WO2017187484A1 - 物体撮像装置 - Google Patents

物体撮像装置 Download PDF

Info

Publication number
WO2017187484A1
WO2017187484A1 PCT/JP2016/062942 JP2016062942W WO2017187484A1 WO 2017187484 A1 WO2017187484 A1 WO 2017187484A1 JP 2016062942 W JP2016062942 W JP 2016062942W WO 2017187484 A1 WO2017187484 A1 WO 2017187484A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detector
light beam
target
output
Prior art date
Application number
PCT/JP2016/062942
Other languages
English (en)
French (fr)
Inventor
文隆 大津
中平 健治
新井 利明
克嘉 原澤
本田 真
広田 修
Original Assignee
株式会社日立製作所
株式会社日立情報通信エンジニアリング
学校法人玉川学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 株式会社日立情報通信エンジニアリング, 学校法人玉川学園 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/062942 priority Critical patent/WO2017187484A1/ja
Priority to JP2018513958A priority patent/JPWO2017187484A1/ja
Publication of WO2017187484A1 publication Critical patent/WO2017187484A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to an object imaging apparatus. More specifically, the present invention relates to an object imaging apparatus capable of acquiring an image by irradiating a target with light and capturing an image with high spatial resolution, particularly in a range direction and an azimuth direction.
  • Non-Patent Document 1 a technique called ghost imaging has been proposed and has attracted attention as a new object imaging method (for example, see Non-Patent Document 1).
  • this ghost imaging technique the object is irradiated with light, and transmitted light or reflected light from the object is detected by a single pixel photo detector such as a photomultiplier (that is, the number of pixels is 1). Generate an image.
  • a single pixel photo detector such as a photomultiplier (that is, the number of pixels is 1).
  • a single pixel photo detector such as a photomultiplier (that is, the number of pixels is 1).
  • a multi-pixel photodetector the light detector that detects the transmitted light or reflected light from the object is a single pixel, but the light of multiple pixels An image as if using a detector can be generated.
  • Non-Patent Document 2 Several patent documents relating to this ghost imaging technique are also disclosed (see, for example, Patent Documents 1 and 2).
  • the present invention has been made based on the above circumstances, and an object thereof is to capture an object characteristic as a function in the azimuth direction as well as the range direction and a high S / N image. Is to provide.
  • the present invention (1) an optical transmitter that emits a light beam toward an object;
  • a target light detector for detecting transmitted light, reflected light or scattered light from the target object (hereinafter collectively referred to as “target light”);
  • the spatial variation frequency of the light intensity distribution in the cross section of the light beam emitted from the light transmitter is higher than the spatial resolution of the target photodetector.
  • Output of the detector when the light beam emitted from the light transmission unit is directly detected without irradiating the object using a detector having a spatial resolution higher than that of the target light detector.
  • a reference signal acquirer for calculating by actual measurement or simulation Using the output of the target photodetector and the output of the reference signal acquirer, the characteristics of the target are calculated as a function of the position in the range direction and the azimuth direction with a spatial resolution higher than the spatial resolution of the target photodetector.
  • An object imaging device shorter than the value obtained by doubling the resolution in the azimuth direction of the characteristic and dividing by the speed of light, (2)
  • the object characteristic calculator shifts one of the output of the target light detector or the output of the reference signal acquirer by the time difference for each of a plurality of preset time differences, and then the target light detector.
  • the object imaging device wherein a characteristic of the object is calculated by calculating a match between an output of the reference signal and an output of the reference signal acquirer, (3)
  • the interval of temporal variation of the light beam emitted from the optical transmitter is shorter than the interval of spatial variation of time, and the width of the main lobe of the autocorrelation function with respect to the temporal direction of the optical beam is
  • the object imaging device which is narrower than the pulse width of the light beam, and (4) a light transmitter that emits the light beam;
  • a light beam splitter that divides the light beam into two light beams, one of which irradiates an object and the other of which irradiates a mirror;
  • a light beam interferometer that causes the transmitted light, reflected light, or scattered light from the object to interfere with the reflected light from the mirror;
  • An interference light detector for detecting the interference light obtained by the light beam interferometer;
  • the spatial variation frequency of the light intensity distribution in the cross section of the light beam emitted from the light transmitter
  • a reference signal acquirer for calculating by actual measurement or simulation Using the output of the interference light detector and the output of the reference signal acquirer, the characteristic of the object is calculated as a function of the position in the range direction and the azimuth direction with a spatial resolution higher than the spatial resolution of the interference light detector.
  • the light transmission unit varies the light intensity distribution in the cross section of the light beam temporally and spatially, and the interval of the temporal variation of the light beam is calculated by the object characteristic calculator.
  • the present invention relates to an object imaging apparatus having a characteristic shorter than a value obtained by doubling the resolution in the azimuth direction and dividing by the speed of light.
  • object characteristics means optical characteristics such as reflectance and transmittance of the object to be measured.
  • “calculate the match between the output of the target photodetector and the output of the reference signal acquirer” means that the output signal of the target photodetector and the output signal of the reference signal acquirer are similar. Means calculating the degree of.
  • “light” refers to electromagnetic waves, and may be, for example, visible light, infrared light, ultraviolet light, X-rays, or the like.
  • the present invention can provide an object imaging apparatus capable of acquiring object characteristics as a function of the azimuth direction as well as the range direction and a high S / N image. Therefore, the object imaging apparatus can be suitably applied to, for example, a radar or a lidar that requires information in the azimuth direction in addition to information in the range direction.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an object imaging apparatus according to a first embodiment of the present invention. It is the schematic which shows the structure of the light source of FIG. 1, Comprising: (a) is an example using a laser light source and ground glass, (b) is an example using a laser light source and SLM (Spatial Light Modulator), (c) is a quantum Examples using a blurred light source are shown below. It is the schematic which shows an example of the light intensity of the light beam irradiated from the light source of FIG. 1, (a) shows light intensity distribution, (b) shows the time change of light intensity, respectively.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an object imaging apparatus according to a first embodiment of the present invention. It is the schematic which shows the structure of the light source of FIG. 1, Comprising: (a) is an example using a laser light source and ground glass, (b) is an example using a laser light source and SLM (Spatial Light Modulator), (c) is
  • the object imaging device (1) of the present invention includes a light transmission unit that emits a light beam toward a target, a target light detector that detects transmitted light, reflected light, or scattered light from the target, and the light.
  • the spatial variation frequency of the light intensity distribution in the cross section of the light beam emitted from the transmission unit is higher than the spatial resolution of the target photodetector, and has a higher spatial resolution than the spatial resolution of the target photodetector.
  • a reference signal acquisition unit that calculates the output of the detector when the light beam emitted from the optical transmitter using the detector is directly detected without irradiating the object, by actual measurement or simulation; and Using the output of the target photodetector and the output of the reference signal acquirer, the characteristics of the target can be measured in the range direction and azimuth direction with a spatial resolution higher than the spatial resolution of the target photodetector.
  • An object characteristic calculator that calculates the number of the object, and an image generator that images the characteristic of the object, and the light transmitting unit temporally and spatially varies the light intensity distribution in the cross section of the light beam. And the interval of temporal variation of the light beam is shorter than a value obtained by dividing the resolution of the target object characteristic calculated by the target object characteristic calculator in the azimuth direction and dividing by the speed of light.
  • FIG. 1 is a schematic diagram showing an overall configuration of an object imaging apparatus according to the first embodiment of the present invention.
  • the object imaging apparatus 11 relates to the object imaging apparatus (1), and as illustrated in FIG. 1, schematically, an optical transmission unit 111, a target light detector 211, a reference signal acquisition unit 311, An object characteristic calculator 411 and an image generator 511 are included.
  • the light transmitter 111 emits a light beam L1 toward the object A. Specifically, the optical transmitter 111 emits two light beams L1 and L2.
  • the light transmission unit 111 includes a light source 112 and a beam splitter (hereinafter also referred to as “BS”) 119, and splits the light beam generated by the light source 112 by the BS 119, thereby dividing the light beams L 1 and L 2 described above. obtain.
  • the light source 112 generates a light beam whose intensity distribution in the beam cross section of the light beam varies temporally and spatially.
  • the light beam L1 is applied to the object A, and the object light emitted from the object A is detected by the object light detector 211.
  • the object A does not have to be a single object, and may be a plurality of objects that are spatially separated. Further, the object A does not need to be a solid, and may be a liquid or a gas.
  • the target light detector 211 detects transmitted light, reflected light or scattered light from the target object A. In this embodiment, it is comprised so that the reflected light from the target object A may be detected.
  • a single pixel detector or a small number of pixels
  • the target light detector 211 may be a detector that outputs a signal in which the number of pixels is reduced by adding signals received by a multi-pixel detector such as a CCD.
  • the reference signal acquisition unit 311 directly detects the light beam emitted from the light transmission unit 111 without irradiating the object A by using a detector having a spatial resolution higher than that of the target light detector 211. The output of the detector at the time is calculated by actual measurement.
  • the light directly detected without irradiating the object A (the light beam L2 in FIG. 1) is also referred to as “reference light” hereinafter.
  • the detector used in the reference signal acquisition unit 311 is a detector having a pixel number 25 times or more larger than that of the target light detector 211.
  • a CCD, a multi-pixel photon counter, a plurality of avalanche photodiodes, Photomal etc. can be employed.
  • the object characteristic calculator 411 uses the output of the target light detector 211 and the output of the reference signal acquisition unit 311, and the characteristic of the object A (object characteristic) with a spatial resolution higher than the spatial resolution of the target light detector 211. As a function of position in the range and azimuth directions.
  • one of the output of the target photodetector 211 or the output of the reference signal acquirer 311 is time-shifted by the time difference for each of a plurality of preset time differences. It is preferable to calculate the characteristic of the object A by calculating the coincidence between the output of the target photodetector 211 and the output of the reference signal acquirer 311.
  • the output of the reference signal acquisition unit 311 is time-shifted by the time difference with respect to each of a plurality of preset time differences (see FIG. 5). Thereby, the object characteristic can be calculated as a function in the azimuth direction in addition to the range direction.
  • the image generator 511 images the characteristics of the object A.
  • the technique used in the present invention relates to ghost imaging.
  • One feature of this ghost imaging is that the number of pixels of the reference signal acquirer is generally 25 to 100 million times (5 to 10,000 times in spatial resolution) larger than the number of pixels of the object detector. .
  • the number of pixels of the reference signal acquirer corresponds to the resolution in the range direction of the calculated object characteristic. For this reason, in other words, the number of pixels of the object detector is sufficiently smaller than the resolution in the range direction of the object characteristics. According to this ghost imaging technique, an image with a high S / N can be obtained.
  • a super-resolution technique is known as an image processing technique capable of increasing the resolution in the range direction of an object characteristic several times as compared with the number of pixels of the object detector.
  • the super-resolution technique it is difficult to increase the spatial resolution by 5 times or more particularly when the S / N of the acquired signal is low.
  • the light transmission unit 111, the target light detector 211, the reference signal acquisition unit 311 and the like constituting the object imaging device 11 described above will be described in further detail.
  • FIG. 2 is a schematic diagram showing the configuration of the light source of FIG.
  • Examples of the light source 112 of the optical transmitter 111 include those shown in FIGS. 2 (a) to 2 (c).
  • the light source 112 shown in FIG. 2A generates a spatially incoherent (that is, spatially varied) light beam by passing the laser light generated by the laser light source 113 through the ground glass 1141.
  • the ground glass 1141 is rotated by a rotator 1142, so that the laser light is incident on different positions of the ground glass 1141, and the laser light is temporally changed.
  • a device that performs parallel movement or the like may be used instead of the rotator 1142 as a device for causing the laser light to enter the different positions of the ground glass 1141.
  • the laser beam may be temporally changed using a filter 1151 and a filter controller 1152 (see FIG. 2B and FIG. 14) described later. As a result, it is possible to generate a light beam that fluctuates in time at short intervals, which is difficult to achieve with only ground glass.
  • the light source 112 shown in FIG. 2B passes the laser light generated by the laser light source 113 through an SLM (Spatial / Light / Modulator) 1161 to generate a light beam.
  • the SLM controller 1162 controls the SLM 1161 to generate a light beam that varies temporally and spatially.
  • the SLM control signal can be output together with the laser light. Since the number of pixels of the SLM 1161 affects the resolution in the range direction of the object characteristics, an SLM having a reasonable number of pixels for the required resolution is used. This SLM control signal is used in a second embodiment to be described later.
  • the laser light is temporally changed using a filter 1151 capable of controlling the transmittance and the like and a filter controller 1152 for controlling the filter 1151.
  • the filter controller 1152 can output a filter control signal as well as the SLM control signal.
  • the response speed of the SLM 1161 is not sufficient, by using the filter 1151 having a higher response speed, it is possible to perform high-speed temporal fluctuations that are difficult to achieve with the SLM 1161 alone.
