WO2017193841A1 - 控制信息的发送方法、检测方法、基站、终端和存储介质 - Google Patents

控制信息的发送方法、检测方法、基站、终端和存储介质 Download PDF

Info

Publication number
WO2017193841A1
WO2017193841A1 PCT/CN2017/082781 CN2017082781W WO2017193841A1 WO 2017193841 A1 WO2017193841 A1 WO 2017193841A1 CN 2017082781 W CN2017082781 W CN 2017082781W WO 2017193841 A1 WO2017193841 A1 WO 2017193841A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
physical layer
control information
layer control
control channel
Prior art date
Application number
PCT/CN2017/082781
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
李儒岳
吴昊
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/301,195 priority Critical patent/US10966204B2/en
Publication of WO2017193841A1 publication Critical patent/WO2017193841A1/zh
Priority to US17/175,683 priority patent/US11979868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0089In-band signals
    • H04L2027/0093Intermittant signals
    • H04L2027/0095Intermittant signals in a preamble or similar structure

Definitions

  • the present invention relates to a wireless communication technology, and in particular, to a method, a detection method, a base station, a terminal, and a computer storage medium for transmitting control information.
  • the link reliability of the physical layer is a very important issue.
  • a deterioration in physical link quality can cause different levels of system performance degradation.
  • the data channel at this level of the link must guarantee a transmission success rate of about 90% at the physical layer.
  • CQI Channel Quality Indication
  • the target error is about 0.9.
  • the block rate is used to select the appropriate modulation and coding scheme. If the data block does not pass the actual transmission, the terminal needs to feed back the NACK to the base station, and the base station retransmits according to the feedback of the terminal, and may initiate multiple retransmissions for the untransmitted data block to improve the solution of the final data block. Success rate.
  • the link reliability requirements are very high, and the physical control information generally has no retransmission mechanism.
  • the one-time transmission accuracy rate of the physical control information generally needs to reach 99%, and a part of the more important control information transmission success rate reaches 99.9%. Even higher, some system performance caused by loss of control information is severely degraded, such as the physical control format indicator channel (PCFICH) carrying the indication information of the physical control channel symbol).
  • PCFICH physical control format indicator channel
  • data channels can generally use multi-antenna closed-loop beamforming technology, which can achieve high Transmission throughput, but a feature of the beamforming technique is that the energy is very concentrated in space, although the performance is very good when accurate, but the performance is degraded once the beam direction is inaccurate, especially in large-scale antenna systems.
  • the beam is very narrow. Although the energy is very concentrated, the gain is very high when the beam is aligned. If the beam is slightly deviated, the performance will be seriously degraded, and even the signal may not be received completely.
  • the data channel is characterized by emphasis on transmission efficiency and poor robustness.
  • the data channel has a control channel to perform some dynamic indication of the data channel transmission strategy, when this situation is found, the beam can be quickly adjusted to a wide beam or beam switching, so that it does not cause particularly serious impact, and the data channel itself
  • the target block error rate requirement is not very demanding and can be retransmitted, so there are no serious problems.
  • the physical control channel in the low-frequency LTE system, the physical control channel generally adopts a relatively robust transmission mechanism, and does not rely on channel state information (CSI) feedback, such as LTE physical downlink control channel (PDCCH, Physical Downlink).
  • CSI channel state information
  • Control Channel adopts the diversity technology SFBC transmission mode or the SFBC+FSTD diversity transmission mechanism, which has high robustness and low-order modulation coding, which further ensures high robustness. Therefore, the low-frequency system can work well, and there is no frequent communication failure link suddenly broken, and the problem of control information and data information cannot be solved at all.
  • the data channel greatly enhances its coverage due to the use of Beamforming.
  • the control channel if the robustness is guaranteed to be transmitted by a wide beam or diversity technique (such as SFBC), Therefore, there is a clear problem of coverage asymmetry.
  • a very low code rate may be required for control channel transmission, which means lower control information transmission efficiency.
  • the control channel also considers beamforming transmission using a certain width of the beam using channel state information, which means that the control channel also needs to support closed-loop multiple-input multiple-output. (MIMO) transmission technology;
  • control channel supports MIMO transmission, the resource utilization efficiency and enhanced coverage will be significantly improved, but the robustness of the link will be difficult to guarantee.
  • the control channel is generally robust. The data transmission can be restored by making some adjustments to the data transmission through the control channel. But if the control also uses MIMO transmission, Once the beam pair is out of order, such as when the terminal is moving and because the line-of-sight direct (LOS) path physically blocks (Blocking) the current transmission beam, it will cause an overall chain scission, causing severe system performance degradation.
  • LOS line-of-sight direct
  • the uplink channel status information cannot be correctly fed back, the downlink control and data will not be accurate, and the uplink control channel will be lost. In this case, the uplink and downlink, data and control links will be broken. It is not possible to quickly perform link recovery and reconstruction.
  • the case where the beam cannot be aligned or blocked can be as shown in FIG.
  • the prior art considers MIMO technology for both control and data, so there is always the problem described above; once the beam cannot be aligned or blocked, downlink control, downlink data, The uplink control and the uplink data are all broken. If there is downlink data to be sent at this time, the terminal does not receive the control information, and the data is not received, and no feedback is given. The terminal may understand that there is no information to be sent. It has been lost from the network, but the terminal may not even be aware of the loss of the link. It is wrong to assume that there is no data transmission on the downlink.
  • embodiments of the present invention are directed to providing a method, a method, a base station, a terminal, and a computer storage medium for transmitting control information.
  • An embodiment of the present invention provides a method for sending control information, where the method includes:
  • the base station determines the first type of physical layer control information; the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel;
  • the second type of physical layer control information is used to indicate a second type of control parameter of the data channel;
  • the embodiment of the invention further provides a method for detecting control information, the method comprising:
  • the first type of physical layer control information is used to indicate a first type of control parameter of a second type of physical layer control channel;
  • the embodiment of the present invention further provides a base station, where the base station includes: a first determining unit, a first sending unit, and a second sending unit;
  • the first determining unit is configured to determine, by the base station, the first type of physical layer control information; the first type of physical layer control information is used to indicate a first type of control parameter of the second type of physical layer control channel; Two types of physical layer control information; the second type of physical layer control information is used to indicate a second type of control parameter of the data channel;
  • the first sending unit is configured to send the first type of physical layer control information determined by the first determining unit;
  • the second sending unit is configured to send, according to the second physical layer control channel, the second type of physical layer control information determined by the first determining unit.
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a second determining unit and a receiving detecting unit;
  • the second determining unit is configured to determine the first type of physical layer control information; the first type of physical layer control information is used to indicate a first type of control parameter of the second type of physical layer control channel;
  • the receiving detection unit is configured to receive or detect the second type of physical layer control information on the second physical layer control channel according to the first type of physical layer control information determined by the second determining unit.
  • An embodiment of the present invention further provides a method for sending control information, where the method includes:
  • N is an integer greater than or equal to 1
  • Control information is transmitted over the Class N control channel.
  • the embodiment of the invention further provides a method for detecting control information, the method comprising:
  • N is an integer greater than or equal to 1;
  • Control information is received or detected on the Class N control channel based on the configuration information.
  • the embodiment of the present invention further provides a base station, where the base station includes: a first determining unit, a configuration unit, and a sending unit;
  • the first determining unit is configured to determine a class N control channel; where N is an integer greater than or equal to 1;
  • the configuration unit is configured to determine configuration information of the N-type control channel
  • the sending unit is configured to configure configuration information determined by the configuration unit to the receiving end, and send the control information by using the N-type control channel.
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a second determining unit and a receiving detecting unit;
  • the second determining unit is configured to determine configuration information of the N-type control channel; N is an integer greater than or equal to 1;
  • the receiving detecting unit is configured to receive or detect the control information on the class N control channel according to the configuration information determined by the second determining unit.
  • the embodiment of the invention further provides a computer storage medium, the computer storage medium comprising a set of instructions, when the instruction is executed, causing at least one processor to execute the above-mentioned method for transmitting control information, or executing the above-mentioned control information Detection method.
  • the base station determines the first type of physical layer control information; the first type of physical layer control information is used to indicate the second type a first type of control parameter of the physical layer control channel; determining a second type of physical layer control information; the second type of physical layer control information is used to indicate a second type of control parameter of the data channel; and transmitting the first type of physical layer control Information; transmitting the second type of physical layer control information on a second physical layer control channel.
  • the receiving end determines the first type of physical layer control information; the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel; and according to the first type of physical layer control information, The second physical layer control information is received or detected on the second physical layer control channel.
  • the technical solution of the embodiment of the present invention ensures that the control channel adopts the robustness of the MIMO transmission by using the added control information (the first type of physical layer control information), and solves the problem that the beam cannot be aligned or blocked in the prior art. The problem of overall chain scission, which leads to a serious decline in system performance.
  • the transmitting end determines a class N control channel; wherein N is an integer greater than or equal to 1; determining configuration information of the class N control channel; configuring the configuration information to the receiving end; and controlling by the N class
  • the channel transmits control information.
  • the receiving end determines configuration information of the N-type control channel; N is an integer greater than or equal to 1; and receives or detects control information on the N-type control channel according to the configuration information.
  • the configuration information of the N-type control channel is configured to make the transmission of one or several types of control channels more robust, and the transmission efficiency of other types of control channels is higher, thereby ensuring the adoption of the control channel.
  • the robustness of the MIMO transmission solves the problem in the prior art that once the beam cannot be aligned or blocked, the overall chain is broken, resulting in a serious degradation of system performance.
  • FIG. 1 is a schematic diagram of beam misalignment and blocking at the transceiver end
  • FIG. 2 is a schematic diagram of a first flow of a method for transmitting control information according to an embodiment of the present invention
  • FIG. 12 are schematic diagrams showing application of the first type of physical layer control information in the embodiment of the present invention.
  • FIG. 13 is a first schematic flowchart diagram of a method for detecting control information according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a first component structure of a base station according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a first component structure of a terminal according to an embodiment of the present invention.
  • 16 is a second schematic flowchart of a method for transmitting control information according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a class N control channel according to an embodiment of the present invention.
  • FIG. 18 is a second schematic flowchart diagram of a method for detecting control information according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing a second component structure of a base station according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a second component structure of a terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for transmitting control information.
  • 2 is a first schematic flowchart of a method for transmitting control information according to an embodiment of the present invention; as shown in FIG. 2, the method for transmitting control information includes:
  • Step 101 The base station determines the first type of physical layer control information, where the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel.
  • Step 102 Determine a second type of physical layer control information, where the second type of physical layer control information is used to indicate a second type of control parameter of the data channel.
  • Step 103 Send the first type of physical layer control information.
  • Step 104 Send the second type of physical layer control information on the second physical layer control channel.
  • the robustness of the control channel using MIMO transmission is ensured by adding the first-level control information, especially the MIMO uses the radio frequency precoding and the baseband pre-coding to perform the beam.
  • the mix of assignments are only possible.
  • the first type of control parameter is used to indicate the first type of control parameter of the second type of physical layer control information; and the first type of control parameter may be specifically sent by the second type of physical layer control information and/or Or related parameters received.
  • the first type of control parameters includes at least one of the following parameters: a transmission parameter of a second type of physical layer control channel; a reference pilot configuration parameter of a second type of physical layer control channel; and a second type of physical layer control channel Receive test parameters.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the second type of physical layer control information includes M second type physical layer control information blocks; and M is a natural number greater than or equal to 1.
  • the second type of physical layer control information is used to indicate a second type of control parameter of the data channel; the second type of control parameter may specifically be a transmission and/or reception reference information of the data channel, and/or a reference solution of the data channel. Adjust the pilot configuration parameter information.
  • the sending by the first type of physical layer control information, the first type of physical layer control information, or sending the preamble sequence And indicating the first type of physical layer control information by using the preamble sequence; or notifying the first type of physical layer control information by using another physical layer control channel.
  • the first type of physical layer control information is sent by using the first type of physical layer control channel, where a special first physical layer control channel is set in front of the second physical layer control channel, specifically Used to transmit the first type of physical layer control information.
  • the foregoing second mode may be indicated by a preamble sequence in a basic time interval unit, that is, by transmitting a preamble sequence, indicating information included in the control information of the first type of physical layer by using information in the preamble sequence;
  • the first type of physical layer control information may be transmitted through other physical layer control channels than the first type of physical layer control channel.
  • the technical solution of the embodiment of the present invention ensures that the control channel adopts the robustness of the MIMO transmission by using the added control information (the first type of physical layer control information), and solves the problem that the beam cannot be aligned or blocked in the prior art.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the first type of control parameter is used to indicate a sending association parameter of a second type of physical layer control channel.
  • the first type of control parameter includes at least one of the following parameters:
  • the second type of physical layer control information repeated transmission times indication parameter wherein the number of repeated transmissions changes within a range less than or equal to Np times or equal to Np times; Np is a positive integer; the second type of physical layer control
  • the information repeating transmission number indication parameter is used to indicate a physical layer basic time interval (such as a subframe, different systems have different names and names), and how many times the second type of physical layer control information is repeatedly sent, as shown in FIG.
  • the number of transmissions may be a fixed value or an upper limit, such as a fixed Np transmission, or a dynamic change within a range of less than or equal to Np times.
  • the second type of physical layer control information transmission time interval parameter wherein the second type of physical layer control information transmission time interval parameter may be an interval within a physical layer basic time interval, as shown in FIG. 5 .
  • the second type of physical layer control information transmission beam indication parameter may be represented by the number of transmission beams/ID; for example, notifying a second class in a physical layer basic time interval
  • the physical layer controls the beam ID used for information transmission and the total number of transmitted beams. The details can be as shown in Table 1.
  • Control block 1 first transmission Transmit beam a Control block 1 first transmission Transmit beam b ?? whereas Control block 2's first transmission Transmit beam A Control block 2's first transmission Transmit beam B
  • the second type of physical layer control information transmission sector indication parameter may be represented by the number of transmission sectors/ID; for example, notifying a physical layer in a basic time interval
  • the second type of physical layer controls the sector ID used for information transmission and the total number of transmitted sectors. The details can be as shown in Table 2.
  • Control block 1 first transmission Send sector a Control block 1 second transmission Send sector b ?? whereas Control block 2's first transmission Send sector A Control block 2's second transmission Transmitting sector B Control block 2's second transmission Transmitting sector C ;
  • the second type of physical layer control information transmitting antenna number may be represented by the number of transmitting antennas/ID; for example, notifying a physical layer of each second type physical layer control within a basic time interval
  • the antenna ID used for information transmission and the total number of transmit antennas are represented. Specifically, it can be as shown in Table 3.
  • Control block 1 first transmission Transmitting antenna a
  • Control block 1 first transmission Transmitting antenna b & whereas
  • Control block 2 's first transmission Transmitting antenna A
  • Control block 2 's first transmission Transmitting antenna B
  • the number of transmissions of the second type of physical layer control information block wherein, the number of transmissions of the second type of physical layer control information block varies within a range less than or equal to Nb or equal to Nb; Nb is a positive integer.
  • the second type of the second type of physical layer control information in the basic time interval of the physical layer is notified to control the maximum number of transmissions of the information block or the actual number of transmissions; the former requires the receiving end to detect and know the number of information blocks actually transmitted.
  • the second type of physical layer control information is transmitted once in a time interval (e.g., a subframe), and O represents offset information relative to a basic transmission time interval (e.g., subframe).
  • the data channel and the control channel have multiple functional relationships, F1F2, ... Fn, and the first type of control information can indicate this relationship, which actually implies what transmission technique, such as diversity or beamforming.
  • the time domain symbol length parameter carrying the second type of physical layer control information for example, there is an accumulated time domain symbol length, which needs to be indicated by the first type of physical layer control information, as shown in a and b of FIG. 7 .
  • the cyclic prefix parameter of the time domain symbol carrying the second type of physical layer control information for example, there is a cyclic prefix of multiple types of time domain symbols, which needs to be indicated by the first type of physical layer control information, as shown in FIG. 8 a and b. Shown.
  • the control channel frequency domain/time domain guard band parameter carrying the second type of physical layer control information for example, there are multiple frequency domain guard band parameters as shown in a and b in FIG. 9 , which need to be indicated by the first type of control information. .
  • the frequency domain subcarrier spacing or density parameter of the control channel carrying the second type of physical layer control information; wherein the resource frequency domain of the control channel transmission may have different subcarrier numbers, intervals, and density parameters, and needs to pass the first type of physics.
  • Layer control information indication
  • the second type of physical layer control information transmission power parameter wherein the transmission power parameter comprises a relative demodulation pilot power, or a transmission power relative to the first type of physical layer control information, and the candidate value may be 0 dB, -3 dB, 3 dB, 6dB, 9dB, etc.
  • the number of transmission layers of the control channel carrying the second type of physical layer control information wherein the number of transmission layers varies within a range less than or equal to the r layer or equal to the r layer; r is a positive integer.
  • the number of transmission layers may be specified as r, or the number of transmission layers is less than or equal to r, and the transmitting end may flexibly select, and r may take any value such as 1, 2 or the like.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the first type of control parameter is used to indicate a reference pilot configuration parameter of a second type of physical layer control channel.
  • the first type of control parameter includes at least one of the following parameters:
  • Pilot port number parameter for example, 1 port or 2 port
  • Pilot multiplexing mode parameters for example, different port pilots are multiplexed according to CDM2, different port pilots are multiplexed according to CDM4, pilot and control frequency division multiplexing, pilot and control time division multiplexing, etc.;
