 1 and a zero-phase current transformer 3 that outputs a current signal proportional to the leakage current flowing in the AC circuit 1 and a voltage proportional to the current signal generated from the zero-phase current transformer 3.
  • a detection resistor 4 that converts the signal into a signal a voltage signal of the detection resistor 4 is captured as digital data by an A / D conversion circuit 5a having a differential input function, and a leakage current value is detected by a signal detection circuit 5 that detects leakage. If the detection voltage of the signal detection circuit 5 exceeds a certain value, the tripping coil 6a is energized by the output signal of the signal detection circuit 5, and the switching contact 2 is opened when the tripping coil 6a is energized.
  • a trigger circuit 7 for outputting a trigger signal 7a for confirming whether or not the leakage breaker 100 operates normally when the leakage current flows in a state where the leakage current does not flow in the AC circuit 1, and the trigger circuit And a leakage test circuit 9 for energizing the tertiary winding 8 of the zero-phase current transformer 3 based on a trigger signal from the zero-phase current transformer 3.
  • the earth leakage breaker 100 also has an alarm output circuit 10 that outputs an alarm signal 5b from the signal detection circuit 5 and operates the alarm output circuit, thereby performing contact output and LED display.
  • the earth leakage test circuit 9 includes a first port 9a, a second port 9b, and a control unit 9c.
  • the first port 9a includes a first FET 9a1 which is a p-type field effect transistor having a drain connected to a power supply, and an n-type field effect having a drain connected to the source of the first FET 9a1 and a source connected to the ground.
  • a second FET 9a2 which is a transistor. The gate of the first FET 9a1 and the gate of the second FET 9a2 are connected, and the connection point is connected to the control unit 9c.
  • the second port 9b of the leakage test circuit 9 has a third FET 9b1 which is a p-type field effect transistor having a drain connected to a power source, and a drain connected to the source of the third FET 9b1.
  • a fourth FET 9b2 which is an n-type field effect transistor which is connected and whose source is connected to the ground.
  • the gate of the third FET 9b1 and the gate of the fourth FET 9b2 are connected, and the connection point is connected to the control unit 9c.
  • a trigger signal 7a from the trigger circuit 7 is also input to the control unit 9c.
  • reference numeral 9c1 indicates a first output of the control unit 9c
  • reference numeral 9c2 indicates a second output of the control unit 9c.
  • connection point between the source of the first FET 9a1 and the drain of the second FET 9a2 is connected to one end of the tertiary winding 8 of the zero-phase current transformer 9, and the third FET 9b1 Is connected to the other end of the tertiary winding 8.
  • the tertiary winding 8 is provided with a resistor 8a for defining the current flowing through the tertiary winding 8.
  • the earth leakage breaker according to the first embodiment is configured as described above, and the earth leakage test will be described next.
  • a pseudo leakage current is supplied to the test winding 8 in a state where no leakage current flows in the AC circuit 1. This is a test to check whether or not the earth leakage interrupting operation is performed when the leakage current flows.
  • the A / D conversion circuit 5a of the signal detection circuit 5 causes the leakage current.
  • a simulated waveform is detected.
  • the simulated waveform of the leakage current is a waveform that exceeds a predetermined leakage current value.
  • the signal detection circuit 5 that has detected the simulated waveform of the leakage current trips the trip signal, outputs it to the coil 6a, operates the trip circuit 6, opens the switching contact 2, and cuts off the AC circuit 1.
  • the alarm output circuit 10 is operated by outputting the alarm signal 5b. Thereby, the same operation
  • the method of outputting a leakage current simulated waveform from the leakage test circuit 9 in the present embodiment is a configuration in which a pseudo leakage current is directly applied to the tertiary winding 8 of the zero-phase current transformer 3.
  • FIG. 3 is a chart showing a first simulated waveform pattern output from the leakage test circuit 9.
  • FIG. 4 is a diagram for explaining the details of the leakage test circuit 9.
  • FIG. 4 (a) shows that the first port 9a is Hi and the second port 9b is Lo output
  • FIG. 4 (b) shows the first port 9a. Lo, when the second port 9b is Hi output.
  • a rectangular AC waveform is formed in a simulated manner to the tertiary winding 8.
  • a pseudo waveform current is applied. More specifically, as shown in FIG. 4A, the first output 9c1 of the control unit 9c is output as Hi, and the second output 9c2 of the control unit 9c is output as Lo, so that the first port 9a becomes Hi, The second port 9b becomes Lo, and a current flows through the tertiary winding 8 from the first port 9a to the second port 9b.