  • the filter 1151 instead of using the filter 1151, only the SLM 1161 can be appropriately controlled to generate laser light that is temporally varied at a sufficient speed.
  • the filter 1151 is disposed at the front stage and the SLM 1161 is disposed at the rear stage in the optical path of the laser light, but the opposite, that is, the SLM 1161 may be disposed at the front stage and the filter 1151 may be disposed at the rear stage.
  • the light source 112 shown in FIG. 2 (c) generates a light beam that is temporally varied by passing the light beam generated by the quantum blur light source 117 through the filter 1181. Since the quantum fading light source 117 has a spatial variation in the light intensity distribution, the output light beam varies temporally and spatially.
  • the filter 1181 is controlled by the filter controller 1182. In this exemplary light source 112, a filter control signal can be output together with the light beam.
  • FIG. 3A is a schematic diagram showing an example of the light intensity of the light beam emitted from the light source 112 in FIG. 1, and the light beam at time t and time t + dt in the cross section D1 and cross section D2 in FIG.
  • An example of an intensity distribution is shown.
  • the intensity distributions F1a and F2a in the section D1 and the section D2 at an arbitrary time t have a strong correlation.
  • the intensity distributions F1b and F2b in the cross section D1 and the cross section D2 at time t + dt also have a strong correlation.
  • each of these intensity distributions has a large variation in space.
  • intensity distributions F1a and F1b which are intensity distributions of the same cross section D1
  • do not have a strong correlation
  • the correlation between the intensity distributions F2a and F2b is also small.
  • the two light beams L1 and L2 emitted from the optical transmission unit 111 in FIG. 1 fluctuate temporally and spatially, and the temporal and spatial correlations are small, but two There is a strong correlation between the light beams L1 and L2.
  • FIG. 3B is a schematic diagram showing an example of the light intensity of the light beam emitted from the light source 112 of FIG. 1, and shows the relationship between the light intensity at a specific position and the time t in the cross section D1.
  • c is the speed of light
  • is the distance resolution of the object imaging device 11 in the azimuth direction.
  • 2 ⁇ / c represents the time required for light to travel back and forth the same distance as the distance resolution in the azimuth direction.
  • the light intensity is changed with time so that the interval of time fluctuation of the light intensity is sufficiently shorter than ⁇ . That is, the light transmitting unit 111 temporally and spatially varies the light intensity distribution in the cross sections D1 and D2 of the light beams L1 and L2, and the interval of the temporal variation of the light beam is determined by the object characteristic calculator 411.
  • the resolution in the azimuth direction of the calculated characteristic of the object A is doubled so as to be shorter than the value obtained by dividing by the speed of light.
  • the emitted laser light usually has almost no temporal variation in light intensity, and the light intensity is substantially constant with respect to time. Therefore, the temporal variation can be accelerated by increasing the speed of the rotator 1142 in FIG. 2 or moving the SLM controller 1162 at a high speed. Further, the light intensity may be temporally changed by the filter controller 1152. Note that the time variation interval of the light intensity is given as the time required for the amplitude of the light intensity to change by a certain level or the time required for the instantaneous phase to advance by 2 ⁇ .
  • a (t) sin ⁇ (t) + A 0 (t) as a function of time t
  • a (t) is called amplitude
  • ⁇ (t) is called instantaneous phase.
  • the signal detected by the target optical detector 211 can include information on the object characteristic regarding the azimuth direction, and the resolution in the azimuth direction is ensured. Images can be obtained.
  • FIG. 14 is a schematic diagram illustrating an example of the filter control signal and the SLM control signal of FIG. 2B, showing the SLM control signal output from the SLM controller 1162 and the filter control signal output from the filter controller 1152. Yes.
  • FIG. 14 shows examples of SLM control signals corresponding to two different pixels (see reference numerals 116a and 116b).
  • Reference numeral 115a in FIG. 14 is an example of a filter control signal.
  • the SLM control signal is also a function of time t, it may be changed over a longer time than the time fluctuation interval of the light intensity. As a result, even if there is an SLM whose response speed is not sufficient, the light beam can be varied sufficiently fast in time and spatially varied.
  • the SLM control signal and the filter control signal have a binary value is shown, but a multi-value or an analog value may be taken.
  • FIG. 4A is an example of a target photodetector that detects reflected light from the target A in FIG.
  • FIG. 4A shows an example of two types of target photodetectors.
  • the detector 212 is a single pixel detector.
  • As the target light detector 211 a detector having a sufficiently small number of pixels as compared with the spatial resolution of the object imaging device 11 is used.
  • the object imaging device 11 is configured such that the spatial fluctuation frequency of the light intensity distribution in the cross section of the light beam emitted from the light transmission unit 111 is higher than the spatial resolution of the target photodetector 211. Yes. That is, the technology related to the object imaging device 11 is different from the super-resolution technology.
  • FIG. 4B is an example of a reference signal acquisition unit that detects the reference light in FIG.
  • the reference signal acquisition unit 311 includes a reference light detector 312 having a number of pixels comparable to the spatial resolution of the object imaging device 11.
  • the object imaging device 11 can obtain an object characteristic with high spatial resolution by ghost imaging technology by increasing the spatial resolution of the reference light detector 312 instead of the spatial resolution of the target light detector 211 being low. .
  • the target light detector 212 and the reference light detector 312 use a detector in which pixels are arranged one-dimensionally.
  • the detector corresponding to each pixel may be a photomultiplier that detects the amount of light or the number of photons, and may be a homodyne type or a heterodyne type detector.
  • FIG. 5 is a schematic block diagram illustrating an example of the object characteristic calculator of FIG.
  • the same numbers are assigned to the same processes and signals.
  • an image generator 511 is described together with an object characteristic calculator 411.
  • this figure is a thing in case the object photodetector 211 is a single pixel.
  • an object signal and a reference signal are converted from an analog signal into a digital signal by ADCs (Analog / Digital / Converter, analog / digital converters) 412 and 413.
  • the reference signal is delayed by a fixed time ⁇ by the delay unit 414 and then corrected by the corrector 415 as necessary.
  • the coincidence calculator 416 coincidence calculation is performed between the target signal and the corrected reference signal. The result of this coincidence calculation represents the object characteristic.
  • the object characteristic calculator 411 is a digital circuit, but may be an analog circuit or an optical circuit.
  • the image generator 511 receives the calculated characteristic of the object A and images it.
  • an image that can be displayed on a display or the like is generated from the object characteristics having three-dimensional information expressed as a function of the azimuth direction and the range direction.
  • the image may represent three-dimensional information, or may represent two-dimensional information including one-dimensional information regarding the range direction and one-dimensional information regarding the azimuth direction.
  • a correlation calculation represented by the following formula (1) is performed, and a correlation function C (x, n ⁇ ) is calculated.
  • x is an index representing the position of the pixel of the reference signal
  • T is the width of the integration time.
  • I p (t, x) is a reference signal at time t and position x
  • Ib (n) (t) is a corrected target signal at time t after passing through delay device 414 n times
  • Ib (0 ) (T ⁇ n ⁇ ) is equal to the corrected signal (hereinafter, Ib (0) is simply expressed as “Ib”).
  • the expression (1) can be expressed as the following expression (2).
  • equation (3) For reference, the equation for correlation calculation performed in the conventional ghost imaging is shown in the following equation (3).
  • the calculation formulas expressed by the above (1) and (2) are characterized in that the output of the correlation calculation is not only a function of the pixel x but also a function of the delay time n ⁇ .
  • C (x, n ⁇ ) and C (x, (n + 1) ⁇ ) are generally large with respect to an arbitrary n.
  • a value C (x, z) obtained by converting n ⁇ of the correlation function C (x, n ⁇ ) to a position z in the azimuth direction is regarded as an object characteristic.
  • the object characteristic can be calculated as a function of not only the position x in the range direction but also the position z in the azimuth direction.
  • the reference signal is divided into K and the configuration of FIG. Calculation is performed using K pieces arranged in parallel. By performing such parallel operation, it is possible to obtain advantages such as shortening the imaging time.
  • the correlation function is calculated in the coincidence calculation.
  • the present invention is not limited to this. In the present embodiment, the example in which the match calculation is performed after the reference signal is delayed in time has been described. However, the match calculation may be performed after the target signal is delayed in time.
  • FIG. 6 is a schematic diagram for explaining pulse compression.
  • FIG. 6 is a view for explaining a pulse compression technique for sharpening the peak of the correlation function by temporally modulating a light beam (hereinafter also referred to as “irradiation light”) irradiated to the object A.
  • irradiation light a light beam
  • FIG. 6A is an example of the amplitude of the irradiation light.
  • a case where pulsed light having a width W is irradiated is described (continuous light can be regarded as pulse light having a sufficiently long width W).
  • This pulse has one or more of amplitude, phase or frequency modulated with respect to time t.
  • a modulation can be performed by changing the rotation speed of the rotator 1142 in the light source 112 of FIG. 2A or by controlling the filter controller 1152 or SLM controller 1162 in the light source 112 of FIG. 2B. This can be realized by creating a signal.
  • FIG. 6B is an example of a target signal obtained when the irradiation light of FIG. 6A is used.
  • the object A is made of two objects spatially separated, are beginning to detect the reflected light from each object at time t 1 and t 2, the difference between t 2 and t 1 is pulse Since the width is shorter than the width W, the reflected lights overlap each other. For this reason, it is difficult to separate each reflected light even if only the amplitude of the target signal is seen.
  • the correlation function with respect to the time direction has a sharp peak as shown in FIG. For this reason, it is possible to easily calculate the times t 1 and t 2 when the reflected light starts to be detected using the correlation function. This means that the temporal resolution can be improved, and as a result, the spatial resolution in the azimuth direction can be improved.
  • Such a technique is called pulse compression.
  • the time variation interval of the light beam emitted by the light transmission unit 111 is shorter than the time variation interval of the spatial variation, and the width of the main lobe of the autocorrelation function with respect to the time direction of the light beam is It is preferably narrower than the pulse width of the light beam.
  • a signal whose main lobe width of an autocorrelation function or a cross-correlation function between a reference signal (for example, irradiation light) and a target signal is narrower is more suitable for pulse compression.
  • signals suitable for such pulse compression for example, many signals such as phase modulation signals and linear chirp signals encoded by pseudo-random codes or Barker codes are known.
  • a reflectance control optical element or an optical phase modulator may be used as the filter 1151 in the configuration of the light source 112 shown in FIG.
  • correlation calculation can be used as coincidence calculation. Therefore, by using a signal suitable for pulse compression, the effects of ghost imaging and pulse compression can be obtained simultaneously. It becomes possible.
  • the resolution in the azimuth direction of the object characteristic output from the object characteristic calculator 411 does not depend on the width W in the time direction of the light beam, and the main lobe of the autocorrelation function (or cross-correlation function). Depends on width. For this reason, the object characteristic can be calculated with high resolution in the azimuth direction by using a signal suitable for pulse compression as described above.
  • the light transmission unit 111 temporally and spatially varies the light intensity distribution in the cross section of the light beam, and the time variation interval of the light beam is the object characteristic calculator. Since the resolution in the azimuth direction of the characteristic of the object A calculated in 411 is shorter than the value obtained by dividing the resolution by the speed of light, the object imaging apparatus 11 displays the object characteristic as a function in the azimuth direction together with the range direction. In addition, it can be acquired as a high S / N image.
  • FIG. 7 is a schematic diagram showing the overall configuration of the object imaging apparatus according to the second embodiment of the present invention.
  • the object imaging device 12 relates to the object imaging device (1).
  • the object imaging device 12 schematically includes an optical transmission unit 121, a target light detector 211, a reference signal acquisition unit 321, and An object characteristic calculator 421 and an image generator 511 are included.
  • the configurations of the optical transmitter 121, the reference signal acquisition unit 321 and the object characteristic calculator 421 are different from those of the first embodiment. Since the target light detector 211 and the image generator 511 have the same configuration as that of the first embodiment, the same portions are denoted by the same reference numerals and detailed description thereof is omitted.
  • the light transmitter 121 emits one light beam L3 whose intensity distribution in the beam cross section varies temporally and spatially toward the object A and outputs the light modulation information J1.
  • the optical transmission unit 121 includes a light source 122, and the light source 122 can be configured as shown in FIG. 2B, for example.
  • the SLM control signal output from the SLM controller 1162 and the filter control signal output from the filter controller 1152 become the light modulation information J1.
  • the light modulation information J1 may include, for example, a light modulation method for enabling pulse compression.
  • the light beam L3 applied to the object A is detected by the object light detector 211.
  • the object A need not be a single object, and may be a plurality of objects that are spatially separated.
  • the reference signal acquisition unit 321 uses a detector having a spatial resolution higher than that of the target light detector 211 to directly detect the light beam emitted from the light transmission unit 121 without irradiating the target.
  • the output of the detector is calculated by simulation.
  • the reference signal acquisition unit 321 first calculates the light intensity distribution of the reference light using the light modulation information J1 (step S1).
  • the light modulation information J1 includes information necessary for calculating the light intensity distribution of the reference light, and includes, for example, the filter control signal, the SLM control signal, and the modulation method for realizing pulse compression as described above. It is out.
