WO2017197823A1 - 三相电能表电压逆相序的检测方法及其系统 - Google Patents

三相电能表电压逆相序的检测方法及其系统 Download PDF

Info

Publication number
WO2017197823A1
WO2017197823A1 PCT/CN2016/100846 CN2016100846W WO2017197823A1 WO 2017197823 A1 WO2017197823 A1 WO 2017197823A1 CN 2016100846 W CN2016100846 W CN 2016100846W WO 2017197823 A1 WO2017197823 A1 WO 2017197823A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
energy meter
electric energy
zero crossing
metering unit
Prior art date
Application number
PCT/CN2016/100846
Other languages
English (en)
French (fr)
Inventor
娄震旦
刘春华
张平
Original Assignee
深圳市思达仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市思达仪表有限公司 filed Critical 深圳市思达仪表有限公司
Publication of WO2017197823A1 publication Critical patent/WO2017197823A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism

Definitions

  • the present invention relates to the field of electric energy metering, and more specifically to a method and system for detecting a reverse phase sequence of a three-phase electric energy meter.
  • phase sequence of the three-phase voltage is 120° in the A phase ahead of the B phase, the B phase is 120° ahead of the C phase, and the C phase is 120° ahead of the A phase.
  • This is called the positive phase sequence; as shown in Figure 1,
  • the correct wiring diagram of the three-phase four-wire energy meter has only one reference ground for the entire metering system.
  • this phase sequence is called the phase voltage reverse phase sequence, as shown in Fig. 2, which is the three phase.
  • the wrong wiring diagram of the four-wire energy meter that is, the reverse phase sequence is BAC, or ACB or CBA; the entire metering system has a total of four reference grounds.
  • the reverse phase sequence of the phase voltage will seriously affect the accuracy of the measurement, and the electrical energy will be less or not measured during use.
  • the reverse phase of the phase voltage is one.
  • the three-phase electric energy meter mainly includes a three-phase four-wire electric energy meter and a three-phase three-wire electric energy meter.
  • the phase voltage reverse phase sequence occurs, the three-phase four-wire energy meter will have less or more energy, and the specific situation needs to be combined with the load analysis.
  • the three-phase three-wire electric energy meter will not be measured. The user can achieve the purpose of stealing electricity without destroying the watch, and it is not easy to be discovered. Therefore, it affects the economic benefits of power supply companies, and there is a fairness in the measurement.
  • the three-phase voltage sampling of the three-phase electric energy meter of the transformer is directly input to the same three-phase integrated measuring chip, so that the phase voltage can be directly calculated through the internal data of the chip to determine whether the phase voltage is reversed, and can be detected. Is the wiring wrong?
  • the three-phase voltage sampling of the manganese-copper three-phase energy meter is input to the metering chip of the corresponding phase, and the chips are independent and isolated.
  • For manganese-copper three-phase energy meter currently There is no simple phase voltage reverse phase sequence detection method.
  • the processing cost is relatively high, the circuit is complicated, the reliability is not high, and the debugging is inconvenient.
  • the technical problem to be solved by the present invention is: providing a three-phase electric energy meter voltage reverse phase sequence detection method and system thereof, respectively realizing a phase of a manganese-copper three-phase four-wire electric energy meter and a manganese-copper three-phase three-phase electric energy meter Voltage reverse phase sequence detection prevents wiring errors and tampering, thus ensuring fairness in measurement.
  • the first technical solution adopted by the present invention is:
  • a method for detecting a reverse phase sequence of a three-phase electric energy meter voltage comprising:
  • the microprocessor sends a broadcast command to calculate the phase voltage zero crossing time to the first phase metering unit, the second phase metering unit and the third phase metering unit in the energy meter;
  • the first phase metering unit calculates the first phase voltage zero crossing time T1;
  • the second phase metering unit calculates the second phase voltage zero crossing time T2;
  • the third phase measuring unit calculates the third phase voltage zero crossing time T3;
  • the microprocessor reads the first phase voltage zero crossing time Tl, the second phase voltage zero crossing time ⁇ 2 and the third phase voltage zero crossing time ⁇ 3;
  • a method for detecting a reverse phase sequence of a three-phase electric energy meter voltage comprising:
  • the microprocessor sends a broadcast command to calculate the phase voltage zero crossing time to the first phase metering unit and the second phase metering unit in the energy meter;
  • the first phase metering unit calculates a first phase voltage zero crossing ⁇
  • the second phase measuring unit calculates the second phase voltage zero crossing time T2';
  • the microprocessor reads the first phase voltage zero crossing ⁇ and the second phase voltage zero crossing TT2';
  • a three-phase electric energy meter voltage reverse phase sequence detection system includes a microprocessor, a first phase metering unit, a second phase metering unit, and a third phase metering unit:
  • the microprocessor includes a transmitting module, a reading module, a determining module, and a determining module;
  • the sending module is configured to send a broadcast command for calculating a phase voltage zero crossing to the first phase metering unit, the second phase metering unit, and the third phase metering unit;
  • a first phase metering unit configured to calculate a first phase voltage zero crossing time T1;
  • a second phase measuring unit configured to calculate a second phase voltage zero crossing time T2;
  • a third phase metering unit configured to calculate a third phase voltage zero crossing time T3;
  • the reading module is configured to read the first phase voltage zero crossing time T1, the second phase voltage zero crossing time ⁇
  • the determining module is configured to determine whether ⁇ 1 ⁇ 2 ⁇ 3 or ⁇ 2 ⁇ 3 ⁇ 1 or ⁇ 3 ⁇ 1 ⁇ 2;
  • the determining module if the determining result of the determining module is negative, determining that the electric energy meter is reverse phase sequenced.
  • a three-phase electric energy meter voltage reverse phase sequence detection system comprising a microprocessor, a first phase metering unit and a second phase metering unit,
  • the microprocessor includes a transmitting module, a reading module, a determining module, and a determining module;
  • the sending module is configured to send, by the microprocessor, a broadcast command for calculating a phase voltage zero crossing to the first phase measuring unit and the second phase measuring unit;
  • the first phase metering unit is configured to calculate a first phase voltage zero crossing ⁇ ;
  • the second phase metering unit is configured to calculate a second phase voltage zero crossing time T2';
  • the reading module is configured to read, by the microprocessor, the first phase voltage zero crossing ⁇ and the second phase voltage zero crossing TT2′; calculate the first phase metering unit and the second phase metering unit Zero-crossing inter-turn difference T12'; and obtaining theoretical zero-crossing inter-turn difference according to voltage frequency calculation;
  • the determining module is configured to determine whether the zero-crossing inter-turn difference T12' is greater than the theoretical zero-crossing inter-turn difference; [0047] the determining module, the determining result of the determining module is no , then determine the reverse phase sequence of the energy meter.
  • the beneficial effects of the present invention are: independent of each metering chip for the manganese-copper three-phase electric energy meter, As a result, the sampled voltage signal cannot be input into the same integrated metering chip for unified data operation, and thus the insufficiency of detecting the reverse phase sequence of the phase voltage cannot be realized.
  • the invention provides a reverse phase sequence detection method and a system thereof for a three-phase four-wire connection mode and a three-phase three-wire connection mode manganese-copper electric energy meter, and a broadcast command for calculating a phase voltage zero-crossing time is sent to each measurement unit by a microprocessor.
  • phase voltage zero-crossing detection function of the unit, the phase voltage zero-crossing save function and the chip address are optional, and can receive the broadcast command function issued by the microprocessor, thereby realizing the detection of the reverse phase sequence of the phase voltage of the manganese-copper three-phase electric energy meter.
  • FIG. 1 is a structural schematic diagram of a three-phase electric energy meter of a transformer of the prior art
  • FIG. 2 is a structural schematic diagram of a prior art manganese-copper three-phase four-wire electric energy meter
  • FIG. 3 is a schematic flow chart of a method for detecting a reverse phase sequence of a three-phase four-wire electric energy meter according to the present invention
  • FIG. 4 is a schematic flow chart of a method for detecting a reverse phase sequence of a three-phase three-wire electric energy meter according to the present invention
  • FIG. 5 is a phasor diagram of a positive phase sequence wiring of a three-phase four-wire electric energy meter
  • FIG. 6 is a phasor diagram of the reverse phase sequence of the voltage of the phase III voltage of the three-phase four-wire electric energy meter
  • FIG. 7 is a phasor diagram of a positive phase sequence wiring of a three-phase three-wire electric energy meter
  • FIG. 8 is a phasor diagram of the reverse phase sequence of the voltage of the phase III voltage of the three-phase three-wire electric energy meter
  • FIG. 9 is a schematic flow chart of a method for detecting a reverse phase sequence of a three-phase electric energy meter according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a functional module of a detection system for a voltage reverse phase sequence of a three-phase four-wire electric energy meter according to the present invention
  • FIG. 11 is a schematic structural diagram of a functional module of a detection system for a voltage reverse phase sequence of a three-phase three-wire electric energy meter according to the present invention.
  • microprocessor -1 first phase metering unit -2; second phase metering unit -3;
  • third phase metering unit -4 transmitting module -11; determining module -12; determining module -13;
  • Alarm Module -14 Read Module -15.
  • the most critical idea of the present invention is: based on the phase voltage zero-crossing detection and storage function of the metering chip and the function of communication connection with the microprocessor, the reverse phase sequence detection of the three-phase electric energy meter is realized, and the wiring is prevented. Errors and electricity theft, which improves metering accuracy and ensures fairness in measurement.
  • the present invention provides a method for detecting a reverse phase sequence of a three-phase electric energy meter for a three-phase four-wire connection method, including:
  • the microprocessor sends a broadcast command to calculate the phase voltage zero crossing time to the first phase metering unit, the second phase metering unit and the third phase metering unit in the energy meter;
