WO2021038926A1 - 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム - Google Patents

電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム Download PDF

Info

Publication number
WO2021038926A1
WO2021038926A1 PCT/JP2020/009439 JP2020009439W WO2021038926A1 WO 2021038926 A1 WO2021038926 A1 WO 2021038926A1 JP 2020009439 W JP2020009439 W JP 2020009439W WO 2021038926 A1 WO2021038926 A1 WO 2021038926A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
value
storage battery
charging
Prior art date
Application number
PCT/JP2020/009439
Other languages
English (en)
French (fr)
Inventor
祐介 大内
小林 健二
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021038926A1 publication Critical patent/WO2021038926A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a distributed power generation system in which a power generation device such as sunlight and a storage battery are installed is known.
  • a power generation device such as sunlight and a storage battery
  • the commercial power system hereinafter, also simply referred to as a system
  • the power generated by the power generation device cannot be reversed to the system. It may be wasted.
  • the installed storage battery can be charged and utilized so as not to waste the generated power.
  • Patent Document 1 it is necessary to determine the reference power, and the value and load of the reference power corresponding to the generated power are obtained by obtaining the generated power and the required load power of the solar power generation device. From the electric power value, whether or not to charge the storage battery and the value of the electric power to be charged are calculated. Since such processing is performed, there is a problem that the processing performed by the control device becomes complicated.
  • the present invention has been made in view of the above circumstances, and in a power control device that controls charging of a storage battery, the storage battery is automatically supplied according to the power supplied without performing complicated arithmetic processing.
  • the purpose is to provide a technology capable of setting the charging power of the battery.
  • a storage battery connection unit comprising an output power switching means capable of selecting the value of the power output to the storage battery from a plurality of preset different output power values.
  • a load connection that outputs power to a load different from that of the storage battery,
  • a power input unit that receives power supply from the outside and
  • a power supply circuit that supplies the power input from the power input unit to the load connection unit and the storage battery connection unit, and It has a charging power control means for determining a value of power output to the storage battery by selecting one output power value output to the storage battery from the plurality of different output power values.
  • the "output power switching means” can be, for example, the secondary output end of the load tap changer transformer (LCC). Further, the output terminal may include a terminal at which no power is output, that is, 0 W. Further, the “load different from the storage battery” is not limited to a specific load, but may be a general load. Further, the “power input unit” may be an input terminal for self-sustaining power from a power source different from the commercial power system, or may be an input / output terminal that can be connected to the commercial power system.
  • LCC load tap changer transformer
  • switching the output power value to a higher value at predetermined time to output power means that the output power value is higher after the predetermined time elapses while maintaining the output value to the storage battery until the predetermined time elapses. It is not limited to switching to one. For example, after outputting power at a certain power value for a certain period of time, after a predetermined interval (time for stopping or reducing the power output to the storage battery), the power is higher than the power value output before the start of the interval. It also includes repeating the process of outputting power for a certain period of time with a value, sandwiching an interval, and then outputting power for a certain period of time with a power value higher than the power value output before the start of the interval. That is, the "predetermined time” in this case is the time obtained by adding the interval time to the above-mentioned fixed time.
  • the content of the first condition is set to a state in which the supplied power is insufficient (there is a sign) for the charging of the storage battery and the power supply to the load.
  • the output power for charging the storage battery can be reduced by one step, and the power can be stably supplied to the rechargeable battery and the load while minimizing the waste.
  • the first condition is that the power output to the storage battery and the load exceeds the stable supply level of the power supplied to the power input unit, and the power is supplied to the power input unit. It further has an input unit sensor that measures the voltage value and / or the current value of electric power, and the charging power control means is when the voltage value output by the input unit sensor is equal to or less than a predetermined first threshold value. , At least one of the cases where the current value output by the input unit sensor is equal to or higher than a predetermined second threshold value and the power value output by the input unit sensor is equal to or higher than a predetermined third threshold value. In some cases, it may be determined that the first condition is satisfied.
  • the load output sensor for measuring the current value of the electric power output from the load connection portion is further provided, and the charging power control means has a predetermined current value output by the load output sensor. When the threshold value of 4 or more is reached, it may be determined that the first condition is satisfied.
