WO2017195277A1 - レシプロエンジンおよびその製造方法 - Google Patents

レシプロエンジンおよびその製造方法 Download PDF

Info

Publication number
WO2017195277A1
WO2017195277A1 PCT/JP2016/063904 JP2016063904W WO2017195277A1 WO 2017195277 A1 WO2017195277 A1 WO 2017195277A1 JP 2016063904 W JP2016063904 W JP 2016063904W WO 2017195277 A1 WO2017195277 A1 WO 2017195277A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
film
iron
cylinder
peripheral surface
Prior art date
Application number
PCT/JP2016/063904
Other languages
English (en)
French (fr)
Inventor
恒雄 磯部
安行 村瀬
恒明 高井
祐也 市川
一清 高橋
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2016/063904 priority Critical patent/WO2017195277A1/ja
Publication of WO2017195277A1 publication Critical patent/WO2017195277A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 

Definitions

  • the present invention relates to a reciprocating engine and a manufacturing method thereof.
  • a typical reciprocating engine includes a cylinder including a cylindrical inner peripheral surface, a cylinder head that forms a combustion chamber, a piston that reciprocates in the cylinder as the air-fuel mixture burns in the combustion chamber, And a piston ring that reciprocates.
  • Patent Document 1 discloses forming an iron plating layer on the inner peripheral surface of an aluminum alloy cylinder in order to improve the wear resistance of the cylinder.
  • the iron plating layer may be corroded by droplets containing a sulfuric acid component. That is, when fuel containing sulfur burns, exhaust gas containing sulfur oxides is generated. In the case of operating conditions in which the temperature of the exhaust gas greatly decreases, sulfur oxide in the exhaust gas and moisture in the air combine to produce sulfuric acid, which causes condensation on the inner wall surface of the cylinder. There is a time.
  • the position above the sliding range of the piston ring (the position of the cylinder head) tends to be corroded.
  • one of the objects of the present invention is to provide a reciprocating engine that can effectively prevent the iron film from being corroded by sulfuric acid caused by sulfur contained in the exhaust gas, and a method for manufacturing the same. .
  • a cylinder including an inner peripheral surface formed of an aluminum alloy, a cylinder head that forms a combustion chamber in which a mixture of air and fuel burns, and combustion of the mixture in the combustion chamber Accordingly, the piston reciprocates between the top dead center and the bottom dead center in the cylinder, and the cylinder reciprocates between the top dead center and the bottom dead center together with the piston.
  • a piston ring that seals a gap therebetween, an inner peripheral surface on which the piston ring slides, covers an inner peripheral surface of the cylinder, and a cylindrical iron film formed of an iron-containing material containing iron, and The inner peripheral surface of the iron coating corresponding to a region closer to the combustion chamber than the sliding region corresponding to the region from the bottom dead center of the piston ring to the top dead center of the piston ring on the inner peripheral surface of the iron coating Covering the non-sliding area of And a cylindrical tin film formed of tin-containing material comprising's, provides a reciprocating engine.
  • the reciprocating engine can be reduced in weight and size as compared with the case where the sleeve is cast into the cylinder, and the temperature distribution of the cylinder is reduced. Can improve.
  • the position above the sliding range of the piston ring (the position of the cylinder head) tends to progress corrosion.
  • part of the carbon in the fuel becomes fine particles (soot) and floats in the combustion gas.
  • Part of the heel adheres to the inner wall surface of the cylinder.
  • soot adhering to the inner wall surface of the cylinder the soot in the sliding range of the piston ring is scraped downward (toward the crankshaft), but the position above the sliding range outside the sliding range (cylinder head) The upper soot at (toward) is deposited. Then, sulfuric acid is absorbed and retained in the deposited soot, which can promote corrosion of iron plating.
  • Such retention of sulfuric acid can be a factor that promotes corrosion of the iron film, but the contact of sulfuric acid with the iron film is hindered by the tin film.
  • the non-sliding region on the inner peripheral surface of the iron film where sulfuric acid due to sulfur contained in the exhaust gas easily collects is covered with the tin film. Therefore, corrosion of the iron film by sulfuric acid can be effectively prevented.
  • At least one of the following features may be added to the reciprocating engine.
  • the sliding area of the inner peripheral surface of the iron film includes a peeling area in which the residue formed of the tin-containing material remains in the recess.
  • the piston ring slides in the peeling region of the iron film where the tin-containing material remains in the recess.
  • the piston ring substantially contacts only the iron coating. Therefore, the wear resistance of the engine can be maintained.
  • the sliding area and the non-sliding area are covered with a tin initial film in the manufacturing process of the engine. Thereafter, the tin initial film bonded to the sliding region is scraped off, for example, by sliding the piston ring. Thereby, the peeling area
  • the tin initial film is formed in both the sliding area and the non-sliding area, it is not necessary to mask the sliding area when forming the tin initial film. Therefore, the initial tin film can be easily formed while maintaining the wear resistance of the engine. In particular, when the region where the tin initial film is formed coincides with the region where the iron film is formed, the specifications of the jig used when forming the iron film and the tin initial film can be made common.
  • the tin film covers only the non-sliding region.
  • a cross hatch pattern is provided on the inner peripheral surface of the iron film.
  • the honing process for scraping the surface layer of the iron film is performed on the iron film. Therefore, a cross hatch pattern remains on the inner peripheral surface of the iron film. In the sliding area, the cross hatch pattern is exposed.
  • the lubricating oil is held in a plurality of spiral grooves that form a cross hatch pattern.
  • the thickness of the tin film is smaller than the thickness of the iron film.
  • the tin film is thin, the time required for forming the tin film can be shortened. Therefore, it is possible to shorten the time required for manufacturing the reciprocating engine while effectively preventing the corrosion of the iron film by sulfuric acid.
  • Another embodiment of the present invention includes a cylinder including an inner peripheral surface formed of an aluminum alloy, a cylinder head that forms a combustion chamber in which a mixture of air and fuel burns, and combustion of the mixture in the combustion chamber Accordingly, the piston reciprocates between the top dead center and the bottom dead center in the cylinder, and the cylinder reciprocates between the top dead center and the bottom dead center together with the piston. And a piston ring for sealing a gap between the two.
  • the method of manufacturing the reciprocating engine includes an inner peripheral surface on which the piston ring slides, covers an inner peripheral surface of the cylinder, and forms a cylindrical iron film formed of an iron-containing material including iron.
  • the iron film is bonded to the inner peripheral surface of the cylinder, and then the tin film is bonded to the inner peripheral surface of the iron film.
  • the tin film covers a non-sliding region where the iron film is easily corroded by sulfuric acid. Therefore, corrosion of the iron film by sulfuric acid can be effectively prevented.
  • the reciprocating engine can be reduced in weight and size and the temperature distribution of the cylinder can be improved as compared with the case where the sleeve is cast into the cylinder.
  • At least one of the following features may be added to the method for manufacturing the reciprocating engine.
  • the tin film forming step covers both the sliding region and the non-sliding region, and an initial film forming step of bonding a tin initial film formed of the tin-containing material to an inner peripheral surface of the iron film; After the initial film forming step, there is a peeling step of removing a part of the tin initial film covering the sliding region and leaving the remaining portion of the tin initial film covering the non-sliding region as the tin film.
  • the tin initial film formed of the tin-containing material is bonded to both the sliding region and the non-sliding region, and a part of the tin initial film is scraped off from the sliding region.
  • the tin initial film does not disappear completely from the sliding area, but remains as a residue in the recess of the sliding area. Since the tin initial film is scraped off, the piston ring slides on the iron film during normal operation of the reciprocating engine. Therefore, the wear resistance of the engine can be maintained.
  • the tin initial film is formed in both the sliding area and the non-sliding area, it is not necessary to mask the sliding area when forming the tin initial film. Therefore, the initial tin film can be easily formed while maintaining the wear resistance of the engine. In particular, when the region where the tin initial film is formed coincides with the region where the iron film is formed, the specifications of the jig used when forming the iron film and the tin initial film can be made common.