  • the first phase metering unit calculates a first phase voltage zero crossing time T1;
  • the second phase measuring unit calculates the second phase voltage zero crossing time T2;
  • the third phase measuring unit calculates a third phase voltage zero crossing time T3;
  • the microprocessor reads the first phase voltage zero crossing time Tl, the second phase voltage zero crossing time ⁇ 2 and the third phase voltage zero crossing time ⁇ 3;
  • the first phase metering unit corresponds to a ⁇ phase voltage of the metering electric energy meter
  • the second phase metering unit corresponds to a B phase voltage of the metering electric energy meter
  • the third phase metering unit corresponds to a C phase voltage of the metering electric energy meter
  • the beneficial effects of the present invention are: for a three-phase four-wire wiring type manganese-copper three-phase electric energy meter, based on the communication function with the microprocessor, three independent metering units are receiving the calculation After the phase voltage zero-crossing broadcast command, each phase voltage will be saved for the last time.
  • the microprocessor reads the three-phase phase voltage zero-crossing, corresponding to the sequence of three-phase four-wire wiring.
  • the method further includes: issuing an alert prompt.
  • the manganese-copper three-phase four-wire electric energy meter does have a reverse phase sequence problem, an alarm is issued to prompt the correction, so as to correct the error and ensure accurate measurement.
  • the three-phase electric energy meter is a three-phase four-wire electric energy meter. It can be seen from the above description that the detected electric energy meter is a three-phase four-wire electric energy meter, and it is necessary to measure the three-phase voltage by the same enthalpy, so it is necessary to judge the three-phase zero-crossing ⁇ .
  • the second technical solution provided by the present invention is:
  • a method for detecting a reverse phase sequence of a three-phase electric energy meter voltage of a manganese-copper three-phase three-wire connection method comprising: [0082] a microprocessor sends a broadcast command to calculate a phase voltage zero-crossing to a power meter a phase metering unit and a second phase metering unit;
  • the first phase metering unit calculates a first phase voltage zero crossing ⁇
  • the second phase metering unit calculates a second phase voltage zero crossing time T2';
  • the microprocessor reads the first phase voltage zero crossing ⁇ and the second phase voltage zero crossing TT2';
  • the first phase metering unit corresponds to the A phase voltage of the metering electric energy meter; the second phase metering unit corresponds to the C phase voltage of the metering electric energy meter; and the corresponding phase voltages of the electric energy meter by the two metering units Relationship, the acquisition of the corresponding phase voltage zero crossing, and the judgment based on the phase voltage zero crossing ⁇ difference.
  • the two independent metering units will respectively save the last phase voltage zero crossing; respectively read two phases
  • the phase voltage is zero-crossing, based on the magnitude of the two-phase voltage zero-crossing ⁇ and the theoretical zero-crossing ⁇ difference, to obtain the judgment result of the reverse phase sequence of the three-phase three-wire wiring energy meter; realize the cost, high precision
  • the operation is simple and easy to detect the reverse phase sequence of the manganese-copper three-phase three-wire electric energy meter.
  • the method further includes: issuing an alert prompt.
  • the three-phase electric energy meter is a three-phase three-wire electric energy meter.
  • the three-phase three-wire electric energy meter correspondingly detects the ⁇ phase voltage and the C phase voltage, so only two phases are needed. The zero-crossing of the voltage is interpreted.
  • the third technical solution provided by the present invention is:
  • the detection system of the reverse phase sequence of the three-phase electric energy meter voltage comprises a microprocessor 1, a first phase measuring unit 2, a second phase measuring unit 3 and a third phase measuring unit 4:
  • the microprocessor 1 includes a transmitting module 11, a reading module 15, a determining module 12, and a determining module 13;
  • the sending module 11 is configured to send a broadcast command for calculating a phase voltage zero crossing to the first phase metering unit
  • the first phase metering unit 2 is configured to calculate a first phase voltage zero crossing time T1;
  • the second phase metering unit 3 is configured to calculate a second phase voltage zero crossing time T2;
  • the third phase metering unit 4 is configured to calculate a third phase voltage zero crossing time T3;
  • the reading module 15 is configured to read the first phase voltage zero crossing time T1, the second phase voltage zero crossing time
  • the determining module 12 is configured to determine whether ⁇ 1 ⁇ 2 ⁇ 3 or ⁇ 2 ⁇ 3 ⁇ 1 or ⁇ 3 ⁇ 1 ⁇ 2 is satisfied.
  • the determining module 13 if the determination result of the determining module is negative, determines that the electric energy meter is reverse phase sequenced.
  • microprocessor 1 further includes: an alarm module 14 for issuing an alert prompt.
  • Three-phase electric energy meter voltage reverse phase sequence detection system of manganese copper three-phase three-wire connection mode including microprocessor 1
  • the microprocessor 1 includes a transmitting module 11, a reading module 15, a determining module 12, and a determining module 13;
  • the sending module 11 is configured to send, by the microprocessor 1, a broadcast command for calculating a phase voltage zero crossing to the first phase metering unit 2 and the second phase metering unit 3;
  • the first phase measuring unit 2 is configured to calculate a first phase voltage zero crossing ⁇ ;
  • the second phase metering unit 3 is configured to calculate a second phase voltage zero crossing time T2';
  • the reading module 15 is configured for the microprocessor 1 to read the first phase voltage zero crossing ⁇ and the second phase voltage zero crossing TT2′; calculate the first phase metering unit 2 and the second phase The zero-crossing inter-turn difference T12' of the measuring unit 3; and obtaining the theoretical zero-crossing inter-turn difference according to the voltage frequency calculation;
  • the determining module 12 is configured to determine whether the zero-crossing inter-turn difference T12' is greater than the theoretical zero-crossing inter-turn difference [0115]
  • the determining module 13 is configured to determine, if the determination result of the determining module is negative, determine the reverse phase sequence of the electric energy meter. Further, the microprocessor further includes: an alarm module, configured to issue an alert prompt.
  • FIG. 2 is a structural schematic diagram of a prior art manganese-copper three-phase electric energy meter
  • the microprocessor 1 and the three single-phase metering chips are connected by two optocoupler elements. Therefore, the voltage signals collected between the single-phase metering chips cannot be input to the unified integrated metering chip for the same data operation. That is, based on the three isolated single-phase metering chips, the communication connection with the microprocessor cannot be realized, so that the corresponding phase voltage zero-crossing cannot be obtained, and the detection based on the phase voltage zero-crossing cannot be realized.
  • Each metering unit used in the manganese-copper three-phase four-wire electric energy meter of the embodiment has a basic energy metering function, a phase voltage zero-crossing detection function, and a phase voltage zero-crossing function.
  • the chip address is optional and can accept the broadcast data frame sent by the microprocessor, that is, the function of broadcasting commands.
  • the embodiment provides a three-phase four-wire connection mode three-phase electric energy meter voltage reverse phase sequence detection method, three-wire four-wire connection mode three-phase electric energy meter, corresponding to three metering chips, Corresponding to detecting the phase A voltage, the phase B voltage, and the phase C voltage, the specific ones may include:
  • the microprocessor 1 sends a broadcast command for calculating the phase voltage zero crossing to the first phase metering unit 2, the second phase metering unit 3 and the third phase metering unit 4 in the energy meter; here, the microprocessor 1 only needs to send a broadcast command, three metering units can receive the same; the calculated phase voltage zero-crossing broadcast command is used to freeze the phase voltage zero-crossing, calculate the last time in the sine wave phase voltage
  • the first phase metering unit 2, the second phase metering unit 3, and the third phase metering unit 4 are respectively connected to the A phase voltage, the B phase voltage, the C phase voltage, or the B phase voltage and the C phase voltage.
  • first phase metering unit 2 corresponds to the A phase voltage of the metering electric energy meter
  • second phase metering unit 3 corresponds to the metering electric energy
  • third phase metering unit 4 corresponds to the phase C voltage of the metering electric energy meter
  • the first phase metering unit 2 After receiving the broadcast command for calculating the phase voltage zero crossing, the first phase metering unit 2 measures the phase voltage zero crossing and the ⁇ by using the etch of the broadcast command as the daytime reference.
  • the inter-turn difference of the inter-base, the inter-turn difference is stored in the zero-crossing count register; this register stores the inter-turn count value of the diurnal reference and the true voltage zero-crossing; the first metrology chip of the first-phase measuring unit 2 is received next time. Before the measurement command, the register The value remains the same.
  • the microprocessor 1 can read the register value and then calculate the phase voltage zero-crossing value T1 according to the crystal oscillator period; that is, the first phase zero corresponding to the first phase metering unit 2 can be calculated and obtained.
  • the second phase metering unit 3 can also read the corresponding second phase voltage zero crossing time T2, that is, Tb, according to the broadcast command for calculating the phase voltage zero crossing time.
  • the processor is then read;
  • the third phase metering unit 4 is also capable of reading the corresponding third phase voltage zero crossing time T3, ie Tc, for reading by the microprocessor according to the calculation of the phase voltage zero crossing time broadcast command. ;
  • the microprocessor After the microprocessor receives the phase A voltage zero crossing, the Ta phase, the phase voltage zero crossing, the Tb, and the C voltage zero crossing, T c, it is determined whether the phase A voltage is zero or not, and whether the Ta is less than the phase B voltage.
  • Zero-crossing daytime Tb, and phase B voltage zero crossing time Tb is less than C voltage zero crossing time Tc, that is, whether Ta ⁇ Tb ⁇ Tc;
  • phase voltage zero crossing time Tb is less than C phase voltage zero crossing time Tc
  • phase A voltage zero crossing time T a is less than B voltage zero crossing time Tb, that is, whether Tb ⁇ Tc ⁇ Ta;
