WO2017190562A1 - 触摸显示面板及其驱动方法、以及显示装置 - Google Patents

触摸显示面板及其驱动方法、以及显示装置 Download PDF

Info

Publication number
WO2017190562A1
WO2017190562A1 PCT/CN2017/077882 CN2017077882W WO2017190562A1 WO 2017190562 A1 WO2017190562 A1 WO 2017190562A1 CN 2017077882 W CN2017077882 W CN 2017077882W WO 2017190562 A1 WO2017190562 A1 WO 2017190562A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
touch display
substrate
coil
coil group
Prior art date
Application number
PCT/CN2017/077882
Other languages
English (en)
French (fr)
Inventor
王鹏鹏
董学
薛海林
陈小川
王海生
杨盛际
刘英明
丁小梁
赵卫杰
刘红娟
李昌峰
刘伟
高健
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/737,206 priority Critical patent/US10191605B2/en
Publication of WO2017190562A1 publication Critical patent/WO2017190562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present disclosure relates to the field of touch display and control, and in particular to an inductive touch display panel and a method of driving the same, and related display devices.
  • touch display panels have been widely used for displays of various electronic devices, such as smart phones, tablet computers, personal digital assistants (PDAs), digital cameras, e-book readers, wearable electronic devices, and the like.
  • the touch display panel can be classified into a resistive type, a capacitive sensing type (capacitive type), an electromagnetic induction type (inductive type), an infrared type, a surface acoustic wave type, and the like.
  • the existing inductive touch display panel generally uses a rectangular coil to receive a signal from a dedicated stylus to generate an electromagnetic induction signal.
  • such an inductive touch display panel can only sense signals having a relatively high frequency, such as emitted by a stylus. If such an inductive touch display panel is directly touched with a human finger, since the magnetic permeability of the finger is low, the coil may not be able to sense the touch signal, and thus the touch control cannot be realized.
  • embodiments of the present disclosure provide a touch display panel, a driving method for driving the touch display panel, and related display devices capable of implementing pressure sensing based on electromagnetic induction control.
  • a touch display panel includes a first substrate; a second substrate disposed opposite to the first substrate; a plurality of magnetic protrusions disposed on the first substrate and protruding toward the second substrate; the first coil group including the plurality of a coil extending in the first direction; and a second coil group including a plurality of coils extending in the first direction.
  • the first coil group and the second coil group are stacked on each other on the second substrate in an insulating manner.
  • the coils of the first coil group and the coils of the second coil group and the corresponding magnetic protrusions constitute a plurality of inductive sensors that are responsive to changes in the distance between their coils and corresponding magnetic protrusions. The amount of inductance change is generated.
  • a plurality of magnetic protrusions may be disposed in a light shielding region of the first substrate, and coils of the first coil group and coils of the second coil group may be disposed in a light shielding region of the second substrate.
  • an insulating layer is disposed between the first coil group and the second coil group.
  • the first direction is perpendicular to the second direction.
  • each of the first coil set and the second coil set may surround a projection of one or more of the plurality of magnetic protrusions on the second substrate.
  • each coil of the first coil group and the second coil group may surround one or more pixel units.
  • overlapping regions of respective coils of the first coil group and respective coils of the second coil group may surround one or more pixel units.
  • the overlapping regions of the respective coils of the first coil group and the respective coils of the second coil group may encompass projection of one or more of the plurality of magnetic protrusions on the second substrate.
  • the touch display panel may further include a plurality of detecting devices connected to respective coils of the first coil group and the second coil group, and configured to detect inductance variation amounts of the plurality of inductive sensors .
  • the detecting device is further configured to determine a position of the coil connected thereto when the amount of change in inductance is detected.
  • the touch display panel may further include a position determining device and a pressure determining device.
  • the position determining device is configured to determine a touch position of the touch object that causes the amount of change in inductance based on the position of the coil received from the detecting device.
  • the pressure determining means is configured to calculate a change amount of the distance between the coil and the corresponding magnetic protrusion based on the amount of change in inductance received from the detecting means, and calculate a touch pressure value based on the amount of change in the distance.
  • the plurality of magnetic protrusions may be made of a non-transparent magnetic material.
  • a plurality of magnetic protrusions may be disposed in the light shielding region of the first substrate.
  • the non-transparent magnetic material includes one of a ferrite material and an iron-nickel alloy material.
  • the plurality of magnetic protrusions may be made of a transparent magnetic material.
  • a plurality of magnetic protrusions may be disposed in the display area of the first substrate.
  • the transparent magnetic material may be composed of magnetic metal particles and a silica aerosol.
  • the magnetic protrusions have a structure of a cone and/or a cylinder and/or a body.
  • the touch display panel may be a liquid crystal display panel.
  • the first substrate is a color film substrate
  • the second substrate is a thin film transistor array substrate, and vice versa.
  • a plurality of magnetic protrusions may be disposed in a black matrix region between the color filter films of the color filter substrate, and the first coil group and the second coil group may be disposed on the pixels of the thin film transistor array substrate The black matrix area between the cells.
  • a plurality of through holes are provided at positions corresponding to the plurality of magnetic protrusions on the common electrode of the thin film transistor array substrate.
  • a plurality of openings are provided at positions corresponding to the plurality of magnetic protrusions on the thin film transistor array substrate.
  • the touch display panel is an organic light emitting diode display panel.
  • the first substrate is a package substrate, and the second substrate is an OLED array substrate, and vice versa.
  • a plurality of magnetic protrusions may be disposed in a region of a package substrate corresponding to a space region between pixel units of the OLED array substrate, the first coil group and The second coil group is disposed in a space region between the pixel units of the OLED array substrate.
  • the cathode of the organic light emitting diode may be divided in a spaced region between pixel cells of the OLED array substrate.
  • a driving method for driving the touch display panel described above in a first period of time, the pixel unit of the touch display panel is controlled to display an image, and an alternating voltage is not applied to the first coil group and the second coil group. In the second period of time, the control pixel unit is not displayed, and an alternating voltage is applied to the first coil group and the second coil group.
  • the amount of change in inductance of the plurality of inductive sensors in the touch display panel is detected during the second period of time.
  • the position of the coils in the at least two inductive sensors is determined in response to detecting an amount of change in inductance of the at least two inductive sensors.
  • determining a touch position of the touch object that causes the amount of change in inductance based on the determined position of the coil, determining a touch position of the touch object that causes the amount of change in inductance, and calculating a distance between the coil and the corresponding magnetic protrusion based on the detected amount of change in inductance
  • the amount of change determines the touch pressure value.
  • a display device comprising the touch display panel as described above.
  • the touch display panel according to the embodiment of the present disclosure can realize pressure sensing based on electromagnetic induction by forming an inductive sensor inside, and the touch precision is high. According to the driving method of driving the touch display panel according to the embodiment of the present disclosure, the influence of the pressure touch on the image display is avoided by driving the image display and the pressure touch in a time division manner.
  • FIG. 1 is a schematic diagram of a touch display panel according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic view for explaining the structure of an inductive sensor