  • the first output 9c1 of the control unit 9c is output as Lo and the second output 9c2 of the control unit 9c is output as Hi, so that the first port 9a is Lo, Port 9b becomes Hi, and a current flows through the tertiary winding 8 from the second port 9b to the first port 9a.
  • the secondary winding of the zero-phase current transformer 3 is excited by this current, and an excitation current proportional to the current supplied to the tertiary winding 8 is generated.
  • an excitation current proportional to the current supplied to the tertiary winding 8 is generated at both ends of the detection resistor 4 and is taken into the signal detection circuit 5 as digital data by the A / D conversion circuit 5a of the signal detection circuit 5. . Since the pseudo leakage current has a waveform exceeding the specified current value, the signal detection circuit 5 excites the tripping coil 6a to operate the tripping circuit 6, thereby opening the switching contact 2 and opening the AC circuit. A test operation to shut off 1 is performed.
  • the A / D conversion circuit 5a of the signal detection circuit 5 has a differential input function.
  • an AC waveform can be obtained. It can be a simulated signal.
  • FIG. 5 is a chart showing a second simulated waveform pattern output from the leakage test circuit 9 and is an example in which a waveform closer to a sine wave is output. That is, by providing a phase difference ⁇ between the outputs of the first port 9a and the second port 9b, a simulated waveform closer to a sine wave can be output instead of a simple rectangular wave.
  • each of the outputs of the first port 9a and the second port 9b may be changed to an arbitrary duty ratio, and by performing waveform control of the outputs of the first port 9a and the second port 9b, As a leakage test signal for the test operation, it is possible to easily output a waveform close to an actual waveform instead of a simple rectangular waveform.
  • FIG. 6 is a chart showing a third simulated waveform pattern output from the leakage test circuit 9 and is an example in which a waveform simulating a half-wave rectified ground fault current is output. That is, it is possible by eliminating the output of the second port 9b.
  • the type capable of detecting only an AC ground fault is “Type AC”, and the type capable of detecting a half-wave rectified ground fault is “Type A”.
  • a simulated waveform of “Type A” can be used as a test signal by setting the output of the second port 9b to Lo.
  • the leakage breaker converts the zero-phase current transformer for detecting the leakage current flowing in the AC circuit, and the secondary-side output current of the zero-phase current transformer into a voltage.
  • a detection resistor and a signal detection circuit that takes in a voltage generated in the detection resistor by A / D conversion and outputs a trip signal or an alarm signal if the detection voltage is a certain level or more, and two or more leaks having different phases
  • An electric leakage test circuit that outputs a test signal, an alarm output circuit that operates in response to the trip signal or alarm output signal, and a trigger circuit that outputs the electric leakage test signal. It is possible to easily output a signal that is not a simple rectangular waveform but close to an actual waveform. For example, even when a waveform with an indefinite phase that flows through a thyristor circuit is input, Confirmation that operates normally by outputting a simulated signal waveform from the strike circuit becomes possible.
  • FIG. 7 is a block diagram showing an earth leakage circuit breaker according to the second embodiment.
  • the same or corresponding parts as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the leakage breaker 200 according to the second embodiment is configured to apply a voltage signal directly to the A / D conversion circuit 5a of the signal detection circuit 5 as a method of outputting a simulated waveform of the leakage current from the leakage test circuit 9. is there.
  • the leakage test circuit 9 is connected to the A / D conversion circuit 5a of the signal detection circuit 5, and the voltage signal of the leakage test circuit 9 is applied to the A / D conversion circuit 5a of the signal detection circuit 5 to simulate the AC waveform. Output.
  • the A / D conversion circuit 5a of the signal detection circuit 5 takes the digital data into the signal detection circuit 5 and has a waveform that exceeds the specified leakage current value. Then, a tripping signal is output to excite the tripping coil 6a, and the tripping circuit 6 is operated. Thereby, the test operation
  • the earth leakage breaker 200 according to the second embodiment also exhibits the same effect as the earth leakage breaker 100 according to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Abstract

