WO2017188138A1 - Voc分解剤 - Google Patents

Voc分解剤 Download PDF

Info

Publication number
WO2017188138A1
WO2017188138A1 PCT/JP2017/016007 JP2017016007W WO2017188138A1 WO 2017188138 A1 WO2017188138 A1 WO 2017188138A1 JP 2017016007 W JP2017016007 W JP 2017016007W WO 2017188138 A1 WO2017188138 A1 WO 2017188138A1
Authority
WO
WIPO (PCT)
Prior art keywords
voc
platinum
decomposing
agent according
porous silica
Prior art date
Application number
PCT/JP2017/016007
Other languages
English (en)
French (fr)
Inventor
勇輝 笠間
卓司 横山
亘 藤井
卓也 柳野
南部 宏暢
Original Assignee
太陽化学株式会社
勇輝 笠間
卓司 横山
亘 藤井
卓也 柳野
南部 宏暢
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽化学株式会社, 勇輝 笠間, 卓司 横山, 亘 藤井, 卓也 柳野, 南部 宏暢 filed Critical 太陽化学株式会社
Priority to JP2018514559A priority Critical patent/JP6592191B2/ja
Publication of WO2017188138A1 publication Critical patent/WO2017188138A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Definitions

  • the present invention relates to a VOC decomposing agent, a freshness-preserving agent, an environmental purification agent, and articles provided with these, as well as a VOC decomposing method, a freshness-holding method, and an environmental purification method.
  • VOC volatile organic compounds
  • Patent Document 1 discloses an adsorbent for deodorization in a sewage treatment plant in which bromine, sulfuric acid, and alkali metal halide are uniformly supported on activated carbon.
  • Patent Document 2 a layer containing at least two kinds of photocatalyst particles of titanium oxide and zinc oxide is formed on a base material, and the 50% particle diameter of zinc oxide is larger than the 50% particle diameter of the titanium oxide.
  • An indoor space deodorizing material characterized in that is larger is disclosed.
  • Patent Document 3 cerium-zirconium-bismuth composite oxide and noble metal fine particles (derived from platinum colloid) are supported on the support surface for an ethylene-catalyzed combustion reaction that does not require light irradiation.
  • a catalyst is disclosed.
  • the adsorptive capacity decreases with time, and it is difficult to use for a long time. Since the invention described in Patent Document 2 requires a device for irradiating light, it cannot be easily implemented, and the resolution is not sufficient.
  • the catalysts described in Patent Document 3 and Non-Patent Document 1 contain a special composite oxide called cerium-zirconium-bismuth composite oxide as an essential component. For this reason, it cannot be said that there is much room for improvement and material development for various developments regarding the performance and applications of the catalyst. In addition, it is common technical knowledge of those skilled in the art that VOC decomposition using a conventional metal catalyst is performed at a high temperature of 100 ° C. or higher, and it is considered impossible to use in daily life.
  • An object of the present invention is to provide a VOC decomposing agent that is easy to control properties, performance, etc., that is easy to obtain and prepare, and that can be used continuously at low temperatures.
  • a VOC decomposing agent comprising a porous silica carrying platinum or a platinum-containing compound, wherein the porous silica is a porous silica doped with aluminum
  • a method for decomposing VOC wherein VOC is decomposed by contacting VOC with the VOC decomposing agent described in [1] in the presence of oxygen
  • a plant freshness-keeping agent comprising the VOC decomposing agent according to [1]
  • a freshness-preserving agent for foods and drinks comprising the VOC decomposing agent according to [1]
  • a method for maintaining the freshness of a plant or food or drink wherein the VOC is decomposed by contacting the VOC with the freshness-preserving agent according to [3] or [4] in the presence of oxygen.
  • An environmental purification agent comprising the VOC decomposing agent according to [1], [7] An environmental purification method for decomposing VOC by bringing VOC into contact with the environmental purification agent according to [6] in the presence of oxygen, and [8] An article comprising the VOC decomposing agent according to [1], the freshness maintaining agent according to [3] or [4], or the environmental purification agent according to [6], About.
  • VOC decomposing agent that is easy to control properties, performance, etc., is easily available and prepared, and can be used continuously at low temperatures.
  • the VOC decomposing agent of the present invention contains porous silica carrying platinum or a platinum-containing compound (hereinafter also referred to as “platinum or the like”).
  • the porous silica in the present invention means a substance mainly composed of a silicon oxide having a porous structure, and is doped with aluminum.
  • the present inventors have newly found that porous silica carrying platinum or the like is excellent in the decomposition activity of VOC, and by doping the porous silica with aluminum, the VOC of platinum when carrying platinum or the like is found.
  • the present invention was completed by finding that the decomposition activity and its durability were further improved.
  • porous silica by expressing solid acid sites in porous silica, neutralizing basic substances such as trimethylamine and preventing the structure of porous silica from collapsing also contributes to improved durability. Presumed.
  • the average pore diameter of the porous silica is preferably 1 nm or more from the viewpoint of promoting the progress of the decomposition reaction, and preferably 15 nm or less from the viewpoint of carrying platinum or the like in the form of particles. From these viewpoints, the average pore diameter of the porous silica is preferably 1 to 15 nm, more preferably 1 to 10 nm, and further preferably 1 to 8 nm. In the present invention, the average pore diameter of the porous silica can be calculated by the BJH method based on nitrogen adsorption / desorption.
  • the specific surface area of the porous silica is preferably 300 m 2 / g or more from the viewpoint of increasing the amount of platinum or the like supported, and is preferably 2000 m 2 / g or less from the viewpoint of realizing the production. From these viewpoints, the specific surface area of the porous silica is preferably 300 to 2000 m 2 / g, more preferably 500 to 1500 m 2 / g, and still more preferably 600 to 1200 m 2 / g. In the present invention, the specific surface area of the porous silica can be calculated by the BET method by nitrogen adsorption / desorption.
  • the total pore volume of the porous silica is preferably 0.4 cm 3 / g or more from the viewpoint of improving the contact efficiency with VOC, and preferably 3.0 cm 3 / g or less from the viewpoint of realizing the production. From these viewpoints, the total pore volume of the porous silica is preferably 0.4 to 3.0 cm 3 / g, more preferably 0.45 to 2 cm 3 / g, and further preferably 0.5 to 1.5 cm. 3 / g. In the present invention, the total pore volume of the porous silica can be calculated by the BET method by nitrogen adsorption / desorption.
  • the porous silica preferably has at least one peak at a position where the d-spacing of X-ray diffraction is larger than 2.0 nm.
  • the X-ray diffraction peak means that there is a periodic structure having a d value corresponding to the peak angle in the sample. Therefore, the presence of one or more peaks at the diffraction angle corresponding to a d value of 2.0 nm or more means that the pores are regularly arranged at intervals of 2.0 nm or more.
  • the porous silica having pores regularly arranged in this way is also referred to as mesoporous silica.
  • the d interval is preferably 2.0 to 25.0 nm, more preferably 2.5 to 20.0 nm, and still more preferably 3.0 to 18 nm.
  • the X-ray diffraction pattern of porous silica can be measured by a powder X-ray diffractometer using CuK ⁇ rays as an X-ray source.
  • the method for producing porous silica is not particularly limited, but can be produced, for example, as follows. First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic matter-inorganic matter composite in which an inorganic matter skeleton is formed around the organic matter as a template. Subsequently, porous silica is obtained by removing organic substances from the obtained composite.
  • inorganic raw materials examples include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, sodium silicate, kanemite (Kanemite, NaHSi 2 O 5 ⁇ 3H 2 O), silica, and silica-metal composite oxide. . These inorganic raw materials form a silicate skeleton. These can be used alone or in admixture of two or more.
  • the organic raw material used as the template is not particularly limited, and examples thereof include a surfactant.
  • the surfactant may be any of cationic, anionic and nonionic.
  • alkyltrimethylammonium preferably alkyltrimethylammonium having an alkyl group having 8 to 22 carbon atoms
  • Examples include amines and triblock copolymer type polyalkylene oxides. These can be used alone or in admixture of two or more.
  • an appropriate solvent can be used.
  • a solvent For example, water, an organic solvent, the mixture of water and an organic solvent, etc. are mentioned.
  • the formation method of the complex of inorganic and organic is not particularly limited. For example, after dissolving the organic raw material in a solvent, adding the inorganic raw material and adjusting to a predetermined pH, the reaction mixture is brought to a predetermined temperature. A method of carrying out the condensation polymerization reaction while holding is mentioned.
  • the reaction temperature of the polycondensation reaction varies depending on the type and concentration of the organic raw material and inorganic raw material used, but is usually preferably about 0 to 100 ° C., more preferably 35 to 80 ° C.
  • the reaction time of the condensation polymerization reaction is usually preferably about 1 to 24 hours.
  • the above condensation polymerization reaction may be performed either in a stationary state or in a stirring state, or may be performed in combination.
  • Porous silica is obtained by removing the organic raw material from the composite obtained after the condensation polymerization reaction.
  • the removal of the organic substance from the complex of the organic substance and the inorganic substance can be performed by a method such as a method of baking at 400 to 800 ° C. or a method of treating with a solvent such as water or alcohol.
  • the porous silica is preferably mesoporous silica in which pores are regularly arranged from the viewpoint of pore volume.
  • mesoporous silica is obtained by dispersing sodium silicate in an aqueous solution containing a surfactant, adding hydrochloric acid while heating and stirring to adjust the pH of the dispersion, and washing and drying the obtained solid product. It is obtained by baking at about 400 to 800 ° C.