  • phase voltage zero crossing time Tc is less than A phase voltage zero crossing time Ta, and phase A voltage zero crossing time T a is less than B voltage zero crossing time Tb, that is, whether Tc ⁇ Ta ⁇ Tb;
  • the reverse phase sequence is wired, for example, the B phase is reversed, the phase voltages obtained by the first phase metering unit 2, the second phase metering unit 3, and the third phase metering unit 4 are sequentially zero crossings.
  • an alarm prompt can be issued, so as to correct Positive, to ensure fairness in measurement.
  • the embodiment provides a three-phase three-wire connection mode three-phase electric energy meter voltage reverse phase sequence detection method, three-phase three-wire connection mode three-phase electric energy meter, corresponding to two metering chips, That is, the first phase metering unit 2 and the second phase metering unit 3, corresponding to detecting the phase A voltage and the phase C voltage, may specifically include:
  • the microprocessor 1 sends a broadcast command for calculating the phase voltage zero crossing, and both the first phase metering unit 2 and the second phase metering unit 3 in the energy meter will read the broadcast command;
  • the broadcast command of the phase voltage zero-crossing is used to freeze the phase voltage zero-crossing, and calculate the latest zero-crossing time among the sinusoidal phase voltages;
  • the first phase metering unit 2 and the second phase metering unit 3 respectively correspond Connecting the phase A voltage and the phase C voltage, or the phase C voltage and the phase A voltage; here, preferably, the first phase metering unit 2 corresponds to the phase A voltage of the metering electric energy meter; and the second phase metering unit 3 corresponds to the metering electric energy.
  • the first phase metering unit 2 can calculate the time interval of the last zero crossing of the first phase voltage corresponding to the first phase metering unit 2, that is, the calculation can be performed.
  • the first phase voltage of the first phase metering unit 2 is zero-crossed, that is, TV, and then read by the microprocessor; similarly, the second phase metering unit 3 can also calculate the phase voltage zero-crossing broadcast command. Calculating and obtaining the corresponding second phase voltage zero crossing time T2', that is, Tc', and then storing for reading by the microprocessor;
  • the phasor diagram for the positive phase sequence of the three-phase three-wire electric energy meter is based on the three-phase three-wire electric energy meter. If the three-phase three-wire electric energy meter is in the positive phase sequence, the zero-crossing ⁇ difference between the A-phase voltage and the C-phase voltage Tac, which is greater than the theoretical calculation of the zero-crossing ⁇ difference according to the voltage frequency; therefore, it can be judged whether there is a reverse phase sequence problem in the three-phase three-wire electric energy meter by judging the magnitude of the zero-crossing inter-turn difference Tac' and the theoretical zero-crossing ⁇ .
  • the specific judgment process can be:
  • the theoretical zero-crossing ⁇ difference can be calculated according to the inherent voltage frequency of the electric energy meter, and the specific measured frequency is combined; preferably, the inherent The voltage frequency is 65HZ, then the theoretical zero crossing ⁇ difference may be 12.8 MS;
  • the microprocessor After receiving the A-phase voltage zero-crossing Ta' and the C-phase voltage zero-crossing Tc', the microprocessor determines whether the zero-crossing inter-turn difference Tac' is greater than the theoretical zero-crossing inter-turn difference;
  • FIG. 8 a vector diagram in which a three-phase three-wire electric energy meter is connected in reverse phase sequence, when the phase voltage reverse phase sequence occurs, the first phase metering unit 2 and the second phase metering unit 3 acquire The zero crossing difference will occur Variety.
  • the zero-crossing interdifference Tac of the positive phase sequence is 18.5 MS
  • the zero-crossing inter-turn difference Tac" of the reverse phase sequence is 3.7 MS
  • the zero-crossing inter-turn difference Tac" is less than the theoretical zero-crossing inter-turn difference of 12.8 MS.
  • the determination may be made by combining the corresponding zero-crossing inter-turn difference angle zero-crossing ac , and the zero-crossing inter-turning angle zero-crossing jZTac will be changed from 300° to 60°.
  • the embodiment provides a reverse phase sequence detection method for a three-phase electric energy meter, which can support phase sequence detection of a three-phase four-wire electric energy meter or a three-phase three-phase electric energy meter;
  • the microprocessor sends a broadcast command for calculating a phase voltage zero crossing, and the first phase metering unit 2, the second phase metering unit 3, and the third phase metering unit 4 in the power meter receive the same Broadcast command
  • the first phase metering unit 2 can calculate the time interval of the last zero crossing of the first phase voltage corresponding to the first phase metering unit 2, that is, the calculation acquisition A phase voltage zero crossing time T1, that is, Ta, is then stored in the zero-crossing count register for the microprocessor to read; [0145]
  • the second phase metering unit 3 is based on the calculation of the phase voltage zero-crossing broadcast command Calculate the corresponding second phase voltage zero crossing time T2, that is, Tb, and then store it in the zero-crossing count register for the microprocessor to read;
  • the third phase metering unit 4 cross-zero according to the calculated phase voltage
  • the inter-day broadcast command calculates the corresponding third-phase voltage zero-crossing time T3, that is, Tc, and then stores it in the zero-crossing count register for the microprocessor to read; [0147]
  • the microprocessor 1 reads Ta After Tb and Tc, first determine whether the energy meter is
  • phase A voltage cross zero is less than the B phase voltage zero crossing time Tb, and the phase B voltage zero crossing time T b is less than the C voltage zero crossing time Tc, that is, whether Ta ⁇ Tb ⁇ Tc;
  • phase voltage zero crossing time Tb is less than C phase voltage zero crossing time Tc
  • phase A voltage zero crossing time T a is less than B voltage zero crossing time Tb, that is, whether Tb ⁇ Tc ⁇ Ta;
  • phase voltage zero crossing time Tc is less than A phase voltage zero crossing time Ta, and phase A voltage zero crossing time T a is less than B voltage zero crossing time Tb, that is, whether Tc ⁇ Ta ⁇ Tb;
  • the embodiment provides a three-phase four-wire electric energy meter voltage reverse phase sequence detecting system, including a microprocessor 1, a first phase measuring unit 2, and a first embodiment.
  • the two-phase metering unit 3 and the third-phase metering unit 4, the first phase metering unit 2, the second phase metering unit 3, and the third phase metering unit 4 are respectively connected to the A-phase voltage, the B-phase voltage, and the C-phase voltage.
  • the microprocessor 1 includes a transmitting module 11 for transmitting a broadcast command for calculating a phase voltage zero crossing to a first phase metering unit, a second phase metering unit, and a third phase metering unit;
  • the first phase metering unit 2 is configured to calculate a first phase voltage zero crossing time T1 of the electric energy meter;
  • the second phase measuring unit 3 is configured to calculate a second phase voltage zero crossing time T2 of the electric energy meter
  • the third phase metering unit 4 is configured to calculate a third phase voltage zero crossing time T3 of the electric energy meter;
  • the microprocessor 1 further includes a reading module 15 for reading the first phase voltage zero crossing time T1, the second phase voltage zero crossing time ⁇ 2, and the third phase voltage zero crossing time ⁇ 3;
  • the determining module 12 is configured to: after receiving the T1, ⁇ 2, and ⁇ 3, determine whether the first phase voltage zero crossing time T1 is less than the second phase voltage zero crossing time ⁇ 2, and the second phase voltage cross zero ⁇ 2 Less than the third phase voltage zero crossing ⁇ 3; or the second phase voltage zero crossing ⁇ 2 is less than the third phase voltage zero crossing ⁇ 3, and the third phase voltage zero crossing ⁇ 3 is less than the first phase voltage zero crossing ⁇ T1; or the third phase voltage zero crossing ⁇ 3 is less than the first phase voltage zero crossing time T1, and the first phase voltage zero crossing time T1 is less than the second phase voltage zero crossing time ⁇ 2; Satisfy ⁇ 1 ⁇ 2 ⁇ 3 or ⁇ 2 ⁇ 3 ⁇ 1 or ⁇ 3 ⁇ 1 ⁇ 2;
  • the determining module 13 if the determining result of the determining module is negative, determining that the electric energy meter is reversed in phase sequence;
  • the alarm module 14 is configured to issue an alarm prompt.
  • Embodiment 5 Embodiment 5
  • this embodiment provides a detection system for voltage reverse phase sequence of a three-phase three-wire electric energy meter based on the second embodiment, including a microprocessor 1, a first phase measuring unit 2, and a second
  • the phase metering unit 3, the first phase metering unit 2 and the second phase metering unit 3 are respectively connected to the phase A voltage, the phase C voltage, or the phase C voltage and the phase A voltage;
  • the microprocessor 1 includes a transmitting module 11 for transmitting a broadcast command for calculating a phase voltage zero crossing to the first phase metering unit 2 and the second phase metering unit 3;
  • the first phase metering unit 2 is configured to read a first phase voltage zero crossing ⁇ of the electric energy meter
  • the second phase metering unit 3 is configured to read the second phase voltage zero crossing time T2' of the electric energy meter;
  • the microprocessor 1 further includes:
  • the reading module 15 is configured to obtain a first phase voltage zero crossing ⁇ and a second phase voltage zero crossing TT2′; calculate a zero crossing ⁇ difference between the first phase metering unit and the second phase metering unit T12'; and obtaining a theoretical zero-crossing ⁇ difference according to the voltage frequency calculation;
  • the determining module 12 is configured to determine, after receiving the ⁇ and T2′, whether the zero-crossing inter-turn difference T12′ is greater than a theoretical zero-crossing ⁇ difference;
  • the determining module 13 the determining result of the determining module is negative, determining that the power meter reverse phase sequence; [0177] the alarm module 14 is configured to issue an alert prompt.
  • the method and system for detecting the reverse phase sequence of the three-phase electric energy meter voltage provided by the present invention can not only realize the detection of the voltage reverse phase sequence wiring of the manganese copper three-phase four-wire electric energy meter; It is also possible to detect the presence or absence of voltage reverse phase sequence wiring on the manganese-copper three-phase three-phase electric energy meter.
  • the reverse phase sequence detection method of the manganese-copper three-phase electric energy meter different from the prior art is complicated, the component cost is high, the hardware debugging is inconvenient, the software processing is cumbersome, and the like; the detection method of the invention is extremely costly, and the metering chip is fully utilized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Phase Differences (AREA)