2つ以上の位相の異なる漏電テスト信号を検出抵抗(4)に出力し、検出抵抗(4)で発生した検出電圧を、差動入力機能を持つA/D変換回路(5a)を用いて信号検出回路(5)へ取り込む。信号検出回路(5)は、前記検出電圧が一定以上であれば引きはずし信号あるいは警報出力信号を出力する。

Description

漏電遮断器
 この発明は、内蔵されたICもしくはマイクロコントローラの2つのポートから漏電テスト信号を出力すると共に、漏電テスト信号のデューティー比と位相を変化できる漏電遮断器に関するものである。
 従来、漏電遮断器として、漏電を検出した場合の動作が健全であるかどうかを確認する手段として、漏電テスト機能を備えている。漏電テスト機能を備えた漏電遮断器として、漏えい電流を検出する零相変流器と、前記零相変流器の2次側出力電流を電圧に変換する検出抵抗と、前記検出抵抗に発生した電圧をA/D変換を用いて取り込む信号検出回路と、前記零相変流器の3次巻線へ漏電テスト信号を出力する漏電テスト回路とを備え、前記漏電テスト回路から前記漏電テスト信号を零相変流器の3次巻線へ印加することにより、前記漏電テスト信号に応じた前記零相変流器の2次側出力電流を前記信号検出回路が検出し、漏電特性に応じて電路を遮断したり、あるいは漏電アラーム警報を出力するように構成された漏電遮断器がある。
 また、例えば特開平9-219923号公報(特許文献1)、実開平6-84380号公報(特許文献2)、特開2014-11909号公報(特許文献3)には、漏電または地絡を検出して電流を遮断する機能を有し、漏電試験または地絡試験を行うことができる遮断器が開示されている。
特開平9-219923号公報 実開平6-84380号公報 特開2014-11909号公報
 従来の漏電遮断器は、内蔵されたICもしくはマイクロコントローラの1つのポートから漏電テスト信号を出力させるものであるため、単純な矩形波形しか模擬することができなかった。
 また、テスト信号をポート出力で模擬した場合、通常の漏電電流波形は交流波形であるのに対し、テスト信号は単純な矩形波形であって、模擬波形としては交流波形を模擬できていないという点で不十分であった。
 さらに、内蔵されたICもしくはマイクロコントローラの1つのポートから漏電テスト信号を出力させるため、ポートの持つ出力容量に応じた出力しか出せず、必要であれば外部にバッファ回路等を付加する必要があった。
 この発明は、前述のような従来の漏電遮断器の課題を解決するためになされたもので、交流波形に近い模擬波形の出力を可能とし、またサイリスタ負荷波形のような特殊波形の模擬をも可能とした漏電遮断器を得ることを目的とするものである。
 この発明による漏電遮断器は、交流電路に流れる漏えい電流を検出するための零相変流器と、前記零相変流器の2次側出力電流を電圧に変換する検出抵抗と、前記検出抵抗に発生した電圧をA/D変換して取り込み、検出電圧が一定以上であれば引きはずし信号あるいは警報信号を出力する信号検出回路と、2つ以上の位相の異なる漏電テスト信号を出力する漏電テスト回路と、前記引きはずし信号あるいは警報出力信号を受けて動作する警報出力回路と、前記漏電テスト信号を出力するトリガ回路を備えたものである。
 この発明による漏電遮断器は、交流電路に流れる漏えい電流を検出するための零相変流器と、前記零相変流器の2次側出力電流を電圧に変換する検出抵抗と、前記検出抵抗に発生した電圧をA/D変換して取り込み、検出電圧が一定以上であれば引きはずし信号あるいは警報信号を出力する信号検出回路と、2つ以上の位相の異なる漏電テスト信号を出力する漏電テスト回路と、前記引きはずし信号あるいは警報出力信号を受けて動作する警報出力回路と、前記漏電テスト信号を出力するトリガ回路を備えたので、テスト動作させる場合の漏電テスト信号を、単純な矩形波形でなく実波形に近い波形を簡易的に出力することができ、例えばサイリスタ回路に流れる様な位相が不定な波形が入力された場合でも、漏電テスト回路から模擬信号波形を出力することにより正常に動作することの確認が可能となる。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになると考える。