  • the method for doping aluminum into porous silica is not particularly limited, but in the process of producing porous silica, the aluminum salt is simultaneously mixed with the inorganic raw material and the organic raw material in the solution.
  • the aluminum salt is simultaneously mixed with the inorganic raw material and the organic raw material in the solution.
  • Examples thereof include a method of mixing, a method of impregnating and baking an aluminum solution after forming a composite of an inorganic substance and an organic substance, and a method of impregnating and baking porous silica in an aluminum solution.
  • a method of simultaneously mixing an aluminum salt when mixing an inorganic raw material and an organic raw material in a solution is preferable.
  • sodium silicate is dispersed in an aqueous solution containing a surfactant and an aluminum salt, hydrochloric acid is added with heating and stirring to adjust the pH of the dispersion, and the resulting solid product is obtained.
  • a method of firing at about 400 to 800 ° C. after washing and drying.
  • the raw material of the aluminum to be doped is not particularly limited, and examples thereof include water-soluble and oil-soluble aluminum salts such as aluminum nitrate, aluminum chloride, and aluminum sulfate. These can be used alone or in admixture of two or more.
  • the amount of aluminum to be doped is preferably 0.05 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, and still more preferably from the viewpoint of catalytic activity with respect to 100 parts by mass of porous silica. 1 to 5 parts by mass.
  • examples of the platinum-containing compound supported on the porous silica include alloys with other metals in addition to platinum chloride, platinum oxide, platinum hydroxide and chloroplatinate.
  • the metal particle diameter in platinum or a platinum-containing compound supported on porous silica is preferably 0.5 to 7 nm, more preferably 0.7 to 5 nm, and still more preferably from the viewpoint of catalytic activity. 1 to 4 nm.
  • the metal particle diameter in platinum or a platinum-containing compound can be calculated from the diffraction peak at 37 ° ⁇ 2 ⁇ ⁇ 42 ° obtained by powder X-ray diffraction using the Scherrer equation. In the case where no peak is observed at a position of 37 ° ⁇ 2 ⁇ ⁇ 42 °, the metal particle diameter in platinum or a platinum-containing compound can be calculated from CO pulse adsorption.
  • platinum or a platinum-containing compound supported on porous silica does not have a peak at a diffraction angle 2 ⁇ of 37 to 42 ° in X-ray diffraction.
  • the X-ray diffraction peak at the above position is a peak due to the (111 plane) of the supported platinum or platinum-containing compound particles, and the fact that this peak is not detected means that the particles are fine and the particle diameter is approximately 5 nm. This means that there are no large particles exceeding.
  • the X-ray diffraction pattern of the VOC decomposing agent can be measured by a powder X-ray diffractometer using CuK ⁇ rays as the X-ray source.
  • the content of platinum or a platinum-containing compound in the VOC decomposing agent of the present invention is preferably 0.1% by mass or more from the viewpoint of catalytic activity, and preferably 5% by mass or less from the viewpoint of production cost. From these viewpoints, the content of platinum or the platinum-containing compound is preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass, and further preferably 0.1 to 2% by mass in the VOC decomposing agent. It is.
  • a VOC decomposing agent in which platinum or a platinum-containing compound is supported on porous silica doped with aluminum is, for example, a mixture of a platinum compound containing a platinum atom, a platinum raw material such as a platinum complex, and porous silica doped with aluminum.
  • a platinum compound containing a platinum atom a platinum raw material such as a platinum complex
  • porous silica doped with aluminum can be obtained by reducing Specifically, for example, an aqueous solution containing a platinum raw material is prepared, impregnated with porous silica doped with aluminum, dried, then reduced, and the porous silica doped with aluminum is platinum or a platinum-containing compound. Can be obtained.
  • platinum raw materials include chloroplatinic acid, dinitrodiammine platinum, and tetraammineplatinum nitrate.
  • the temperature condition for drying the porous silica doped with aluminum impregnated in an aqueous solution containing a platinum raw material is not particularly limited, but is preferably about 50 to 200 ° C.
  • a method of treating with a reducing agent, heat, light or the like can be used, and conditions for generating platinum particles by decomposition of the platinum raw material are appropriately set. Since excessive treatment may increase the particle diameter due to sintering of the generated platinum particles, it is necessary to set appropriate conditions.
  • chloroplatinic acid when used, it is preferable to use hydrogen as a reducing agent and to treat it at a temperature of 100 to 400 ° C.
  • Platinum or platinum-containing compounds are preferably supported in the pores rather than outside the pores of the porous silica because the catalytic activity decreases when these become coarse particles due to particle growth. Platinum or platinum particles supported (attached) outside the pores can be removed by washing with running water or the like.
  • VOC decomposition by a conventional metal catalyst is performed at a high temperature of 100 ° C. or higher, while it is common knowledge of those skilled in the art, whereas VOC decomposition is performed even in a low temperature range such as room temperature. Can last.
  • the temperature condition for using the VOC decomposing agent of the present invention is not particularly limited, but it can be used in an atmosphere of 80 to -40 ° C, and considering use in daily life, it is 40 ° C or less or 30 ° C or less. More specifically, it is 15 to 0 ° C. when used in a refrigerator, and ⁇ 5 to ⁇ 25 ° C. when used in a freezer.
  • the present invention provides a VOC decomposition method in which VOC is decomposed by contacting the VOC and the VOC decomposition agent of the present invention in the presence of oxygen under the above temperature conditions.
  • disassembly this invention is not limited to this. It may be used for other purposes such as air purification by decomposing and removing odorous substances and pollutants in the air.
  • air cleaning indoor and outdoor air cleaning can be aimed. Examples of indoor air cleaning include decomposition of volatile organic compounds that cause sick house syndrome released from building materials, paints, resins, and the like.
  • the outdoor air purification can also be aimed at decomposing environmental pollutants and contributing to environmental purification by decomposing volatile organic compounds discharged into the atmosphere from vehicles and factories. That is, the present invention further provides an environmental purification agent containing a VOC decomposing agent, and an environmental purification method for decomposing VOC in the presence of oxygen by contacting the VOC and the environmental purifying agent under the temperature conditions. is there.
  • Examples of the environmental purification method include a method of using the environmental purification agent of the present invention in a place where the VOC concentration in the atmosphere or indoor air is 0.01 to 2000 ppm and 100 to ⁇ 40 ° C. Such places include the vicinity of roads with heavy traffic, inside and outside factories, indoors, and furniture.
  • a powder catalyst is used as it is, or various binders and base materials are appropriately used together and processed into fibers, non-woven fabrics, paper, pellets, slurries, etc.
  • VOC decomposed by the VOC decomposing agent according to the present invention examples include hydrocarbons, organic acids, aldehydes, sulfur compounds, and nitrogen compounds.
  • the hydrocarbon is not particularly limited as long as it is a compound composed of carbon and hydrogen, and examples thereof include ethylene, propylene, butene, acetylene, and toluene.
  • Ethylene is released from various plants such as fruits, vegetables and flowers, and the released ethylene has an action of promoting the decay of plants.
  • the VOC decomposing agent of the present invention can not only efficiently decompose ethylene even at a low temperature, but also the respiration activity of the plant and the aging of the plant are suppressed by the carbon dioxide generated by the decomposition. Therefore, the VOC decomposing agent of the present invention is extremely useful as a plant freshness retaining agent.
  • the organic acid is not particularly limited as long as it is a compound having a carboxyl group, and examples thereof include acetic acid, butyric acid, valeric acid, caproic acid, and benzoic acid.
  • the aldehyde is not particularly limited as long as it is a compound having an aldehyde group, and examples include formic acid, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, crotonaldehyde, hexanal, nonenal and the like.
  • sulfur compounds examples include methyl mercaptan, ethyl mercaptan, and mercaptoethanol.
  • nitrogen compounds examples include trimethylamine, triethylamine, ethylamine, ethylenediamine, and ammonia.
  • VOC decomposing agent of the present invention is very useful as a freshness-preserving agent for foods and drinks because it can decompose VOC efficiently even at low temperatures and increase the carbon dioxide gas concentration.
  • food / beverage products refer to what contains both a drink and solid food.
  • the freshness-keeping agent containing the VOC decomposing agent of the present invention is extremely useful. Therefore, the present invention further provides a freshness maintaining method in which VOC is decomposed by bringing the VOC and the freshness maintaining agent of the present invention into contact with each other under the above temperature conditions in the presence of oxygen.
  • the present invention is not limited to the said food-drinks and a plant as a target of freshness maintenance, What is necessary is just a thing in which freshness falls by presence of VOC.
  • the freshness maintaining agent of the present invention is used in a place where the VOC concentration in air is 0.01 to 2000 ppm and 80 to -25 ° C. The method of doing is mentioned. Examples of such places include indoors, warehouses, refrigerators, freezers, showcases, containers, transport cases, trucks, and the inside of packaging.