Abstract

一种锰铜三相四线以及三相三线电能表电压逆相序的检测方法及其系统,其中,三相四线电能表的检测方法包括:微处理器发送计算相电压过零时间的广播命令至电能表中的第一相计量单元、第二相计量单元和第三相计量单元(S1);微处理器读取第一相计量单元计算的第一相电压过零时间T1、第二相计量单元计算的第二相电压过零时间T2、第三相计量单元计算的第三相电压过零时间T3(S2,S3,S4);判断是否T1<T2<T3;或者T2<T3<T1;或者T3<T1<T2(S5);若否,则判定电能表逆相序(S9)。本方法能够及时发现安装过程中接线错误;防止非法分子利用逆相序使电能表少计量来达到窃电目的;提高三相电能表计量的准确性和可靠性。

Description

三相电能表电压逆相序的检测方法及其系统
[0001] 技术领域
[0002] 本发明涉及电能计量领域, 具体说的是三相电能表电压逆相序的检测方法及其 系统。
[0003] ¾匕體
[0004] 在电能计量领域, 三相电能表的安装接线方式非常重要。 正常情况下, 三相电 压的相序为 A相超前 B相 120°、 B相超前 C相 120°、 C相超前 A相 120° , 此吋称为 正相序; 如图 1所示, 为三相四线电能表的正确接线示意图, 整个计量系统只有 一个参考地。 与此相反, 如果 B相超前 A相 120°或者 C相超前 B相 120°或者 A相超 前 C相 120° , 这种相序称为相电压逆相序, 如图 2所示, 为三相四线电能表错误 接线示意图; 也就是逆相序的顺序为 BAC,或 ACB或 CBA; 整个计量系统总共有 四个参考地。 相电压逆相序会严重影响计量的准确性, 在使用过程中电能就会 少计量或者不计量。
[0005] 在电能的实际配送和计量过程中, 存在非常多种窃电的方法。 其中相电压逆相 序就是一种。 三相电能表主要包括三相四线电能表和三相三线电能表。 当出现 相电压逆相序吋, 三相四线电能表会出现少计或多计电能的现象, 具体情况需 要结合负载分析。 三相三线电能表会出现不计量的现象。 用户可以在不破坏表 的情况下, 达到窃电的目的, 而且不容易被发现。 从而影响供电企业的经济效 益, 而且有失计量公平。
[0006] 目前三相电能表的电流采样方式有电流互感器采样和锰铜采样。 它们之间实现 计量原理差异比较大而且各有优势。 互感器形式有电源设计简单、 精度高等优 点; 锰铜形式有抗强磁、 体积小、 成本 ί氐等优点。
[0007] 如图 1所示, 互感器三相电能表的三相电压采样直接输入到同一个三相集成计 量芯片, 所以可以直接通过芯片内部数据运算得出相电压是否逆相序, 能够检 测到接线是否错误。 伹是如图 2所示, 锰铜三相电能表的三相电压采样输入到对 应相的计量芯片, 芯片之间是独立而且隔离的。 针对锰铜三相电能表, 目前还 没有比较简便的相电压逆相序检测方法。 除非增加独立的相电压采样电路、 比 较电路、 信号隔离电路、 再通过微处理器定吋检测各相过零信号的顺序, 这样 处理成本比较高, 电路复杂、 可靠性不高而且不方便调试。
[0008] 发明内容
[0009] 本发明所要解决的技术问题是: 提供三相电能表电压逆相序的检测方法及其系 统, 分别实现对锰铜三相四线电能表以及锰铜三相三相电能表的相电压逆相序 检测, 防止接线错误和窃电, 从而确保计量公平。
[0010] 为了解决上述技术问题, 本发明采用的第一个技术方案为:
[0011] 三相电能表电压逆相序的检测方法, 包括:
[0012] 微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计量单元、 第二相计量单元和第三相计量单元;
[0013] 第一相计量单元计算第一相电压过零吋间 T1;
[0014] 第二相计量单元计算第二相电压过零吋间 T2;
[0015] 第三相计量单元计算第三相电压过零吋间 T3;
[0016] 微处理器读取所述第一相电压过零吋间 Tl、 第二相电压过零吋间 Τ2以及第三 相电压过零吋间 Τ3;
[0017] 判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2;
[0018] 若否, 则判定电能表逆相序。
[0019] 本发明提供的第二个技术方案为:
[0020] 三相电能表电压逆相序的检测方法, 包括:
[0021] 微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计量单元和 第二相计量单元;
[0022] 第一相计量单元计算第一相电压过零吋间 ΤΓ;
[0023] 第二相计量单元计算第二相电压过零吋间 T2';
[0024] 微处理器读取第一相电压过零吋间 ΤΓ和第二相电压过零吋间 T2';
[0025] 计算第一相计量单元和第二相计量单元的过零吋间差 T12';
[0026] 依据电压频率计算获取理论过零吋间差;
[0027] 判断所述过零吋间差 T12'是否大于所述理论过零吋间差; [0028] 若是, 则判定电能表逆相序。
[0029] 本发明提供的第三个技术方案为:
[0030] 三相电能表电压逆相序的检测系统, 包括微处理器、 第一相计量单元、 第二相 计量单元和第三相计量单元:
[0031] 所述微处理器包括发送模块、 读取模块、 判断模块和判定模块;
[0032] 所述发送模块, 用于发送计算相电压过零吋间的广播命令至第一相计量单元、 第二相计量单元和第三相计量单元;
[0033] 第一相计量单元, 用于计算第一相电压过零吋间 T1;
[0034] 第二相计量单元, 用于计算第二相电压过零吋间 T2;
[0035] 第三相计量单元, 用于计算第三相电压过零吋间 T3;
[0036] 所述读取模块, 用于读取所述第一相电压过零吋间 Tl、 第二相电压过零吋间 Τ
2以及第三相电压过零吋间 Τ3;
[0037] 所述判断模块, 用于判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2;
[0038] 所述判定模块, 用于所述判断模块的判断结果为否, 则判定电能表逆相序。
[0039] 本发明提供的第四个技术方案为:
[0040] 三相电能表电压逆相序的检测系统, 包括微处理器、 第一相计量单元和第二相 计量单元,
[0041] 所述微处理器包括发送模块、 读取模块、 判断模块和判定模块;
[0042] 所述发送模块, 用于微处理器发送计算相电压过零吋间的广播命令至第一相计 量单元和第二相计量单元;
[0043] 所述第一相计量单元, 用于计算第一相电压过零吋间 ΤΓ;
[0044] 所述第二相计量单元, 用于计算第二相电压过零吋间 T2';
[0045] 所述读取模块, 用于微处理器读取第一相电压过零吋间 ΤΓ和第二相电压过零 吋间 T2'; 计算第一相计量单元和第二相计量单元的过零吋间差 T12'; 以及依据 电压频率计算获取理论过零吋间差;
[0046] 所述判断模块, 用于判断所述过零吋间差 T12'是否大于所述理论过零吋间差; [0047] 所述判定模块, 用于所述判断模块的判断结果为否, 则判定电能表逆相序。
[0048] 本发明的有益效果在于: 针对锰铜三相电能表的各个计量芯片之间是独立的, 从而导致采样的电压信号无法输入到同一集成计量芯片中进行统一数据运算, 进而无法实现对相电压是否发生逆相序进行检测的不足。 本发明针对三相四线 接线方式以及三相三线接线方式的锰铜电能表分别提出逆相序检测方法及其系 统, 通过微处理器发送计算相电压过零吋间的广播命令至各个计量单元, 再对 各个计量单元对应的相电压过零吋间进行读取; 然后依据不同接线方式的相电 压过零吋间规律, 判断对应接线方式的电能表是否发生电压逆相序; 本发明基 于计量单元的相电压过零检测功能、 相电压过零吋间保存功能以及芯片地址可 选且能接收微处理器发出的广播命令功能, 实现了锰铜三相电能表相电压逆相 序的检测, 通过检测结果, 能够及吋发现安装过程中出现的接线错误的情况; 防止非法分子利用逆相序使电能表少计量来达到窃电目的; 进一步提高三相电 能表计量的计量准确性和可靠性。
[0049] 國綱
[0050] 图 1为现有技术的互感器三相电能表的结构原理图;
[0051] 图 2为现有技术的锰铜三相四线电能表的结构原理图;
[0052] 图 3为本发明三相四线电能表电压逆相序的检测方法流程示意图;
[0053] 图 4为本发明三相三线电能表电压逆相序的检测方法流程示意图;
[0054] 图 5为三相四线电能表电压正相序接线的相量图;
[0055] 图 6为三相四线电能表电压 AB相电压发生逆相序的相量图;
[0056] 图 7为三相三线电能表电压正相序接线的相量图;
[0057] 图 8为三相三线电能表电压 AB相电压发生逆相序的相量图;
[0058] 图 9为本发明实施例三相电能表电压逆相序的检测方法的流程示意图;