この発明の実施の形態1による漏電遮断器を示すブロック図である。 この発明の実施の形態1による漏電遮断器の漏電テスト回路の概要を示す回路図である。 この発明の実施の形態1による漏電遮断器の漏電テスト回路から出力される第1の模擬波形パターンを示すチャート図である。 この発明の実施の形態1による漏電遮断器の漏電テスト回路の詳細を説明する図である。 この発明の実施の形態1による漏電遮断器の漏電テスト回路から出力される第2の模擬波形パターンを示すチャート図である。 この発明の実施の形態1による漏電遮断器の漏電テスト回路から出力される第3の模擬波形パターンを示すチャート図である。 この発明の実施の形態2による漏電遮断器を示すブロック図である。
 以下、この発明による漏電遮断器の好適な実施の形態について図面を参照して詳細に説明する。
実施の形態1.
 図1は、この発明の実施の形態1による漏電遮断器を示すブロック図である。
 図1において、漏電遮断器100は、単位電路である第1相交流電路1a、第2相交流電路1b、第3相交流電路1cからなる交流電路1を夫々開閉する開閉接点2と、交流電路1中に挿入され、交流電路1に流れる漏えい電流に比例した電流信号を出力する零相変流器3と、この零相変流器3から生成された電流信号をこの電流信号に比例した電圧信号に変換する検出抵抗4と、検出抵抗4の電圧信号を差動入力機能を有するA/D変換回路5aによりデジタルデータとして取り込み、漏電を検出する信号検出回路5と、規定の漏えい電流値を上回って、信号検出回路5の検出電圧が一定以上の場合、信号検出回路5の出力信号により付勢される引き外しコイル6aを有し、この引き外しコイル6aの付勢時に開閉接点2を開離駆動する引き外し回路6と、交流電路1に漏えい電流が流れていない状態で漏えい電流が流れた時に漏電遮断器100が正常動作するか確認するためのトリガ信号7aを出力するトリガ回路7と、このトリガ回路7からのトリガ信号に基づき零相変流器3の3次巻線8に電流を通電する漏電テスト回路9と、を有している。
 また、漏電遮断器100は、信号検出回路5から警報信号5bを出力させて警報出力回路を動作させることで、接点出力やLEDによる表示を行う警報出力回路10を有している。
 漏電テスト回路9は、図2に示すように第1のポート9a、第2のポート9b、及び制御部9cから構成されている。
 第1のポート9aは、電源にドレインが接続されたp型電界効果トランジスタである第1のFET9a1と、ドレインが第1のFET9a1のソースに接続され、ソースがグランドに接続されたn型電界効果トランジスタである第2のFET9a2と、から構成されている。また、第1のFET9a1のゲートと第2のFET9a2のゲートは接続されており、その接続点は制御部9cに接続されている。
 漏電テスト回路9の第2のポート9bも同様に、図2に示すように、電源にドレインが接続されたp型電界効果トランジスタである第3のFET9b1と、ドレインが第3のFET9b1のソースに接続され、ソースがグランドに接続されたn型電界効果トランジスタである第4のFET9b2と、から構成されている。また、第3のFET9b1のゲートと第4のFET9b2のゲートは接続されており、その接続点が制御部9cに接続されている。トリガ回路7からのトリガ信号7aも制御部9cに入力されている。なお、図2において、符号9c1は制御部9cの第1出力を示し、符号9c2は制御部9cの第2出力を示している。