  • the powder catalyst is used as it is, or appropriately combined with various binders and base materials, and processed into fibers, nonwoven fabrics, paper, pellets, slurries, etc.
  • As a filter for air conditioners, air stirrers, etc. as wall materials, floor materials, bottom materials, paints, carpets, curtains, etc. Examples include installation inside factories, warehouses, houses, home appliances and packaging materials.
  • the VOC decomposing agent, freshness maintaining agent, and environmental purification agent of the present invention can be provided in various articles.
  • articles comprising the VOC decomposing agent, freshness-keeping agent, and environmental purification agent of the present invention include, for example, bags, containers, filters, refrigerators, freezers, containers, air conditioners, vehicles, ships, aircrafts, and the like. Can be mentioned.
  • the specific surface area (S BET ) and total pore volume (V tot ) of the carrier prepared in each production example were measured by the BET method using the adsorption isotherm obtained from the nitrogen adsorption / desorption measurement, and the average pore diameter was measured by the BJH method. (D meso ) was obtained.
  • S BET specific surface area
  • V tot total pore volume
  • Examples 1 to 3 and Reference Example 1 (Platinum supported on porous silica support) 1.0 g of the carrier shown in Table 1 was suspended in 50 mL of water, and a chloroplatinic acid aqueous solution [H 2 PtCl 6 aq. The solution was stirred overnight at room temperature. The solvent was distilled off by heating to 50 ° C. using an evaporator, and the resulting powder was vacuum-dried at 6 ° C. for 16 to 18 hours, and hydrogen gas was circulated at 30 mL / min for 8 hours at 200 ° C. By performing the reduction treatment, a VOC decomposing agent having platinum supported on a carrier was obtained.
  • Comparative Example 1 A commercially available catalyst in which 5% by mass of platinum was supported on silica gel was used as it was as the ethylene decomposing agent of Comparative Example 1.
  • Powder V-ray diffraction, CO pulse adsorption, and nitrogen adsorption / desorption measurement were performed on the VOC decomposing agents of each Example, Reference Example, and Comparative Example, respectively.
  • X-ray diffraction was measured with RINT-2200 Ultimate II manufactured by Rigaku. Specific measurement conditions are shown below.
  • X-ray source CuK ⁇
  • tube voltage 40 kV
  • tube current 40 mA
  • step width 0.02 deg.
  • Scan speed 0.5 deg. / Min.
  • Divergence slit open, divergence vertical slit: open, scattering slit: open, light receiving slit: 0.6 mm
  • monochromatic graphite crystal monochromator
  • the metal particle diameter (crystallite diameter, D M ) of platinum or a platinum-containing compound supported by the Scherrer equation was calculated from a diffraction peak at a position of 37 ° ⁇ 2 ⁇ ⁇ 42 ° obtained by powder X-ray diffraction. .
  • the metal particle diameter (crystallite diameter, D M ) of platinum or a platinum-containing compound supported by CO pulse adsorption was calculated for those in which no peak was observed at a position of 37 ° ⁇ 2 ⁇ ⁇ 42 °.
  • Example 1 Ethylene Decomposition / Removal Evaluation Test
  • the VOC decomposing agents of each Example and Comparative Example were compression-molded and screened with a pressure of 2 kN.
  • a granular VOC decomposing agent (355-500 ⁇ m) obtained by sieving is charged into a stainless steel reaction vessel and heated at 150 ° C. for 1 hour under helium (75 mL / min.). And the adsorbed water on the surface of the decomposition agent was removed.
  • the thus treated VOC decomposer the following ethylene decomposition removal test was performed.
  • “Smell bag” bag capacity: 3 L, bag size: 250 x 250 mm, material: polyester film) containing 2.5 L of a reaction gas containing 106 ppm of ethylene (ethylene concentration, approximately 106 ppm; oxygen, 20% by volume; nitrogen, balance) / Tokyo Glass Instruments Co., Ltd.) 1g of decomposition agent, left at 4 ° C for 20 hours, and then measured ethylene concentration in the head space in the odor bag with a gas detector tube (manufactured by Gastec Co., Ltd.) The ethylene decomposition removal activity at 4 ° C. was evaluated. The results are shown in Table 2.
  • Test Example 2 Ethylene Decomposition Removal Test at 25 ° C. Tested in the same manner as in Test Example 1 except that the VOC decomposing agents of each Example, Reference Example, and Comparative Example were used and left to stand at 25 ° C. for 20 hours. Went. The results are shown in Table 3.
  • Ethylene Decomposition / Evaluation Test Example 3 Water Vapor Resistance Test VOC decomposing agents of each Example, Reference Example, and Comparative Example were compression-molded and screened with a pressure of 2 kN.
  • a granular VOC decomposing agent (355-500 ⁇ m) obtained by sieving is charged into a stainless steel reaction vessel and heated at 150 ° C. for 1 hour under helium (75 mL / min.). And the adsorbed water on the surface of the decomposition agent was removed.
  • These VOC decomposing agents were allowed to stand in a space of 40 ° C. and 100% relative humidity for 8 days so that they were not directly exposed to moisture, and the following ethylene decomposing / removing test was performed using the VOC decomposing agent thus treated as it was. went.
  • “Smell bag” bag capacity: 3 L, bag size: 250 x 250 mm, material: polyester film) containing 2.5 L of a reaction gas containing 106 ppm of ethylene (ethylene concentration, approximately 106 ppm; oxygen, 20% by volume; nitrogen, balance) / Tokyo Glass Instruments Co., Ltd.) 1g of decomposition agent, and after standing at 25 ° C for 20 hours, the ethylene concentration in the head space in the odor bag is measured with a gas detector tube (manufactured by Gastec Co., Ltd.). The ethylene decomposition removal activity at 25 ° C. was evaluated. The results are shown in Table 3.
  • Test Example 4 Aldehyde Decomposition / Removal Test The following aldehyde decomposition / removal tests were performed using the decomposing agents of each Example and Comparative Example.
  • “Odor bag” bag capacity: 3 L, containing 2.5 L of reaction gas (acetaldehyde concentration, about 100 ppm; oxygen, 20% by volume; nitrogen, balance: balance gas) containing aldehyde (acetaldehyde) in the amount shown in Table 4 Bag size: 250 ⁇ 250 mm, Material: Polyester film / manufactured by ASONE Co., Ltd.), 500 mg of decomposing agent is added, and after standing at 20 ° C. for 21 hours, the aldehyde (acetaldehyde) concentration in the odor bag is measured with a gas detector tube ( (Measured by Gastec Co., Ltd.). The results are shown in Table 4.
  • Test Example 5 Trimethylamine Decomposition / Removal Test The following trimethylamine decomposition / removal test was performed using the decomposition agents of the Examples and Comparative Examples. “Smell bag” (bag capacity: 3 L, bag size: 2.5 L) containing 2.5 L of reaction gas (trimethylamine concentration, about 3 ppm; oxygen, 20 vol%; nitrogen, balance: balance gas) containing trimethylamine in the amount shown in Table 4 250 ⁇ 250 mm, material: polyester film / manufactured by ASONE Corporation), 500 mg of decomposing agent is charged, and after standing at 20 ° C. for 21 hours, the concentration of trimethylamine in the head space in the odor bag is measured by a gas detector tube (manufactured by Gastec Corporation). Measured with The results are shown in Table 4.
  • Test Example 6 Methyl Mercaptan Decomposition / Removal Test
  • the following methyl mercaptan decomposition / removal test was performed using the decomposing agents of the examples and comparative examples.
  • “Odor bag” bag capacity: 3 L) containing 2.5 L of reaction gas (methyl mercaptan concentration, about 1.5 ppm; oxygen, 20 vol%; nitrogen, balance: balance gas) containing methyl mercaptan in the amount shown in Table 4 , Bag size: 250 ⁇ 250 mm, material: polyester film / manufactured by ASONE Co., Ltd.), 500 mg of decomposing agent was added and left at 20 ° C. for 21 hours, and then the concentration of methyl mercaptan in the head space in the odor bag was measured using a gas detector tube (stock) (Measured by Gastech). The results are shown in Table 4.
  • Test Example 7 Formaldehyde decomposition / removal test at 20 ° C.
  • the following formaldehyde decomposition / removal test was performed using the decomposer of each Example.
  • “Smell bag” bag capacity: 3 L, bag size :) containing 2.5 L of reaction gas containing formaldehyde in the amount shown in Table 5 (formaldehyde concentration, about 400 ppm; oxygen, 20 vol%; nitrogen, balance; balance gas) 250 ⁇ 250 mm, material: polyester film / manufactured by ASONE Corporation), 500 mg of decomposing agent is added, and after standing at 20 ° C. for 4 hours, the concentration of formaldehyde in the head space in the odor bag is detected by a gas detector tube (manufactured by Gastec Corporation). Measured with The results are shown in Table 5.
  • Test Example 8 Formaldehyde decomposition removal test at ⁇ 20 ° C. Using the decomposition agents of Example 2 and Reference Example 1, a formaldehyde decomposition removal test at ⁇ 20 ° C. was performed. The test was conducted in the same manner as in Test Example 7 except that the initial charged formaldehyde concentration was about 210 ppm and the sample was allowed to stand at ⁇ 20 ° C. for 18 hours after the decomposition agent was charged. The results are shown in Table 6.
  • Examples 1 to 3 in which platinum is supported on porous silica are superior to Comparative Example 1 in which platinum is supported on silica gel, which is superior in VOC decomposition activity even at low temperatures. Recognize. Further, in comparison with Test Examples 2 and 3, Examples 1 to 3 in which porous silica is doped with aluminum are superior in durability of VOC decomposition activity to Reference Example 1 that is not doped, and continue at a low temperature. It can be seen that it can be used in a practical manner. Further, from Test Example 8, Example 2 in which porous silica was doped with aluminum was able to remove VOC as much as Reference Example 1 that was not doped even at low temperatures, and from comparison of carbon dioxide concentration after 18 hours. It can be seen that the decomposition rate to carbon dioxide is excellent.
  • the VOC decomposing agent of the present invention is a volatilization causing ethylene house released from plants such as vegetables, fruits and flowers, volatile organic compounds released from foods and drinks, sick house syndrome released from building materials, paints, resins and the like. It is suitably used for decomposing volatile organic compounds and volatile organic compounds discharged into the atmosphere from vehicles and factories.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