[0059] 图 10为本发明三相四线电能表电压逆相序的检测系统功能模块的结构示意图;
[0060] 图 11为本发明三相三线电能表电压逆相序的检测系统功能模块的结构示意图。
[0061] 标号说明:
[0062] 微处理器 -1; 第一相计量单元 -2; 第二相计量单元 -3;
[0063] 第三相计量单元 -4; 发送模块 -11; 判断模块 -12; 判定模块 -13;
[0064] 警报模块 -14; 读取模块 -15。
[0065] t m^ [0066] 为详细说明本发明的技术内容、 所实现目的及效果, 以下结合实施方式并配合 附图予以说明。
[0067] 本发明最关键的构思在于: 基于计量芯片的相电压过零吋间检测、 保存功能以 及可与微处理器通讯连接的功能, 实现对三相电能表逆相序的检测, 防止接线 错误和窃电, 从而提高计量精度, 确保计量公平。
[0068] 请参照图 3, 本发明提供一种针对三相四线接线方式的三相电能表电压逆相序 的检测方法, 包括:
[0069] 微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计量单元、 第二相计量单元和第三相计量单元;
[0070] 第一相计量单元计算第一相电压过零吋间 T1;
[0071] 第二相计量单元计算第二相电压过零吋间 T2;
[0072] 第三相计量单元计算第三相电压过零吋间 T3;
[0073] 微处理器读取所述第一相电压过零吋间 Tl、 第二相电压过零吋间 Τ2以及第三 相电压过零吋间 Τ3;
[0074] 判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2;
[0075] 若否, 则判定电能表逆相序。 优选的, 所述第一相计量单元对应计量电能表的 Α相电压; 所述第二相计量单元对应计量电能表的 B相电压; 所述第三相计量单 元对应计量电能表的 C相电压; 通过各个计量单元与电能表相电压的对应关系, 实现对应相电压过零吋间的获取, 以及基于相电压过零吋间的判断。
[0076] 从上述描述可知, 本发明的有益效果在于: 针对三相四线接线方式的锰铜三相 电能表, 基于与微处理器的通讯功能, 其三个独立的计量单元在接收到计算相 电压过零吋间的广播命令后, 将各自保存最近一次的相电压过零吋间; 微处理 器分别读取三相的相电压过零吋间, 基于三相四线接线的顺序与其对应相电压 过零吋间的大小的正对应关系, 获得三相四线接线电能表是否逆相序的判断结 果; 实现 ί氐成本、 高精度、 操作简便地对锰铜三相四线电能表逆相序的检测。
[0077] 进一步的, 所述"判定电能表逆相序"之后, 进一步包括: 发出警报提示。
[0078] 由上述描述可知, 若该锰铜三相四线电能表确实存在逆相序问题, 则及吋发出 警报进行提示, 以便及吋更正错误, 确保计量准确。 [0079] 进一步的, 所述三相电能表为三相四线电能表。 由上述描述可知, 所检测电能 表为三相四线电能表, 需要同吋对三相电压的进行计量统计, 因此需要同吋判 断三相过零吋间。
[0080] 请参阅图 4, 本发明提供的第二个技术方案为:
[0081] 一种锰铜三相三线接线方式的三相电能表电压逆相序的检测方法, 包括: [0082] 微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计量单元和 第二相计量单元;
[0083] 第一相计量单元计算第一相电压过零吋间 ΤΓ;
[0084] 第二相计量单元计算第二相电压过零吋间 T2';
[0085] 微处理器读取第一相电压过零吋间 ΤΓ和第二相电压过零吋间 T2';
[0086] 计算第一相计量单元和第二相计量单元的过零吋间差 T12';
[0087] 依据电压频率计算获取理论过零吋间差;
[0088] 判断所述过零吋间差 T12'是否大于所述理论过零吋间差;
[0089] 若是, 则判定电能表逆相序。
[0090] 优选的, 所述第一相计量单元对应计量电能表的 A相电压; 所述第二相计量单 元对应计量电能表的 C相电压; 通过两个计量单元与电能表相电压的对应关系, 实现对应相电压过零吋间的获取, 以及基于相电压过零吋间差的判断。
[0091] 由上述可知, 本方案的有益效果为: 针对三相三线接线方式的锰铜三相电能表
, 基于与微处理器的通讯功能, 其两个独立的计量单元在接收到计算相电压过 零吋间的广播命令后, 将各自保存最近一次的相电压过零吋间; 分别读取两相 的相电压过零吋间, 基于两相电压过零吋间差与理论过零吋间差的大小判断, 获得三相三线接线电能表是否逆相序的判断结果; 实现 ί氐成本、 高精度、 操作 简便地对锰铜三相三线电能表逆相序的检测。
[0092] 进一步的, 所述"判定电能表逆相序"之后, 进一步包括: 发出警报提示。
[0093] 由上述描述可知, 若该锰铜三相三线电能表确实存在逆相序问题, 则及吋发出 警报进行提示, 以便及吋更正错误, 确保计量准确。
[0094] 进一步的, 所述三相电能表为三相三线电能表。
[0095] 由上述可知, 三相三线电能表对应检测 Α相电压和 C相电压, 因此只需对两相 电压的过零吋间进行判读。
[0096] 请参阅图 10, 本发明提供的第三个技术方案为:
[0097] 三相电能表电压逆相序的检测系统, 包括微处理器 1、 第一相计量单元 2、 第二 相计量单元 3和第三相计量单元 4:
[0098] 所述微处理器 1包括发送模块 11、 读取模块 15、 判断模块 12和判定模块 13;
[0099] 所述发送模块 11 , 用于发送计算相电压过零吋间的广播命令至第一相计量单元
2、 第二相计量单元 3和第三相计量单元 4;
[0100] 第一相计量单元 2, 用于计算第一相电压过零吋间 T1;
[0101] 第二相计量单元 3, 用于计算第二相电压过零吋间 T2;
[0102] 第三相计量单元 4, 用于计算第三相电压过零吋间 T3;
[0103] 所述读取模块 15, 用于读取所述第一相电压过零吋间 Tl、 第二相电压过零吋间
Τ2以及第三相电压过零吋间 Τ3;
[0104] 所述判断模块 12, 用于判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2
[0105] 所述判定模块 13, 用于所述判断模块的判断结果为否, 则判定电能表逆相序。
[0106] 进一步的, 所述微处理器 1还包括: 警报模块 14, 用于发出警报提示。
[0107] 请参阅图 11 , 本发明提供的第四个技术方案为:
[0108] 锰铜三相三线接线方式的三相电能表电压逆相序的检测系统, 包括微处理器 1
、 第一相计量单元 2和第二相计量单元 3,
[0109] 所述微处理器 1包括发送模块 11、 读取模块 15、 判断模块 12和判定模块 13;
[0110] 所述发送模块 11 , 用于微处理器 1发送计算相电压过零吋间的广播命令至第一 相计量单元 2和第二相计量单元 3;
[0111] 所述第一相计量单元 2, 用于计算第一相电压过零吋间 ΤΓ;
[0112] 所述第二相计量单元 3, 用于计算第二相电压过零吋间 T2';
[0113] 所述读取模块 15, 用于微处理器 1读取第一相电压过零吋间 ΤΓ和第二相电压过 零吋间 T2'; 计算第一相计量单元 2和第二相计量单元 3的过零吋间差 T12'; 以及 依据电压频率计算获取理论过零吋间差;
[0114] 所述判断模块 12, 用于判断所述过零吋间差 T12'是否大于所述理论过零吋间差 [0115] 所述判定模块 13, 用于所述判断模块的判断结果为否, 则判定电能表逆相序。 进一步的, 所述微处理器还包括: 警报模块, 用于发出警报提示。
[0116] 实施例一
[0117] 如图 2所示, 为现有技术的锰铜三相电能表的结构原理图, 微处理器 1与三个单 相计量芯片之间, 通过两个光耦元件连接。 因此, 各个单相计量芯片之间所采 集的电压信号无法输入到统一集成计量芯片中进行同一的数据运算。 即, 基于 三个相互隔离独立的单相计量芯片无法实现与微处理器的通讯连接, 因此无法 获取对应的相电压过零吋间, 无法实现基于相电压过零吋间的检测。
[0118] 本实施例的锰铜三相四线电能表中采用的各个计量单元, 除了具备基本的电能 计量功能, 还具备相电压过零吋间检测功能、 相电压过零吋间保存功能以及芯 片地址可选, 且能够接受微处理器发出的广播数据帧, 即广播命令的功能。
[0119] 请参照图 3, 本实施例提供一种三相四线接线方式的三相电能表电压逆相序的 检测方法, 三线四线接线方式的三相电能表, 对应有三个计量芯片, 对应检测 A 相电压、 B相电压以及 C相电压, 具体可以包括:
