WO2017185966A1 - 用于光伏并网发电系统的能量管理装置 - Google Patents

用于光伏并网发电系统的能量管理装置 Download PDF

Info

Publication number
WO2017185966A1
WO2017185966A1 PCT/CN2017/079878 CN2017079878W WO2017185966A1 WO 2017185966 A1 WO2017185966 A1 WO 2017185966A1 CN 2017079878 W CN2017079878 W CN 2017079878W WO 2017185966 A1 WO2017185966 A1 WO 2017185966A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
grid
converter
energy management
management device
Prior art date
Application number
PCT/CN2017/079878
Other languages
English (en)
French (fr)
Inventor
黄皓杰
蔡佳翰
Original Assignee
伊顿飞瑞慕品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿飞瑞慕品股份有限公司 filed Critical 伊顿飞瑞慕品股份有限公司
Publication of WO2017185966A1 publication Critical patent/WO2017185966A1/zh

Links

Images

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to the field of photovoltaic power generation, and in particular to an energy management device for a photovoltaic grid-connected power generation system.
  • the photovoltaic grid-connected power generation system is a power generation system that directly converts solar radiation energy into electrical energy based on the photovoltaic effect.
  • the utility model mainly comprises a photovoltaic cell and a grid-connected inverter, wherein the photovoltaic cell converts the solar energy into the direct current electric energy, and converts the direct current electric energy into the alternating current electric energy of the same frequency and the same frequency as the grid voltage, and directly supplies or feeds the alternating current load through the grid-connected inverter. Enter the grid.
  • the photovoltaic grid-connected power generation system is connected to the power grid to jointly undertake the power supply task.
  • FIG. 1 is a block diagram of a photovoltaic grid-connected power generation system in the prior art.
  • the photovoltaic cell 11 is sequentially connected to the grid through the grid-connected inverter 12 and the electricity meter 13, the photovoltaic cell 11 converts the solar energy into direct current, and the grid-connected inverter 12 inverts the direct current output from the photovoltaic cell 11 into the same frequency and in phase with the grid voltage. AC power.
  • the sunlight is sufficient, a part of the alternating current output from the grid-connected inverter 12 is supplied to the load 14, and the remaining alternating current is integrated into the grid (i.e., sold) through the electricity meter 13.
  • the grid automatically supplies some or all of the electrical energy (i.e., power) to the load 14 through the meter 13. Since the current price of electricity generated by photovoltaic power generation owners to the grid is lower than the price of electricity purchased from the grid, the difference between selling electricity and buying electricity increases the cost of electricity. If the excess power generated by the photovoltaic cell 11 can be stored for later use (rather than selling electricity first and then buying electricity), the user's electricity cost can be reduced. However, the photovoltaic grid-connected power generation system in the prior art does not have this function.
  • an energy management device for a photovoltaic grid-connected power generation system the photovoltaic grid-connected power generation system including a photovoltaic cell, a grid-connected inverter, and a connection a load of the grid-connected inverter output, the photovoltaic cell is connected to the grid through the grid-connected inverter, and the energy management device includes:
  • the rechargeable battery being connected to an input end of the grid-connected inverter through the bidirectional DC-DC converter;
  • a first power measuring device for measuring an output power of the photovoltaic cell
  • a second power measuring device for measuring power consumption of the photovoltaic grid-connected power generation system or Grid power
  • a converter controller for controlling the bidirectional DC-DC converter to manage the capacity of the rechargeable battery.
  • the converter controller is configured to control an operating mode of the bidirectional DC-DC converter according to a first power value measured by the first power measuring device and a second power value measured by the second power measuring device. .
  • the converter controller when the first power value is less than the first power threshold, the converter controller is capable of controlling the bidirectional DC-DC converter to discharge the rechargeable battery and causing the second power value to be Zero; when the first power value is greater than the second power threshold, the converter controller is capable of controlling the bidirectional DC-DC converter to charge the rechargeable battery and causing the second power value to be zero Where the first power threshold is less than the second power threshold.
  • the converter controller controls the bidirectional DC-DC converter to be inoperative when the first power value is between the first power threshold and the second power threshold.
  • the second power threshold is the power of the load connected to the output of the grid-connected inverter.
  • the energy management device further comprises battery capacity measuring means for measuring a capacity value of the rechargeable battery, wherein the first power value is less than a first power threshold and the capacity measured by the battery capacity measuring device
  • the converter controller controls the bidirectional DC-DC converter not to operate when the value is not greater than the first capacity threshold; when the first power value is greater than the second power threshold and the capacity measured by the battery capacity measuring device
  • the converter controller controls the bidirectional DC-DC converter to be inoperative when the value is not less than the second capacity threshold, wherein the first capacity threshold is less than the second capacity threshold.
  • the second capacity threshold is a rated capacity of the rechargeable battery.
  • said energy management device further comprises a switch coupled between an output of said photovoltaic cell and an input of said grid-tied inverter, wherein said converter controller controls said bi-directional DC- When the DC converter discharges the rechargeable battery, the switch is turned off.
  • the switch is connected in series between the output of the photovoltaic cell and the bidirectional DC-DC converter.
  • the energy management device further comprises a third power measuring device connected to the input end of the grid-connected inverter for measuring the discharge power of the photovoltaic grid-connected power generation system.
  • the energy management device of the present invention minimizes the purchase of electricity from the grid and reduces the cost of power consumption. And it can be used in photovoltaic grid-connected power generation systems on the market.
  • FIG. 1 is a block diagram of a photovoltaic grid-connected power generation system in the prior art.
  • FIG. 2 is a block diagram of an energy management apparatus for a photovoltaic grid-connected power generation system in accordance with a first embodiment of the present invention.