  • the stable supply level refers to a state in which the supplied power has a margin larger than the sum of the power output to the storage battery and the load.
  • the power generation device concerned is in a state where it does not fall below the amount of power generation.
  • the first to fourth threshold values do not prevent some or all of them from having the same value. According to such a configuration, it is possible to control the charging power to the storage battery based on the voltage value and / or the current value detected by the sensor without performing particularly complicated arithmetic processing. The stability of control can be improved.
  • the charging power setting mode includes a first charging power setting mode executed at the start of operation of the device, a second charging power setting mode executed at predetermined time intervals during operation of the device, and the like.
  • a third charging power setting mode which is executed when the power output to the storage battery and the load satisfies a predetermined second condition during the operation of the device, may be included.
  • the above-mentioned second condition may be the same as the first condition, or may be a condition having a safety margin more than the first condition. With such a configuration, it is possible to execute processing optimized according to the operating status of the device.
  • the charging power control means executes control for switching the output power value from the lowest power value to the higher power value among the plurality of different output power values in the first charging power setting mode.
  • control for switching the output power value from the power value selected when the second charging power setting mode is executed to the higher power value is executed, and the third charging power setting mode is executed. Then, after stopping the output of the electric power to the storage battery once, the control of switching the output electric power value from the lowest electric power value among the plurality of different output electric power values to the higher electric power value may be executed. ..
  • the charging power to the storage battery is automatically set when the device is started up, and even when the device is in operation, the charging power is periodically reviewed and reset as necessary.
  • the charging power to the storage battery can be reduced.
  • the charging power to the storage battery can be set automatically and efficiently from the time when the device is started up, so that even a user who does not have specialized knowledge can operate the device.
  • the charging power control means may execute a process of temporarily reducing the output power value to the storage battery between the start of one predetermined time and the start of the next predetermined time. ..
  • the storage battery system is With a storage battery A storage control device that is electrically connected to the storage battery and a load different from the storage battery and controls at least charging of electric power to the storage battery.
  • a storage battery system including an independent power supply facility that supplies power to the power storage control device from a power source different from the commercial power system.
  • the power storage control device is The connection portion with the storage battery is provided with an output power switching means capable of selecting the value of the power output to the storage battery from a plurality of preset different output power values.
  • a charging power setting mode for determining the output power value to the storage battery is executed, and at the time of execution, every predetermined time until the power output to the storage battery and the load satisfies a predetermined first condition.
  • the output power switching means switches the output power value to a higher value to output power and the first condition is satisfied, the output power value selected when the predetermined first condition is satisfied is obtained.
  • a low output power value is determined as the charging power value for the storage battery. It is characterized by that.
  • the self-sustaining power supply equipment can include renewable energy power generation devices such as solar power generation devices, fuel cells, storage batteries, and control devices thereof.
  • the first condition is that the electric power output to the storage battery and the load exceeds the stable supply level of the electric power supplied from the self-sustaining electric power supply facility.
  • the current value of the power output to the load is equal to or higher than the predetermined first threshold value, or when the power value of the power output to the load is equal to or higher than the predetermined second threshold value. When any of them is included, it may be determined that the first condition is satisfied.
  • the first condition is that the electric power output to the storage battery and the load exceeds the stable supply level of the electric power supplied from the independent electric power supply facility, and the independent electric power supply facility is the independent electric power supply facility.
  • a power conditioner including a DC / DC converter and a DC / AC inverter is included, and the power storage control device is used when the voltage value of the electric power output from the power conditioner becomes equal to or less than a predetermined third threshold value.
  • a predetermined fourth threshold value or when the electric power value of the electric power output from the power conditioner becomes equal to or higher than a predetermined fifth threshold value.
  • the deviation of the voltage value of the power output from the DC / DC converter is equal to or more than the predetermined seventh threshold value. If so, it may include any of.
  • the first to seventh threshold values referred to here do not prevent some or all of them from having the same value.
  • the charging power to the storage battery can be controlled based on the behavior (output) of the power conditioner (hereinafter, also simply referred to as the self-sustaining power power conditioner) in the self-sustaining power supply facility. Can be prevented from being overloaded and stopped.