 そして、図1に示すように、第1のFET9a1のソースと第2のFET9a2のドレインとの接続点は、零相変流器9の3次巻線8の一端に接続され、第3のFET9b1のソースと第4のFET9b2のドレインとの接続点が、3次巻線8の他端に接続されている。また、3次巻線8には3次巻線8に流れる電流を規定するための抵抗8aが設けられている。
 実施の形態1による漏電遮断器は前記のように構成されており、次に、漏電テストについて説明する。
 漏電テストは、漏洩電流が発生した際に、漏電遮断器100が正しく動作するかどうかを確認する機能として、交流電路1に漏えい電流が流れていない状態で、疑似漏洩電流をテスト巻線8に流し、漏えい電流が流れた時に漏電遮断動作が行われるか確認するテストである。
 次に、漏電テストの詳細動作について説明する。
 トリガ回路7からトリガ信号7aを漏電テスト回路9の制御部9cへ入力し、漏電テスト回路9から漏えい電流の模擬波形を出力させることで、信号検出回路5のA/D変換回路5aは漏えい電流の模擬波形を検出する。漏えい電流の模擬波形はあらかじめ規定された漏えい電流値を上回った波形とする。漏えい電流の模擬波形を検出した信号検出回路5は引きはずし信号を引き外しコイル6aに出力して引きはずし回路6を動作させ、開閉接点2を開路して交流電路1を遮断する。併せて、警報信号5bを出力させて警報出力回路10を動作させる。これにより、交流電路1に漏えい電流が発生したときと同じ動作を確認することができる。
 本実施の形態における漏電テスト回路9から漏えい電流の模擬波形を出力する方法は、零相変流器3の3次巻線8へ直接、疑似漏洩電流を印加する構成である。
 図3は漏電テスト回路9から出力される第1の模擬波形パターンを示すチャート図である。また、図4は漏電テスト回路9の詳細を説明する図で、(a)は第1のポート9aがHi、第2のポート9bがLo出力の時、(b)は第1のポート9aがLo、第2のポート9bがHi出力の時を示している。
 図3に示すように、漏電テスト回路9の第1のポート9a及び第2のポート9bを交互にHiとすることで、模擬的に矩形波の交流波形を構成し、3次巻線8に疑似波形の電流を流す。
 より詳細には、図4(a)に示すように、制御部9cの第1出力9c1をHi出力、制御部9cの第2出力9c2をLo出力することで、第1のポート9aがHi、第2のポート9bがLoとなり、3次巻線8には第1のポート9aから第2のポート9bへと電流が流れる。
 次に、図4(b)に示すように、制御部9cの第1出力9c1をLo出力、制御部9cの第2出力9c2をHi出力することで、第1のポート9aがLo、第2のポート9bがHiとなり、3次巻線8には第2のポート9bから第1のポート9aへと電流が流れる。
 そして、この電流により零相変流器3の二次巻線が励磁され、3次巻線8へ通電された電流に比例した励磁電流が発生する。この励磁電流により検出抵抗4の両端に3次巻線8へ通電された電流に比例した電圧が発生し、信号検出回路5のA/D変換回路5aでデジタルデータとして信号検出回路5に取り込まれる。そして、疑似漏洩電流は規定の電流値を上回った波形としているため、信号検出回路5は引き外しコイル6aを励磁して引きはずし回路6を動作させることにより、開閉接点2を開路して交流電路1を遮断するテスト動作を行う。