  • FIG. 3 is a graph of power provided by the photovoltaic cell of FIG. 2 in one day.
  • FIG. 4 is a block diagram of an energy management apparatus for a photovoltaic grid-connected power generation system in accordance with a second embodiment of the present invention.
  • FIG. 5 is a block diagram of an energy management apparatus for a photovoltaic grid-connected power generation system in accordance with a third embodiment of the present invention.
  • the energy management device 20 includes a first power measuring device 23 and a second power measuring device 24 that are respectively coupled to the input and output of the grid-connected inverter 12.
  • the first power measuring device 23 is used to measure the output power of the photovoltaic cell 11, and the second power measuring device 24 is used to measure the electric power (purchasing electric power) or the grid-connected power (selling electric power) of the photovoltaic grid-connected power generation system.
  • the energy management device 20 also includes a rechargeable battery 21, a bidirectional DC-DC converter 22, and a converter controller 25 that is coupled to the input of the grid-tied inverter 12 via a bidirectional DC-DC converter 22.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to be in the charging mode according to the first power value measured by the first power measuring device 23 and the second power value measured by the second power measuring device 24 (ie, to the rechargeable battery 21)
  • the charging is performed, the discharging mode (ie, discharging the rechargeable battery 21), and the standby mode (ie, not working).
  • the function of the converter controller 25 will be described in detail below in connection with the output power graph of the photovoltaic cell 11 shown in FIG. 3 in one day. For ease of understanding, it is assumed that the power of the load 14 is 5 kW and the energy conversion efficiency is 100%.
  • photovoltaic cell 11 provides 7 kilowatts of electrical energy.
  • the grid-connected inverter 12 converts 7 kilowatts of direct current supplied by the photovoltaic cells 11 into 7 kilowatts of alternating current, of which 5 kilowatts is used to supply the load 14, and the remaining 2 kilowatts are fed into the grid.
  • the converter controller 25 is The output power measured by the first power measuring device 23 (7 kW) and the grid-connected power (2 kW) measured by the second power measuring device 24 control the bidirectional DC-DC converter 22 to charge the rechargeable battery 21 such that the second The grid-connected power measured by the power measuring device 24 is reduced from 2 kW to zero.
  • the photovoltaic cell 11 supplies 7 kilowatts of electric energy in t0-t1 time, and the charging power to the rechargeable battery 21 is 2 kilowatts, so that excess 2 kilowatts of electrical energy is stored in the rechargeable battery 21.
  • the electrical energy provided by photovoltaic cell 11 is increased from 7 kilowatts to 8 kilowatts.
  • the increased 1 kW AC power is fed into the power grid, and the converter controller 25 controls the bidirectional DC according to the output power (8 kW) measured by the first power measuring device 23 and the grid-connected power (1 kW) measured by the second power measuring device 24.
  • the -DC converter 22 increases the charging power to the rechargeable battery 21 and causes the grid-connected power measured by the second power measuring device 24 to decrease from 1 kilowatt to zero.
  • the photovoltaic cell 11 provides 8 kilowatts of electrical energy during t1-t2 and a charging power of 3 kilowatts for the rechargeable battery 21.
  • the electric energy supplied from the photovoltaic cell 11 is reduced from 8 kW to 6 kW, and in the case where the charging power of the rechargeable battery 21 is 3 kW, the electric power measured by the second power measuring device 24 is 2 kW.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to reduce the number of rechargeable batteries according to the output power (6 kW) measured by the first power measuring device 23 and the electric power (2 kW) measured by the second power measuring device 24.
  • the charging power of 21 is such that the electric power measured by the second power measuring device 24 is reduced to zero.
  • the photovoltaic cell 11 supplies 6 kilowatts of electric power in t2-t3 time and 1 kilowatt of charging power to the rechargeable battery 21.
  • the electric energy supplied from the photovoltaic cell 11 is reduced from 6 kW to 5 kW, and in the case where the charging power of the rechargeable battery 21 is 1 kW, the electric power measured by the second power measuring device 24 is 1 kW.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to reduce the rechargeable battery based on the output power (5 kW) measured by the first power measuring device 23 and the electric power (1 kW) measured by the second power measuring device 24.
  • the charging power of 21 is such that the electric power measured by the second power measuring device 24 is reduced to zero.
  • the photovoltaic cell 11 provides 5 kilowatts of electrical energy during t3-t4, at which time all of the electrical energy output by the photovoltaic cell 11 is used to power the load 14.
  • the photovoltaic cell 11 supplies electric power of 0.5 kW to 5 kW, and the converter controller 25 controls the bidirectional DC-DC converter 22 according to the output power (0.5 kW to 5 kW) measured by the first power measuring device 23.
  • the photovoltaic grid-connected power generation system shown in FIG. 2 is equivalent to the photovoltaic grid-connected power generation system shown in FIG.
  • the photovoltaic cell 11 provides electric energy from 0.5 kW to 5 kW in t4-t5 time. At this time, the grid and the photovoltaic cell 11 share the power supply task, and the grid automatically supplies the load to the load 14. The required AC power.
  • the photovoltaic cell 11 After time t5, the photovoltaic cell 11 provides less than 0.5 kilowatts of electrical energy, and the second power measuring device 24 measures electrical power greater than 4.5 kilowatts.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to the rechargeable battery based on the output power ( ⁇ 0.5 kW) measured by the first power measuring device 23 and the electric power (> 4.5 kW) measured by the second power measuring device 24.
  • the discharge power of 21 is 5 kW while the electric power measured by the second power measuring device 24 is reduced to zero.
  • the photovoltaic cell 11 provides less than 0.5 kilowatts of electrical energy during t5-t6, at which point the load 14 is fully powered by the rechargeable battery 21. Of course, once the electrical energy stored in the rechargeable battery 21 is exhausted, the power supply task will be borne by the power grid.
  • the photovoltaic cell 11 supplies electric power of 0.5 kW to 5 kW, and the converter controller 25 controls the bidirectional DC-DC converter 22 according to the output power (0.5 kW to 5 kW) measured by the first power measuring device 23. Not working.
  • the photovoltaic cell 11 provides electrical energy between 0.5 kW and 5 kW in the period of t5-t6, at which time the grid and the photovoltaic cell 11 share the power supply task.