  • the distortion of the reference light is calculated using the light intensity distribution of the reference light (step S2). This simulates how the reference light in the first embodiment is distorted before reaching the reference signal acquisition unit 321.
  • This distortion includes attenuation during propagation of light, diffraction, changes in temporal or spatial fluctuations, noise superposition, and the like.
  • the reference light detection result is estimated using the reference light after being distorted, and the result is used as a reference signal (step S3).
  • the reference light itself after being distorted may be regarded as a reference signal.
  • the object characteristic calculator 421 derives the object characteristic. As shown in FIG. 9, the object characteristic calculator 421 includes an ADC 422 and an object characteristic calculator 423.
  • the ADC 422 converts an input target signal from an analog signal to a digital signal.
  • the reference signal acquisition unit 321 is usually a digital circuit, and the input reference signal is a digital signal.
  • the reference signal is an analog signal, an analog / digital conversion unit is provided to provide a reference.
  • the signal is also converted from an analog signal to a digital signal.
  • the object characteristic calculation unit 423 calculates the object characteristic by calculating the object characteristic.
  • the target object characteristic calculation unit 423 can use the same object characteristic calculator 411 as that shown in FIG.
  • the functions representing the intensity of the reference light and the object characteristics be r (t, x) and T (t, x), respectively.
  • r and T are both functions of the time t and the two-dimensional position x in the range direction.
  • the function T (t, x) is an impulse response of the object, and is a function including information on the transmittance (or reflectance) of the object and shape information.
  • the light Ab (t, x) incident on the target light detector 211 is expressed as the following formula (4) as light after the reference light r interacts with the target.
  • the target signal Ib (t) can be approximately regarded as the light amount of Ab (t, x).
  • Ib ′ (t) is expressed by the following equation (5).
  • the object characteristic calculation unit 423 calculates the object characteristic by calculating back the function T (t, x) from the acquired object signal Ib (t).
  • the reverse calculation is obtained, for example, by solving an optimization problem expressed by the following equation (6).
  • Z is a set that represents the entire function T (t, x) that can be a solution, and is set taking into consideration the upper limit of the number of objects, constraints on the shape, and constraints on sparsity, for example. .
  • the above formula (6) satisfies the constraint that T (t, x) is included in Z, that is, can be a solution, and the square error between Ib (t) and Ib ′ (t) is as small as possible. This is a problem for obtaining T (t, x). Instead of reducing the square error, the absolute value of the error may be reduced, and another evaluation function may be minimized or maximized.
  • the evaluation function represented by the equation (6) is calculated using the target signals Ib (t) and Ib ′ (t) by difference calculation (step S6), and the function is set so that the evaluation function becomes small.
  • Feedback is applied to T (t, x) (step S7). At this time, feedback is applied while satisfying the condition that T (t, x) is included in Z.
  • a method of applying feedback so as not to satisfy the condition of being included in Z can also be used.
  • the feedback can be applied using various methods known as general solutions for optimization problems. By using such a method, the optimization problem represented by Expression (6) can be solved.
  • the object imaging apparatus 12 calculates the reference signal by simulation, and the optical transmission unit 121, the reference signal acquisition unit 321 and the object characteristic calculation unit 421 have the above-described configuration. Therefore, there is no need to actually irradiate the reference light, which was necessary in the object imaging apparatus 11 of the first embodiment, and detect it with the detector. Therefore, in addition to the effects of the object imaging apparatus 11 of the first embodiment, there are effects that the apparatus can be made compact and robust against disturbances.
  • the object imaging device (2) of the present invention includes a light transmitting unit that emits a light beam, a light beam that divides the light beam into two light beams, irradiates one of the objects and irradiates the other to the mirror.
  • a splitter a light beam interferometer that causes the transmitted light, reflected light, or scattered light from the object to interfere with the reflected light from the mirror; and interference that detects the interference light obtained by the light beam interferometer
  • the spatial fluctuation frequency of the light intensity distribution in the cross section of the light beam emitted from the light detector and the light transmitter is higher than the spatial resolution of the interference light detector, and the spatial resolution of the interference light detector.
  • the output of the detector when the light beam emitted from the light transmission unit is directly detected without irradiating the object using a detector having higher spatial resolution is calculated by actual measurement or simulation.
  • the characteristics of the object in the range direction and the azimuth direction can be obtained with a spatial resolution higher than the spatial resolution of the interference light detector.
  • An object characteristic calculator that calculates the function of the position, and an image generator that images the characteristic of the object, wherein the light transmitter temporally and spatially distributes the light intensity distribution in the cross section of the light beam. And the interval of temporal variation of the light beam is shorter than a value obtained by dividing the azimuth direction resolution of the characteristic of the object calculated by the object characteristic calculator by the speed of light.
  • FIG. 11 is a schematic diagram illustrating an overall configuration of an object imaging apparatus according to the third embodiment of the present invention.
  • the object imaging device 13 is related to the object imaging device (2).
  • the object imaging device 13 is schematically shown as an optical transmission unit 111, a polarization beam splitter (hereinafter also referred to as “PBS”) 631, and , A mirror 634, an interference light detector 231, a reference signal acquirer 311, an object characteristic calculator 431, and an image generator 511.
  • PBS polarization beam splitter
  • a mirror 634 an interference light detector 231, a reference signal acquirer 311, an object characteristic calculator 431, and an image generator 511.
  • This third embodiment is different from the first embodiment in the PBS 631, the mirror 634, the interference light detector 231 and the object characteristic calculator 431. Since the optical transmitter 111, the reference signal acquirer 311 and the image generator 511 have the same configuration as that of the first embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
  • the polarization beam splitter 631 functions as a light beam splitter, and splits the light beam L1 emitted from the light transmission unit 111 into two light beams. At this time, the PBS 631 transmits the vertically polarized light out of the light beam L1 incident on the PBS 631 from the light transmitting unit 111 and irradiates the transmitted light (one light beam) to the object A and reflects the horizontally polarized light. The reflected light (the other light beam) is applied to the mirror 634.
  • Mirror 634 reflects the light beam from PBS 631.
  • An optical path length controller 635 is attached to the mirror 634, and the distance between the mirror 634 and the PBS 631 can be changed by moving the mirror 634 under the control of the optical path length controller 635.
  • quarter-wave plates 632 and 633 are provided between the PBS 631 and the object A and between the PBS 631 and the mirror 634, respectively.
  • the object imaging device 13 is configured so that the reflected light from the object A and the reflected light from the mirror 634 travel in the same path as the path through which the light passes before being reflected. Yes. Therefore, each reflected light strikes PBS 631 after passing through quarter-wave plates 632 and 633. At this time, if the polarization state of the light does not change due to reflection from the object A, the reflected light from the object A passes through the quarter-wave plate 632 twice, and thus becomes horizontally polarized light and is reflected by the PBS 631.
  • the reflected light from the mirror 634 is vertically polarized by the quarter wavelength plate 633 and passes through the PBS 631.
  • the polarization beam splitter 631 functions as a light beam interferometer, and causes reflected light from the object A and reflected light from the mirror 634 to interfere with each other.
  • the PBS 631 causes the splitting and interference of the light beam, so the PBS 631 is also referred to as “light splitting / interfering device”.
  • the interference light detector 231 detects the interference light obtained by the PBS 631 as a light beam interferometer.
  • the interference light detector 231 is a single pixel or a detector having a small number of pixels.
  • a detector similar to the target light detector 211 described in the first and second embodiments can be employed.
  • the output from the interference light detector 231 is referred to as an “interference signal”. Similar to the target signal in the first embodiment, the interference signal is processed by the target characteristic calculator 431 together with the reference signal from the reference signal acquisition unit 311 to calculate the target characteristic, and then calculated.
  • the object characteristics are input to the image generator 511 to generate an image.
  • the object imaging device 13 is configured such that the spatial variation frequency of the light intensity distribution in the cross section of the light beam emitted from the light transmission unit 111 is higher than the spatial resolution of the interference light detector 231. Yes. That is, the technique related to the object imaging device 13 is different from the super-resolution technique.
  • the object characteristic calculator 431 uses the output of the interference light detector 231 and the output of the reference signal acquisition unit 311 to change the object characteristic with a spatial resolution higher than the spatial resolution of the interference light detector 231 in the range direction and the azimuth direction. As a function of the position at. As shown in FIG. 13, the object characteristic calculator 431 includes ADCs 432 and 433, an object distance characteristic calculator 434, a corrector 435, and a coincidence calculator 436.
  • the ADCs 432 and 433 convert the input target signal and reference signal from analog signals to digital signals.
  • the object distance characteristic calculator 434 calculates an object characteristic (hereinafter also referred to as “object distance characteristic”) S (t, z) expressed as a function of the distance z in the azimuth direction at each time t from the interference signal. ) Is calculated.
  • object distance characteristic an object characteristic (hereinafter also referred to as “object distance characteristic”) S (t, z) expressed as a function of the distance z in the azimuth direction at each time t from the interference signal. ) Is calculated.
  • OCT Optical Coherence Tomography
  • the corrector 435 corrects the shape of the reference signal as necessary.
  • the coincidence calculator 436 performs coincidence calculation between the object distance characteristic S (t, z), the corrected time t, and the reference signal Ip (t, x) at the two-dimensional position x in the range direction. In this coincidence calculation, for example, correlation calculation is performed using the following equation (7) to calculate a correlation function C (x, z).
  • the result of this coincidence calculation is the object characteristic.
  • This object characteristic is sent to the image generator 511 to be imaged.
  • the present embodiment can be regarded as a technique that combines a technique used in OCT and the like with a ghost imaging technique. For this reason, the object imaging apparatus 13 according to the third embodiment can capture an image with a resolution in the azimuth direction as compared with the ghost imaging technique alone, and on the other hand, comparable to the OCT technique alone. It is possible to take a higher S / N image with the same imaging time (or to obtain an image with the same S / N with a shorter imaging time).
  • the light transmitter 111 causes the light intensity distribution in the cross section of the light beam to vary temporally and spatially, and the interval of the temporal variation of the light beam is an object characteristic calculator. Since the resolution in the azimuth direction of the characteristic of the object A calculated in 431 is shorter than the value divided by the speed of light, the object characteristic is expressed as a function in the azimuth direction along with the range direction and a high S / N image. Can be acquired.
  • FIG. 12 is a schematic diagram illustrating the overall configuration of an object imaging apparatus according to the fourth embodiment of the present invention.
  • the object imaging device 14 relates to the object imaging device (2).
  • the object imaging device 14 is schematically illustrated as an optical transmission unit 121, a PBS 631, a mirror 634, an interference light detector 231, and A reference signal acquisition unit 321, an object characteristic calculation unit 431, and an image generator 511 are included.
  • the optical transmitter 121 and the reference signal acquisition unit 321 are different from the third embodiment.
  • the optical transmission unit 121 and the reference signal acquisition unit 321 are those of the second embodiment, and the PBS 631, the mirror 634, the optical interference detector 231, the object characteristic calculator 431, and the image generator 511 are the same as those of the third embodiment. Since the configurations are the same as those, the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the object imaging device 14 calculates the reference signal by simulation, and the optical transmitter 121 and the reference signal acquirer 321 have the above-described configuration. There is no need to actually irradiate the reference light, which is necessary in the object imaging device 13 of the form, and detect it with the detector. Therefore, in addition to the effects of the object imaging apparatus 13 of the third embodiment, there are effects such as that the apparatus can be made compact and robust against disturbances.
  • the object imaging devices 11 to 14 that detect the reflected light of the light beam applied to the object A have been described.
  • the transmitted light of the light beam applied to the object A is described.
  • an object imaging device that detects scattered light may be used.
  • the object imaging devices 11 to 14 mainly using laser light as the light sources 112 and 122 in the light transmission units 111 and 121 have been described.
  • temporally and spatially For example, a light source using light from a thermal light source, a quantum blur light source illustrated in FIG. 2C, or the like can be employed as long as it can be varied.
  • the object imaging devices 13 and 14 have a mode in which the polarizing beam splitter (light splitting / interfering device) 631 is also used, the object imaging device in which the light beam splitting device and the light beam interfering device are provided separately may be used. Good.
  • the present invention can provide an object imaging apparatus capable of acquiring object characteristics as a function of the azimuth direction as well as the range direction and a high S / N image. Therefore, the object imaging apparatus of the present invention can be suitably applied to, for example, a radar or a lidar that requires information in the azimuth direction in addition to information in the range direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本発明の物体撮像装置11は、光送信部111と、対象光検出器211と、対象光検出器211の空間分解能よりも高い空間分解能を有する検出器を用いて光送信部111から発射された光ビームを対象物Aに照射せずに直接検出したときの検出器の出力を算出する参照信号取得器311と、対象光検出器211の空間分解能よりも高い空間分解能で対象物Aの特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器411と、画像生成器511とを備え、光送信部111が上記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ上記光ビームの時間的な変動の間隔が対象物特性算出器411で算出される対象物Aの特性のアジマス方向の分解能を2倍して光速で除した値よりも短い。