 信号検出回路5のA/D変換回路5aは差動入力機能を有しており、漏電テスト回路9の第1のポート9a及び第2のポート9bからそれぞれ信号を出力させることで、交流波形を模擬した信号とすることができる。図5は漏電テスト回路9から出力される第2の模擬波形パターンを示すチャート図であり、より正弦波に近い波形を出力させた例である。即ち、第1のポート9aと第2のポート9bの出力に位相差φを持たせることで、単純な矩形波ではなく、より正弦波に近い模擬波形を出力させることができる。また、ポートから任意に位相制御することが可能であるため、例えば、サイリスタ回路のような位相がずれたテスト波形での動作確認も可能であり、想定される波形の漏えい電流が発生した場合に正しく遮断動作するかどうかの確認をテスト信号で行うことができる。また、第1のポート9aと第2のポート9bの出力の各々を任意のデューティー比に変更してもよく、第1のポート9aと第2のポート9bの出力の波形制御を行うことにより、テスト動作させる場合の漏電テスト信号を、単純な矩形波形でなく実波形に近い波形を簡易的に出力することが可能となる。
 また、図6は漏電テスト回路9から出力される第3の模擬波形パターンを示すチャート図であり、半波整流された地絡電流を模擬した波形を出力させた例である。即ち、第2のポート9bの出力を無くすることで可能となる。漏電検出特性として交流の地絡のみ検出可能なタイプは「Type AC」、半波整流された地絡をも検出可能なタイプは「Type A」とされている。テスト信号として「Type A」の模擬波形も第2のポート9bの出力をLoとすることで可能となる。
 以上のように、実施の形態1による漏電遮断器は、交流電路に流れる漏えい電流を検出するための零相変流器と、前記零相変流器の2次側出力電流を電圧に変換する検出抵抗と、前記検出抵抗に発生した電圧をA/D変換して取り込み、検出電圧が一定以上であれば引きはずし信号あるいは警報信号を出力する信号検出回路と、2つ以上の位相の異なる漏電テスト信号を出力する漏電テスト回路と、前記引きはずし信号あるいは警報出力信号を受けて動作する警報出力回路と、前記漏電テスト信号を出力するトリガ回路を備えているので、テスト動作させる場合の漏電テスト信号を、単純な矩形波形でなく実波形に近い波形を簡易的に出力することができ、例えばサイリスタ回路に流れる様な位相が不定な波形が入力された場合でも、漏電テスト回路から模擬信号波形を出力することにより正常に動作することの確認が可能となる。
実施の形態2.
 次に、この発明の実施の形態2による漏電遮断器について説明する。図7は、実施の形態2による漏電遮断器を示すブロック図で、実施の形態1と同一、若しくは相当する部分には同一符号を付して詳細説明を省略する。
 実施の形態2による漏電遮断器200は、漏電テスト回路9から漏えい電流の模擬波形を出力する方法として、信号検出回路5のA/D変換回路5aへ直接電圧信号を印加する構成としたものである。
 漏電テスト回路9を信号検出回路5のA/D変換回路5aへ接続し、漏電テスト回路9の電圧信号を信号検出回路5のA/D変換回路5aへ印加して交流波形を模擬した信号を出力する。これにより、信号検出回路5のA/D変換回路5aでデジタルデータとして信号検出回路5に取り込まれ、規定の漏えい電流値を上回った波形としている。そして、引きはずし信号を出力して引き外しコイル6aを励磁し、引きはずし回路6を動作させる。これにより、開閉接点2を開路して交流電路1を遮断するテスト動作を可能とする。なお、その他の構成、動作については、実施の形態1と同様であるので、説明は省略する。
 この実施の形態2による漏電遮断器200においても、実施の形態1による漏電遮断器100と同様の効果を発揮する。
 以上において、この発明の実施の形態1と2について説明したが、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (5)