  • the power conditioner hereinafter, also simply referred to as the self-sustaining power power conditioner
  • the charging power setting mode includes a first charging power setting mode executed at the start of operation of the device, a second charging power setting mode executed intermittently during the operation of the device, and the device.
  • a third charging power setting mode which is executed when the value output from the input unit sensor satisfies a predetermined second condition during the operation of the above, may be included.
  • the storage control device executes control for switching the output power value from the lowest power value to the higher power value among the plurality of different output power values, and the first In the second charging power setting mode, control for switching the output power value from the power value selected when the second charging power setting mode is executed to a higher power value is executed, and in the third charging power setting mode.
  • the control for switching the output electric power value from the lowest electric power value among the plurality of different output electric power values to the higher electric power value may be executed. ..
  • the power storage control device may execute a process of temporarily reducing the output power value to the storage battery between the start of one of the predetermined times and the start of the next predetermined time.
  • the power control method controls the charging power of a storage battery by using a power storage control device including an output power switching means capable of selecting an output power value from a plurality of different output power values set in advance.
  • a technique capable of automatically setting the charging power to the storage battery according to the supplied power without performing complicated arithmetic processing. can do.
  • FIG. 1 is a block diagram showing a schematic configuration of a power control device 910 according to an application example of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the storage battery system 10 according to the first embodiment.
  • FIG. 3 is a flowchart showing a flow of processing of charging power setting control performed by the power storage power conditioner according to the first embodiment.
  • FIG. 4 is a flowchart showing a processing flow of the first subroutine in the processing of the charging power setting control of the first embodiment.
  • FIG. 5 is a timing chart showing the control timing at the time of the first subroutine in the processing of the charging power setting control of the first embodiment.
  • FIG. 6 is a timing chart showing the control timing at the time of overload detection in the charging power setting control of the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a power control device 910 according to this application example, and a relationship between a storage battery 920, a load 930, and an independent power supply source 940 connected to the power control device 910.
  • the power control device 910 according to this application example corresponds to a so-called power conditioner that converts DC power into AC power and outputs it.
  • direct current is also referred to as DC (Direct Current)
  • alternating current is referred to as AC (Alternating Current)
  • power conditioner is referred to as power conditioner.
  • the storage battery 920 is a secondary battery such as a lithium ion battery, and is connected to the power control device 910 via the storage battery connection unit 912. Further, the storage battery 920 is provided with a sensor (not shown) for monitoring voltage, temperature, etc., and the output value of the sensor is transmitted to the power storage control unit 911 of the power control device 910.
  • the load 930 is a general device or the like that consumes electric power, is connected to the electric power control device 910 via the load connection unit 913, and receives electric power from the electric power control device 910.
  • various electric appliances such as air conditioners, microwave ovens, and televisions used in homes, machines such as air conditioners and lighting fixtures used in commercial and industrial facilities, and lighting equipment.
  • the self-sustaining power supply source 940 is a renewable energy power generation device such as a solar power generation device or a wind power generation device, a fuel cell, a storage battery, a power controller that converts these powers into DC / AC, and the like, via a power input unit 914. Power is supplied to the power control device 910. The electric power input to the electric power control device 910 is supplied to the storage battery 920 and the load 930.
  • the energy storage control unit 911 is, for example, a microcomputer, and has a storage medium for storing the control program and a processor that executes a control procedure according to the control program.
  • the power storage control unit 911 corresponds to the charging power control means, acquires information from various sensors provided in the device as described later, and based on the information acquired by these sensors, the storage battery connection unit. It controls each configuration of the power control device 910 including the 912.
  • the storage battery connection unit 912 is configured to include a storage battery 920 and terminals for inputting and outputting electric power. Further, the output terminal is configured to have a plurality of output connection points (hereinafter, also referred to as taps) having different output power values, and by switching the tap to be connected under the control of the storage control unit 911. ,
  • the value of the electric power output to the storage battery 920 can be switched. Specifically, for example, it can be the secondary output end of a tap changer transformer under load, and the output power value is switched by outputting a constant current to this. How to set the output power value is arbitrary, but it can be set in 250 W increments, for example, 0 W, 250 W, 500 W ... 1250 W, 1500 W, and the like.
  • the plurality of output connection points correspond to the output power switching means in the present invention.