  • the power supplied by the photovoltaic cell 11 is increased to 6 kW, and in the case where the bidirectional DC-DC converter 22 is not operating, the grid-connected power measured by the second power measuring device 24 is 1 kW.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 for the rechargeable battery 21 based on the output power (6 kW) measured by the first power measuring device 23 and the grid-connected power (1 kW) measured by the second power measuring device 24.
  • the charging power is increased to 1 kW while the grid-connected power measured by the second power measuring device 24 is reduced to zero.
  • the photovoltaic cell 11 provides 6 kilowatts of electrical energy during t7-t8 and 1 kilowatt of rechargeable power to the rechargeable battery 21.
  • the electric energy supplied from the photovoltaic cell 11 is increased from 6 kW to 7 kW, and in the case where the charging power of the rechargeable battery 21 is 1 kW, the grid-connected power measured by the second power measuring device 24 is 1 kW.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 for the rechargeable battery 21 based on the output power (7 kW) measured by the first power measuring device 23 and the grid-connected power (1 kW) measured by the second power measuring device 24.
  • the charging power is increased to 2 kW while the grid-connected power measured by the second power measuring device 24 is reduced to zero.
  • the photovoltaic cell 11 provides 7 kilowatts of electrical energy during t8-t9 and 2 kilowatts of rechargeable power to the rechargeable battery 21.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to be in the discharging mode.
  • the rechargeable battery 21 is discharged and the electric power or grid-connected power measured by the second power measuring device 24 is zero.
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to be in the charging mode, charging the rechargeable battery 21 and causing the electric power or grid-connected power measured by the second power measuring device 24 to be zero.
  • a second power threshold eg, 5 kilowatts
  • the converter controller 25 controls the bidirectional DC-DC converter 22 to be in the standby mode.
  • the energy management device 20 of the present invention when solar light is sufficient, excess solar energy is stored in the rechargeable battery, and when there is substantially no solar energy, the rechargeable battery is discharged to energize the load. Minimize the purchase of electricity from the grid, reducing the cost of electricity.
  • the converter controller 25 causes the photovoltaic cell 11 and the rechargeable battery 21 not to simultaneously supply power to the load 14, the inverter controller 25 and the inverter controller for the grid-connected inverter 12 (not shown in FIG. 2)
  • the outputs are independent of each other without changing the control algorithm and control parameters of the inverter controller, and thus do not affect the function of the grid-connected inverter 12.
  • the energy management device 20 of the embodiment of the present invention can be used in any photovoltaic grid-connected power generation system having a photovoltaic cell 11 and a grid-connected inverter 12 on the market, and does not affect and change the original function of the photovoltaic grid-connected discharge system.
  • the first power threshold and the second power threshold of the present invention are not intended to be limited to 0.5 kW and 5 kW.
  • the first power threshold may be less than the load power, such as a certain percentage value of the load power, preferably 5% to 10% of the load power, and the second power threshold may be equal to or greater than Greater than) load power.
  • the first power threshold and the second power threshold may be varying values, for example, they may change based on changes in load power.
  • FIG. 4 is a block diagram of an energy management apparatus for a photovoltaic grid-connected power generation system in accordance with a second embodiment of the present invention. It is substantially the same as FIG. 2, except that the energy management device 30 further includes a switch 26 connected between the first power measuring device 23 and the input of the grid-connected inverter 12, and for measuring the capacity of the rechargeable battery 21. Value of battery capacity measuring device 27. During the discharge of the rechargeable battery 21 (for example, during the time t5-t6 of FIG. 3), the switch 26 is controlled to be turned off, thereby preventing the direct current output from the bidirectional DC-DC converter 22 from flowing back into the photovoltaic cell 11, avoiding Undesired damage to the photovoltaic cell 11 is caused.
  • the converter controller 35 determines whether or not to charge or discharge the rechargeable battery 21 based on the capacity value measured by the battery capacity measuring device 27. If the sunlight is sufficient (for example, in the time t0-t4 and t7-t9 of Fig. 3), and the capacity value measured by the battery capacity measuring device 27 is equal to the rated capacity of the rechargeable battery 21 (i.e., the rechargeable battery 21 is full)
  • the converter controller 35 controls the bidirectional DC-DC converter 22 to be inoperative, that is, stops charging the rechargeable battery 21 further. At this time, the excess power provided by the photovoltaic cell 11 will be fed into the grid. In this case, waste of electric energy and damage to the rechargeable battery 21 are prevented from being overcharged.
  • the inverter controller 35 controls the bidirectional DC-DC converter 22 to be inoperative to stop further discharging of the rechargeable battery 21, thereby avoiding damage to the rechargeable battery 21 overdischarge, at which time the load 14 is completely The grid is powered.
  • FIG. 5 is a block diagram of an energy management apparatus for a photovoltaic grid-connected power generation system in accordance with a third embodiment of the present invention. It is substantially the same as FIG. 4, except that the energy management device 40 further includes a third power measuring device 28 connected to the input of the grid-connected inverter 12 for measuring the power at the input of the grid-connected inverter 12 (ie Discharge power of photovoltaic grid-connected power generation system).
  • the converter controller 45 can predict based on the battery capacity value measured by the battery capacity measuring device 27 and the discharge power measured by the third power measuring device 28.
  • the rechargeable battery 21 also has a time to sustain discharge.
  • the first, second and third power measuring devices 23, 24, 28 in the embodiment of the present invention may be selected from a power meter or a power meter known in the market, and the battery capacity measuring device 27 may be selected from a battery capacity meter known in the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种用于光伏并网发电系统的能量管理装置(20),该光伏并网发电系统包括光伏电池(11)和并网逆变器(12),光伏电池通过该并网逆变器连接至电网,能量管理装置包括:可充电电池(21)和双向DC-DC变换器(22),该可充电电池通过该双向DC-DC变换器连接至该并网逆变器的输入端;第一功率测量装置(23),用于测量光伏电池的输出功率;第二功率测量装置(24),用于测量光伏并网发电系统的用电功率或并网功率;以及变换器控制器(25),用于控制该双向DC-DC变换器以管理该可充电电池的容量。该能量管理装置降低了用户的用电成本。