  • FIG. 3 is a schematic view showing a positional relationship between two coil groups in a touch display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of one example of a touch display panel in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional view of another example of a touch display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a touch display panel according to a second embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of one example of a detecting device in the touch display panel as described in FIG. 6;
  • FIG. 8 is a schematic diagram of a touch display panel according to a third embodiment of the present disclosure.
  • Figure 9 is a graph showing the relationship between inductance and displacement
  • FIG. 10 is a schematic flowchart of a driving method of driving the touch display panel shown in FIG. 1, FIG. 6, or FIG. 8 according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic cross-sectional view of a touch display panel 100 according to a first embodiment of the present disclosure.
  • the touch display panel 100 includes a first substrate 110 and a second substrate 120 disposed opposite to the first substrate 110 . Further, the touch display panel 100 further includes a plurality of magnetic protrusions 140. These magnetic protrusions 140 are disposed on the first substrate 110 and protrude toward the second substrate 120.
  • the touch display panel 100 further includes a first coil group 150 and a second coil group 160.
  • the first coil set 150 can include a plurality of coils extending in a first direction
  • the second coil set 160 can include a plurality of coils extending in a second direction that is different from the first direction.
  • the first coil group 150 and the second coil group 160 are stacked on the second substrate 120 in an insulated manner from each other.
  • each of the first coil group 150 and each of the second coil group 160 and the corresponding magnetic protrusion 140 may constitute a plurality of inductive sensors.
  • Each of these inductive sensors can produce an amount of inductance change in response to a change in the distance between its constituent coils and the corresponding magnetic protrusions.
  • a touch object for example, a human finger
  • the first substrate 110 is deformed such that the magnetic protrusion 140 at (or near) the pressed position moves downward.
  • a change in the distance between the magnetic protrusion 140 and the corresponding coil causes the inductive sensor to produce an amount of inductance change.
  • the magnetic protrusion 140 in order to prevent the magnetic protrusion 140, the first coil group 150, and the second coil group 160 from blocking the display of the image, the magnetic protrusion 140 may be disposed in the light shielding area of the first substrate 110, A coil group 150 and a second coil group 160 are disposed in a light shielding region of the second substrate 120.
  • the magnetic protrusion 140 may be made of a non-transparent magnetic material, for example, a ferrite material having a high magnetic permeability, a permalloy (ie, an iron-nickel alloy) material, or the like. In this case, the magnetic protrusion 140 is disposed in the light shielding region of the first substrate 110. In other embodiments of the present disclosure, the magnetic protrusions 140 may also be made of a transparent magnetic material, such as a material composed of magnetic metal particles such as bismuth, iron, boron, and silica aerosol.
  • the magnetic protrusions 140 may also be disposed in the display region of the first substrate 110, so that the number of magnetic protrusions 140 on the first substrate 110 can be increased.
  • the magnetic protrusions 140 may be provided in various structures such as a cone, a cylinder, a table, and the like.
  • the first coil group 150 may be insulated from the second coil group 160 by providing an insulating layer 180 between the first coil group 150 and the second coil group 160. Further, in one embodiment, the first direction and the second direction may be substantially perpendicular to each other.
  • FIG. 2 schematically shows the structure of an inductive sensor in the touch display panel 100 shown in FIG. 1.
  • the inductive sensor can include a coil and one or more magnetic protrusions 140, wherein the projection of the one or more magnetic protrusions 140 on the second substrate 120 falls within the coil.
  • the magnetic protrusion 140 is used as a magnetic core.
  • each coil may enclose one or more pixel units. By setting the number of pixel units surrounded by the coil, the accuracy of the pressure touch of the touch display panel can be adjusted.
  • FIG. 3 schematically shows an example illustrating a positional relationship between the first coil group 150 and the second coil group 160.
  • the coils in the first coil set 150 and the second coil set 160 are rectangular coils. Those skilled in the art will appreciate that coils of other shapes may also be employed.
  • each of the first coil group 150 and each of the second coil groups 160 may overlap each other to form a plurality of rectangular grids (ie, overlapping regions) in which one or more pixel units may be enclosed.
  • each rectangular grid can also enclose the projection of one or more magnetic protrusions on the second substrate.
  • the touch display panel may alternately operate in a display mode and a touch mode, which may be implemented by a time division multiplexing technique.
  • touch mode touch the display panel to perform the display function.
  • touch mode touch the display panel to disable the display function.
  • the first substrate 110 will be deformed such that the corresponding magnetic protrusion 140 on the first substrate 110 moves downward.
  • the distance between the magnetic protrusions 140 and the corresponding coil is shortened, causing the inductance of the corresponding inductive sensor to change.
  • the position of the pressing and the value of the touch pressure can be determined (details will be described in detail later), thereby implementing pressure touch.
  • the touch display panel 100 of the present embodiment can realize pressure touch by forming a plurality of inductive sensors inside.
  • the magnetic protrusion can be made of a material having a high magnetic permeability (for example, a ferrite material or the like), it is possible to sense a change in inductance due to a slight change in distance, thereby enabling high-precision pressure contact. control.
  • a touch display panel according to an embodiment of the present disclosure is explained below by two specific examples.
  • FIG. 4 is a schematic cross-sectional view of one example of a touch display panel according to an embodiment of the present disclosure.
  • the touch display panel is a liquid crystal display panel (LCD) 400.
  • LCD liquid crystal display panel
  • the liquid crystal display panel 400 includes a color film (CF) substrate as a first substrate. 410.
  • a thin film transistor (TFT) array substrate 420 as a second substrate disposed opposite to the color filter substrate 410, and a liquid crystal layer 430 sandwiched between the color filter substrate 410 and the TFT array substrate 420.
  • a plurality of magnetic protrusions 440 are disposed on the color filter substrate 410, and a second coil group 460, an insulating layer 480, and a first coil group 450 are sequentially laminated on the TFT array substrate 420.
  • the first substrate may also be a TFT array substrate, and correspondingly, the second substrate is a color film substrate.
  • the light-shielding region is implemented as a black matrix region.
  • the magnetic protrusions 440 are disposed in the black matrix region between the color filter films of the color filter substrate 410, and protrude from the color filter substrate 410 toward the liquid crystal layer 430.
  • the first coil group 450 and the second coil group 460 are disposed in a black matrix region between the pixel units of the TFT array substrate 420.
  • the common electrode on the TFT array substrate 420 may be formed in a planar shape.
  • the common electrode shields the magnetic field formed in the inductive sensor.
  • a plurality of through holes may be opened at positions corresponding to the magnetic protrusions 440 on the common electrode by an etching process so that the magnetic lines of force can pass therethrough.
  • the amount of displacement of the magnetic protrusion 440 can be increased, thereby increasing the inductance.
  • such an arrangement can also avoid collision of the magnetic protrusions 440 with the TFT array substrate 420.
  • FIG. 5 illustrates a schematic cross-sectional view of another example of a touch display panel in accordance with an embodiment of the present disclosure.
  • the touch display panel is an organic light emitting diode (OLED) display panel, such as an active matrix organic light emitting diode (AMOLED) display panel 500.
  • OLED organic light emitting diode
  • AMOLED active matrix organic light emitting diode
  • the AMOLED display panel 500 includes a package substrate 510 as a first substrate and an OLED array substrate 520 as a second substrate disposed opposite the package substrate 510.
  • An organic light emitting diode 530 is formed on the OLED array substrate 520.
