WO2017195576A1 - Piston-type compressor - Google Patents

Piston-type compressor Download PDF

Info

Publication number
WO2017195576A1
WO2017195576A1 PCT/JP2017/016080 JP2017016080W WO2017195576A1 WO 2017195576 A1 WO2017195576 A1 WO 2017195576A1 JP 2017016080 W JP2017016080 W JP 2017016080W WO 2017195576 A1 WO2017195576 A1 WO 2017195576A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
compressor
drive shaft
support plate
pump chamber
Prior art date
Application number
PCT/JP2017/016080
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 真島
心吾 星崎
Original Assignee
株式会社コガネイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コガネイ filed Critical 株式会社コガネイ
Publication of WO2017195576A1 publication Critical patent/WO2017195576A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids

Definitions

  • the present invention relates to a piston type compressor for compressing a gas such as air by reciprocating movement of a piston.
  • Compressors used to compress gas such as air include a piston type in which the pump chamber is expanded and contracted by reciprocating movement of the piston.
  • Patent Document 1 describes a piston type compressor having four pistons. The compressor has a piston case, and four cylinder holes into which the pistons are incorporated are provided in the piston case, and the four cylinder holes are arranged in a cross shape on the same plane. A cam member disposed at the center of the four cylinder holes is provided on the drive shaft. A main shaft of an electric motor for rotationally driving the drive shaft is connected coaxially with the drive shaft.
  • Patent Document 2 describes a reciprocating compressor including four cylinders each provided with a piston. In this reciprocating compressor, four pistons are provided in a cylinder while being shifted in the axial direction on an eccentric shaft fixed to a motor shaft.
  • Patent Document 3 describes a pump mechanism including two pumps.
  • the two pumps are mounted on the surface side of the base so that the pump rotating shaft is parallel to the base, and an electric motor is mounted on the back side of the base.
  • a belt is stretched between a drive wheel attached to the drive shaft of the electric motor and a pulley attached to each pump shaft, and the belt passes through a through hole provided in the base.
  • Patent Document 4 describes a reciprocating compressor including a compressor body attached to an air tank. In this reciprocating compressor, the compressor body and the electric motor are attached to the air tank in parallel with each other, a drive pulley attached to the drive shaft of the motor, and a driven pulley attached to the crankshaft of the compressor body A belt is stretched around.
  • Patent Document 5 describes a belt guard set for a belt-driven reciprocating compressor.
  • the compressor body and the electric motor are attached to a base or the like in parallel with each other.
  • a V-belt is stretched between a flywheel pulley attached to the drive shaft of the reciprocating compressor and a motor pulley, and a belt guard set covering each pulley and V-belt is divided into modules. And resin molding.
  • An object of the present invention is to reduce the size and thickness of a piston type compressor.
  • a piston type compressor of the present invention drives a cylinder block provided with a plurality of pistons for expanding and contracting a pump chamber, an adapter provided with an intake communication hole and a discharge communication hole communicating with the pump chamber, and the piston.
  • a piston-type compressor including a compressor assembly having a drive shaft, wherein the main shaft of the electric motor that drives the drive shaft and the drive shaft penetrate, and the compressor assembly and the electric motor are mounted on the surface side A support plate, a power transmission mechanism that is disposed on the back side of the support plate and transmits the rotation of the main shaft to the drive shaft, and is attached to the back surface of the support plate and communicates with the discharge communication hole.
  • a flow path member for guiding the gas discharged from the pump chamber to the outside.
  • the compressor assembly and the electric motor are mounted on the surface side of the support plate, and the power transmission mechanism for transmitting the rotation of the main shaft of the electric motor to the drive shaft of the compressor assembly is arranged on the back side of the support plate.
  • the thickness dimension of the piston compressor in the direction perpendicular to the plate can be reduced. Thereby, a piston type compressor can be reduced in size and thickness.
  • FIG. 6 is an enlarged sectional view taken along line AA in FIG.
  • FIG. 6 is a sectional view taken along line BB in FIG.
  • FIG. 4 is an enlarged sectional view taken along line CC in FIG. 3.
  • FIG. 9 is a perspective view of the compressor assembly shown in FIG. 8.
  • A) is the D section enlarged front view in FIG. 3
  • B) is a side view of the arrow E direction of (A).
  • FIG. 11A is a cross-sectional view taken along the line HH in FIG. 11B
  • FIG. 11B is a cross-sectional view taken along the line II in FIG.
  • FIG. 15 is a perspective view of FIG. 14. It is a perspective view which shows the 1st surface side of the piston type compressor which is other embodiment. It is a perspective view which shows the 2nd surface side of FIG. It is a front view which shows the 1st surface side of FIG.
  • FIG. 17 is a left side view of FIG. 16.
  • FIG. 21 is a sectional view taken along line KK in FIG. 20. It is the LL sectional view taken on the line in FIG.
  • FIG. 19 is a sectional view taken along line MM in FIG.
  • the piston compressor 10 a has a rectangular support plate 11.
  • the compressor assembly 12 and the electric motor 13 are mounted on the first surface 11 a side of the support plate 11.
  • the electric motor 13 is an outer rotor type, and the main shaft 14 of the electric motor 13 passes through the support plate 11 and protrudes toward the second surface 11b of the support plate 11, and a drive pulley 15 as a drive side rotating body is provided with the main shaft 14. It is fixed to the tip.
  • the drive shaft 16 of the compressor assembly 12 passes through the support plate 11 and protrudes toward the second surface 11b, and a driven pulley 17 as a driven side rotating body is fixed to the tip of the drive shaft 16.
  • the support plate 11 has a first surface 11a on which the compressor assembly 12 and the electric motor 13 are mounted as a front surface and an opposite second surface 11b as a back surface.
  • a timing belt 18 as a power transmission member is stretched between the drive pulley 15 and the driven pulley 17, and the drive shaft 16 is rotationally driven by the electric motor 13 via the timing belt 18.
  • Both the driving pulley 15 and the driven pulley 17 and the timing belt 18 are disposed on the back side of the support plate 11. Both pulleys and the timing belt 18 form a power transmission mechanism 19 for transmitting the rotational torque of the main shaft 14 of the electric motor 13 to the drive shaft 16.
  • the flow path member 20 is attached to the back surface of the support plate 11. As shown in FIG. 4, the flow path member 20 includes a parallel portion 20 a extending along the left and right sides of the support plate 11 so as to surround the driven pulley 17, and one end portion of these parallel portions 20 a.
  • the flow path member 20 includes two parallel portions 20a and one connecting portion 20b.
  • a flow path for guiding the gas discharged from the compressor assembly 12 to the outside is provided in the flow path member 20.
  • the flow path member 20 is formed of a member having a rectangular cross section, and the strength of the support plate 11 is increased by attaching the flow path member 20 to the support plate 11. Thereby, the support plate 11 can be comprised with a thin board
  • the compressor assembly 12 includes a cylinder block 21, and the cylinder block 21 has a hexagonal outer peripheral surface.
  • a cam housing chamber 22 is provided at the center of the cylinder block 21, and a cam member 23 is incorporated into the cam housing chamber 22.
  • the cam member 23 is attached to the drive shaft 16, and the cam member 23 is rotationally driven by the drive shaft 16.
  • the rotation center axis O of the drive shaft 16 is perpendicular to the support plate 11, and the drive shaft 16 is attached to protrude on the back side of the support plate 11.
  • Six cylinder holes 24 are provided in the cylinder block 21 in a direction crossing the cam housing chamber 22.
  • the cylinder holes 24 are provided in the cylinder block 21 at intervals of 60 degrees in the direction along the outer peripheral surface of the cylinder block 21. Of the six cylinder holes 24, two cylinder holes 24 provided coaxially form a pair, and three pairs of cylinder holes 24 are provided in the cylinder block 21.
  • the center axis of the cylinder hole 24 is orthogonal to the rotation center axis O of the drive shaft 16.
  • the inner end of the cylinder hole 24 communicates with the cam housing chamber 22, and the outer end opens on the outer peripheral surface of the cylinder block 21.
  • the cylinder block 21 has six mounting surfaces 25, and the outer end of the cylinder hole 24 is open to the mounting surface 25.
  • the adapter 26 is attached to each mounting surface 25 by a screw member 27.
  • the adapter 26 includes a magnet holder 28 that is in contact with the mounting surface 25 and a flow path plate 29 that is attached to the magnet holder 28.
  • the magnet holder 28 and the flow path plate 29 are each formed of a nonmagnetic material such as resin or aluminum alloy.
  • Pistons 31 are reciprocally mounted in the respective cylinder holes 24, and the cylinder block 21 has six pistons 31.
  • the piston 31 is made of a nonmagnetic material such as resin or aluminum alloy.
  • the top of the piston 31 faces the adapter 26, and the bottom of the piston 31 faces the cam member 23.
  • the pump chamber 32 is defined by the piston 31 and the magnet holder 28 of the adapter 26. When the piston 31 moves toward the adapter 26, the pump chamber 32 contracts, and when the piston 31 moves toward the cam member 23, the pump chamber 32 expands.
  • a piston magnet 33 made of a permanent magnet is embedded in the top of each piston 31.
  • the piston magnet 33 has an opposing surface that is exposed at the top of the piston 31 and faces the adapter 26.
  • An adapter magnet 34 made of a permanent magnet is provided on the magnet holder 28.
  • the adapter magnet 34 constitutes a magnetic force generating member, is embedded in the magnet holder 28, and has a facing surface that is exposed on the inner surface of the magnet holder 28 and faces the exposed surface of the piston magnet 33.
  • the adapter magnet 34 has a rectangular bar shape and is arranged in parallel to the drive shaft 16.
  • the shape of the adapter magnet 34 is not limited to a rectangular bar shape, and may be a cylindrical shape or an ellipse.
  • the facing surface of the adapter magnet 34 has the same polarity as the facing surface of the piston magnet 33.
  • the adapter magnet 34 applies a magnetic force repelling the piston magnet 33 and applies a thrust force in the direction of expanding the pump chamber 32 to the piston 31.
  • the rotating body 35 is rotatably mounted on the bottom of each piston 31.
  • the rotating body 35 is supported by a support pin 36 attached to the piston 31.
  • a ball bearing is used, and it has an inner annular member fixed to the support pin 36 and an outer annular member that is rotatably mounted on the outside via a large number of balls. .
  • the cam surface 37 is provided on the outer peripheral surface of the cam member 23, and the cam surface 37 is in rolling contact with the outer peripheral surface of the rotating body 35. As shown in FIG. 6, the cam surface 37 has two major axis portions with a maximum radius and two minor axis portions with a minimum radius, and has a shape such that the movement trajectory of the piston 31 becomes a sine curve. .
  • the cam member 23 is rotationally driven by the drive shaft 16
  • the piston 31 reciprocates between a position closest to the adapter 26 and a position farthest away from the adapter 26.
  • the drive shaft 16 is rotatably supported by a bearing 38 attached to the cylinder block 21.
  • FIG. 6 two pistons 31 (a) and 31 (b), which are marked with parentheses a and b, are paired, and the rotating bodies of the two pistons 31 (a) and 31 (b) A state in which 35 is in rolling contact with the long diameter portion of the cam surface 37 is shown. At this time, the two pistons 31 (a) and 31 (b) are closest to the adapter 26. When the piston 31 moves toward the closest position, the two pistons 31 (a) and 31 (b) move toward the adapter 26 against the repulsive force between the piston magnet 33 and the adapter magnet 34. The pump chamber 32 is contracted.