Description

用于光伏并网发电系统的能量管理装置 技术领域
本发明涉及光伏发电领域,具体涉及用于光伏并网发电系统的能量管理装置。
背景技术
光伏并网发电系统是基于光伏效应,将太阳辐射能量直接转换成电能的发电系统。其主要由光伏电池和并网逆变器组成,光伏电池将太阳能转换为直流电能,通过并网逆变器将直流电能转化为与电网电压同频同相的交流电能后直接为交流负载供电或馈入电网。光伏并网发电系统与电网相连,共同承担供电任务。
图1是现有技术中的光伏并网发电系统的方框图。光伏电池11依次通过并网逆变器12和电表13连接至电网,光伏电池11将太阳能转换为直流电,并网逆变器12将光伏电池11输出的直流电逆变成与电网电压同频、同相的交流电。当阳光充足时,并网逆变器12输出的交流电一部分供给负载14,剩余的交流电通过电表13并入电网(即卖电)。当阳光不充足时,电网自动地通过电表13向负载14提供一部分或全部电能(即买电)。由于目前光伏发电业主向电网卖电的电价低于从电网买电的电价,卖电和买电之间的差价增加了用电成本。如果能够将光伏电池11产生的多余的电能进行存储以备以后使用(而不是先卖电再买电),可以降低用户的用电成本。但现有技术中的光伏并网发电系统并不具备此功能。
发明内容
针对现有技术存在的上述技术问题,本发明的实施例提供了一种用于光伏并网发电系统的能量管理装置,所述光伏并网发电系统包括光伏电池、并网逆变器和连接在所述并网逆变器输出端的负载,所述光伏电池通过所述并网逆变器连接至电网,所述能量管理装置包括:
可充电电池和双向DC-DC变换器,所述可充电电池通过所述双向DC-DC变换器连接至所述并网逆变器的输入端;
第一功率测量装置,其用于测量所述光伏电池的输出功率;
第二功率测量装置,其用于测量所述光伏并网发电系统的用电功率或 并网功率;以及
变换器控制器,其用于控制所述双向DC-DC变换器以管理所述可充电电池的容量。
优选的,所述变换器控制器用于根据所述第一功率测量装置测量的第一功率值和所述第二功率测量装置测量的第二功率值控制所述双向DC-DC变换器的工作模式。
优选的,当所述第一功率值小于第一功率阈值时,所述变换器控制器能够控制所述双向DC-DC变换器对所述可充电电池进行放电并使得所述第二功率值为零;当所述第一功率值大于第二功率阈值时,所述变换器控制器能够控制所述双向DC-DC变换器对所述可充电电池进行充电并使得所述第二功率值为零,其中所述第一功率阈值小于第二功率阈值。
优选的,当所述第一功率值在所述第一功率阈值至所述第二功率阈值之间时,所述变换器控制器控制所述双向DC-DC变换器不工作。
优选的,所述第二功率阈值为连接在所述并网逆变器的输出端的所述负载的功率。
优选的,所述能量管理装置还包括用于测量所述可充电电池的容量值的电池容量测量装置,当所述第一功率值小于第一功率阈值、且所述电池容量测量装置测量的容量值不大于第一容量阈值时,所述变换器控制器控制所述双向DC-DC变换器不工作;当所述第一功率值大于第二功率阈值、且所述电池容量测量装置测量的容量值不小于第二容量阈值时,所述变换器控制器控制所述双向DC-DC变换器不工作,其中所述第一容量阈值小于所述第二容量阈值。
优选的,所述第二容量阈值为所述可充电电池的额定容量。
优选的,所述能量管理装置还包括连接在所述光伏电池的输出端与所述并网逆变器的输入端之间的开关,其中,当所述变换器控制器控制所述双向DC-DC变换器对所述可充电电池进行放电时,所述开关断开。
优选的,所述开关串联在所述光伏电池的输出端与所述双向DC-DC变换器之间。
优选的,所述能量管理装置还包括连接在所述并网逆变器的输入端的第三功率测量装置,其用于测量所述光伏并网发电系统的放电功率。
本发明的能量管理装置最大程度地减少了从电网买电,降低了耗电成本。且其能用于市场上光伏并网发电系统中。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的光伏并网发电系统的方框图。
图2是根据本发明第一个实施例的用于光伏并网发电系统的能量管理装置的方框图。
图3是图2中的光伏电池在一天内提供的功率曲线图。
图4是根据本发明第二个实施例的用于光伏并网发电系统的能量管理装置的方框图。
图5是根据本发明第三个实施例的用于光伏并网发电系统的能量管理装置的方框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