性状や性能等を制御し易く、入手や調製が容易であり、さらに低温での継続的な使用が可能なVOC分解剤として、白金又は白金含有化合物を担持した多孔質シリカを含むVOC分解剤であって、前記多孔質シリカは、アルミニウムがドープされた多孔質シリカである、VOC分解剤を提供する。本発明のVOC分解剤は、野菜、果実、花き等の植物から放出されるエチレン、飲食品から放出される揮発性有機化合物、建材、塗料、樹脂等から放出されるシックハウス症候群の原因となる揮発性有機化合物、車両や工場などから大気中に排出される揮発性有機化合物などの分解に好適に用いられるものである。

Description

VOC分解剤
 本発明は、VOC分解剤、鮮度保持剤、環境浄化剤、及びこれらを備えた物品、ならびに、VOCの分解方法、鮮度保持方法、及び環境浄化方法に関する。
 近年、揮発性有機化合物(VOC)が問題となっている。飲食品の分野においては、野菜等の成熟を促進するエチレンや、悪臭の原因となるアセトアルデヒド、メチルメルカプタン、トリメチルアミンなどが問題視されており、活性炭等による吸着や、光触媒、金属触媒を利用した酸化分解などが行われている。また、VOCは、浮遊粒子状物質や光化学オキシダントに係る大気汚染の原因の一つであり、排出規制などの取り組みが検討されている。
 例えば、特許文献1には、活性炭に、臭素、硫酸、およびアルカリ金属ハロゲン化物を均一に担持させてなる下水処理場の脱臭用吸着剤が開示されている。
 特許文献2には、基材上に、酸化チタンおよび酸化亜鉛の少なくとも2種の光触媒粒子を含有する層が形成されており、前記酸化チタンの50%粒子径よりも酸化亜鉛の50%粒子径のほうが大きいことを特徴とする室内空間用脱臭材が開示されている。
 特許文献3及び非特許文献1には、光照射を必要としないエチレン触媒燃焼反応のために、担体表面上に、セリウム-ジルコニウム-ビスマス複合酸化物と貴金属微粒子(白金コロイド由来)とを担持した触媒が開示されている。
特許第3766771号公報 特開2003-126234号公報 特開2007-229559号公報
今中 信人、増井 敏行、寺田 麻子、今津 隼人、「Chemistry Letters」、2008年、第37巻、p.42-43
 しかしながら、特許文献1記載の発明は、吸着能が経時的に低下してしまい、長期間の使用が困難である。特許文献2記載の発明は、光を照射する装置が必要であるため、簡易にその実施をすることができず、また、分解能も十分なものではない。特許文献3及び非特許文献1に記載されている触媒は、セリウム-ジルコニウム-ビスマス複合酸化物という特殊な複合酸化物を必須の構成として含む。このため、触媒の性能や用途について種々展開するための改良や材料展開の余地が大きいとは言いがたい。また、従来の金属触媒によるVOC分解は、100℃以上の高温下で行われるのが当業者の技術常識であり、日常生活での利用は実質不可能であると考えられている。
 本発明の課題は、性状や性能等を制御し易く、入手や調製が容易であり、さらに低温での継続的な使用が可能なVOC分解剤を提供することにある。
 本発明は、
[1]白金又は白金含有化合物を担持した多孔質シリカを含むVOC分解剤であって、前記多孔質シリカは、アルミニウムがドープされた多孔質シリカである、VOC分解剤、
[2]酸素の存在下、VOCと[1]記載のVOC分解剤とを接触させてVOCを分解する、VOCの分解方法、
[3][1]記載のVOC分解剤を含む、植物の鮮度保持剤、
[4][1]記載のVOC分解剤を含む、飲食品の鮮度保持剤、
[5]酸素の存在下、VOCと[3]又は[4]記載の鮮度保持剤とを接触させてVOCを分解する、植物又は飲食品の鮮度保持方法、
[6][1]記載のVOC分解剤を含む、環境浄化剤、
[7]酸素の存在下、VOCと[6]記載の環境浄化剤とを接触させてVOCを分解する、環境浄化方法、及び
[8][1]記載のVOC分解剤、[3]若しくは[4]記載の鮮度保持剤、又は[6]記載の環境浄化剤を備える、物品、
に関する。
 本発明によれば、性状や性能等を制御し易く、入手や調製が容易であり、さらに低温での継続的な使用が可能なVOC分解剤を提供することができる。
各実施例、参考例および比較例のVOC分解剤の粉末X線回折において0°<2θ<8°の位置の回折パターンを示すグラフである。 各実施例、参考例および比較例のVOC分解剤の粉末X線回折において30°<2θ<50°の位置の回折パターンを示すグラフである。
 本発明のVOC分解剤は、白金又は白金含有化合物(以下、「白金等」ともいう)を担持した多孔質シリカを含むものである。本発明における多孔質シリカは、多孔質構造を持つケイ素酸化物を主成分とする物質を意味し、アルミニウムでドープされている。本発明者らは、白金等を担持させた多孔質シリカがVOCの分解活性に優れることを新たに見出し、また、多孔質シリカにアルミニウムをドープすることにより、白金等を担持した際のVOCの分解活性や、その耐久性がさらに向上することを見出して本発明を完成するに至った。このメカニズムは定かではないが、アルミニウムをドープすることにより多孔質シリカの細孔内に固体酸点が発現し、細孔表面が親水化されることおよび、その固体酸点が助触媒的に働き、VOCの分解反応を促進するためと推定される。
 また、多孔質シリカに固体酸点が発現することにより、トリメチルアミン等の塩基性物質を中和し、多孔質シリカの構造が崩壊するのを防ぐことも、耐久性の向上に寄与していると推定される。
 多孔質シリカの平均細孔直径は、分解反応の進行を促進する観点から、1nm以上が好ましく、白金等を粒子状で担持する観点から、15nm以下が好ましい。これらの観点から、多孔質シリカの平均細孔直径は、好ましくは1~15nm、より好ましくは1~10nm、さらに好ましくは1~8nmである。本発明において、多孔質シリカの平均細孔直径は、窒素吸脱着によるBJH法により算出することができる。
 多孔質シリカの比表面積は、白金等の担持量を高める観点から、300m/g以上が好ましく、製造が実現可能である観点から、2000m/g以下が好ましい。これらの観点から、多孔質シリカの比表面積は、好ましくは300~2000m/g、より好ましくは500~1500m/g、さらに好ましくは600~1200m/gである。本発明において、多孔質シリカの比表面積は、窒素吸脱着によるBET法により算出することができる。
 多孔質シリカの全細孔容積は、VOCとの接触効率向上の観点から、0.4cm/g以上が好ましく、製造が実現可能である観点から、3.0cm/g以下が好ましい。これらの観点から、多孔質シリカの全細孔容積は、好ましくは0.4~3.0cm/g、より好ましくは0.45~2cm/g、さらに好ましくは0.5~1.5cm/gである。本発明において、多孔質シリカの全細孔容積は、窒素吸脱着によるBET法により算出することができる。
 さらに、多孔質シリカは、X線回折のd間隔が2.0nmより大きい位置に少なくとも1つのピークを有することが好ましい。X線回折ピークは、そのピーク角度に相当するd値の周期構造が試料中にあることを意味する。従って、2.0nm以上のd値に相当する回折角度に1本以上のピークがあることは、細孔が2.0nm以上の間隔で規則的に配列していることを意味する。このように規則的に配列した細孔をもつ多孔質シリカを、本発明においては、メソポーラスシリカともいう。d間隔は、好ましくは2.0~25.0nm、より好ましくは2.5~20.0nm、さらに好ましくは3.0~18nmである。本発明において、多孔質シリカのX線回折パターンはX線源にCuKα線用いた粉末X線回折装置により測定することができる。
 多孔質シリカの製造方法としては、特に限定されるものではないが、例えば次のようにして製造できる。まず、無機原料と有機原料を混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させる。次いで、得られた複合体から有機物を除去することにより、多孔質シリカが得られる。
 無機原料としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、珪酸ソーダ、カネマイト(kanemite、NaHSi・3HO)、シリカ、シリカ-金属複合酸化物等が挙げられる。これらの無機原料はシリケート骨格を形成する。これらは、単独で又は2種以上を混合して用いることができる。