  1.  交流電路に流れる漏えい電流を検出するための零相変流器と、
     前記零相変流器の2次側出力電流を電圧に変換する検出抵抗と、
     前記検出抵抗に発生した電圧をA/D変換して取り込み、検出電圧が一定以上であれば引きはずし信号あるいは警報信号を出力する信号検出回路と、
     2つ以上の位相の異なる漏電テスト信号を出力する漏電テスト回路と、
     前記引きはずし信号あるいは警報出力信号を受けて動作する警報出力回路と、
     前記漏電テスト信号を出力するトリガ回路を備えたことを特徴とする漏電遮断器。
  2.  前記信号検出回路は、差動入力機能を持つA/D変換回路を内蔵すると共に、前記漏電テスト回路から出力される2つ以上の位相の異なる漏電テスト信号は、前記A/D変換回路へ直接もしくは間接的に入力されていることを特徴とする請求項1記載の漏電遮断器。
  3.  前記漏電テスト回路は、前記零相変流器の3次巻線へ接続されるか、前記A/D変換回路へ接続されており、前記交流電路に漏えい電流が発生してなくても、漏えい電流が発生したときに生じる動作が可能であることを特徴とする請求項2に記載の漏電遮断器。
  4.  前記漏電テスト回路は、前記3次巻線の一端に接続された第1のポートと、前記3次巻線の他端に接続された第2のポートと、を有することを特徴とする請求項3に記載の漏電遮断器。
  5.  前記漏電テスト回路から出力される信号は、位相制御もしくは任意に波形制御することができ、それにより発生させるテスト信号も動作確認したい波形に合わせて任意に設定できることを特徴とする請求項1から4の何れか一項に記載の漏電遮断器。
PCT/JP2016/064578 2016-05-17 2016-05-17 漏電遮断器 WO2017199328A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680085647.6A CN109196746B (zh) 2016-05-17 2016-05-17 漏电断路器
PCT/JP2016/064578 WO2017199328A1 (ja) 2016-05-17 2016-05-17 漏電遮断器
JP2018517962A JP6591056B2 (ja) 2016-05-17 2016-05-17 漏電遮断器
EP16902348.8A EP3460934B1 (en) 2016-05-17 2016-05-17 Earth leakage circuit breaker
KR1020187025329A KR102095406B1 (ko) 2016-05-17 2016-05-17 누전 차단기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064578 WO2017199328A1 (ja) 2016-05-17 2016-05-17 漏電遮断器