[0120] 微处理器 1发送计算相电压过零吋间的广播命令至电能表中的第一相计量单元 2 、 第二相计量单元 3和第三相计量单元 4; 在此, 微处理器 1只需要发送一条广播 命令, 三个计量单元便能同吋收到; 所述计算相电压过零吋间的广播命令用于 冻结相电压过零吋间, 计算获取正弦波相电压中最近一次过零吋间; 所述第一 相计量单元 2、 第二相计量单元 3和第三相计量单元 4分别对应连接 A相电压、 B相 电压、 C相电压, 或者 B相电压、 C相电压、 A相电压, 或者 C相电压、 A相电压 、 B相电压; 在此, 优选所述第一相计量单元 2对应计量电能表的 A相电压; 所 述第二相计量单元 3对应计量电能表的 B相电压; 所述第三相计量单元 4对应计量 电能表的 C相电压;
[0121] 第一相计量单元 2接收到计算相电压过零吋间的广播命令后, 将以收到该广播 命令的吋刻作为吋间基准, 测量出该相电压过零吋间与该吋间基准的吋间差, 吋间差保存在过零计数寄存器; 该寄存器存放的是吋间基准与真实电压过零的 吋间计数值; 第一相计量单元 2的第一计量芯片在下次收到测量命令前, 寄存器 值一直不变。 微处理器 1可以随吋读取该寄存器值, 再根据晶振周期计算得出该 相电压过零吋间值 T1; 即能够计算获取第一相计量单元 2对应的第一相电压最近 一次过零的吋间 T1 , 即 Ta; 同理, 第二相计量单元 3也能够依据计算相电压过零 吋间的广播命令, 读取对应的第二相电压过零吋间 T2, 即 Tb, 供微处理器随吋 读取; 第三相计量单元 4也能够依据计算相电压过零吋间的广播命令, 读取对应 的第三相电压过零吋间 T3, 即 Tc, 供微处理器读取;
[0122] 如图 5所示, 基于三相四线电能表若为正相序, 则 A相电压、 B相电压以及 C相 电压的过零吋间为依次递减或者依次递增关系; 因此, 可以通过判断 A相电压、 B相电压以及 C相电压的过零吋间的对应关系来判断三相四线电能表是否存在逆 相序问题。 具体的判断过程可以为:
[0123] 微处理器接收到 A相电压过零吋间 Ta、 B相电压过零吋间 Tb和 C电压过零吋间 T c以后, 判断 A相电压过零吋间 Ta是否小于 B相电压过零吋间 Tb, 且 B相电压过 零吋间 Tb小于 C电压过零吋间 Tc, 即是否 Ta<Tb<Tc;
[0124] 或者 B相电压过零吋间 Tb是否小于 C相电压过零吋间 Tc, 且 A相电压过零吋间 T a小于 B电压过零吋间 Tb, 即是否 Tb<Tc<Ta;
[0125] 或者 C相电压过零吋间 Tc是否小于 A相电压过零吋间 Ta, 且 A相电压过零吋间 T a小于 B电压过零吋间 Tb, 即是否 Tc<Ta<Tb;
[0126] 若否, 则判定电能表逆相序。
[0127] 如图 6所示, 为其中一种三相四线电能表逆相序接线的相量图。 假设本实施例 的三相四线电能表获取得到的第一相计量单元 2对应的第一相电压过零吋间 Ta=5 MS; 第二相计量单元 3对应的第二相电压过零吋间 Tb=13.3MS; 第三相计量单 元 4对应的第三相电压过零吋间 Tc=21.3MS;
[0128] 由于 Ta<Tb<Tc, 因此可以判定为正相序接线;
[0129] 若为逆相序接线, 如 、 B相接反, 则第一相计量单元 2、 第二相计量单元 3以 及第三相计量单元 4获取到的相电压过零吋间将依次为 Ta=13.3MS、 Tb=5MS、 Tc=21.3MS; 且计量单元电压和电流的相角也会发生变化, 导致计量精度也发 生变化, 其他相接反, 类似原理。
[0130] 优选的, 在判定电能表为逆相序接线方式吋, 能够发出警报提示, 以便及吋纠 正, 确保计量公正。
[0131] 实施例二
[0132] 请参照图 4, 本实施例提供一种三相三线接线方式的三相电能表电压逆相序的 检测方法, 三相三线接线方式的三相电能表, 对应有两个计量芯片, 即第一相 计量单元 2和第二相计量单元 3, 对应检测 A相电压和 C相电压, 具体可以包括:
[0133] 微处理器 1发送一条计算相电压过零吋间的广播命令, 电能表中的第一相计量 单元 2和第二相计量单元 3都将读取到所述广播命令; 所述计算相电压过零吋间 的广播命令用于冻结相电压过零吋间, 计算获取正弦波相电压中最近一次过零 吋间; 所述第一相计量单元 2和第二相计量单元 3分别对应连接 A相电压和 C相电 压, 或者 C相电压和 A相电压; 在此, 优选所述第一相计量单元 2对应计量电能 表的 A相电压; 所述第二相计量单元 3对应计量电能表的 C相电压;
[0134] 第一相计量单元 2接收到计算相电压过零吋间的广播命令后, 能够计算获取第 一相计量单元 2对应的第一相电压最近一次过零的吋间, 即能够计算获取第一相 计量单元 2的第一相电压过零吋间 ΤΓ , 即 TV , 然后供微处理器读取; 同理, 第 二相计量单元 3也能够依据计算相电压过零吋间的广播命令, 计算获取对应的第 二相电压过零吋间 T2' , 即 Tc', 然后存储供微处理器读取;
[0135] 如图 7所示, 为三相三线电能表正相序接线的相量图, 基于三相三线电能表若 为正相序, 则 A相电压和 C相电压的过零吋间差 Tac,将大于依据电压频率计算获 取理论过零吋间差; 因此, 可以通过判断过零吋间差 Tac'与理论过零吋间差的 大小来判断三相三线电能表是否存在逆相序问题。 具体的判断过程可以为:
[0136] 依据电压频率计算获取理论过零吋间差; 所述理论过零吋间差可以按照电能表 的固有电压频率, 同吋结合具体所测量频率计算得出; 优选的, 假设其中的固 有电压频率为 65HZ, 则所述理论过零吋间差可以是 12.8 MS;
[0137] 微处理器接收到 A相电压过零吋间 Ta'和 C相电压过零吋间 Tc'以后, 判断所述 过零吋间差 Tac'是否大于所述理论过零吋间差;
[0138] 若否, 则判定电能表逆相序。
[0139] 如图 8所示, 为其中一种三相三线电能表逆相序接线的向量图, 当发生相电压 逆相序吋, 第一相计量单元 2和第二相计量单元 3获取到的过零吋间差值将发生 变化。 假设正相序的过零吋间差 Tac,为 18.5MS, 逆相序的过零吋间差 Tac"为 3.7 MS, 过零吋间差 Tac"小于理论过零吋间差 12.8 MS, 则可以判定为逆相序接线
。 进一步的, 还可以结合对应的过零吋间差角度过零 ac进行判断, 所述过零 吋间差角度过零 jZTac将由 300°变成 60°。
[0140] 同理, 在判定电能表为逆相序接线方式吋, 能够发出警报提示, 以便及吋纠正
, 确保计量公正。
[0141] 实施例三
[0142] 请参阅图 9, 本实施例提供一种三相电能表逆相序检测方法, 能够支持对三相 四线电能表或者三相三相电能表的相序检测; 具体可以包括:
[0143] 微处理器发送一条计算相电压过零吋间的广播命令, 电能表中的第一相计量单 元 2、 第二相计量单元 3和第三相计量单元 4将同吋接收到所述广播命令;
[0144] 第一相计量单元 2接收到计算相电压过零吋间的广播命令后, 能够计算获取第 一相计量单元 2对应的第一相电压最近一次过零的吋间, 即计算获取第一相电压 过零吋间 T1 , 即 Ta, 然后存储在过零计数寄存器中, 供微处理器随吋读取; [0145] 第二相计量单元 3依据计算相电压过零吋间的广播命令, 计算对应的第二相电 压过零吋间 T2, 即 Tb, 然后存储在过零计数寄存器中, 供微处理器随吋读取; [0146] 第三相计量单元 4依据计算相电压过零吋间的广播命令, 计算对应的第三相电 压过零吋间 T3, 即 Tc, 然后存储在过零计数寄存器中, 供微处理器随吋读取; [0147] 微处理器 1读取 Ta、 Tb和 Tc后, 首先判断电能表是三相四线接线方式还是三相 三线接线方式; 若为三相四线接线方式, 则执行 S5; 若为三相三线接线方式, 则执行 S6;
[0148] 判断 A相电压过零吋间 Ta是否小于 B相电压过零吋间 Tb, 且 B相电压过零吋间 T b小于 C电压过零吋间 Tc, 即是否 Ta<Tb<Tc;
[0149] 或者 B相电压过零吋间 Tb是否小于 C相电压过零吋间 Tc, 且 A相电压过零吋间 T a小于 B电压过零吋间 Tb, 即是否 Tb<Tc<Ta;
[0150] 或者 C相电压过零吋间 Tc是否小于 A相电压过零吋间 Ta, 且 A相电压过零吋间 T a小于 B电压过零吋间 Tb, 即是否 Tc<Ta<Tb;
[0151] 若否, 则执行 S9; 若是, 则执行 S10; [0152] 依据电压频率计算获取理论过零吋间差; 所述理论过零吋间差可以按照电能表 的固有电压频率, 同吋结合具体所测量频率计算得出;
[0153] 计算 A相电压和 C相电压的过零吋间差 Tac;
[0154] 判断所述过零吋间差 Tac是否大于所述理论过零吋间差;
[0155] 若否, 则执行 S9; 若是, 则执行 S10;
[0156] 判定电能表逆相序, 发出警报提示;
[0157] 判定电能表正相序, 结束检测。
[0158] 实施例四