  • Pilot time/frequency density parameter for example, the frequency domain density is 1, the density is 1/2, the density is 1/4, etc., and the time domain density mainly refers to the number of pilot resource symbols per unit time;
  • pilot time domain symbol length parameter may be the same or different;
  • cyclic prefix parameter sent by the pilot may be the same as or different from the control time domain symbol cyclic prefix parameter;
  • the time domain/frequency domain guard band parameter of the pilot may be the same as or different from the time domain/frequency domain guard parameter of the control time domain symbol;
  • a transmission location parameter of the pilot for example, a resource pattern transmitted by the pilot, a time-frequency resource location of the pilot transmission, and the like;
  • Pilot transmission power parameters for example, a transmission power level of a pilot, a power relationship between pilots at different positions, etc.
  • Pilot type parameters for example, precoding pilots, non-precoded pilots, wide beam pilots, narrow beam pilots, periodic pilots, non-periodic pilots, etc.;
  • the pilot transmits subcarrier spacing or density parameters.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the first type of control parameter is used to indicate a receiving association parameter of a second type of physical layer control channel.
  • the first type of control parameter includes at least one of the following parameters:
  • Receive antenna port indication parameters for example, 1 port or 2 ports;
  • Receiving the detected sector range indication parameter for example, which beam range, beam ID set, and direction set need to be detected; and, for example, which transmission sector/reception sector set needs to be detected, and the like;
  • Receiving a detection number indication parameter for example, the maximum number of attempts to be detected
  • Receiving mode indication parameters for example, according to omnidirectional reception or directional reception; for example, which sector is used to receive and which antenna; for example, the type of reception mode of the attempt;
  • Receiving the detected position indication parameter for example, at which position of the time-frequency resource is received and detected;
  • Receiving basic detection unit parameter indication at the time of detection can be represented by a control channel unit (CCE) size/division manner; for example, indicating whether the basic detection unit is a first type detection unit (smaller granularity) or a second type detection unit (larger granularity) );
  • CCE control channel unit
  • the resource aggregation granularity indicating, for example, an aggregation level/aggregation level set; for example, detecting a minimum time granularity with a time domain symbol, or detecting a minimum granularity with 2 time domain symbols, and the like.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the sending period of the first type of physical layer control information is N times of the sending period of the second type of physical layer control information, and N is a natural number, as shown in FIG. 11a and FIG. 11b.
  • Figure 11b is a schematic diagram of one transmission cycle in Figure 11a.
  • the first type of control information in the figure represents the first type of physical layer control information; the second type of control information in the figure represents the second type of physical layer control information.
  • the embodiment of the invention further provides a method for transmitting control information. Based on the first embodiment, this In an embodiment, the transmission band of the first type of physical layer control information is lower than the transmission band of the second type of physical layer control information, and it may be understood that the first type of physical layer control information is sent at a low frequency; The second type of physical layer control information is transmitted at high frequencies. As an implementation manner, the transmission band of the first type of physical layer control information is less than 6 GHz; and the transmission band of the second type of physical layer control information is greater than 6 GHz.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the first type of physical layer control information is sent in a more robust manner than the second type of physical layer control information.
  • the first type of physical layer control information is transmitted by using X1 beams/sector/antenna/time domain symbols; and the second type of physical layer control information is configured by using a maximum of X2 beams/sector/antenna. /Time domain symbol transmission; X1 and X2 are positive integers; X1 is greater than or equal to X2.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the first type of physical layer control information is sent in a more robust manner than the second type of physical layer control information.
  • the first type of physical layer control channel is transmitted by using a bandwidth B1; the second type of physical layer control channel is transmitted by using a bandwidth B2; B1 and B2 are both positive integers; and B1 is greater than or equal to B2.
  • B1 is greater than or equal to B2.
  • FIG. 13 is a first schematic flowchart of a method for detecting control information according to an embodiment of the present invention; as shown in FIG. 13, the method for transmitting control information includes:
  • Step 201 Determine first type physical layer control information; the first type of physical layer control information is used to indicate a first type of control parameter of the second type physical layer control channel.
  • Step 202 Receive or detect second type physical layer control information on the second physical layer control channel according to the first type of physical layer control information.
  • the method for detecting the control information in this embodiment is used by the receiving end, and the receiving end may be specifically a terminal.
  • the determining the first type of physical layer control information includes: determining the first type of physical layer control information by receiving the first type of physical layer control information; or determining the first type of physical by detecting the preamble sequence indication Layer control information; or, the sender agrees with the first type of physical layer control information parameter range to perform blind detection to determine the first type of physical layer control information; or, by receiving information of other physical layer control channels, determines the first type of physical layer Control information.
  • the foregoing first determining manner is based on an application scenario in which the sending end sends the first type of physical layer control information by using the first type of physical layer control channel, and the receiving end receives and determines the first through the first type of physical layer control channel. Class physical layer control information.
  • the foregoing second determining manner is based on the indication that the transmitting end performs the first type of physical layer control information by sending the preamble sequence; the receiving end detects the preamble sequence, and determines the first type of physical layer control information by using the information in the preamble sequence.
  • the foregoing third determining manner determines the first type of physical layer control information based on a manner in which the transmitting end and the receiving end pre-arrange the first type of physical layer control information parameters.
  • the fourth determining manner is based on an application scenario in which the sending end sends the first type of physical layer control information by using the other physical layer control channel.
  • the first type of control parameter is used to indicate a first type of control parameter of the second type of physical layer control channel; and the first type of control parameter may be specifically sent by the second type of physical layer control channel and/or Or related parameters received.
  • the first type of control parameters includes at least one of the following parameters: a transmission parameter of a second type of physical layer control channel; a reference pilot configuration parameter of a second type of physical layer control channel; and a second type of physical layer control channel Receive test parameters.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the technical solution of the embodiment of the present invention ensures that the control channel adopts the robustness of the MIMO transmission by using the added control information (the first type of physical layer control information), and solves the problem that the beam cannot be aligned or blocked in the prior art.
  • the embodiment of the invention further provides a method for detecting control information.
  • the second type of physical layer control information includes at least one second type of physical layer control information block;
  • the first type of control parameter includes at least one of the following parameters: a second type of physical layer control information repeated transmission times indication parameter; a second type of physical layer control information transmission time interval parameter; and a second type of physical layer control information transmission beam Indication parameter; second type physical layer control information transmission sector indication parameter; second type physical layer control information transmission antenna number; second type physical layer control information block transmission number; second type physical layer control information transmission period and The basic transmission time interval offset parameter; the transmission technology/mode of the control channel carrying the second type of physical layer control information; the time domain symbol length parameter carrying the second type of physical layer control information; and the second type of physical layer control information The cyclic prefix parameter of the domain symbol; the frequency domain/time domain guard band parameter of the control channel carrying the second type of physical layer control information; the frequency domain subcarrier spacing or density parameter of the control channel carrying the second type of physical layer control information; The physical layer controls the information transmission power parameter; the number of transmission layers of the control channel carrying the second type of physical layer control information.
  • the first type of control parameter includes at least one of the following parameters: a pilot port number parameter; a pilot multiplexing mode parameter; a pilot time/frequency density parameter; and a pilot time domain symbol length parameter.
  • the cyclic prefix parameter sent by the pilot the time domain/frequency domain guard band parameter of the pilot; the transmit position parameter of the pilot; the pilot transmit power parameter; the pilot type parameter; the pilot transmit subcarrier spacing or density parameter.
  • the first type of control parameter includes at least one of the following parameters: a receiving antenna port indication parameter, a received sector range indication parameter, a reception detection frequency indication parameter, a reception mode indication parameter, and a reception beam.
  • the indication parameter of the range includes the location indication parameter that receives the detection; the basic detection unit parameter indication when receiving the detection; and the resource aggregation granularity indication when the detection is received.
  • the embodiment of the invention further provides a method for detecting control information.
  • the receiving/detecting period of the first type of physical layer control information is N times of the receiving/detecting period of the second type of physical layer control information, and N is a natural number.
  • the embodiment of the invention further provides a method for detecting control information. Based on embodiment IX, this In an embodiment, the receiving/detecting frequency band of the first type of physical layer control information is lower than the receiving/detecting frequency band of the second type of physical layer control information. It can be understood that the first type of physical layer control information is received/detected at a low frequency; and the second type of physical layer control information is received/detected at a high frequency. As an implementation manner, the receiving/detecting frequency band of the first type of physical layer control information is less than 6 GHz; and the receiving/detecting frequency band of the second type of physical layer control information is greater than 6 GHz.
  • the embodiment of the invention further provides a method for detecting control information.
  • the first type of physical layer control information is received/detected by using a more robust transmission manner with respect to the second type of physical layer control information.
  • the first type of physical layer control information is received by using X1 beams/sector/antenna/time domain symbols, and the first type of physical layer control information adopts the maximum X2 beams/sectors. / Antenna / time domain symbol reception; X1 and X2 are positive integers; X1 is greater than or equal to X2.
  • the embodiment of the invention further provides a method for detecting control information.
  • the first type of physical layer control information is received/detected by using a more robust transmission manner with respect to the second type of physical layer control information.
  • the first type of physical layer control channel uses bandwidth B1 to receive/detect; the second type of physical layer control channel uses bandwidth B2 to receive/detect; B1 and B2 are positive integers; B1 is greater than or Equal to B2.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention; as shown in FIG. 14, the base station includes: a first determining unit 31, a first sending unit 32, and a second sending unit 33;
  • the first determining unit 31 is configured to determine, by the base station, the first type of physical layer control information, where the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel, and is further configured to determine a second type of physical layer control information; the second type of physical layer control information is used to indicate a second type of control parameter of the data channel;
  • the first sending unit 32 is configured to send the first type of physical layer control information determined by the first determining unit 31;
  • the second sending unit 33 is configured to send, according to the second physical layer control channel, the second type of physical layer control information determined by the first determining unit 31.
  • the first type of control parameter is used to indicate a first type of control parameter of the second type of physical layer control channel; and the first type of control parameter may be specifically sent by the second type of physical layer control channel and/or Or related parameters received.
  • the first type of control parameters includes at least one of the following parameters: a transmission parameter of a second type of physical layer control channel; a reference pilot configuration parameter of a second type of physical layer control channel; and a second type of physical layer control channel Receive test parameters.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the second type of physical layer control information includes M second type physical layer control information blocks; and M is a natural number greater than or equal to 1.
  • the second type of physical layer control information is used to indicate a second type of control parameter of the data channel; the second type of control parameter may specifically be a transmission and/or reception reference information of the data channel, and/or a reference solution of the data channel. Adjust the pilot configuration parameter information.
  • the first sending unit 32 is configured to send the first type of physical layer control information by using a first type of physical layer control channel, or send a preamble sequence to indicate the first part by using the preamble sequence.
  • a type of physical layer control information; or, the first type of physical layer control information is notified through other physical layer control channels.
  • the first type of physical layer control information is sent by using the first type of physical layer control channel, where a dedicated first physical layer control channel is set in front of the second physical layer control channel, specifically Used to transmit the first type of physical layer control information.
  • the foregoing second mode may be indicated by a preamble sequence in a basic time interval unit, that is, by transmitting a preamble sequence, indicating information included in the control information of the first type of physical layer by using information in the preamble sequence;
  • the first type of physical layer control information may be transmitted through other physical layer control channels than the first type of physical layer control channel.
  • the second type of physical layer control information includes at least one second type of physical layer control information block.
  • the first type of control parameters includes the following: At least one of the parameters:
  • the first type of control parameter includes at least one of the following parameters: a pilot port number parameter; a pilot multiplexing mode parameter; a pilot time/frequency density parameter; and a pilot time domain symbol length parameter.
  • the cyclic prefix parameter sent by the pilot the time domain/frequency domain guard band parameter of the pilot; the transmit position parameter of the pilot; the pilot transmit power parameter; the pilot type parameter; the pilot transmit subcarrier spacing or density parameter.
  • the first type of control parameter includes at least one of the following parameters: a receiving antenna port indication parameter, a received sector range indication parameter, a reception detection frequency indication parameter, a reception mode indication parameter, and a reception beam.
  • the indication parameter of the range includes the location indication parameter that receives the detection; the basic detection unit parameter indication when receiving the detection; and the resource aggregation granularity indication when the detection is received.
  • the sending period of the first type of physical layer control information is N times of the sending period of the second type of physical layer control information, and N is a natural number.
  • the transmission frequency band of the first type of physical layer control information is lower than the transmission frequency band of the second type of physical layer control information.
  • the transmission band of the first type of physical layer control information is less than 6 GHz; and the transmission band of the second type of physical layer control information is greater than 6 GHz.
  • the first type of physical layer control information is sent in a more robust transmission manner with respect to the second type of physical layer control information.
  • the first type of physical layer control information is transmitted by using X1 beams/sector/antenna/time domain symbols;
  • the second type of physical layer control information is transmitted by using a maximum of X2 beams/sector/antenna/time domain symbols;
  • X1 And X2 are both positive integers;
  • X1 is greater than or equal to X2.
  • the first type of physical layer control information is sent in a more robust transmission manner with respect to the second type of physical layer control information.
  • the first type of physical layer control channel is transmitted by using a bandwidth B1; the second type of physical layer control channel is transmitted by using a bandwidth B2; B1 and B2 are both positive integers; and B1 is greater than or equal to B2.
  • the first determining unit 31 in the base station may be implemented by a processor in the base station, such as a central processing unit (CPU), a digital signal processor (DSP, Digital Signal). Realized by a processor, a Microcontroller Unit (MCU) or a Field-Programmable Gate Array (FPGA); the first transmitting unit 32 and the second transmitting unit 33 in the base station are in practical applications. Both can be implemented through communication modules (including: basic communication suites, operating systems, communication modules, standardized interfaces and protocols, etc.) and transceiver antennas.
  • a processor in the base station such as a central processing unit (CPU), a digital signal processor (DSP, Digital Signal). Realized by a processor, a Microcontroller Unit (MCU) or a Field-Programmable Gate Array (FPGA); the first transmitting unit 32 and the second transmitting unit 33 in the base station are in practical applications. Both can be implemented through communication modules (including: basic communication suites, operating systems, communication modules, standardized interfaces and protocols, etc.
  • FIG. 15 is a schematic structural diagram of a terminal according to an embodiment of the present invention; as shown in FIG. 15, the terminal includes: a second determining unit 41 and a receiving detecting unit 42;
  • the second determining unit 41 is configured to determine the first type of physical layer control information; the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel;
  • the receiving and detecting unit 42 is configured to receive or detect the second type of physical layer control information on the second physical layer control channel according to the first type of physical layer control information determined by the second determining unit 41.
  • the second determining unit 41 is configured to determine the first type of physical layer control information by receiving the first type of physical layer control information, or determine the first type of physical layer control information by detecting the preamble sequence indication.
  • the first type of physical layer control information parameter range is determined by the transmitting end to perform blind detection to determine the first type of physical layer control information; or the first type of physical layer control information is determined by receiving information of other physical layer control channels.
  • the foregoing first determining manner is based on an application scenario in which the sending end sends the first type of physical layer control information by using the first type of physical layer control channel, and the receiving end receives and determines the first through the first type of physical layer control channel. Class physical layer control information.
  • the foregoing second determining manner is based on the indication that the transmitting end performs the first type of physical layer control information by sending the preamble sequence; the receiving end detects the preamble sequence, and passes the preamble The information in the column determines the first type of physical layer control information.
  • the foregoing third determining manner determines the first type of physical layer control information based on a manner in which the transmitting end and the receiving end pre-arrange the first type of physical layer control information parameters.
  • the fourth determining manner is based on an application scenario in which the sending end sends the first type of physical layer control information by using the other physical layer control channel.
  • the first type of control parameter is used to indicate a first type of control parameter of the second type of physical layer control channel; and the first type of control parameter may be specifically sent by the second type of physical layer control channel and/or Or related parameters received.
  • the first type of control parameters includes at least one of the following parameters: a transmission parameter of a second type of physical layer control channel; a reference pilot configuration parameter of a second type of physical layer control channel; and a second type of physical layer control channel Receive test parameters.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the second type of physical layer control information includes at least one second type of physical layer control information block; as an implementation manner, the first type of control
  • the parameter includes at least one of the following parameters:
  • the second type of physical layer controls the number of transmitting antennas; the number of transmissions of the second type of physical layer control information blocks; the transmission period of the second type of physical layer control information and the basic transmission time interval offset parameters; and the second type of physical layer control information Transmission technology/mode of the control channel; time domain symbol length parameter carrying the second type of physical layer control information; cyclic prefix parameter carrying the time domain symbol of the second type of physical layer control information; carrying the second type of physical layer control information Control channel frequency domain/time domain guard band parameter; control channel frequency domain subcarrier spacing or density parameter carrying second type physical layer control information; second type physical layer control information sending power parameter; carrying second type physical layer control information The number of transmission layers of the control channel.