Description

物体撮像装置
 本発明は、物体撮像装置に関する。さらに詳しくは、本発明は、対象物に光を照射して画像を取得し、特にレンジ方向およびアジマス方向に対して高い空間分解能で画像を撮像することが可能な物体撮像装置に関する。
 近年、ゴーストイメージングと呼ばれる技術が提案され、新たな物体撮像方式として注目されている(例えば、非特許文献1参照)。このゴーストイメージングの技術によれば、対象物に光を照射し、物体からの透過光や反射光をフォトマル等のシングルピクセル(すなわち、ピクセル数が1)の光検出器で検出して物体の画像を生成する。その際、対象物に照射する光とは別に、直接対象物には照射しない光を多ピクセルの光検出器で検出する。このとき、照射する光の変調方法や検出後の信号の処理方法等を工夫すると、物体からの透過光や反射光を検出する光検出器がシングルピクセルであるにもかかわらず、多ピクセルの光検出器を用いたかのような画像を生成することができる。
 上記ゴーストイメージングでは、始めは量子縺れ光を用いて実現できることが示されたが、後に量子縺れ光の代わりに古典光でも実現できることが示された(非特許文献2参照)。また、このゴーストイメージングの技術に関する特許文献も幾つか公開されている(例えば、特許文献1、2参照)。
 このようなゴーストイメージングでは、対象物から戻ってきた光の強度が弱く、検出した信号が低S/Nであるような場合であっても、従来よりも高いS/Nの画像が得られる等の利点がある。
米国特許第7812303号明細書 米国特許第8279285号明細書
Pittman,T.B.,Shih,Y.H.,et al.,Optial imaging by means of two-photon quantum entanglement, Phys.Rev.A52,R3429-R3432(1995). Bennink,R.S.,Bentley,S.J.,et al.,"Two-photon" coincidence imaging with a classical source, Phys. Rev. Lett.89,113601(2002)
 しかしながら、上述したような従来のゴーストイメージングでは、レンジ方向(光ビームの進行方向に垂直な方向)に対して対象物の反射率や透過率などの特性を取得して画像化することはできるものの、距離情報、すなわちアジマス方向(光ビームの進行方向に平行な方向)の情報を取得することができない。そのため、アジマス方向に対する対象物特性を取得して画像化するようなレーダ、ライダ、距離画像カメラ、断層画像撮影装置など装置には、上記従来のゴーストイメージング技術を活用することができないという不都合がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、対象物特性を、レンジ方向と共にアジマス方向の関数、かつ高S/N画像として取得することができる物体撮像装置を提供することにある。
 本発明は、
(1)対象物に向けて光ビームを発射する光送信部と、
 前記対象物からの透過光、反射光または散乱光(以下、これらの光をまとめて「対象光」ともいう)を検出する対象光検出器と、
 前記光送信部から発射された前記光ビームの断面における光強度分布の空間的な変動周波数が、前記対象光検出器の空間分解能よりも高く、
 前記対象光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて前記光送信部から発射された前記光ビームを前記対象物に照射せずに直接検出したときの前記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、
 前記対象光検出器の出力および前記参照信号取得器の出力を用い、前記対象光検出器の空間分解能よりも高い空間分解能で前記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、
 前記対象物の特性を画像化する画像生成器とを備え、
 前記光送信部が前記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ前記光ビームの時間的な変動の間隔が前記対象物特性算出器で算出される前記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短い物体撮像装置、
(2)対象物特性算出器は、予め設定した複数の時間差の各々に対して対象光検出器の出力または参照信号取得器の出力の一方を前記時間差だけ時間シフトしてから前記対象光検出器の出力と前記参照信号取得器の出力との間の一致を計算することにより前記対象物の特性を算出する前記(1)に記載の物体撮像装置、
(3)光送信部で発射する光ビームの時間的な変動の間隔が空間的な変動が時間変化する間隔よりも短く、かつ前記光ビームの時間方向に対する自己相関関数のメインローブの幅が前記光ビームのパルス幅よりも狭い前記(1)に記載の物体撮像装置、並びに
(4)光ビームを発射する光送信部と、
 前記光ビームを2本の光ビームに分割し、一方を対象物に照射すると共に他方をミラーに照射する光ビーム分割器と、
 前記対象物からの透過光、反射光または散乱光と、前記ミラーからの反射光とを干渉させる光ビーム干渉器と、
 前記光ビーム干渉器により得られた干渉光を検出する干渉光検出器と、
 前記光送信部から発射された前記光ビームの断面における光強度分布の空間的な変動周波数が、前記干渉光検出器の空間分解能よりも高く、
 前記干渉光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて前記光送信部から発射された前記光ビームを前記対象物に照射せずに直接検出したときの前記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、
 前記干渉光検出器の出力および前記参照信号取得器の出力を用い、前記干渉光検出器の空間分解能よりも高い空間分解能で前記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、
 前記対象物の特性を画像化する画像生成器とを備え、
 前記光送信部が前記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ前記光ビームの時間的な変動の間隔が前記対象物特性算出器で算出される前記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短い物体撮像装置
に関する。
 なお、本明細書において「対象物特性」とは、測定する対象物の反射率や透過率などの光学特性を意味する。また、本明細書において「対象光検出器の出力と参照信号取得器の出力との間の一致を計算する」とは、対象光検出器の出力信号と参照信号取得器の出力信号との類似の度合いを計算することを意味する。また、本明細書において「光」とは、電磁波を指し、例えば、可視光であってもよく、赤外線、紫外線、X線等であってもよい。
 本発明は、対象物特性を、レンジ方向と共にアジマス方向の関数、かつ高S/N画像として取得することが可能な物体撮像装置を提供することができる。したがって、当該物体撮像装置は、例えばレンジ方向の情報に加えてアジマス方向の情報が必要とされるようなレーダやライダ等に好適に適用することができる。
本発明の第1の実施形態における物体撮像装置の全体構成を示す概略図である。 図1の光源の構成を示す概略図であって、(a)はレーザ光源およびすりガラスを用いた例、(b)はレーザ光源およびSLM(Spatial Light Modulator)を用いた例、(c)は量子縺れ光源を用いた例をそれぞれ示す。 図1の光源から照射される光ビームの光強度の一例を示す概略図であって、(a)は光強度分布、(b)は光強度の時間変化をそれぞれ示す。 図1における、対象物からの反射光、および参照光を検出する検出器の一例であって、(a)は対象光検出器、(b)は参照信号取得器をそれぞれ示す。 図1の対象物特性算出器の一例を示す概略ブロック図である。 パルス圧縮の説明をするための概略図であって、(a)は照射光、(b)は対象信号、(c)は相関関数の一例をそれぞれ示す。 本発明の第2の実施形態における物体撮像装置の全体構成を示す概略図である。 図7の参照信号取得器における処理の一例を示す概略ブロック図である。 図7の対象物特性算出器の一例を示す概略ブロック図である。 図7の対象物特性算出器における対象物特性算出の方法の一例を示す概略ブロック図である。 本発明の第3の実施形態における物体撮像装置の全体構成を示す概略図である。 本発明の第4の実施形態における物体撮像装置の全体構成を示す概略図である。 図11および図12の対象物特性算出器の一例を示す概略ブロック図である。 図2(b)のフィルタ制御信号およびSLM制御信号の一例を示す概略図である。
<物体撮像装置(1)>
 本発明の物体撮像装置(1)は、対象物に向けて光ビームを発射する光送信部と、上記対象物からの透過光、反射光または散乱光を検出する対象光検出器と、上記光送信部から発射された上記光ビームの断面における光強度分布の空間的な変動周波数が、上記対象光検出器の空間分解能よりも高く、上記対象光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて上記光送信部から発射された上記光ビームを上記対象物に照射せずに直接検出したときの上記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、上記対象光検出器の出力および上記参照信号取得器の出力を用い、上記対象光検出器の空間分解能よりも高い空間分解能で上記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、上記対象物の特性を画像化する画像生成器とを備え、上記光送信部は、上記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ上記光ビームの時間的な変動の間隔が上記対象物特性算出器で算出する上記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短いことを特徴とする。
 以下、当該物体撮像装置(1)の第1および第2の実施形態について図面を参照して説明するが、本発明は、当該図面に記載の実施形態にのみ限定されるものではない。
[第1の実施形態]
 図1は、本発明の第1の実施形態における物体撮像装置の全体構成を示す概略図である。当該物体撮像装置11は、物体撮像装置(1)に係るものであり、図1に示すように、概略的に、光送信部111と、対象光検出器211と、参照信号取得器311と、対象物特性算出器411と、画像生成器511とにより構成されている。
 光送信部111は、対象物Aに向けて光ビームL1を発射する。具体的には、この光送信部111は、2本の光ビームL1およびL2を発射する。光送信部111は、光源112とビームスプリッタ(以下、「BS」ともいう)119とを有し、光源112で生成された光ビームをBS119で分割することにより、上述の光ビームL1とL2を得る。光源112は、光ビームのビーム断面における強度分布が時間的かつ空間的に変動しているような光ビームを生成する。なお、光ビームL1は対象物Aに照射され、対象物Aから発せられた対象光が対象光検出器211で検出される。対象物Aは1個の物体である必要はなく、空間的に離れた複数の物体であってもよい。また、対象物Aは固体である必要はなく、液体や気体等であってもよい。
 対象光検出器211は、上記対象物Aからの透過光、反射光または散乱光を検出する。本実施形態では、対象物Aからの反射光を検出するように構成されている。この対象光検出器211としては、例えば、フォトマル等のシングルピクセルの(またはピクセル数の少ない)検出器を採用することができる。また、対象光検出器211としては、CCD等の多ピクセル検出器で受信した信号を加算してピクセル数を減らした信号を出力するような検出器であってもよい。