图2是根据本发明第一个实施例的用于光伏并网发电系统的能量管理装置的方框图。如图2所示,能量管理装置20包括与并网逆变器12的输入端和输出端分别相连的第一功率测量装置23和第二功率测量装置24。其中第一功率测量装置23用于测量光伏电池11的输出功率,第二功率测量装置24用于测量光伏并网发电系统的用电功率(买电功率)或并网功率(卖电功率)。能量管理装置20还包括可充电电池21、双向DC-DC变换器22和变换器控制器25,可充电电池21通过双向DC-DC变换器22连接至并网逆变器12的输入端。变换器控制器25根据第一功率测量装置23测量的第一功率值和第二功率测量装置24测量的第二功率值,控制双向DC-DC变换器22处于充电模式(即对可充电电池21进行充电)、放电模式(即对可充电电池21进行放电)和待机模式(即不工作)。
以下将结合图3所示的光伏电池11在一天内的输出功率曲线图详细描述变换器控制器25的功能。为了便于理解,假定负载14的功率为5千瓦,且能量的转换效率都为100%。
在t0时刻,光伏电池11提供7千瓦的电能。并网逆变器12将光伏电池11提供的7千瓦直流电转换为7千瓦的交流电,其中的5千瓦用于对负载14进行供电,其余的2千瓦馈入电网中。此时变换器控制器25根据 第一功率测量装置23测量的输出功率(7千瓦)和第二功率测量装置24测量的并网功率(2千瓦),控制双向DC-DC变换器22对可充电电池21进行充电,使得第二功率测量装置24测量的并网功率从2千瓦降低为0。光伏电池11在t0-t1时间内提供7千瓦的电能,对可充电电池21的充电功率为2千瓦,实现了将多余的2千瓦电能储存在可充电电池21中。
在t1时刻后,光伏电池11提供的电能从7千瓦增加到8千瓦。增加的1千瓦交流电馈入电网中,变换器控制器25根据第一功率测量装置23测量的输出功率(8千瓦)和第二功率测量装置24测量的并网功率(1千瓦),控制双向DC-DC变换器22增加对可充电电池21的充电功率,并使得第二功率测量装置24测量的并网功率从1千瓦减小至0。光伏电池11在t1-t2时间内提供8千瓦的电能,对可充电电池21的充电功率为3千瓦。
在t2时刻后,光伏电池11提供的电能从8千瓦减小到6千瓦,在可充电电池21的充电功率为3千瓦的情况下,第二功率测量装置24测量的用电功率为2千瓦。变换器控制器25根据第一功率测量装置23测量的输出功率(6千瓦)和第二功率测量装置24测量的用电功率(2千瓦),控制双向DC-DC变换器22减小对可充电电池21的充电功率,并使得第二功率测量装置24测量的用电功率减小至0。光伏电池11在t2-t3时间内提供6千瓦的电能,对可充电电池21的充电功率为1千瓦。
在t3时刻后,光伏电池11提供的电能从6千瓦减小到5千瓦,在可充电电池21的充电功率为1千瓦的情况下,第二功率测量装置24测量的用电功率为1千瓦。变换器控制器25根据第一功率测量装置23测量的输出功率(5千瓦)和第二功率测量装置24测量的用电功率(1千瓦),控制双向DC-DC变换器22减小对可充电电池21的充电功率,同时使得第二功率测量装置24测量的用电功率减小至0。光伏电池11在t3-t4时间内提供5千瓦的电能,此时光伏电池11输出的电能全部用于对负载14进行供电。
在t4时刻后,光伏电池11提供的电能在0.5千瓦~5千瓦,变换器控制器25根据第一功率测量装置23测量的输出功率(0.5千瓦~5千瓦),控制双向DC-DC变换器22不工作(即不给双向DC-DC变换器22提供脉宽调制信号),此时图2所示的光伏并网发电系统等效于图1所示的光伏并网发电系统。光伏电池11在t4-t5时间内提供的电能在0.5千瓦~5千瓦,此时电网和光伏电池11共同承担供电任务,电网自动地向负载14提供所 需的交流电。
在t5时刻后,光伏电池11提供的电能小于0.5千瓦,第二功率测量装置24测量的用电功率大于4.5千瓦。变换器控制器25根据第一功率测量装置23测量的输出功率(<0.5千瓦)和第二功率测量装置24测量的用电功率(>4.5千瓦),控制双向DC-DC变换器22对可充电电池21的放电功率为5千瓦,同时使得第二功率测量装置24测量的用电功率降低为0。光伏电池11在t5-t6时间内提供的电能小于0.5千瓦,此时负载14完全由可充电电池21进行供电。当然,一旦可充电电池21中存储的电能耗尽,将由电网承担供电任务。
在t6时刻后,光伏电池11提供的电能在0.5千瓦~5千瓦,变换器控制器25根据第一功率测量装置23测量的输出功率(0.5千瓦~5千瓦),控制双向DC-DC变换器22不工作。光伏电池11在t5-t6时间内提供的电能在0.5千瓦~5千瓦,此时电网和光伏电池11共同承担供电任务。
在t7时刻后,光伏电池11提供的电能增加至6千瓦,在双向DC-DC变换器22不工作情况下,第二功率测量装置24测量的并网功率为1千瓦。变换器控制器25根据第一功率测量装置23测量的输出功率(6千瓦)和第二功率测量装置24测量的并网功率(1千瓦),控制双向DC-DC变换器22对可充电电池21的充电功率增加至1千瓦,同时使得第二功率测量装置24测量的并网功率降低为0。光伏电池11在t7-t8时间内提供6千瓦的电能,对可充电电池21的充电功率为1千瓦。