 鋳型として使用される有機原料は、特に限定されるものではないが、例えば界面活性剤等が挙げられる。界面活性剤は陽イオン性、陰イオン性、非イオン性のうちのいずれであってもよく、具体的には、アルキルトリメチルアンモニウム(好ましくはアルキル基の炭素数が8~22のアルキルトリメチルアンモニウム)、アルキルアンモニウム、ジアルキルジメチルアンモニウム、ベンジルアンモニウムの塩化物、臭化物、ヨウ化物又は水酸化物の他、脂肪酸塩、アルキルスルホン酸塩、アルキルリン酸塩、ポリエチレンオキサイド系非イオン性界面活性剤、一級アルキルアミン、トリブロックコポリマー型のポリアルキレンオキサイド等が挙げられる。これらは、単独で又は2種以上を混合して用いることができる。
 無機原料と有機原料を混合する場合、適当な溶媒を用いることができる。溶媒としては、特に限定されるものではないが、例えば水、有機溶媒、水と有機溶媒との混合物等が挙げられる。
 無機物と有機物の複合体の形成方法は特に限定されるものではないが、例えば、有機原料を溶媒に溶解後、無機原料を添加し、所定のpHに調製した後に、反応混合物を所定の温度に保持して縮重合反応を行う方法が挙げられる。縮重合反応の反応温度は使用する有機原料や無機原料の種類や濃度によって異なるが、通常0~100℃程度が好ましく、より好ましくは35~80℃である。
 縮重合反応の反応時間は、通常1~24時間程度が好ましい。また、上記の縮重合反応は、静置状態、撹拌状態のいずれで行ってもよく、またそれらを組み合わせて行ってもよい。
 縮重合反応後に得られる複合体から有機原料を除去することによって、多孔質シリカが得られる。有機物と無機物の複合体からの有機物の除去は、400~800℃で焼成する方法、水やアルコール等の溶媒で処理する方法等の方法により行うことができる。
 本発明において、多孔質シリカは、細孔容積の観点から、細孔が規則的に配列したメソポーラスシリカであることが好ましい。メソポーラスシリカは、例えば、珪酸ソーダを、界面活性剤を含む水溶液中に分散させ、加熱撹拌しながら塩酸を添加して分散液のpHを調整し、得られた固形生成物を洗浄・乾燥した後、400~800℃程度で焼成することにより得られる。
 本発明において、アルミニウムを多孔質シリカにドープする方法としては、特に限定されるものではないが、多孔質シリカの製造過程において、溶液中で無機原料と有機原料を混合する際にアルミニウム塩を同時に混合する方法や、無機物と有機物の複合体を形成させた後にアルミニウム溶液に含浸・焼成させる方法、あるいは、多孔質シリカをアルミニウム溶液に含浸・焼成させる方法などが挙げられる。このうち、簡便な方法という観点から、溶液中で無機原料と有機原料を混合する際にアルミニウム塩を同時に混合する方法が好ましい。かかる方法の具体例としては、珪酸ソーダを、界面活性剤、アルミニウム塩を含む水溶液中に分散させ、加熱撹拌しながら塩酸を添加して分散液のpHを調整し、得られた固形生成物を洗浄・乾燥した後、400~800℃程度で焼成する方法などが挙げられる。
 ドープするアルミニウムの原料としては、特に限定されるものではないが、例えば硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム等の水溶性や油溶性のアルミニウム塩等が挙げられる。これらは、単独で又は2種以上を混合して用いることができる。
 ドープするアルミニウムの量は、触媒活性の観点から、多孔質シリカ100質量部に対して好ましくは0.05~15質量部であり、より好ましくは0.5~10質量部であり、さらに好ましくは1~5質量部である。
 本発明において、多孔質シリカに担持される白金含有化合物としては、塩化白金、酸化白金、水酸化白金、塩化白金酸塩のほかに、その他金属との合金等が挙げられる。
 本発明において、多孔質シリカに担持された白金又は白金含有化合物における金属粒子径は、触媒活性の観点から、好ましくは0.5~7nmであり、より好ましくは0.7~5nm、さらに好ましくは1~4nmである。本発明において、白金又は白金含有化合物における金属粒子径は、粉末X線回折より得られた37°<2θ<42°の位置にある回折ピークからシェラー式を用いて算出することができる。なお、37°<2θ<42°の位置にピークが観測されないものについては、COパルス吸着より、白金又は白金含有化合物における金属粒子径を算出することができる。
 本発明において、多孔質シリカに担持された白金又は白金含有化合物は、X線回折において、回折角2θが37~42°の位置にピークを有しないことが好ましい。上記位置のX線回折ピークは、担持された白金又は白金含有化合物粒子の(111面)に起因するピークであり、このピークが検出されないことは、粒子が微細であり、かつ粒子径がおおよそ5nmを超える大きな粒子が存在していないことを意味する。本発明においてVOC分解剤のX線回折パターンはX線源にCuKα線を用いた粉末X線回折装置により測定することができる。
 本発明のVOC分解剤における白金又は白金含有化合物の含有量は、触媒活性の観点から、0.1質量%以上が好ましく、製造コストの観点から、5質量%以下が好ましい。これらの観点から、白金又は白金含有化合物の含有量は、VOC分解剤中、好ましくは0.1~5質量%、より好ましくは0.1~3質量、さらに好ましくは0.1~2質量%である。
 アルミニウムがドープされた多孔質シリカに白金又は白金含有化合物を担持させたVOC分解剤は、例えば、白金原子を含む白金化合物、白金錯体等の白金原料とアルミニウムがドープされた多孔質シリカとの混合物を還元することにより得られる。具体的には、例えば、白金原料を含む水溶液を調製し、アルミニウムがドープされた多孔質シリカを含浸させ、乾燥した後、還元して、アルミニウムがドープされた多孔質シリカに白金又は白金含有化合物を担持させたVOC分解剤を得ることができる。
 白金原料としては、塩化白金酸、ジニトロジアンミン白金、硝酸テトラアンミン白金等が挙げられる。
 白金原料を含む水溶液に含浸したアルミニウムがドープされた多孔質シリカを乾燥させるための温度条件は、特に限定されないが、50~200℃程度が好ましい。
 還元方法としては、還元剤、熱、光等で処理する方法を用いることができ、白金原料が分解して白金粒子を生成する条件を適宜設定する。過度の処理は生成した白金粒子のシンタリングによる粒子径の増大の可能性があるため、適当な条件の設定が必要である。
 例えば、塩化白金酸を用いた場合、還元剤として水素を使用し、100~400℃の温度条件下で、処理することが好ましい。
 白金又は白金含有化合物は、これらが粒子成長により粗大な粒子となると触媒活性が低下するため、多孔質シリカの細孔外よりも細孔内に担持されていることが好ましい。細孔外に担持(付着)した白金又は白金粒子は、流水等により洗浄除去することができる。
 本発明のVOC分解剤は、従来の金属触媒によるVOC分解が、100℃以上の高温下で行われるのが当業者の技術常識であるのに対し、室温などの低温度域でも、VOCの分解を持続することができる。本発明のVOC分解剤を使用する温度条件は、特に限定されるものではないが、80~-40℃の雰囲気下で使用でき、日常生活での利用を考慮すると、40℃以下や30℃以下での使用が挙げられ、より具体的には、冷蔵庫で使用する場合には15~0℃、冷凍庫で使用する場合には-5~-25℃などが挙げられる。
 そこで、本発明では、酸素の存在下、前記温度条件でVOCと本発明のVOC分解剤とを接触させてVOCを分解する、VOCの分解方法を提供する。なお、VOC分解の目的として、以下に飲食品や植物の保存等における例を示すが、本発明はこれに限定されるものではない。空気中の臭気物質や汚染物質などの分解除去による空気清浄など、他の目的に使用されてもよい。空気清浄としては、屋内及び屋外における空気清浄を目的とすることができる。屋内の空気清浄としては、建材、塗料、樹脂等から放出されるシックハウス症候群の原因となる揮発性有機化合物の分解などが挙げられる。屋外の空気清浄としては、車両や工場などから大気中に排出される揮発性有機化合物を分解するなど、環境汚染原因物質を分解して環境浄化に資することについても目的とすることができる。即ち、本発明においては、VOC分解剤を含む環境浄化剤、及び酸素の存在下、前記温度条件でVOCと環境浄化剤とを接触させてVOCを分解する環境浄化方法などもさらに提供するものである。