  • the paired pistons 31 move toward the outside at the same time or two at the same time toward the inside at the same time, the centers of gravity of the two pistons 31 that form a pair maintain a fixed position without being eccentric. Therefore, the dynamic balance of the six pistons 31 is increased, and it becomes possible to operate at high speed while suppressing the occurrence of vibration.
  • each piston 31 can be driven by one cam member 23. Further, each piston 31 reciprocates in the direction perpendicular to the drive shaft 16. Accordingly, the dimension of the cylinder block 21 in the direction of the drive shaft 16 can be reduced. Thus, since a desired pump chamber volume can be obtained by the small cylinder block 21, the compressor 10a can be miniaturized.
  • the electric motor 13 is an outer rotor type, and the thickness dimension of the electric motor 13 in the axial direction of the main shaft 14 is close to the thickness dimension of the cylinder block 21 as shown in FIG.
  • the compressor assembly 12 is disposed on the outer side in the radial direction of the electric motor 13 and mounted on the surface side of the support plate 11, and the drive shaft 16 and the main shaft 14 are disposed in parallel to penetrate the support plate 11.
  • the power transmission mechanism 19 is disposed on the back side of the support plate 11. Therefore, unlike the embodiment in which the drive shaft 16 and the main shaft 14 are arranged coaxially, in the present invention, since the axial dimension of the drive shaft 16 of the compressor 10a, that is, the thickness dimension is small, the compressor 10a is reduced in size and thickness. Can be
  • the diameters of the drive pulley 15 and the driven pulley 17 different, it is possible to assemble various types of compressors 10a having different rotational speeds and rotational torques of the drive shaft 16 without changing the motor rotational speed.
  • a V belt or a flat belt can be used, or a chain can be used.
  • a sprocket is used as a rotating body instead of the driving pulley 15 and the driven pulley 17.
  • FIG. 10 (A) is an enlarged front view of the D portion in FIG.
  • FIG. 10B is a side view showing the outer surface of the adapter 26 viewed from the direction of arrow E in FIG.
  • FIG. 11A is a cross-sectional view taken along line FF in FIG. 10B and shows a cross section of the adapter 26.
  • FIG. 11B is a cross-sectional view taken along the line GG in FIG. 11A and shows the inner surface of the magnet holder 28.
  • 12A is a cross-sectional view taken along the line HH in FIG. 11B
  • FIG. 12B is a cross-sectional view taken along the line II in FIG.
  • the adapter 26 (a) in which the symbol a is shown in parentheses faces the piston 31 (a) shown in FIGS. 6 and 8, and the adapter 26 ( b) faces the piston 31 (b).
  • an intake hole 41 and a discharge hole 42 communicating with the pump chamber 32 are provided in the magnet holder 28, respectively.
  • the intake hole 41 communicates with an intake communication hole 43 provided in the flow path plate 29, and the discharge hole 42 communicates with a discharge communication hole 44 provided in the flow path plate 29.
  • the intake communication hole 43 and the discharge communication hole 44 open on the attachment surface 45 of the flow path plate 29 as shown in FIG.
  • the attachment surface 45 is attached in close contact with the surface of the support plate 11.
  • the intake communication hole 43 communicates with the outside air through an intake port 46 provided in the support plate 11.
  • the intake communication hole 43 communicating with the pump chamber 32 of the two pistons 31 (a) and 31 (b) forming the pair shown in FIG. 6 is connected to the flow path member 20 by an intake port 46 provided in the flow path member 20. It penetrates and communicates with the outside.
  • the pump chamber 32 of the other piston 31 communicates directly with the outside through an intake port 46 provided in the support plate 11.
  • the discharge communication hole 44 penetrates the support plate 11 and communicates with the discharge hole 47 provided in the flow path member 20 as shown in FIG.
  • Each discharge hole 47 communicates with a discharge flow path 48 provided in the flow path member 20, and the gas discharged from all the pump chambers 32 is supplied to the outside from a discharge port 49 of the discharge flow path 48.
  • the A joint 50 communicating with the discharge port 49 is attached to the flow path member 20, and a pipe made of a hose or pipe (not shown) is attached to the joint 50.
  • the gas discharged from each pump chamber 32 is supplied to the supply target member by piping.
  • the gas discharged from all the pump chambers 32 is collected in one flow path member 20 and guided to the outside, it is not necessary to provide a plurality of pipes in the cylinder block 21, and the compressor 10a can be reduced in size.
  • a check valve 51 for intake is mounted in the intake hole 41
  • a check valve 52 for discharge is mounted in the discharge hole 42.
  • each check valve 51, 52 has a base 53 attached to the magnet holder 28 and an elastic deformation portion 54 having a larger diameter than that of the base 53.
  • the intake check valve 51 opens the intake hole 41 when the pump chamber 32 expands.
  • the check valve 51 closes the intake hole 41 when the pump chamber 32 contracts.
  • the discharge check valve 52 closes the discharge hole 42 when the pump chamber 32 expands.
  • the discharge check valve 52 opens the discharge hole 42. Thereby, the gas discharged from all the pump chambers 32 is discharged from the discharge port 49 to the outside.
  • the intake port 46 opens to the outside on the back side of the support plate 11, but an intake port that communicates with the intake hole 41 may be provided in the flow path plate 29. In that case, outside air is sucked into the pump chamber 32 from the surface side of the support plate 11.
  • FIG. 13 is a front view showing a modified compressor assembly 12a
  • FIG. 14 is a cross-sectional view taken along line JJ in FIG. 13
  • FIG. 15 is a perspective view of FIG.
  • the compressor assembly 12a is mounted on the surface side of the support plate 11 in the same manner as the compressor assembly 12 described above, and the electric motor 13 is disposed on the surface side of the support plate 11 with the compressor assembly 12a positioned radially outward of the compressor assembly 12a. Installed.
  • the rotational torque of the electric motor 13 is transmitted to the drive shaft 16 by the power transmission mechanism 19 disposed on the back side of the support plate 11 as in the case described above.
  • the structure of the cylinder block 21 and the piston 31 incorporated therein is the same as that of the compressor assembly 12 shown in FIGS.
  • the compressor assembly 12 a has a cylinder block 21 in which six cylinder holes 24 are provided in the same manner as the compressor assembly 12 described above.
  • the adapter 26a is mounted on the six mounting surfaces 25, and a solenoid 55 as a magnetic force generating member is provided on the adapter 26a.
  • the solenoid 55 has a bobbin 57 in which an iron core 56 is incorporated, and a coil 58 is wound around the outside of the bobbin 57.
  • the connection terminal 59 of the coil 58 protrudes to the outside of the adapter 26 a, and power is supplied to the coil 58 from the outside via a power supply plug (not shown) connected to the connection terminal 59.
  • the adapter 26 described above is formed by the magnet holder 28 and the flow path plate 29, whereas the adapter 26a has a block material into which the solenoid 55 is incorporated.
  • the block member is provided with the intake holes 41 and the discharge holes 42 shown in FIGS. 10 to 12. Air is supplied from the outside to the pump chamber 32, and the compressed gas flows into the flow path member 20. It is discharged from the discharge port 49 to the outside.
  • 16 to 23 show a piston type compressor 10b according to another embodiment.
  • the compressor 10b has first and second compressor assemblies 12b, whereas the above-described compressor 10a has a single compressor assembly 12.
  • Both compressor assemblies 12 b are mounted on the surface of the support plate 11 and are driven by an electric motor 13 mounted on the surface of the support plate 11.
  • a driving pulley 15 as a driving side rotating body is mounted on the main shaft 14 of the electric motor 13, and a driven pulley 17 as a driven side rotating body is mounted on both driving shafts 16.
  • the timing belt 18 as a power transmission member is stretched between a driving pulley 15 on the driving side and two driven pulleys 17 on the driven side.
  • the driving pulley 15, the driven pulley 17, and the timing belt 18 form a power transmission mechanism 19. Composed.
  • the power transmission mechanism 19 is disposed on the back side of the support plate 11, and the flow path member 20 is mounted on the back surface of the support plate 11.
  • the compressor 10b shown in FIGS. 16 to 23 the duplicate description of the same members as those constituting the compressor 10a described above is omitted.
  • the two compressor assemblies 12b have the same structure.
  • a cylinder hole 24 communicating with the cam housing chamber 22 is provided in each cylinder block 21, and the cylinder hole 24 is provided in the cylinder block 21 every 120 degrees in a direction along the outer peripheral surface of the cylinder block 21.
  • the cylinder hole 24 communicates with the cam housing chamber 22 at the inner end and opens to the outer peripheral surface of the cylinder block 21 at the outer end.
  • One piston 31 in both compressor assemblies 12b is arranged in a straight line as indicated by reference numerals 31 (a) and 31 (b).
  • the cylinder block 21 has three mounting surfaces 25, and the outer end of the cylinder hole 24 is open to the mounting surface 25.
  • Adapters 26 are mounted on the respective mounting surfaces 25.
  • Each adapter 26 has the same structure as that shown in FIGS. 10 to 12, and the piston 31 has the same structure.
  • an intake port 46 is provided in the support plate 11, and each intake port 46 communicates with the intake hole 41 via an intake communication hole 43 provided in the adapter 26.
  • Discharge holes 47 are provided in the flow path member 20, and the discharge holes 47 communicate with the discharge holes 42 via discharge communication holes 44 provided in the adapter 26, and discharge flow paths provided in the flow path member 20. 48.
  • a recessed groove 61 is provided between the mounting surfaces 25 adjacent in the direction along the outer peripheral surface, and the heat dissipation of the cylinder block 21 is enhanced.
  • the respective cam members 23 are rotationally driven by both the drive shafts 16 via the timing belt 18.
  • the piston 31 contracts the pump chamber 32 against the repulsive force of the adapter magnet 34 and the piston magnet 33.
  • the gas in the pump chamber 32 passes through the check valve 52 and flows into the discharge flow path 48 of the flow path member 20 through the flow path in the adapter 26. All the gas discharged from the six pump chambers 32 flows into the discharge flow path 48.
  • the gas flowing into the discharge channel 48 is supplied from the discharge port 49 to an external supply target member.
  • an adapter magnet 34 is used as a magnetic force generating member.
  • the compressor assembly is configured such that the magnetic force generating member is a solenoid.
  • piston compressors 10a and 10b it is used to compress air and supply it to the supplied member, but to compress other gas such as nitrogen gas and supply it to the supplied member.
  • Each compressor can be applied.
  • the compressor of the present invention is applied to a fluid control system for supplying compression equipment to fluid equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A piston-type compressor (10a) includes a compressor assembly (12) comprising: a cylinder block (21) provided with a plurality of pistons; an adapter (26) provided with an air intake communication hole and a discharge communication hole that communicate with a pump chamber; and a drive shaft (16) that drives the pistons. In the compressor assembly (12), a main shaft (14) and a drive shaft (16) of an electric motor (13) pass through a support plate (11) and are mounted on the front side of the support plate (11). A power transmission mechanism (19) that transmits the rotation of the main shaft (14) to the drive shaft (16) is disposed on the back side of the support plate (11), and a channel member (20) for guiding air discharged from the pump chamber to the outside is attached to the back of the support plate (11).