  • the first type of control parameter includes at least one of the following parameters: a pilot port number parameter; a pilot multiplexing mode parameter; a pilot time/frequency density parameter; and a pilot time domain symbol length parameter. ; cyclic prefix parameter for pilot transmission; time domain/frequency domain guard band parameters of pilot; transmit position parameter of pilot; pilot transmit power parameter; pilot type parameter; pilot transmit subcarrier Interval or density parameter.
  • the first type of control parameter includes at least one of the following parameters: a receiving antenna port indication parameter, a received sector range indication parameter, a reception detection frequency indication parameter, a reception mode indication parameter, and a reception beam.
  • the indication parameter of the range includes the location indication parameter that receives the detection; the basic detection unit parameter indication when receiving the detection; and the resource aggregation granularity indication when the detection is received.
  • the receiving/detecting period of the first type of physical layer control information is N times of the receiving/detecting period of the second type of physical layer control information, and N is a natural number.
  • the receiving/detecting frequency band of the first type of physical layer control information is lower than the receiving/detecting frequency band of the second type of physical layer control information.
  • the first type of physical layer control information is received by using X1 beams/sector/antenna/time domain symbols, and the first type of physical layer control information is received by using the maximum X2 beams/sector/antenna/time domain symbols.
  • X1 and X2 are both positive integers; X1 is greater than or equal to X2.
  • the first type of physical layer control channel is received/detected by bandwidth B1; the second type of physical layer control channel is received/detected by bandwidth B2; B1 and B2 are both positive integers; B1 is greater than or equal to B2.
  • the second determining unit 41 in the terminal may be implemented by a processor such as a CPU, a DSP, an MCU, or an FPGA in the terminal in an actual application; the receiving and detecting unit 42 in the terminal, In practical applications, it can be realized through communication modules (including: basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antennas.
  • a processor such as a CPU, a DSP, an MCU, or an FPGA in the terminal in an actual application
  • the receiving and detecting unit 42 in the terminal In practical applications, it can be realized through communication modules (including: basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antennas.
  • FIG. 16 is a second schematic flowchart of a method for transmitting control information according to an embodiment of the present invention; as shown in FIG. 16, the method for transmitting control information includes:
  • Step 301 Determine a Class N control channel; where N is an integer greater than or equal to 1.
  • Step 302 Determine configuration information of the Type N control channel.
  • Step 303 Configure the configuration information to the receiving end.
  • Step 304 Send control information through the N-type control channel.
  • the transmitting end configures a class N control channel, where N is greater than or equal to 1, as an implementation manner, N is equal to 2 or 3; as shown in FIG. 17; each type of control channel is available.
  • N is greater than or equal to 1, as an implementation manner, N is equal to 2 or 3; as shown in FIG. 17; each type of control channel is available.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, so as to ensure the robustness of the control channel using MIMO transmission, especially the MIMO uses the radio frequency pre- Coding and baseband precoding for beamforming mixing.
  • the sending end determines configuration information of the N-type control channel, where the configuration information includes at least one of the following parameters: a sending parameter of the N-type control channel; and a demodulation pilot parameter of the N-type control channel.
  • Receiving detection parameters of the Class N control channel The value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the configuring the configuration information to the receiving end includes: notifying the configuration information to the receiving end by using signaling that is the same carrier as the data transmission; or, by using the configuration information, different from the data transmission
  • the signaling of the carrier is sent to the receiving end; or the preamble sequence is sent to the receiving end, and the configuration information is configured to the receiving end by using the preamble sequence.
  • configuration parameters of the N-type control channel need to be configured, and the transmitting end will send control information through the N-type control channel.
  • the configuration information of the N-type control channel is configured to make the transmission of one or several types of control channels more robust, and the transmission efficiency of other types of control channels is higher, thereby ensuring that the control channel adopts MIMO transmission.
  • the robustness solves the problem in the prior art that once the beam cannot be aligned or blocked, the overall chain scission causes a serious degradation of system performance.
  • the embodiment of the invention further provides a method for transmitting control information. Based on the seventeenth embodiment, in this embodiment, when N is greater than or equal to 2, the transmission period of the first type of control channel allocation is M times of the transmission period allocated by the second type of control channel; and M is a positive integer.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, based on the design principle,
  • the available transmission resource period for the allocation of a class of control channels is the second type of control signal
  • the channel is allocated M times the available transmission resource period.
  • the embodiment of the invention further provides a method for transmitting control information. Based on the seventeenth embodiment, in this embodiment, when N is greater than or equal to 2, the transmission frequency band allocated by the first type of control channel is smaller than the transmission frequency band allocated by the second type of control channel.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, based on the design principle,
  • the frequency band to which the transmission resource of the control channel is allocated is smaller than the frequency band to which the transmission resource allocated by the second type of control channel belongs; as an implementation manner, the frequency band to which the transmission resource of the first type of control channel is allocated is less than 6 GHz; the second type of control channel
  • the allocated transmission resource belongs to a frequency band greater than 6 GHz.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the transmission resource allocated by the first type of control channel includes X1 beams/sector/antenna/time domain symbols, and the transmission of the second type of control channel allocation
  • the resource contains X2 beams/sector/antenna/time domain symbols; X1 and X2 are both positive integers; X1 is greater than or equal to X2.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, based on the design principle
  • the transmission resource allocated by one type of control channel includes X1 beam/sector/antenna/time domain symbol transmission, and the transmission resource allocated by the second type of control channel includes X2 beam/sector/antenna/time domain symbol transmission; X1 ⁇ X2 .
  • the embodiment of the invention further provides a method for transmitting control information. Based on the seventeenth embodiment, in this embodiment, when N is greater than or equal to 2, the first type of control channel is transmitted by using bandwidth B1, and the second type of control channel is transmitted by using bandwidth B2, and both B1 and B2 are positive integers; B1 is greater than or Equal to B2.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, based on the design principle,
  • the transmission resource allocated by one type of control channel corresponds to the bandwidth B1, and the second type of control signal
  • the transmission resource allocated by the channel corresponds to the bandwidth B2, and B1 ⁇ B2.
  • the embodiment of the invention further provides a method for transmitting control information.
  • the maximum aggregation level sent by the first type of control channel is greater than or equal to the maximum aggregation level sent by the second type of control channel.
  • the maximum aggregation level set sent by the second type of control channel is a subset of the aggregation level sent by the first type of control channel.
  • FIG. 18 is a second schematic flowchart of a method for detecting control information according to an embodiment of the present invention. As shown in FIG. 18, the method for detecting control information includes:
  • Step 401 Determine configuration information of a class N control channel; N is an integer greater than or equal to 1.
  • Step 402 Receive or detect control information on the Type N control channel according to the configuration information.
  • the method for detecting the control information in this embodiment is used by the receiving end, and the receiving end may be specifically a terminal.
  • the terminal performs the receiving/detecting of the N-type control channel, and needs to determine the configuration information corresponding to the N-type control channel.
  • the configuration information includes at least one of the following parameters: a transmission parameter of the N-type control channel; a demodulation pilot parameter of the N-type control channel; and a reception detection parameter of the N-type control channel.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the determining configuration information of the N-type control channel includes: determining configuration information by signaling with the same carrier as the data transmission; or determining configuration information by signaling with a different carrier of the data transmission; or, receiving The indication of the preamble sequence determines the configuration information.
  • the transmission of one or several types of control channels is more robust, and the transmission efficiency of other types of control channels is higher, thereby ensuring the robustness of the control channel using MIMO transmission, and solving the problem that the beam cannot be aligned or blocked in the prior art. , causing the overall chain scission, which leads to a serious decline in system performance.
  • the embodiment of the invention further provides a method for detecting control information.
  • the design principle is that when N is greater than or equal to 2, the reception/detection period of the first type of control channel allocation is M times the reception/detection period allocated by the second type of control channel; M is a positive integer.
  • the embodiment of the invention further provides a method for detecting control information.
  • the received/detected frequency band of the first type of control channel is less than 6 GHz; the received/detected frequency band of the second type of control channel is greater than 6 GHz.
  • the embodiment of the invention further provides a method for detecting control information.
  • the receiving/detecting resources allocated by the first type of control channel include X1 beams/sector/antenna/time domain symbols
  • the receiving/detecting resources allocated by the second type of control channel include X2 Beam/sector/antenna/time domain symbols
  • X1 and X2 are positive integers
  • X1 is greater than or equal to X2.
  • the embodiment of the invention further provides a method for detecting control information.
  • the transmission of the channel is more robust, and the transmission efficiency of the second type of control channel is higher.
  • the first type of control channel uses bandwidth B1 to receive/detect
  • the second type of control channel uses bandwidth.
  • B2 receives/detects, B1 and B2 are both positive integers; B1 is greater than or equal to B2.
  • the embodiment of the invention further provides a method for detecting control information.
  • the design principle is that when N is greater than or equal to 2, the maximum aggregation level of the first type of control channel reception/detection is greater than or equal to the maximum aggregation level of the second type of control channel reception/detection.
  • the maximum aggregation level set received/detected by the second type of control channel is a subset of the aggregation level received/detected by the first type of control channel.
  • the embodiment of the invention further provides a method for detecting control information.
  • the design principle is that when N is greater than or equal to 2, the set of time domain subframes that receive/detect the first type of control channel detection (the time domain subframes may be physical layer basic time intervals) is the second type of receiving/detecting. A subset of the time domain subframe set of the control channel.
  • the terminal may determine the control channel type according to at least one of the following manners: a time domain location, an indication information of the preamble sequence, and a signaling notification of a different carrier from the data transmission.
  • FIG. 19 is a schematic diagram of a second component structure of a base station according to an embodiment of the present invention; as shown in FIG. 19, the base station includes: a first determining unit 51, a configuration unit 52, and a sending unit 53;
  • the first determining unit 51 is configured to determine a class N control channel; where N is an integer greater than or equal to 1;
  • the configuration unit 52 is configured to determine configuration information of the N-type control channel
  • the sending unit 53 is configured to configure the configuration information determined by the configuration unit 52 to the receiving end, and is further configured to send the control information by using the N-type control channel.
  • the configuration information includes at least one of the following parameters: a transmission parameter of the N-type control channel; a demodulation pilot parameter of the N-type control channel; and a reception detection parameter of the N-type control channel.
  • the first determining unit 51 configures a class N control channel, where N is greater than or equal to 1, as an embodiment, N is equal to 2 or 3; as shown in FIG. 17;
  • the class control channel can be used to transmit configuration information related to the data channel.
  • the transmission of the first type of control channel is more robust, and the transmission efficiency of the second type of control channel is higher, so as to ensure the robustness of the control channel using MIMO transmission, especially MIMO uses RF precoding and baseband precoding for beamforming.
  • the configuration unit 52 determines configuration information of the N-type control channel, where the configuration information includes at least one of the following parameters: a transmission parameter of the N-type control channel; and demodulation of the N-type control channel. Pilot parameters; receive detection parameters of the Class N control channel.
  • the value of the foregoing parameter may be a certain value or a range of values or a set of candidate values. If it is not a certain value, the receiving end needs to perform some blind detection to obtain an accurate control parameter.
  • the sending unit 53 is configured to notify the configuration information that the configuration information is signaled by the same carrier as the data transmission; or, the configuration information is notified to the carrier by using a different carrier with the data transmission.
  • the receiving end sends a preamble sequence to the receiving end, and configures the configuration information to the receiving end by using the preamble sequence.
  • the first determining unit 51 and the configuration unit 52 in the base station of the embodiment of the present invention may be implemented by a processor in the base station, such as a CPU, a DSP, an MCU, or an FPGA, etc. in a practical application; the sending unit 53 in the base station In practical applications, it can be realized through communication modules (including: basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antennas.
  • a processor in the base station such as a CPU, a DSP, an MCU, or an FPGA, etc. in a practical application
  • the sending unit 53 in the base station In practical applications, it can be realized through communication modules (including: basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antennas.
  • the embodiment of the present invention further provides a base station.
  • a base station According to the thirtieth embodiment, in this embodiment, at least a first type of control channel and a second type of control channel exist; the transmission of the first type of control channel is more robust, and the second type Control channel transmission efficiency is higher, based on this design principle, as an implementer For example, when N is greater than or equal to 2, the transmission period of the first type of control channel allocation is M times the transmission period allocated by the second type of control channel; M is a positive integer.
  • the transmission frequency band allocated by the first type of control channel is smaller than the transmission frequency band allocated by the second type of control channel.
  • the transmission resource allocated by the first type of control channel includes X1 beams/sector/antenna/time domain symbols
  • the transmission resource allocated by the second type of control channel includes X2 beams.
  • X1 and X2 are positive integers;
  • X1 is greater than or equal to X2.
  • the first type of control channel is transmitted by using bandwidth B1
  • the second type of control channel is transmitted by using bandwidth B2
  • both B1 and B2 are positive integers
  • B1 is greater than or equal to B2.
  • the maximum aggregation level sent by the first type of control channel is greater than or equal to the maximum aggregation level sent by the second type of control channel.
  • the maximum aggregation level set sent by the second type of control channel is a subset of the aggregation level sent by the first type of control channel.
  • FIG. 20 is a second schematic structural diagram of a terminal according to an embodiment of the present invention; as shown in FIG. 20, the terminal includes: a second determining unit 61 and a receiving detecting unit 62;
  • the second determining unit 61 is configured to determine configuration information of the N-type control channel; N is an integer greater than or equal to 1;
  • the receiving detecting unit 62 is configured to receive or detect the control information on the class N control channel according to the configuration information determined by the second determining unit 61.
  • the receiving and detecting unit 62 performs receiving/detecting of the N-type control channel, and needs to determine configuration information corresponding to the N-type control channel.
  • the configuration information includes at least one of the following parameters: a transmission parameter of the N-type control channel; a demodulation pilot parameter of the N-type control channel; and a reception detection parameter of the N-type control channel.
  • the value of the above parameter may be a certain value or a range of values or a set of candidate values, if not determined The value requires the receiver to perform some blind detection to obtain accurate control parameters.
  • the second determining unit 61 determines configuration information of the N-type control channel, including: determining configuration information by signaling with the same carrier as the data transmission; or determining configuration information by signaling with different carriers of the data transmission.
  • the configuration information is determined by receiving an indication of the preamble sequence.
  • the embodiment of the present invention further provides a method for detecting control information.
  • Embodiment 32 in this embodiment, at least a first type of control channel and a second type of control channel exist; and the transmission of the first type of control channel is more The transmission efficiency of the second type of control channel is higher.
  • N is greater than or equal to 2
  • the reception/detection period of the first type of control channel allocation is the second type of control channel allocation. M times the reception/detection period; M is a positive integer.
  • the receiving/detecting frequency band allocated by the first type of control channel is smaller than the receiving/detecting frequency band allocated by the second type of control channel.
  • the received/detected frequency band of the first type of control channel is less than 6 GHz; the received/detected frequency band of the second type of control channel is greater than 6 GHz.
  • the receiving/detecting resources allocated by the first type of control channel include X1 beams/sector/antenna/time domain symbols, and the receiving/detecting resources allocated by the second type of control channel are allocated.
  • X1 beams/sector/antenna/time domain symbols Contains X2 beams/sector/antenna/time domain symbols; X1 and X2 are positive integers; X1 is greater than or equal to X2.
  • the first type of control channel uses the bandwidth B1 to receive/detect
  • the second type of control channel uses the bandwidth B2 to receive/detect
  • both B1 and B2 are positive integers
  • B1 is greater than or equal to B2.
  • the maximum aggregation level of the first type of control channel reception/detection is greater than or equal to the maximum aggregation level received/detected by the second type of control channel.
  • the maximum aggregation level set received/detected by the second type of control channel is a subset of the aggregation level received/detected by the first type of control channel.
  • a set of time domain subframes (the time domain subframes may be physical layer basic time intervals) that are detected/detected by the first type of control channel are received/detected.
  • the receiving and detecting unit 62 determines the control channel type according to at least one of the following manners: a time domain location, an indication information of a preamble sequence, and a signaling notification of a different carrier from the data transmission.
  • the second determining unit 61 in the terminal of the embodiment of the present invention may be implemented by a processor in the terminal, such as a CPU, a DSP, an MCU, or an FPGA.
  • the receiving and detecting unit 62 may pass through a communication module in an actual application. : basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antenna implementation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium includes a set of instructions, when the instruction is executed, causing at least one processor to execute a method for transmitting control information according to an embodiment of the present invention. Or the method for detecting control information in the embodiment of the present invention is executed.
  • the base station determines the first type of physical layer control information; the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel; Physical layer control information; the second type of physical layer control information is used to indicate a second type of control parameter of the data channel; the first type of physical layer control information is sent; and the first physical layer control channel is sent Two types of physical layer control information.
  • the receiving end determines the first type of physical layer control information; the first type of physical layer control information is used to indicate the first type of control parameters of the second type of physical layer control channel; and according to the first type of physical layer control information, The second physical layer control information is received or detected on the second physical layer control channel.
  • the technical solution of the embodiment of the present invention ensures that the control channel adopts the robustness of the MIMO transmission by using the added control information (the first type of physical layer control information), and solves the problem that the beam cannot be aligned or blocked in the prior art.
  • the transmitting end determines a class N control channel; wherein N is an integer greater than or equal to 1; determining configuration information of the class N control channel; configuring the configuration information to the receiving end; and controlling by the N class
  • the channel transmits control information.
  • the receiving end determines configuration information of the N-type control channel; N is an integer greater than or equal to 1; and receives or detects control information on the N-type control channel according to the configuration information.
  • the configuration information of the N-type control channel is configured to make the transmission of one or several types of control channels more robust, and the transmission efficiency of other types of control channels is higher, thereby ensuring the adoption of the control channel.
  • the robustness of the MIMO transmission solves the problem in the prior art that once the beam cannot be aligned or blocked, the overall chain is broken, resulting in a serious degradation of system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种控制信息的发送方法、检测方法、基站、终端和计算机存储介质。所述方法包括:基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;发送所述第一类物理层控制信息;在第二物理层控制信道上发送所述第二类物理层控制信息。