 環境浄化方法としては、例えば大気中や室内空気中のVOC濃度0.01~2000ppm、100~-40℃となるような場所において、本発明の環境浄化剤を使用する方法が挙げられる。このような場所としては、交通量の多い道路の近傍や工場内外、室内や家具内などが挙げられる。本発明の環境浄化剤の使用態様としては、粉体の触媒をそのまま、または各種バインダーや基材等を適宜併用のうえ繊維や不織布、紙、ペレット、スラリー等に加工し、車両や工場、家屋における吸排気口や空気清浄機、空調機、空気撹拌機等のフィルター部への設置や、壁材や床材、底材、塗料、カーペットやカーテンなどとして、または通気性のある小型の容器等へ充填し据置型の浄化剤として、工場、倉庫、家屋や家具等の内部への設置などが挙げられる。
 本発明にかかるVOC分解剤で分解されるVOCとしては、炭化水素類、有機酸、アルデヒド類、硫黄化合物、及び窒素化合物などが挙げられる。
 炭化水素類は、炭素と水素からなる化合物であれば特に限定されるものではないが、エチレン、プロピレン、ブテン、アセチレン、トルエンなどが挙げられる。
 例えば、エチレンの場合、下記のエチレンの触媒の分解反応において、従来はアセトアルデヒド(CHCHO)や酢酸(CHCOOH)までの分解が一般的であったが、本発明のVOC分解剤では、二酸化炭素と水にまで分解することができる。
Figure JPOXMLDOC01-appb-C000001
 エチレンは、例えば、果物、野菜、花き等の様々な植物から放出され、放出されたエチレンは、植物の腐敗を促進する作用をもつ。本発明のVOC分解剤は、低温下でもエチレンを効率よく分解することができるだけでなく、分解により生成した二酸化炭素により、植物の呼吸活動が抑制され、植物の老化が抑制される。従って、本発明のVOC分解剤は、植物の鮮度保持剤として極めて有用である。
 有機酸は、カルボキシル基を持つ化合物であれば特に限定されるものではないが、酢酸、酪酸、吉草酸、カプロン酸、安息香酸などが挙げられる。
 アルデヒド類は、アルデヒド基を持つ化合物であれば特に限定するものではないが、蟻酸、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、クロトンアルデヒド、ヘキサナール、ノネナールなどが挙げられる。
 硫黄化合物は、メチルメルカプタン、エチルメルカプタン、メルカプトエタノールなどが挙げられる。
 窒素化合物は、トリメチルアミン、トリエチルアミン、エチルアミン、エチレンジアミン、アンモニアなどが挙げられる。
 有機酸、アルデヒド類、硫黄化合物、及び窒素化合物は、例えば、魚や肉の腐敗の過程で放出され、臭気の原因となる。また、飲食品を保存する際、被保存物に炭酸ガスを作用させるなどして、被保存物の表面を弱酸性にして鮮度を維持しようとする場合において、被保存物の周囲にVOCがある程度残存していると、被保存物に炭酸ガスを作用させることがVOCにより阻害され、鮮度維持が困難となる。本発明のVOC分解剤は、低温下でもVOCを効率よく分解し、炭酸ガス濃度を上昇させることができるため、飲食品の鮮度保持剤として極めて有用である。なお、飲食品とは、飲料と固形食品の両方を含むものを指す。
 前記のとおり、本発明のVOC分解剤を含む鮮度保持剤は極めて有用である。よって、本発明は、酸素の存在下、前記温度条件でVOCと本発明の鮮度保持剤とを接触させてVOCを分解する、鮮度保持方法をさらに提供する。なお、鮮度保持の対象としては、前記の飲食品、植物に限定されず、VOCの存在により鮮度が低下する物であればよい。
 鮮度保持方法としては、例えば室内、庫内、容器内、包装内等の空気中のVOC濃度0.01~2000ppm、80~-25℃となるような場所において、本発明の鮮度保持剤を使用する方法が挙げられる。このような場所としては、室内、倉庫、冷蔵庫、冷凍庫、ショーケース、コンテナ、運搬ケース、トラック、包装の内部などが挙げられる。本発明の鮮度保持剤の使用態様としては、粉体の触媒をそのまま、または各種バインダーや基材等を適宜併用のうえ繊維や不織布、紙、ペレット、スラリー等に加工し、空気清浄機、空調機、空気撹拌機等のフィルターとしての設置や、壁材や床材、底材、塗料、カーペットやカーテンなどとして、または通気性のある小型の容器等へ充填し据置型の鮮度保持剤として、工場、倉庫、家屋、家電や包装材等の内部への設置などが挙げられる。
 本発明のVOC分解剤、鮮度保持剤、及び環境浄化剤は、様々な物品に備えることができる。本発明のVOC分解剤、鮮度保持剤、及び環境浄化剤を備える物品の具体例としては、例えば、袋、容器、フィルター、冷蔵庫、冷凍庫、コンテナ、空調機、車両、船舶、航空機等のものが挙げられる。
 以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
製造例1
(アルミニウムドープ多孔質シリカ担体の合成)
 水ガラス(1号珪酸ソーダ)(SiO/NaO=2.00)50gを、ヘキサデシルトリメチルアンモニウムブロマイドと塩化アルミニウム6水和物をそれぞれ0.04mol、0.02mol含むイオン交換水1Lに添加し70℃にて溶解した。さらに2NのHClを添加して、pHを8.5に調整し70℃で3時間撹拌した。その後水洗を5回繰り返し、40℃で乾燥した。この乾燥粉末を窒素ガス中450℃で3時間加熱した後、空気中700℃にて6時間焼成し、多孔質シリカ100質量部に対して2.85質量部のアルミニウムがドープされたアルミニウムドープ多孔質シリカ担体Aを得た。
製造例2
(アルミニウムドープ多孔質シリカ担体の合成)
 水ガラス(1号珪酸ソーダ)(SiO/NaO=2.00)50gを、ドコシルトリメチルアンモニウムクロライドと塩化アルミニウム6水和物をそれぞれ0.04mol、0.02mol含むイオン交換水1Lに添加し70℃にて溶解した。さらに2NのHClを添加して、pHを8.5に調整し70℃で3時間撹拌した。その後水洗を5回繰り返し、40℃で乾燥した。この乾燥粉末を窒素ガス中450℃で3時間加熱した後、空気中700℃にて6時間焼成し、多孔質シリカ100質量部に対して2.28質量部のアルミニウムがドープされたアルミニウムドープ多孔質シリカ担体Bを得た。
製造例3
(アルミニウムドープ多孔質シリカ担体の合成)
 水ガラス(1号珪酸ソーダ)(SiO/NaO=2.00)50gを、ヘキサデシルトリメチルアンモニウムクロライドを0.04mol含むイオン交換水1Lに添加し70℃にて溶解した。さらに2NのHClを添加して、pHを8.5に調整し70℃で3時間撹拌した。その後水洗を5回繰り返し、さらにエタノールでリンスした後、塩化アルミニウム6水和物を0.14mol含むイオン交換水1L中で室温で1時間撹拌した。これをろ別し、ろ過物を40℃で乾燥した。この乾燥粉末を空気中700℃にて6時間焼成し、多孔質シリカ100質量部に対して3.92質量部のアルミニウムがドープされたアルミニウムドープ多孔質シリカ担体Cを得た。
 各製造例で作製した担体の、窒素吸脱着測定より得られた吸着等温線を用いてBET法により比表面積(SBET)及び全細孔容積(Vtot)を、BJH法により平均細孔直径(Dmeso)を得た。結果を表1に示す。
実施例1~3および参考例1
(多孔質シリカ担体への白金担持)
表1に示す担体1.0gを50mLの水に懸濁させ、白金担持量1質量%になるように塩化白金酸水溶液[HPtCl aq.]を滴下し、その水溶液を室温にて一晩撹拌した。エバポレータを用いて50℃に加熱して溶媒を留去し、得られた粉末を6℃で16~18時間真空乾燥させ、水素ガスを、30mL/minで流通させながら、200℃で8時間の還元処理をすることによって担体に白金を担持させたVOC分解剤を得た。
比較例1
 シリカゲルに白金を5質量%担持させた市販の触媒を比較例1のエチレン分解剤としてそのまま用いた。
 各実施例、参考例、比較例のVOC分解剤に関して、それぞれ粉末X線回折、COパルス吸着及び窒素吸脱着測定を行った。なお、X線回折の測定は、リガク製RINT‐2200 UltimaIIにて行った。具体的な測定条件を以下に示す。