  • the load connection unit 913 includes a terminal that outputs power to the load 930 and an ammeter (not shown). The current value measured by the ammeter is transmitted to the storage control unit 911.
  • the power input unit 914 includes a terminal for inputting power supplied from an independent power supply source 940, a voltmeter and an ammeter (not shown). The respective values measured by the voltmeter and the ammeter are transmitted to the storage control unit 911.
  • the bidirectional DC / DC converter 915 reduces the DC voltage output from the bidirectional DC / AC inverter 916 and outputs the DC voltage to the storage battery connection unit 912, and also outputs the DC voltage input (discharged) from the storage battery 920. The voltage is boosted and output to the bidirectional DC / AC inverter 916.
  • the bidirectional DC / AC inverter 916 converts the alternating current supplied from the self-sustaining power supply source 940 into direct current and outputs it to the bidirectional DC / DC converter 915, and the storage battery 920 via the bidirectional DC / DC converter 915.
  • the direct current input (discharged) from is converted into alternating current and output to the load connection unit 913.
  • the power circuit 919 is for the power transmitted between the storage battery connection unit 912, the load connection unit 913, the power input unit 914, the bidirectional DC / DC converter 915, and the bidirectional DC / AC inverter 916 in the power control device 910. It is a circuit of.
  • the power circuit corresponds to the power supply circuit in the present invention.
  • the tap After connecting the connection tap of the storage battery connection unit 912 to the tap having the lowest power value for a certain period of time (for example, 10 seconds), the tap has a higher power value (for example, a tap having a power value one step higher).
  • the connection is switched, and a tap of a power value in which the voltage value of the power supplied to the power input unit 914 drops is searched for.
  • the connection tap of the storage battery connection unit 912 is temporarily switched to a 0W tap. Then, the supply of electric power to the storage battery 920 is stopped. Then, when it can be determined from the value of the voltage (or current, power) detected by the sensor of the power input unit 914 that the self-sustaining power supply source 940 has recovered from the overloaded state, it is supplied to the power input unit 914.
  • the charging power is reviewed at any time during the operation of the power control device 910. Specifically, control is performed to switch to a tap having a power value one step higher than the power value of the currently connected tap at regular time intervals (for example, every 30 minutes), and after a predetermined time (for example, 10 seconds) has elapsed. , It is determined whether or not the voltage value of the electric power supplied to the electric power input unit 914 is lowered. Here, if the voltage value drops, the self-sustaining power supply source 940 waits for recovery from the overloaded state, controls switching to the previously connected tap, and continues using the previous power value as charging power. Drive.
  • the tap is sequentially switched to a tap with a higher power value, and when the voltage value of the power supplied to the power input unit 914 decreases, it is connected at that time and is more than the tap. Select the tap with the lower power value and continue the operation with the power value as the charging power.
  • the process of reviewing the charging power value does not necessarily have to be based on the power value of the currently connected tap, and is the same as determining the charging power by returning the connected tap to 0 W at regular intervals. May be performed.
  • the power storage control unit 911 temporarily performs the storage control unit 911.
  • the connection is switched to the 0W tap and the overload state is recovered, the same process as when the operation of the device is started is executed to reset the charging power.
  • the charging power to the storage battery is performed. Can be set automatically. Further, since the charging power to the storage battery is determined by stepwise switching the taps based on the voltage value of the electric power input to the power control device, the charging power can be determined without complicated arithmetic processing.
  • FIG. 2 is a block diagram showing a schematic configuration of the storage battery system 10 according to the present embodiment.
  • the storage battery system 10 includes a storage battery 120, a power storage power conditioner 110, a load 130, a solar cell 140, and a PV (Photovoltaic) power conditioner 141, and the power storage power conditioner 110, the load 130, and the PV power conditioner 141 , Is connected to the commercial power system 150.
  • a power storage power conditioner 110 a load 130, a solar cell 140, and a PV (Photovoltaic) power conditioner 141
  • the power storage power conditioner 110, the load 130, and the PV power conditioner 141 Is connected to the commercial power system 150.
  • the electric power generated by the solar cell 140 is supplied to the load 130 and the storage power conditioner 110 via the PV power conditioner 141, and the electric power supplied to the storage power conditioner 110 is further output to the storage battery 120 to charge the storage battery 120. Used to do. Further, when the power consumed by charging the load 130 and the storage battery 120 is small and the power generated by the solar cell 140 has a surplus, the surplus power is reverse-flowed to the commercial power system 150.