Description

控制信息的发送方法、检测方法、基站、终端和存储介质
相关申请的交叉引用
本申请基于申请号为201610323309.3、申请日为2016年05月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术,具体涉及一种控制信息的发送方法、检测方法、基站、终端和计算机存储介质。
背景技术
无线通信系统中,物理层的链路可靠性是一个非常重要的问题。物理链路质量变坏会引起不同程度的系统性能的下降。一般来说,数据信道这一层级的链路在物理层要保障90%左右的传输成功率,比如计算并上报信道质量指示(CQI,Channel Quality Indication)时,都是按照这0.9左右的目标误块率来选择合适的调制编码方式。如果实际传输时数据块没有传对,终端需要反馈NACK给基站,基站根据终端的反馈进行重传,可以发起多次针对未传对的数据块进行重传,提高最终的数据块的解对的成功率。除了物理层的重传技术,还可以在高层发起更大数据块的进行重传。对于控制信道,链路可靠性要求很高,物理控制信息一般没有重传机制,物理控制信息一次性传输正确率一般要要达到99%,有一部分更重要的控制信息传输成功率要达到99.9%甚至更高,避免控制信息丢失引起的一些系统性能严重下降,比如物理控制格式指示信道(PCFICH,Physical Control Format Indicator CHannel)承载物理控制信道符号的指示信息)。
在低频的系统中,比如4G长期演进(LTE,Long Term Evolution)系统,数据信道一般可以使用多天线的闭环波束赋型技术,可以获得很高的 传输吞吐量,但是波束赋型技术的一个特点是,能量在空间上非常集中,虽然准确时性能非常好,但一旦波束方向有一些不准确就会性能下降,尤其是大规模天线系统中形成的波束很窄,虽然能量非常集中波束对准时增益很高,波束稍有偏离就会性能严重下降,甚至可能完全收不到信号,数据信道的特点是重视传输效率而鲁棒性会差一些,不过由于数据信道之前有控制信道进行一些动态的指示数据信道传输策略的调整,当发现这种情况时可以快速的调整到宽波束或者进行波束切换,因此不会造成特别严重影响,而且数据信道本身的目标误块率要求就不是非常的苛刻,还可以重传,因此不会存在很严重的问题。
对于控制信道,低频的LTE系统中,物理控制信道一般采用比较鲁棒的传输机制,不依赖于信道状态信息(CSI,Channel State Information)的反馈,比如LTE的物理下行控制信道(PDCCH,Physical Downlink Control Channel)采用分集技术SFBC的传输方式或者SFBC+FSTD的分集传输机制,鲁棒性高,并且采用低阶调制编码,进一步的保障了高鲁棒性。因此低频系统中可以很好的进行工作,不会经常出现通信突然链接断掉,完全无法解出控制信息及数据信息的问题。
但随着天线数目越来越多,数据信道由于使用了Beamforming会大大的增强其覆盖,但对于控制信道,如果保障鲁棒性属于用很宽的波束或分集技术(例如SFBC)来进行传输,因此有明显的覆盖不对称问题。为了解决该问题可能需要非常低的码率来进行控制信道传输,这意味着较低的控制信息传输效率,对于高频系统,这个问题会非常的明显,因为高频的覆盖本来就是一个很大的问题需要利用大规模天线的Beamforming增益来对抗较大的路损,因此控制信道也会考虑利用信道状态信息采用一定宽度的波束进行beamforming传输,这意味着控制信道也需要支持闭环多输入多输出(MIMO)传输技术;
如果控制信道支持MIMO传输,会明显地提高资源利用效率和增强覆盖,但链路的鲁棒性会比较难以保障,低频的LTE系统中,如果数据链路出现问题,控制信道一般还是比较鲁棒的,可以通过控制信道进行对数据传输进行一些调整,恢复数据链路。但是如果控制也使用了MIMO传输, 一旦波束对不准时,比如终端移动的情况以及由于视距直射(LOS)径物理阻塞(Blocking)掉了当前传输波束,会造成整体断链,引起严重的系统性能下降。比如波束不能对准,那么上行信道状态信息也无法正确的反馈,下行控制和数据也不会准确,继而上行控制信道也会丢失;这种情况下上行和下行,数据和控制链路都会断掉,不能快速的进行链路恢复重建。波束不能对准或阻塞的情况可如图1所示。
在高频系统中,大规模天线应用时,现有技术对于控制和数据都会考虑采用MIMO技术,因此总是存在上面描述的问题;一旦波束不能对准或阻塞,会出现下行控制、下行数据、上行控制、上行数据全部断链,如果此时有下行数据要发,终端收不到控制信息,更收不到数据,也不会进行任何反馈,可能导致终端理解为没有信息发送,此时终端已经从网络中丢失了,但终端甚至不可能意识到链路的丢失这个问题,会错误的认为是下行没有数据发送。
发明内容
有鉴于此,本发明实施例期望提供一种控制信息的发送方法、检测方法、基站、终端和计算机存储介质。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种控制信息的发送方法,所述方法包括:
基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;
发送所述第一类物理层控制信息;
在第二物理层控制信道上发送所述第二类物理层控制信息。
本发明实施例还提供了一种控制信息的检测方法,所述方法包括:
确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
根据所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
本发明实施例还提供了一种基站,所述基站包括:第一确定单元、第一发送单元和第二发送单元;其中,
所述第一确定单元,配置为基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;还配置为确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;
所述第一发送单元,配置为发送所述第一确定单元确定的第一类物理层控制信息;
所述第二发送单元,配置为在第二物理层控制信道上发送所述第一确定单元确定的第二类物理层控制信息。
本发明实施例还提供了一种终端,所述终端包括:第二确定单元和接收检测单元;其中,
所述第二确定单元,配置为确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
所述接收检测单元,配置为根据所述第二确定单元确定的所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
本发明实施例还提供了一种控制信息的发送方法,所述方法包括:
确定N类控制信道;其中,N为大于或等于1的整数;
确定所述N类控制信道的配置信息;
将所述配置信息配置给接收端;
通过所述N类控制信道发送控制信息。
本发明实施例还提供了一种控制信息的检测方法,所述方法包括:
确定N类控制信道的配置信息;N为大于或等于1的整数;
根据所述配置信息,在所述N类控制信道上接收或检测控制信息。
本发明实施例还提供了一种基站,所述基站包括:第一确定单元、配置单元和发送单元;其中,
所述第一确定单元,配置为确定N类控制信道;其中,N为大于或等于1的整数;
所述配置单元,配置为确定所述N类控制信道的配置信息;
所述发送单元,配置为将所述配置单元确定的配置信息配置给接收端;以及通过所述N类控制信道发送控制信息。
本发明实施例还提供了一种终端,所述终端包括:第二确定单元和接收检测单元;其中,
所述第二确定单元,配置为确定N类控制信道的配置信息;N为大于或等于1的整数;
所述接收检测单元,配置为根据所述第二确定单元确定的配置信息,在所述N类控制信道上接收或检测控制信息。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的控制信息的发送方法,或者执行上述的控制信息的检测方法。
本发明实施例的控制信息的发送方法、检测方法、基站、终端和计算机存储介质,一方面,基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;发送所述第一类物理层控制信息;在第二物理层控制信道上发送所述第二类物理层控制信息。接收端确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;根据所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。采用本发明实施例的技术方案,通过增加的控制信息(第一类物理层控制信息)保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
另一方面,发送端确定N类控制信道;其中,N为大于或等于1的整数;确定所述N类控制信道的配置信息;将所述配置信息配置给接收端;通过所述N类控制信道发送控制信息。接收端确定N类控制信道的配置信息;N为大于或等于1的整数;根据所述配置信息,在所述N类控制信道上接收或检测控制信息。如此,采用本实施例的技术方案,通过配置N类控制信道的配置信息,使某一类或几类控制信道的传输更加鲁棒,其他类控制信道的传输效率更高,从而保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为收发端波束未对齐和阻塞示意图;
图2为本发明实施例的控制信息的发送方法的第一种流程示意图;
图3至图12分别为本发明实施例中的第一类物理层控制信息的应用示意图;
图13为本发明实施例的控制信息的检测方法的第一种流程示意图;
图14为本发明实施例的基站的第一种组成结构示意图;
图15为本发明实施例的终端的第一种组成结构示意图;
图16为本发明实施例的控制信息的发送方法的第二种流程示意图;
图17为本发明实施例的N类控制信道的示意图;
图18为本发明实施例的控制信息的检测方法的第二种流程示意图;
图19为本发明实施例的基站的第二种组成结构示意图;
图20为本发明实施例的终端的第二种组成结构示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细的说明。
实施例一
本发明实施例提供了一种控制信息的发送方法。图2为本发明实施例的控制信息的发送方法的第一种流程示意图;如图2所示,所述控制信息的发送方法包括:
步骤101:基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数。
步骤102:确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数。
步骤103:发送所述第一类物理层控制信息。
步骤104:在第二物理层控制信道上发送所述第二类物理层控制信息。
在本实施例的控制信息的发送方法中,如图3所示,通过增加一级控制信息来保障控制信道使用MIMO传输的鲁棒性,尤其是MIMO使用了射频预编码和基带预编码进行波束赋型的混合情况。
本实施例中,所述第一类控制参数用于指示第二类物理层控制信息的第一类控制参数;所述第一类控制参数具体可以为第二类物理层控制信息的发送和/或接收的关联参数。其中,所述第一类控制参数包括以下参数的至少一种:第二类物理层控制信道的发送参数;第二类物理层控制信道的参考导频配置参数;第二类物理层控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步的进行一些盲检测才能获知准确的控制参数。
本实施例中,所述第二类物理层控制信息包括M个第二类物理层控制信息块;M为大于或等于1的自然数。所述第二类物理层控制信息用于指示数据信道的第二类控制参数;所述第二类控制参数具体可以为数据信道的发送和/或接收参考信息,和/或数据信道的参考解调导频配置参数信息。
本实施例中,作为一种实施方式,所述发送所述第一类物理层控制信息,包括:通过第一类物理层控制信道发送所述第一类物理层控制信息;或者,发送前导序列,以通过所述前导序列指示所述第一类物理层控制信息;或者,通过其他物理层控制信道通知所述第一类物理层控制信息。具体地,上述第一种发送方式,采用第一类物理层控制信道发送第一类物理层控制信息,这种方式在第二物理层控制信道前设置一个专门的第一物理层控制信道,专门用于传输第一类物理层控制信息。上述第二种方式可通过基本时间间隔单元中的前导序列进行指示,即通过发送前导序列,通过前导序列中的信息指示所述第一类物理层控制信息中包含的参数;上述第三种方式可通过除所述第一类物理层控制信道以外的其他物理层控制信道发送所述第一类物理层控制信息。
采用本发明实施例的技术方案,通过增加的控制信息(第一类物理层控制信息)保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
实施例二
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的发送关联参数。具体地,所述第一类控制参数包括以下参数的至少之一:
1、第二类物理层控制信息重复发送次数指示参数;其中,所述重复发送次数在小于或等于Np次的范围内变化或者等于Np次;Np为正整数;所述第二类物理层控制信息重复发送次数指示参数用于指示一个物理层基本时间间隔内(比如子帧,不同系统有不同的名称和叫法),第二类物理层控制信息重复发送了多少次,如图4所示,发送次数可以是一个固定值,也可以是一个上限,比如固定Np次的发送,或者是在小于或等于Np次的范围内动态变化。
2、第二类物理层控制信息发送时间间隔参数;其中,所述第二类物理层控制信息发送时间间隔参数可以是一个物理层基本时间间隔内的间隔,具体可参照图5所示。
3、第二类物理层控制信息发送波束指示参数;所述第二类物理层控制信息发送波束指示参数可通过发送波束个数/ID表示;例如通知一个物理层基本时间间隔内各第二类物理层控制信息发送使用的波束ID和总的发送波束数目表示。具体可如表1所示。
控制块1的第一次发送 发送波束a
控制块1的第一次发送 发送波束b
…… ……
控制块2的第一次发送 发送波束A
控制块2的第一次发送 发送波束B
表1
4、第二类物理层控制信息发送扇区指示参数;所述第二类物理层控制信息发送扇区指示参数可通过发送扇区个数/ID表示;例如通知一个物理层基本时间间隔内各第二类物理层控制信息发送使用的扇区ID和总的发送扇区数目表示。具体可如表2所示。
控制块1的第一次发送 发送扇区a
控制块1的第二次发送 发送扇区b
…… ……
控制块2的第一次发送 发送扇区A
控制块2的第二次发送 发送扇区B
控制块2的第二次发送 发送扇区C
……  
表2
5、第二类物理层控制信息发送天线数目;所述第二类物理层控制信息发送天线可通过发送天线个数/ID表示;例如通知一个物理层基本时间间隔内各第二类物理层控制信息发送使用的天线ID和总的发送天线数目表示。具体可如表3所示。
控制块1的第一次发送 发送天线a
控制块1的第一次发送 发送天线b
…… ……
控制块2的第一次发送 发送天线A
控制块2的第一次发送 发送天线B
表3
6、第二类物理层控制信息块的发送数目;其中,所述第二类物理层控制信息块的发送数目在小于或等于Nb的范围内变化或者等于Nb个;Nb为正整数。通知一个物理层基本时间间隔内各第二类物理层控制信息的第二类能够控制信息块的最大发送数目或者是实际发送数目;前者需要接收端进行检测获知实际发送的信息块的数目。
7、第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;其中,所述基本传输时间间隔比如子帧;具体可如图6所示,周期T代表每间隔多少个基本传输时间间隔(例如子帧)发送一次第二类物理层控制信息,O代表相对于基本传输时间间隔(例如子帧)0的偏置信息。
8、承载第二类物理层控制信息的控制信道的传输技术/模式;其中,所述控制信道的传输技术/模式体现为导频信号与控制信号之间的关系。例如,数据信道和控制信道有多种函数关系,F1F2,……Fn,第一类控制信息可以指示这种关系,这种关系实际上暗含了是什么传输技术,比如是分集还是波束赋型。
9、承载第二类物理层控制信息的时域符号长度参数;例如存在积累时域符号长度,需要通过第一类物理层控制信息指示,具体可如图7中a和b所示。
10、承载第二类物理层控制信息的时域符号的循环前缀参数;例如存在多类时域符号的循环前缀,需要通过第一类物理层控制信息指示,具体可如图8中a和b所示。
11、承载第二类物理层控制信息的控制信道频域/时域保护带参数;例如存在如图9中a和b所示的多种频域保护带参数,需要通过第一类控制信息指示。再例如存在图10中a和b所示的多种时域保护带参数,需要通过第一类物理层控制信息指示。
12、承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;其中,控制信道传输的资源频域可能存在不同的子载波数目、间隔及密度参数,需要通过第一类物理层控制信息指示。
13、第二类物理层控制信息发送功率参数;其中发送功率参数包括相对解调导频功率,或者是相对第一类物理层控制信息的发送功率,候选值可以是0dB,-3dB,3dB,6dB,9dB等。
14、承载第二类物理层控制信息的控制信道的传输层数;其中,所述传输层数在小于或等于r层的范围内变化或者等于r层;r为正整数。作为一种实施方式,可以指定传输层数为r,或者是传输层数小于或等于r,发送端可灵活选择,r可以取值为1、2等任意数值。
实施例三
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的参考导频配置参数。具体地,所述第一类控制参数包括以下参数的至少之一:
导频端口数目参数;例如1端口或2端口;
导频复用方式参数;例如不同端口导频按照CDM2来复用,不同端口导频按照CDM4复用,导频和控制频分复用,导频和控制时分复用等等;
导频时/频密度参数;例如频域密度为1,密度为1/2,密度为1/4等,时域密度主要是指单位时间内的导频资源符号数目;
导频时域符号长度参数;所述导频时域符号长度参数与控制时域符号长度参数可以相同,也可以不同;