  • the peeling step is a step of leaving the tin film only in the non-sliding region.
  • the peeling step is a step of scraping a part of the tin initial film covering the sliding area with the piston ring by reciprocating the piston.
  • the tin initial film formed of the tin-containing material is bonded to both the sliding region and the non-sliding region.
  • the piston ring rubs against the initial tin film covering the sliding area.
  • the tin initial film is gradually scraped from the sliding area by the piston ring.
  • a portion of the tin initial film is removed from the sliding region.
  • the piston ring since the piston ring does not contact the remaining portion of the tin initial film covering the non-sliding region, the tin initial film remains only in the non-sliding region. Therefore, it is possible to leave the tin film only in the non-sliding region only by performing a trial operation of the engine.
  • the reciprocating engine manufacturing method includes a cross-hatch pattern formed on an inner peripheral surface of the iron film by grinding a surface layer of the iron film with a grindstone after the iron film forming step and before the tin film forming step.
  • the honing process of forming is further included.
  • a honing process for scraping off the surface layer of the iron film is performed on the iron film. Therefore, a cross hatch pattern remains on the inner peripheral surface of the iron film. In the sliding area, the cross hatch pattern is exposed.
  • the lubricating oil is held in a plurality of spiral grooves that form a cross hatch pattern.
  • FIG. 1 is a schematic diagram showing an engine 1 according to an embodiment of the present invention.
  • the arrangement, posture, size, and the like of each member are not limited to the arrangement shown in FIG.
  • the engine 1 is a reciprocating engine in which a piston 3 reciprocates in a cylinder 2.
  • the engine 1 is a four-stroke single cylinder gasoline engine for a motorcycle.
  • the engine 1 may be a two-stroke gasoline engine, a diesel engine, or a multi-cylinder engine.
  • the engine 1 is not limited to a motorcycle, and may be provided in a vehicle, a ship, or an aircraft, or may be provided in a transportation means other than these.
  • the vehicle may be a snow vehicle traveling on snow, a land vehicle traveling on land, or a vehicle other than these.
  • Land vehicles include motorcycles, tricycles, and automobiles.
  • the saddle riding type vehicle belongs to both snow vehicles and land vehicles.
  • the engine 1 includes a cylinder 2 including a cylindrical inner peripheral surface 2a that surrounds the center line L1, a cylinder head 5 that forms a combustion chamber 4 in which a mixture of fuel and air burns, and the mixture in the combustion chamber 4 It includes a piston 3 that reciprocates between the top dead center and the bottom dead center in the cylinder 2 with combustion.
  • FIG. 1 shows a state where the piston 3 and the piston rings 20 to 22 are located at the bottom dead center.
  • the engine 1 further includes a crankshaft 7 that rotates around the crank axis Ac as the piston 3 reciprocates, and a connecting rod 6 that connects the piston 3 and the crankshaft 7 to each other.
  • the cylinder 2 is provided in the cylinder body 8, and the crankcase 9 is connected to the cylinder body 8.
  • the cylinder body 8 and the crankcase 9 of the engine 1 accommodate the crankshaft 7.
  • the engine 1 includes a spark plug 10 that generates a spark in the combustion chamber 4, an intake port 11 that supplies gas to the combustion chamber 4, an exhaust port 13 that exhausts exhaust gas from the combustion chamber 4, and intake air that opens and closes the intake port 11.
  • a valve 12, an exhaust valve 14 that opens and closes the exhaust port 13, and a valve operating device (not shown) that drives the intake valve 12 and the exhaust valve 14 are included.
  • the combustion chamber 4, the intake port 11, and the exhaust port 13 are provided in the cylinder head 5 of the engine 1.
  • An intake passage 15 that guides gas is connected to the combustion chamber 4 via the intake port 11.
  • the exhaust passage 18 for guiding the exhaust gas is connected to the combustion chamber 4 via the exhaust port 13.
  • the engine 1 includes a throttle valve 16 that changes the flow rate of the gas supplied to the combustion chamber 4 and a fuel supply device that supplies fuel to the combustion chamber 4.
  • the fuel supply device may be a carburetor or a fuel injector 17 (fuel injector).
  • FIG. 1 shows an example in which the fuel injector 17 injects fuel toward the intake passage 15.
  • the fuel injector 17 may inject fuel toward the combustion chamber 4.
  • the amount of fuel injected from the fuel injector 17 and the ignition timing of the spark plug 10 are controlled by an ECU 19 (Electronic Control Unit) of the engine 1.
  • the engine 1 includes a plurality of piston rings 20 to 22 that reciprocate in the cylinder 2 together with the piston 3 between the top dead center and the bottom dead center.
  • the plurality of piston rings 20 to 22 include a compression ring that seals a gap between the cylinder 2 and the piston 3, and an oil ring 22 that supplies lubricating oil to the inner wall surface of the cylinder 2.
  • the compression ring includes a top ring 20 that is closest to the combustion chamber 4 and a second ring 21 that is disposed between the top ring 20 and the oil ring 22. Each ring is fitted in an annular groove provided on the outer peripheral surface of the piston 3.
  • FIG. 2 is a schematic cross-sectional view showing the inner wall surface of the cylinder 2 including the iron film 31 and the tin film 32.
  • FIG. 3 is a schematic cross-sectional view showing the surface layer of the inner wall surface of the cylinder 2.
  • the cylinder body 8 and the cylinder head 5 are both made of an aluminum alloy. Therefore, the inner peripheral surface 2a of the cylinder 2 is formed of an aluminum alloy. Similarly, the inner surface 5a of the cylinder head 5 forming the combustion chamber 4 is made of an aluminum alloy. An inner peripheral surface 2 a of the cylinder 2 is opened at an end surface 2 b of the cylinder 2. The end face of the cylinder head 5 is overlaid on the end face 2b of the cylinder 2 via a gasket (not shown).
  • the inner peripheral surface 2 a of the cylinder 2 is covered with a cylindrical iron film 31.
  • the iron film 31 is coupled to the inner peripheral surface 2 a of the cylinder 2.
  • the inner peripheral surface 31a of the iron coating 31 includes a sliding region R1 where the piston rings 20 to 22 slide and a non-sliding region R2 where the piston rings 20 to 22 do not slide.
  • FIG. 3 shows a state where the piston 3 and the top ring 20 are located at the top dead center.
  • the sliding region R1 corresponds to a cylindrical region from the bottom dead center of the oil ring 22 (see FIG. 1) to the top dead center of the top ring 20 on the inner peripheral surface 31a of the iron coating 31.
  • the non-sliding region R ⁇ b> 2 corresponds to a cylindrical region from the top dead center of the top ring 20 to the upper end of the iron coating 31 on the inner peripheral surface 31 a of the iron coating 31.
  • the non-sliding region R2 extends in the axial direction of the cylinder 2 from the sliding region R1 toward the combustion chamber 4. As shown in FIG. 2, the non-sliding region R2 is shorter in the axial direction than the sliding region R1.
  • the non-sliding region R ⁇ b> 2 is covered with a cylindrical tin film 32.
  • the tin film 32 is bonded to the iron film 31.
  • the tin film 32 is thinner than the iron film 31.
  • the thickness of the tin film 32 is, for example, 1 to 10 ⁇ m.
  • the thickness of the iron film 31 is, for example, 80 to 100 ⁇ m.
  • the thickness of the iron film 31 is a value after the honing process described later is performed.
  • the machining allowance in the honing process is, for example, 30 to 60 ⁇ m.
  • the thicknesses of the iron coating 31 and the tin coating 32 are not limited to these. Similarly, the machining allowance in the honing process is not limited to this.
  • the iron film 31 is formed of an iron-containing material containing iron (Fe).
  • the tin film 32 is formed of a tin-containing material containing tin (Sn).
  • the iron-containing material is a material mainly composed of iron.
  • the tin-containing material is a material mainly composed of tin.
  • Tin-containing materials are materials that do not corrode or hardly corrode with sulfuric acid.
  • the iron-containing material may contain components other than iron.
  • the tin-containing material may contain components other than tin.
  • a specific example of the iron-containing material is an alloy of iron and phosphorus in which fine particles of silicon carbide (SiC) are dispersed.
  • the fine particles of silicon carbide are an example of hard particles that improve the wear resistance of the iron coating 31.
  • the iron film 31 is provided with a plurality of cracks 33.
  • the crack 33 is a needle-like thin hole.
  • the lubricating oil is held in a part of the cracks 33 opened at the inner peripheral surface 31 a of the iron film 31.
  • the number of cracks 33 is adjusted according to the conditions of electroplating.
  • the number of cracks 33 per 1 cm cross section of the iron coating 31 perpendicular to the iron coating 31 is preferably 500 to 2000 / cm.