  • a plurality of magnetic protrusions 540 protruding toward the OLED array substrate 520 are disposed on the package substrate 510.
  • a second coil group 560, an insulating layer 580, and a first coil group 550 are laminated in this order.
  • the first substrate may also be an OLED array substrate. Accordingly, the second substrate is a package substrate.
  • the light-shielding region is a spacer region between pixel units, which can be implemented as a black matrix region.
  • the magnetic protrusions 540 may be disposed in a region of the package substrate 510 aligned with the spaced regions between the pixel units of the OLED array substrate 520, and the first coil group 550 and the second coil group 560 are disposed. In the interval area between the pixel units of the OLED array substrate 520.
  • the cathode of the organic light emitting diode 530 is generally formed in a planar shape.
  • the cathode of the organic light emitting diode shields the magnetic field formed in the inductive sensor, thereby affecting the accuracy of the pressure sensing.
  • the cathode of the organic light emitting diode 530 may be divided at a spacing region between pixel cells of the OLED array substrate 520 such that magnetic lines of force may pass through the cathode.
  • FIG. 6 is a schematic diagram of a touch display panel 600 according to a second embodiment of the present disclosure, in which the same reference numerals are used for the same portions as the previous embodiment.
  • the touch display panel 200 includes a plurality of detecting devices 610 in addition to the first substrate 110, the second substrate 120, the magnetic protrusions 140, the first coil group 150, and the second coil group 160.
  • the amount of inductance change for each inductive sensor is connected to one of the first coil group 150 and the second coil group 160 to detect an inductance change amount of the inductive sensor constituted by the coil and the magnetic protrusion 140 enclosed thereby. .
  • FIG. 7 shows a schematic diagram of an exemplary circuit of detection device 610.
  • Z 1 represents an inductive sensor in the touch display panel 600.
  • two ends of one coil in the touch display panel 600 may be connected to two points A and B.
  • Z 2 represents a standard inductance having the same inductance as the initial inductance of Z 1
  • U 1 represents an alternating voltage
  • Z 3 and Z 4 represent resistors having the same resistance value R. Therefore, the voltage U O at the output can be expressed by the following formula:
  • the output voltage U O is proportional to the inductance variation ⁇ Z 1 . Therefore, when the AC voltage U 1 is applied, if the inductance of Z 1 does not change, the voltage value at the output terminal U O is zero. If the inductance of Z 1 changes, a voltage value is generated at the output U O . Thus, after measuring the output voltage value, the inductance variation can be calculated according to the above formula.
  • the detecting device 610 can determine the position of the coil connected thereto. This position can be represented, for example, by the arrangement of the coils in the coil group to which they belong.
  • the touch display panel 600 of the present embodiment can further detect the inductance variation amount of the inductive sensor due to the touch of the external touch object to the touch display panel.
  • FIG. 8 shows a schematic diagram of a touch display panel 800 according to a third embodiment of the present disclosure, wherein the same reference numerals are used for the same portions as the previous embodiment.
  • the touch display panel 800 further includes a position determining device 810 and a pressure determining device 820 on the basis of the touch display panel 600 as shown in FIG. 6.
  • the position determining device 810 can receive the determined position of the coil from the at least two detecting devices 610, and based thereon, determine the touch position of the touch object such as a finger.
  • the correspondence between the position of each of the first coil set 150 and the second coil set 160 and the screen coordinates of the touch display panel 800 may be established in advance.
  • the arrangement position of the coils in the first coil group 150 may be the y coordinate of the screen
  • Corresponding relationships are established, and the arrangement positions of the coils in the second coil group 160 can be associated with the x coordinate of the screen. In this way, the corresponding touch position can be determined based on the position of the coil of the inductive sensor that produces the amount of change in inductance.
  • the pressure determining device 820 can receive the measured amount of inductance change from the at least two detecting devices 610 and process it to obtain a final inductance change caused by the touch for determining the touch pressure value.
  • the maximum amount of inductance change can be selected from the amount of inductance variation received as the final inductance variation.
  • the average of the received inductance variations can be calculated as the final inductance variation.
  • the inductance and displacement have a simple linear relationship, as shown in Figure 9. Thus, according to the linear relationship, The final inductance change amount is converted into a displacement, that is, a displacement of the magnetic protrusion due to finger pressing (that is, an amount of change in the distance between the coil and the magnetic protrusion).
  • the force value of the finger press ie, the touch pressure value
  • a table indicating a correspondence relationship between the touch pressure value and the range of the amount of change in the distance may be set in advance. The touch pressure value can be determined by querying the correspondence table.
  • location determining device 810 and the pressure determining device 820 in this embodiment can be implemented by hardware, software, or a combination thereof.
  • the touch display panel 800 of the present embodiment can further determine the touch position of the external touch object and the touch pressure amount according to the detected inductance change amount.
  • FIG. 10 illustrates a schematic flowchart of a driving method of driving the touch display panel illustrated in FIG. 1, FIG. 6, or FIG. 8 according to an embodiment of the present disclosure.
  • step S1010 in the first period of time, the pixel unit in the touch display panel is controlled to display an image, and no alternating voltage is applied to the first coil group and the second coil group. Therefore, in the first period of time, the touch display panel is in the display mode. At this time, since the inductive sensor does not generate an inductance change amount, the pressure touch is not performed even when the touch display panel is pressed.
  • the first time period can include at least one scan period.
  • step S1020 in the second period of time, the pixel unit of the touch display panel is controlled not to be displayed, and an alternating voltage is applied to the first coil group and the second coil group to activate the detecting means. Therefore, in the second period of time, the touch display panel is in the touch mode. At this time, if the touch display panel is pressed, the inductive sensor can generate an inductance change amount to implement the pressure touch.
  • the inductance variation amount of the plurality of inductive sensors in the touch display panel 600 may also be detected by the detecting device 610 in the second period of time. Further, the detecting device 610 can also determine the position of the coils in the at least two inductive sensors in response to detecting the amount of change in inductance of the at least two inductive sensors.
  • the position determining device 810 may also be based on the determined position of the coil after the detecting device 610 detects the amount of change in inductance and determines the position of the coil. Determining the touch position of the touch object that causes the amount of change in inductance, and calculating the coil and the corresponding magnetic force by the pressure determining device 820 based on the detected amount of change in inductance The amount of change in the distance between the protrusions, and based on the amount of change in the distance, the touch pressure value is determined. In one embodiment, the touch pressure value corresponding to the amount of change in the calculated distance may be obtained by querying a table of a correspondence relationship between the touch pressure value and the range of the change amount of the distance set in advance.
  • an embodiment of the present disclosure also provides a display device including the touch display panel as shown in FIG. 1, FIG. 6, or FIG.
  • the display device may be an electronic device such as a touch screen, a mobile phone, a smart phone, a laptop computer, a tablet computer, a digital camera, an electronic reader, a wearable device, a television, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开的实施例公开了一种触摸显示面板。该触摸显示面板包括第一基板和与所述第一基板相对设置的第二基板。触摸显示面板还包括多个磁性突出物,其被设置在所述第一基板上并朝向所述第二基板突起。触摸显示面板还包括第一线圈组和第二线圈组,其中第一线圈组包括多个沿第一方向延伸的线圈,第二线圈组包括多个沿第二方向延伸的线圈。第一线圈组和所述第二线圈组彼此绝缘地层叠设置在第二基板上。第一线圈组的线圈和第二线圈组的线圈与对应的磁性突出物构成多个电感式传感器。