[0159] 请参阅图 10, 本实施例在实施例一的基础上, 提供一种三相四线电能表电压逆 相序的检测系统, 包括微处理器 1、 第一相计量单元 2、 第二相计量单元 3和第三 相计量单元 4, 所述第一相计量单元 2、 第二相计量单元 3和第三相计量单元 4分 别对应连接 A相电压、 B相电压、 C相电压, 或者 B相电压、 C相电压、 A相电压 , 或者 C相电压、 A相电压、 B相电压;
[0160] 所述微处理器 1包括发送模块 11 , 用于发送计算相电压过零吋间的广播命令至 第一相计量单元、 第二相计量单元和第三相计量单元;
[0161] 所述第一相计量单元 2, 用于计算电能表的第一相电压过零吋间 T1;
[0162] 所述第二相计量单元 3, 用于计算电能表的第二相电压过零吋间 T2;
[0163] 所述第三相计量单元 4, 用于计算电能表的第三相电压过零吋间 T3;
[0164] 所述微处理器 1还包括读取模块 15, 用于读取所述第一相电压过零吋间 Tl、 第 二相电压过零吋间 Τ2以及第三相电压过零吋间 Τ3;
[0165] 判断模块 12, 用于接收到 Tl、 Τ2以及 Τ3后, 判断第一相电压过零吋间 T1是否 小于第二相电压过零吋间 Τ2, 且第二相电压过零吋间 Τ2小于第三相电压过零吋 间 Τ3; 或者第二相电压过零吋间 Τ2是否小于第三相电压过零吋间 Τ3, 且第三相 电压过零吋间 Τ3小于第一相电压过零吋间 T1; 或者第三相电压过零吋间 Τ3是否 小于第一相电压过零吋间 T1 , 且第一相电压过零吋间 T1小于第二相电压过零吋 间 Τ2; 即判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2;
[0166] 判定模块 13, 用于所述判断模块的判断结果为否, 则判定电能表逆相序;
[0167] 警报模块 14, 用于发出警报提示。 [0168] 实施例五
[0169] 请参阅图 11 , 本实施例在实施例二的基础上, 提供一种三相三线电能表电压逆 相序的检测系统, 包括微处理器 1、 第一相计量单元 2、 第二相计量单元 3, 所述 第一相计量单元 2和第二相计量单元 3分别对应连接 A相电压、 C相电压, 或者 C 相电压、 A相电压;
[0170] 所述微处理器 1包括发送模块 11 , 用于发送计算相电压过零吋间的广播命令至 第一相计量单元 2和第二相计量单元 3;
[0171] 所述第一相计量单元 2, 用于读取电能表的第一相电压过零吋间 ΤΓ;
[0172] 所述第二相计量单元 3, 用于读取电能表的第二相电压过零吋间 T2';
[0173] 所述微处理器 1还包括:
[0174] 读取模块 15, 用于获取第一相电压过零吋间 ΤΓ和第二相电压过零吋间 T2'; 计 算第一相计量单元和第二相计量单元的过零吋间差 T12'; 以及依据电压频率计 算获取理论过零吋间差;
[0175] 判断模块 12, 用于在接收到 ΤΓ和 T2'之后, 判断所述过零吋间差 T12'是否大于 理论过零吋间差;
[0176] 判定模块 13, 用于所述判断模块的判断结果为否, 则判定电能表逆相序; [0177] 警报模块 14, 用于发出警报提示。
[0178] 综上所述, 本发明提供的三相电能表电压逆相序的检测方法及其系统, 不仅能 够实现对锰铜三相四线电能表是否存在电压逆相序接线的检测; 而且还能同吋 对锰铜三相三相电能表是否存在电压逆相序接线的检测。 区别于现有技术的锰 铜三相电能表逆相序检测方法复杂, 元器件成本高, 不方便硬件调试、 软件处 理繁琐等问题; 本发明的检测方式成本极氐, 通过充分利用计量芯片的内部资 源来实现相序检测, 不需要硬件调试, 软件处理也简单, 进而提供了一种简单 、 便捷且检测精度高的锰铜三相电压逆相序检测方式, 能够及吋发现安装过程 中出现的接线错误的情况; 防止非法分子利用逆相序使电能表少计量来达到窃 电目的的问题发生; 进一步提高三相电能表计量的计量准确性和可靠性。
[0179] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等同变换, 或直接或间接运用在相关的技术领域 , 均同理包括在本发明的专利保护范围内。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 三相电能表电压逆相序的检测方法, 其特征在于, 包括:
微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计 量单元、 第二相计量单元和第三相计量单元;
第一相计量单元计算第一相电压过零吋间 T1 ;
第二相计量单元计算第二相电压过零吋间 T2;
第三相计量单元计算第三相电压过零吋间 T3;
微处理器读取所述第一相电压过零吋间 Tl、 第二相电压过零吋间 Τ2 以及第三相电压过零吋间 Τ3;
判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3<Τ1<Τ2;
若否, 则判定电能表逆相序。
[权利要求 2] 如权利要求 1所述的三相电能表电压逆相序的检测方法, 其特征在于
, 所述"判定电能表逆相序"之后, 进一步包括: 发出警报提示。
[权利要求 3] 如权利要求 1或 2所述的三相电能表电压逆相序的检测方法, 其特征在 于, 所述三相电能表为三相四线电能表。
[权利要求 4] 三相电能表电压逆相序的检测方法, 其特征在于, 包括:
微处理器发送计算相电压过零吋间的广播命令至电能表中的第一相计 量单元和第二相计量单元;
第一相计量单元计算第一相电压过零吋间 ΤΓ ;
第二相计量单元计算第二相电压过零吋间 T2' ;
微处理器读取第一相电压过零吋间 ΤΓ和第二相电压过零吋间 T2' ; 计算第一相计量单元和第二相计量单元的过零吋间差 T12'; 依据电压频率计算获取理论过零吋间差;
判断所述过零吋间差 T12'是否大于所述理论过零吋间差;
若是, 则判定电能表逆相序。
[权利要求 5] 如权利要求 4所述的三相电能表电压逆相序的检测方法, 其特征在于
, 所述"判定电能表逆相序"之后, 进一步包括: 发出警报提示。
[权利要求 6] 如权利要求 4或 5所述的三相电能表电压逆相序的检测方法, 其特征在 于, 所述三相电能表为三相三线电能表。
[权利要求 7] 三相电能表电压逆相序的检测系统, 包括微处理器、 第一相计量单元
、 第二相计量单元和第三相计量单元, 其特征在于:
所述微处理器包括发送模块、 读取模块、 判断模块和判定模块; 所述发送模块, 用于发送计算相电压过零吋间的广播命令至第一相计 量单元、 第二相计量单元和第三相计量单元;
第一相计量单元, 用于计算第一相电压过零吋间 T1 ;
第二相计量单元, 用于计算第二相电压过零吋间 T2;
第三相计量单元, 用于计算第三相电压过零吋间 T3;
所述读取模块, 用于读取所述第一相电压过零吋间 Tl、 第二相电压 过零吋间 Τ2以及第三相电压过零吋间 Τ3;
所述判断模块, 用于判断是否满足 Τ1<Τ2<Τ3或者 Τ2<Τ3<Τ1或者 Τ3< Τ1<Τ2;
所述判定模块, 用于所述判断模块的判断结果为否, 则判定电能表逆 相序。
[权利要求 8] 如权利要求 7所述的三相电能表电压逆相序的检测系统, 其特征在于
, 所述微处理器还包括: 警报模块, 用于发出警报提示。
[权利要求 9] 三相电能表电压逆相序的检测系统, 包括微处理器、 第一相计量单元 和第二相计量单元, 其特征在于:
所述微处理器包括发送模块、 读取模块、 判断模块和判定模块; 所述发送模块, 用于微处理器发送计算相电压过零吋间的广播命令至 第一相计量单元和第二相计量单元;
所述第一相计量单元, 用于计算第一相电压过零吋间 ΤΓ ;
所述第二相计量单元, 用于计算第二相电压过零吋间 T2' ;
所述读取模块, 用于微处理器读取第一相电压过零吋间 ΤΓ和第二相 电压过零吋间 T2' ; 计算第一相计量单元和第二相计量单元的过零吋 间差 T12' ; 以及依据电压频率计算获取理论过零吋间差;
所述判断模块, 用于判断所述过零吋间差 T12'是否大于所述理论过零 吋间差;
所述判定模块, 用于所述判断模块的判断结果为否, 则判定电能表逆 相序。
[权利要求 10] 如权利要求 9所述的三相电能表电压逆相序的检测系统, 其特征在于 , 所述微处理器还包括: 警报模块, 用于发出警报提示。
PCT/CN2016/100846 2016-05-17 2016-09-29 三相电能表电压逆相序的检测方法及其系统 WO2017197823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610326327.7 2016-05-17
CN201610326327.7A CN106018985B (zh) 2016-05-17 2016-05-17 三相电能表电压逆相序的检测方法及其系统