Description

ピストン式コンプレッサPiston compressor
 本発明は、ピストンの往復動により空気等の気体を圧縮するためのピストン式コンプレッサに関する。 The present invention relates to a piston type compressor for compressing a gas such as air by reciprocating movement of a piston.
 空気等の気体を圧縮するために使用されるコンプレッサには、ピストンの往復動によりポンプ室を膨張収縮させるようにしたピストン式がある。特許文献1には、4つのピストンを備えたピストン式コンプレッサが記載されている。このコンプレッサはピストンケースを有し、それぞれピストンが組み込まれる4つのシリンダ孔がピストンケース内に設けられ、4つのシリンダ孔は十字形に同一平面上に配置される。4つのシリンダ孔の中心部に配置されたカム部材が駆動軸に設けられている。駆動軸を回転駆動するための電動モータの主軸が駆動軸と同軸に連結されている。特許文献2には、それぞれピストンが設けられた4つのシリンダを備えた往復動圧縮機が記載されている。この往復動圧縮機においては、モータ軸に固定された偏心軸に4つのピストンが軸方向にずらしてシリンダに設けられている。 Compressors used to compress gas such as air include a piston type in which the pump chamber is expanded and contracted by reciprocating movement of the piston. Patent Document 1 describes a piston type compressor having four pistons. The compressor has a piston case, and four cylinder holes into which the pistons are incorporated are provided in the piston case, and the four cylinder holes are arranged in a cross shape on the same plane. A cam member disposed at the center of the four cylinder holes is provided on the drive shaft. A main shaft of an electric motor for rotationally driving the drive shaft is connected coaxially with the drive shaft. Patent Document 2 describes a reciprocating compressor including four cylinders each provided with a piston. In this reciprocating compressor, four pistons are provided in a cylinder while being shifted in the axial direction on an eccentric shaft fixed to a motor shaft.
 特許文献3には2台のポンプを備えたポンプ機構が記載されている。このポンプ機構においては、ポンプ回転軸がベースに平行となるように、2台のポンプはベースの表面側に取り付けられ、ベースの背面側に電動モータが搭載されている。電動モータの駆動軸に取り付けられた駆動輪と、それぞれのポンプ軸に取り付けられたプーリとにはベルトが掛け渡されており、ベルトはベースに設けられた貫通孔を貫いている。特許文献4には、エアタンクに取り付けられる圧縮機本体を備えた往復動圧縮機が記載されている。この往復動圧縮機においては、圧縮機本体と電動モータが相互に平行となってエアタンクに取り付けられ、モータの駆動軸に取り付けられた駆動プーリと、圧縮機本体のクランク軸に取り付けられた従動プーリとにはベルトが掛け渡されている。 Patent Document 3 describes a pump mechanism including two pumps. In this pump mechanism, the two pumps are mounted on the surface side of the base so that the pump rotating shaft is parallel to the base, and an electric motor is mounted on the back side of the base. A belt is stretched between a drive wheel attached to the drive shaft of the electric motor and a pulley attached to each pump shaft, and the belt passes through a through hole provided in the base. Patent Document 4 describes a reciprocating compressor including a compressor body attached to an air tank. In this reciprocating compressor, the compressor body and the electric motor are attached to the air tank in parallel with each other, a drive pulley attached to the drive shaft of the motor, and a driven pulley attached to the crankshaft of the compressor body A belt is stretched around.
 特許文献5には、ベルト駆動形往復圧縮機のベルトガードセットが記載されている。この圧縮機本体と電動モータとは相互に平行にベース等に取り付けられている。この圧縮機においては、往復動圧縮機の駆動軸に取り付けられるフライホイールプーリと、モータプーリとにはVベルトが掛け渡されており、それぞれのプーリとVベルトとを覆うベルトガードセットがそれぞれ分割モジュール化して樹脂成形される。 Patent Document 5 describes a belt guard set for a belt-driven reciprocating compressor. The compressor body and the electric motor are attached to a base or the like in parallel with each other. In this compressor, a V-belt is stretched between a flywheel pulley attached to the drive shaft of the reciprocating compressor and a motor pulley, and a belt guard set covering each pulley and V-belt is divided into modules. And resin molding.
特開2016-23555号公報JP 2016-23555 A 特開2009-185789号公報JP 2009-185789 A 特開平10-288159号公報Japanese Patent Laid-Open No. 10-288159 特開2007-92680号公報JP 2007-92680 A 特開平8-270565号公報JP-A-8-270565
 特許文献1に記載されるように、コンプレッサの駆動軸とこれを回転駆動するための電動モータの駆動軸とを同軸に配置すると、電動モータを含めたコンプレッサの軸方向寸法を小さくすることができない。また、特許文献2に記載されるように、4つのピストンを偏心軸に軸方向にずらして配置すると、モータを含めた往復動圧縮機の軸方向寸法を小さくすることができない。さらに、特許文献3に記載されるように、ベースの表面側に2台のポンプをポンプ回転軸がベースに平行となるように取り付け、ベースの背面側に電動モータを搭載するようにしたポンプ機構においても、ポンプ機構の上下方向の寸法を小さくすることができない。 As described in Patent Document 1, if the drive shaft of the compressor and the drive shaft of the electric motor for rotationally driving the compressor are arranged coaxially, the axial dimension of the compressor including the electric motor cannot be reduced. . Further, as described in Patent Document 2, if the four pistons are arranged offset in the axial direction with respect to the eccentric shaft, the axial dimension of the reciprocating compressor including the motor cannot be reduced. Further, as described in Patent Document 3, two pumps are mounted on the surface side of the base so that the pump rotating shaft is parallel to the base, and an electric motor is mounted on the back side of the base. However, the vertical dimension of the pump mechanism cannot be reduced.
 特許文献4,5に記載された往復動圧縮機においても、電動モータと圧縮機本体とをエアタンク等の部材に取り付ける必要があり、電動モータを含めた圧縮機本体を小型化することができない。しかも、圧縮機本体に複数のシリンダを設けると、それぞれのシリンダに空気を供給する給気配管と、シリンダから吐出される吐出配管とを圧縮機本体の周囲に這い回す必要があり、往復動圧縮機の構造が複雑となる。さらに、それぞれの配管が圧縮機本体の駆動時に振動源となり、往復動圧縮機からの振動騒音が大きくなる。 Also in the reciprocating compressors described in Patent Documents 4 and 5, it is necessary to attach the electric motor and the compressor main body to members such as an air tank, and the compressor main body including the electric motor cannot be reduced in size. In addition, when a plurality of cylinders are provided in the compressor body, it is necessary to circulate the air supply piping for supplying air to each cylinder and the discharge piping discharged from the cylinders around the compressor body. The structure of the machine becomes complicated. Furthermore, each pipe becomes a vibration source when the compressor body is driven, and vibration noise from the reciprocating compressor increases.
 本発明の目的は、ピストン式コンプレッサの小型化および薄型化を図ることにある。 An object of the present invention is to reduce the size and thickness of a piston type compressor.
 本発明のピストン式コンプレッサは、ポンプ室を膨張収縮する複数のピストンが設けられたシリンダブロックと、前記ポンプ室に連通する吸気連通孔および吐出連通孔が設けられたアダプタと、前記ピストンを駆動する駆動軸とを有するコンプレッサ組立体を備えたピストン式コンプレッサであって、前記駆動軸を駆動する電動モータの主軸と前記駆動軸とが貫通し、前記コンプレッサ組立体および前記電動モータが表面側に装着された支持プレートと、前記支持プレートの背面側に配置され、前記主軸の回転を前記駆動軸に伝達する動力伝達機構と、前記支持プレートの背面に取り付けられ、前記吐出連通孔に連通しそれぞれの前記ポンプ室から吐出された気体を外部に案内する流路部材と、を有する。 A piston type compressor of the present invention drives a cylinder block provided with a plurality of pistons for expanding and contracting a pump chamber, an adapter provided with an intake communication hole and a discharge communication hole communicating with the pump chamber, and the piston. A piston-type compressor including a compressor assembly having a drive shaft, wherein the main shaft of the electric motor that drives the drive shaft and the drive shaft penetrate, and the compressor assembly and the electric motor are mounted on the surface side A support plate, a power transmission mechanism that is disposed on the back side of the support plate and transmits the rotation of the main shaft to the drive shaft, and is attached to the back surface of the support plate and communicates with the discharge communication hole. A flow path member for guiding the gas discharged from the pump chamber to the outside.
 コンプレッサ組立体と電動モータが支持プレートの表面側に装着され、電動モータの主軸の回転をコンプレッサ組立体の駆動軸に伝達するための動力伝達機構は支持プレートの背面側に配置されるので、支持プレートに垂直な方向におけるピストン式コンプレッサの厚み寸法を小さくすることができる。これにより、ピストン式コンプレッサを小型化および薄型化することができる。 The compressor assembly and the electric motor are mounted on the surface side of the support plate, and the power transmission mechanism for transmitting the rotation of the main shaft of the electric motor to the drive shaft of the compressor assembly is arranged on the back side of the support plate. The thickness dimension of the piston compressor in the direction perpendicular to the plate can be reduced. Thereby, a piston type compressor can be reduced in size and thickness.
一実施の形態であるピストン式コンプレッサの第1の面側を示す斜視図である。It is a perspective view which shows the 1st surface side of the piston type compressor which is one Embodiment. 図1の第2の面側を示す斜視図である。It is a perspective view which shows the 2nd surface side of FIG. 図1の第1の面側を示す正面図である。It is a front view which shows the 1st surface side of FIG. 図2の第2の面側を示す正面図である。It is a front view which shows the 2nd surface side of FIG. 図1の左側面図である。It is a left view of FIG. 図5におけるA-A線拡大断面図である。FIG. 6 is an enlarged sectional view taken along line AA in FIG. 図5におけるB-B線断面図である。FIG. 6 is a sectional view taken along line BB in FIG. 図3におけるC-C線拡大断面図である。FIG. 4 is an enlarged sectional view taken along line CC in FIG. 3. 図8に示されたコンプレッサ組立体の斜視図である。FIG. 9 is a perspective view of the compressor assembly shown in FIG. 8. (A)は図3におけるD部拡大正面図であり、(B)は(A)の矢印E方向の側面図である。(A) is the D section enlarged front view in FIG. 3, (B) is a side view of the arrow E direction of (A). (A)は図10(B)におけるF-F線断面図であり、(B)は(A)におけるG-G線断面図である。(A) is a cross-sectional view taken along line FF in FIG. 10 (B), and (B) is a cross-sectional view taken along line GG in (A). (A)は図11(B)における矢印H-H線断面図であり、(B)は(A)におけるI-I線断面図である。FIG. 11A is a cross-sectional view taken along the line HH in FIG. 11B, and FIG. 11B is a cross-sectional view taken along the line II in FIG. コンプレッサ組立体の変形例を示す正面図である。It is a front view which shows the modification of a compressor assembly. 図13におけるJ-J線断面図である。It is the JJ sectional view taken on the line in FIG. 図14の斜視図である。FIG. 15 is a perspective view of FIG. 14. 他の実施の形態であるピストン式コンプレッサの第1の面側を示す斜視図である。It is a perspective view which shows the 1st surface side of the piston type compressor which is other embodiment. 図16の第2の面側を示す斜視図である。It is a perspective view which shows the 2nd surface side of FIG. 図16の第1の面側を示す正面図である。It is a front view which shows the 1st surface side of FIG. 図17の第2の面側を示す正面図である。It is a front view which shows the 2nd surface side of FIG. 図16の左側面図である。FIG. 17 is a left side view of FIG. 16. 図20におけるK-K線断面図である。FIG. 21 is a sectional view taken along line KK in FIG. 20. 図20におけるL-L線断面図である。It is the LL sectional view taken on the line in FIG. 図18におけるM-M線断面図である。FIG. 19 is a sectional view taken along line MM in FIG.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。それぞれの図においては、共通の機能を有する部材には、同一の符号が付されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same code | symbol is attached | subjected to the member which has a common function.