  • the seizure resistance can be improved while maintaining the strength of the iron film 31. That is, if the number of cracks 33 is less than 500, the amount of lubricating oil retained on the iron coating 31 is reduced, so that seizure resistance is relatively lowered. Moreover, when the number of the cracks 33 exceeds 2000, the intensity
  • a cross hatch pattern 34 is formed in both the sliding region R1 and the non-sliding region R2 of the iron film 31.
  • the cross hatch pattern 34 is a pattern of a plurality of spiral grooves 35 formed by a honing process described later.
  • the cross hatch pattern 34 is hidden by the tin film 32.
  • the cross hatch pattern 34 is exposed.
  • the iron film 31 includes a plurality of recesses 36 that are recessed from the inner peripheral surface 31 a of the iron film 31.
  • the spiral groove 35 and the crack 33 are included in the plurality of recesses 36.
  • a residue 37 different from the iron film 31 remains in the recess 36.
  • the residue 37 is a part of the tin initial film 41 formed in the manufacturing process of the engine 1 described later.
  • the sliding region R1 corresponds to a peeling region where the tin initial film 41 has been removed.
  • FIG. 4 is a process diagram for explaining an example of the manufacturing process of the engine 1.
  • 5A to 5D are schematic cross-sectional views showing the surface layer of the inner wall surface of the cylinder 2 when each step shown in FIG. 4 is performed.
  • FIG. 5A shows a state after the iron film 31 is formed.
  • FIG. 5B shows a state after the honing process is performed.
  • FIG. 5C shows a state after the tin initial film 41 is formed.
  • FIG. 5D shows a state after the tin initial film 41 is scraped off by the piston rings 20 to 22.
  • the intermediate body of the cylinder 2 is formed by casting (including die casting) (intermediate body forming step S1). Thereafter, the intermediate body of the cylinder 2 is formed by machining including at least one of turning, grinding, and drilling (intermediate body forming step S2). Thereby, the cylinder 2 is formed.
  • an iron film 31 is formed on the inner peripheral surface 2a of the cylinder 2 by electroplating (iron plating step S3).
  • iron plating step S3 In the iron plating process, not only the film forming process for forming the iron film 31 by electroplating but also the pretreatment process performed before the film forming process such as cleaning and the film forming process such as cleaning and drying are performed. And post-processing steps. The same applies to the tin plating step described later.
  • the iron film 31 corresponding to the iron plating layer is bonded to the entire area of the inner peripheral surface 2a of the cylinder 2.
  • the inner peripheral surface 31a of the iron film 31 is ground by honing as an example of finishing (finishing step S4).
  • finishing step S4 the grindstone H ⁇ b> 1 is pressed against the inner peripheral surface 31 a of the iron film 31.
  • the grindstone H1 is rotated around the center line L1 of the cylinder 2 while moving in the axial direction of the cylinder 2.
  • the surface layer of the iron film 31 is scraped off, and the thickness of the iron film 31 is reduced.
  • the cross hatch pattern 34 (see FIG. 2) is formed in both the sliding region R1 and the non-sliding region R2.
  • a tin initial film 41 is formed on the inner peripheral surface 31a of the iron film 31 by electroplating (tin plating step S5).
  • the tin initial film 41 corresponding to the tin plating layer is formed over the entire inner peripheral surface 31 a of the iron film 31, for example. That is, the tin initial film 41 is bonded to both the sliding region R1 and the non-sliding region R2 of the iron film 31.
  • the engine 1 is assembled from a plurality of parts including the cylinder body 8 (assembly step S6). Thereafter, a trial operation for confirming the performance of the engine 1 is performed (trial operation step S7).
  • the piston rings 20 to 22 reciprocate in the cylinder 2 together with the piston 3.
  • the piston rings 20 to 22 rub against the tin initial film 41 covering the sliding region R1. Therefore, the tin initial film 41 is gradually scraped off from the sliding region R1 by the piston rings 20-22.
  • the sliding region R1 corresponds to a peeling region where the tin initial film 41 has been removed.
  • the trial operation process corresponds to a peeling process in which a part of the tin initial film 41 is scraped off from the sliding region R1.
  • the tin initial film 41 disappears from the sliding region R1 with the naked eye, and the iron coating 31 is exposed at each part of the sliding region R1. Therefore, the tin initial film 41 remains only in the non-sliding region R2. A part of the tin initial film 41 remaining in the non-sliding region R ⁇ b> 2 corresponds to the tin film 32. Further, as shown in FIG. 5D, the tin initial film 41 remains in the recess 36 of the inner peripheral surface 31a of the iron film 31 even in the sliding region R1. Thus, a part of tin initial film
  • the inner peripheral surface 2a of the cylinder 2 made of aluminum alloy is covered with the thin iron film 31, so that the engine 1 is reduced in weight and size as compared with the case where the sleeve is cast into the cylinder 2.
  • the temperature distribution of the cylinder 2 can be improved.
  • the non-sliding region R ⁇ b> 2 of the inner peripheral surface 31 a of the iron coating 31 where sulfuric acid due to sulfur contained in the exhaust gas is likely to collect is covered with the tin coating 32. Therefore, corrosion of the iron film 31 by sulfuric acid can be effectively prevented.
  • the piston rings 20 to 22 slide on the sliding region R1 of the iron film 31 where the tin-containing material remains in the recess 36.
  • the piston rings 20 to 22 substantially contact only the iron film 31. Therefore, the wear resistance of the engine 1 can be maintained.
  • the sliding region R1 and the non-sliding region R2 are covered with the tin initial film 41 in the manufacturing process of the engine 1. Thereafter, the tin initial film 41 bonded to the sliding region R1 is scraped off by sliding of the piston rings 20-22. Thereby, the peeling area
  • the tin initial film 41 is formed in both the sliding region R1 and the non-sliding region R2, it is not necessary to mask the sliding region R1 when forming the tin initial film 41. Therefore, the tin initial film 41 can be easily formed while maintaining the wear resistance of the engine 1.
  • the region where the tin initial film 41 is formed coincides with the region where the iron film 31 is formed, the specifications of the jig used when forming the iron film 31 and the tin initial film 41 are made common. it can.
  • the non-sliding region R2 is covered with the tin film 32. Therefore, corrosion of the iron film 31 due to sulfuric acid can be efficiently and effectively prevented.
  • honing processing for scraping the surface layer of the iron coating 31 is performed on the iron coating 31. Therefore, the cross hatch pattern 34 remains on the inner peripheral surface 31 a of the iron film 31. In the sliding region R1, the cross hatch pattern 34 is exposed. Lubricating oil is held in a plurality of spiral grooves 35 that form a cross hatch pattern 34. Thereby, since the capability to hold
  • the time required for forming the tin film 32 can be shortened. Therefore, the time required for manufacturing the engine 1 can be shortened while effectively preventing the iron film 31 from being corroded by sulfuric acid.
  • the piston rings 20 to 22 are rubbed against the tin initial film 41 covering the sliding region R1.
  • the tin initial film 41 is gradually scraped off from the sliding region R1 by the piston rings 20-22.
  • a part of the tin initial film 41 is removed from the sliding region R1.
  • the piston rings 20 to 22 do not contact the remaining portion of the tin initial film 41 covering the non-sliding region R2, the tin initial film 41 remains only in the non-sliding region R2. Therefore, the tin film 32 can be left only in the non-sliding region R2 only by performing a trial operation of the engine 1.
  • the iron film 31 may be formed by a method other than electroplating.
  • the iron coating 31 may be formed by thermal spraying. The same applies to the tin film 32.
  • the tin initial film 41 may be formed only in the non-sliding region R2. In this case, a step of removing a part of the tin initial film 41 from the sliding region R1 is unnecessary.
  • a part of the tin initial film 41 may be removed from the sliding region R1 with a member other than the piston rings 20 to 22 such as a tool.
  • the iron film 31 may be formed so that the crack 33 does not occur.
  • the iron film 31 may be a porous film.
  • the region where the tin initial film 41 is formed may coincide with the region where the iron film 31 is formed, It may be narrower or wider than the region where the film 31 is formed.
  • the surface layer of the iron coating 31 may be cut and the honing process may be omitted.
  • the number of compression rings is not limited to two and may be one. That is, one of the top ring 20 and the second ring 21 may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 エンジン(1)は、アルミニウム合金で形成されたシリンダ(2)の内周面(2a)を覆い、鉄を含む鉄含有材料で形成された円筒状の鉄皮膜(31)と、鉄皮膜(31)の内周面(31a)を覆い、スズを含むスズ含有材料で形成された円筒状のスズ皮膜(32)とを含む。鉄皮膜(31)の内周面(31a)は、ピストンリング(20)が摺動する摺動領域(R1)と、ピストンリング(20)が摺動しない非摺動領域(R2)とを含む。スズ皮膜(32)は、非摺動領域(R2)を覆っている。