在t8时刻后,光伏电池11提供的电能从6千瓦增加至7千瓦,在可充电电池21的充电功率为1千瓦的情况下,第二功率测量装置24测量的并网功率为1千瓦。变换器控制器25根据第一功率测量装置23测量的输出功率(7千瓦)和第二功率测量装置24测量的并网功率(1千瓦),控制双向DC-DC变换器22对可充电电池21的充电功率增加至2千瓦,同时使得第二功率测量装置24测量的并网功率减小至0。光伏电池11在t8-t9时间内提供7千瓦的电能,对可充电电池21的充电功率为2千瓦。
根据上述对可充电电池21的充电和放电过程可知,当光伏电池11提供的功率小于第一功率阈值(例如0.5千瓦)时,变换器控制器25控制双向DC-DC变换器22处于放电模式中,对可充电电池21进行放电并使得第二功率测量装置24测量的用电功率或并网功率为0。
当光伏电池11提供的功率大于第二功率阈值(例如5千瓦)时,变 换器控制器25控制双向DC-DC变换器22处于充电模式中,对可充电电池21进行充电并使得第二功率测量装置24测量的用电功率或并网功率为0。
当光伏电池11提供的功率在第一功率阈值至第二功率阈值之间时,变换器控制器25控制双向DC-DC变换器22处于待机模式。
采用本发明的能量管理装置20,当太阳光充足时,将多余的太阳能储存在可充电电池中,当基本没有太阳能时,可充电电池放电以对负载进行供能。最大程度地减少了从电网买电,降低了耗电成本。
另外,由于变换器控制器25使得光伏电池11和可充电电池21并不同时对负载14供电,变换器控制器25与用于并网逆变器12的逆变器控制器(图2未示出)之间相互独立,无需改变逆变器控制器的控制算法和控制参数,因而不会影响并网逆变器12的功能。本发明实施例的能量管理装置20能用于市场上任何一个具有光伏电池11和并网逆变器12的光伏并网发电系统中,且不会影响和改变光伏并网放电系统的原功能。
本发明的第一功率阈值和第二功率阈值并不意欲限定为0.5千瓦和5千瓦。在本发明的其他实施例中,第一功率阈值可以小于负载功率,例如是负载功率的某一百分比值,优选为负载功率的5%~10%,第二功率阈值可以等于或大于(例如略大于)负载功率。另外,第一功率阈值和第二功率阈值可以是变化的值,例如,它们可以基于负载功率的变化而发生改变。
图4是根据本发明第二个实施例的用于光伏并网发电系统的能量管理装置的方框图。其与图2基本相同,区别在于,能量管理装置30还包括连接在第一功率测量装置23和并网逆变器12的输入端之间的开关26,以及用于测量可充电电池21的容量值的电池容量测量装置27。在可充电电池21的放电过程中(例如在图3的t5-t6时间内),开关26被控制为断开,从而防止双向DC-DC变换器22输出的直流电回流至光伏电池11中,避免对光伏电池11造成不期望的损坏。变换器控制器35根据电池容量测量装置27测量的容量值来判断是否对可充电电池21进行充电或放电。如果太阳光充足(例如在图3的t0-t4时间内和t7-t9时间内),且电池容量测量装置27测量的容量值等于可充电电池21的额定容量(即可充电电池21已充满),变换器控制器35控制双向DC-DC变换器22不工作,即停止对可充电电池21进一步充电。此时光伏电池11提供的多余电能将馈入电网 中,避免了电能的浪费和对可充电电池21过充电造成损坏。当没有或基本没有太阳能时(例如在图3的t5-t6时间内),且电池容量测量装置27测量的数值低于预定的容量阈值(即可充电电池21基本放电完毕)或接近0(可充电电池21放电完毕),变换器控制器35控制双向DC-DC变换器22不工作以停止对可充电电池21进一步放电,避免了对可充电电池21过放电造成损坏,此时负载14完全由电网进行供电。
图5是根据本发明第三个实施例的用于光伏并网发电系统的能量管理装置的方框图。其与图4基本相同,区别在于,能量管理装置40还包括连接在并网逆变器12的输入端的第三功率测量装置28,其用于测量并网逆变器12的输入端的功率(即光伏并网发电系统的放电功率)。在可充电电池21的放电过程中(例如在t5-t6时间内),变换器控制器45根据电池容量测量装置27测量的电池容量值和第三功率测量装置28测量的放电功率,即可预测可充电电池21还可持续放电的时间。
本发明实施例中的第一、第二和第三功率测量装置23、24、28可选用市场上公知的功率计或功率表,电池容量测量装置27可选用市场上公知的电池容量计。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (10)