Description

触摸显示面板及其驱动方法、以及显示装置
相关申请的交叉引用
本申请要求于2016年5月6日递交的中国专利申请第201610296804.X号的优先权和权益,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及触摸显示和控制领域,具体地,涉及电感式触摸显示面板及其驱动方法、以及相关的显示装置。
背景技术
当前,触摸显示面板已广泛用于各种电子设备的显示器,例如,智能电话、平板计算机、个人数字助理(PDA)、数码相机、电子书阅读器、可穿戴式电子装置等。通常,根据所使用的介质,触摸显示面板可分为电阻式、电容感应式(电容式)、电磁感应式(电感式)、红外线式、表面声波式等。
现有的电感式触摸显示面板一般利用矩形线圈接收专用的触控笔所发出的信号,以产生电磁感应信号。
然而,这样的电感式触摸显示面板只能感应例如由触控笔发出的具有较强频率的信号。如果直接用人的手指触摸这种电感式触摸显示面板,则由于手指的磁导率很低,因此,线圈可能不能感应到触摸信号,从而无法实现触摸控制。
发明内容
为此,本公开的实施例提供了一种触摸显示面板、用于驱动触摸显示面板的驱动方法以及相关的显示装置,其能够实现基于电磁感应的压力触 控。
根据本公开的第一个方面,提供了一种触摸显示面板。该触摸显示面板包括第一基板;第二基板,其与第一基板相对设置;多个磁性突出物,其被设置在第一基板上并朝向第二基板突起;第一线圈组,包括多个沿第一方向延伸的线圈;以及第二线圈组,包括多个沿第一方向延伸的线圈。在该触摸显示面板中,第一线圈组和第二线圈组彼此绝缘地层叠设置在第二基板上。另外,第一线圈组的线圈和第二线圈组的线圈与对应的磁性突出物构成多个电感式传感器,该电感式传感器可响应于其线圈与对应的磁性突出物之间的距离的变化而产生电感变化量。
在本公开的实施例中,多个磁性突出物可被设置在第一基板的遮光区域中,第一线圈组的线圈和第二线圈组的线圈可被设置在第二基板的遮光区域中。
在本公开的实施例中,在第一线圈组与第二线圈组之间设置有绝缘层。
在本公开的实施例中,第一方向与第二方向垂直。
在本公开的实施例中,第一线圈组和第二线圈组的各个线圈可包围多个磁性突出物中的一个或多个在第二基板上的投影。
在本公开的实施例中,第一线圈组和第二线圈组的各个线圈可包围一个或多个像素单元。
在本公开的实施例中,第一线圈组的各个线圈和第二线圈组的各个线圈的重叠区域可包围一个或多个像素单元。
在本公开的实施例中,第一线圈组的各个线圈和第二线圈组的各个线圈的重叠区域可包围多个磁性突出物中的一个或多个在第二基板上的投影。
在本公开的实施例中,触摸显示面板还可包括多个检测装置,其分别与第一线圈组和第二线圈组的各个线圈连接,并被配置为检测多个电感式传感器的电感变化量。
在本公开的实施例中,检测装置还被配置为在检测到电感变化量时,确定与其连接的线圈的位置。
在本公开的实施例中,触摸显示面板还可包括位置确定装置和压力确定装置。位置确定装置被配置为基于从检测装置接收的线圈的位置,确定导致电感变化量的触摸物的触摸位置。压力确定装置被配置为基于从检测装置接收的电感变化量,计算线圈与对应的磁性突出物之间的距离的变化量,并基于该距离的变化量,计算触摸压力值。
在本公开的实施例中,多个磁性突出物可由非透明的磁性材料制成。在这种情况下,多个磁性突出物可被设置在第一基板的遮光区域中。
在本公开的实施例中,非透明的磁性材料包括铁氧体材料和铁镍合金材料之一。
在本公开的实施例中,多个磁性突出物可由透明的磁性材料制成。在这种情况下,多个磁性突出物可被设置在第一基板的显示区域中。
在本公开的实施例中,透明的磁性材料可由磁性金属颗粒和二氧化硅气溶胶组成。
在本公开的实施例中,磁性突出物具有锥体和/或柱体和/或台体的结构。
在本公开的实施例中,触摸显示面板可以是液晶显示面板。第一基板是彩膜基板,第二基板是薄膜晶体管阵列基板,反之亦然。
在本公开的实施例中,多个磁性突出物可被设置在彩膜基板的滤色膜之间的黑矩阵区,第一线圈组和第二线圈组可被设置在薄膜晶体管阵列基板的像素单元之间的黑矩阵区。
在本公开的实施例中,在薄膜晶体管阵列基板的公共电极上与多个磁性突出物对应的位置处设置有多个通孔。
在本公开的实施例中,在薄膜晶体管阵列基板上与多个磁性突出物对应的位置处设置有多个开口。
在本公开的实施例中,触摸显示面板是有机发光二极管显示面板。第一基板是封装基板,第二基板是OLED阵列基板,反之亦然。
在本公开的实施例中,多个磁性突出物可被设置在封装基板的与OLED阵列基板的像素单元之间的间隔区域对应的区域中,第一线圈组和 第二线圈组被设置在OLED阵列基板的像素单元之间的间隔区域中。
在本公开的实施例中,有机发光二极管的阴极可在OLED阵列基板的像素单元间的间隔区域中被分割。
根据本公开的第二个方面,提供了一种用于驱动上述的触摸显示面板的驱动方法。在该驱动方法中,在第一时间段,控制触摸显示面板的像素单元以显示图像,并且对第一线圈组和第二线圈组不施加交流电压。在第二时间段,控制像素单元不显示,并对第一线圈组和第二线圈组施加交流电压。
在本公开的实施例中,在第二时间段,检测触摸显示面板中的多个电感式传感器的电感变化量。
在本公开的实施例中,响应于检测到至少两个电感式传感器的电感变化量,确定所述至少两个电感式传感器中的线圈的位置。
在本公开的实施例中,基于所确定的线圈的位置,确定导致电感变化量的触摸物的触摸位置,并基于所检测到的电感变化量,计算线圈与对应的磁性突出物之间的距离的变化量,并基于该距离的变化量,确定触摸压力值。
根据本公开的第三个方面,提供了一种显示装置,其包括如上所述的触摸显示面板。
根据本公开的实施例的触摸显示面板通过在内部形成电感式传感器,能够实现基于电磁感应的压力触控,并且触控精度高。根据本公开的实施例的驱动触摸显示面板的驱动方法,通过分时驱动图像显示和压力触控,避免了压力触控对于图像显示的影响。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1是根据本公开的第一实施例的触摸显示面板的示意图;
图2是用于说明电感式传感器的结构的示意图;
图3是表示根据本公开的实施例的触摸显示面板中的两个线圈组之间的位置关系的示意图;
图4是根据本公开的实施例的触摸显示面板的一个实例的示意性剖视图;
图5是根据本公开的实施例的触摸显示面板的另一个实例的示意性剖视图;
图6是根据本公开的第二实施例的触摸显示面板的示意图;
图7是如图6所述的触摸显示面板中的检测装置的一个示例的电路图;
图8是根据本公开的第三实施例的触摸显示面板的示意图;
图9是表示电感量与位移的关系的曲线图;