 図1~図5に示されるように、ピストン式コンプレッサ10aは長方形の支持プレート11を有する。コンプレッサ組立体12と電動モータ13が支持プレート11の第1の面11aの側に装着される。電動モータ13は、アウターロータ型であり、電動モータ13の主軸14は支持プレート11を貫通して支持プレート11の第2の面11b側に突出し、駆動側回転体としての駆動プーリ15が主軸14の先端部に固定される。コンプレッサ組立体12の駆動軸16が支持プレート11を貫通して第2の面11b側に突出し、従動側回転体としての従動プーリ17が駆動軸16の先端に固定される。明細書において、支持プレート11は、コンプレッサ組立体12と電動モータ13が装着される第1の面11aを表面とし、反対側の第2の面11bを背面とする。 As shown in FIGS. 1 to 5, the piston compressor 10 a has a rectangular support plate 11. The compressor assembly 12 and the electric motor 13 are mounted on the first surface 11 a side of the support plate 11. The electric motor 13 is an outer rotor type, and the main shaft 14 of the electric motor 13 passes through the support plate 11 and protrudes toward the second surface 11b of the support plate 11, and a drive pulley 15 as a drive side rotating body is provided with the main shaft 14. It is fixed to the tip. The drive shaft 16 of the compressor assembly 12 passes through the support plate 11 and protrudes toward the second surface 11b, and a driven pulley 17 as a driven side rotating body is fixed to the tip of the drive shaft 16. In the specification, the support plate 11 has a first surface 11a on which the compressor assembly 12 and the electric motor 13 are mounted as a front surface and an opposite second surface 11b as a back surface.
 動力伝達部材としてのタイミングベルト18が駆動プーリ15と従動プーリ17とに掛け渡され、タイミングベルト18を介して電動モータ13により駆動軸16が回転駆動される。駆動プーリ15および従動プーリ17の両方のプーリとタイミングベルト18は、支持プレート11の背面側に配置される。両方のプーリと、タイミングベルト18とにより、電動モータ13の主軸14の回転トルクを駆動軸16に伝達するための動力伝達機構19が形成される。流路部材20が支持プレート11の背面に取り付けられる。流路部材20は、図4に示されるように、従動プーリ17を囲むように支持プレート11の左右両側辺に沿って延在する平行部20aと、これらの平行部20aの一端部に一体となった連結部20bとを有している。流路部材20は、2つの平行部20aと1つの連結部20bとによって構成される。コンプレッサ組立体12から吐出された気体を外部に案内するための流路が、流路部材20に設けられている。流路部材20は横断面が四角形の部材により形成されており、流路部材20を支持プレート11に取り付けることにより、支持プレート11の強度が高められる。これにより、支持プレート11を薄い板材で構成することができる。 A timing belt 18 as a power transmission member is stretched between the drive pulley 15 and the driven pulley 17, and the drive shaft 16 is rotationally driven by the electric motor 13 via the timing belt 18. Both the driving pulley 15 and the driven pulley 17 and the timing belt 18 are disposed on the back side of the support plate 11. Both pulleys and the timing belt 18 form a power transmission mechanism 19 for transmitting the rotational torque of the main shaft 14 of the electric motor 13 to the drive shaft 16. The flow path member 20 is attached to the back surface of the support plate 11. As shown in FIG. 4, the flow path member 20 includes a parallel portion 20 a extending along the left and right sides of the support plate 11 so as to surround the driven pulley 17, and one end portion of these parallel portions 20 a. And a connecting portion 20b. The flow path member 20 includes two parallel portions 20a and one connecting portion 20b. A flow path for guiding the gas discharged from the compressor assembly 12 to the outside is provided in the flow path member 20. The flow path member 20 is formed of a member having a rectangular cross section, and the strength of the support plate 11 is increased by attaching the flow path member 20 to the support plate 11. Thereby, the support plate 11 can be comprised with a thin board | plate material.
 図6および図8に示されるように、コンプレッサ組立体12はシリンダブロック21を備えており、シリンダブロック21は外周面が六角形となっている。カム収容室22がシリンダブロック21の中央部に設けられ、カム部材23がカム収容室22内に組み込まれる。カム部材23は駆動軸16に取り付けられ、カム部材23は駆動軸16により回転駆動される。図8に示されるように、駆動軸16の回転中心軸Oは、支持プレート11に対して垂直であり、駆動軸16は、支持プレート11の背面側に突出して取り付けられる。6つのシリンダ孔24が、シリンダブロック21にカム収容室22を横切る方向に設けられている。シリンダ孔24は、シリンダブロック21の外周面に沿う方向に60度置きに、シリンダブロック21に設けられている。6つのシリンダ孔24のうち、同軸状に設けられる2つのシリンダ孔24は対となっており、3対のシリンダ孔24がシリンダブロック21に設けられている。シリンダ孔24の中心軸は、駆動軸16の回転中心軸Oに対して直交する。シリンダ孔24の内方端がカム収容室22に連通し、外方端がシリンダブロック21の外周面に開口する。 As shown in FIGS. 6 and 8, the compressor assembly 12 includes a cylinder block 21, and the cylinder block 21 has a hexagonal outer peripheral surface. A cam housing chamber 22 is provided at the center of the cylinder block 21, and a cam member 23 is incorporated into the cam housing chamber 22. The cam member 23 is attached to the drive shaft 16, and the cam member 23 is rotationally driven by the drive shaft 16. As shown in FIG. 8, the rotation center axis O of the drive shaft 16 is perpendicular to the support plate 11, and the drive shaft 16 is attached to protrude on the back side of the support plate 11. Six cylinder holes 24 are provided in the cylinder block 21 in a direction crossing the cam housing chamber 22. The cylinder holes 24 are provided in the cylinder block 21 at intervals of 60 degrees in the direction along the outer peripheral surface of the cylinder block 21. Of the six cylinder holes 24, two cylinder holes 24 provided coaxially form a pair, and three pairs of cylinder holes 24 are provided in the cylinder block 21. The center axis of the cylinder hole 24 is orthogonal to the rotation center axis O of the drive shaft 16. The inner end of the cylinder hole 24 communicates with the cam housing chamber 22, and the outer end opens on the outer peripheral surface of the cylinder block 21.
 シリンダブロック21は6つの装着面25を有し、シリンダ孔24の外方端は装着面25に開口している。アダプタ26がそれぞれの装着面25にねじ部材27により取り付けられる。アダプタ26は、装着面25に当接される磁石ホルダ28と、磁石ホルダ28に取り付けられる流路プレート29とを有している。磁石ホルダ28と流路プレート29は、それぞれ樹脂やアルミニウム合金等の非磁性材料により形成される。 The cylinder block 21 has six mounting surfaces 25, and the outer end of the cylinder hole 24 is open to the mounting surface 25. The adapter 26 is attached to each mounting surface 25 by a screw member 27. The adapter 26 includes a magnet holder 28 that is in contact with the mounting surface 25 and a flow path plate 29 that is attached to the magnet holder 28. The magnet holder 28 and the flow path plate 29 are each formed of a nonmagnetic material such as resin or aluminum alloy.
 ピストン31がそれぞれのシリンダ孔24に往復動自在に装着され、シリンダブロック21は6つのピストン31を有している。ピストン31は、樹脂やアルミニウム合金等の非磁性材料により形成される。ピストン31の頂部はアダプタ26に対向し、ピストン31の底部はカム部材23に対向する。ポンプ室32がピストン31とアダプタ26の磁石ホルダ28とにより区画される。ピストン31がアダプタ26に向けて移動するとポンプ室32は収縮し、ピストン31がカム部材23に向けて移動するとポンプ室32は膨張する。6つのピストン31のうち、同軸状に配置される2つのピストン31は対となっている。 Pistons 31 are reciprocally mounted in the respective cylinder holes 24, and the cylinder block 21 has six pistons 31. The piston 31 is made of a nonmagnetic material such as resin or aluminum alloy. The top of the piston 31 faces the adapter 26, and the bottom of the piston 31 faces the cam member 23. The pump chamber 32 is defined by the piston 31 and the magnet holder 28 of the adapter 26. When the piston 31 moves toward the adapter 26, the pump chamber 32 contracts, and when the piston 31 moves toward the cam member 23, the pump chamber 32 expands. Of the six pistons 31, two pistons 31 arranged coaxially form a pair.
 永久磁石からなるピストン磁石33がそれぞれのピストン31の頂部に埋め込まれている。ピストン磁石33は、ピストン31の頂部に露出しアダプタ26に対向する対向面を有している。永久磁石からなるアダプタ磁石34が磁石ホルダ28に設けられている。アダプタ磁石34は、磁力発生部材を構成しており、磁石ホルダ28に埋め込まれ、磁石ホルダ28の内面に露出してピストン磁石33の露出面に対向する対向面を有している。アダプタ磁石34は、図6および図8に示されるように、長方形の棒状となっており、駆動軸16に平行に配置される。アダプタ磁石34の形状は、長方形の棒状に限られず、円柱状または楕円でもよい。 A piston magnet 33 made of a permanent magnet is embedded in the top of each piston 31. The piston magnet 33 has an opposing surface that is exposed at the top of the piston 31 and faces the adapter 26. An adapter magnet 34 made of a permanent magnet is provided on the magnet holder 28. The adapter magnet 34 constitutes a magnetic force generating member, is embedded in the magnet holder 28, and has a facing surface that is exposed on the inner surface of the magnet holder 28 and faces the exposed surface of the piston magnet 33. As shown in FIGS. 6 and 8, the adapter magnet 34 has a rectangular bar shape and is arranged in parallel to the drive shaft 16. The shape of the adapter magnet 34 is not limited to a rectangular bar shape, and may be a cylindrical shape or an ellipse.
 アダプタ磁石34の対向面は、ピストン磁石33の対向面と同極性となっている。これにより、アダプタ磁石34は、ピストン磁石33に対して反発する磁力を加え、ピストン31にポンプ室32を膨張させる方向の推力を加える。 The facing surface of the adapter magnet 34 has the same polarity as the facing surface of the piston magnet 33. As a result, the adapter magnet 34 applies a magnetic force repelling the piston magnet 33 and applies a thrust force in the direction of expanding the pump chamber 32 to the piston 31.
 図6および図8に示されるように、回転体35がそれぞれのピストン31の底部に回転自在に装着される。回転体35は、ピストン31に取り付けられる支持ピン36により支持される。回転体35としては、ボール軸受が用いられており、支持ピン36に固定される内側環状部材と、その外側に多数のボールを介して回転自在に装着される外側環状部材とを有している。 As shown in FIGS. 6 and 8, the rotating body 35 is rotatably mounted on the bottom of each piston 31. The rotating body 35 is supported by a support pin 36 attached to the piston 31. As the rotating body 35, a ball bearing is used, and it has an inner annular member fixed to the support pin 36 and an outer annular member that is rotatably mounted on the outside via a large number of balls. .
 カム面37がカム部材23の外周面に設けられており、カム面37は、回転体35の外周面に転がり接触する。カム面37は、図6に示されるように、最大半径の2つの長径部と、最小半径の2つの短径部とを有し、ピストン31の移動軌跡がサイン曲線となるような形状である。カム部材23が駆動軸16により回転駆動されると、ピストン31は、アダプタ26に最も近づく位置から最も遠ざかる位置との間を往復動する。駆動軸16は、図8に示されるように、シリンダブロック21に取り付けられた軸受38に回転自在に支持される。 The cam surface 37 is provided on the outer peripheral surface of the cam member 23, and the cam surface 37 is in rolling contact with the outer peripheral surface of the rotating body 35. As shown in FIG. 6, the cam surface 37 has two major axis portions with a maximum radius and two minor axis portions with a minimum radius, and has a shape such that the movement trajectory of the piston 31 becomes a sine curve. . When the cam member 23 is rotationally driven by the drive shaft 16, the piston 31 reciprocates between a position closest to the adapter 26 and a position farthest away from the adapter 26. As shown in FIG. 8, the drive shaft 16 is rotatably supported by a bearing 38 attached to the cylinder block 21.
 図6においては、カッコ書きで符号a、bが付された2つのピストン31(a)、31(b)は対となっており、2つのピストン31(a)、31(b)の回転体35がカム面37の長径部に転がり接触した状態を示す。このときには、2つのピストン31(a)、31(b)は、アダプタ26に最も近づく。この最も近づく位置に向けてピストン31が移動するときには、ピストン磁石33とアダプタ磁石34との反発力に抗して2つのピストン31(a)、31(b)がアダプタ26に向けて移動し、ポンプ室32が収縮される。 In FIG. 6, two pistons 31 (a) and 31 (b), which are marked with parentheses a and b, are paired, and the rotating bodies of the two pistons 31 (a) and 31 (b) A state in which 35 is in rolling contact with the long diameter portion of the cam surface 37 is shown. At this time, the two pistons 31 (a) and 31 (b) are closest to the adapter 26. When the piston 31 moves toward the closest position, the two pistons 31 (a) and 31 (b) move toward the adapter 26 against the repulsive force between the piston magnet 33 and the adapter magnet 34. The pump chamber 32 is contracted.
 カム部材23が図6に示される位置から90度回転すると、カム面37の短径部が2つのピストン31(a)、31(b)の回転体35と転がり接触する。このときには、2つのピストン31(a)、31(b)は、アダプタ26から最も遠ざかる。カム面37の長径部が回転体35に接触した位置から短径部が接触する位置に向けてカム部材23が回転するときには、ピストン磁石33とアダプタ磁石34との反発力により、ピストン31はアダプタ26に対して最も近づく位置から最も遠ざかる位置に移動する。これにより、ポンプ室32が膨張する。他の対のピストン31についても同様である。 When the cam member 23 is rotated 90 degrees from the position shown in FIG. 6, the short diameter portion of the cam surface 37 comes into rolling contact with the rotating body 35 of the two pistons 31 (a) and 31 (b). At this time, the two pistons 31 (a) and 31 (b) are furthest away from the adapter 26. When the cam member 23 rotates from the position where the long diameter portion of the cam surface 37 is in contact with the rotating body 35 to the position where the short diameter portion is in contact, the repulsive force between the piston magnet 33 and the adapter magnet 34 causes the piston 31 to be It moves to the position farthest from the position closest to 26. Thereby, the pump chamber 32 expands. The same applies to the other pairs of pistons 31.