  1. 一种用于光伏并网发电系统的能量管理装置,所述光伏并网发电系统包括光伏电池、并网逆变器和连接在所述并网逆变器输出端的负载,所述光伏电池通过所述并网逆变器连接至电网,其特征在于,所述能量管理装置包括:
    可充电电池和双向DC-DC变换器,所述可充电电池通过所述双向DC-DC变换器连接至所述并网逆变器的输入端;
    第一功率测量装置,其用于测量所述光伏电池的输出功率;
    第二功率测量装置,其用于测量所述光伏并网发电系统的用电功率或并网功率;以及
    变换器控制器,其用于控制所述双向DC-DC变换器以管理所述可充电电池的容量。
  2. 根据权利要求1所述的能量管理装置,其特征在于,所述变换器控制器用于根据所述第一功率测量装置测量的第一功率值和所述第二功率测量装置测量的第二功率值控制所述双向DC-DC变换器的工作模式。
  3. 根据权利要求2所述的能量管理装置,其特征在于,
    当所述第一功率值小于第一功率阈值时,所述变换器控制器能够控制所述双向DC-DC变换器对所述可充电电池进行放电并使得所述第二功率值为零;
    当所述第一功率值大于第二功率阈值时,所述变换器控制器能够控制所述双向DC-DC变换器对所述可充电电池进行充电并使得所述第二功率值为零,其中所述第一功率阈值小于第二功率阈值。
  4. 根据权利要求3所述的能量管理装置,其特征在于,当所述第一功率值在所述第一功率阈值至所述第二功率阈值之间时,所述变换器控制器控制所述双向DC-DC变换器不工作。
  5. 根据权利要求3所述的能量管理装置,其特征在于,所述第二功率阈值为连接在所述并网逆变器的输出端的所述负载的功率。
  6. 根据权利要求2所述的能量管理装置,其特征在于,所述能量管理装置还包括用于测量所述可充电电池的容量值的电池容量测量装置,
    当所述第一功率值小于第一功率阈值、且所述电池容量测量装置测量的容量值不大于第一容量阈值时,所述变换器控制器控制所述双向DC-DC 变换器不工作;
    当所述第一功率值大于第二功率阈值、且所述电池容量测量装置测量的容量值不小于第二容量阈值时,所述变换器控制器控制所述双向DC-DC变换器不工作,其中所述第一容量阈值小于所述第二容量阈值。
  7. 根据权利要求6所述的能量管理装置,其特征在于,所述第二容量阈值为所述可充电电池的额定容量。
  8. 根据权利要求2至7中任一项所述的能量管理装置,其特征在于,所述能量管理装置还包括连接在所述光伏电池的输出端与所述并网逆变器的输入端之间的开关,其中,当所述变换器控制器控制所述双向DC-DC变换器对所述可充电电池进行放电时,所述开关断开。
  9. 根据权利要求8所述的能量管理装置,其特征在于,所述开关串联在所述光伏电池的输出端与所述双向DC-DC变换器之间。
  10. 根据权利要求1至7中任一项所述的能量管理装置,其特征在于,所述能量管理装置还包括连接在所述并网逆变器的输入端的第三功率测量装置,其用于测量所述光伏并网发电系统的放电功率。
PCT/CN2017/079878 2016-04-29 2017-04-10 用于光伏并网发电系统的能量管理装置 WO2017185966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610279360.9 2016-04-29
CN201610279360.9A CN107332270B (zh) 2016-04-29 2016-04-29 用于光伏并网发电系统的能量管理装置