图10是根据本公开的实施例的驱动如图1、图6或图8所示的触摸显示面板的驱动方法的示意性流程图。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。
图1示出了根据本公开的第一实施例的触摸显示面板100的示意性的剖视图。如图1所示,触摸显示面板100包括第一基板110和与第一基板110相对设置的第二基板120。进一步地,触摸显示面板100还包括多个磁性突出物140。这些磁性突出物140被设置在第一基板110上,并朝向第二基板120突起。另外,触摸显示面板100还包括第一线圈组150和第二线圈组160。第一线圈组150可包括多个沿第一方向延伸的线圈,第二线圈组160可包括多个沿与第一方向不同的第二方向延伸的线圈。第一线圈组150和第二线圈组160被彼此绝缘地层叠设置在第二基板120上。
由此,第一线圈组150中的各个线圈、第二线圈组160中的各个线圈与各自对应的磁性突出物140可构成多个电感式传感器。这些电感式传感器的每一个可响应于其构成线圈与对应的磁性突出物之间的距离的变化,产生电感变化量。这样,当触摸物(例如,人的手指)按压触摸显示面板100时,第一基板110产生形变,使得在被按压的位置处(或附近)的磁性突出物140向下移动。磁性突出物140与对应的线圈之间的距离的变化导致电感式传感器产生电感变化量。
在本公开的实施例中,为了避免磁性突出物140、第一线圈组150和第二线圈组160遮挡图像的显示,可以将磁性突出物140设置在第一基板110的遮光区域中,将第一线圈组150和第二线圈组160设置在第二基板120的遮光区域中。
在本公开的实施例中,磁性突出物140可由非透明的磁性材料制成,例如,具有高磁导率的铁氧体材料、坡莫合金(即铁镍合金)材料等。在这种情况下,磁性突出物140被设置在第一基板110的遮光区域中。在本公开的其它实施例中,磁性突出物140也可以采用透明的磁性材料制成,例如由钕、铁、硼等磁性金属颗粒和二氧化硅气溶胶组成的材料。在这种情况下,磁性突出物140也可以被设置在第一基板110的显示区域中,从而能够增加第一基板110上的磁性突出物140的数量。另外,磁性突出物140可以被设置成各种结构,例如锥体、柱体、台体等。
在本公开的实施例中,可以通过在第一线圈组150与第二线圈组160之间设置绝缘层180以使第一线圈组150与第二线圈组160绝缘。进一步地,在一个实施例中,第一方向与第二方向可以是彼此基本垂直的。
图2示意性地示出了如图1所示的触摸显示面板100中的电感式传感器的结构。如图2所示,电感式传感器可包括线圈和一个或多个磁性突出物140,其中,该一个或多个磁性突出物140在第二基板120上的投影落在线圈内。在该电感式传感器中,磁性突出物140被用作磁芯。通过在电感式传感器中包含多个磁性突出物140,能够增大电感式传感器的电感量,从而便于测量。
另外,在本公开的实施例中,每个线圈可以包围一个或多个像素单元。通过设置线圈所包围的像素单元的数量,能够调整触摸显示面板的压力触控的精度。
图3示意性地示出了说明第一线圈组150与第二线圈组160之间的位置关系的示例。在该示例中,第一线圈组150和第二线圈组160中的线圈是矩形线圈。本领域的技术人员应当知道,也可以采用其它形状的线圈。
如图3所示,第一线圈组150中的多个矩形线圈沿水平方向并行排列,第二线圈组160中的多个矩形线圈沿竖直方向并行排列。这样,第一线圈组150中的各个线圈与第二线圈组160中的各个线圈可彼此重叠以形成多个矩形格子(即,重叠区域),在各个矩形格子中可包围一个或多个像素单元。此外,每个矩形格子也可包围一个或多个磁性突出物在第二基板上的投影。
根据本公开的实施例的触摸显示面板可以交替地在显示模式和触控模式下工作,这可通过分时复用技术来实现。在显示模式下,触摸显示面板执行显示功能。在触控模式下,触摸显示面板禁用显示功能。当人的手指按压触摸显示面板时,第一基板110将产生形变,使得第一基板110上相应的磁性突出物140向下移动。这样,磁性突出物140与对应的线圈之间的距离缩短,使得相应的电感式传感器的电感发生变化。基于电感式传感器的电感变化量,可确定按压的位置和触摸压力值(具体细节在后面详述),从而实现压力触控。
通过以上描述可以看出,本实施例的触摸显示面板100通过在内部形成多个电感式传感器,能够实现压力触控。此外,由于磁性突出物可采用磁导率较高的材料(例如,铁氧体材料等)制成,能够感应由于微小的距离变化而带来的电感变化,因此,能够实现高精度的压力触控。
下面通过两个具体实例说明根据本公开的实施例的触摸显示面板。
图4是根据本公开的实施例的触摸显示面板的一个实例的示意性剖视图。在该实例中,触摸显示面板是液晶显示面板(LCD)400。
如图4所示,液晶显示面板400包括作为第一基板的彩膜(CF)基板 410、与彩膜基板410相对设置的作为第二基板的薄膜晶体管(TFT)阵列基板420、以及夹持在彩膜基板410和TFT阵列基板420之间的液晶层430。在彩膜基板410上设置有多个磁性突出物440,在TFT阵列基板420上,依次层叠设置有第二线圈组460、绝缘层480和第一线圈组450。对于本领域的技术人员来说,应当知道,第一基板也可以是TFT阵列基板,相应地,第二基板是彩膜基板。
在该实例中,遮光区域被实现为黑矩阵区。在这种情况下,磁性突出物440被设置在彩膜基板410的滤色膜之间的黑矩阵区,并从彩膜基板410向液晶层430突起。第一线圈组450和第二线圈组460被设置在TFT阵列基板420的像素单元之间的黑矩阵区。
在一个实施例中,TFT阵列基板420上的公共电极可被形成为面状。在公共电极被形成在磁性突出物440与第一、第二线圈组450、460之间的情况下,公共电极会屏蔽在电感式传感器中形成的磁场。为了避免公共电极对磁场的影响,可通过刻蚀工艺在公共电极上与磁性突出物440对应的位置处开设多个通孔,以使得磁力线能够穿过。另外,通过在TFT阵列基板420上开孔,也可以增加磁性突出物440可移动的位移量,从而增大电感量。另外,这样的设置也可以避免磁性突出物440与TFT阵列基板420的碰撞。
图5示出了根据本公开的实施例的触摸显示面板的另一个实例的示意性剖视图。在该实例中,触摸显示面板是有机发光二极管(OLED)显示面板,例如有源矩阵有机发光二极管(AMOLED)显示面板500。本领域的技术人员应当知道,也可以是其它类型的OLED显示面板。
如图5所示,AMOLED显示面板500包括作为第一基板的封装基板510以及与封装基板510相对设置的作为第二基板的OLED阵列基板520。在OLED阵列基板520上形成有机发光二极管530。在封装基板510上设置有朝向OLED阵列基板520突起的多个磁性突出物540。在OLED阵列基板520上,依次层叠设置有第二线圈组560、绝缘层580和第一线圈组550。本领域的技术人员应当知道,第一基板也可以是OLED阵列基板, 相应地,第二基板是封装基板。