导频发送的循环前缀参数;所述导频发送的循环前缀参数与控制时域符号循环前缀参数可以相同,也可以不同;
导频的时域/频域保护带参数;所述导频的时域/频域保护带参数与控制时域符号时域/频域保护参数可以相同,也可以不同;
导频的发送位置参数;例如导频发送的资源图样、导频发送的时频资源位置等;
导频发送功率参数;例如导频的发送功率级别、不同位置导频之间的功率关系等;
导频类型参数;例如预编码导频、非预编码导频、宽波束导频、窄波束导频、周期导频、非周期导频等;
导频发送子载波间隔或密度参数。
实施例四
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的接收关联参数。具体地,所述第一类控制参数包括以下参数的至少之一:
接收天线端口指示参数;例如1端口或2端口;
接收检测的扇区范围指示参数;例如需要检测哪些波束范围、波束ID集合、方向集合;再例如需要检测哪些发送扇区/接收扇区集合等等;
接收检测次数指示参数;例如需要检测的最大尝试次数;
接收模式指示参数;例如按照全向接收或定向接收;例如使用哪跟天线接收和哪个扇区;例如尝试的接收方式种类等;
接收波束范围的指示参数;
接收检测的位置指示参数;例如在哪些时频资源的位置进行接收检测;
接收检测时的基本检测单元参数指示;可通过控制信道单元(CCE)大小/划分方式表示;例如指示基本检测单元是第一类检测单元(粒度较小)还是第二类检测单元(粒度较大);
接收检测时的资源聚合粒度指示;所述资源聚合粒度指示例如聚合级别/聚合级别集合;例如以一个时域符号为最小粒度检测,或者是以2个时域符号为最小粒度检测等等。
实施例五
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类物理层控制信息的发送周期为第二类物理层控制信息的发送周期的N倍,N为自然数,如图11a和图11b所示,图11b为图11a中的一个发送周期的示意图。图中的第一类控制信息表示第一类物理层控制信息;图中的第二类控制信息表示第二类物理层控制信息。
实施例六
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本 实施例中,所述第一类物理层控制信息的发送频段低于所述第二类物理层控制信息的发送频段,可以理解为,所述第一类物理层控制信息在低频发送;所述第二类物理层控制信息在高频发送。作为一种实施方式,所述第一类物理层控制信息的发送频段小于6GHZ;所述第二类物理层控制信息的发送频段大于6GHZ。
实施例七
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行发送。作为第一种实施方式,所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号发送;所述第二类物理层控制信息采用最大X2个波束/扇区/天线/时域符号发送;X1和X2均为正整数;X1大于或等于X2。
实施例八
本发明实施例还提供了一种控制信息的发送方法。基于实施例一,本实施例中,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行发送。作为另一种实施方式,所述第一类物理层控制信道采用带宽B1传输;所述第二类物理层控制信道采用带宽B2传输;B1和B2均为正整数;B1大于或等于B2。具体可参照图12所示。
实施例九
本发明实施例还提供了一种控制信息的检测方法。图13为本发明实施例的控制信息的检测方法的第一种流程示意图;如图13所示,所述控制信息的发送方法包括:
步骤201:确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数。
步骤202:根据所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
本实施例中所述的控制信息的检测方法用于接收端,所述接收端具体可以为终端。
本实施例中,所述确定第一类物理层控制信息,包括:通过接收第一类物理层控制信息确定所述第一类物理层控制信息;或者,通过检测前导序列指示确定第一类物理层控制信息;或者,与发送端约定第一类物理层控制信息参数范围进行盲检测确定第一类物理层控制信息;或者,通过接收其他物理层控制信道的信息确定所述第一类物理层控制信息。具体的,上述第一种确定方式基于发送端采用第一类物理层控制信道发送第一类物理层控制信息的应用场景,基于此,接收端通过第一类物理层控制信道接收并确定第一类物理层控制信息。上述第二种确定方式基于发送端通过发送前导序列进行第一类物理层控制信息的指示;接收端检测到前导序列,通过前导序列中的信息确定第一类物理层控制信息。上述第三种确定方式基于发送端和接收端预先约定第一类物理层控制信息参数的方式确定所述第一类物理层控制信息。上述第四种确定方式基于发送端采用其他物理层控制信道发送第一类物理层控制信息的应用场景。
本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的第一类控制参数;所述第一类控制参数具体可以为第二类物理层控制信道的发送和/或接收的关联参数。其中,所述第一类控制参数包括以下参数的至少一种:第二类物理层控制信道的发送参数;第二类物理层控制信道的参考导频配置参数;第二类物理层控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步地进行一些盲检测才能获知准确的控制参数。
采用本发明实施例的技术方案,通过增加的控制信息(第一类物理层控制信息)保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
实施例十
本发明实施例还提供了一种控制信息的检测方法。基于实施例九,本实施例中,作为一种实施方式,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;
则所述第一类控制参数包括以下参数的至少之一:第二类物理层控制信息重复发送次数指示参数;第二类物理层控制信息发送时间间隔参数;第二类物理层控制信息发送波束指示参数;第二类物理层控制信息发送扇区指示参数;第二类物理层控制信息发送天线数目;第二类物理层控制信息块的发送数目;第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;承载第二类物理层控制信息的控制信道的传输技术/模式;承载第二类物理层控制信息的时域符号长度参数;承载第二类物理层控制信息的时域符号的循环前缀参数;承载第二类物理层控制信息的控制信道频域/时域保护带参数;承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;第二类物理层控制信息发送功率参数;承载第二类物理层控制信息的控制信道的传输层数。
作为另一种实施方式,所述第一类控制参数包括以下参数的至少之一:导频端口数目参数;导频复用方式参数;导频时/频密度参数;导频时域符号长度参数;导频发送的循环前缀参数;导频的时域/频域保护带参数;导频的发送位置参数;导频发送功率参数;导频类型参数;导频发送子载波间隔或密度参数。
作为又一种实施方式,所述第一类控制参数包括以下参数的至少之一:接收天线端口指示参数;接收检测的扇区范围指示参数;接收检测次数指示参数;接收模式指示参数;接收波束范围的指示参数;接收检测的位置指示参数;接收检测时的基本检测单元参数指示;接收检测时的资源聚合粒度指示。
其中,上述第一类控制参数所包含的参数的具体说明可参照实施例二至实施例四所示,这里不再详细说明。
实施例十一
本发明实施例还提供了一种控制信息的检测方法。基于实施例九,本实施例中,所述第一类物理层控制信息的接收/检测周期为第二类物理层控制信息的接收/检测周期的N倍,N为自然数。
实施例十二
本发明实施例还提供了一种控制信息的检测方法。基于实施例九,本 实施例中,所述第一类物理层控制信息的接收/检测频段低于所述第二类物理层控制信息的接收/检测频段。可以理解为,所述第一类物理层控制信息在低频接收/检测;所述第二类物理层控制信息在高频接收/检测。作为一种实施方式,所述第一类物理层控制信息的接收/检测频段小于6GHZ;所述第二类物理层控制信息的接收/检测频段大于6GHZ。
实施例十三
本发明实施例还提供了一种控制信息的检测方法。基于实施例九,本实施例中,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行接收/检测。作为第一种实施方式,所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号接收,所述第一类物理层控制信息采用所述最大X2个波束/扇区/天线/时域符号接收;X1和X2均为正整数;X1大于或等于X2。
实施例十四
本发明实施例还提供了一种控制信息的检测方法。基于实施例九,本实施例中,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行接收/检测。作为第一种实施方式,所述第一类物理层控制信道采用带宽B1接收/检测;所述第二类物理层控制信道采用带宽B2接收/检测;B1和B2均为正整数;B1大于或等于B2。
实施例十五
本发明实施例还提供了一种基站。图14为本发明实施例的基站的组成结构示意图;如图14所示,所述基站包括:第一确定单元31、第一发送单元32和第二发送单元33;其中,
所述第一确定单元31,配置为基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;还配置为确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;
所述第一发送单元32,配置为发送所述第一确定单元31确定的第一类物理层控制信息;
所述第二发送单元33,配置为在第二物理层控制信道上发送所述第一确定单元31确定的第二类物理层控制信息。
本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的第一类控制参数;所述第一类控制参数具体可以为第二类物理层控制信道的发送和/或接收的关联参数。其中,所述第一类控制参数包括以下参数的至少一种:第二类物理层控制信道的发送参数;第二类物理层控制信道的参考导频配置参数;第二类物理层控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步的进行一些盲检测才能获知准确的控制参数。
本实施例中,所述第二类物理层控制信息包括M个第二类物理层控制信息块;M为大于或等于1的自然数。所述第二类物理层控制信息用于指示数据信道的第二类控制参数;所述第二类控制参数具体可以为数据信道的发送和/或接收参考信息,和/或数据信道的参考解调导频配置参数信息。
本实施例中,所述第一发送单元32,配置为通过第一类物理层控制信道发送所述第一类物理层控制信息;或者,发送前导序列,以通过所述前导序列指示所述第一类物理层控制信息;或者,通过其他物理层控制信道通知所述第一类物理层控制信息。具体的,上述第一种发送方式,采用第一类物理层控制信道发送第一类物理层控制信息,这种方式在第二物理层控制信道前设置一个专门的第一物理层控制信道,专门用于传输第一类物理层控制信息。上述第二种方式可通过基本时间间隔单元中的前导序列进行指示,即通过发送前导序列,通过前导序列中的信息指示所述第一类物理层控制信息中包含的参数;上述第三种方式可通过除所述第一类物理层控制信道以外的其他物理层控制信道发送所述第一类物理层控制信息。
基于实施例二至实施例八,本实施例中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;作为一种实施方式,所述第一类控制参数包括以下参数的至少之一:
第二类物理层控制信息重复发送次数指示参数;第二类物理层控制信息发送时间间隔参数;第二类物理层控制信息发送波束指示参数;第二类 物理层控制信息发送扇区指示参数;第二类物理层控制信息发送天线数目;第二类物理层控制信息块的发送数目;第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;承载第二类物理层控制信息的控制信道的传输技术/模式;承载第二类物理层控制信息的时域符号长度参数;承载第二类物理层控制信息的时域符号的循环前缀参数;承载第二类物理层控制信息的控制信道频域/时域保护带参数;承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;第二类物理层控制信息发送功率参数;承载第二类物理层控制信息的控制信道的传输层数。
作为另一种实施方式,所述第一类控制参数包括以下参数的至少之一:导频端口数目参数;导频复用方式参数;导频时/频密度参数;导频时域符号长度参数;导频发送的循环前缀参数;导频的时域/频域保护带参数;导频的发送位置参数;导频发送功率参数;导频类型参数;导频发送子载波间隔或密度参数。
作为又一种实施方式,所述第一类控制参数包括以下参数的至少之一:接收天线端口指示参数;接收检测的扇区范围指示参数;接收检测次数指示参数;接收模式指示参数;接收波束范围的指示参数;接收检测的位置指示参数;接收检测时的基本检测单元参数指示;接收检测时的资源聚合粒度指示。
作为一种实施方式,所述第一类物理层控制信息的发送周期为第二类物理层控制信息的发送周期的N倍,N为自然数。
作为一种实施方式,所述第一类物理层控制信息的发送频段低于所述第二类物理层控制信息的发送频段。作为其中一种实施方式,所述第一类物理层控制信息的发送频段小于6GHZ;所述第二类物理层控制信息的发送频段大于6GHZ。
作为一种实施方式,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行发送。所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号发送;所述第二类物理层控制信息采用最大X2个波束/扇区/天线/时域符号发送;X1和X2均为正整数;X1大于或等于X2。
作为一种实施方式,所述第一类物理层控制信息相对于所述第二类物理层控制信息采用更鲁棒的发送方式进行发送。所述第一类物理层控制信道采用带宽B1传输;所述第二类物理层控制信道采用带宽B2传输;B1和B2均为正整数;B1大于或等于B2。
本发明实施例中,所述基站中的第一确定单元31,在实际应用中可由所述基站中的处理器比如中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)等实现;所述基站中的第一发送单元32和第二发送单元33,在实际应用中均可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
实施例十六
本发明实施例还提供了一种终端。图15为本发明实施例的终端的组成结构示意图;如图15所示,所述终端包括:第二确定单元41和接收检测单元42;其中,
所述第二确定单元41,配置为确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
所述接收检测单元42,配置为根据所述第二确定单元41确定的所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
本实施例中,所述第二确定单元41,配置为通过接收第一类物理层控制信息确定所述第一类物理层控制信息;或者,通过检测前导序列指示确定第一类物理层控制信息;或者,与发送端约定第一类物理层控制信息参数范围进行盲检测确定第一类物理层控制信息;或者,通过接收其他物理层控制信道的信息确定所述第一类物理层控制信息。具体地,上述第一种确定方式基于发送端采用第一类物理层控制信道发送第一类物理层控制信息的应用场景,基于此,接收端通过第一类物理层控制信道接收并确定第一类物理层控制信息。上述第二种确定方式基于发送端通过发送前导序列进行第一类物理层控制信息的指示;接收端检测到前导序列,通过前导序 列中的信息确定第一类物理层控制信息。上述第三种确定方式基于发送端和接收端预先约定第一类物理层控制信息参数的方式确定所述第一类物理层控制信息。上述第四种确定方式基于发送端采用其他物理层控制信道发送第一类物理层控制信息的应用场景。
本实施例中,所述第一类控制参数用于指示第二类物理层控制信道的第一类控制参数;所述第一类控制参数具体可以为第二类物理层控制信道的发送和/或接收的关联参数。其中,所述第一类控制参数包括以下参数的至少一种:第二类物理层控制信道的发送参数;第二类物理层控制信道的参考导频配置参数;第二类物理层控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步的进行一些盲检测才能获知准确的控制参数。
基于实施例十至实施例十四所述,本实施例中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;作为一种实施方式,所述第一类控制参数包括以下参数的至少之一:
第二类物理层控制信息重复发送次数指示参数;第二类物理层控制信息发送时间间隔参数;第二类物理层控制信息发送波束指示参数;第二类物理层控制信息发送扇区指示参数;第二类物理层控制信息发送天线数目;第二类物理层控制信息块的发送数目;第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;承载第二类物理层控制信息的控制信道的传输技术/模式;承载第二类物理层控制信息的时域符号长度参数;承载第二类物理层控制信息的时域符号的循环前缀参数;承载第二类物理层控制信息的控制信道频域/时域保护带参数;承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;第二类物理层控制信息发送功率参数;承载第二类物理层控制信息的控制信道的传输层数。
作为另一种实施方式,所述第一类控制参数包括以下参数的至少之一:导频端口数目参数;导频复用方式参数;导频时/频密度参数;导频时域符号长度参数;导频发送的循环前缀参数;导频的时域/频域保护带参数;导频的发送位置参数;导频发送功率参数;导频类型参数;导频发送子载波 间隔或密度参数。