Description

レシプロエンジンおよびその製造方法
 本発明は、レシプロエンジンおよびその製造方法に関する。
 一般的なレシプロエンジンは、円筒状の内周面を含むシリンダと、燃焼室を形成するシリンダヘッドと、燃焼室での混合気の燃焼に伴ってシリンダ内を往復するピストンと、ピストンと共にシリンダ内を往復するピストンリングとを備えている。特許文献1では、シリンダの耐摩耗性を向上させるために、アルミニウム合金製のシリンダの内周面に鉄めっき層を形成することが開示されている。
特開2014-51722号公報
 しかしながら、特許文献1のシリンダでは、硫酸成分を含む液滴で鉄めっき層が腐食されることがある。すなわち、硫黄を含む燃料が燃焼すると、硫黄酸化物を含む排気ガスが生成される。この排気ガスが大きく温度低下するような運転条件の場合においては、排気ガス中の硫黄酸化物と空気中の水分とが結合して硫酸が生成され、硫酸がシリンダの内壁面に結露してしまうときがある。
 特に、シリンダ内壁面のうち、ピストンリングの摺動範囲の上方の位置(シリンダヘッドの方の位置)は、腐食が進む傾向にある。
 そこで、本発明の目的の一つは、排気ガスに含まれる硫黄に起因する硫酸で鉄皮膜が腐食されることを効果的に防止することができるレシプロエンジンおよびその製造方法を提供することである。
 本発明の一実施形態は、アルミニウム合金で形成された内周面を含むシリンダと、空気および燃料の混合気が燃焼する燃焼室を形成するシリンダヘッドと、前記燃焼室での混合気の燃焼に伴って前記シリンダ内を上死点と下死点との間で往復するピストンと、前記ピストンと共に前記シリンダ内を上死点と下死点との間で往復し、前記シリンダと前記ピストンとの間の隙間を密閉するピストンリングと、前記ピストンリングが摺動する内周面を含み、前記シリンダの内周面を覆い、鉄を含む鉄含有材料で形成された円筒状の鉄皮膜と、前記鉄皮膜の内周面における前記ピストンリングの下死点から前記ピストンリングの上死点までの領域に相当する摺動領域よりも前記燃焼室の方の領域に相当する前記鉄皮膜の内周面の非摺動領域を覆い、スズを含むスズ含有材料で形成された円筒状のスズ皮膜とを含む、レシプロエンジンを提供する。
 この構成によれば、アルミニウム合金製のシリンダの内周面を薄い鉄皮膜で覆うので、スリーブをシリンダに鋳込む場合と比較して、レシプロエンジンを軽量化および小型化でき、シリンダの温度分布を改善できる。
 特に、シリンダの内壁面のうち、ピストンリングの摺動範囲の上方の位置(シリンダヘッドの方の位置)は、腐食が進む傾向にある。
 例えば、エンジンの燃焼行程においては、燃料中の炭素の一部が微粒子(煤)になって、燃焼ガス中に浮遊する。煤の一部は、シリンダの内壁面に付着する。シリンダの内壁面に付着した煤のうち、ピストンリングの摺動範囲にある煤は下方(クランクシャフトの方)へ掻き落とされるが、摺動範囲外である摺動範囲の上方の位置(シリンダヘッドの方の位置)にある上部の煤は堆積する。そして、堆積した煤に硫酸が吸収・保持され、これが鉄めっきの腐食を促進させ得る。
 また、シリンダの内壁面に結露した硫酸の一部は、潤滑油で洗い流されるが、残りの硫酸は、ピストンの往復に伴い、摺動範囲外である摺動範囲の上方の位置(シリンダヘッドの方の位置)にかき上げられる。このかき上げられた硫酸は、上記の堆積した煤によって吸収・保持される。これが鉄めっきの腐食を更に促進させ得る。
 このように硫酸が保持されることは鉄皮膜の腐食を促進する要因となり得るが、鉄皮膜に対する硫酸の接触がスズ皮膜によって阻まれる。
 つまり、本実施形態の構成によれば、排気ガスに含まれる硫黄に起因する硫酸が集まり易い鉄皮膜の内周面の非摺動領域が、スズ皮膜で覆われている。したがって、硫酸による鉄皮膜の腐食を効果的に防止することができる。
 本実施形態において、以下の少なくとも一つの特徴が、前記レシプロエンジンに加えられてもよい。
 前記鉄皮膜の内周面の摺動領域は、前記スズ含有材料で形成された残留物が凹部に残留した剥離領域を含む。
 この構成によれば、レシプロエンジンの通常運転時は、スズ含有材料が凹部に残留した鉄皮膜の剥離領域にピストンリングが摺動する。ピストンリングは実質的に鉄皮膜だけに接触する。したがって、エンジンの耐摩耗性を維持できる。摺動領域および非摺動領域は、エンジンの製造工程においてスズ初期膜で覆われる。その後、摺動領域に結合しているスズ初期膜が例えばピストンリングの摺動によって削り取られる。これにより、スズ含有材料が残留した剥離領域が形成される。つまり、スズ初期膜は、摺動領域から完全に無くなるのではなく、摺動領域の凹部内に残留物として残る。
 このように、摺動領域および非摺動領域の両方にスズ初期膜を形成するので、スズ初期膜を形成するときに摺動領域をマスクする必要がない。したがって、エンジンの耐摩耗性を維持しながら、スズ初期膜を容易に形成できる。特に、スズ初期膜が形成される領域が鉄皮膜が形成される領域に一致している場合には、鉄皮膜およびスズ初期膜を形成する際に用いる治具の仕様を共通化できる。
 前記スズ皮膜は、前記非摺動領域だけを覆っている。
 この構成によれば、硫酸による鉄皮膜の腐食が発生し易い領域、つまり、非摺動領域だけがスズ皮膜で覆われている。したがって、硫酸による鉄皮膜の腐食を効率的にかつ効果的に防止することができる。
 前記鉄皮膜の内周面には、クロスハッチパターンが設けられている。
 この構成によれば、鉄皮膜の表層を削り取るホーニング加工が、鉄皮膜に施される。そのため、クロスハッチパターンが鉄皮膜の内周面に残る。摺動領域では、クロスハッチパターンが露出している。潤滑油は、クロスハッチパターンを形成する複数の螺旋溝内に保持される。これにより、潤滑油をシリンダ内に保持する能力(保油性)が高まるので、鉄皮膜が摩耗する速度を低下させることができる。
 前記スズ皮膜の厚みは、前記鉄皮膜の厚みよりも小さい。
 この構成によれば、スズ皮膜が薄いので、スズ皮膜の形成に要する時間を短縮できる。したがって、硫酸による鉄皮膜の腐食を効果的に防止しながら、レシプロエンジンの製造に要する時間を短縮できる。
 本発明の他の実施形態は、アルミニウム合金で形成された内周面を含むシリンダと、空気および燃料の混合気が燃焼する燃焼室を形成するシリンダヘッドと、前記燃焼室での混合気の燃焼に伴って前記シリンダ内を上死点と下死点との間で往復するピストンと、前記ピストンと共に前記シリンダ内を上死点と下死点との間で往復し、前記シリンダと前記ピストンとの間の隙間を密閉するピストンリングとを含む、レシプロエンジンの製造方法を提供する。
 前記レシプロエンジンの製造方法は、前記ピストンリングが摺動する内周面を含み、前記シリンダの内周面を覆い、鉄を含む鉄含有材料で形成された円筒状の鉄皮膜を前記シリンダの内周面に結合させる鉄皮膜形成工程と、前記鉄皮膜の内周面における前記ピストンリングの下死点から前記ピストンリングの上死点までの領域に相当する摺動領域よりも前記燃焼室の方の領域に相当する前記鉄皮膜の内周面の非摺動領域を覆い、スズを含むスズ含有材料で形成された円筒状のスズ皮膜を前記鉄皮膜の内周面に結合させるスズ皮膜形成工程とを含む。
 この方法によれば、鉄皮膜がシリンダの内周面に結合され、その後、スズ皮膜が鉄皮膜の内周面に結合される。スズ皮膜は、硫酸による鉄皮膜の腐食が発生し易い非摺動領域を覆っている。したがって、硫酸による鉄皮膜の腐食を効果的に防止することができる。さらに、アルミニウム合金製のシリンダの内周面を薄い鉄皮膜で覆うので、スリーブをシリンダに鋳込む場合と比較して、レシプロエンジンを軽量化および小型化でき、シリンダの温度分布を改善できる。