在该实例中,遮光区域是像素单元间的间隔区域,其可被实现为黑矩阵区。在这种情况下,磁性突出物540可被设置在封装基板510的与OLED阵列基板520的像素单元间的间隔区域对准的区域中,而第一线圈组550和第二线圈组560被设置在OLED阵列基板520的像素单元间的间隔区域中。
在AMOLED显示面板500中,有机发光二极管530的阴极通常被形成为面状。在有机发光二极管的阴极形成在磁性突出物540与第一、第二线圈组550、560之间的情况下,阴极会屏蔽在电感式传感器中形成的磁场,从而影响压力感应的准确性。为此,在一个实施例中,有机发光二极管530的阴极可在OLED阵列基板520的像素单元间的间隔区域处被分割,以使得磁力线可穿过阴极。
图6是根据本公开的第二实施例的触摸显示面板600的示意图,其中,对于与前面实施例相同的部分,使用相同的附图标记。在本实施例中,触摸显示面板200除了包括第一基板110、第二基板120、磁性突出物140、第一线圈组150和第二线圈组160外,还包括多个检测装置610,以测量每个电感式传感器的电感变化量。具体地,每个检测装置610与第一线圈组150和第二线圈组160中的一个线圈连接,以检测由该线圈及其所包围的磁性突出物140所构成的电感式传感器的电感变化量。
图7示出了检测装置610的一个示例性电路的示意图。如图7所示,Z1代表触摸显示面板600中的电感式传感器。在具体实现中,可将触摸显示面板600中的一个线圈的两端与A、B两点连接。在该电路中,Z2表示具有与Z1的初始电感量相同的电感量的标准电感,U1表示交流电压,Z3、Z4表示具有相同电阻值R的电阻。因此,在输出端的电压UO可用以下公式表示:
Figure PCTCN2017077882-appb-000001
根据以上公式可以看出,输出电压UO与电感变化量ΔZ1成比例。因 此,当施加了交流电压U1时,如果Z1的电感量没有改变,则在输出端UO的电压值为零。如果Z1的电感量发生改变,则在输出端UO会产生电压值。这样,在测量到输出电压值后,可以按照上述公式计算电感变化量。
进一步地,检测装置610在检测到电感变化量后,可以确定与其连接的线圈的位置。该位置例如可以用线圈在其所属的线圈组中的排列位置表示。
通过以上描述可以看出,本实施例的触摸显示面板600能够进一步检测由于外部触摸物对触摸显示面板的触摸而导致的电感式传感器的电感变化量。
图8示出了根据本公开的第三实施例的触摸显示面板800的示意图,其中,对于与前面实施例相同的部分,使用相同的附图标记。在本实施例中,触摸显示面板800在如图6所示的触摸显示面板600的基础上,还包括位置确定装置810和压力确定装置820。
位置确定装置810可从至少两个检测装置610接收所确定的线圈的位置,并基于此,确定例如手指的触摸物的触摸位置。在一个实施例中,可以预先建立第一线圈组150和第二线圈组160中的每个线圈的位置与触摸显示面板800的屏幕坐标之间的对应关系。例如,在第一线圈组150中的线圈沿水平方向延伸而第二线圈组160中的线圈沿竖直方向延伸的情况下,第一线圈组150中的线圈的排列位置可与屏幕的y坐标建立对应关系,而第二线圈组160中的线圈的排列位置可与屏幕的x坐标建立对应关系。这样,可根据产生电感变化量的电感式传感器的线圈的位置,确定相应的触摸位置。
压力确定装置820可从至少两个检测装置610接收到所测量的电感变化量,并对其进行处理以获得触摸导致的最终电感变化量,以用于确定触摸压力值。在一个实施例中,可从所接收的电感变化量中选择最大的电感变化量,作为最终电感变化量。在另一个实施例中,可以计算所接收的电感变化量的平均值,作为最终电感变化量。此外,通过实验可知,电感量与位移具有简单的线性关系,如图9所示。这样,根据该线性关系,可以 将最终电感变化量转变成位移,即,由于手指按压而引起的磁性突出物的位移(即,线圈与磁性突出物之间的距离的变化量)。然后,根据所计算的距离的变化量,获得手指按压的力量值(即触摸压力值)。在一个实施例中,可以预先设置指示触摸压力值与距离的变化量的范围之间的对应关系的表。通过查询该对应关系表,可确定触摸压力值。
本领域的普通技术人员应当知道,本实施例中的位置确定装置810和压力确定装置820可以通过硬件、软件或其结合来实现。
通过以上描述可以看出,本实施例的触摸显示面板800能够进一步根据所检测的电感变化量,确定外部触摸物的触摸位置以及触摸压力大小。
图10示出了根据本公开的实施例的驱动如图1、图6或图8所示的触摸显示面板的驱动方法的示意性流程图。如图10所示,在步骤S1010,在第一时间段,控制触摸显示面板中的像素单元以显示图像,并对第一线圈组和第二线圈组不施加交流电压。因此,在第一时间段,触摸显示面板处于显示模式。此时,由于电感式传感器不会产生电感变化量,因此,即使按压触摸显示面板,也不会实施压力触控。在一个实施例中,第一时间段可以包括至少一个扫描周期。
在步骤S1020,在第二时间段,控制触摸显示面板的像素单元不显示,并对第一线圈组和第二线圈组施加交流电压,以启动检测装置。因此,在第二时间段,触摸显示面板处于触摸模式。此时,如果按压触摸显示面板,则电感式传感器可产生电感变化量,以实施压力触控。
在触摸显示面板是如图6所示的触摸显示面板600的情况下,在第二时间段,还可由检测装置610检测触摸显示面板600中的多个电感式传感器的电感变化量。进一步地,检测装置610还可响应于检测到至少两个电感式传感器的电感变化量,确定至少两个电感式传感器中的线圈的位置。
在触摸显示面板是如图8所示的触摸显示面板800的情况下,还可在检测装置610检测到电感变化量并确定线圈的位置后,由位置确定装置810基于所确定的线圈的位置,确定导致电感变化量的触摸物的触摸位置,并由压力确定装置820基于所检测到的电感变化量,计算线圈与对应的磁性 突出物之间的距离的变化量,并基于该距离的变化量,确定触摸压力值。在一个实施例中,可以通过查询预先设置的指示触摸压力值与距离的变化量的范围之间的对应关系的表,获得与所计算的距离的变化量对应的触摸压力值。
此外,本公开的实施例还提供了一种包括如图1、图6或图8所示的触摸显示面板的显示装置。显示装置可以是例如触摸屏、移动电话、智能电话、膝上型计算机、平板计算机、数码相机、电子阅读器、可穿戴式设备、电视机等电子设备。
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。