 参照信号取得器311は、対象光検出器211の空間分解能よりも高い空間分解能を有する検出器を用いて、光送信部111から発射された光ビームを対象物Aに照射せずに直接検出したときの検出器の出力を、実測により算出する。なお、上述の対象物Aに照射せずに直接検出された光(図1中の光ビームL2)を、以下、「参照光」とも称する。参照信号取得器311で用いられる検出器は、対象光検出器211よりも25倍以上ピクセル数の多い検出器であり、例えば、CCDやマルチピクセルフォトンカウンタ、複数個のアバランシェフォトダイオード、複数個のフォトマル等を採用することができる。
 対象物特性算出器411は、対象光検出器211の出力および参照信号取得器311の出力を用い、対象光検出器211の空間分解能よりも高い空間分解能で対象物Aの特性(対象物特性)をレンジ方向およびアジマス方向における位置の関数として算出する。
 ここで、この対象物特性算出器411としては、予め設定した複数の時間差の各々に対して対象光検出器211の出力または参照信号取得器311の出力の一方を上記時間差だけ時間シフトしてから対象光検出器211の出力と参照信号取得器311の出力との間の一致を計算することにより対象物Aの特性を算出することが好ましい。本実施形態では、予め設定した複数の時間差の各々に対して参照信号取得器311の出力を上記時間差だけ時間シフトするように構成されている(図5参照)。これにより、対象物特性を、レンジ方向に加えてアジマス方向の関数として算出することができる。
 画像生成器511は、対象物Aの特性を画像化する。
 ところで、本発明で用いられる技術は、ゴーストイメージングに係るものである。このゴーストイメージングは、参照信号取得器のピクセル数が対象物検出器のピクセル数よりも一般に25倍~1億倍(空間分解能では5倍~1万倍)程度多いことが特徴の一つである。参照信号取得器のピクセル数は、算出される対象物特性のレンジ方向の解像度に対応する。このため、対象物検出器のピクセル数が対象物特性のレンジ方向の解像度に比べて十分に小さいと言い換えられる。このゴーストイメージング技術によれば、高いS/Nの画像を得ることができる。
 ところで、対象物検出器のピクセル数に比べて、対象物特性のレンジ方向の解像度を数倍高くすることが可能な画像処理技術として超解像技術が知られている。しかしながら、上記超解像技術では、特に取得信号のS/Nが低い場合には空間分解能を5倍以上高めることは困難である。
 次に、上述した物体撮像装置11を構成する光送信部111、対象光検出器211、参照信号取得器311等について、さらに詳述する。
 まず、光送信部111に関し、図2は、図1の光源の構成を示す概略図である。光送信部111の光源112としては、例えば、図2(a)~(c)のようなもの等が挙げられる。図2(a)示す光源112は、レーザ光源113により生成したレーザ光をすりガラス1141に通すことにより、空間的にインコヒーレントな(すなわち空間的に変動させた)光ビームを生成する。この光源113では、すりガラス1141を回転器1142により回転させることで、レーザ光がすりガラス1141の異なる位置に入射するようにして、レーザ光を時間的に変動させる。なお、レーザ光をすりガラス1141の異なる位置に入射させるための装置として、回転器1142の代わりに平行移動などを行う装置(不図示)を用いてもよい。また、後述するフィルタ1151およびフィルタ制御器1152(図2(b)および図14参照)を用いてレーザ光を時間的に変動させてもよい。これにより、すりガラスのみでは実現困難であるような短い間隔で時間的に変動する光ビームを生成することができる。
 図2(b)示す光源112は、レーザ光源113により生成したレーザ光をSLM(Spatial Light Modulator)1161に通して光ビームを生成する。この際、SLM制御器1162によりSLM1161を制御することにより、時間的かつ空間的に変動した光ビームが生成される。この構成では、レーザ光とともにSLM制御信号も出力することができる。SLM1161のピクセル数は、対象物特性のレンジ方向の解像度に影響するため、要求される解像度に対して妥当なピクセル数を持つSLMが使用される。このSLM制御信号は、後述する第2の実施形態において利用される。
 また、この光源112では、光量等を変更するために、透過率等を制御することが可能なフィルタ1151およびこのフィルタ1151を制御するフィルタ制御器1152を用いてレーザ光を時間的に変動させる。フィルタ制御器1152は、SLM制御信号と同様に、フィルタ制御信号も出力することができる。SLM1161の応答速度が十分ではない場合、より応答速度の速いフィルタ1151を用いることで、レーザ光に対してSLM1161のみでは実現困難な高速な時間的変動を施すことができる。他方、応答速度が十分なSLM1161があれば、フィルタ1151を用いる代わりに、SLM1161のみを適切に制御することで、十分な速度で時間的に変動させたレーザ光を生成することもできる。なお、本実施形態では、レーザ光の光路においてフィルタ1151が前段、SLM1161が後段に配置されているが、その逆、すなわちSLM1161が前段、フィルタ1151が後段に配置されていてもよい。
 図2(c)示す光源112は、量子縺れ光源117により生成した光ビームをフィルタ1181に通すことにより、時間的に変動させた光ビームを生成する。この量子縺れ光源117は、光強度分布に空間的な変動があるため、出力される光ビームは時間的かつ空間的に変動している。フィルタ1181は、フィルタ制御器1182により制御される。なお、この例示の光源112では、光ビームとともにフィルタ制御信号も出力することができる。
 次に、光送信部111から発射された光ビームの光強度について詳述する。図3(a)は、図1の光源112から照射される光ビームの光強度の一例を示す概略図であり、図1の断面D1および断面D2における、時刻tおよび時刻t+dtでの光ビームの強度分布の例を表している。任意の時刻tでの断面D1および断面D2における強度分布F1aおよびF2aは、強い相関関係を有している。また、時刻t+dtでの断面D1および断面D2における強度分布F1bおよびF2bも、強い相関関係を有している。一方、これらの強度分布の各々は空間的には大きな変動を持っている。また、dtが十分に小さい値ではない場合には、同じ断面D1の強度分布である強度分布F1aとF1bは、強い相関関係を有していない。同様に、強度分布F2aとF2bの間の相関も小さい。このように、図1の光送信部111から照射された2本の光ビームL1、L2は、それぞれ時間的かつ空間的に変動しており、時間的かつ空間的な相関は小さいが、2本の光ビームL1、L2の間では強い相関を有している。
 図3(b)は、図1の光源112から照射される光ビームの光強度の一例を示す概略図であり、断面D1における、ある特定の位置での光強度と時間tとの関係である。ここで、cは光速であり、Δは当該物体撮像装置11のアジマス方向の距離分解能である。δ=2Δ/cは、アジマス方向の距離分解能と同じ距離を光が往復するのに必要な時間を表している。
 ここで、光強度の時間変動の間隔がδに比べて十分短くなるように、光強度を時間的に変動させる。すなわち、光送信部111が光ビームL1、L2の断面D1、D2における光強度分布を時間的かつ空間的に変動させ、かつ上記光ビームの時間的な変動の間隔が対象物特性算出器411で算出される対象物Aの特性のアジマス方向の分解能を2倍して光速で除した値よりも短くなるようにする。
 なお、光源112としてレーザ光源113を用いた場合、発射されるレーザ光は通常光強度の時間的な変動はほとんどなく、光強度は時間に対してほぼ一定である。そのため、時間的な変動は、例えば図2において回転器1142の速度を上げたり、SLM制御器1162を高速で動かすことにより速くすることができる。また、フィルタ制御器1152により光強度を時間的に変動させてもよい。なお、光強度の時間変動の間隔は、光強度の振幅が一定以上変化するまでに要する時間、または瞬時位相が2πだけ進むまでに要する時間として与えられる。ここで、光強度を時刻tの関数としてA(t)sinθ(t)+A(t)のように表したとき、A(t)を振幅、θ(t)を瞬時位相と呼ぶ。
 このように時間的に十分に速く変動させた光ビームを用いることにより、対象光検出器211で検出した信号に、アジマス方向に関する対象物特性に関する情報を含めることができ、アジマス方向に対する分解能を確保した画像を得ることができる。
 ここで、SLM制御信号およびフィルタ制御信号について例示する。図14は、図2(b)のフィルタ制御信号およびSLM制御信号の一例を示す概略図であり、SLM制御器1162が出力するSLM制御信号およびフィルタ制御器1152が出力するフィルタ制御信号を示している。SLM制御信号は、SLMのピクセル数と同じ本数だけあるが、図14では異なる2個のピクセルに対応するSLM制御信号の例を示している(符号116aおよび116b参照)。図14の符号115aは、フィルタ制御信号の例である。フィルタ制御信号をδに比べて十分短い時間で変動させることにより、光強度の時間変動の間隔をδよりも十分短くすることができる。一方、SLM制御信号も時刻tの関数であるが、光強度の時間変動の間隔と比べて長い時間で変動させてもよい。これにより、応答速度が十分ではないSLMがあったとしても、光ビームを時間的に十分に速く変動させるとともに空間的に変動させることができる。なお、この例示では、SLM制御信号およびフィルタ制御信号が2値をとる場合について示したが、多値やアナログ値をとってもよい。
 次に、対象光検出器について詳述する。図4(a)は、図1の対象物Aからの反射光を検出する対象光検出器の一例である。この図4(a)は、2種類の対象光検出器の例を表している。検出器212はシングルピクセルの検出器である。一方、検出器213はピクセル数3×3=9の検出器である。この対象光検出器211には、物体撮像装置11の空間分解能に比べて十分に少ないピクセル数の検出器が用いられる。
 なお、当該物体撮像装置11は、光送信部111から発射された光ビームの断面における光強度分布の空間的な変動周波数が、対象光検出器211の空間分解能よりも高くなるように構成されている。すなわち、当該物体撮像装置11に係る技術は、超解像技術とは異なるものである。
 次に、参照信号取得器311について詳述する。図4(b)は、図1の参照光を検出する参照信号取得器の一例である。参照信号取得器311は、物体撮像装置11の空間分解能と同程度のピクセル数を持つ参照光検出器312を有している。当該物体撮像装置11は、対象光検出器211の空間分解能が低い代わりに、参照光検出器312の空間分解能を高くすることで、ゴーストイメージング技術により空間分解能の高い対象物特性を得ることができる。なお、レンジ方向に2次元の情報を得る代わりに1次元のみの情報を得たい場合には、対象光検出器212や参照光検出器312はピクセルが1次元に配置された検出器を用いる。また、個々のピクセルに対応する検出器は、光量または光子数を検出するフォトマルなどであってもよく、ホモダイン型またはヘテロダイン型の検出器であってもよい。
 次に、対象物特性算出器411について詳述する。図5は、図1の対象物特性算出器の一例を示す概略ブロック図である。本明細書では、同じ処理や信号等には、同じ番号を付している。この図では、対象物特性算出器411と共に画像生成器511が記載されている。また、この図は、対象光検出器211がシングルピクセルの場合のものである。
 対象物特性算出器411では、まず、対象信号と参照信号がADC(Analog Digital Converter、アナログディジタル変換部)412および413により、アナログ信号からディジタル信号に変換される。参照信号は、遅延器414により一定の時間δだけ時間遅延した後、補正器415により必要に応じて形状補正される。ここで、δは図3の説明で述べた値と同じ、すなわちδ=2Δ/cである。光送信部111から対象光検出器211および参照信号取得器311までのそれぞれの光路長が大きく異なる場合、図3の説明で述べたように光ビームの強度分布の相関が弱まることがあるが、形状補正を行うことでこれを解消することができる。一致計算器416では、対象信号と補正後の参照信号との間で一致計算が行われる。この一致計算の結果が対象物特性を表す。なお、本実施形態では、対象物特性算出器411はディジタル回路としたが、アナログ回路であってもよく,光回路等であってもよい。