 このように、アダプタ磁石34がそれぞれのピストン31に対してポンプ室32を膨張させる方向の磁力を加えた状態のもとで、カム部材23のカム面37と回転体35との転がり接触により、ピストン31は直線往復動する。つまり、カム部材23とピストン31は滑り接触することがない。これにより、カム面37の摩耗発生が防止されて、カム部材23を高速回転させても、コンプレッサ組立体12の高い耐久性を維持できる。 Thus, under the state where the adapter magnet 34 applies a magnetic force in the direction in which the pump chamber 32 is expanded with respect to each piston 31, the rolling contact between the cam surface 37 of the cam member 23 and the rotating body 35 causes The piston 31 reciprocates linearly. That is, the cam member 23 and the piston 31 do not make sliding contact. As a result, wear of the cam surface 37 is prevented, and high durability of the compressor assembly 12 can be maintained even when the cam member 23 is rotated at a high speed.
 さらに、対をなすピストン31は同時に外側に向けて、または2つ同時に内側に向けて動くので、対をなす2つのピストン31の重心は偏心することなく一定位置を保つ。したがって、6つのピストン31の動的バランスが高められ、振動発生を抑制しつつ高速動作させることが可能となる。 Furthermore, since the paired pistons 31 move toward the outside at the same time or two at the same time toward the inside at the same time, the centers of gravity of the two pistons 31 that form a pair maintain a fixed position without being eccentric. Therefore, the dynamic balance of the six pistons 31 is increased, and it becomes possible to operate at high speed while suppressing the occurrence of vibration.
 全てのシリンダ孔24の中心軸は1点で交差しているので、1つのカム部材23によって全てのピストン31を駆動することができる。さらに、それぞれのピストン31は駆動軸16に対して直角方向に往復動する。したがって、シリンダブロック21の駆動軸16の方向の寸法を小さくすることができる。このように、小型のシリンダブロック21により所望のポンプ室容積を得ることができるので、コンプレッサ10aを小型化することができる。 Since the central axes of all the cylinder holes 24 intersect at one point, all the pistons 31 can be driven by one cam member 23. Further, each piston 31 reciprocates in the direction perpendicular to the drive shaft 16. Accordingly, the dimension of the cylinder block 21 in the direction of the drive shaft 16 can be reduced. Thus, since a desired pump chamber volume can be obtained by the small cylinder block 21, the compressor 10a can be miniaturized.
 しかも、電動モータ13はアウターロータ型であり、図5に示されるように、電動モータ13の主軸14の軸方向における厚み寸法は、シリンダブロック21の厚み寸法に近くなっている。コンプレッサ組立体12は電動モータ13の径方向外方に配置されて支持プレート11の表面側に装着され、駆動軸16と主軸14とが平行に配置されて支持プレート11を貫通する。また、動力伝達機構19は支持プレート11の背面側に配置される。したがって、駆動軸16と主軸14とを同軸状に配置する形態と相違して、本発明においてはコンプレッサ10aの駆動軸16の軸方向の寸法つまり厚み寸法は小さいので、コンプレッサ10aを小型化、薄型化することができる。 Moreover, the electric motor 13 is an outer rotor type, and the thickness dimension of the electric motor 13 in the axial direction of the main shaft 14 is close to the thickness dimension of the cylinder block 21 as shown in FIG. The compressor assembly 12 is disposed on the outer side in the radial direction of the electric motor 13 and mounted on the surface side of the support plate 11, and the drive shaft 16 and the main shaft 14 are disposed in parallel to penetrate the support plate 11. The power transmission mechanism 19 is disposed on the back side of the support plate 11. Therefore, unlike the embodiment in which the drive shaft 16 and the main shaft 14 are arranged coaxially, in the present invention, since the axial dimension of the drive shaft 16 of the compressor 10a, that is, the thickness dimension is small, the compressor 10a is reduced in size and thickness. Can be
 さらに、主軸14を駆動軸16に同軸状に連結する形態の場合には、主軸14の回転を円滑に駆動軸16に伝達するために、両方の軸の組立精度を高める必要がある。これに対して、本発明においては、主軸14と駆動軸16を平行配置にすることにより、主軸14と駆動軸16の平行度に誤差が発生しても、その誤差をタイミングベルト18により吸収することができる。これにより、コンプレッサ組立体12と電動モータ13の組立精度を高める必要がなく、コンプレッサ10aの組立作業性を高めることができる。また、駆動プーリ15と従動プーリ17との径を相違させることにより、モータ回転数を変化させることなく、駆動軸16の回転数や回転トルクが相違する多種類のコンプレッサ10aを組み立てることができる。なお、動力伝達部材としてのタイミングベルト18に代えて、Vベルトや平ベルトを使用したり、チェーンを使用したりすることもできる。チェーンが使用されるときには、駆動プーリ15と従動プーリ17に代えてスプロケットが回転体として使用される。 Furthermore, in the case where the main shaft 14 is connected coaxially to the drive shaft 16, in order to smoothly transmit the rotation of the main shaft 14 to the drive shaft 16, it is necessary to increase the assembly accuracy of both shafts. In contrast, in the present invention, by arranging the main shaft 14 and the drive shaft 16 in parallel, even if an error occurs in the parallelism of the main shaft 14 and the drive shaft 16, the error is absorbed by the timing belt 18. be able to. Thereby, it is not necessary to improve the assembly precision of the compressor assembly 12 and the electric motor 13, and the assembly workability | operativity of the compressor 10a can be improved. Further, by making the diameters of the drive pulley 15 and the driven pulley 17 different, it is possible to assemble various types of compressors 10a having different rotational speeds and rotational torques of the drive shaft 16 without changing the motor rotational speed. Instead of the timing belt 18 as a power transmission member, a V belt or a flat belt can be used, or a chain can be used. When a chain is used, a sprocket is used as a rotating body instead of the driving pulley 15 and the driven pulley 17.
 駆動軸16が電動モータ13により回転駆動されて、ポンプ室32がピストン31によって膨張されると、外部から気体がポンプ室32に供給される。一方、ポンプ室32がピストン31によって収縮されると、ポンプ室32内の気体が外部に吐出される。図8に示されるように、息付き孔40がシリンダブロック21に設けられ、ポンプ室32の膨張収縮に伴って外気が給排される。 When the drive shaft 16 is rotationally driven by the electric motor 13 and the pump chamber 32 is expanded by the piston 31, gas is supplied to the pump chamber 32 from the outside. On the other hand, when the pump chamber 32 is contracted by the piston 31, the gas in the pump chamber 32 is discharged to the outside. As shown in FIG. 8, a breathing hole 40 is provided in the cylinder block 21, and external air is supplied and discharged as the pump chamber 32 expands and contracts.
 図10(A)は図3におけるD部拡大正面図であり、アダプタ26を拡大して示す。図10(B)は図10(A)における矢印E方向から見たアダプタ26の外面を示す側面図である。図11(A)は図10(B)におけるF-F線断面図であり、アダプタ26の断面を示す。図11(B)は図11(A)におけるG-G線断面図であり、磁石ホルダ28の内面を示す。図12(A)は図11(B)における矢印H-H線断面図であり、図12(B)は図12(A)におけるI-I線断面図である。 FIG. 10 (A) is an enlarged front view of the D portion in FIG. FIG. 10B is a side view showing the outer surface of the adapter 26 viewed from the direction of arrow E in FIG. FIG. 11A is a cross-sectional view taken along line FF in FIG. 10B and shows a cross section of the adapter 26. FIG. 11B is a cross-sectional view taken along the line GG in FIG. 11A and shows the inner surface of the magnet holder 28. 12A is a cross-sectional view taken along the line HH in FIG. 11B, and FIG. 12B is a cross-sectional view taken along the line II in FIG.
 図3において、符号aがカッコ書きで示されたアダプタ26(a)は、図6および図8に示されたピストン31(a)に対向し、符号bがカッコ書きで示されたアダプタ26(b)は、ピストン31(b)に対向する。 In FIG. 3, the adapter 26 (a) in which the symbol a is shown in parentheses faces the piston 31 (a) shown in FIGS. 6 and 8, and the adapter 26 ( b) faces the piston 31 (b).
 図11(A)に示されるように、それぞれポンプ室32に連通する吸気孔41と、吐出孔42が磁石ホルダ28に設けられている。吸気孔41は流路プレート29に設けられた吸気連通孔43に連通し、吐出孔42は流路プレート29に設けられた吐出連通孔44に連通する。吸気連通孔43と吐出連通孔44は、図12(A)に示されるように、流路プレート29の取付面45に開口する。取付面45は支持プレート11の表面に密着して取り付けられる。吸気連通孔43は、図4および図7に示されるように、支持プレート11に設けられた吸気ポート46を介して外気に連通する。図6に示した対をなす2つのピストン31(a)、31(b)のポンプ室32に連通する吸気連通孔43は、流路部材20に設けられた吸気ポート46により流路部材20を貫通して外部に連通する。他のピストン31のポンプ室32は、支持プレート11に設けられた吸気ポート46により外部に直接連通する。 As shown in FIG. 11A, an intake hole 41 and a discharge hole 42 communicating with the pump chamber 32 are provided in the magnet holder 28, respectively. The intake hole 41 communicates with an intake communication hole 43 provided in the flow path plate 29, and the discharge hole 42 communicates with a discharge communication hole 44 provided in the flow path plate 29. The intake communication hole 43 and the discharge communication hole 44 open on the attachment surface 45 of the flow path plate 29 as shown in FIG. The attachment surface 45 is attached in close contact with the surface of the support plate 11. As shown in FIGS. 4 and 7, the intake communication hole 43 communicates with the outside air through an intake port 46 provided in the support plate 11. The intake communication hole 43 communicating with the pump chamber 32 of the two pistons 31 (a) and 31 (b) forming the pair shown in FIG. 6 is connected to the flow path member 20 by an intake port 46 provided in the flow path member 20. It penetrates and communicates with the outside. The pump chamber 32 of the other piston 31 communicates directly with the outside through an intake port 46 provided in the support plate 11.
 一方、吐出連通孔44は、図7に示されるように、支持プレート11を貫通し、流路部材20に設けられた吐出孔47に連通する。それぞれの吐出孔47は、流路部材20に設けられた吐出流路48に連通しており、全てのポンプ室32から吐出された気体は、吐出流路48の吐出ポート49から外部に供給される。吐出ポート49に連通する継手50が流路部材20に取り付けられ、図示しないホースやパイプ等からなる配管が継手50に取り付けられる。それぞれのポンプ室32から吐出された気体は、配管により被供給部材に供給される。 On the other hand, the discharge communication hole 44 penetrates the support plate 11 and communicates with the discharge hole 47 provided in the flow path member 20 as shown in FIG. Each discharge hole 47 communicates with a discharge flow path 48 provided in the flow path member 20, and the gas discharged from all the pump chambers 32 is supplied to the outside from a discharge port 49 of the discharge flow path 48. The A joint 50 communicating with the discharge port 49 is attached to the flow path member 20, and a pipe made of a hose or pipe (not shown) is attached to the joint 50. The gas discharged from each pump chamber 32 is supplied to the supply target member by piping.
 このように、全てのポンプ室32から吐出される気体を1つの流路部材20に集合させて外部に案内するようにしたので、シリンダブロック21に複数本の配管を設けることが不要となり、コンプレッサ10aを小型化することができる。 As described above, since the gas discharged from all the pump chambers 32 is collected in one flow path member 20 and guided to the outside, it is not necessary to provide a plurality of pipes in the cylinder block 21, and the compressor 10a can be reduced in size.
 図11(A)に示されるように、吸気用の逆止弁51が吸気孔41に装着され、吐出用の逆止弁52が吐出孔42に装着される。それぞれの逆止弁51,52は、図11(A)に示されるように、磁石ホルダ28に取り付けられる基部53と、これよりも大径の弾性変形部54とを有している。吸気用の逆止弁51は、ポンプ室32が膨張するときには吸気孔41を開放する。これにより、吸気ポート46から流入した気体である外気がポンプ室32に供給される。これに対し、ポンプ室32が収縮するときには逆止弁51は吸気孔41を閉じる。一方、吐出用の逆止弁52は、ポンプ室32が膨張するときには吐出孔42を閉じる。これに対し、ポンプ室32が収縮するときには、吐出用の逆止弁52は吐出孔42を開放する。これにより、全てのポンプ室32から吐出された気体は、吐出ポート49から外部に吐出される。 As shown in FIG. 11 (A), a check valve 51 for intake is mounted in the intake hole 41, and a check valve 52 for discharge is mounted in the discharge hole 42. As shown in FIG. 11A, each check valve 51, 52 has a base 53 attached to the magnet holder 28 and an elastic deformation portion 54 having a larger diameter than that of the base 53. The intake check valve 51 opens the intake hole 41 when the pump chamber 32 expands. As a result, outside air that is gas flowing in from the intake port 46 is supplied to the pump chamber 32. On the other hand, the check valve 51 closes the intake hole 41 when the pump chamber 32 contracts. On the other hand, the discharge check valve 52 closes the discharge hole 42 when the pump chamber 32 expands. On the other hand, when the pump chamber 32 contracts, the discharge check valve 52 opens the discharge hole 42. Thereby, the gas discharged from all the pump chambers 32 is discharged from the discharge port 49 to the outside.