Claims (32)

  1. 一种触摸显示面板,包括:
    第一基板;
    第二基板,其与所述第一基板相对设置;
    多个磁性突出物,其被设置在所述第一基板上并朝向所述第二基板突起;
    第一线圈组,包括多个沿第一方向延伸的线圈;以及
    第二线圈组,包括多个沿第二方向延伸的线圈;
    其中,所述第一线圈组和所述第二线圈组彼此绝缘地层叠设置在所述第二基板上,
    其中,所述第一线圈组的线圈和所述第二线圈组的线圈与对应的磁性突出物构成多个电感式传感器,所述电感式传感器响应于所述线圈与对应的磁性突出物之间的距离的变化而产生电感变化量。
  2. 根据权利要求1所述的触摸显示面板,其中,所述多个磁性突出物被设置在所述第一基板的遮光区域中,所述第一线圈组和所述第二线圈组被设置在所述第二基板的遮光区域中。
  3. 根据权利要求1或2所述的触摸显示面板,其中,在所述第一线圈组与所述第二线圈组之间设置有绝缘层。
  4. 根据权利要求1或2所述的触摸显示面板,其中,所述第一方向与所述第二方向垂直。
  5. 根据权利要求1或2所述的触摸显示面板,其中,所述第一线圈组和所述第二线圈组的各个线圈包围所述多个磁性突出物中的一个或多个在所述第二基板上的投影。
  6. 根据权利要求1或2所述的触摸显示面板,其中,所述第一线圈组和所述第二线圈组的各个线圈包围一个或多个像素单元。
  7. 根据权利要求1或2所述的触摸显示面板,其中,所述第一线圈组的各个线圈和所述第二线圈组的各个线圈的重叠区域包围一个或多个像素 单元。
  8. 根据权利要求1或2所述的触摸显示面板,其中,所述第一线圈组的各个线圈和所述第二线圈组的各个线圈的重叠区域包围所述多个磁性突出物中的一个或多个在所述第二基板上的投影。
  9. 根据权利要求1所述的触摸显示面板,还包括:
    多个检测装置,分别与所述第一线圈组和所述第二线圈组的各个线圈连接,并被配置为检测所述多个电感式传感器的所述电感变化量。
  10. 根据权利要求9所述的触摸显示面板,其中,所述检测装置还被配置为在检测到所述电感变化量时,确定与其连接的线圈的位置。
  11. 根据权利要求10所述的触摸显示面板,还包括:
    位置确定装置,其被配置为基于从所述检测装置接收的线圈的位置,确定导致所述电感变化量的触摸物的触摸位置;以及
    压力确定装置,其被配置为基于从所述检测装置接收的所述电感变化量,计算所述距离的变化量,并基于所述距离的变化量,确定触摸压力值。
  12. 根据权利要求1所述的触摸显示面板,其中,所述多个磁性突出物由非透明的磁性材料制成。
  13. 根据权利要求12所述的触摸显示面板,其中,所述多个磁性突出物被设置在所述第一基板的遮光区域中。
  14. 根据权利要求12或13所述的触摸显示面板,其中,所述非透明的磁性材料包括铁氧体材料和铁镍合金材料之一。
  15. 根据权利要求1所述的触摸显示面板,其中,所述多个磁性突出物由透明的磁性材料制成。
  16. 根据权利要求15所述的触摸显示面板,其中,所述多个磁性突出物被设置在所述第一基板的显示区域中。
  17. 根据权利要求15或16所述的触摸显示面板,其中,所述透明的磁性材料由磁性金属颗粒和二氧化硅气溶胶组成。
  18. 根据权利要求1或2所述的触摸显示面板,其中,所述磁性突出物具有锥体和/或柱体和/或台体的结构。
  19. 根据权利要求1所述的触摸显示面板,其中,所述触摸显示面板是液晶显示面板。
  20. 根据权利要求19所述的触摸显示面板,其中,所述第一基板是彩膜基板,所述第二基板是薄膜晶体管阵列基板。
  21. 根据权利要求20所述的触摸显示面板,其中,所述多个磁性突出物被设置在所述彩膜基板的滤色膜之间的黑矩阵区,所述第一线圈组和所述第二线圈组被设置在所述薄膜晶体管阵列基板的像素单元之间的黑矩阵区。
  22. 根据权利要求20或21所述的触摸显示面板,其中,在所述薄膜晶体管阵列基板的公共电极上与所述多个磁性突出物对应的位置处设置有多个通孔。
  23. 根据权利要求1所述的触摸显示面板,其中,所述触摸显示面板是有机发光二极管显示面板。
  24. 根据权利要求23所述的触摸显示面板,其中,所述第一基板是封装基板,所述第二基板是OLED阵列基板。
  25. 根据权利要求24所述的触摸显示面板,其中,所述多个磁性突出物被设置在所述封装基板的与所述OLED阵列基板的像素单元之间的间隔区域对准的区域中,所述第一线圈组和所述第二线圈组被设置在所述OLED阵列基板的像素单元之间的间隔区域中。
  26. 根据权利要求24或25所述的触摸显示面板,其中,有机发光二极管的阴极在所述OLED阵列基板的像素单元间的间隔区域处被分割。
  27. 一种用于驱动如权利要求1至26任意一项所述的触摸显示面板的驱动方法,包括:
    在第一时间段,控制所述触摸显示面板中的像素单元以显示图像,并且对所述第一线圈组和所述第二线圈组不施加交流电压;以及
    在第二时间段,控制所述像素单元不显示,并对所述第一线圈组和所述第二线圈组施加交流电压。
  28. 根据权利要求27所述的驱动方法,还包括:
    在所述第二时间段,检测所述触摸显示面板中的多个电感式传感器的电感变化量。
  29. 根据权利要求28所述的驱动方法,还包括:
    响应于检测到至少两个电感式传感器的电感变化量,确定所述至少两个电感式传感器中的线圈的位置。
  30. 根据权利要求29所述的驱动方法,还包括:
    基于所确定的所述线圈的位置,确定导致所述电感变化量的触摸物的触摸位置;以及
    基于所检测到的所述电感变化量,计算所述线圈与对应的磁性突出物之间的距离的变化量,并基于所述距离的变化量,确定触摸压力值。
  31. 根据权利要求30所述的驱动方法,其中,基于所述距离的变化量,确定触摸压力值包括:查询预先设置的指示触摸压力值与距离的变化量的范围之间的对应关系的表,以获得与所述距离的变化量对应的触摸压力值。
  32. 一种显示装置,包括如权利要求1至26任意一项所述的触摸显示面板。
PCT/CN2017/077882 2016-05-06 2017-03-23 触摸显示面板及其驱动方法、以及显示装置 WO2017190562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,206 US10191605B2 (en) 2016-05-06 2017-03-23 Touch panel, driving method thereof, and display device based on electromagnetic induction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610296804.XA CN105739806B (zh) 2016-05-06 2016-05-06 触摸显示面板及其驱动方法、以及显示装置
CN201610296804.X 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017190562A1 true WO2017190562A1 (zh) 2017-11-09