 次に、画像生成器511について詳述する。画像生成器511は、算出した対象物Aの特性が入力され、これを画像化する。この画像生成器511では、アジマス方向およびレンジ方向の関数として表される3次元情報を持つ対象物特性から、ディスプレイ等に表示できるような画像が生成される。画像は、3次元情報を表すようなものであってもよく、レンジ方向に関する1次元情報とアジマス方向に関する1次元情報を含んだ2次元情報を表すようなものであってもよい。
 ここで、上述した一致計算では、例えば下記式(1)で表される相関計算を行い、相関関数C(x,nδ)が計算される。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、xは参照信号の画素の位置を表すインデックス、Tは積分を行う時間の幅である。I(t,x)は時刻tおよび位置xにおける参照信号、Ib(n)(t)は遅延器414をn回通過した後の、時刻tにおける補正後の対象信号であり、Ib(0)(t-nδ)を補正した信号に等しい(以下、Ib(0)を単に「Ib」と表す)。補正処理を関数hで表現すると、式(1)は下記式(2)のように表現することができる。
Figure JPOXMLDOC01-appb-M000002
 なお、参考までに、従来のゴーストイメージングで行われる相関計算の式を下記式(3)に示す。
Figure JPOXMLDOC01-appb-M000003
 上記(1)、(2)で表される計算式では、相関計算の出力が画素xの関数のみでなく、遅延時間nδの関数でもある点が特徴である。ここで、Ib(n)(t)がδに対して十分高速に時間的に変動するため、一般に任意のnに対してC(x,nδ)とC(x,(n+1)δ)は大きく異なる値を取ることが期待できる。相関関数C(x,nδ)のnδをアジマス方向の位置zに変換した値C(x,z)を対象物特性とみなす。これにより、対象物特性をレンジ方向の位置xのみでなくアジマス方向の位置zの関数として算出することができる。
 なお、図4(a)に示す対象光検出器213のように、対象光検出器211のピクセル数が複数(Kピクセルとする)の場合は、参照信号をK分割して図5の構成をK個並列に並べたものを用いて計算を行う。このような並列演算を行うことにより、例えば撮像時間を短縮する等の利点を得ることができる。また、上記では一致計算において相関関数を計算する例を述べたが、これに限らない。また、本実施形態では参照信号を時間遅延させてから一致計算を行う例を示したが、対象信号を時間遅延させてから一致計算を行ってもよい。
 ここで、上述した相関係数の一例について以下に示す。図6は、パルス圧縮の説明をするための概略図である。この図6は、対象物Aに照射する光ビーム(以下、「照射光」ともいう)を時間的に変調させて相関関数のピークを鋭くするためのパルス圧縮技術を説明する図である。
 図6(a)は、照射光の振幅の例である。ここでは、幅Wのパルス状の光を照射した場合について説明している(連続光は、幅Wが十分に長いパルス光とみなすことができる)。このパルスは、時刻tに対して振幅、位相または周波数のうちの一つ以上が変調されている。このような変調は、例えば、図2(a)の光源112において回転器1142の回転速度を可変にしたり、図2(b)の光源112においてフィルタ制御器1152やSLM制御器1162で適切な制御信号を作成することにより実現することができる。
 図6(b)は、図6(a)の照射光を用いたときに得られる対象信号の例である。この例では、対象物Aは空間的に離れた2個の物体からなり、それぞれの物体からの反射光を時刻tおよびtで検出し始めているが、tとtの差はパルス幅Wより短いため、それぞれの反射光は重なっている。このため、対象信号の振幅のみを見ても、それぞれの反射光を分離することは困難である。しかし、適切な変調を行った場合には、時間方向に対する相関関数は図6(c)のように鋭いピークを持つ。このため、相関関数を用いて各反射光を検出し始めた時刻tおよびtを容易に計算することができる。これは、時間分解能を向上することができ、その結果、アジマス方向の空間分解能を向上できることを意味する。このような技術はパルス圧縮と呼ばれている。
 なお、光送信部111で発射する光ビームの時間的な変動の間隔が空間的な変動が時間変化する間隔よりも短く、かつ上記光ビームの時間方向に対する自己相関関数のメインローブの幅が上記光ビームのパルス幅よりも狭いことが好ましい。
 一般に、自己相関関数、またはある参照信号(例えば照射光)と対象信号との相互相関関数のメインローブの幅が狭くなるような信号ほど、パルス圧縮に適している。このようなパルス圧縮に適した信号としては、例えば擬似乱数符号やバーカー符号で符号化した位相変調信号、線形チャープ信号等の数多くの信号が知られている。このような変調が施された光を得るためには、例えば図2(b)で示した光源112の構成におけるフィルタ1151として反射率制御光学素子や光位相変調器などを用いればよい。ゴーストイメージングにおいては、図5の説明で述べたように一致計算として相関演算を利用することができるため、パルス圧縮に適した信号を用いることで、ゴーストイメージングおよびパルス圧縮の効果を同時に得ることが可能となる。
 このように、対象物特性算出器411が出力する対象物特性のアジマス方向の分解能は、光ビームの時間方向の幅Wには依存せず、自己相関関数(または相互相関関数)のメインローブの幅に依存する。このため、上述したようなパルス圧縮に適した信号を用いることにより、アジマス方向に対して高い分解能で対象物特性を算出することができる。
 以上のように、本実施形態では、光送信部111が光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ上記光ビームの時間的な変動の間隔が対象物特性算出器411で算出される対象物Aの特性のアジマス方向の分解能を2倍して光速で除した値よりも短いので、当該物体撮像装置11は、対象物特性を、レンジ方向と共にアジマス方向の関数、かつ高S/N画像として取得することができる。
[第2の実施形態]
 図7は、本発明の第2の実施形態における物体撮像装置の全体構成を示す概略図である。当該物体撮像装置12は、物体撮像装置(1)に係るものであり、図7に示すように、概略的に、光送信部121と、対象光検出器211と、参照信号取得器321と、対象物特性算出器421と、画像生成器511とにより構成されている。この第2の実施形態は、光送信部121、参照信号取得器321および対象物特性算出器421の構成が第1の実施形態と異なっている。なお、対象光検出器211および画像生成器511は、第1の実施形態のものと同様な構成であるため、同一部分には同一符号を付してその詳細な説明は省略する。
 光送信部121は、ビーム断面における強度分布が時間的かつ空間的に変動する1本の光ビームL3を対象物Aに向けて発射すると共に光変調情報J1を出力する。この光送信部121は光源122を有し、光源122は、例えば図2(b)に示す構成とすることができる。この構成では、SLM制御器1162から出力されたSLM制御信号やフィルタ制御器1152から出力されたフィルタ制御信号が光変調情報J1となる。図6で説明したパルス圧縮を用いる場合、光変調情報J1には例えばパルス圧縮を可能とするための光の変調の仕方が含まれていてもよい。対象物Aに照射された光ビームL3は、対象光検出器211で検出される。なお、対象物Aは1個の物体である必要はなく、空間的に離れた複数の物体であってもよい。
 参照信号取得器321は、対象光検出器211の空間分解能よりも高い空間分解能を有する検出器を用いて光送信部121から発射された光ビームを対象物に照射せずに直接検出したときの検出器の出力を、シミュレーションにより算出する。
 この参照信号取得器321では、図8に示すように、まず、光変調情報J1を用いて参照光の光強度分布を算出する(ステップS1)。光変調情報J1は参照光の光強度分布を算出するために必要な情報を含んでおり、例えば上述したようにフィルタ制御信号や、SLM制御信号、パルス圧縮を実現するための変調方法などを含んでいる。
 次いで、参照光の光強度分布を用いて参照光の歪みを算出する(ステップS2)。これにより、第1の実施形態における参照光が参照信号取得器321に到達するまでに歪む様子をシミュレートする。この歪みは、光の伝播時の減衰や、回折、時間的または空間的な変動の変化、ノイズの重畳などを含む。
 次いで、歪みを受けた後の参照光を用いて参照光検出結果を推定し、その結果を参照信号とする(ステップS3)。なお、歪みを受けた後の参照光そのものを参照信号とみなしてもよい。
 対象物特性算出器421は、対象物特性を導出する。この対象物特性算出器421は、図9に示すように、ADC422と対象物特性算出部423とを有している。
 ADC422は、入力する対象信号をアナログ信号からディジタル信号に変換する。なお、上述の参照信号取得器321は通常ディジタル回路であり、入力する参照信号はディジタル信号になっているものとするが、上記参照信号がアナログ信号の場合は、アナログディジタル変換部を設け、参照信号に対してもアナログ信号からディジタル信号に変換を行う。
 対象物特性算出部423は、対象物特性算出を行って対象物特性を算出する。この対象物特性算出部423は、参照信号取得器321にて参照光検出結果を推定した場合には、図5に示す対象物特性算出器411と同様のものを利用することができる。
 一方、参照信号取得器321にて歪みを受けた後の参照光そのものを参照信号とみなす場合には、対象物特性算出部423での対象物特性の算出が一般に複雑になるものの、より精度の高い値を算出できる可能性がある。以下、上記参照光そのものを参照信号とみなす場合の対象物特性の算出方法の例を示す。
 まず、参照光の強度および対象物特性を表す関数を、それぞれr(t,x)およびT(t,x)とおく。rとTはともに時刻tおよびレンジ方向の2次元的な位置xの関数である。関数T(t,x)は対象物のインパルス応答であり、対象物の透過率(または反射率)に関する情報や形状情報を含んだ関数である。対象光検出器211に入射する光Ab(t,x)は、参照光rが対象物と相互作用した後の光として、次式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、対象光検出器211が光量を検出するような検出器の場合、対象信号Ib(t)はAb(t,x)の光量であると近似的にみなすことができるため、その近似信号Ib’(t)は次式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 上記式(5)中、Xは対象光検出器211の領域を表す。そこで、対象物特性算出部423では、取得された対象信号Ib(t)から関数T(t,x)を逆算することにより対象物特性が算出される。上記逆算は、例えば、次式(6)で表される最適化問題を解くことにより得られる。
Figure JPOXMLDOC01-appb-M000006
 上記式(6)中、Zは解となり得る関数T(t,x)の全体を表す集合であり、例えば物体の個数の上限や、形状に関する制約、スパース性に関する制約を加味して設定される。
 上記式(6)は、T(t,x)がZに含まれる、すなわち解となり得るという制約条件を満たした上で、Ib(t)とIb’(t)との2乗誤差ができるだけ小さくなるようなT(t,x)を求める問題である。なお、2乗誤差を小さくする代わりに、誤差の絶対値を小さくしてもよく、別の評価関数を最小または最大とするようにしてもよい。
 ここで、式(6)に基づき対象物特性を算出する一例について、図10を参照して説明する。まず、関数T(t,x)の初期値を決め、参照信号r(t,x)から式(4)および式(5)で表されるAb(t,x)およびIb’(t)をそれぞれ計算する(ステップS4、S5)。