作为又一种实施方式,所述第一类控制参数包括以下参数的至少之一:接收天线端口指示参数;接收检测的扇区范围指示参数;接收检测次数指示参数;接收模式指示参数;接收波束范围的指示参数;接收检测的位置指示参数;接收检测时的基本检测单元参数指示;接收检测时的资源聚合粒度指示。
所述第一类物理层控制信息的接收/检测周期为第二类物理层控制信息的接收/检测周期的N倍,N为自然数。
所述第一类物理层控制信息的接收/检测频段低于所述第二类物理层控制信息的接收/检测频段。
所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号接收,所述第一类物理层控制信息采用所述最大X2个波束/扇区/天线/时域符号接收;X1和X2均为正整数;X1大于或等于X2。
所述第一类物理层控制信道采用带宽B1接收/检测;所述第二类物理层控制信道采用带宽B2接收/检测;B1和B2均为正整数;B1大于或等于B2。
本发明实施例中,所述终端中的第二确定单元41,在实际应用中可由所述终端中的处理器比如CPU、DSP、MCU或FPGA等实现;所述终端中的接收检测单元42,在实际应用中可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
实施例十七
本发明实施例还提供了一种控制信息的发送方法。图16为本发明实施例的控制信息的发送方法的第二种流程示意图;如图16所示,所述控制信息的发送方法包括:
步骤301:确定N类控制信道;其中,N为大于或等于1的整数。
步骤302:确定所述N类控制信道的配置信息。
步骤303:将所述配置信息配置给接收端。
步骤304:通过所述N类控制信道发送控制信息。
在本实施例的控制信息的发送方法中,发送端配置N类控制信道,N大于或等于1,作为一种实施方式,N等于2或3;如图17所示;每类控制信道均可用于发送数据信道相关的配置信息,第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,以保障控制信道使用MIMO传输的鲁棒性,尤其是MIMO使用了射频预编码和基带预编码进行波束赋型的混合情况。
本实施例中,发送端确定N类控制信道的配置信息,所述配置信息包括以下参数的至少之一:所述N类控制信道的发送参数;所述N类控制信道的解调导频参数;所述N类控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步地进行一些盲检测才能获知准确的控制参数。
本实施例中,所述将所述配置信息配置给接收端,包括:将所述配置信息通过与数据传输相同载波的信令通知给接收端;或者,将所述配置信息通过与数据传输不同载波的信令通知给接收端;或者,向接收端发送前导序列,将所述配置信息通过所述前导序列配置给接收端。这里需要配置N类控制信道的配置参数,发送端将通过所述N类控制信道发送控制信息。
采用本实施例的技术方案,通过配置N类控制信道的配置信息,使某一类或几类控制信道的传输更加鲁棒,其他类控制信道的传输效率更高,从而保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
实施例十八
本发明实施例还提供了一种控制信息的发送方法。基于实施例十七,本实施例中,当N大于或等于2时,第一类控制信道分配的发送周期为第二类控制信道分配的发送周期的M倍;M为正整数。
具体地,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,第一类控制信道的分配的可用发送资源周期为第二类控制信 道的分配的可用发送资源周期的M倍。
实施例十九
本发明实施例还提供了一种控制信息的发送方法。基于实施例十七,本实施例中,当N大于或等于2时,第一类控制信道分配的发送频段小于第二类控制信道分配的发送频段。
具体地,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,第一类控制信道的分配的发送资源所属频段小于第二类控制信道分配的发送资源所属频段;作为一种实施方式,第一类控制信道的分配的发送资源所属频段小于6GHz;第二类控制信道分配的发送资源所属频段大于6GHz。
实施例二十
本发明实施例还提供了一种控制信息的发送方法。基于实施例十七,本实施例中,当N大于或等于2时,第一类控制信道分配的发送资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的发送资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2。
具体地,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,第一类控制信道分配的发送资源包含X1个波束/扇区/天线/时域符号发送,第二类控制信道分配的发送资源包含X2个波束/扇区/天线/时域符号发送;X1≥X2。
实施例二十一
本发明实施例还提供了一种控制信息的发送方法。基于实施例十七,本实施例中,当N大于或等于2时,第一类控制信道采用带宽B1传输,第二类控制信道采用带宽B2传输,B1和B2均为正整数;B1大于或等于B2。
具体地,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,第一类控制信道分配的发送资源对应带宽B1,第二类控制信 道分配的发送资源对应带宽B2,B1≥B2。
实施例二十二
本发明实施例还提供了一种控制信息的发送方法。基于实施例十七,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道发送的最大聚合级别大于或等于第二类控制信道发送的最大聚合级别。作为一种实施方式,当N等于2时,第二类控制信道发送的最大聚合级别集合是第一类控制信道发送的聚合级别的子集。
实施例二十三
本发明实施例还提供了一种控制信息的检测方法。图18为本发明实施例的控制信息的检测方法的第二种流程示意图;如图18所示,所述控制信息的检测方法包括:
步骤401:确定N类控制信道的配置信息;N为大于或等于1的整数。
步骤402:根据所述配置信息,在所述N类控制信道上接收或检测控制信息。
本实施例中所述的控制信息的检测方法用于接收端,所述接收端具体可以为终端。
本实施例中,终端执行N类控制信道的接收/检测,需要确定N类控制信道对应的配置信息。所述配置信息包括以下参数的至少之一:所述N类控制信道的发送参数;所述N类控制信道的解调导频参数;所述N类控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步地进行一些盲检测才能获知准确的控制参数。
本实施例中,所述确定N类控制信道的配置信息,包括:通过与数据传输相同载波的信令确定配置信息;或者,通过与数据传输不同载波的信令确定配置信息;或者,通过接收前导序列的指示确定配置信息。
采用本实施例的技术方案,通过配置N类控制信道的配置信息,使某 一类或几类控制信道的传输更加鲁棒,其他类控制信道的传输效率更高,从而保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
实施例二十四
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道分配的接收/检测周期为第二类控制信道分配的接收/检测周期的M倍;M为正整数。
实施例二十五
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道分配的接收/检测频段小于第二类控制信道分配的接收/检测频段。作为一种实施方式,第一类控制信道的分配的接收/检测频段小于6GHz;第二类控制信道分配的接收/检测频段大于6GHz。
实施例二十六
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道分配的接收/检测资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的接收/检测资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2。
实施例二十七
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信 道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道采用带宽B1接收/检测,第二类控制信道采用带宽B2接收/检测,B1和B2均为正整数;B1大于或等于B2。
实施例二十八
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,第一类控制信道接收/检测的最大聚合级别大于或等于第二类控制信道接收/检测的最大聚合级别。作为一种实施方式,当N等于2时,第二类控制信道接收/检测的最大聚合级别集合是第一类控制信道接收/检测的聚合级别的子集。
实施例二十九
本发明实施例还提供了一种控制信息的检测方法。基于实施例二十三,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,当N大于或等于2时,接收/检测第一类控制信道检测的时域子帧(所述时域子帧具体可以为物理层基本时间间隔)的集合是接收/检测第二类控制信道的时域子帧集合的子集。
上述实施例二十四至实施例二十九中,终端可根据以下方式的至少之一确定控制信道类型:时域位置、前导序列的指示信息、与数据传输不同载波的信令通知。
实施例三十
本发明实施例还提供了一种基站,对应于实施例十七至实施例二十二。图19为本发明实施例的基站的第二种组成结构示意图;如图19所示,所述基站包括:第一确定单元51、配置单元52和发送单元53;其中,
所述第一确定单元51,配置为确定N类控制信道;其中,N为大于或等于1的整数;
所述配置单元52,配置为确定所述N类控制信道的配置信息;
所述发送单元53,配置为将所述配置单元52确定的配置信息配置给接收端;还配置为通过所述N类控制信道发送控制信息。
所述配置信息包括以下参数的至少之一:所述N类控制信道的发送参数;所述N类控制信道的解调导频参数;所述N类控制信道的接收检测参数。
在本实施例的控制信息的发送方法中,所述第一确定单元51配置N类控制信道,N大于或等于1,作为一种实施方式,N等于2或3;如图17所示;每类控制信道均可用于发送数据信道相关的配置信息,第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,以保障控制信道使用MIMO传输的鲁棒性,尤其是MIMO使用了射频预编码和基带预编码进行波束赋型的混合情况。
本实施例中,所述配置单元52确定N类控制信道的配置信息,所述配置信息包括以下参数的至少之一:所述N类控制信道的发送参数;所述N类控制信道的解调导频参数;所述N类控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定值则需要接收端进一步的地进行一些盲检测才能获知准确的控制参数。
本实施例中,所述发送单元53,配置为将所述配置信息通过与数据传输相同载波的信令通知给接收端;或者,将所述配置信息通过与数据传输不同载波的信令通知给接收端;或者,向接收端发送前导序列,将所述配置信息通过所述前导序列配置给接收端。
本发明实施例的基站中的第一确定单元51和配置单元52,在实际应用中均可由所述基站中的处理器如CPU、DSP、MCU或FPGA等实现;所述基站中的发送单元53,在实际应用中可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
实施例三十一
本发明实施例还提供了一种基站,基于实施例三十,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,作为一种实施方 式,当N大于或等于2时,第一类控制信道分配的发送周期为第二类控制信道分配的发送周期的M倍;M为正整数。
作为一种实施方式,当N大于或等于2时,第一类控制信道分配的发送频段小于第二类控制信道分配的发送频段。
作为一种实施方式,当N大于或等于2时,第一类控制信道分配的发送资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的发送资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2。
作为一种实施方式,当N大于或等于2时,第一类控制信道采用带宽B1传输,第二类控制信道采用带宽B2传输,B1和B2均为正整数;B1大于或等于B2。
作为一种实施方式,当N大于或等于2时,第一类控制信道发送的最大聚合级别大于或等于第二类控制信道发送的最大聚合级别。作为一种实施方式,当N等于2时,第二类控制信道发送的最大聚合级别集合是第一类控制信道发送的聚合级别的子集。
实施例三十二
本发明实施例还提供了一种终端,对应于实施例二十三至实施例二十九。图20为本发明实施例的终端的第二种组成结构示意图;如图20所示,所述终端包括:第二确定单元61和接收检测单元62;其中,
所述第二确定单元61,配置为确定N类控制信道的配置信息;N为大于或等于1的整数;
所述接收检测单元62,配置为根据所述第二确定单元61确定的配置信息,在所述N类控制信道上接收或检测控制信息。
本实施例中,所述接收检测单元62执行N类控制信道的接收/检测,需要确定N类控制信道对应的配置信息。所述配置信息包括以下参数的至少之一:所述N类控制信道的发送参数;所述N类控制信道的解调导频参数;所述N类控制信道的接收检测参数。其中,上述参数的取值可能是一个确定值也可能是一个取值的范围或者是候选的取值集合,如果不是确定 值则需要接收端进一步地进行一些盲检测才能获知准确的控制参数。
本实施例中,所述第二确定单元61确定N类控制信道的配置信息,包括:通过与数据传输相同载波的信令确定配置信息;或者,通过与数据传输不同载波的信令确定配置信息;或者,通过接收前导序列的指示确定配置信息。
实施例三十三
本发明实施例还提供了一种控制信息的检测方法,基于实施例三十二,本实施例中,存在至少第一类控制信道和第二类控制信道;第一类控制信道的传输更加鲁棒,第二类控制信道的传输效率更高,基于该设计原则,作为一种实施方式,当N大于或等于2时,第一类控制信道分配的接收/检测周期为第二类控制信道分配的接收/检测周期的M倍;M为正整数。
作为一种实施方式,当N大于或等于2时,第一类控制信道分配的接收/检测频段小于第二类控制信道分配的接收/检测频段。作为一种实施方式,第一类控制信道的分配的接收/检测频段小于6GHz;第二类控制信道分配的接收/检测频段大于6GHz。
作为一种实施方式,当N大于或等于2时,第一类控制信道分配的接收/检测资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的接收/检测资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2。
作为一种实施方式,当N大于或等于2时,第一类控制信道采用带宽B1接收/检测,第二类控制信道采用带宽B2接收/检测,B1和B2均为正整数;B1大于或等于B2。
作为一种实施方式,当N大于或等于2时,第一类控制信道接收/检测的最大聚合级别大于或等于第二类控制信道接收/检测的最大聚合级别。作为一种实施方式,当N等于2时,第二类控制信道接收/检测的最大聚合级别集合是第一类控制信道接收/检测的聚合级别的子集。
作为一种实施方式,当N大于或等于2时,接收/检测第一类控制信道检测的时域子帧(所述时域子帧具体可以为物理层基本时间间隔)的集合 是接收/检测第二类控制信道的时域子帧集合的子集。
本实施例中,所述接收检测单元62根据以下方式的至少之一确定控制信道类型:时域位置、前导序列的指示信息、与数据传输不同载波的信令通知。
本发明实施例的终端中的第二确定单元61可由所述终端中的处理器如CPU、DSP、MCU或FPGA等实现;所述接收检测单元62,在实际应用中可通过通信模组(包含:基础通信套件、操作系统、通信模块、标准化接口和协议等)及收发天线实现。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
基于此,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行本发明实施例的控制信息的发送方法,或者执行本发明实施例的控制信息的检测方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例提供的方案,一方面,基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;发送所述第一类物理层控制信息;在第二物理层控制信道上发送所述第二类物理层控制信息。接收端确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;根据所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。采用本发明实施例的技术方案,通过增加的控制信息(第一类物理层控制信息)保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。
另一方面,发送端确定N类控制信道;其中,N为大于或等于1的整数;确定所述N类控制信道的配置信息;将所述配置信息配置给接收端;通过所述N类控制信道发送控制信息。接收端确定N类控制信道的配置信息;N为大于或等于1的整数;根据所述配置信息,在所述N类控制信道上接收或检测控制信息。如此,采用本实施例的技术方案,通过配置N类控制信道的配置信息,使某一类或几类控制信道的传输更加鲁棒,其他类控制信道的传输效率更高,从而保障控制信道采用MIMO传输的鲁棒性,解决了现有技术中存在的一旦波束不能对准或阻塞,造成整体断链、从而导致系统性能严重下降的问题。