Family

ID=56288097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077882 WO2017190562A1 (zh) 2016-05-06 2017-03-23 触摸显示面板及其驱动方法、以及显示装置

Country Status (3)

Country Link
US (1) US10191605B2 (zh)
CN (1) CN105739806B (zh)
WO (1) WO2017190562A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073170A1 (en) * 2018-10-08 2020-04-16 Siemens Aktiengesellschaft Key device and operation panel
CN111261052A (zh) * 2018-11-30 2020-06-09 三星显示有限公司 显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739806B (zh) * 2016-05-06 2018-10-19 京东方科技集团股份有限公司 触摸显示面板及其驱动方法、以及显示装置
CN107644611B (zh) * 2016-07-22 2020-04-03 京东方科技集团股份有限公司 Oled显示装置及其压力触控驱动方法
CN106293249B (zh) * 2016-09-08 2024-04-16 合肥京东方光电科技有限公司 一种触控模组、触控输入系统
WO2018102723A1 (en) * 2016-12-02 2018-06-07 Methode Electronics, Inc. Integrated control panel apparatus and use thereof
CN106713757B (zh) * 2016-12-30 2020-04-14 努比亚技术有限公司 一种控制拍摄的方法和移动终端
EP3646153A4 (en) * 2017-06-30 2021-01-27 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE WITH A PLURALITY OF CORE-COIL ASSEMBLIES CONFIGURED TO DETECT A TOUCH AND DISPLAY PANEL CONTAINING THE LATEST
CN107731181A (zh) 2017-09-27 2018-02-23 京东方科技集团股份有限公司 一种显示控制方法和显示装置
CN108664175A (zh) * 2018-05-14 2018-10-16 维沃移动通信有限公司 一种感应操作模组及终端
JP2022064163A (ja) * 2020-10-13 2022-04-25 エルジー ディスプレイ カンパニー リミテッド タッチ表示装置
CN113589976B (zh) * 2021-07-27 2024-05-17 惠州华星光电显示有限公司 显示面板及移动终端
CN116300182B (zh) * 2023-05-11 2023-08-25 惠科股份有限公司 显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927070A (zh) * 2013-08-23 2014-07-16 上海天马微电子有限公司 一种内嵌式电磁触摸显示屏以及触摸显示装置
CN104484086A (zh) * 2014-12-12 2015-04-01 深圳市华星光电技术有限公司 电磁感应式触控基板及显示装置
CN105739806A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 触摸显示面板及其驱动方法、以及显示装置
CN205608704U (zh) * 2016-05-06 2016-09-28 京东方科技集团股份有限公司 触摸显示面板以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004274A (ja) * 2003-06-09 2005-01-06 Alps Electric Co Ltd 入力装置
CN102253787B (zh) * 2010-05-21 2014-12-10 宸鸿科技(厦门)有限公司 电感式触控传感器及其触摸点侦测方法
CN104182112B (zh) * 2014-07-30 2017-03-29 京东方科技集团股份有限公司 触控显示面板及显示装置
US9886158B2 (en) 2014-07-30 2018-02-06 Boe Technology Group Co., Ltd. In-cell electromagnetic touch display panel and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927070A (zh) * 2013-08-23 2014-07-16 上海天马微电子有限公司 一种内嵌式电磁触摸显示屏以及触摸显示装置
CN104484086A (zh) * 2014-12-12 2015-04-01 深圳市华星光电技术有限公司 电磁感应式触控基板及显示装置
CN105739806A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 触摸显示面板及其驱动方法、以及显示装置
CN205608704U (zh) * 2016-05-06 2016-09-28 京东方科技集团股份有限公司 触摸显示面板以及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073170A1 (en) * 2018-10-08 2020-04-16 Siemens Aktiengesellschaft Key device and operation panel
CN111261052A (zh) * 2018-11-30 2020-06-09 三星显示有限公司 显示装置
CN111261052B (zh) * 2018-11-30 2024-03-08 三星显示有限公司 显示装置

Also Published As

Publication number Publication date
CN105739806B (zh) 2018-10-19
CN105739806A (zh) 2016-07-06
US20180164920A1 (en) 2018-06-14
US10191605B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2017190562A1 (zh) 触摸显示面板及其驱动方法、以及显示装置
US11520423B2 (en) Force sensing within display stack
US10365752B2 (en) Touch-control display panel and touch-control display device
CN107145253B (zh) 力感测架构
US8659575B2 (en) Touch panel device of digital capacitive coupling type with high sensitivity
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
CN105929577B (zh) 显示面板、显示装置及显示面板的制造方法
US10133421B2 (en) Display stackups for matrix sensor
WO2017063423A1 (zh) 内嵌式触摸屏、显示装置及其驱动方法
US10451928B2 (en) Display panel and display device
US10168850B2 (en) Display panel and display device
US20170060308A1 (en) Touch sensor of electromagnetic resonance type and display device including touch sensor
US20120092295A1 (en) Touch-Sensitive Coordinate Input Apparatus, Touch Panel and Electronic Devices Having the Same
WO2020168890A1 (zh) 一种触控基板及其驱动方法和显示装置
US10572081B2 (en) Force sensing using sensor electrodes of different materials
US9569048B2 (en) Touch display panel and display device
CN208903234U (zh) 触摸屏及电子设备
CN107256106B (zh) 阵列基板、液晶显示面板、触控显示装置及触控驱动方法
KR20170074614A (ko) 연성 표시장치
WO2018137356A1 (zh) Oled触控显示面板、显示装置及触控操作区域的检测方法
CN107797706B (zh) 一种压力感应传感器、显示面板及装置
CN205608704U (zh) 触摸显示面板以及显示装置
CN107526473B (zh) 阵列基板、显示面板及显示装置
WO2018196278A1 (zh) 触控基板及其制作和驱动方法、触控显示装置
WO2017063444A1 (zh) 触摸屏、显示装置及其驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15737206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792389

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792389

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 230519)

122 Ep: pct application non-entry in european phase

Ref document number: 17792389

Country of ref document: EP

Kind code of ref document: A1