 本実施形態において、以下の少なくとも一つの特徴が、前記レシプロエンジンの製造方法に加えられてもよい。
 前記スズ皮膜形成工程は、前記摺動領域および非摺動領域の両方を覆い、前記スズ含有材料で形成されたスズ初期膜を前記鉄皮膜の内周面に結合させる初期膜形成工程と、前記初期膜形成工程の後に、前記摺動領域を覆う前記スズ初期膜の一部を削り取り、前記非摺動領域を覆う前記スズ初期膜の残りの部分を前記スズ皮膜として残す剥離工程とを含む。
 この方法によれば、スズ含有材料で形成されたスズ初期膜が、摺動領域および非摺動領域の両方に結合され、スズ初期膜の一部が摺動領域から削り取られる。スズ初期膜は、摺動領域から完全に無くなるのではなく、摺動領域の凹部内に残留物として残る。スズ初期膜が削り取られるので、レシプロエンジンの通常運転時は、ピストンリングが鉄皮膜に摺動する。したがって、エンジンの耐摩耗性を維持できる。
 このように、摺動領域および非摺動領域の両方にスズ初期膜を形成するので、スズ初期膜を形成するときに摺動領域をマスクする必要がない。したがって、エンジンの耐摩耗性を維持しながら、スズ初期膜を容易に形成できる。特に、スズ初期膜が形成される領域が鉄皮膜が形成される領域に一致している場合には、鉄皮膜およびスズ初期膜を形成する際に用いる治具の仕様を共通化できる。
 前記剥離工程は、前記非摺動領域だけに前記スズ皮膜を残すステップである。
 この方法によれば、硫酸による鉄皮膜の腐食が発生し易い領域、つまり、非摺動領域だけがスズ皮膜で覆われている。したがって、硫酸による鉄皮膜の腐食を効率的にかつ効果的に防止することができる。
 前記剥離工程は、前記ピストンを往復させることにより、前記摺動領域を覆う前記スズ初期膜の一部を前記ピストンリングで削り取るステップである。
 この方法によれば、スズ含有材料で形成されたスズ初期膜が、摺動領域および非摺動領域の両方に結合される。エンジンの試運転が開始されると、ピストンリングは、摺動領域を覆うスズ初期膜に擦れる。スズ初期膜は、ピストンリングによって摺動領域から徐々に削り取られる。エンジンの試運転が終了すると、スズ初期膜の一部が摺動領域から除去される。その一方で、ピストンリングは非摺動領域を覆うスズ初期膜の残りの部分に接触しないので、非摺動領域だけにスズ初期膜が残る。したがって、エンジンの試運転を行うだけで、非摺動領域だけにスズ皮膜を残すことができる。
 前記レシプロエンジンの製造方法は、前記鉄皮膜形成工程の後であって前記スズ皮膜形成工程の前に、前記鉄皮膜の表層を砥石で削り取ることにより、前記鉄皮膜の内周面にクロスハッチパターンを形成するホーニング工程をさらに含む。
 この方法によれば、鉄皮膜の表層を削り取るホーニング加工が、鉄皮膜に施される。そのため、クロスハッチパターンが鉄皮膜の内周面に残る。摺動領域では、クロスハッチパターンが露出している。潤滑油は、クロスハッチパターンを形成する複数の螺旋溝内に保持される。これにより、潤滑油をシリンダ内に保持する能力(保油性)が高まるので、鉄皮膜が摩耗する速度を低下させることができる。
本発明の一実施形態に係るエンジンを示す模式図である。 シリンダの内壁面を示す模式的な断面図である。 シリンダの内壁面の表層を示す模式的な断面図である。 エンジンの製造工程の一例について説明するための工程図である。 鉄皮膜が形成された後の状態を示す模式図である。 ホーニング加工が行われた後の状態を示す模式図である。 スズ初期膜が形成された後の状態を示す模式図である。 ピストンリングでスズ初期膜が削り取られた後の状態を示している。
 以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の一実施形態に係るエンジン1を示す模式図である。なお、各部材の配置、姿勢、および大きさ等は、図1に示す配置等に限られるものではない。
 図1に示すように、エンジン1は、ピストン3がシリンダ2内を往復するレシプロエンジンである。以下では、エンジン1が、自動二輪車用の4ストローク単気筒ガソリンエンジンである例について説明する。
 エンジン1は、2ストロークガソリンエンジンであってもよいし、ディーゼルエンジンであってもよいし、多気筒エンジンであってもよい。また、エンジン1は、自動二輪車に限らず、車両、船舶、または航空機に備えられてもよいし、これら以外の輸送手段に備えられてもよい。車両は、雪上を走行する雪上車両または陸上を走行する陸上車両であってもよいし、これら以外の車両であってもよい。陸上車両は、二輪車、三輪車、および四輪車を含む。鞍乗型車両は、雪上車両および陸上車両のいずれにも属する。
 エンジン1は、中心線L1を取り囲む円筒状の内周面2aを含むシリンダ2と、燃料と空気の混合気が燃焼する燃焼室4を形成するシリンダヘッド5と、燃焼室4での混合気の燃焼に伴ってシリンダ2内を上死点と下死点との間で往復するピストン3とを含む。図1は、ピストン3およびピストンリング20~22が下死点に位置している状態を示している。
 エンジン1は、さらに、ピストン3の往復に伴ってクランク軸線Acまわりに回転するクランクシャフト7と、ピストン3とクランクシャフト7とを互いに接続するコネクティングロッド6とを含む。シリンダ2は、シリンダボディ8に設けられており、クランクケース9は、シリンダボディ8に連結されている。エンジン1のシリンダボディ8およびクランクケース9は、クランクシャフト7を収容している。
 エンジン1は、燃焼室4で火花を発する点火プラグ10と、燃焼室4に気体を供給する吸気ポート11と、燃焼室4から排気ガスを排出する排気ポート13と、吸気ポート11を開閉する吸気バルブ12と、排気ポート13を開閉する排気バルブ14と、吸気バルブ12および排気バルブ14を駆動する動弁装置(図示せず)とを含む。燃焼室4、吸気ポート11、および排気ポート13は、エンジン1のシリンダヘッド5に設けられている。気体を導く吸気通路15は、吸気ポート11を介して燃焼室4に接続されている。排気ガスを導く排気通路18は、排気ポート13を介して燃焼室4に接続されている。
 エンジン1は、燃焼室4に供給される気体の流量を変更するスロットルバルブ16と、燃焼室4に燃料を供給する燃料供給装置とを含む。燃料供給装置は、キャブレターであってもよいし、燃料噴射器17(fuel injector)であってもよい。図1は、燃料噴射器17が吸気通路15に向けて燃料を噴射する例を示している。燃料噴射器17は、燃焼室4に向けて燃料を噴射してもよい。燃料噴射器17から噴射される燃料量や点火プラグ10の点火時期等は、エンジン1のECU19(Electronic Control Unit)によって制御される。
 エンジン1は、ピストン3と共にシリンダ2内を上死点と下死点との間で往復する複数のピストンリング20~22を含む。複数のピストンリング20~22は、シリンダ2とピストン3との間の隙間を密閉するコンプレッションリングと、シリンダ2の内壁面に潤滑油を供給するオイルリング22とを含む。コンプレッションリングは、燃焼室4に最も近いトップリング20と、トップリング20とオイルリング22との間に配置されたセカンドリング21とを含む。各リングは、ピストン3の外周面に設けられた環状溝に嵌められている。
 次に、シリンダ2の内壁面の構造について説明する。
 図2は、鉄皮膜31およびスズ皮膜32を含むシリンダ2の内壁面を示す模式的な断面図である。図3は、シリンダ2の内壁面の表層を示す模式的な断面図である。