 X線源:CuKα、管電圧:40kV、管電流40mA、ステップ幅:0.02deg.、スキャンスピード:0.5deg./min.、発散スリット:開放、発散縦スリット:開放、散乱スリット:開放、受光スリット:0.6mm、単色化:グラファイト結晶モノクロメーター
 粉末X線回折より得られた37°<2θ<42°の位置にある回折ピークからシェラー式を用いて担持された白金又は白金含有化合物の金属粒子径(結晶子径,DM)を算出した。なお、37°<2θ<42°の位置にピークが観測されなかったものについては、COパルス吸着より担持された白金又は白金含有化合物の金属粒子径(結晶子径,DM)を算出した。また、担体と同様に、窒素吸脱着測定より得られた吸着等温線を用いてBET法により比表面積(SBET)及び全細孔容積(Vtot)を、BJH法により平均細孔直径(Dmeso)を得た。結果を表1に示す。粉末X線回折の結果を図1および図2に示す。
Figure JPOXMLDOC01-appb-T000002
エチレン分解除去評価
試験例1 4℃でのエチレン分解除去試験
 各実施例、比較例のVOC分解剤を、2kNの圧力によって圧縮成型しふるい分けした。ふるい分けにより得られた顆粒状のVOC分解剤(355~500μm)1gをステンレス製反応容器に充填し,ヘリウム下(75mL/min.)で150℃、1時間の加熱処理をすることによってVOC分解剤を活性化し、分解剤表面の吸着水を除去した。このように処理されたVOC分解剤を用いて下記のエチレン分解除去試験を行った。106ppmのエチレンを含む反応ガス(エチレン濃度、約106ppm;酸素、20体積%;窒素、残部)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/東京ガラス器械株式会社製)に分解剤1gを投入し、4℃で20時間静置後、におい袋内のヘッドスペースのエチレン濃度をガス検知管(株式会社ガステック製)にて測定することによって、4℃でのエチレン分解除去活性を評価した。結果を表2に示す。
 20時間反応後のヘッドスペースのガスを確認したところ、二酸化炭素及び水が検出された。これはエチレンが二酸化炭素と水に分解されていることを示している。
Figure JPOXMLDOC01-appb-T000003
試験例2 25℃でのエチレン分解除去試験
 各実施例、参考例、比較例のVOC分解剤を用いて、分解剤投入後に25℃で20時間静置した以外は、試験例1と同様に試験を行った。結果を表3に示す。
エチレン分解除去評価
試験例3 耐水蒸気試験
 各実施例、参考例、比較例のVOC分解剤を、2kNの圧力によって圧縮成型しふるい分けした。ふるい分けにより得られた顆粒状のVOC分解剤(355~500μm)1gをステンレス製反応容器に充填し,ヘリウム下(75mL/min.)で150℃、1時間の加熱処理をすることによってVOC分解剤を活性化し、分解剤表面の吸着水を除去した。これらのVOC分解剤を、直接水分に触れないように40℃、相対湿度100%の空間に8日間静置し、このように処理されたVOC分解剤をそのまま用いて下記のエチレン分解除去試験を行った。106ppmのエチレンを含む反応ガス(エチレン濃度、約106ppm;酸素、20体積%;窒素、残部)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/東京ガラス器械株式会社製)に分解剤1gを投入し、25℃で20時間静置後、におい袋内のヘッドスペースのエチレン濃度をガス検知管(株式会社ガステック製)にて測定することによって、25℃でのエチレン分解除去活性を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
試験例4 アルデヒド分解除去試験
 各実施例、比較例の分解剤を用いて下記のアルデヒド分解除去試験を行った。表4に記載の量のアルデヒド(アセトアルデヒド)を含む反応ガス(アセトアルデヒド濃度、約100ppm;酸素、20体積%;窒素、残部:バランスガス)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/アズワン株式会社製)に分解剤500mgを投入し、20℃で21時間静置後、におい袋内のヘッドスペースのアルデヒド(アセトアルデヒド)濃度をガス検知管(株式会社ガステック製)にて測定した。結果を表4に示す。
試験例5 トリメチルアミン分解除去試験
 各実施例、比較例の分解剤を用いて下記のトリメチルアミン分解除去試験を行った。表4に記載の量のトリメチルアミンを含む反応ガス(トリメチルアミン濃度、約3ppm;酸素、20体積%;窒素、残部:バランスガス)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/アズワン株式会社製)に分解剤500mgを投入し、20℃で21時間静置後、におい袋内のヘッドスペースのトリメチルアミン濃度をガス検知管(株式会社ガステック製)にて測定した。結果を表4に示す。
試験例6 メチルメルカプタン分解除去試験
 各実施例、比較例の分解剤を用いて下記のメチルメルカプタン分解除去試験を行った。表4に記載の量のメチルメルカプタンを含む反応ガス(メチルメルカプタン濃度、約1.5ppm;酸素、20体積%;窒素、残部:バランスガス)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/アズワン株式会社製)に分解剤500mgを投入し、20℃で21時間静置後、におい袋内のヘッドスペースのメチルメルカプタン濃度をガス検知管(株式会社ガステック製)にて測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
試験例7 20℃でのホルムアルデヒド分解除去試験
 各実施例の分解剤を用いて下記のホルムアルデヒド分解除去試験を行った。表5に記載の量のホルムアルデヒドを含む反応ガス(ホルムアルデヒド濃度、約400ppm;酸素、20体積%;窒素、残部;バランスガス)2.5Lを入れた「におい袋」(袋容量:3L、袋サイズ:250×250mm、材質:ポリエステルフィルム/アズワン株式会社製)に分解剤500mgを投入し、20℃で4時間静置後、におい袋内のヘッドスペースのホルムアルデヒド濃度をガス検知管(株式会社ガステック製)にて測定した。結果を表5に示す。
 4時間反応後のヘッドスペースのガスを確認したところ、初期投入ホルムアルデヒド濃度に相当する二酸化炭素及び水が検出された。これはホルムアルデヒドが二酸化炭素と水に分解されていることを示している。
Figure JPOXMLDOC01-appb-T000006
 また、高湿度環境下(湿度90%)でも上記同様のホルムアルデヒド分解除去を確認した。
試験例8 -20℃でのホルムアルデヒド分解除去試験
 実施例2、参考例1の分解剤を用いて、-20℃でのホルムアルデヒド分解除去試験を行った。初期投入ホルムアルデヒド濃度を約210ppmとし、分解剤投入後に-20℃で18時間静置した以外は、試験例7と同様に試験を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 試験例1~8より、多孔質シリカに白金を担持させた実施例1~3は、シリカゲルに白金を担持させた比較例1と比べて、低温下でもVOCの分解活性に優れていることがわかる。また、試験例2、3の対比により、多孔質シリカにアルミニウムをドープさせた実施例1~3は、ドープさせていない参考例1よりVOC分解活性の耐久性に優れており、低温での継続的な使用ができることがわかる。また、試験例8より、多孔質シリカにアルミニウムをドープさせた実施例2は、低温においてもドープさせていない参考例1と同程度のVOCを除去でき、18時間後の二酸化炭素濃度の比較より、二酸化炭素まで分解する速度が優れていることがわかる。
 本発明のVOC分解剤は、野菜、果実、花き等の植物から放出されるエチレン、飲食品から放出される揮発性有機化合物、建材、塗料、樹脂等から放出されるシックハウス症候群の原因となる揮発性有機化合物、車両や工場などから大気中に排出される揮発性有機化合物などの分解に好適に用いられるものである。