Publications (1)

Publication Number Publication Date
WO2017185966A1 true WO2017185966A1 (zh) 2017-11-02

Family

ID=60160733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079878 WO2017185966A1 (zh) 2016-04-29 2017-04-10 用于光伏并网发电系统的能量管理装置

Country Status (2)

Country Link
CN (1) CN107332270B (zh)
WO (1) WO2017185966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108480044A (zh) * 2018-05-16 2018-09-04 哈尔滨理工大学 一种光伏发电、静电除霾两用系统
CN112366750A (zh) * 2020-10-29 2021-02-12 深圳市富兰瓦时技术有限公司 一种供电系统的控制方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611832A1 (de) * 2018-08-13 2020-02-19 FRONIUS INTERNATIONAL GmbH Photovoltaik-wechselrichter und verfahren zum betreiben eines solchen photovoltaik-wechselrichters
CN109802432A (zh) * 2019-01-04 2019-05-24 浙江联盛合众新能源有限公司 一种光伏电站防逆流控制设备及其控制方法
CN114026766A (zh) * 2020-05-22 2022-02-08 华为数字能源技术有限公司 充电控制方法、储能模块及用电设备
CN114039371B (zh) * 2021-11-04 2023-10-20 浙江艾罗网络能源技术股份有限公司 储能逆变器电池充放电控制方法与充放电控制电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949843B2 (en) * 2003-07-11 2005-09-27 Morningstar, Inc. Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
CN202712876U (zh) * 2012-06-28 2013-01-30 深圳市创益科技发展有限公司 一种太阳能光伏微网并网发电系统
CN103138637A (zh) * 2011-11-28 2013-06-05 北汽福田汽车股份有限公司 一种光伏离并网、市网及储能混合供电系统
CN104283237A (zh) * 2014-10-29 2015-01-14 阳光电源股份有限公司 光伏发电系统、风能发电系统及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230455A (ja) * 2013-05-27 2014-12-08 株式会社東芝 発電装置
CN103337868A (zh) * 2013-06-26 2013-10-02 贵州电力试验研究院 一种抑制光伏发电输出功率波动的方法及装置
CN203377609U (zh) * 2013-08-09 2014-01-01 广东易事特电源股份有限公司 一种太阳能优先的光伏并网储能不间断电源系统
CN203933038U (zh) * 2014-01-13 2014-11-05 山东大学 离网并网混合光伏发电控制系统
CN103928962A (zh) * 2014-04-24 2014-07-16 广东志成冠军集团有限公司 利用光伏能源实现节能的在线ups系统及其控制方法
US20160118846A1 (en) * 2014-10-28 2016-04-28 Bin-Juine Huang Isolated-Type Hybrid Solar Photovoltaic System and Switching Control Method
CN104538999B (zh) * 2014-12-03 2017-01-25 广州市香港科大霍英东研究院 一种光伏发电储能系统及其能量调度方法
CN104795832B (zh) * 2015-04-24 2017-10-31 深圳市盛弘电气股份有限公司 光伏电能管理方法和系统、以及电能分配控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949843B2 (en) * 2003-07-11 2005-09-27 Morningstar, Inc. Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
CN103138637A (zh) * 2011-11-28 2013-06-05 北汽福田汽车股份有限公司 一种光伏离并网、市网及储能混合供电系统
CN202712876U (zh) * 2012-06-28 2013-01-30 深圳市创益科技发展有限公司 一种太阳能光伏微网并网发电系统
CN104283237A (zh) * 2014-10-29 2015-01-14 阳光电源股份有限公司 光伏发电系统、风能发电系统及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108480044A (zh) * 2018-05-16 2018-09-04 哈尔滨理工大学 一种光伏发电、静电除霾两用系统
CN108480044B (zh) * 2018-05-16 2024-02-09 哈尔滨理工大学 一种光伏发电、静电除霾两用系统
CN112366750A (zh) * 2020-10-29 2021-02-12 深圳市富兰瓦时技术有限公司 一种供电系统的控制方法及装置

Also Published As

Publication number Publication date
CN107332270A (zh) 2017-11-07
CN107332270B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2017185966A1 (zh) 用于光伏并网发电系统的能量管理装置
CN103840487B (zh) 黑启动方法、能量管理系统和共交流母线离网型光储微网
RU2340992C2 (ru) Устройство для покрытия пиковой нагрузки
TWI497866B (zh) Charging equipment
JP5655167B2 (ja) 電力管理装置およびプログラム
WO2017159486A1 (ja) 力率改善装置、及びそれを備えた蓄電装置
JP2002369406A (ja) 系統連系形電源システム
JP5612196B2 (ja) バッテリ電源供給装置及びその電力制御方法
JP5944269B2 (ja) 電力供給システム
JPH11127546A (ja) 太陽光発電システム
CN110880759A (zh) 一种基于实时电价机制的光储微网的能量管理方法和系统
JP2014165952A (ja) 電力供給システム
KR20130017919A (ko) 비상용 전력공급 시스템
WO2021038926A1 (ja) 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
CN103904768B (zh) 供电控制方法和供电控制装置
JP2014030299A (ja) パワーコンディショナ、蓄電池、電力供給システム
JP2018098820A (ja) 電力変換システム
WO2022178839A1 (zh) 一种能源系统及充放电控制方法
JP6167438B2 (ja) 電力供給システム
KR20200070950A (ko) 비상전원 공급 기능을 가지는 에너지 저장 시스템 및 그것의 제어 방법
CN105244907B (zh) 一种即插即用的太阳能光储一体化控制系统及方法
JP2014230366A (ja) 発電装置
JP6795082B2 (ja) 直流給電システム
JP2011139557A (ja) 電力供給システム
WO2012002449A1 (ja) エネルギー管理システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788618

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17788618

Country of ref document: EP

Kind code of ref document: A1