  • the insufficient electric power is supplied from the commercial power system 150 to the load 130.
  • the SOC States Of Charge
  • the storage battery 120 is charged by receiving power from the commercial power system 150.
  • the power storage power conditioner 110 includes a power storage control unit 111, a storage battery connection unit 112, a system side connection unit 113, a bidirectional DC / DC converter 115, a bidirectional DC / AC inverter 116, and a power circuit. That is, the power storage power conditioner 110 in the present embodiment is different from the power control device 910 of the application example in that it does not have the load connection unit 913 and the power input unit 914 and that it includes the system side connection unit 113.
  • the system side connection unit 113 includes a power input / output terminal, a voltmeter, and an ammeter (both not shown), and outputs power to the load 130 and the commercial power system 150 via a distribution board (not shown). Or, it receives power from PV power control 141 and commercial power system 150.
  • the power storage control unit 111 corresponds to the charging power control means in this application example, and acquires information from various sensors in the system via the power line and the communication line. Then, based on the acquired information, each configuration of the power storage power conditioner 110 including the storage battery connection portion 112 is controlled.
  • the solar cell 140 is configured so that, for example, a power generation unit having a photoelectric conversion cell is connected in a matrix to output a predetermined short-circuit current.
  • the type of the solar cell 140 is not particularly limited as long as it can be photoelectrically converted, such as a silicon-based polycrystalline solar cell, a silicon-based single crystal solar cell, a calcopyrite-based solar cell, and a perovskite-type solar cell.
  • the PV power conditioner 141 includes a PV power input unit 142, a PV power output unit 143, a PV control unit 144, a DC / DC converter 145, and a DC / AC inverter 146, and is extracted from the generated power generated by the solar cell 140. Control power.
  • the PV power input unit 142 includes a power input terminal, a voltmeter, and an ammeter (none of which are shown), and has a configuration in which the DC power output by the solar cell 140 is taken into the PV power conditioner. Further, the PV power output unit 143 is provided with a power output terminal, a voltmeter, and an ammeter (none of which are shown), and as will be described later, the power converted into alternating current is stored in the power storage power conditioner 110, the load 130, and the commercial power. Output to the power system 150.
  • the DC / DC converter 145 boosts the DC voltage of the solar cell 140, and the DC / AC inverter 146 converts the DC voltage output from the DC / DC converter 145 into AC and outputs it to the PV power output unit 143.
  • the DC voltage is converted to a single-phase three-wire sine wave output of 100V / 200V for general household use.
  • the PV control unit 144 is, for example, a microcomputer, and has a storage medium for storing the control program and a processor that executes a control procedure according to the control program.
  • the PV control unit 144 is configured to control the PV power conditioner 140, and outputs control signals for controlling these operations to, for example, the DC / DC converter 145 and the DC / AC inverter 146.
  • the PV control unit 140 may perform MPPT (Maximum Power Point Tracking) control so that the output power from the solar cell 140 is maximized.
  • MPPT Maximum Power Point Tracking
  • FIG. 3 is a flowchart showing a processing flow of charging power control of the power storage power conditioner 110 during independent operation.
  • the power storage control unit 111 of the power storage power conditioner 110 first sets the charging power at the start of the operation, that is, how much power is out of the power output from the PV power conditioner 141. Is used for charging the storage battery 120 (step S101).
  • FIG. 4 is a flowchart showing the flow of the charging power setting process at the start of operation.
  • the power storage control unit 111 first sets the connection tap of the storage battery connection unit 112 to the tap having the lowest power value (step S201). Then, it is determined whether or not a predetermined condition such as, for example, the voltage value detected from the PV power output unit 143 is decreasing or the detected current value is an overcurrent is satisfied (step S202). As a result, when the power of the power value of the connected tap is charged to the storage battery 120, it is determined whether or not the PV power conditioner 141 is overloaded.