Claims (14)

  1.  白金又は白金含有化合物を担持した多孔質シリカを含むVOC分解剤であって、前記多孔質シリカは、アルミニウムがドープされた多孔質シリカである、VOC分解剤。
  2.  前記多孔質シリカの平均細孔直径が1~15nmであり、前記多孔質シリカの比表面積が300~2000m/gであり、前記多孔質シリカがメソポーラスシリカである、請求項1記載のVOC分解剤。
  3.  前記白金又は白金含有化合物の含有量が0.1~5質量%であり、前記白金又は白金含有化合物における金属粒子径が0.5~7nmである、請求項1又は2記載のVOC分解剤。
  4.  30℃以下の雰囲気下でVOCを分解するための、請求項1~3いずれか記載のVOC分解剤。
  5.  X線回折において37°<2θ<42°の位置に回折ピークを有しない、請求項1~4いずれか記載のVOC分解剤。
  6.  炭化水素類、有機酸、アルデヒド類、硫黄化合物、及び窒素化合物からなる群より選択される1以上のVOCを分解するための、請求項1~5いずれか記載のVOC分解剤。
  7.  酸素の存在下、VOCと請求項1~6いずれか記載のVOC分解剤とを接触させてVOCを分解する、VOCの分解方法。
  8.  請求項1~6いずれか記載のVOC分解剤を含む、植物の鮮度保持剤。
  9.  請求項1~6いずれか記載のVOC分解剤を含む、飲食品の鮮度保持剤。
  10.  酸素の存在下、VOCと請求項8又は9記載の鮮度保持剤とを接触させてVOCを分解する、植物又は飲食品の鮮度保持方法。
  11.  請求項1~6いずれか記載のVOC分解剤を含む、環境浄化剤。
  12.  酸素の存在下、VOCと請求項11記載の環境浄化剤とを接触させてVOCを分解する、環境浄化方法。
  13.  請求項1~6いずれか記載のVOC分解剤、請求項8若しくは9記載の鮮度保持剤、又は請求項11記載の環境浄化剤を備える、物品。
  14.  袋、容器、フィルター、冷蔵庫、冷凍庫、コンテナ、空調機、車両、船舶、又は航空機である、請求項13記載の物品。
PCT/JP2017/016007 2016-04-27 2017-04-21 Voc分解剤 WO2017188138A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514559A JP6592191B2 (ja) 2016-04-27 2017-04-21 Voc分解剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089026 2016-04-27
JP2016089026 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017188138A1 true WO2017188138A1 (ja) 2017-11-02

Family

ID=60161524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016007 WO2017188138A1 (ja) 2016-04-27 2017-04-21 Voc分解剤

Country Status (2)

Country Link
JP (1) JP6592191B2 (ja)
WO (1) WO2017188138A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092419A (ja) * 2017-11-21 2019-06-20 株式会社Nbcメッシュテック 果物の熟成制御方法
WO2020110874A1 (ja) * 2018-11-30 2020-06-04 住友化学株式会社 アルデヒド分解用触媒
CN112705177A (zh) * 2020-12-30 2021-04-27 北京中海前沿材料技术有限公司 一种多孔吸附材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233748A (ja) * 1986-10-03 1988-09-29 Nippon Kayaku Co Ltd 鮮度保持剤または脱エチレン剤
JPH04293448A (ja) * 1991-03-22 1992-10-19 Toray Ind Inc 青果物・花卉類の鮮度保持剤およびその使用方法
JPH0889758A (ja) * 1994-09-26 1996-04-09 Mitsubishi Heavy Ind Ltd アンモニア分解方法
JP2001239161A (ja) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc 低温有害ガス浄化触媒
JP2008137859A (ja) * 2006-12-04 2008-06-19 Taiyo Kagaku Co Ltd 微粒多孔質シリカ
WO2017010472A1 (ja) * 2015-07-15 2017-01-19 太陽化学株式会社 臭気低減剤
JP2017023889A (ja) * 2015-07-15 2017-02-02 太陽化学株式会社 エチレン分解剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027031A1 (en) * 2013-08-23 2015-02-26 Basf Corporation Catalysts for oxidation of carbon monoxide and/or volatile organic compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233748A (ja) * 1986-10-03 1988-09-29 Nippon Kayaku Co Ltd 鮮度保持剤または脱エチレン剤
JPH04293448A (ja) * 1991-03-22 1992-10-19 Toray Ind Inc 青果物・花卉類の鮮度保持剤およびその使用方法
JPH0889758A (ja) * 1994-09-26 1996-04-09 Mitsubishi Heavy Ind Ltd アンモニア分解方法
JP2001239161A (ja) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc 低温有害ガス浄化触媒
JP2008137859A (ja) * 2006-12-04 2008-06-19 Taiyo Kagaku Co Ltd 微粒多孔質シリカ
WO2017010472A1 (ja) * 2015-07-15 2017-01-19 太陽化学株式会社 臭気低減剤
JP2017023889A (ja) * 2015-07-15 2017-02-02 太陽化学株式会社 エチレン分解剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNKO UCHISAWA ET AL.: "Pt/SiO2 ni yoru VOC Bunkai Hanno ni Okeru Tantai Saiko Size no Eikyo", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 100, 17 September 2007 (2007-09-17), pages 73 *
KENJI HARA ET AL.: "Biryo no Ethylene o Teion de Jokyo suru Shokubai Kudamono, Yasai, Hana no Sendo o Tamotsu Gijutsu", KAGAKU TO SEIBUTSU, vol. 52, no. 4, 1 April 2014 (2014-04-01), pages 208 - 209 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092419A (ja) * 2017-11-21 2019-06-20 株式会社Nbcメッシュテック 果物の熟成制御方法
JP7338947B2 (ja) 2017-11-21 2023-09-05 株式会社Nbcメッシュテック 果物の熟成制御方法
WO2020110874A1 (ja) * 2018-11-30 2020-06-04 住友化学株式会社 アルデヒド分解用触媒
CN112512682A (zh) * 2018-11-30 2021-03-16 住友化学株式会社 醛分解用催化剂
CN112705177A (zh) * 2020-12-30 2021-04-27 北京中海前沿材料技术有限公司 一种多孔吸附材料及其制备方法与应用

Also Published As

Publication number Publication date
JP6592191B2 (ja) 2019-10-16
JPWO2017188138A1 (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
Huang et al. In situ synthesis of TiO2@ NH2-MIL-125 composites for use in combined adsorption and photocatalytic degradation of formaldehyde
Gelles et al. Abatement of gaseous volatile organic compounds: A material perspective
JP6617384B2 (ja) エチレン分解剤
TWI510288B (zh) Titanium oxide photocatalyst carrying copper compound and its manufacturing method
JP6521317B2 (ja) 脱臭用金属複合化窒化炭素とその製造方法
JP7018625B2 (ja) 臭気低減剤
El Assal et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts
JP6592191B2 (ja) Voc分解剤
JP4878141B2 (ja) 複合光触媒体
JP5930224B2 (ja) アルデヒド系ガス消臭剤及びその製造方法
JP4759739B2 (ja) エチレン分解触媒
Mamaghani et al. Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants
KR101649334B1 (ko) 다공성 구리-망간 촉매 제조방법
KR101762718B1 (ko) 다공성 구리-망간 필터메디아 및 그 제조방법
Liu et al. Samarium doping boosts catalytic oxidation of airborne benzene over todorokite-type MnO2
US11511261B2 (en) Moisture-resistant catalyst for air pollution remediation and method of making the same
JPWO2010007978A1 (ja) 脱臭触媒及びこれを用いた脱臭方法並びに該触媒の再生方法
WO2017110856A1 (ja) エチレン分解剤
JP2004250239A (ja) 活性管状酸化チタン粒子、該酸化チタン粒子を含む触媒および消臭剤
JPWO2019027057A1 (ja) 酸化分解用触媒及びその利用
JP3404739B2 (ja) フィルタ、並びにそれを用いた空気清浄機及びエアーコンディショナー
JP2010131531A (ja) 空気清浄化用触媒およびその製造方法
Rochard et al. MnOx‐loaded Mesoporous Silica for the Catalytic Oxidation of Formaldehyde. Effect of the Melt Infiltration Conditions on the Activity–Stability Behavior
JP6225807B2 (ja) Voc分解除去用触媒、その製造方法、及びそれを用いたvoc分解除去方法
JP4577682B2 (ja) 白金化合物を担持した光触媒およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789421

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789421

Country of ref document: EP

Kind code of ref document: A1