Claims (49)

  1. 一种控制信息的发送方法,所述方法包括:
    基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
    确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;
    发送所述第一类物理层控制信息;
    在第二物理层控制信道上发送所述第二类物理层控制信息。
  2. 根据权利要求1所述的方法,其中,所述第一类控制参数包括以下参数的至少一种:
    第二类物理层控制信道的发送参数;
    第二类物理层控制信道的参考导频配置参数;
    第二类物理层控制信道的接收检测参数。
  3. 根据权利要求1所述的方法,其中,所述发送所述第一类物理层控制信息,包括:
    通过第一类物理层控制信道发送所述第一类物理层控制信息;或者,发送前导序列,以通过所述前导序列指示所述第一类物理层控制信息;或者,通过其他物理层控制信道通知所述第一类物理层控制信息。
  4. 根据权利要求1所述的方法,其中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;
    则所述第一类控制参数包括以下参数的至少之一:
    第二类物理层控制信息重复发送次数指示参数;
    第二类物理层控制信息发送时间间隔参数;
    第二类物理层控制信息发送波束指示参数;
    第二类物理层控制信息发送扇区指示参数;
    第二类物理层控制信息发送天线数目;
    第二类物理层控制信息块的发送数目;
    第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;
    承载第二类物理层控制信息的控制信道的传输技术/模式;
    承载第二类物理层控制信息的时域符号长度参数;
    承载第二类物理层控制信息的时域符号的循环前缀参数;
    承载第二类物理层控制信息的控制信道频域/时域保护带参数;
    承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;
    第二类物理层控制信息发送功率参数;
    承载第二类物理层控制信息的控制信道的传输层数。
  5. 根据权利要求1所述的方法,其中,所述第一类控制参数包括以下参数的至少之一:
    导频端口数目参数;
    导频复用方式参数;
    导频时/频密度参数;
    导频时域符号长度参数;
    导频发送的循环前缀参数;
    导频的时域/频域保护带参数;
    导频的发送位置参数;
    导频发送功率参数;
    导频类型参数;
    导频发送子载波间隔或密度参数。
  6. 根据权利要求1所述的方法,其中,所述第一类控制参数包括以下参数的至少之一:
    接收天线端口指示参数;
    接收检测的扇区范围指示参数;
    接收检测次数指示参数;
    接收模式指示参数;
    接收波束范围的指示参数;
    接收检测的位置指示参数;
    接收检测时的基本检测单元参数指示;
    接收检测时的资源聚合粒度指示。
  7. 根据权利要求1所述的方法,其中,所述第一类物理层控制信息和第二类物理层控制信息满足以下条件至少之一:
    所述第一类物理层控制信息的发送周期为第二类物理层控制信息的发送周期的N倍,N为自然数;
    所述第一类物理层控制信息的发送频段低于所述第二类物理层控制信息的发送频段;
    所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号发送;所述第二类物理层控制信息采用最大X2个波束/扇区/天线/时域符号发送;X1和X2均为正整数;X1大于或等于X2;
    所述第一类物理层控制信道采用带宽B1传输;所述第二类物理层控制信道采用带宽B2传输;B1和B2均为正整数;B1大于或等于B2。
  8. 一种控制信息的检测方法,所述方法包括:
    确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
    根据所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
  9. 根据权利要求8所述的方法,其中,所述确定第一类物理层控制信息,包括:通过接收第一类物理层控制信息确定所述第一类物理层控制信息;或者,通过检测前导序列指示确定第一类物理层控制信息;或者,与发送端约定第一类物理层控制信息参数范围进行盲检测确定第一类物理层控制信息;或者,通过接收其他物理层控制信道的信息确定所述第一类物理层控制信息。
  10. 根据权利要求8所述的方法,其中,所述第一类控制参数包括以下参数的至少一种:
    第二类物理层控制信道的发送参数;
    第二类物理层控制信道的参考导频配置参数;
    第二类物理层控制信道的接收检测参数。
  11. 根据权利要求8所述的方法,其中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;
    则所述第一类控制参数包括以下参数的至少之一:
    第二类物理层控制信息重复发送次数指示参数;
    第二类物理层控制信息发送时间间隔参数;
    第二类物理层控制信息发送波束指示参数;
    第二类物理层控制信息发送扇区指示参数;
    第二类物理层控制信息发送天线数目;
    第二类物理层控制信息块的发送数目;
    第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;
    承载第二类物理层控制信息的控制信道的传输技术/模式;
    承载第二类物理层控制信息的时域符号长度参数;
    承载第二类物理层控制信息的时域符号的循环前缀参数;
    承载第二类物理层控制信息的控制信道频域/时域保护带参数;
    承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;
    第二类物理层控制信息发送功率参数;
    承载第二类物理层控制信息的控制信道的传输层数。
  12. 根据权利要求8所述的方法,其中,所述第一类控制参数包括以下参数的至少之一:
    导频端口数目参数;
    导频复用方式参数;
    导频时/频密度参数;
    导频时域符号长度参数;
    导频发送的循环前缀参数;
    导频的时域/频域保护带参数;
    导频的发送位置参数;
    导频发送功率参数;
    导频类型参数;
    导频发送子载波间隔或密度参数。
  13. 根据权利要求8所述的方法,其中,所述第一类控制参数包括以下参数的至少之一:
    接收天线端口指示参数;
    接收检测的扇区范围指示参数;
    接收检测次数指示参数;
    接收模式指示参数;
    接收波束范围的指示参数;
    接收检测的位置指示参数;
    接收检测时的基本检测单元参数指示;
    接收检测时的资源聚合粒度指示。
  14. 根据权利要求8所述的方法,其中,所述第一类物理层控制信息和第二类物理层控制信息满足以下条件至少之一:
    所述第一类物理层控制信息的接收/检测周期为第二类物理层控制信息的接收/检测周期的N倍,N为自然数;
    所述第一类物理层控制信息的接收/检测频段低于所述第二类物理层控制信息的接收/检测频段;
    所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号接收,所述第一类物理层控制信息采用最大X2个波束/扇区/天线/时域符号接收; X1和X2均为正整数;X1大于或等于X2;
    所述第一类物理层控制信道采用带宽B1接收/检测;所述第二类物理层控制信道采用带宽B2接收/检测;B1和B2均为正整数;B1大于或等于B2。
  15. 一种基站,所述基站包括:第一确定单元、第一发送单元和第二发送单元;其中,
    所述第一确定单元,配置为基站确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;还配置为确定第二类物理层控制信息;所述第二类物理层控制信息用于指示数据信道的第二类控制参数;
    所述第一发送单元,配置为发送所述第一确定单元确定的第一类物理层控制信息;
    所述第二发送单元,配置为在第二物理层控制信道上发送所述第一确定单元确定的第二类物理层控制信息。
  16. 根据权利要求15所述的基站,其中,所述第一类控制参数包括以下参数的至少一种:
    第二类物理层控制信道的发送参数;
    第二类物理层控制信道的参考导频配置参数;
    第二类物理层控制信道的接收检测参数。
  17. 根据权利要求15所述的基站,其中,所述第一发送单元,配置为通过第一类物理层控制信道发送所述第一类物理层控制信息;或者,发送前导序列,以通过所述前导序列指示所述第一类物理层控制信息;或者,通过其他物理层控制信道通知所述第一类物理层控制信息。
  18. 根据权利要求15所述的基站,其中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;
    则所述第一类控制参数包括以下参数的至少之一:
    第二类物理层控制信息重复发送次数指示参数;
    第二类物理层控制信息发送时间间隔参数;
    第二类物理层控制信息发送波束指示参数;
    第二类物理层控制信息发送扇区指示参数;
    第二类物理层控制信息发送天线数目;
    第二类物理层控制信息块的发送数目;
    第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;
    承载第二类物理层控制信息的控制信道的传输技术/模式;
    承载第二类物理层控制信息的时域符号长度参数;
    承载第二类物理层控制信息的时域符号的循环前缀参数;
    承载第二类物理层控制信息的控制信道频域/时域保护带参数;
    承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;
    第二类物理层控制信息发送功率参数;
    承载第二类物理层控制信息的控制信道的传输层数。
  19. 根据权利要求15所述的基站,其中,所述第一类控制参数包括以下参数的至少之一:
    导频端口数目参数;
    导频复用方式参数;
    导频时/频密度参数;
    导频时域符号长度参数;
    导频发送的循环前缀参数;
    导频的时域/频域保护带参数;
    导频的发送位置参数;
    导频发送功率参数;
    导频类型参数;
    导频发送子载波间隔或密度参数。
  20. 根据权利要求15所述的基站,其中,所述第一类控制参数包括以 下参数的至少之一:
    接收天线端口指示参数;
    接收检测的扇区范围指示参数;
    接收检测次数指示参数;
    接收模式指示参数;
    接收波束范围的指示参数;
    接收检测的位置指示参数;
    接收检测时的基本检测单元参数指示;
    接收检测时的资源聚合粒度指示。
  21. 根据权利要求15所述的基站,其中,所述第一类物理层控制信息和第二类物理层控制信息满足以下条件至少之一:
    所述第一发送单元发送所述第一类物理层控制信息的发送周期为所述第二发送单元发送第二类物理层控制信息的发送周期的N倍,N为自然数;
    所述第一发送单元发送所述第一类物理层控制信息的发送频段低于所述第二发送单元发送第二类物理层控制信息的发送频段;
    所述第一发送单元发送所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号;所述第二发送单元发送所述第二类物理层控制信息采用最大X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2;
    所述第一类物理层控制信道采用带宽B1传输;所述第二类物理层控制信道采用带宽B2传输;B1和B2均为正整数;B1大于或等于B2。
  22. 一种终端,所述终端包括:第二确定单元和接收检测单元;其中,所述第二确定单元,配置为确定第一类物理层控制信息;所述第一类物理层控制信息用于指示第二类物理层控制信道的第一类控制参数;
    所述接收检测单元,配置为根据所述第二确定单元确定的所述第一类物理层控制信息,在第二物理层控制信道上接收或检测第二类物理层控制信息。
  23. 根据权利要求22所述的终端,其中,所述第二确定单元,配置为通过接收第一类物理层控制信息确定所述第一类物理层控制信息;或者,通过检测前导序列指示确定第一类物理层控制信息;或者,与发送端约定第一类物理层控制信息参数范围进行盲检测确定第一类物理层控制信息;或者,通过接收其他物理层控制信道的信息确定所述第一类物理层控制信息。
  24. 根据权利要求22所述的终端,其中,所述第一类控制参数包括以下参数的至少一种:
    第二类物理层控制信道的发送参数;
    第二类物理层控制信道的参考导频配置参数;
    第二类物理层控制信道的接收检测参数。
  25. 根据权利要求22所述的终端,其中,所述第二类物理层控制信息包括至少一个第二类物理层控制信息块;
    则所述第一类控制参数包括以下参数的至少之一:
    第二类物理层控制信息重复发送次数指示参数;
    第二类物理层控制信息发送时间间隔参数;
    第二类物理层控制信息发送波束指示参数;
    第二类物理层控制信息发送扇区指示参数;
    第二类物理层控制信息发送天线数目;
    第二类物理层控制信息块的发送数目;
    第二类物理层控制信息的发送周期及基本传输时间间隔偏置参数;
    承载第二类物理层控制信息的控制信道的传输技术/模式;
    承载第二类物理层控制信息的时域符号长度参数;
    承载第二类物理层控制信息的时域符号的循环前缀参数;
    承载第二类物理层控制信息的控制信道频域/时域保护带参数;
    承载第二类物理层控制信息的控制信道频域子载波间隔或密度参数;
    第二类物理层控制信息发送功率参数;
    承载第二类物理层控制信息的控制信道的传输层数。
  26. 根据权利要求22所述的终端,其中,所述第一类控制参数包括以下参数的至少之一:
    导频端口数目参数;
    导频复用方式参数;
    导频时/频密度参数;
    导频时域符号长度参数;
    导频发送的循环前缀参数;
    导频的时域/频域保护带参数;
    导频的发送位置参数;
    导频发送功率参数;
    导频类型参数;
    导频发送子载波间隔或密度参数。
  27. 根据权利要求22所述的终端,其中,所述第一类控制参数包括以下参数的至少之一:
    接收天线端口指示参数;
    接收检测的扇区范围指示参数;
    接收检测次数指示参数;
    接收模式指示参数;
    接收波束范围的指示参数;
    接收检测的位置指示参数;
    接收检测时的基本检测单元参数指示;
    接收检测时的资源聚合粒度指示。
  28. 根据权利要求22所述的终端,其中,所述第一类物理层控制信息和第二类物理层控制信息满足以下条件至少之一:
    所述第一类物理层控制信息的接收/检测周期为第二类物理层控制信息的接收/检测周期的N倍,N为自然数;
    所述第一类物理层控制信息的接收/检测频段低于所述第二类物理层控制信息的接收/检测频段;
    所述第一类物理层控制信息采用X1个波束/扇区/天线/时域符号接收,所述第一类物理层控制信息采用最大X2个波束/扇区/天线/时域符号接收;X1和X2均为正整数;X1大于或等于X2;
    所述第一类物理层控制信道采用带宽B1接收/检测;所述第二类物理层控制信道采用带宽B2接收/检测;B1和B2均为正整数;B1大于或等于B2。
  29. 一种控制信息的发送方法,所述方法包括:
    确定N类控制信道;其中,N为大于或等于1的整数;
    确定所述N类控制信道的配置信息;
    将所述配置信息配置给接收端;
    通过所述N类控制信道发送控制信息。
  30. 根据权利要求29所述的方法,其中,所述配置信息包括以下参数的至少之一:
    所述N类控制信道的发送参数;
    所述N类控制信道的解调导频参数;
    所述N类控制信道的接收检测参数。
  31. 根据权利要求29所述的方法,其中,所述将所述配置信息配置给接收端,包括:
    将所述配置信息通过与数据传输相同载波的信令通知给接收端;
    或者,将所述配置信息通过与数据传输不同载波的信令通知给接收端;
    或者,向接收端发送前导序列,将所述配置信息通过所述前导序列配置给接收端。
  32. 根据权利要求29所述的方法,其中,控制信道满足以下条件至少 之一:
    当N大于或等于2时,第一类控制信道分配的发送周期为第二类控制信道分配的发送周期的M倍;M为正整数;
    当N大于或等于2时,第一类控制信道分配的发送频段小于第二类控制信道分配的发送频段;
    当N大于或等于2时,第一类控制信道分配的发送资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的发送资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2;
    当N大于或等于2时,第一类控制信道采用带宽B1传输,第二类控制信道采用带宽B2传输,B1和B2均为正整数;B1大于或等于B2;
    当N大于或等于2时,第一类控制信道发送的最大聚合级别大于或等于第二类控制信道发送的最大聚合级别。
  33. 根据权利要求32所述的方法,其中,当N等于2时,第二类控制信道发送的最大聚合级别集合是第一类控制信道发送的聚合级别的子集。
  34. 一种控制信息的检测方法,所述方法包括:
    确定N类控制信道的配置信息;N为大于或等于1的整数;
    根据所述配置信息,在所述N类控制信道上接收或检测控制信息。
  35. 根据权利要求34所述的方法,其中,所述配置信息包括以下参数的至少之一:
    所述N类控制信道的发送参数;
    所述N类控制信道的解调导频参数;
    所述N类控制信道的接收检测参数。
  36. 根据权利要求34所述的方法,其中,控制信道满足以下条件至少之一:
    当N大于或等于2时,第一类控制信道分配的接收/检测周期为第二类控制信道分配的接收/检测周期的M倍;M为正整数;
    当N大于或等于2时,第一类控制信道分配的接收/检测频段小于第二 类控制信道分配的接收/检测频段;
    当N大于或等于2时,第一类控制信道分配的接收/检测资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的接收/检测资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2;
    当N大于或等于2时,第一类控制信道采用带宽B1接收/检测,第二类控制信道采用带宽B2接收/检测,B1和B2均为正整数;B1大于或等于B2;
    当N大于或等于2时,第一类控制信道接收/检测的最大聚合级别大于或等于第二类控制信道接收/检测的最大聚合级别;
    当N大于或等于2时,接收/检测第一类控制信道检测的时域子帧的集合是接收/检测第二类控制信道的时域子帧集合的子集。
  37. 根据权利要求36所述的方法,其中,当N等于2时,第二类控制信道接收/检测的最大聚合级别集合是第一类控制信道接收/检测的聚合级别的子集。
  38. 根据权利要求36或37所述的方法,其中,终端根据以下方式的至少之一确定控制信道类型:
    时域位置、前导序列的指示信息、与数据传输不同载波的信令通知。
  39. 一种基站,所述基站包括:第一确定单元、配置单元和发送单元;其中,
    所述第一确定单元,配置为确定N类控制信道;其中,N为大于或等于1的整数;
    所述配置单元,配置为确定所述N类控制信道的配置信息;
    所述发送单元,配置为将所述配置单元确定的配置信息配置给接收端;还配置为通过所述N类控制信道发送控制信息。
  40. 根据权利要求39所述的基站,其中,所述配置信息包括以下参数的至少之一:
    所述N类控制信道的发送参数;
    所述N类控制信道的解调导频参数;
    所述N类控制信道的接收检测参数。
  41. 根据权利要求39所述的基站,其中,所述发送单元,配置为将所述配置信息通过与数据传输相同载波的信令通知给接收端;
    或者,将所述配置信息通过与数据传输不同载波的信令通知给接收端;
    或者,向接收端发送前导序列,将所述配置信息通过所述前导序列配置给接收端。
  42. 根据权利要求39所述的基站,其中,控制信道满足以下条件至少之一:
    当N大于或等于2时,第一类控制信道分配的发送周期为第二类控制信道分配的发送周期的M倍;M为正整数;
    当N大于或等于2时,第一类控制信道分配的发送频段小于第二类控制信道分配的发送频段;
    当N大于或等于2时,第一类控制信道分配的发送资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的发送资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2;
    当N大于或等于2时,第一类控制信道采用带宽B1传输,第二类控制信道采用带宽B2传输,B1和B2均为正整数;B1大于或等于B2;
    当N大于或等于2时,第一类控制信道发送的最大聚合级别大于或等于第二类控制信道发送的最大聚合级别。
  43. 根据权利要求42所述的基站,其中,当N等于2时,第二类控制信道发送的最大聚合级别集合是第一类控制信道发送的聚合级别的子集。
  44. 一种终端,所述终端包括:第二确定单元和接收检测单元;其中,
    所述第二确定单元,配置为确定N类控制信道的配置信息;N为大于或等于1的整数;
    所述接收检测单元,配置为根据所述第二确定单元确定的配置信息,在所述N类控制信道上接收或检测控制信息。
  45. 根据权利要求44所述的终端,其中,所述配置信息包括以下参数的至少之一:
    所述N类控制信道的发送参数;
    所述N类控制信道的解调导频参数;
    所述N类控制信道的接收检测参数。
  46. 根据权利要求44所述的终端,其中,控制信道满足以下条件至少之一:
    当N大于或等于2时,第一类控制信道分配的接收/检测周期为第二类控制信道分配的接收/检测周期的M倍;M为正整数;
    当N大于或等于2时,第一类控制信道分配的接收/检测频段小于第二类控制信道分配的接收/检测频段;
    当N大于或等于2时,第一类控制信道分配的接收/检测资源包含X1个波束/扇区/天线/时域符号,第二类控制信道分配的接收/检测资源包含X2个波束/扇区/天线/时域符号;X1和X2均为正整数;X1大于或等于X2;
    当N大于或等于2时,第一类控制信道采用带宽B1接收/检测,第二类控制信道采用带宽B2接收/检测,B1和B2均为正整数;B1大于或等于B2;
    当N大于或等于2时,第一类控制信道接收/检测的最大聚合级别大于或等于第二类控制信道接收/检测的最大聚合级别;
    当N大于或等于2时,接收/检测第一类控制信道检测的时域子帧的集合是接收/检测第二类控制信道的时域子帧集合的子集。
  47. 根据权利要求46所述的终端,其中,当N等于2时,第二类控制信道接收/检测的最大聚合级别集合是第一类控制信道接收/检测的聚合级别的子集。
  48. 根据权利要求46或47所述的终端,其中,所述接收检测单元根据以下方式的至少之一确定控制信道类型:时域位置、前导序列的指示信息、与数据传输不同载波的信令通知。
  49. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执 行所述指令时,引起至少一个处理器执行如权利要求1至7任一项所述的控制信息的发送方法,或者执行如权利要求8至14任一项所述的控制信息的检测方法,或者执行如权利要求29至33任一项所述的控制信息的发送方法,或者执行如权利要求34至38任一项所述的控制信息的检测方法。
PCT/CN2017/082781 2016-05-13 2017-05-02 控制信息的发送方法、检测方法、基站、终端和存储介质 WO2017193841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/301,195 US10966204B2 (en) 2016-05-13 2017-05-02 Control information sending method and detecting method, base station, terminal, and storage medium
US17/175,683 US11979868B2 (en) 2016-05-13 2021-02-14 Control information sending method and detecting method, base station, terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610323309.3A CN107396443B (zh) 2016-05-13 2016-05-13 一种控制信息的发送方法、检测方法、基站和终端
CN201610323309.3 2016-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/301,195 A-371-Of-International US10966204B2 (en) 2016-05-13 2017-05-02 Control information sending method and detecting method, base station, terminal, and storage medium
US17/175,683 Continuation US11979868B2 (en) 2016-05-13 2021-02-14 Control information sending method and detecting method, base station, terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2017193841A1 true WO2017193841A1 (zh) 2017-11-16

Family

ID=60266701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082781 WO2017193841A1 (zh) 2016-05-13 2017-05-02 控制信息的发送方法、检测方法、基站、终端和存储介质

Country Status (3)

Country Link
US (2) US10966204B2 (zh)
CN (1) CN107396443B (zh)
WO (1) WO2017193841A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842926B (zh) * 2017-11-27 2021-06-29 华为技术有限公司 一种功率控制的方法、装置及系统
CN110278059B (zh) * 2018-03-13 2022-05-17 中兴通讯股份有限公司 控制信道发送、检测方法、装置及设备、存储介质
CN111049558B (zh) * 2018-10-15 2023-01-06 华为技术有限公司 通信方法和通信装置
CN115208527A (zh) * 2021-04-09 2022-10-18 华为技术有限公司 一种物理层控制信息的传输方法和装置
CN114286365B (zh) * 2021-12-16 2023-09-26 四川通信科研规划设计有限责任公司 一种基于基站电调天线aisg的数据回传方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN101242216A (zh) * 2007-02-06 2008-08-13 北京三星通信技术研究有限公司 无线通信系统中下行控制信令的传输设备和方法
CN101640582A (zh) * 2008-07-28 2010-02-03 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
CN102752070A (zh) * 2011-04-20 2012-10-24 华为技术有限公司 控制信息的发送、接收方法和装置
US20150173052A1 (en) * 2012-07-26 2015-06-18 Huawei Technologies Co., Ltd. Reference signal sending method and apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165576A1 (en) * 2005-12-29 2007-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Mimo control channel with shared channelization codes
CN101478808B (zh) * 2009-01-21 2014-03-19 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
US9042841B2 (en) * 2010-09-17 2015-05-26 Samsung Electronics Co., Ltd. System and method for PUCCH subband feedback signaling in a wireless network
US8830883B2 (en) * 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
WO2013105838A1 (ko) * 2012-01-15 2013-07-18 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
CN102573094B (zh) * 2012-01-17 2015-04-08 电信科学技术研究院 一种传输dci的方法及装置
US9425923B2 (en) * 2012-07-27 2016-08-23 Nokia Solutions And Networks Oy Method, apparatus, computer program product, computer readable medium and system for fast feedback and response handling in wireless networks
US9112662B2 (en) * 2013-01-17 2015-08-18 Samsung Electronics Co., Ltd. Overhead reduction for transmission of acknowledgment signals
WO2014168319A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for providing control information for fractional beamforming in a wireless communication system
US9647735B2 (en) * 2013-05-31 2017-05-09 Intel IP Corporation Hybrid digital and analog beamforming for large antenna arrays
CN104796185A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 波束信息获取方法、导频波束发送方法、通信节点及系统
US10050691B2 (en) * 2014-10-07 2018-08-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and communication device for transmitting data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN101242216A (zh) * 2007-02-06 2008-08-13 北京三星通信技术研究有限公司 无线通信系统中下行控制信令的传输设备和方法
CN101640582A (zh) * 2008-07-28 2010-02-03 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
CN102752070A (zh) * 2011-04-20 2012-10-24 华为技术有限公司 控制信息的发送、接收方法和装置
US20150173052A1 (en) * 2012-07-26 2015-06-18 Huawei Technologies Co., Ltd. Reference signal sending method and apparatus

Also Published As

Publication number Publication date
US10966204B2 (en) 2021-03-30
US11979868B2 (en) 2024-05-07
CN107396443B (zh) 2022-07-12
CN107396443A (zh) 2017-11-24
US20210185656A1 (en) 2021-06-17
US20190289587A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US11750266B2 (en) Method for recovering beam in wireless communication system and device therefor
US11637642B2 (en) Method and apparatus for CSI reporting in wireless communication system
US11336354B2 (en) Channel state information reporting method in wireless communication system and device therefor
KR101988285B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2017193841A1 (zh) 控制信息的发送方法、检测方法、基站、终端和存储介质
KR101972945B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
KR102520403B1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
US10911166B2 (en) Method and apparatus for measuring channel in wireless communication system
EP3490163B1 (en) Method and device for receiving channel state information in mobile communication system
KR20200076746A (ko) 비면허 스펙트럼에서의 빔 관리 방법 및 장치
CN109845131B (zh) 用于在无线通信系统中报告信道状态信息的方法和设备
US9521688B2 (en) Signaling for uplink sounding
US11271621B2 (en) Method and apparatus for non-coherent joint transmission in wireless communication system
US20210329517A1 (en) Method and apparatus for configuring and indicating beam information in wireless communication system
US20230132757A1 (en) Method for transmitting/receiving signal in wireless communication system, and device therefor
EP3605869A1 (en) Method and device for acquiring and feeding back transmission beam information
US20220360314A1 (en) Method and apparatus for recovering beam failure in a wireless communications system
US20230199795A1 (en) Method and apparatus for beam management under a unified tci framework
US20220330220A1 (en) Method and apparatus for ue initiated beam activation
KR20230034294A (ko) 무선 통신 시스템에서 상향링크 송신 빔 선택 절차를 위한 방법 및 장치
US20230022602A1 (en) Methods and apparatuses for tci state indication in a wireless communications system
CN111757469B (zh) 一种波束失败的处理方法及装置
WO2018059347A1 (zh) 应答处理、应答配置、信息传输方法、装置、终端及基站
US20230189238A1 (en) Method and apparatus for uplink channel and signal repetition
US20240235638A1 (en) Ue-initiated reporting

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795459

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795459

Country of ref document: EP

Kind code of ref document: A1