 シリンダボディ8およびシリンダヘッド5は、いずれも、アルミニウム合金で形成されている。したがって、シリンダ2の内周面2aは、アルミニウム合金で形成されている。同様に、燃焼室4を形成するシリンダヘッド5の内面5aは、アルミニウム合金で形成されている。シリンダ2の内周面2aは、シリンダ2の端面2bで開口している。シリンダヘッド5の端面は、ガスケット(図示せず)を介してシリンダ2の端面2bに重ねられている。
 図3に示すように、シリンダ2の内周面2aは、円筒状の鉄皮膜31で覆われている。鉄皮膜31は、シリンダ2の内周面2aに結合されている。鉄皮膜31の内周面31aは、ピストンリング20~22が摺動する摺動領域R1と、ピストンリング20~22が摺動しない非摺動領域R2とを含む。
 図3は、ピストン3およびトップリング20が上死点に位置している状態を示している。摺動領域R1は、鉄皮膜31の内周面31aにおけるオイルリング22(図1参照)の下死点からトップリング20の上死点までの円筒状の領域に相当する。非摺動領域R2は、鉄皮膜31の内周面31aにおけるトップリング20の上死点から鉄皮膜31の上端までの円筒状の領域に相当する。非摺動領域R2は、摺動領域R1から燃焼室4の方にシリンダ2の軸方向に延びている。図2に示すように、非摺動領域R2は、摺動領域R1よりも軸方向に短い。
 図3に示すように、非摺動領域R2は、円筒状のスズ皮膜32で覆われている。スズ皮膜32は、鉄皮膜31に結合されている。スズ皮膜32は、鉄皮膜31よりも薄い。スズ皮膜32の厚みは、例えば1~10μmである。鉄皮膜31の厚みは、例えば80~100μmである。鉄皮膜31の厚みは、後述するホーニング加工が行われた後の値である。ホーニング加工での削り代は、例えば30~60μmである。鉄皮膜31およびスズ皮膜32の厚みは、これらに限定されるものではない。同様に、ホーニング加工での削り代は、これに限定されるものではない。
 鉄皮膜31は、鉄(Fe)を含む鉄含有材料で形成されている。スズ皮膜32は、スズ(Sn)を含むスズ含有材料で形成されている。鉄含有材料は、鉄を主成分とする材料である。スズ含有材料は、スズを主成分とする材料である。スズ含有材料は、硫酸で腐食しないまたは殆ど腐食しない材料である。鉄含有材料は、鉄以外の成分を含んでいてもよい。同様に、スズ含有材料は、スズ以外の成分を含んでいてもよい。鉄含有材料の具体例は、炭化ケイ素(SiC)の微粒子が分散した鉄およびリンの合金である。炭化ケイ素の微粒子は、鉄皮膜31の耐摩耗性を向上させる硬質粒子の一例である。
 図3に示すように、鉄皮膜31には、複数のクラック33が設けられている。クラック33は、針状の細い孔である。潤滑油は、鉄皮膜31の内周面31aで開口する一部のクラック33内に保持される。鉄皮膜31がめっき層である場合、クラック33の本数は、電気めっきの条件によって調整される。鉄皮膜31に垂直な鉄皮膜31の断面1cmあたりクラック33の本数は、好ましくは500~2000本/cmである。
 クラック33の本数(本/cm)がこの範囲内であれば、鉄皮膜31の強度を維持しながら、耐焼き付き性を向上させることができる。すなわち、クラック33の本数が500未満であると、鉄皮膜31に保持される潤滑油の量が減少するので、耐焼き付き性が相対的に低下してしまう。また、クラック33の本数が2000を超えると、鉄皮膜31の強度が相対的に低下してしまう。したがって、クラック33の本数は前記の範囲内であることが好ましい。
 図2に示すように、鉄皮膜31の摺動領域R1および非摺動領域R2のいずれにも、クロスハッチパターン34が形成されている。クロスハッチパターン34は、後述するホーニング加工によって形成された複数の螺旋溝35のパターンである。非摺動領域R2では、クロスハッチパターン34がスズ皮膜32で隠れている。摺動領域R1では、クロスハッチパターン34が露出している。
 図3に示すように、鉄皮膜31は、鉄皮膜31の内周面31aから凹んだ複数の凹部36を含む。螺旋溝35やクラック33は、複数の凹部36に含まれる。摺動領域R1では、鉄皮膜31とは異なる残留物37が凹部36に残留している。残留物37は、後述するエンジン1の製造工程で形成されたスズ初期膜41の一部である。摺動領域R1は、スズ初期膜41が削り取られた剥離領域に相当する。
 次に、エンジン1の製造工程の一例について説明する。以下では、シリンダ2の中間体を形成してからエンジン1の試運転を行うまでの各工程の一例について説明する。
 図4は、エンジン1の製造工程の一例について説明するための工程図である。図5A~図5Dは、図4に示す各工程が行われているときのシリンダ2の内壁面の表層を示す模式的な断面図である。図5Aは、鉄皮膜31が形成された後の状態を示している。図5Bは、ホーニング加工が行われた後の状態を示している。図5Cは、スズ初期膜41が形成された後の状態を示している。図5Dは、ピストンリング20~22でスズ初期膜41が削り取られた後の状態を示している。
 図4に示すように、シリンダ2を形成するときは、鋳造(ダイカストを含む)でシリンダ2の中間体を形成する(中間体形成工程S1)。その後、旋削加工、研削加工、およびドリル加工の少なくとも一つを含む機械加工でシリンダ2の中間体を成形する(中間体成形工程S2)。これにより、シリンダ2が形成される。
 次に、図5Aに示すように、電気めっきでシリンダ2の内周面2aに鉄皮膜31を形成する(鉄めっき工程S3)。鉄めっき工程には、電気めっきで鉄皮膜31を形成する皮膜形成工程だけでなく、洗浄などの皮膜形成工程の前に行われる前処理工程と、洗浄および乾燥などの皮膜形成工程の後に行われる後処理工程とが含まれる。これは、後述するスズめっき工程についても同様である。鉄めっき工程が行われることにより、鉄めっき層に相当する鉄皮膜31が、シリンダ2の内周面2aの全域に結合される。
 次に、仕上げ加工の一例であるホーニング加工で鉄皮膜31の内周面31aを研削する(仕上げ工程S4)。図5Bに示すように、仕上げ工程では、砥石H1を鉄皮膜31の内周面31aに押し付ける。この状態で、砥石H1をシリンダ2の軸方向に移動させながら、シリンダ2の中心線L1まわりに回転させる。これにより、鉄皮膜31の表層が削り取られ、鉄皮膜31の厚みが減少する。その結果、鉄皮膜31の寸法精度および円筒度が高まると共に、摺動領域R1および非摺動領域R2の両方にクロスハッチパターン34(図2参照)が形成される。
 次に、図5Cに示すように、電気めっきで鉄皮膜31の内周面31aにスズ初期膜41を形成する(スズめっき工程S5)。スズめっき層に相当するスズ初期膜41は、例えば鉄皮膜31の内周面31aの全域に形成される。すなわち、鉄皮膜31の摺動領域R1および非摺動領域R2の両方にスズ初期膜41が結合される。スズ初期膜41が形成された後は、シリンダボディ8を含む複数の部品からエンジン1が組み立てられる(組立工程S6)。その後、エンジン1の性能を確認する試運転を行う(試運転工程S7)。
 エンジン1の試運転では、ピストン3と共にピストンリング20~22がシリンダ2内を往復する。ピストンリング20~22は、摺動領域R1を覆うスズ初期膜41に擦れる。そのため、スズ初期膜41は、ピストンリング20~22によって摺動領域R1から徐々に削り取られる。摺動領域R1は、スズ初期膜41が削り取られた剥離領域に相当する。試運転工程は、スズ初期膜41の一部を摺動領域R1から削り取る剥離工程に相当する。