 なお、吸気ポート46は、支持プレート11の背面側で外部に開口しているが、吸気孔41に連通する吸気ポートを流路プレート29に設けても良い。その場合には、外気が支持プレート11の表面側からポンプ室32に吸入される。 The intake port 46 opens to the outside on the back side of the support plate 11, but an intake port that communicates with the intake hole 41 may be provided in the flow path plate 29. In that case, outside air is sucked into the pump chamber 32 from the surface side of the support plate 11.
 図13は、変形例であるコンプレッサ組立体12aを示す正面図であり、図14は図13におけるJ-J線断面図であり、図15は図14の斜視図である。コンプレッサ組立体12aは、上述したコンプレッサ組立体12と同様に、支持プレート11の表面側に装着され、コンプレッサ組立体12aの径方向外方に位置させて電動モータ13が支持プレート11の表面側に装着される。電動モータ13の回転トルクは、上述した場合と同様に、支持プレート11の背面側に配置される動力伝達機構19により駆動軸16に伝達される。シリンダブロック21とこれに組み込まれるピストン31等の構造は、図1~図9に示したコンプレッサ組立体12と同様であり、重複した説明は省略する。 13 is a front view showing a modified compressor assembly 12a, FIG. 14 is a cross-sectional view taken along line JJ in FIG. 13, and FIG. 15 is a perspective view of FIG. The compressor assembly 12a is mounted on the surface side of the support plate 11 in the same manner as the compressor assembly 12 described above, and the electric motor 13 is disposed on the surface side of the support plate 11 with the compressor assembly 12a positioned radially outward of the compressor assembly 12a. Installed. The rotational torque of the electric motor 13 is transmitted to the drive shaft 16 by the power transmission mechanism 19 disposed on the back side of the support plate 11 as in the case described above. The structure of the cylinder block 21 and the piston 31 incorporated therein is the same as that of the compressor assembly 12 shown in FIGS.
 コンプレッサ組立体12aは、上述したコンプレッサ組立体12と同様に、6つのシリンダ孔24が設けられたシリンダブロック21を有している。アダプタ26aが6つの装着面25に装着され、磁力発生部材としてのソレノイド55がアダプタ26aに設けられている。ソレノイド55は、鉄心56が組み込まれたボビン57を有し、ボビン57の外側にはコイル58が巻き付けられている。図14に示されるように、コイル58の接続端子59がアダプタ26aの外部に突出しており、接続端子59に接続される図示しない給電プラグを介して、外部からコイル58に電力が供給される。 The compressor assembly 12 a has a cylinder block 21 in which six cylinder holes 24 are provided in the same manner as the compressor assembly 12 described above. The adapter 26a is mounted on the six mounting surfaces 25, and a solenoid 55 as a magnetic force generating member is provided on the adapter 26a. The solenoid 55 has a bobbin 57 in which an iron core 56 is incorporated, and a coil 58 is wound around the outside of the bobbin 57. As shown in FIG. 14, the connection terminal 59 of the coil 58 protrudes to the outside of the adapter 26 a, and power is supplied to the coil 58 from the outside via a power supply plug (not shown) connected to the connection terminal 59.
 図13~図15に示したコンプレッサ組立体12aを有するピストン式コンプレッサにおいては、電力がコイル58に供給され、ソレノイド55は、ピストン磁石33に対して反発する磁力を発生する。これにより、それぞれポンプ室32を膨張させる方向の推力が複数のピストン31に加えられる。このコンプレッサ組立体12aにおいては、コイル58に対する電力量や通電タイミングを制御することにより、ソレノイド55によりピストン磁石33に加えられる反発力の強度と、磁力を発生させるタイミングとをカム部材23の回転位置に応じて変化させることができる。 In the piston type compressor having the compressor assembly 12a shown in FIGS. 13 to 15, electric power is supplied to the coil 58, and the solenoid 55 generates a magnetic force repelling the piston magnet 33. As a result, thrust in the direction of expanding the pump chamber 32 is applied to the plurality of pistons 31. In this compressor assembly 12a, by controlling the amount of electric power to the coil 58 and the energization timing, the rotational force position of the cam member 23 determines the strength of the repulsive force applied to the piston magnet 33 by the solenoid 55 and the timing for generating the magnetic force. It can be changed according to.
 上述したアダプタ26が磁石ホルダ28と流路プレート29とにより形成されているのに対し、アダプタ26aはソレノイド55が組み込まれるブロック材を有している。このブロック材には、図10~図12に示した吸気孔41や吐出孔42等が設けられており、ポンプ室32には外部から空気が供給され、圧縮された気体は流路部材20の吐出ポート49から外部に吐出される。 The adapter 26 described above is formed by the magnet holder 28 and the flow path plate 29, whereas the adapter 26a has a block material into which the solenoid 55 is incorporated. The block member is provided with the intake holes 41 and the discharge holes 42 shown in FIGS. 10 to 12. Air is supplied from the outside to the pump chamber 32, and the compressed gas flows into the flow path member 20. It is discharged from the discharge port 49 to the outside.
 図16~図23は、他の実施の形態であるピストン式コンプレッサ10bを示す。このコンプレッサ10bは、上述したコンプレッサ10aが単体のコンプレッサ組立体12を有しているのに対し、第1と第2の2つのコンプレッサ組立体12bを有している。両方のコンプレッサ組立体12bは、支持プレート11の表面に装着され、支持プレート11の表面に装着される電動モータ13により駆動される。コンプレッサ組立体12と同様に、駆動側回転体としての駆動プーリ15が電動モータ13の主軸14に装着され、従動側回転体としての従動プーリ17が両方の駆動軸16に装着される。動力伝達部材としてのタイミングベルト18は、駆動側の駆動プーリ15と従動側の2つの従動プーリ17に掛け渡されており、駆動プーリ15および従動プーリ17とタイミングベルト18により、動力伝達機構19が構成される。動力伝達機構19は、支持プレート11の背面側に配置され、流路部材20が支持プレート11の背面に装着される。図16~図23に示されたコンプレッサ10bにおいて、上述したコンプレッサ10aを構成する部材と同様の部材については重複した説明を省略する。 16 to 23 show a piston type compressor 10b according to another embodiment. The compressor 10b has first and second compressor assemblies 12b, whereas the above-described compressor 10a has a single compressor assembly 12. Both compressor assemblies 12 b are mounted on the surface of the support plate 11 and are driven by an electric motor 13 mounted on the surface of the support plate 11. Similar to the compressor assembly 12, a driving pulley 15 as a driving side rotating body is mounted on the main shaft 14 of the electric motor 13, and a driven pulley 17 as a driven side rotating body is mounted on both driving shafts 16. The timing belt 18 as a power transmission member is stretched between a driving pulley 15 on the driving side and two driven pulleys 17 on the driven side. The driving pulley 15, the driven pulley 17, and the timing belt 18 form a power transmission mechanism 19. Composed. The power transmission mechanism 19 is disposed on the back side of the support plate 11, and the flow path member 20 is mounted on the back surface of the support plate 11. In the compressor 10b shown in FIGS. 16 to 23, the duplicate description of the same members as those constituting the compressor 10a described above is omitted.
 図21および図23に示されるように、2つのコンプレッサ組立体12bは相互に同様の構造である。カム収容室22に連通するシリンダ孔24が、それぞれのシリンダブロック21に設けられており、シリンダ孔24はシリンダブロック21の外周面に沿う方向に120度置きにシリンダブロック21に設けられている。シリンダ孔24は、上述したコンプレッサ組立体12と同様に、内方端がカム収容室22に連通し、外方端がシリンダブロック21の外周面に開口する。両方のコンプレッサ組立体12bにおける1つのピストン31は、符号31(a)、31(b)で示すように、一直線状に配置されている。 As shown in FIGS. 21 and 23, the two compressor assemblies 12b have the same structure. A cylinder hole 24 communicating with the cam housing chamber 22 is provided in each cylinder block 21, and the cylinder hole 24 is provided in the cylinder block 21 every 120 degrees in a direction along the outer peripheral surface of the cylinder block 21. As with the compressor assembly 12 described above, the cylinder hole 24 communicates with the cam housing chamber 22 at the inner end and opens to the outer peripheral surface of the cylinder block 21 at the outer end. One piston 31 in both compressor assemblies 12b is arranged in a straight line as indicated by reference numerals 31 (a) and 31 (b).
 シリンダブロック21は3つの装着面25を有し、シリンダ孔24の外方端は装着面25に開口している。アダプタ26がそれぞれの装着面25に装着され、それぞれのアダプタ26は、図10~図12に示したものと同様の構造であり、ピストン31も同様の構造である。 The cylinder block 21 has three mounting surfaces 25, and the outer end of the cylinder hole 24 is open to the mounting surface 25. Adapters 26 are mounted on the respective mounting surfaces 25. Each adapter 26 has the same structure as that shown in FIGS. 10 to 12, and the piston 31 has the same structure.
 図19および図22に示されるように、吸気ポート46が支持プレート11に設けられ、それぞれの吸気ポート46は、アダプタ26に設けられた吸気連通孔43を介して吸気孔41に連通している。吐出孔47が流路部材20に設けられ、それぞれの吐出孔47は、アダプタ26に設けられた吐出連通孔44を介して吐出孔42に連通し、流路部材20に設けられた吐出流路48に連通している。図21に示されるように、外周面に沿う方向に隣り合う装着面25の間には、凹溝61が設けられており、シリンダブロック21の放熱性が高められている。 As shown in FIGS. 19 and 22, an intake port 46 is provided in the support plate 11, and each intake port 46 communicates with the intake hole 41 via an intake communication hole 43 provided in the adapter 26. . Discharge holes 47 are provided in the flow path member 20, and the discharge holes 47 communicate with the discharge holes 42 via discharge communication holes 44 provided in the adapter 26, and discharge flow paths provided in the flow path member 20. 48. As shown in FIG. 21, a recessed groove 61 is provided between the mounting surfaces 25 adjacent in the direction along the outer peripheral surface, and the heat dissipation of the cylinder block 21 is enhanced.
 電動モータ13が駆動されると、タイミングベルト18を介して両方の駆動軸16によりそれぞれのカム部材23が回転駆動される。カム部材23が回転駆動されると、ピストン31はアダプタ磁石34とピストン磁石33の反発力に抗してポンプ室32を収縮させる。これにより、ポンプ室32内の気体は、逆止弁52を通過しアダプタ26内の流路を介して流路部材20の吐出流路48に流入する。吐出流路48には6つのポンプ室32から吐出された気体が全て流入する。吐出流路48に流入した気体は、吐出ポート49から外部の被供給部材に供給される。 When the electric motor 13 is driven, the respective cam members 23 are rotationally driven by both the drive shafts 16 via the timing belt 18. When the cam member 23 is rotationally driven, the piston 31 contracts the pump chamber 32 against the repulsive force of the adapter magnet 34 and the piston magnet 33. Thereby, the gas in the pump chamber 32 passes through the check valve 52 and flows into the discharge flow path 48 of the flow path member 20 through the flow path in the adapter 26. All the gas discharged from the six pump chambers 32 flows into the discharge flow path 48. The gas flowing into the discharge channel 48 is supplied from the discharge port 49 to an external supply target member.
 コンプレッサ組立体12bは、磁力発生部材としてアダプタ磁石34が用いられているが、図13~図15に示したコンプレッサ組立体12aと同様に、アダプタ磁石34に代えてソレノイド55をアダプタに設けると、磁力発生部材をソレノイドとした形態のコンプレッサ組立体となる。 In the compressor assembly 12b, an adapter magnet 34 is used as a magnetic force generating member. However, as with the compressor assembly 12a shown in FIGS. 13 to 15, when the solenoid 55 is provided in the adapter instead of the adapter magnet 34, The compressor assembly is configured such that the magnetic force generating member is a solenoid.
 本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上述したピストン式コンプレッサ10a,10bにおいては、空気を圧縮して被供給部材に供給するために使用されるが、窒素ガス等の他の気体を圧縮して被供給部材に供給するためにそれぞれのコンプレッサを適用することができる。 The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. For example, in the above-described piston compressors 10a and 10b, it is used to compress air and supply it to the supplied member, but to compress other gas such as nitrogen gas and supply it to the supplied member. Each compressor can be applied.
 本発明のコンプレッサは、流体機器に圧縮機器を供給するための流体制御システムに適用される。 The compressor of the present invention is applied to a fluid control system for supplying compression equipment to fluid equipment.