Publications (1)

Publication Number Publication Date
WO2017199328A1 true WO2017199328A1 (ja) 2017-11-23

Family

ID=60326381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064578 WO2017199328A1 (ja) 2016-05-17 2016-05-17 漏電遮断器

Country Status (5)

Country Link
EP (1) EP3460934B1 (ja)
JP (1) JP6591056B2 (ja)
KR (1) KR102095406B1 (ja)
CN (1) CN109196746B (ja)
WO (1) WO2017199328A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091058A (ko) 2020-12-23 2022-06-30 (주)세명이앤씨 복합 기능을 갖는 누전 경보기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285790A (ja) * 2006-04-14 2007-11-01 Kansai Denki Hoan Kyokai 試験電流発生装置及び絶縁監視装置用の試験装置
JP2010170902A (ja) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp 漏電テスト装置及びこれを備えた漏電遮断器、回路遮断器、漏電監視装置
JP2014010077A (ja) * 2012-06-29 2014-01-20 Gs Yuasa Corp 絶縁監視装置用の試験装置,絶縁監視装置及び絶縁監視装置の試験方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907171A1 (de) * 1979-02-23 1980-09-04 Siemens Ag Verfahren zur ueberwachung von leiterstroemen auf einen fehlerstrom und anordnung zur durchfuehrung des verfahrens
JP2872495B2 (ja) 1992-08-31 1999-03-17 科学技術振興事業団 三進法デジタルメモリー素子
JPH09219923A (ja) 1996-02-14 1997-08-19 Energy Support Corp 地絡継電器
JP4369417B2 (ja) * 2005-11-30 2009-11-18 三菱電機株式会社 漏電遮断器
JP4845910B2 (ja) * 2008-03-17 2011-12-28 三菱電機株式会社 漏電遮断器
JP5163473B2 (ja) * 2008-12-17 2013-03-13 三菱電機株式会社 漏電遮断器
KR101348526B1 (ko) * 2011-04-27 2014-01-06 미쓰비시덴키 가부시키가이샤 전원회로 및 이 전원회로를 이용한 누전 차단기
CN102306924B (zh) * 2011-09-14 2013-11-20 黄华道 可定时自动检测功能完整性的漏电检测保护电路
JP2014011909A (ja) 2012-07-02 2014-01-20 Hirakawa Hewtech Corp 漏電検出診断回路及びそれを備えた電力供給装置
CN103208776A (zh) * 2013-01-23 2013-07-17 陈泽 具有故障自检功能的断路器电路
JP6137982B2 (ja) * 2013-08-01 2017-05-31 三菱電機株式会社 漏電遮断器
CN206740902U (zh) * 2017-05-18 2017-12-12 上海路美思电气有限公司 智能装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285790A (ja) * 2006-04-14 2007-11-01 Kansai Denki Hoan Kyokai 試験電流発生装置及び絶縁監視装置用の試験装置
JP2010170902A (ja) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp 漏電テスト装置及びこれを備えた漏電遮断器、回路遮断器、漏電監視装置
JP2014010077A (ja) * 2012-06-29 2014-01-20 Gs Yuasa Corp 絶縁監視装置用の試験装置,絶縁監視装置及び絶縁監視装置の試験方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460934A4 *

Also Published As

Publication number Publication date
JP6591056B2 (ja) 2019-10-16
CN109196746A (zh) 2019-01-11
EP3460934B1 (en) 2021-12-22
EP3460934A4 (en) 2019-05-22
KR20180108776A (ko) 2018-10-04
EP3460934A1 (en) 2019-03-27
JPWO2017199328A1 (ja) 2018-09-27
KR102095406B1 (ko) 2020-03-31
CN109196746B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
Pedra et al. PSPICE computer model of a nonlinear three-phase three-legged transformer
JP5021789B2 (ja) 回路遮断器用異常電流検出回路
RU2672761C1 (ru) Способ и тестирующее устройство для тестирования проводки трансформаторов
KR101611020B1 (ko) 누전 차단기
JP6173118B2 (ja) 漏電遮断器
CN102792539A (zh) 用于接地故障电路中断装置的监测电路的方法及设备
AU2006243066B2 (en) Circuit protection device and test facility to simulate a fault condition
JP6591056B2 (ja) 漏電遮断器
JP5731902B2 (ja) 漏電遮断器
RU2638299C2 (ru) Устройство защиты обмоток однофазного трансформатора от повреждений
KR101234819B1 (ko) 직류 누전차단기
JP6297439B2 (ja) 漏電遮断器
US10804020B2 (en) Demagnetization device and method for demagnetizing a transformer core
KR101513213B1 (ko) 누전차단기의 시험회로
Rajendran et al. Saturation analysis on current transformer
KR102626099B1 (ko) Zct 권선을 이용한 누전테스트회로부가 구성된 누전차단기
Ozgonenel et al. Current transformer modeling for compensating algorithms
KR20150025202A (ko) 무극성 누전차단기
KR102485205B1 (ko) 누전차단기
KR20180032018A (ko) 누전차단기
Stringer et al. Real-time transient testing and performance of transformer differential relays
JP6670679B2 (ja) 外部制御機能付ブレーカ及び感震遮断機能付分電盤
JP2017208938A (ja) 感震遮断機能付分電盤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517962

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187025329

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016902348

Country of ref document: EP

Effective date: 20181217