 次いで、差分計算により、対象信号Ib(t)とIb’(t)とを用いて式(6)で表される評価関数を計算する(ステップS6)と共に、その評価関数が小さくなるように関数T(t,x)にフィードバックをかける(ステップS7)。その際、T(t,x)がZに含まれるという条件を満たしながらフィードバックをかけるようにする。なお、Zに含まれるという条件を満たさないようフィードバックをかける方法を用いることもできる。上記フィードバックは、最適化問題の一般的な解法として知られている各種手法を利用して施すことができる。このような方法を用いることで、式(6)で表される最適化問題を解くことができる。
 このように、第2の実施形態に係る物体撮像装置12は、参照信号をシミュレーションにより算出するものであり、光送信部121、参照信号取得器321および対象物特性算出器421が上述した構成であるので、第1の実施形態の物体撮像装置11では必要であった参照光を実際に照射して検出器で検出する必要がない。そのため、第1の実施形態の物体撮像装置11の効果に加え、装置をコンパクト化できたり外乱に対してロバストになる等の効果がある。
<物体撮像装置(2)>
 本発明の物体撮像装置(2)は、光ビームを発射する光送信部と、上記光ビームを2本の光ビームに分割し、一方を対象物に照射すると共に他方をミラーに照射する光ビーム分割器と、上記対象物からの透過光、反射光または散乱光と、上記ミラーからの反射光とを干渉させる光ビーム干渉器と、上記光ビーム干渉器により得られた干渉光を検出する干渉光検出器と、上記光送信部から発射された上記光ビームの断面における光強度分布の空間的な変動周波数が、上記干渉光検出器の空間分解能よりも高く、上記干渉光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて上記光送信部から発射された上記光ビームを上記対象物に照射せずに直接検出したときの上記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、上記干渉光検出器の出力および上記参照信号取得器の出力を用い、上記干渉光検出器の空間分解能よりも高い空間分解能で上記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、上記対象物の特性を画像化する画像生成器とを備え、上記光送信部が上記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ上記光ビームの時間的な変動の間隔が上記対象物特性算出器で算出される上記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短いことを特徴とする。
 以下、当該物体撮像装置(2)の第3および第4の実施形態について図面を参照して説明するが、本発明は、当該図面に記載の実施形態にのみ限定されるものではない。
[第3の実施形態]
 図11は、本発明の第3の実施形態における物体撮像装置の全体構成を示す概略図である。当該物体撮像装置13は、物体撮像装置(2)に係るものであり、図11に示すように、概略的に、光送信部111と、偏光ビームスプリッタ(以下、「PBS」ともいう)631と、ミラー634と、干渉光検出器231と、参照信号取得器311と、対象物特性算出器431と、画像生成器511とにより構成されている。この第3の実施形態は、PBS631、ミラー634、干渉光検出器231および対象物特性算出器431が第1の実施形態と異なっている。なお、光送信部111、参照信号取得器311および画像生成器511は、第1の実施形態のものと同様な構成であるため、同一部分に同一符号を付してその詳細な説明を省略する。
 偏光ビームスプリッタ631は、光ビーム分割器として機能し、光送信部111から発射された光ビームL1を2本の光ビームに分割する。この際、PBS631では、光送信部111からPBS631に入射する光ビームL1のうち、縦偏光を透過してこの透過光(一方の光ビーム)を対象物Aに照射すると共に、横偏光を反射してこの反射光(他方の光ビーム)をミラー634に照射する。
 ミラー634は、PBS631からの光ビームを反射する。このミラー634には光路長制御器635が取り付けられており、この光路長制御器635の制御によりミラー634を動かすことで、ミラー634とPBS631との距離を変えることができる。
 また、PBS631と対象物Aとの間およびPBS631とミラー634との間には、それぞれ1/4波長板632、633が設けられている。ここで、当該物体撮像装置13は、対象物Aからの反射光およびミラー634からの反射光が、それぞれ反射する前に光が通った経路と同じ経路を逆行するようにするように構成されている。そのため、それぞれの反射光は、1/4波長板632、633を通った後、PBS631に当たる。その際、対象物Aでの反射により光の偏光状態が変わらない場合には、対象物Aからの反射光は1/4波長板632を2回通るため横偏光となってPBS631で反射する。一方、ミラー634からの反射光は1/4波長板633により縦偏光となり、PBS631を透過する。この際、偏光ビームスプリッタ631は、光ビーム干渉器として機能し、対象物Aからの反射光とミラー634からの反射光とを干渉させる。なお、本実施形態ではPBS631が光ビームの分割および干渉を起こさせるため、PBS631を「光分割・干渉器」とも称する。
 干渉光検出器231は、光ビーム干渉器としてのPBS631により得られた干渉光を検出する。この干渉光検出器231は、シングルピクセルまたはピクセル数が少ない検出器であり、例えば、第1および第2の実施形態で上述した対象光検出器211と同様の検出器を採用することができる。なお、干渉光検出器231からの出力を「干渉信号」と称する。この干渉信号は、第1の実施形態における対象信号と同様に、参照信号取得器311からの参照信号と共に対象物特性算出器431により処理されて対象物特性が算出された後、この算出された対象物特性が画像生成器511に入力されて画像が生成される。
 なお、当該物体撮像装置13は、光送信部111から発射された光ビームの断面における光強度分布の空間的な変動周波数が、干渉光検出器231の空間分解能よりも高くなるように構成されている。すなわち、当該物体撮像装置13に係る技術は、超解像技術とは異なるものである。
 対象物特性算出器431は、干渉光検出器231の出力および参照信号取得器311の出力を用い、干渉光検出器231の空間分解能よりも高い空間分解能で対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する。この対象物特性算出器431は、図13に示すように、ADC432および433、対象物距離特性算出器434、補正器435並びに一致計算器436を有している。
 ADC432、433は、入力した対象信号および参照信号をアナログ信号からディジタル信号に変換する。対象物距離特性算出器434は、干渉信号から、時刻t毎にアジマス方向の距離zの関数として表されるような対象物特性(以下、「対象物距離特性」ともいう)S(t,z)を算出する。このような値の算出は、Optical Coherence Tomography(以下、「OCT」ともいう)などの分野でよく知られた方法をそのまま利用することができる(例えば、Murtaza Ali et al. ”Signal Processing Overview of Optical Coherence Tomography Systems for Medical Imaging”,Texas Instruments White Paper SPRABB9(June 2010)参照)。
 補正器435は、必要に応じて参照信号の形状を補正する。一致計算器436は、対象物距離特性S(t,z)と補正後の時刻tおよびレンジ方向の2次元的な位置xにおける参照信号Ip(t,x)との間で一致計算を行う。この一致計算では、例えば次式(7)を用いて相関計算を行い、相関関数C(x,z)を計算する。
Figure JPOXMLDOC01-appb-M000007
 この一致計算の結果が対象物特性となる。なお、この対象物特性は画像生成器511に送られて画像化される。
 ここで、本実施形態は、OCTなどで用いられる技術とゴーストイメージング技術とを組み合わせた技術であると捉えることができる。このため第3の実施形態に係る物体撮像装置13は、ゴーストイメージング技術単体と比較してアジマス方向に対する分解能を確保した画像を撮像することができ、他方、OCT技術単体と比較して、同程度の撮像時間でより高S/Nな画像を撮像することができる(または、同程度のS/Nの画像をより短い撮像時間で得ることができる)。
 このように、当該物体撮像装置13は、光送信部111が光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ光ビームの時間的な変動の間隔が対象物特性算出器431で算出される対象物Aの特性のアジマス方向の分解能を2倍して光速で除した値よりも短いので、対象物特性を、レンジ方向と共にアジマス方向の関数、かつ高S/N画像として取得することができる。
[第4の実施形態]
 図12は、本発明の第4の実施形態における物体撮像装置の全体構成を示す概略図である。当該物体撮像装置14は、物体撮像装置(2)に係るものであり、図12に示すように、概略的に、光送信部121と、PBS631と、ミラー634と、干渉光検出器231と、参照信号取得器321と、対象物特性算出器431と、画像生成器511とにより構成されている。この第4の実施形態は、光送信部121および参照信号取得器321が第3の実施形態と異なっている。なお、光送信部121および参照信号取得器321は第2の実施形態のもの、PBS631、ミラー634、光干渉検出器231、対象物特性算出器431および画像生成器511は第3の実施形態のものとそれぞれ同様な構成であるため、同一部分には同一符号を付してその詳細な説明を省略する。
 このように、第4の実施形態に係る物体撮像装置14は、参照信号をシミュレーションにより算出するものであり、光送信部121および参照信号取得器321が上述した構成であるので、第3の実施形態の物体撮像装置13では必要であった参照光を実際に照射して検出器で検出する必要がない。そのため、第3の実施形態の物体撮像装置13の効果に加え、装置をコンパクト化できたり外乱に対してロバストになる等の効果がある。
 なお、本発明は、上述した実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 例えば、上述した第1~第4の実施形態では、対象物Aに照射した光ビームの反射光を検出する物体撮像装置11~14について説明したが、対象物Aに照射した光ビームの透過光または散乱光を検出する物体撮像装置であってもよい。
 また、上述した第1~第4の実施形態では、光送信部111、121における光源112、122として主にレーザ光を用いた物体撮像装置11~14について説明したが、時間的かつ空間的に変動させることができればレーザ光に限定されず、例えば、熱光源からの光を用いた光源、図2(c)で図示した量子縺れ光源等を採用することができる。
 また、第3および第4の実施形態では、光送信部111、121からの光ビームを分割する光ビーム分割器、並びに対象物Aおよびミラー634からの反射光を干渉させる光ビーム干渉器として、偏光ビームスプリッタ(光分割・干渉器)631を兼用する態様の物体撮像装置13、14としたが、上記光ビーム分割器および光ビーム干渉器が各別に設けられている物体撮像装置であってもよい。
 本発明は、対象物特性を、レンジ方向と共にアジマス方向の関数、かつ高S/N画像として取得することが可能な物体撮像装置を提供することができる。したがって、本発明の物体撮像装置は、例えばレンジ方向の情報に加えてアジマス方向の情報が必要とされるようなレーダやライダ等に好適に適用することができる。
 A 対象物
 11~14 物体撮像装置
 111、121 光送信部
 211 対象光検出器
 231 干渉光検出器
 311、321 参照信号取得器
 411、421、431 対象物特性算出器
 511 画像生成器
 634 ミラー