  • step S202 If the predetermined condition is not satisfied in step S202, that is, if it is determined that the PV power conditioner 141 is not overloaded, the connection is currently made after waiting for the elapse of a predetermined time (for example, 10 seconds) (step S203). It is determined whether or not the tap is the tap having the maximum power value (step S204). Here, if it is determined that the tap has the maximum power, the process proceeds to step S209, and the charging power to the storage battery is determined to be the power value of the tap currently connected. On the other hand, if it is determined in step S204 that the tap currently connected is not the tap with the maximum power value, the electricity storage control unit 111 switches to the tap with the power value one step higher (step S205), and proceeds to step S202. Go back and repeat the subsequent processing.
  • a predetermined time for example, 10 seconds
  • step S202 when a predetermined condition is satisfied, that is, when it is determined that the PV power conditioner 141 is overloaded, the power storage control unit 111 temporarily switches the connection tap of the storage battery connection unit 112 to a 0W tap, and the storage battery 120 (Step S206). Then, the power storage control unit 111 waits for the PV power conditioner 141 to recover from the overloaded state (step S207), and taps the power value one step lower than the tap of the power value connected when the overload is determined. Is selected (step S208). Then, the power value of the selected tap is determined as the charging power to the storage battery 120 (step S209), and the subroutine of the charging power setting process at the start of operation is terminated.
  • FIG. 5 illustrates a timing chart showing the timing of the charging power setting process at the start of operation. If the tap selected in step S208 is a 0 W tap, the storage battery 120 is not charged.
  • the power storage control unit 111 is in a state where the PV power conditioner 141 is overloaded (for example, the sum of the power consumption of the load 130 and the charging power exceeds the output of the solar cell 140) even after the charging power setting at the start of operation is completed in step S101. ) Is not displayed continuously. Specifically, for example, it is determined whether or not the PV power conditioner 114 is overloaded by receiving the output signal of the voltmeter in the PV power output unit 143 and detecting the decrease in the output voltage from the PV power conditioner 141 (step). S102). Here, if it is determined that the load is not overloaded, the process proceeds to step S106.
  • the energy storage control unit 111 first determines whether or not the currently selected tap is the tap with the maximum power value (step S301). Here, if it is determined that the tap is the tap of the maximum power value, the power value is continuously determined as the charging power value, and the process is terminated (step S307).
  • step S301 if it is determined in step S301 that the tap does not have the maximum power value, a tap having a power value one step higher than the currently selected tap is selected (step S302). Then, it is determined whether or not a predetermined condition such as, for example, the voltage value detected from the PV power output unit 143 is decreasing or the detected current value is an overcurrent is satisfied (step S303). As a result, when the power of the power value of the connected tap is charged to the storage battery 120, it is determined whether or not the PV power conditioner 141 is overloaded.
  • step S303 If the predetermined condition is not satisfied in step S303, that is, if it is determined that the PV power conditioner 141 is not overloaded, the process returns to step S301 after waiting for the elapse of a predetermined time (for example, 10 seconds), and the subsequent processing is performed. repeat.
  • a predetermined time for example, 10 seconds
  • step S303 when a predetermined condition is satisfied, that is, when it is determined that the PV power conditioner 141 is overloaded, the power storage control unit 111 temporarily switches the connection tap of the storage battery connection unit 112 to a 0W tap. Charging of the storage battery 120 is stopped (step S304). Then, the power storage control unit 111 waits for the PV power conditioner 141 to recover from the overloaded state (step S305), and taps the power value one step lower than the tap of the power value connected when it is determined to be overloaded. Is selected (step S306). Then, the power value of the selected tap is determined as the charging power to the storage battery 120 (step S307), and the subroutine of the charging power adjustment process during the independent operation is terminated.
  • the electricity storage control unit 111 continuously executes the processes from step S102 to step S107 during the independent operation, and ends a series of routines when the independent operation is completed (step S108).
  • the process of step S101 in the present embodiment is in the first charging power setting mode in the present invention
  • the process of step S107 is in the second charging power setting mode in the present invention
  • the processes of steps S103 to S105 are in the present invention.
  • the third charging power setting mode corresponds to the third charging power setting mode in.
  • the PV power conditioner 141 when it is determined that the PV power conditioner 141 is overloaded, it is one step lower than the tap of the power value connected at that time.