Claims (6)

  1.  ポンプ室を膨張収縮する複数のピストンが設けられたシリンダブロックと、前記ポンプ室に連通する吸気連通孔および吐出連通孔が設けられたアダプタと、前記ピストンを駆動する駆動軸とを有するコンプレッサ組立体を備えたピストン式コンプレッサであって、
     前記駆動軸を駆動する電動モータの主軸と前記駆動軸とが貫通し、前記コンプレッサ組立体および前記電動モータが表面側に装着された支持プレートと、
     前記支持プレートの背面側に配置され、前記主軸の回転を前記駆動軸に伝達する動力伝達機構と、
     前記支持プレートの背面に取り付けられ、前記吐出連通孔に連通しそれぞれの前記ポンプ室から吐出された気体を外部に案内する流路部材と、
     を有するピストン式コンプレッサ。
    A compressor assembly having a cylinder block provided with a plurality of pistons for expanding and contracting the pump chamber, an adapter provided with an intake communication hole and a discharge communication hole communicating with the pump chamber, and a drive shaft for driving the piston A piston-type compressor comprising:
    A main plate of the electric motor that drives the drive shaft and the drive shaft, and a support plate on which the compressor assembly and the electric motor are mounted on the surface side;
    A power transmission mechanism disposed on the back side of the support plate and transmitting the rotation of the main shaft to the drive shaft;
    A flow path member that is attached to the back surface of the support plate, communicates with the discharge communication hole, and guides the gas discharged from each pump chamber to the outside;
    A piston compressor.
  2.  請求項1記載のピストン式コンプレッサにおいて、
     前記シリンダブロックに設けられたカム収容室に配置され、前記駆動軸により回転駆動されるカム部材と、
     前記ピストンに設けられ、前記カム部材のカム面に転がり接触して前記ピストンに前記ポンプ室が収縮する方向の推力を加える回転体と、を有し、
     それぞれの前記ピストンにピストン磁石を設け、
     前記ピストン磁石に反発する磁力を加えることにより前記ピストンに前記ポンプ室が膨張する方向の推力を加える磁力発生部材を、それぞれの前記アダプタに設けた、ピストン式コンプレッサ。
    The piston type compressor according to claim 1, wherein
    A cam member disposed in a cam housing chamber provided in the cylinder block and driven to rotate by the drive shaft;
    A rotating body that is provided on the piston and rolls into contact with the cam surface of the cam member to apply a thrust in a direction in which the pump chamber contracts to the piston;
    A piston magnet is provided on each piston,
    A piston type compressor in which each adapter is provided with a magnetic force generating member that applies a thrust force in a direction in which the pump chamber expands to the piston by applying a magnetic force repelling the piston magnet.
  3.  請求項2記載のピストン式コンプレッサにおいて、前記磁力発生部材は、アダプタ磁石またはソレノイドである、ピストン式コンプレッサ。 3. The piston compressor according to claim 2, wherein the magnetic force generating member is an adapter magnet or a solenoid.
  4.  請求項1~3のいずれか1項に記載のピストン式コンプレッサにおいて、前記コンプレッサ組立体は、シリンダ孔が6つ設けられたシリンダブロックを有する、ピストン式コンプレッサ。 The piston compressor according to any one of claims 1 to 3, wherein the compressor assembly includes a cylinder block provided with six cylinder holes.
  5.  請求項1~3のいずれか1項に記載のピストン式コンプレッサにおいて、それぞれシリンダ孔が3つ設けられたシリンダブロックを有する2つのコンプレッサ組立体を備えた、ピストン式コンプレッサ。 The piston type compressor according to any one of claims 1 to 3, comprising two compressor assemblies each having a cylinder block provided with three cylinder holes.
  6.  請求項1~5のいずれか1項に記載のピストン式コンプレッサにおいて、前記動力伝達機構は、前記主軸に固定される駆動側回転体と、前記駆動軸に固定される従動側回転体と、前記駆動側回転体と前記従動側回転体に掛け渡される動力伝達部材を備えた、ピストン式コンプレッサ。 The piston type compressor according to any one of claims 1 to 5, wherein the power transmission mechanism includes a driving side rotating body fixed to the main shaft, a driven side rotating body fixed to the driving shaft, A piston-type compressor comprising a drive-side rotator and a power transmission member spanned between the driven-side rotator.
PCT/JP2017/016080 2016-05-12 2017-04-21 Piston-type compressor WO2017195576A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-096034 2016-05-12
JP2016096034A JP6526600B2 (en) 2016-05-12 2016-05-12 Piston type compressor