Claims (4)

  1.  対象物に向けて光ビームを発射する光送信部と、
     前記対象物からの透過光、反射光または散乱光を検出する対象光検出器と、
     前記光送信部から発射された前記光ビームの断面における光強度分布の空間的な変動周波数が、前記対象光検出器の空間分解能よりも高く、
     前記対象光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて前記光送信部から発射された前記光ビームを前記対象物に照射せずに直接検出したときの前記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、
     前記対象光検出器の出力および前記参照信号取得器の出力を用い、前記対象光検出器の空間分解能よりも高い空間分解能で前記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、
     前記対象物の特性を画像化する画像生成器とを備え、
     前記光送信部が前記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ前記光ビームの時間的な変動の間隔が前記対象物特性算出器で算出される前記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短い物体撮像装置。
  2.  対象物特性算出器は、予め設定した複数の時間差の各々に対して対象光検出器の出力または参照信号取得器の出力の一方を前記時間差だけ時間シフトしてから前記対象光検出器の出力と前記参照信号取得器の出力との間の一致を計算することにより前記対象物の特性を算出する請求項1に記載の物体撮像装置。
  3.  光送信部で発射する光ビームの時間的な変動の間隔が空間的な変動が時間変化する間隔よりも短く、かつ前記光ビームの時間方向に対する自己相関関数のメインローブの幅が前記光ビームのパルス幅よりも狭い請求項1に記載の物体撮像装置。
  4.  光ビームを発射する光送信部と、
     前記光ビームを2本の光ビームに分割し、一方を対象物に照射すると共に他方をミラーに照射する光ビーム分割器と、
     前記対象物からの透過光、反射光または散乱光と、前記ミラーからの反射光とを干渉させる光ビーム干渉器と、
     前記光ビーム干渉器により得られた干渉光を検出する干渉光検出器と、
     前記光送信部から発射された前記光ビームの断面における光強度分布の空間的な変動周波数が、前記干渉光検出器の空間分解能よりも高く、
     前記干渉光検出器の空間分解能よりも高い空間分解能を有する検出器を用いて前記光送信部から発射された前記光ビームを前記対象物に照射せずに直接検出したときの前記検出器の出力を、実測またはシミュレーションにより算出する参照信号取得器と、
     前記干渉光検出器の出力および前記参照信号取得器の出力を用い、前記干渉光検出器の空間分解能よりも高い空間分解能で前記対象物の特性をレンジ方向およびアジマス方向における位置の関数として算出する対象物特性算出器と、
     前記対象物の特性を画像化する画像生成器とを備え、
     前記光送信部が前記光ビームの断面における光強度分布を時間的かつ空間的に変動させ、かつ前記光ビームの時間的な変動の間隔が前記対象物特性算出器で算出される前記対象物の特性のアジマス方向の分解能を2倍して光速で除した値よりも短い物体撮像装置。
PCT/JP2016/062942 2016-04-25 2016-04-25 物体撮像装置 WO2017187484A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/062942 WO2017187484A1 (ja) 2016-04-25 2016-04-25 物体撮像装置
JP2018513958A JPWO2017187484A1 (ja) 2016-04-25 2016-04-25 物体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062942 WO2017187484A1 (ja) 2016-04-25 2016-04-25 物体撮像装置

Publications (1)

Publication Number Publication Date
WO2017187484A1 true WO2017187484A1 (ja) 2017-11-02

Family

ID=60161341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062942 WO2017187484A1 (ja) 2016-04-25 2016-04-25 物体撮像装置

Country Status (2)

Country Link
JP (1) JPWO2017187484A1 (ja)
WO (1) WO2017187484A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019131307A1 (ja) * 2017-12-25 2020-12-17 パイオニア株式会社 走査装置及び光検出装置
WO2020261428A1 (ja) * 2019-06-26 2020-12-30 日本電信電話株式会社 測距装置
WO2021006048A1 (ja) * 2019-07-08 2021-01-14 ソニー株式会社 信号処理装置および信号処理方法
WO2021010339A1 (ja) * 2019-07-12 2021-01-21 株式会社小糸製作所 イメージング装置およびその照明装置、車両、車両用灯具
CN113366340A (zh) * 2019-01-17 2021-09-07 株式会社小糸制作所 车载用成像装置、车辆用灯具、汽车
CN113767304A (zh) * 2019-04-22 2021-12-07 株式会社小糸制作所 成像装置、车辆用灯具、汽车、成像方法
WO2022102775A1 (ja) * 2020-11-16 2022-05-19 株式会社小糸製作所 センシング装置、車両用灯具、車両
JP7390918B2 (ja) 2020-02-10 2023-12-04 日本放送協会 3次元画像用の撮像装置および3次元画像用の撮像表示装置
US12003839B2 (en) 2019-04-22 2024-06-04 Koito Manufacturing Co., Ltd. Imaging apparatus using ghost imaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162885A (ja) * 1984-09-05 1986-03-31 Matsushita Electric Ind Co Ltd 距離速度計
US20040100637A1 (en) * 2002-11-26 2004-05-27 Twin Photon, Inc. Quantum optical coherence tomography data collection apparatus and method for processing therefor
JP2009122103A (ja) * 2007-11-12 2009-06-04 Boeing Co:The 物体を撮像する方法および物体を撮像するためのシステム
US7812303B2 (en) * 2007-12-06 2010-10-12 The United States Of America As Represented By The Secretary Of The Army Method and system for creating an image using quantum properties of light based upon spatial information from a second light beam which does not illuminate the subject
CN102495467A (zh) * 2011-11-11 2012-06-13 上海电机学院 一种利用混沌激光的时间关联特性进行成像的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162885A (ja) * 1984-09-05 1986-03-31 Matsushita Electric Ind Co Ltd 距離速度計
US20040100637A1 (en) * 2002-11-26 2004-05-27 Twin Photon, Inc. Quantum optical coherence tomography data collection apparatus and method for processing therefor
JP2009122103A (ja) * 2007-11-12 2009-06-04 Boeing Co:The 物体を撮像する方法および物体を撮像するためのシステム
US7812303B2 (en) * 2007-12-06 2010-10-12 The United States Of America As Represented By The Secretary Of The Army Method and system for creating an image using quantum properties of light based upon spatial information from a second light beam which does not illuminate the subject
CN102495467A (zh) * 2011-11-11 2012-06-13 上海电机学院 一种利用混沌激光的时间关联特性进行成像的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENJIN DENG ET AL.: "Pulse-compression ghost imaging lidar via coherent detection", ARXIV, 17 March 2016 (2016-03-17), XP080689409, Retrieved from the Internet <URL:http://arxiv.org/pdf/1603.04143v2.pdf> [retrieved on 20160711] *
JEFFREY H. SHAPIRO: "Semiclassical versus Quantum Imaging in Standoff Sensing", WORKINGGROUP PRESENTATION OF CENTER FOR EXTREME QUANTUM INFORMATION THEORY, RESEARCH LABORATORY OF ELECTRONICS AT MIT, 1 October 2007 (2007-10-01), pages 1 - 39, XP002517264 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019131307A1 (ja) * 2017-12-25 2020-12-17 パイオニア株式会社 走査装置及び光検出装置
JP2022125206A (ja) * 2017-12-25 2022-08-26 パイオニア株式会社 走査装置及び光検出装置
CN113366340A (zh) * 2019-01-17 2021-09-07 株式会社小糸制作所 车载用成像装置、车辆用灯具、汽车
US12003839B2 (en) 2019-04-22 2024-06-04 Koito Manufacturing Co., Ltd. Imaging apparatus using ghost imaging
CN113767304A (zh) * 2019-04-22 2021-12-07 株式会社小糸制作所 成像装置、车辆用灯具、汽车、成像方法
JP7201088B2 (ja) 2019-06-26 2023-01-10 日本電信電話株式会社 測距装置
JPWO2020261428A1 (ja) * 2019-06-26 2020-12-30
WO2020261428A1 (ja) * 2019-06-26 2020-12-30 日本電信電話株式会社 測距装置
WO2021006048A1 (ja) * 2019-07-08 2021-01-14 ソニー株式会社 信号処理装置および信号処理方法
WO2021010339A1 (ja) * 2019-07-12 2021-01-21 株式会社小糸製作所 イメージング装置およびその照明装置、車両、車両用灯具
JP7472136B2 (ja) 2019-07-12 2024-04-22 株式会社小糸製作所 イメージング装置およびその照明装置、車両、車両用灯具
JP7390918B2 (ja) 2020-02-10 2023-12-04 日本放送協会 3次元画像用の撮像装置および3次元画像用の撮像表示装置
WO2022102775A1 (ja) * 2020-11-16 2022-05-19 株式会社小糸製作所 センシング装置、車両用灯具、車両

Also Published As

Publication number Publication date
JPWO2017187484A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017187484A1 (ja) 物体撮像装置
JP7098706B2 (ja) Ladarシステム及び方法
US20170261612A1 (en) Optical distance measuring system and light ranging method
RU2653772C1 (ru) Система формирования широкополосного гиперспектрального изображения на основе сжатого зондирования с нерегулярной дифракционной решеткой
KR102059322B1 (ko) 동적 위상 보상을 가진 레이저 빔 투사 시스템
US20050190374A1 (en) Optical image measuring apparatus
KR101955334B1 (ko) 3차원 영상 획득 장치 및 상기 3차원 영상 획득 장치에서 깊이 정보를 추출하는 방법
US11874378B2 (en) System for coherent imaging in dynamic engagements
US20050206906A1 (en) Optical image measuring apparatus
KR20110085785A (ko) 거리 정보 추출 방법 및 상기 방법을 채용한 광학 장치
US9746547B2 (en) Method and apparatus for generating depth image
CN109520619B (zh) 基于非瑞利散斑场的关联成像光谱相机及其成像方法
CN104267407A (zh) 基于压缩采样的主动成像方法和系统
US20120105822A1 (en) Super resolution telescope
CN114095718B (zh) 单像素成像系统及方法
JP6538084B2 (ja) 多数のレーザー光源を位相整合するシステム
JP7412166B2 (ja) 撮像装置および撮像方法
JP5856440B2 (ja) 観察装置
EP3384259B1 (fr) Procede de mesure des retards relatifs entre canaux de propagation optiques en regime impulsionnel
JP2019092088A (ja) 撮像装置
CN110187498B (zh) 一种真热光关联成像系统
de Chatellus et al. Passive amplification of periodic 2D images through self-imaging
Owens Efficiency Quantification for Pulsed-source Digital Holographic Wavefront Sensing
Oparin et al. Supercontinuum based multiwavelength computational ghost imaging
Venkatraman et al. Experimental implementation of classical far-field phase-sensitive ghost imaging

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513958

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900357

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900357

Country of ref document: EP

Kind code of ref document: A1