  • the tap of the power value was to be selected, but the tap of the power value lower than that may be selected. That is, it is sufficient that the electric power having a value lower than the electric power value determined to be overloaded is selected as the output electric power value to the storage battery.
  • the surplus power is generated while stably supplying the power generated by the photovoltaic power generation facility to the load.
  • a distributed power generation system that charges the storage battery can be constructed.
  • the setting of the charging power to the storage battery is automatically executed, the user does not need to perform complicated setting processing.
  • the charging power is set by switching the taps at the connection with the storage battery based on the voltage output by the PV power conditioner, it is possible to obtain stable operation of the power storage power conditioner without the need for complicated arithmetic processing. it can.
  • the storage battery 120 in the charging power switching mode, the storage battery 120 is continuously charged and switched to a tap having a higher power value, but the output power to the storage battery is switched by a configuration / means other than the tap. You may do so.
  • the power output terminal of the storage battery connection unit 112 can be a terminal whose output power value can be switched steplessly.
  • the storage battery 120 may be charged intermittently. For example, after charging the storage battery 12 with a certain power value for a predetermined time, the storage battery 120 is charged with a power value higher than the charging power value before the interval with an interval of waiting for charging for a certain period of time. You may try to do it.
  • FIG. 8 shows the timing when such a charging power switching process is performed. In the above interval, charging of the storage battery is waited, that is, the power output is stopped, but the output power value to the storage battery may be set to a value lower than that at the start of the interval.
  • the overload of the PV power conditioner 140 is determined based on the voltage and current output from the PV power conditioner 140, but a voltmeter / ammeter and a communication circuit are appropriately arranged. By doing so, the overload of the PV power conditioner 140 may be detected based on other information. For example, it is conceivable to detect an overload based on the output voltage or output current of the solar cell, the output current to a specific load, the output voltage of the DC / DC converter in the PV power conditioner, the deviation of the output voltage, and the like.
  • system configuration of the above embodiment can also be various configurations.
  • the system configuration may be further provided with a specific load or the like connected to the power storage power conditioner 110.
  • the photovoltaic power generation system is taken as an example, but for other self-sustaining power supply facilities, for example, other renewable energy power generation devices such as wind power generation devices, fuel cells, a plurality of storage batteries, and the like. It can also be applied.
  • One aspect of the present invention is At least a power control device (910) that controls the charging of electric power to a storage battery.
  • a storage battery connection unit (912) comprising an output power switching means capable of selecting the value of the power output to the storage battery from a plurality of preset different output power values.
  • a load connection unit (913) that outputs power to a load different from that of the storage battery, and
  • a power input unit (914) that receives power supply from the outside,
  • a power supply circuit (919) that supplies the power input from the power input unit to the load connection unit and the storage battery connection unit, and It has a charging power control means (911) that determines the value of the power output to the storage battery by selecting one output power value output to the storage battery from the plurality of different output power values.
  • the charging power control means executes a charging power setting mode for determining an output power value to the storage battery, and at the time of execution, the power output to the storage battery and the load satisfies a predetermined first condition. Until, the output power switching means switches the output power value to a higher value at predetermined time intervals to output power, and when the first condition is satisfied, it is selected when the first condition is satisfied.
  • the output power value lower than the output power value is determined as the charging power value for the storage battery. It is characterized by that.
  • a storage control device (110) that is electrically connected to the storage battery and a load different from the storage battery and controls at least charging of electric power to the storage battery.
  • a storage battery system (10) having an independent power supply facility (140; 141) that supplies power to the power storage control device from a power source different from the commercial power system.
  • the power storage control device is The connection portion with the storage battery is provided with an output power switching means capable of selecting the value of the power output to the storage battery from a plurality of preset different output power values.
  • the charging power setting mode for determining the output power value to the storage battery is executed, and at the time of execution, the output power switching is performed until the power output to the storage battery and the load satisfies a predetermined first condition.
  • the output power value is switched to a higher value at predetermined time intervals to output power, and when the first condition is satisfied, the output power value selected when the predetermined first condition is satisfied is obtained.
  • a low output power value is determined as the charging power value for the storage battery. It is characterized by that.
  • Still another aspect of this invention is a method of controlling the charging power of a storage battery by using a storage control device including an output power switching means capable of selecting a value of power to be output from a plurality of different output power values set in advance.