 図5Dに示すように、エンジン1の試運転が終了すると、肉眼では摺動領域R1からスズ初期膜41がなくなり、鉄皮膜31が摺動領域R1の各部で露出する。したがって、非摺動領域R2だけにスズ初期膜41が残る。非摺動領域R2に残ったスズ初期膜41の一部は、スズ皮膜32に相当する。また、図5Dに示すように、摺動領域R1であっても、鉄皮膜31の内周面31aの凹部36にはスズ初期膜41が残る。このようにして、スズ初期膜41の一部が摺動領域R1から削り取られる。
 エンジン1が運転され、硫黄を含む燃料が燃焼すると、硫黄酸化物を含む排気ガスが生成される。この排気ガスが大きく温度低下するような運転条件の場合(例えば、燃料中の硫黄濃度が高く、エンジン1が高負荷かつ低回転速度で、壁温および排気温度が低い場合)、排気ガス中の硫黄酸化物と空気中の水分とが結合して硫酸が生成され、硫酸がシリンダ2の内周面2aに結露してしまうときがある。
 一方で、エンジン1の燃焼行程においては、燃料中の炭素の一部が微粒子(煤)になって、燃焼ガス中に浮遊する。煤の一部は、シリンダ2の内周面2aに付着する。シリンダ2の内周面2aに付着した煤のうち、ピストンリング20~22の摺動範囲にある煤は下方(クランクシャフト7の方)へ掻き落とされるが、摺動範囲外である摺動範囲の上方の位置(シリンダヘッド5の方の位置)にある煤は堆積する。そして、堆積した煤に硫酸が吸収・保持される。
 さらに、シリンダ2の内周面2aに付着した硫酸の一部は、ピストン3の往復に伴い、摺動範囲の上方の位置にかきあげられ、残りの硫酸は、潤滑油で洗い流される。つまり、シリンダ2の内壁面2aにおけるピストンリング20~22の上死点からシリンダボアの上端までの円筒状の領域(非摺動領域R2)にかき上げられた硫酸が煤によって保持される。このように硫酸が保持されることは鉄皮膜31の腐食を促進する要因となり得るが、鉄皮膜31に対する硫酸の接触がスズ皮膜32によって阻まれる。
 以上のように本実施形態では、アルミニウム合金製のシリンダ2の内周面2aを薄い鉄皮膜31で覆うので、スリーブをシリンダ2に鋳込む場合と比較して、エンジン1を軽量化および小型化でき、シリンダ2の温度分布を改善できる。また、排気ガスに含まれる硫黄に起因する硫酸が集まり易い鉄皮膜31の内周面31aの非摺動領域R2が、スズ皮膜32で覆われている。したがって、硫酸による鉄皮膜31の腐食を効果的に防止することができる。
 本実施形態では、エンジン1の通常運転時は、スズ含有材料が凹部36に残留した鉄皮膜31の摺動領域R1にピストンリング20~22が摺動する。ピストンリング20~22は実質的に鉄皮膜31だけに接触する。したがって、エンジン1の耐摩耗性を維持できる。摺動領域R1および非摺動領域R2は、エンジン1の製造工程においてスズ初期膜41で覆われる。その後、摺動領域R1に結合しているスズ初期膜41がピストンリング20~22の摺動によって削り取られる。これにより、スズ含有材料が残留した剥離領域が形成される。つまり、スズ初期膜41は、摺動領域R1から完全に無くなるのではなく、摺動領域R1の凹部36内に残留物として残る。
 このように、摺動領域R1および非摺動領域R2の両方にスズ初期膜41を形成するので、スズ初期膜41を形成するときに摺動領域R1をマスクする必要がない。したがって、エンジン1の耐摩耗性を維持しながら、スズ初期膜41を容易に形成できる。特に、スズ初期膜41が形成される領域が鉄皮膜31が形成される領域に一致している場合には、鉄皮膜31およびスズ初期膜41を形成する際に用いる治具の仕様を共通化できる。
 本実施形態では、硫酸による鉄皮膜31の腐食が発生し易い領域、つまり、非摺動領域R2だけがスズ皮膜32で覆われている。したがって、硫酸による鉄皮膜31の腐食を効率的にかつ効果的に防止することができる。
 本実施形態では、鉄皮膜31の表層を削り取るホーニング加工が、鉄皮膜31に施される。そのため、クロスハッチパターン34が鉄皮膜31の内周面31aに残る。摺動領域R1では、クロスハッチパターン34が露出している。潤滑油は、クロスハッチパターン34を形成する複数の螺旋溝35内に保持される。これにより、潤滑油をシリンダ2内に保持する能力が高まるので、鉄皮膜31が摩耗する速度を低下させることができる。
 本実施形態では、スズ皮膜32が薄いので、スズ皮膜32の形成に要する時間を短縮できる。したがって、硫酸による鉄皮膜31の腐食を効果的に防止しながら、エンジン1の製造に要する時間を短縮できる。
 本実施形態では、エンジン1の試運転が開始されると、ピストンリング20~22は、摺動領域R1を覆うスズ初期膜41に擦れる。スズ初期膜41は、ピストンリング20~22によって摺動領域R1から徐々に削り取られる。エンジン1の試運転が終了すると、スズ初期膜41の一部が摺動領域R1から除去される。その一方で、ピストンリング20~22は非摺動領域R2を覆うスズ初期膜41の残りの部分に接触しないので、非摺動領域R2だけにスズ初期膜41が残る。したがって、エンジン1の試運転を行うだけで、非摺動領域R2だけにスズ皮膜32を残すことができる。
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、本発明の範囲内において種々の変更が可能である。
 例えば、鉄皮膜31は電気めっき以外の方法で形成されてもよい。例えば溶射で鉄皮膜31が形成されてもよい。スズ皮膜32についても同様である。
 スズ初期膜41は非摺動領域R2だけに形成されてもよい。この場合、スズ初期膜41の一部を摺動領域R1から除去する工程が不要である。
 工具などのピストンリング20~22以外の部材で摺動領域R1からスズ初期膜41の一部を除去してもよい。
 鉄皮膜31は、クラック33が生じないように形成されてもよい。例えば、鉄皮膜31は、多孔質膜であってもよい。
 非摺動領域R2の一部または全部がスズ皮膜32で覆われるのであれば、スズ初期膜41が形成される領域は、鉄皮膜31が形成される領域に一致していてもよいし、鉄皮膜31が形成される領域より狭いまたは広くてもよい。
 シリンダボアの寸法精度および円筒度を確保できるのであれば、鉄皮膜31の表層を削りホーニング加工を省略してもよい。
 コンプレッションリングの数は、2本に限らず、1本であってもよい。つまり、トップリング20およびセカンドリング21の一方が省略されてもよい。
 前述の全ての構成の2つ以上が組み合わされてもよい。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1   :エンジン
2   :シリンダ
2a  :シリンダの内周面
2b  :シリンダの端面
3   :ピストン
4   :燃焼室
5   :シリンダヘッド
5a  :シリンダヘッドの内面
6   :コネクティングロッド
7   :クランクシャフト
8   :シリンダボディ
9   :クランクケース
10  :点火プラグ
11  :吸気ポート
12  :吸気バルブ
13  :排気ポート
14  :排気バルブ
15  :吸気通路
16  :スロットルバルブ
17  :燃料噴射器
18  :排気通路
19  :ECU
20  :トップリング(ピストンリング)
21  :セカンドリング(ピストンリング)
22  :オイルリング(ピストンリング)
31  :鉄皮膜
31a :鉄皮膜の内周面
32  :スズ皮膜
33  :クラック
34  :クロスハッチパターン
35  :螺旋溝
36  :凹部
37  :残留物
41  :スズ初期膜
Ac  :クランク軸線
H1  :砥石
L1  :シリンダの中心線
R1  :摺動領域
R2  :非摺動領域