Publications (1)

Publication Number Publication Date
WO2017197823A1 true WO2017197823A1 (zh) 2017-11-23

Family

ID=57098176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100846 WO2017197823A1 (zh) 2016-05-17 2016-09-29 三相电能表电压逆相序的检测方法及其系统

Country Status (2)

Country Link
CN (1) CN106018985B (zh)
WO (1) WO2017197823A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358310A (zh) * 2018-12-03 2019-02-19 烟台东方威思顿电气有限公司 三相四线电能表断零线检测装置及检测方法
CN112051459A (zh) * 2020-08-31 2020-12-08 国网北京市电力公司 一种核相方法及具有双重核相功能的带电显示器
CN112731216A (zh) * 2020-12-07 2021-04-30 江阴长仪集团有限公司 一种实现相序自动校正的电力监测终端及校正方法
CN113820652A (zh) * 2021-11-18 2021-12-21 青岛鼎信通讯股份有限公司 一种应用于标准电能表的采样相位对齐及校准方法
CN117741520A (zh) * 2023-12-15 2024-03-22 国网江苏省电力有限公司扬州供电分公司 三相三线计量装置电压互感器极性反接的远程判断方法
CN117907925A (zh) * 2024-03-20 2024-04-19 深圳古瑞瓦特新能源有限公司 一种电表相序自适应方法、装置、电子设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896278B (zh) * 2017-04-27 2019-07-05 湖北睿能电气有限公司 一种智能相序识别装置
CN107632281B (zh) * 2017-08-31 2020-01-10 陈劲游 三相三线计量装置接线自动检测仪器的测控方法
CN109164345A (zh) * 2018-09-27 2019-01-08 深圳友讯达科技股份有限公司 火线零线接线检测方法、装置和智能电表
US11061055B2 (en) 2019-03-15 2021-07-13 Analog Devices International Unlimited Company Three-phase power meter monitoring for star and delta configurations
CN110865316A (zh) * 2019-11-28 2020-03-06 海南电网有限责任公司琼中供电局 一种电表接线识别检测系统及方法
CN111913051B (zh) * 2020-05-25 2022-01-04 威胜信息技术股份有限公司 一种配电网自动调整相序的方法、监测单元和监测系统
CN112098904A (zh) * 2020-08-18 2020-12-18 四川万益能源科技有限公司 一种三相三线制的电力测量仪表接线故障获取方法及装置
CN114814355B (zh) * 2022-06-28 2022-09-13 石家庄科林电气股份有限公司 一种基于锰铜采样的三相表及计量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262272A (ja) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp 三相入力状態判定装置
CN101788615A (zh) * 2010-01-11 2010-07-28 中色科技股份有限公司 一种简易三相工频交流电相序测量的方法及检测设备
CN101937069A (zh) * 2010-09-08 2011-01-05 珠海中慧微电子有限公司 Soc智能电表的电压特性检测系统及方法
CN102004193A (zh) * 2010-09-14 2011-04-06 徐国治 三相交流电相序检测方法及其装置
JP4731853B2 (ja) * 2004-08-02 2011-07-27 九州電力株式会社 配電線の相順判別方法
CN103308816A (zh) * 2013-05-24 2013-09-18 康力电梯股份有限公司 一种三相交流电错、断相检测电路及其检测方法
CN104076321A (zh) * 2014-07-08 2014-10-01 贵州电力试验研究院 一种数字式电能表在线监测与评估系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU475575A1 (ru) * 1964-04-08 1975-06-30 Феррометр
CN2472240Y (zh) * 2001-02-28 2002-01-16 南京宇能科技有限公司 三电阻(锰铜)取样三相四线全电子表
CN2884212Y (zh) * 2006-04-03 2007-03-28 杭州华隆电子技术有限公司 采用锰铜分流器作为电流采样的电能表
CN202133770U (zh) * 2011-07-06 2012-02-01 深圳威胜科技有限公司 一种三相电能表及其电能计量脉冲与断相的检测电路
CN202305660U (zh) * 2011-08-19 2012-07-04 华立仪表集团股份有限公司 全锰铜多相电能表
CN202189095U (zh) * 2011-08-25 2012-04-11 江西三星阿兰德电器有限公司 三相电相序和缺相检测电路
CN202217015U (zh) * 2011-09-02 2012-05-09 利尔达科技有限公司 一种三相电能计量装置
CN202204872U (zh) * 2011-09-20 2012-04-25 威胜集团有限公司 基于锰铜分流器采样的三相电能表计量构件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262272A (ja) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp 三相入力状態判定装置
JP4731853B2 (ja) * 2004-08-02 2011-07-27 九州電力株式会社 配電線の相順判別方法
CN101788615A (zh) * 2010-01-11 2010-07-28 中色科技股份有限公司 一种简易三相工频交流电相序测量的方法及检测设备
CN101937069A (zh) * 2010-09-08 2011-01-05 珠海中慧微电子有限公司 Soc智能电表的电压特性检测系统及方法
CN102004193A (zh) * 2010-09-14 2011-04-06 徐国治 三相交流电相序检测方法及其装置
CN103308816A (zh) * 2013-05-24 2013-09-18 康力电梯股份有限公司 一种三相交流电错、断相检测电路及其检测方法
CN104076321A (zh) * 2014-07-08 2014-10-01 贵州电力试验研究院 一种数字式电能表在线监测与评估系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358310A (zh) * 2018-12-03 2019-02-19 烟台东方威思顿电气有限公司 三相四线电能表断零线检测装置及检测方法
CN109358310B (zh) * 2018-12-03 2024-03-22 烟台东方威思顿电气有限公司 三相四线电能表断零线检测装置及检测方法
CN112051459A (zh) * 2020-08-31 2020-12-08 国网北京市电力公司 一种核相方法及具有双重核相功能的带电显示器
CN112051459B (zh) * 2020-08-31 2024-01-02 国网北京市电力公司 一种核相方法及具有双重核相功能的带电显示器
CN112731216A (zh) * 2020-12-07 2021-04-30 江阴长仪集团有限公司 一种实现相序自动校正的电力监测终端及校正方法
CN113820652A (zh) * 2021-11-18 2021-12-21 青岛鼎信通讯股份有限公司 一种应用于标准电能表的采样相位对齐及校准方法
CN117741520A (zh) * 2023-12-15 2024-03-22 国网江苏省电力有限公司扬州供电分公司 三相三线计量装置电压互感器极性反接的远程判断方法
CN117741520B (zh) * 2023-12-15 2024-05-31 国网江苏省电力有限公司扬州供电分公司 三相三线计量装置电压互感器极性反接的远程判断方法
CN117907925A (zh) * 2024-03-20 2024-04-19 深圳古瑞瓦特新能源有限公司 一种电表相序自适应方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN106018985A (zh) 2016-10-12
CN106018985B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2017197823A1 (zh) 三相电能表电压逆相序的检测方法及其系统
CN101788615B (zh) 一种简易三相工频交流电相序测量的方法及检测设备
US9766278B2 (en) Three phase power quality measurement using asynchronous, isolated single phase circuits
US20030151415A1 (en) Self-calibrating electricity meter
US20150073734A1 (en) Method and Device for Measuring Electrical Quantities
WO2012167747A1 (zh) 交流电物理量测量和数据采集装置和方法
US10088546B2 (en) Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
CN203037775U (zh) 一种计量电流互感器故障检测装置
CN107478881B (zh) 三相电能表旁路电流检测方法及其系统
CN201788226U (zh) 射频功率相位检测装置
JP4564863B2 (ja) 電源ライン測定装置
CN102364356B (zh) 电能表外加负荷现场反窃电侦测仪及检测方法
KR101039037B1 (ko) 전류파형 유사도 측정에 의한 활선 변류비 오차 검사 방법
JP2011021986A (ja) 電力・電力量計
CN210323195U (zh) 一种相角测量系统
JP2002286769A (ja) 電力計測器
CN205301570U (zh) 一种智能化电能表现场校验仪
CN204287355U (zh) 智能变电站合并单元额定延时检测系统
CN110988466A (zh) 一种基于双模的高精度频率计
Tangsunantham et al. Experimental performance analysis of current bypass anti-tampering in smart energy meters
CN201387442Y (zh) 一种数字双钳相位伏安表
CN201434890Y (zh) 多功能电表
EP2802887B1 (en) Three phase power quality measurement using asynchronous, isolated single phase circuits
Wang et al. Measuring energy meter of three-phase electricity-stealing defense system
CN208399577U (zh) 一种新型防强磁窃电装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902203

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902203

Country of ref document: EP

Kind code of ref document: A1