Publications (1)

Publication Number Publication Date
WO2017195576A1 true WO2017195576A1 (en) 2017-11-16

Family

ID=60266518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016080 WO2017195576A1 (en) 2016-05-12 2017-04-21 Piston-type compressor

Country Status (3)

Country Link
JP (1) JP6526600B2 (en)
TW (1) TW201740020A (en)
WO (1) WO2017195576A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077059A (en) * 1983-10-05 1985-05-01 Fujitsu Ltd Air supply device
JPH03102070U (en) * 1990-02-07 1991-10-24
JP2016023555A (en) * 2014-07-17 2016-02-08 株式会社コガネイ Piston type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077059A (en) * 1983-10-05 1985-05-01 Fujitsu Ltd Air supply device
JPH03102070U (en) * 1990-02-07 1991-10-24
JP2016023555A (en) * 2014-07-17 2016-02-08 株式会社コガネイ Piston type compressor

Also Published As

Publication number Publication date
JP2017203428A (en) 2017-11-16
TW201740020A (en) 2017-11-16
JP6526600B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
KR101305404B1 (en) Membrane pump
US7334548B2 (en) Piston joint
US5190447A (en) Hydraulic pump with integral electric motor
US8443713B2 (en) Rotary cylinder device
EP1440241B1 (en) Variable stroke balancing
US6460450B1 (en) Piston engine balancing
JP2009529619A (en) Axial plunger pump or motor
JP6326408B2 (en) Opposing swash plate type hydraulic rotating machine
WO2003100231A9 (en) Overload protection mecanism
KR20020022680A (en) Power transmission mechanism
WO2017195576A1 (en) Piston-type compressor
US20190323491A1 (en) Compressor assembly
JP6210943B2 (en) Piston compressor
JPH0480237B2 (en)
JP2008202732A (en) Sealed type double-row angular contact ball bearing and electromagnetic clutch
JP2014202123A (en) Reciprocating compressor
CN113236724B (en) Inertia force balance type three-point contact stacking rolling-linear motion transmission mechanism
EP1918582A2 (en) Bearing structure in rotating machine
CN220539879U (en) Air pressure driven safety speed regulating water pump
JPH04228924A (en) Constant velocity joint and axial piston pump motor device using the joint
JP6593945B1 (en) Rotary cylinder device
KR20240040495A (en) Electric compressor
CN116241468A (en) Fluid machine and heat exchange device with bearing
CN118030440A (en) Magnetic force driven two-dimensional piston pump
WO2002063139A1 (en) Variable stroke/clearance mechanism

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795937

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795937

Country of ref document: EP

Kind code of ref document: A1