Claims (10)

  1.  アルミニウム合金で形成された内周面を含むシリンダと、
     空気および燃料の混合気が燃焼する燃焼室を形成するシリンダヘッドと、
     前記燃焼室での混合気の燃焼に伴って前記シリンダ内を上死点と下死点との間で往復するピストンと、
     前記ピストンと共に前記シリンダ内を上死点と下死点との間で往復し、前記シリンダと前記ピストンとの間の隙間を密閉するピストンリングと、
     前記ピストンリングが摺動する内周面を含み、前記シリンダの内周面を覆い、鉄を含む鉄含有材料で形成された円筒状の鉄皮膜と、
     前記鉄皮膜の内周面における前記ピストンリングの下死点から前記ピストンリングの上死点までの領域に相当する摺動領域よりも前記燃焼室の方の領域に相当する前記鉄皮膜の内周面の非摺動領域を覆い、スズを含むスズ含有材料で形成された円筒状のスズ皮膜とを含む、レシプロエンジン。
  2.  前記鉄皮膜の内周面の摺動領域は、前記スズ含有材料で形成された残留物が凹部に残留した剥離領域を含む、請求項1に記載のレシプロエンジン。
  3.  前記スズ皮膜は、前記非摺動領域だけを覆っている、請求項1または2に記載のレシプロエンジン。
  4.  前記鉄皮膜の内周面には、クロスハッチパターンが設けられている、請求項1~3のいずれか一項に記載のレシプロエンジン。
  5.  前記スズ皮膜の厚みは、前記鉄皮膜の厚みよりも小さい、請求項1~4のいずれか一項に記載のレシプロエンジン。
  6.  アルミニウム合金で形成された内周面を含むシリンダと、空気および燃料の混合気が燃焼する燃焼室を形成するシリンダヘッドと、前記燃焼室での混合気の燃焼に伴って前記シリンダ内を上死点と下死点との間で往復するピストンと、前記ピストンと共に前記シリンダ内を上死点と下死点との間で往復し、前記シリンダと前記ピストンとの間の隙間を密閉するピストンリングとを含む、レシプロエンジンを製造する方法であって、
     前記ピストンリングが摺動する内周面を含み、前記シリンダの内周面を覆い、鉄を含む鉄含有材料で形成された円筒状の鉄皮膜を前記シリンダの内周面に結合させる鉄皮膜形成工程と、
     前記鉄皮膜の内周面における前記ピストンリングの下死点から前記ピストンリングの上死点までの領域に相当する摺動領域よりも前記燃焼室の方の領域に相当する前記鉄皮膜の内周面の非摺動領域を覆い、スズを含むスズ含有材料で形成された円筒状のスズ皮膜を前記鉄皮膜の内周面に結合させるスズ皮膜形成工程とを含む、レシプロエンジンの製造方法。
  7.  前記スズ皮膜形成工程は、前記摺動領域および非摺動領域の両方を覆い、前記スズ含有材料で形成されたスズ初期膜を前記鉄皮膜の内周面に結合させる初期膜形成工程と、前記初期膜形成工程の後に、前記摺動領域を覆う前記スズ初期膜の一部を削り取り、前記非摺動領域を覆う前記スズ初期膜の残りの部分を前記スズ皮膜として残す剥離工程とを含む、請求項6に記載のレシプロエンジンの製造方法。
  8.  前記剥離工程は、前記非摺動領域だけに前記スズ皮膜を残すステップである、請求項7に記載のレシプロエンジンの製造方法。
  9.  前記剥離工程は、前記ピストンを往復させることにより、前記摺動領域を覆う前記スズ初期膜の一部を前記ピストンリングで削り取るステップである、請求項7または8に記載のレシプロエンジンの製造方法。
  10.  前記鉄皮膜形成工程の後であって前記スズ皮膜形成工程の前に、前記鉄皮膜の表層を砥石で削り取ることにより、前記鉄皮膜の内周面にクロスハッチパターンを形成するホーニング工程をさらに含む、請求項6~9のいずれか一項に記載のレシプロエンジンの製造方法。
     
PCT/JP2016/063904 2016-05-10 2016-05-10 レシプロエンジンおよびその製造方法 WO2017195277A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063904 WO2017195277A1 (ja) 2016-05-10 2016-05-10 レシプロエンジンおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063904 WO2017195277A1 (ja) 2016-05-10 2016-05-10 レシプロエンジンおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2017195277A1 true WO2017195277A1 (ja) 2017-11-16

Family

ID=60266432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063904 WO2017195277A1 (ja) 2016-05-10 2016-05-10 レシプロエンジンおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2017195277A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151414A (en) * 1975-06-20 1976-12-25 Toyota Motor Corp An aluminum cylin der liner
JPS58146763A (ja) * 1982-02-22 1983-09-01 Toyota Motor Corp 摺動部材
JPH02119664A (ja) * 1988-10-29 1990-05-07 Riken Corp ピストン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151414A (en) * 1975-06-20 1976-12-25 Toyota Motor Corp An aluminum cylin der liner
JPS58146763A (ja) * 1982-02-22 1983-09-01 Toyota Motor Corp 摺動部材
JPH02119664A (ja) * 1988-10-29 1990-05-07 Riken Corp ピストン

Similar Documents

Publication Publication Date Title
FI124135B (fi) Mäntämoottorin sylinteriholkki
US8851029B2 (en) Opposed-piston cylinder bore constructions with solid lubrication in the top ring reversal zones
CA2674151C (en) Two-stroke engine
CN109072397B (zh) 用于内燃发动机的气缸的活塞
Ernst et al. Optimizing the cylinder running surface/piston system of internal combustion engines towards lower emissions
US9938925B2 (en) Cylinder liner with chamfer and anti-polishing cuff
JP2007077988A (ja) ピストンリング一式
EP0719917B1 (en) Cylinder unit and method for forming the sliding surfaces thereof
US10907569B2 (en) Systems and methods for a cylinder bore coating fill material
CN110462193B (zh) 用于对置活塞发动机的汽缸孔表面结构
JP5003652B2 (ja) シリンダブロック
US20120090570A1 (en) Method for machining, in particular for mechanical machining, of at least one exhaust-gas-conducting surface region of an internal combustion engine or crankcase part, internal combustion engine crankcase and cylinder sleeve
WO2017195277A1 (ja) レシプロエンジンおよびその製造方法
US6606983B2 (en) Ferrous pistons for diesel engines having EGR coating
US8794207B2 (en) Method for processing cylinder block, cylinder block and thermal-sprayed cylinder block
Ernst et al. Technology and Contribution of SUMEBore cylinder liner surface coatings on lubricant oil consumption reduction on an emd710 diesel engine
CN113614353A (zh) 具有氧化和腐蚀保护的钢活塞
JPS59128909A (ja) 内燃機関のシリンダ
HRP970564A2 (en) Piston rings and/or a piston in an internal combustion engine of the diesel type and method of running-in of diesel engine
EP1943416A1 (en) Method for injecting fuel into a cylinder, cylinder unit for implementing such a method and internal combustion engine comprising such a unit
JP3051356U (ja) ディーゼルエンジン吸気弁
JPH0129978B2 (ja)
US11746725B2 (en) Steel piston having oxidation and erosion protection
JPS59121256A (ja) 内燃機関のピストン
US20220065188A1 (en) Internal combustion engine including an element at the cylinder inner wall for scraping off oil carbon

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP