WO2017190634A1 - 射频控制电路、天线装置和移动终端 - Google Patents

射频控制电路、天线装置和移动终端 Download PDF

Info

Publication number
WO2017190634A1
WO2017190634A1 PCT/CN2017/082538 CN2017082538W WO2017190634A1 WO 2017190634 A1 WO2017190634 A1 WO 2017190634A1 CN 2017082538 W CN2017082538 W CN 2017082538W WO 2017190634 A1 WO2017190634 A1 WO 2017190634A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency
duplexer
control circuit
harmonic
Prior art date
Application number
PCT/CN2017/082538
Other languages
English (en)
French (fr)
Inventor
刘求文
杨金胜
张泽洲
巫国平
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Publication of WO2017190634A1 publication Critical patent/WO2017190634A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a carrier aggregation radio frequency control circuit, an antenna device, and a mobile terminal.
  • CA Carrier Aggregation
  • Pcell primary cell
  • RX receptions primarycell & second cell , scell
  • Carrier aggregation mainly selects the combination of low frequency and intermediate frequency, especially CA of B3 and B8.
  • B3 and B8 carrier aggregation have been implemented in many countries and operators.
  • B3 The second harmonic of RX (1805MHz ⁇ 1880MHz) and B8's TX (880MHz ⁇ 915MHz) (1760MHz ⁇ 1830 MHz)
  • RX 1805MHz ⁇ 1880MHz
  • B8's TX 880MHz ⁇ 915MHz
  • the second harmonic of the B8's TX will pass through the B3 duplexer and then enter the B3.
  • the RX path eventually causes harmonic interference to B3, so the performance of carrier aggregation is greatly compromised due to interference, affecting the download rate of carrier aggregation.
  • the invention provides a carrier aggregation radio frequency control circuit, an antenna device and a mobile terminal, so as to improve the stability and transmission performance of the antenna of the mobile terminal.
  • the present invention adopts the following technical solutions:
  • An embodiment of the present invention provides a carrier aggregation radio frequency control circuit, including a transceiver, a power amplifier, a switching unit, a control unit, a first duplexer, and a second duplexer.
  • a transmitting terminal, a receiving terminal, and an antenna terminal of the first duplexer respectively, a first uplink interface that transmits an uplink signal of the first frequency band in the power amplifier, and a downlink signal that receives the downlink frequency signal of the first frequency band in the transceiver
  • a downlink interface is connected to the antenna
  • a transmitting terminal, a receiving terminal, and an antenna terminal of the second duplexer respectively, a second uplink interface that transmits an uplink signal of the second frequency band in the power amplifier, and a downlink signal that receives the downlink frequency signal of the second frequency band in the transceiver
  • the second downlink interface is connected to the antenna; the frequency of the downlink signal of the first frequency band overlaps with the frequency of the second harmonic of the uplink signal of the second frequency band;
  • the switching unit is configured to switch a connection state between the sending terminal of the first duplexer and the first uplink interface
  • the control unit is connected to the switching unit; when the first frequency band is used as the secondary cell frequency band and the second frequency band is used as the primary cell frequency band, the control unit controls the switching unit to switch the first uplink interface to Harmonic consumers are connected, and the harmonic consumers are used to consume the second harmonic.
  • An embodiment of the present invention further provides an antenna device, including the foregoing radio frequency control circuit.
  • Embodiments of the present invention provide a mobile terminal, including the foregoing antenna device.
  • the switching unit and the control unit are arranged on the channel of the frequency band which may be subject to harmonic interference.
  • the control unit controls the switching unit to switch the feedback path of the second harmonic to the undisturbed channel, thereby improving the movement.
  • the volume of the switching unit is smaller than the volume of the power amplifier, and the cost is lower than the cost of the power amplifier.
  • FIG. 1 is a schematic diagram of multiple frequency band paths in a carrier aggregation technique provided in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a radio frequency control circuit provided in an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of a radio frequency control circuit provided in an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a radio frequency control circuit provided in an embodiment of the present invention.
  • FIG. 5 is still another schematic structural diagram of a radio frequency control circuit provided in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a multi-band path in a carrier aggregation technology according to an embodiment of the present invention.
  • the radio frequency control circuit 100 includes a multi-mode multi-frequency power amplifier 10, duplexers 21, 22, and 23, and a modem. 30. Wireless transceiver 40 and wireless switch 50.
  • the carrier aggregation between the B3 band and the B8 band is taken as an example.
  • the application of carrier aggregation in the B3 band and the B8 band may have a certain risk of harmonic interference.
  • the RX of B3 (1805MHz ⁇ 1880MHz) and the B8 of TX (880MHz ⁇ 915MHz) Second harmonic (1760MHz ⁇ 1830) There is overlap in MHz).
  • FIG. 2 is a schematic structural diagram of a radio frequency control circuit 200 according to the present invention.
  • an independent B8 power amplifier 11a is set for the B8 band, that is, by setting different power amplifiers for B8 and B3.
  • the transmission of the signal, the second harmonic generated when B8 is transmitted, is not coupled to the power amplifier 10a that transmits B3, thereby preventing the second harmonic of B8 from causing interference to B3.
  • this implementation requires separate power amplifiers 10a, 11a, which are larger and more costly.
  • FIG. 3 is another schematic structural diagram of a radio frequency control circuit 300 in a carrier aggregation technology according to an embodiment of the present invention.
  • the radio frequency control circuit 300 includes: a power amplifier 10b, a first duplexer 21b, and a second pair.
  • the transmitting terminal 211b, the receiving terminal 212b, and the antenna terminal 213b of the first duplexer 21b are respectively connected to the first uplink interface 62b and the transceiver 40b of the power amplifier 10b for transmitting the uplink signal of the first frequency band B3.
  • the first downlink interface 42b receiving the downlink signal of the first frequency band B3 is connected to the antenna 53b.
  • the transmitting terminal 221b, the receiving terminal 222b, and the antenna terminal 223b of the second duplexer 22b are respectively received in the second uplink interface 11b and the transceiver 40b of the power amplifier 10b that transmit the uplink signal of the second frequency band B8.
  • the second downlink interface 41b of the downlink signal of the second frequency band B8 is connected to the antenna 53b; the frequency of the downlink signal of the first frequency band B3 overlaps with the frequency of the second harmonic of the uplink signal of the second frequency band B8.
  • the switching unit 60b is configured to switch the connection state of the transmitting terminal 221b of the first duplexer 21b and the first uplink interface.
  • control unit 70b is coupled to the switching unit 60b.
  • the control unit 70b controls the switching unit 60b to switch the first uplink interface to be connected to the harmonic consumption end, and the harmonic consumption terminal is used to consume the second time band. harmonic.
  • the radio frequency control circuit 300 provided by the present invention sets the switching unit 60b and the control unit 70b on the channel of the frequency band subjected to harmonic interference.
  • the control unit 70b controls the switching unit 60b to switch the feedback path of the second harmonic.
  • the volume of the switching unit 60b is smaller than the volume of the power amplifier 10b, and the cost is lower than the cost of the power amplifier 10b. This solution eliminates harmonic interference in carrier aggregation and realizes a simple structure and low. cost.
  • FIG. 4 is a schematic structural diagram of a second embodiment of a carrier-synthesized radio frequency control circuit according to an embodiment of the present invention.
  • the switching unit is specifically implemented by a single-pole double-throw switch 60c, and the controller is integrated.
  • the modem 30c harmonic consumption is achieved through the transceiver channel of the third frequency band.
  • the radio frequency control circuit 400 includes a power amplifier 10c, a first duplexer 21c, a second duplexer 22c transceiver 40c, a single pole double throw switch 60c, and a modem 70c.
  • the transmitting terminal 211c, the receiving terminal 212c, and the antenna terminal 213c of the first duplexer 21c are respectively connected to the first uplink interface 62c that transmits the uplink signal of the first frequency band B3 in the power amplifier 10c, and the downlink of the first frequency band B3 in the transceiver 40c.
  • the first downstream interface 42c of the signal is coupled to the antenna.
  • the transmitting terminal 221c, the receiving terminal 222c, and the antenna terminal 223c of the second duplexer 22c respectively receive the downlink signal of the second frequency band in the second uplink interface 11c and the transceiver 40c of the power amplifier 10c that transmits the uplink signal of the second frequency band B8.
  • the second downlink interface 41c is connected to the antenna 53c.
  • the frequency of the downlink signal of the first frequency band B3 overlaps with the frequency of the second harmonic of the uplink signal of the second frequency band B8.
  • the third duplexer 23c Further includes a third duplexer 23c, a transmitting terminal 231c, a receiving terminal 232c, and an antenna terminal 233c of the third duplexer 23c and a third uplink interface 61c for transmitting an uplink signal of the third frequency band B4 in the power amplifier 10c, respectively, and a transceiver
  • the third downlink interface 43c of the 40c receiving the downlink signal of the third frequency band B4 is connected to the antenna 53c; the frequency of the downlink signal of the third frequency band B4 does not overlap with the frequency of the second harmonic.
  • the function of the harmonic consumption end is realized by the third duplexer 23.
  • the movable end 65c of the single-pole double-throw switch 60c is connected to the first upstream interface 12c of the power amplifier 10c; the first fixed end 62c of the single-pole double-throw switch 60c is connected to the transmitting terminal 211c of the first duplexer 21c; the single-pole double-throw switch The second fixed end 61c of 60c is connected to the transmitting terminal 231c of the third duplexer 23c;
  • the control end of the single-pole double-throw switch 60c is electrically connected to the modem 30c.
  • the modem 30c controls the single-pole double-throw switch 61c to turn on the second fixed end 61c; Otherwise the first fixed end 62c is turned on.
  • the transceiver 40c controls the transmission and reception of signals of a plurality of frequency bands, and the signals of the plurality of frequency bands are first amplified by the power amplifier 10c and then sent to the wireless switch 51c through the duplexer.
  • the wireless switch 51c selects a channel corresponding to the frequency band to send a wireless signal outward.
  • the wireless switch 51c is connected to the antenna 53c via a frequency divider 52c.
  • a duplexer such as the first duplexer 21c, the second duplexer 22c, and the third duplexer 23c shown in FIG. 4 is used to implement wireless signal transmission (for example, B4) TX, B3 TX and B8 TX) and reception (eg B4 RX, B3 RX and B8) RX) isolation.
  • B4 TX, B3 TX and B8 TX wireless signal transmission
  • reception eg B4 RX, B3 RX and B8) RX
  • the frequency of the downlink signal of the other channel does not overlap with the second harmonic, there is no adverse effect if the frequency of the downlink signal of the other channel and the second harmonic have a frequency. Overlap, then the downlink signals of other channels will be interfered by the second harmonic; for example, the second harmonic of B8 overlaps with the frequency of the downlink signal of B3, then the second harmonic of B8 will affect the quality of B3 signal reception.
  • the moving end 65c, the first fixed end 62c and the second fixed end 61c of the single-pole double-throw switch 60c are passed.
  • the specific process is described as follows: if the first frequency band (B3) is used as the secondary cell frequency band and the second frequency band (B8) is used as the primary cell frequency band, the second harmonic generated by the second frequency band transmitting signal will generate the downlink signal of the first frequency band.
  • the second harmonic needs to be isolated, that is, the moving end and the second fixed end are turned on, and the second harmonic can only be led to the third frequency band (B4) through the single-pole double-throw switch 60c, because the second harmonic The wave and the downlink signal of the third frequency band have no frequency overlap and will not cause interference. If the first frequency band is used as the primary cell frequency band and the second frequency band is used as the secondary cell frequency band, the second harmonic of the first frequency band does not overlap with the downlink signal of the second frequency band, and the second harmonic is not required to be opened, and the dynamic terminal is directly The first fixed end can be turned on, and the uplink signal is sent through the first frequency band.
  • the control process of the control unit is substantially implemented according to the frequency band used.
  • the modem 30c directly controls according to the specific situation of the signal processing.
  • an independent control unit may be set to control according to the specific conditions of the signal processing, or even
  • the hardware circuit directly generates high and low level signals according to the working states of different frequency bands to control the working state of the single pole double throw switch 60c.
  • the single-pole double-throw switch 60c in this solution can be more specifically selected as a diode switch.
  • the single-pole double-throw switch 60c is not the only option in the present solution.
  • Others such as the triode can also realize the switching on or off of the channel to achieve switching, and both have a small volume.
  • the size of a single-pole double-throw switch 60 made of microelectronic technology (1 mm ⁇ 1 mm) is only about one-sixth of the size of the independent B8 power amplifier 11 in Figure 2 (3 mm ⁇ 3 mm), and the cost is only five points. One or so.
  • the more common combinations of the various frequency bands are: the first frequency band, the second frequency band, and the third frequency band are the B3 frequency band, the B8 frequency band, and the B4 frequency band, respectively, which is also the combination mode described in FIG.
  • the downlink signal of the B3 band has a frequency of 1805 MHz -1880 MHz; the uplink signal of the B8 band (880 MHz)
  • the second harmonic of -915MHz) is 1760MHz-1830MHz, and the two overlap in the interval of 1805MHz-1830MHz. If the second harmonic of B8 is fed back to the downlink channel of B3, it will cause interference to the downlink data transmission of B3, and reduce downloading. speed.
  • the frequency of the downlink signal of B4 is 2110MHz-2155MHz, and the second harmonic of B8 does not interfere with it. The channel that leads the second harmonic to B4 does not affect the download speed of B4.
  • the first frequency band, the second frequency band and the third frequency band are the B4 frequency band, the B17 frequency band and the B3 frequency band, respectively.
  • harmonic consumption terminal Another implementation of the harmonic consumption terminal is to access the ground.
  • the second fixed end in Figure 4 is grounded; the way to access the ground terminal can be realized only by simple change to Figure 4, and the second harmonic consumption process is similar to the way of consumption through the third frequency band. Drawing instructions.
  • FIG. 5 is a schematic structural diagram of another RF control circuit for carrier aggregation provided in an embodiment of the present invention.
  • the switching unit is specifically implemented by a single-pole three-throw switch 60d, and the controller is integrated into the modem 30d.
  • the harmonic consumption is realized by the transceiver channel of the fourth frequency band B4.
  • the radio frequency control circuit 500 includes a power amplifier 10d, a first duplexer 21d, a second duplexer 22d, a transceiver 40d, a single-pole triple-throw switch 60d, and a modem 70d.
  • the transmitting terminal 211d, the receiving terminal 212d, and the antenna terminal 213d of the first duplexer 21d are respectively connected to the first uplink interface 62d that transmits the uplink signal of the first frequency band B3 in the power amplifier 10d, and the downlink of the first frequency band B3 in the transceiver 40c.
  • the first downlink interface 42d of the signal is coupled to the antenna.
  • the transmitting terminal 221d, the receiving terminal 222d, and the antenna terminal 223d of the second duplexer 22d respectively receive the downlink signal of the second frequency band in the second uplink interface 11d and the transceiver 40d of the power amplifier 10d that transmit the uplink signal of the second frequency band B8.
  • the second downlink interface 41d is connected to the antenna 53d.
  • the frequency of the downlink signal of the first frequency band B3 overlaps with the frequency of the second harmonic of the uplink signal of the second frequency band B8.
  • the third duplexer 23d, the transmitting terminal 231d, the receiving terminal 232d and the antenna terminal 233d of the third duplexer 23d are respectively connected to the third uplink interface 61d and the transceiver 40d of the power amplifier 10d for transmitting the uplink signal of the third frequency band B4.
  • the third downlink interface 43d receiving the downlink signal of the third frequency band B4 is connected to the antenna 53d; the frequency of the downlink signal of the third frequency band B4 does not overlap with the frequency of the second harmonic.
  • the transmitting terminal 241d, the receiving terminal 242d, and the antenna terminal 243d of the fourth duplexer 24d are respectively connected to the second uplink interface 64d that transmits the uplink signal of the fourth frequency band B7 in the power amplifier 10d, and the downlink of the fourth frequency band B7 in the transceiver 40d.
  • the second downlink interface 44d of the signal is coupled to the antenna 53d.
  • the frequency of the downlink signal of the fourth frequency band B7 overlaps with the frequency of the third harmonic of the uplink signal of the second frequency band B8.
  • the function of the harmonic consumption end is realized by the third duplexer 23d.
  • the first frequency band B3, the second frequency band B8, the third frequency band B7, and the fourth frequency band B4 are taken as an example.
  • the frequency of the downlink signal in the B3 frequency band is 1805 MHz. -1880MHz, B7 band downlink signal frequency is 2620MHz-2690MHz; B8 band uplink signal (880 MHz -915MHz)
  • the second harmonic is 1760MHz-1830MHz, the two overlap in the 1805MHz-1830MHz range; the B8 band uplink signal (880 MHz)
  • the third harmonic of -915MHz) is 2640MHz-2745MHz, and the two overlap in the 2620MHz-2690MHz range.
  • the second harmonic of B8 is fed back to the downlink channel of B3, it will cause interference to the downlink data transmission of B3 and reduce the download speed; and if the third harmonic of B8 is fed back to the downlink channel of B7, the downlink of B7 will also be The transmission of data causes interference and reduces the download speed.
  • the frequency of the downlink signal of B4 is 2110MHz-2155MHz.
  • the second harmonic and the third harmonic of B8 do not interfere with it.
  • the channel that leads the second harmonic to B4 does not affect the download speed of B4.
  • An antenna device is also provided in the embodiment of the present invention, including the radio frequency control circuit described above.
  • the antenna device includes all of the technical features of the radio frequency control circuit, corresponding to all of the benefits of the radio frequency control circuit described above.
  • the terminal 300 can include radio frequency (RF, Radio).
  • Frequency circuit 301 includes one or more computer readable storage media, input unit 303, display unit 304, sensor 305, audio circuit 306, wireless fidelity (WiFi, Wireless)
  • the Fidelity module 307 includes a processor 308 having one or more processing cores, and a power supply 309 and the like. It will be understood by those skilled in the art that the terminal structure shown in FIG. 3 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the radio frequency circuit 301 can be used for transmitting and receiving information, or receiving and transmitting signals during a call, in particular, receiving downlink information of the base station and then processing it by one or more processors 308; in addition, transmitting uplink data to the base station .
  • the radio frequency circuit 301 includes, but is not limited to, an antenna, at least one amplifier, a tuner, one or more oscillators, a subscriber identity module (SIM, Subscriber Identity Module) Card, Transceiver, Coupler, Low Noise Amplifier (LNA, Low Noise) Amplifier), duplexer, etc.
  • SIM Subscriber Identity Module
  • the radio frequency circuit 301 can also communicate with the network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to the global mobile communication system (GSM, Global System of Mobile communication), General Packet Radio Service (GPRS, General Packet Radio) Service), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA, Wideband Code) Division Multiple Access), Long Term Evolution (LTE), e-mail, short message service (SMS, Short) Messaging Service) and so on.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short message service
  • Memory 302 can be used to store software programs as well as modules.
  • the processor 308 executes various functional applications and data processing by running software programs and modules stored in the memory 302.
  • the memory 302 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the terminal (such as audio data, phone book, etc.).
  • memory 302 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 302 may also include a memory controller to provide access to memory 302 by processor 308 and input unit 303.
  • the input unit 303 can be configured to receive input numeric or character information and to generate keyboard, mouse, joystick, optical or trackball signal inputs related to user settings and function controls.
  • input unit 303 can include a touch-sensitive surface as well as other input devices.
  • Touch-sensitive surfaces also known as touch screens or trackpads, collect touch operations on or near the user (such as the user using a finger, stylus, etc., any suitable object or accessory on a touch-sensitive surface or touch-sensitive Operation near the surface), and drive the corresponding connecting device according to a preset program.
  • the touch sensitive surface may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 308 is provided and can receive commands from the processor 308 and execute them.
  • touch-sensitive surfaces can be implemented in a variety of types, including resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 303 can also include other input devices. Specifically, other input devices may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • Display unit 304 can be used to display information entered by the user or information provided to the user, as well as various graphical user interfaces of the terminal, which can be composed of graphics, text, icons, video, and any combination thereof.
  • the display unit 304 can include a display panel, and optionally, a liquid crystal display (LCD, Liquid) can be used. Crystal Display), Organic Light-Emitting (OLED) Diode) and other forms to configure the display panel.
  • the touch-sensitive surface can cover the display panel, and when the touch-sensitive surface detects a touch operation thereon or nearby, it is transmitted to the processor 308 to determine the type of the touch event, and then the processor 308 displays the type according to the type of the touch event. A corresponding visual output is provided on the panel.
  • the touch-sensitive surface and display panel are implemented as two separate components to perform input and input functions, in some embodiments, the touch-sensitive surface can be integrated with the display panel to implement input and output functions.
  • the terminal may also include at least one type of sensor 305, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel according to the brightness of the ambient light, and the proximity sensor may close the display panel and/or the backlight when the terminal moves to the ear.
  • the gravity acceleration sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.;
  • Other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like that can be configured in the terminal are not described herein.
  • the audio circuit 306 can provide an audio interface between the user and the terminal through a speaker and a microphone.
  • the audio circuit 306 can convert the received audio data into an electrical signal, which is transmitted to the speaker, and converted into a sound signal output by the speaker.
  • the microphone converts the collected sound signal into an electrical signal, which is received by the audio circuit 306 and converted into
  • the audio data is processed by the audio data output processor 308, transmitted via the RF circuit 301 to, for example, another terminal, or the audio data is output to the memory 302 for further processing.
  • the audio circuit 306 may also include an earbud jack to provide communication between the peripheral earphone and the terminal.
  • Wireless Fidelity is a short-range wireless transmission technology.
  • the terminal can help users to send and receive e-mail, browse web pages and access streaming media through the wireless fidelity module 307, which provides users with wireless broadband Internet access.
  • FIG. 3 shows the wireless fidelity module 307, it can be understood that it does not belong to the necessary configuration of the terminal, and may be omitted as needed within the scope of not changing the essence of the invention.
  • Processor 308 is the control center of the terminal, which connects various portions of the entire terminal using various interfaces and lines, by executing or executing software programs and/or modules stored in memory 302, and invoking data stored in memory 302, The terminal's various functions and processing data, so as to monitor the terminal as a whole.
  • the processor 308 may include one or more processing cores; preferably, the processor 308 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 308.
  • the terminal also includes a power source 309 (such as a battery) that supplies power to the various components.
  • a power source 309 (such as a battery) that supplies power to the various components.
  • the power source can be logically coupled to the processor 308 through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • Power source 309 may also include any one or more of a DC or AC power source, a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator, and the like.
  • the radio frequency circuit 301 is the radio frequency control circuit described in the previous embodiment.
  • the specific working principle of the mobile terminal of the present invention is the same as or similar to the related description in the preferred embodiment of the radio frequency control circuit. For details, refer to the related description in the preferred embodiment of the radio frequency control circuit.
  • the radio frequency control circuit and the mobile terminal provided by the invention avoid the influence of the harmonics of the main carrier signal on the received data of the subcarrier signal through the setting of the working mode switching switch, and improve the stability and transmission performance of the antenna of the mobile terminal;
  • the technical problems of the antenna of the existing mobile terminal are poor in stability or poor in transmission performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种载波聚合的射频控制电路、天线装置和移动终端。该射频控制电路,包括功率放大器、切换单元、控制单元、第一双工器和第二双工器;第一双工器和第二双工器分别连接于第一频段和第二频段的通路,第一频段的下行信号的频率与第二频段的上行信号的二次谐波的频率有重叠;切换单元与控制单元相连;当第一频段作为辅小区频段,第二频段作为主小区频段时,切换单元将功率放大器中输出第一频段的接口切换到与用于消耗二次谐波的谐波消耗端相连;否则切换单元将功率放大器中输出第一频段的接口切换到与第一双工器相连。

Description

射频控制电路、天线装置和移动终端 技术领域
本发明涉及通信技术领域,尤其涉及一种载波聚合的射频控制电路、天线装置和移动终端。
背景技术
为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。载波聚合 (CA , Carrier Aggregation) 能够有效增加系统传输带宽,载波聚合中有两个或者多个载波同时接收数据,一个 TX 发射( primary cell , pcell ),多个 RX 接收( primarycell&second cell , scell ),这样可以使吞吐量成倍提升,提升了用户的上网体验。
载波聚合中主要选择低频与中频的组合,特别是 B3 与 B8 的 CA 组合,在许多国家和运营商都实现了基于 B3 与 B8 的载波聚合的商业应用。从技术上分析, B3 与 B8 进行载波聚合的应用会存在一定谐波干扰风险, B3 的 RX ( 1805MHz~1880MHz )与 B8 的 TX ( 880MHz~915MHz )的二次谐波( 1760MHz~1830 MHz )有重叠,因为产品本身的结构和功率放大器 10 内部电路所限,各个频段接入的接口不能完全隔离, B8 的 TX 的二次谐波会通过 B3 的双工器然后进入 B3 的 RX 路径,最终对 B3 造成谐波干扰,这样载波聚合的性能会因为干扰而大打折扣,影响载波聚合的下载速率。
技术问题
本发明提供了一种载波聚合的射频控制电路、天线装置和移动终端,以提高移动终端的天线的稳定性以及传输性能。
技术解决方案
为实现上述设计,本发明采用以下技术方案:
本发明实施例提供一种载波聚合的射频控制电路,包括收发器、功率放大器、切换单元、控制单元、第一双工器和第二双工器;
所述第一双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第一频段的上行信号的第一上行接口、所述收发器中接收第一频段的下行信号的第一下行接口和天线相连;
所述第二双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第二频段的上行信号的第二上行接口、所述收发器中接收第二频段的下行信号的第二下行接口和天线相连;所述第一频段的下行信号的频率与所述第二频段的上行信号的二次谐波的频率有重叠;
所述切换单元,用于切换所述第一双工器的发送端子与所述第一上行接口的连接状态;
所述控制单元与所述切换单元相连;当所述第一频段作为辅小区频段,第二频段作为主小区频段时,所述控制单元控制所述切换单元将所述第一上行接口切换到与谐波消耗端相连,所述谐波消耗端用于消耗所述二次谐波。
本发明实施例还提供一种天线装置,包括前述的射频控制电路。
本发明实施例提供一种移动终端,包括前述的天线装置。
有益效果
在可能受谐波干扰的频段的通道上设置切换单元和控制单元,当出现可能谐波干扰时,控制单元控制切换单元将二次谐波的反馈路线切换到不受干扰的通道上,提高移动终端的天线的稳定性以及传输性能。此外,切换单元的体积小于功率放大器的体积,成本低于功率放大器的成本。
附图说明
图1是本发明具体实施方式中提供的载波聚合技术中多个频段通路的示意图。
图2是本发明具体实施方式中提供的射频控制电路的一结构示意图。
图3是本发明具体实施方式中提供的射频控制电路另一结构示意图。
图4是本发明具体实施方式中提供的射频控制电路的又一结构示意图。
图5是本发明具体实施方式中提供的射频控制电路的再一结构示意图。
图6是本发明实施例提供的一种终端的结构示意图。
本发明的最佳实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参考图1,为本发明具体实施方式中提供的载波聚合技术中多频段的通路的示意图,所述射频控制电路100包括多模多频功率放大器10,双工器21、22、23,调制解调器30,无线收发器40及无线开关50。
以B3频段与B8频段之间的载波聚合为例进行说明,B3频段与B8频段进行载波聚合的应用会存在一定谐波干扰风险,B3的RX(1805MHz~1880MHz)与B8的TX(880MHz~915MHz)的二次谐波(1760MHz~1830 MHz)有重叠。
请参阅图2,为本发明提供的射频控制电路200的一结构示意图。具体实施方式中,为消除B3频段与B8频段之间的二次谐波干扰,本发明实施方式中为B8频段设置独立的B8功率放大器11a,即通过为B8和B3设置在不同的功率放大器进行信号的发送,B8发射时产生的二次谐波不会耦合到发送B3的功率放大器10a,从而避免B8的二次谐波对B3造成干扰。但是这一实现方式需要另外设置单独的功率放大器10a、11a,而功率放大器的体积较大,成本较高。
请参考图3,其是本发明具体实施方式中提供的载波聚合技术中射频控制电路300的另一结构示意图,该射频控制电路300包括:功率放大器10b、第一双工器21b、第二双工器22b、收发器40b、切换单元60b、控制单元70b、。
一实施方式中,所述第一双工器21b的发送端子211b、接收端子212b和天线端子213b分别与功率放大器10b中发送第一频段B3的上行信号的第一上行接口62b、收发器40b中接收第一频段B3的下行信号的第一下行接口42b和天线53b相连。
一实施方式中,第二双工器22b的发送端子221b、接收端子222b和天线端子223b分别与功率放大器10b中发送第二频段B8的上行信号的第二上行接口11b、收发器40b中接收第二频段B8的下行信号的第二下行接口41b和天线53b相连;该第一频段B3的下行信号的频率与第二频段B8的上行信号的二次谐波的频率有重叠。
一实施方式中,切换单元60b,用于切换第一双工器21b的发送端子221b与第一上行接口的连接状态。
一实施方式中,所述控制单元70b与切换单元60b相连。当第一频段B3作为辅小区频段,第二频段B8作为主小区频段时,控制单元70b控制切换单元60b将第一上行接口切换到与谐波消耗端相连,谐波消耗端用于消耗二次谐波。
本发明提供的射频控制电路300在受谐波干扰的频段的通道上设置切换单元60b和控制单元70b,当出现谐波干扰时,控制单元70b控制切换单元60b将二次谐波的反馈路线切换到不受干扰的通道上,提高移动终端的天线的稳定性以及传输性能。此外,本发明实施例中,所述切换单元60b的体积小于功率放大器10b的体积,成本低于功率放大器10b的成本,本方案在载波聚合中消除谐波干扰的同时实现了简单的结构和低成本。
以上是本申请的核心思想,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细、清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其它实施例,都属于本发明保护的范围。
请参考图4,其是本发明具体实施方式中提供的载波聚合的射频控制电路的第二实施例的结构示意图,在本实施例中,切换单元具体通过单刀双掷开关60c实现,控制器集成到调制解调器30c中,谐波消耗通过第三频段的收发通道实现。具体如图4所示,该射频控制电路400,包括:功率放大器10c、第一双工器21c、第二双工器22c收发器40c、单刀双掷开关60c和调制解调器70c。
第一双工器21c的发送端子211c、接收端子212c和天线端子213c分别与功率放大器10c中发送第一频段B3的上行信号的第一上行接口62c、收发器40c中接收第一频段B3的下行信号的第一下行接口42c和天线相连。
第二双工器22c的发送端子221c、接收端子222c和天线端子223c分别与功率放大器10c中发送第二频段B8的上行信号的第二上行接口11c、收发器40c中接收第二频段的下行信号的第二下行接口41c和天线53c相连。第一频段B3的下行信号的频率与第二频段B8的上行信号的二次谐波的频率有重叠。还包括第三双工器23c,第三双工器23c的发送端子231c、接收端子232c和天线端子233c分别与功率放大器10c中发送第三频段B4的上行信号的第三上行接口61c、收发器40c中接收第三频段B4的下行信号的第三下行接口43c和天线53c相连;第三频段B4的下行信号的频率与二次谐波的频率没有重叠。
本实施例中,谐波消耗端的功能通过第三双工器23实现。
单刀双掷开关60c的动端65c与功率放大器10c的第一上行接口12c相连;单刀双掷开关60c的第一不动端62c与第一双工器21c的发送端子211c相连;单刀双掷开关60c的第二不动端61c与第三双工器23c的发送端子231c相连;
单刀双掷开关60c的控制端与调制解调器30c电性连接,当第一频段作为辅小区频段,第二频段作为主小区频段时,调制解调器30c控制单刀双掷开关61c接通第二不动端61c;否则接通所述第一不动端62c。
在载波聚合实现的无线收发过程中,如图4所示,由收发器40c控制多个频段的信号的收发,多个频段的信号先由功率放大器10c放大然后通过双工器发送到无线开关51c,无线开关51c选择该频段对应的通道向外发送无线信号。在本方案中,因双工器与天线的连接公知,未详细阐述双工器、无线开关50c以及天线之间的连接方式。如图4所示,所述无线开关51c通过频分器52c与天线53c连接。双工器例如图4中所示的第一双工器21c、第二双工器22c和第三双工器23c,用于实现无线信号发送(例如B4 TX、B3 TX和B8 TX)和接收(例如B4 RX、B3 RX和B8 RX)的隔离。在信号发送过程中,会产生二次谐波通过发送通道返回并最终反馈到功率放大器10c,功率放大器10c中会因为隔离度问题将二次谐波馈到其它频段的通道中,再经过双工器进入收发器40c的接收端口,如果其它通道的下行信号的频率与二次谐波没有频率上的重叠,那么没有不利影响,如果其它通道的下行信号的频率与二次谐波有频率上的重叠,那么其它通道的下行信号会受到二次谐波的干扰;例如B8的二次谐波与B3的下行信号的频率有重叠,那么B8的二次谐波会影响B3的信号接收的质量。
在图4所示的方案中,如果载波聚合的频段组合方式和工作模式会导致谐波干扰,则通过单刀双掷开关60c的动端65c、第一不动端62c和第二不动端61c进行通道的调整,从而避免谐波干扰的出现。具体过程描述如下:如果第一频段(B3)作为辅小区频段,第二频段(B8)作为主小区频段,此时第二频段发送信号产生的二次谐波会对第一频段的下行信号产生干扰,需要将二次谐波进行隔离,即将动端与第二不动端导通,二次谐波只能通过单刀双掷开关60c引向第三频段(B4)的通路,因为二次谐波与第三频段的下行信号没有频率重叠,不会对其造成干扰。如果第一频段作为主小区频段,第二频段作为辅小区频段,第一频段的二次谐波与第二频段的下行信号没有频率重叠,无需将二次谐波引开,直接将动端与第一不动端导通即可,通过第一频段发送上行信号。
控制单元的控制过程实质上根据采用的频段实现,本实施例中直接由调制解调器30c根据信号处理的具体情况进行控制,另外也可以设置独立的控制单元根据信号处理的具体情况进行控制,甚至可以通过硬件电路直接根据不同频段的工作状态生成高低电平信号控制单刀双掷开关60c的工作状态。
本方案中的单刀双掷开关60c更具体的可以选用二极管开关。同时单刀双掷开关60c也不是本方案中的唯一选择,其它例如三极管也可以实现对通道的接通或断开从而实现切换,并且均具有较小的体积。一般而言,微电子技术制作的单刀双掷开关60的大小(1mm×1mm)只有图2中独立的B8功率放大器11的大小(3mm×3mm)的九分之一左右,成本只有其五分之一左右。
各个频段较为常见的组合方式为:第一频段、第二频段和第三频段分别为B3频段、B8频段和B4频段,这也是图4中进行描述的组合方式。
B3频段的下行信号的频率为1805 MHz -1880MHz;B8频段的上行信号(880 MHz -915MHz)的二次谐波为1760MHz-1830MHz,二者在1805MHz-1830MHz区间有重叠,如果B8的二次谐波反馈到B3的下行通道,会对B3的下行数据的传输造成干扰,降低下载速度。而B4的下行信号的频率为2110MHz-2155MHz,B8的二次谐波对其没有干扰,将二次谐波引向B4的通道不会影响B4的下载速度。
各个频段的另一种组合方式为:第一频段、第二频段和第三频段分别为B4频段、B17频段和B3频段。
这一组合方式的实现原理与前一组合的实现原理相同。
谐波消耗端的另一种实现方式为接入接地端。即将图4中的第二不动端接地;因接入接地端的方式只需对图4简单变化即可实现,二次谐波的消耗的过程与通过第三频段进行消耗的方式类似,不另行作图说明。
请参考图5,其是本发明具体实施方式中提供的载波聚合的再一射频控制电路的结构示意图,在本实施例中,切换单元具体通过单刀三掷开关60d实现,控制器集成到调制解调器30d中,谐波消耗通过第四频段B4的收发通道实现。具体如图4所示,该射频控制电路500包括:功率放大器10d、第一双工器21d、第二双工器22d、收发器40d、单刀三掷开关60d和调制解调器70d。
第一双工器21d的发送端子211d、接收端子212d和天线端子213d分别与功率放大器10d中发送第一频段B3的上行信号的第一上行接口62d、收发器40c中接收第一频段B3的下行信号的第一下行接口42d和天线相连。
第二双工器22d的发送端子221d、接收端子222d和天线端子223d分别与功率放大器10d中发送第二频段B8的上行信号的第二上行接口11d、收发器40d中接收第二频段的下行信号的第二下行接口41d和天线53d相连。第一频段B3的下行信号的频率与第二频段B8的上行信号的二次谐波的频率有重叠。
第三双工器23d,第三双工器23d的发送端子231d、接收端子232d和天线端子233d分别与功率放大器10d中发送第三频段B4的上行信号的第三上行接口61d、收发器40d中接收第三频段B4的下行信号的第三下行接口43d和天线53d相连;第三频段B4的下行信号的频率与二次谐波的频率没有重叠。
第四双工器24d的发送端子241d、接收端子242d和天线端子243d分别与功率放大器10d中发送第四频段B7的上行信号的第二上行接口64d、收发器40d中接收第四频段B7的下行信号的第二下行接口44d和天线53d相连。第四频段B7的下行信号的频率与第二频段B8的上行信号的三次谐波的频率有重叠。
本实施例中,谐波消耗端的功能通过第三双工器23d实现。
在此以第一频段B3,第二频段B8,第三频段B7,第四频段B4为例进行说明,B3频段的下行信号的频率为1805 MHz -1880MHz、B7频段的下行信号的频率为2620MHz-2690MHz;B8频段的上行信号(880 MHz -915MHz)的二次谐波为1760MHz-1830MHz,二者在1805MHz-1830MHz区间有重叠;同时B8频段的上行信号(880 MHz -915MHz)的三次谐波为2640MHz-2745MHz,二者在2620MHz-2690MHz区间有重叠。如果B8的二次谐波反馈到B3的下行通道,会对B3的下行数据的传输造成干扰,降低下载速度;且如果如果B8的三次谐波反馈到B7的下行通道,同样会对B7的下行数据的传输造成干扰,降低下载速度。而B4的下行信号的频率为2110MHz-2155MHz,B8的二次谐波及三次谐波均对其没有干扰,将二次谐波引向B4的通道不会影响B4的下载速度。
本发明具体实施方式中还提供了一种天线装置,包括前文所述的射频控制电路。天线装置包括射频控制电路的所有技术特征,对应具备前文所述的射频控制电路的所有有益效果。
本发明实施例还提供另一种终端,如图6所示,该终端300可以包括射频(RF,Radio Frequency)电路301、包括有一个或一个以上计算机可读存储介质的存储器302、输入单元303、显示单元304、传感器305、音频电路306、无线保真(WiFi,Wireless Fidelity)模块307、包括有一个或者一个以上处理核心的处理器308、以及电源309等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频电路301可用于收发信息,或通话过程中信号的接收和发送,特别地,将基站的下行信息接收后,交由一个或者一个以上处理器308处理;另外,将涉及上行的数据发送给基站。通常,射频电路301包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(SIM, Subscriber Identity Module)卡、收发信机、耦合器、低噪声放大器(LNA,Low Noise Amplifier)、双工器等。此外,射频电路301还可以通过无线通信与网络和其他设备通信。该无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(GSM,Global System of Mobile communication)、通用分组无线服务(GPRS ,General Packet Radio Service)、码分多址(CDMA,Code Division Multiple Access)、宽带码分多址(WCDMA,Wideband Code Division Multiple Access)、长期演进(LTE,Long Term Evolution)、电子邮件、短消息服务(SMS,Short Messaging Service)等。
存储器302可用于存储软件程序以及模块。处理器308通过运行存储在存储器302的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器302可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器302可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器302还可以包括存储器控制器,以提供处理器308和输入单元303对存储器302的访问。
输入单元303可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,在一个具体的实施例中,输入单元303可包括触敏表面以及其他输入设备。触敏表面,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面上或在触敏表面附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器308,并能接收处理器308发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面。除了触敏表面,输入单元303还可以包括其他输入设备。具体地,其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元304可用于显示由用户输入的信息或提供给用户的信息以及终端的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元304可包括显示面板,可选的,可以采用液晶显示器(LCD,Liquid Crystal Display)、有机发光二极管(OLED,Organic Light-Emitting Diode)等形式来配置显示面板。进一步的,触敏表面可覆盖显示面板,当触敏表面检测到在其上或附近的触摸操作后,传送给处理器308以确定触摸事件的类型,随后处理器308根据触摸事件的类型在显示面板上提供相应的视觉输出。虽然在图3中,触敏表面与显示面板是作为两个独立的部件来实现输入和输入功能,但是在某些实施例中,可以将触敏表面与显示面板集成而实现输入和输出功能。
终端还可包括至少一种传感器305,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板的亮度,接近传感器可在终端移动到耳边时,关闭显示面板和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等; 至于终端还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路306可通过扬声器、传声器提供用户与终端之间的音频接口。音频电路306可将接收到的音频数据转换成电信号,传输到扬声器,由扬声器转换为声音信号输出;另一方面,传声器将收集的声音信号转换为电信号,由音频电路306接收后转换为音频数据,再将音频数据输出处理器308处理后,经射频电路301以发送给比如另一终端,或者将音频数据输出至存储器302以便进一步处理。音频电路306还可能包括耳塞插孔,以提供外设耳机与终端的通信。
无线保真(WiFi)属于短距离无线传输技术,终端通过无线保真模块307可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图3示出了无线保真模块307,但是可以理解的是,其并不属于终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器308是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器302内的软件程序和/或模块,以及调用存储在存储器302内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器308可包括一个或多个处理核心;优选的,处理器308可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器308中。
终端还包括给各个部件供电的电源309(比如电池)。优选的,电源可以通过电源管理系统与处理器308逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源309还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
具体在本实施例中,所述射频电路301为之前实施例所述的射频控制电路。本发明的移动终端的具体工作原理与上述的射频控制电路的优选实施例中的相关描述相同或相似,具体请参见上述射频控制电路的优选实施例中的相关描述。
本发明提供的射频控制电路及移动终端通过工作模式切换开关的设置避免了主载波信号的谐波对辅载波信号的接收数据的影响,提高了移动终端的天线的稳定性以及传输性能;解决了现有的移动终端的天线的稳定性较差或传输性能较差的技术问题。
需要说明的是,本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (18)

  1. 一种载波聚合的射频控制电路,其特征在于,包括收发器、功率放大器、切换单元、控制单元、第一双工器和第二双工器;
    所述第一双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第一频段的上行信号的第一上行接口、所述收发器中接收第一频段的下行信号的第一下行接口和天线相连;
    所述第二双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第二频段的上行信号的第二上行接口、所述收发器中接收第二频段的下行信号的第二下行接口和天线相连;所述第一频段的下行信号的频率与所述第二频段的上行信号的二次谐波的频率有重叠;
    所述切换单元,用于切换所述第一双工器的发送端子与所述第一上行接口的连接状态;
    所述控制单元与所述切换单元相连;当所述第一频段作为辅小区频段,第二频段作为主小区频段时,所述控制单元控制所述切换单元将所述第一上行接口切换到与谐波消耗端相连,所述谐波消耗端用于消耗所述二次谐波。
  2. 根据权利要求1所述的射频控制电路,其特征在于,所述切换单元为单刀双掷开关,所述单刀双掷开关的动端与所述第一上行接口相连;所述单刀双掷开关的第一不动端与所述第一双工器的发送端子相连;所述单刀双掷开关的第二不动端与所述谐波消耗端相连;
    所述单刀双掷开关的控制端与所述控制单元相连,当所述第一频段作为辅小区频段,第二频段作为主小区频段时,所述控制单元控制所述所述单刀双掷开关接通第二不动端;否则接通所述第一不动端。
  3. 根据权利要求1所述的射频控制电路,其特征在于,所述谐波消耗端为接地端。
  4. 根据权利要求1所述的射频控制电路,其特征在于,还包括第三双工器,所述第三双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第三频段的上行信号的第三上行接口、所述收发器中接收第三频段的下行信号的第三下行接口和天线相连;所述第三频段的下行信号的频率与所述二次谐波的频率没有重叠;
    所述谐波消耗端为第三双工器。
  5. 根据权利要求4所述的射频控制电路,其特征在于,所述第一频段、第二频段和第三频段分别为B3频段、B8频段和B4频段。
  6. 根据权利要求4所述的射频控制电路,其特征在于,所述第一频段、第二频段和第三频段分别为B4频段、B17频段和B3频段。
  7. 根据权利要求1所述的射频控制电路,其特征在于,所述控制单元为调制解调器。
  8. 根据权利要求1所述的射频控制电路,其特征在于,所述单刀双掷开关为二极管开关。
  9. 一种天线装置,其特征在于,包括权利要求1~8任一项所述的射频控制电路。
  10. 一种移动终端,其特征在于,包括处理器及与所述处理器连接的射频控制电路,所述射频控制电路为权利要求9至16任一项所述的射频控制电路。
  11. 一种射频控制电路,其特征在于,包括:
    主载波通路,用于发射和接收第一频段信号;
    辅载波通路,用于发射和接收第二频段信号;
    切换单元和控制单元,所述控制单元与所述切换单元相连;当所述辅载波通路和所述主载波通路同时工作时,所述控制单元控制所述切换单元将所述辅载波通路的发射子通路切换至一谐波消耗端,以消耗所述第一频段信号产生并耦合至所述辅载波通路的谐波信号。
  12. 如权利要求11所述的射频控制电路,其特征在于,还包括功率放大器、第一双工器、第二双工器和第三双工器,所述第一双工器与所述第三双工器分别与所述切换单元连接,所述第二双工器直接连接至所述功率放大器,当所述辅载波通路和所述主载波通路同时工作时,所述控制单元控制所述切换单元将所述辅载波通路的发射子通路切换至所述第三双工器,以消耗所述第一频段信号产生并耦合至所述辅载波通路的谐波信号。
  13. 如权利要求12所述的射频控制电路,其特征在于,还包括收发器,所述所述第一双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第一频段的上行信号的第一上行接口、所述收发器中接收第一频段的下行信号的第一下行接口和天线相连;
    所述第二双工器的发送端子、接收端子和天线端子分别与所述功率放大器中发送第二频段的上行信号的第二上行接口、所述收发器中接收第二频段的下行信号的第二下行接口和天线相连;所述第一频段的下行信号的频率与所述第二频段的上行信号的二次谐波的频率有重叠。
  14. 根据权利要求11或12所述的射频控制电路,其特征在于,所述第一频段和第二频段分别为B3频段和B8频段。
  15. 根据权利要求11或12所述的射频控制电路,其特征在于,所述第一频段和第二频段分别为B4频段和B17频段。
  16. 根据权利要求11所述的射频控制电路,其特征在于,所述控制单元为调制解调器。
  17. 根据权利要求11所述的射频控制电路,其特征在于,所述切换单元为单刀双掷开关,所述单刀双掷开关为二极管开关。
  18. 根据权利要求17所述的射频控制电路,其特征在于,所述单刀双掷开关为二极管开关。
PCT/CN2017/082538 2016-05-03 2017-04-28 射频控制电路、天线装置和移动终端 WO2017190634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610290728.1 2016-05-03
CN201610290728.1A CN106059598B (zh) 2016-05-03 2016-05-03 一种载波聚合的抗谐波干扰装置、天线装置和移动终端

Publications (1)

Publication Number Publication Date
WO2017190634A1 true WO2017190634A1 (zh) 2017-11-09

Family

ID=57177074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082538 WO2017190634A1 (zh) 2016-05-03 2017-04-28 射频控制电路、天线装置和移动终端

Country Status (2)

Country Link
CN (2) CN106059598B (zh)
WO (1) WO2017190634A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819450A (zh) * 2019-02-21 2019-05-28 维沃移动通信有限公司 一种信号接收的方法、装置和终端
CN112751573A (zh) * 2019-10-30 2021-05-04 中兴通讯股份有限公司 射频前端模块、收发装置和通信终端
CN112769445A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路、信号发射方法和电子设备
CN112769447A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路及电子设备
CN116455421A (zh) * 2020-12-21 2023-07-18 荣耀终端有限公司 无线通信系统、方法、设备以及芯片

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059598B (zh) * 2016-05-03 2018-05-18 广东欧珀移动通信有限公司 一种载波聚合的抗谐波干扰装置、天线装置和移动终端
CN106533609A (zh) * 2016-12-15 2017-03-22 深圳市飞思腾科技有限公司 一种数字信号干扰仪
CN106899315B (zh) * 2017-02-20 2019-03-01 维沃移动通信有限公司 一种天线系统及移动终端
CN107493115B (zh) * 2017-08-01 2020-07-10 捷开通讯(深圳)有限公司 通信射频前端电路及移动终端
CN108132720B (zh) * 2017-12-12 2023-08-11 深圳市信维通信股份有限公司 一种具有2.4g天线的全金属无线鼠标
CN109243414A (zh) * 2018-09-05 2019-01-18 厦门轻唱科技有限公司 K歌系统、无线话筒及其信号传输装置
CN110911804B (zh) * 2018-09-17 2023-03-24 中兴通讯股份有限公司 一种天线调整方法、装置以及计算机存储介质
CN109068348B (zh) * 2018-10-16 2022-01-28 Oppo(重庆)智能科技有限公司 一种消除共存干扰的方法及装置、设备、存储介质
CN110087326B (zh) * 2019-05-31 2022-06-17 中国联合网络通信集团有限公司 一种降低谐波干扰的方法及装置
CN110087325B (zh) * 2019-05-31 2022-06-17 中国联合网络通信集团有限公司 一种降低谐波干扰的方法及装置
CN110324061B (zh) * 2019-06-21 2021-04-20 宁波麦度智联科技股份有限公司 分离式自适应载波聚合实现装置及方法
CN110366275A (zh) * 2019-07-22 2019-10-22 维沃移动通信有限公司 一种降低多种网络共存干扰的方法及终端
CN110971262B (zh) * 2019-11-29 2021-09-28 惠州Tcl移动通信有限公司 射频电路、天线装置及移动终端
CN111277278B (zh) * 2020-01-19 2021-11-05 Oppo广东移动通信有限公司 射频系统及电子设备
US11652505B2 (en) 2020-01-14 2023-05-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RF system and electronic device
CN111726138B (zh) * 2020-06-05 2022-07-01 维沃移动通信有限公司 射频电路和电子设备
CN112886979B (zh) * 2021-01-19 2022-08-05 惠州Tcl移动通信有限公司 一种ca抗倍频干扰电路、射频电路及通信设备
CN117676784A (zh) * 2022-09-20 2024-03-08 中国电信股份有限公司 载波控制方法、装置、网络设备和存储介质
CN115425998B (zh) * 2022-11-08 2023-02-10 长沙驰芯半导体科技有限公司 一种多阶多频段抗干扰智能超宽带天线自适应方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117279A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Dual band wireless communication apparatus with advanced harmonic reduction characteristics
CN104954052A (zh) * 2014-03-28 2015-09-30 国基电子(上海)有限公司 多输入多输出天线收发电路
CN105376872A (zh) * 2014-08-15 2016-03-02 中兴通讯股份有限公司 一种支持载波聚合的方法及终端
CN106059598A (zh) * 2016-05-03 2016-10-26 广东欧珀移动通信有限公司 一种载波聚合的抗谐波干扰装置、天线装置和移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925227B2 (en) * 2007-09-19 2011-04-12 Micro Mobio Corporation Multi-band amplifier module with harmonic suppression
US9184772B2 (en) * 2011-10-25 2015-11-10 Mediatek Inc. Electronic devices for RF front end signal processing
GB2502045B (en) * 2012-04-03 2015-03-25 Nvidia Corp Mitigating interference in wireless communication system
CN104919713B (zh) * 2013-01-11 2017-03-08 株式会社村田制作所 高频开关模块
CN104995845B (zh) * 2013-02-12 2017-07-25 株式会社村田制作所 高频模块及通信装置
CN104601253B (zh) * 2013-10-30 2017-04-12 华为终端有限公司 处理谐波干扰的方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117279A1 (en) * 2013-10-31 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Dual band wireless communication apparatus with advanced harmonic reduction characteristics
CN104954052A (zh) * 2014-03-28 2015-09-30 国基电子(上海)有限公司 多输入多输出天线收发电路
CN105376872A (zh) * 2014-08-15 2016-03-02 中兴通讯股份有限公司 一种支持载波聚合的方法及终端
CN106059598A (zh) * 2016-05-03 2016-10-26 广东欧珀移动通信有限公司 一种载波聚合的抗谐波干扰装置、天线装置和移动终端

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819450A (zh) * 2019-02-21 2019-05-28 维沃移动通信有限公司 一种信号接收的方法、装置和终端
CN112751573A (zh) * 2019-10-30 2021-05-04 中兴通讯股份有限公司 射频前端模块、收发装置和通信终端
CN112751573B (zh) * 2019-10-30 2023-04-07 中兴通讯股份有限公司 射频前端模块、收发装置和通信终端
CN116455421A (zh) * 2020-12-21 2023-07-18 荣耀终端有限公司 无线通信系统、方法、设备以及芯片
CN116455421B (zh) * 2020-12-21 2024-04-26 荣耀终端有限公司 无线通信系统、方法、设备以及芯片
CN112769445A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路、信号发射方法和电子设备
CN112769447A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路及电子设备
CN112769447B (zh) * 2020-12-31 2022-09-02 维沃移动通信有限公司 射频电路及电子设备

Also Published As

Publication number Publication date
CN108540147A (zh) 2018-09-14
CN106059598B (zh) 2018-05-18
CN106059598A (zh) 2016-10-26
CN108540147B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2017190634A1 (zh) 射频控制电路、天线装置和移动终端
WO2020151744A1 (zh) 信号收发装置及终端设备
WO2020215965A1 (zh) 终端控制方法及终端
WO2018024003A1 (zh) 射频控制电路及移动终端
WO2010134743A2 (en) Terminal and method for executing function using human body communication
WO2019105449A1 (zh) 天线装置及移动终端
WO2020216178A1 (zh) 功率检测电路及终端
WO2021004317A1 (zh) 发射天线的切换方法及终端设备
CN107634785B (zh) WiFi系统、路由器和移动终端
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
WO2020259296A1 (zh) 射频电路及终端
CN110336623B (zh) 功率检测方法、装置及移动终端
WO2020098388A1 (zh) 电磁干扰的调整方法及相关产品
CN110166146B (zh) 一种功率检测电路及终端
WO2021104246A1 (zh) 网络连接方法和电子设备
CN111313915B (zh) 一种电子设备
WO2020025034A1 (zh) 一种可穿戴设备主从切换方法及相关产品
JP2006313513A (ja) コンピュータ用無線周辺システム
WO2019029625A1 (zh) Lte频段切换装置、切换方法及移动终端
CN112583544A (zh) 确定源参考信号信息的方法和通信设备
WO2022166877A1 (zh) Wi-Fi上行数据发送方法、装置、电子设备及存储介质
WO2019129093A1 (zh) 一种移动终端天线及其切换方法、移动终端
WO2021128552A1 (zh) 一种 mimo 天线装置及移动终端
CN111211421A (zh) 天线调谐电路及移动终端
CN109831225B (zh) 一种天线电路及其控制方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792460

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792460

Country of ref document: EP

Kind code of ref document: A1