Abstract

蓄電池へ出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備える蓄電池接続部と、外部からの電力の供給を受けつける電力入力部と、前記蓄電池へ出力する電力の値を決定する充電電力制御手段と、を有し、前記充電電力制御手段は、前記蓄電池への出力電力値を決定する充電電力設定モード実行時において、前記出力電力切り換え手段により、出力電力値を、より高いものへと切り換えて選択し、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たした場合に選択されていた出力電力値よりも、低い値の出力電力値を前記蓄電池への充電電力値として決定する電力制御装置。

Description

電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
 本発明は、電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラムに関する。
 従来から、太陽光などの発電装置と蓄電池を併設した分散型発電システムが知られている。発電装置のみを備えるシステムであれば、商用電力系統(以下、単に系統ともいう)が停電してしまうと、発電装置で発電した電力を系統へ逆潮させることができなくなるため、発電した電力が無駄になる場合がある。一方、上記のような蓄電池を備えるシステムにおいては発電した電力を無駄にしないよう、併設されている蓄電池へ充電させて活用することができる。
 しかしながら、蓄電池へ充電する電力を手動で設定する仕組みでは、刻一刻と変化する発電装置の発電可能量がわからないため、電力設定が煩雑であり、充電可能な電力を無駄にしてしまうという問題があった。
 これに対して、太陽光発電装置と、蓄電池と、その他の負荷を備えるシステムにおいて、その他の負荷に対して供給すべき要求負荷電力を求め、前記要求負荷電力が、太陽稿発電装置が供給可能な発電電力に対応する基準電力以下のときに前記蓄電池に電力を供給し、前記負荷電力が前記基準電力より大きいときに前記蓄電池に電力を供給しないように、充電電力の調整を行う、電力制御システムが提案されている(特許文献1参照)。
特開2013-183577号公報
 しかしながら、特許文献1に記載の技術によれば、基準となる電力を定める必要があるとともに、太陽光発電装置の発電電力、要求負荷電力を求めて、発電電力に対応する基準電力の値と負荷電力の値とから、蓄電池に充電するか否か及び、充電する電力の値を算出することになる。このような処理を行うため、制御装置の行う処理が複雑化してしまうという問題があった。
 本発明は、上記のような実情に鑑みてなされたものであり、蓄電池への充電を制御する電力制御装置において、複雑な演算処理を行わずに、供給される電力に応じて自動で蓄電池への充電電力を設定することができる技術を提供することを目的とする。
 少なくとも蓄電池への電力の充電を制御する電力制御装置であって、
 前記蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備える、蓄電池接続部と、
 前記蓄電池とは異なる負荷へ電力を出力する負荷接続部と、
 外部からの電力の供給を受けつける電力入力部と、
 前記電力入力部から入力された電力を前記負荷接続部及び前記蓄電池接続部へ供給する電力供給回路と、
 前記複数の異なる出力電力値から前記蓄電池に出力される一の出力電力値を選択することにより、前記蓄電池へ出力する電力の値を決定する充電電力制御手段と、を有し、
 前記充電電力制御手段は、前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、前記出力電力切り換え手段によって所定時間毎に出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該第1条件を満たした際に選択されていた出力電力値よりも低い値の出力電力値を前記蓄電池への充電電力値として決定する、
 ことを特徴とする。
 ここで、「出力電力切り換え手段」は、例えば、負荷時タップ切り換え変圧器(LTC)の2次側出力端などとすることができる。また、当該出力端には、電力が出力されない、即ち0Wの端子を含むこともできる。また、「蓄電池とは異なる負荷」とは、特定負荷に限らず、一般負荷であってもよい。また、「電力入力部」については、商用電力系統とは別の電力源からの自立電力用の入力端子であってもよいし、商用電力系統とも接続され得る入出力端子であってもよい。
 なお、「所定時間毎に出力電力値をより高い値に切り換えて電力を出力」とは、所定時間が経過するまで蓄電池への出力値を維持しつつ、所定時間経過後に出力電力値をより高いものに切り換えることに限定されない。例えば、ある電力値で一定時間電力を出力した後、所定のインターバル(蓄電池への電力出力を停止、又は低減させる時間)を挟んだ後に、インターバル開始前に出力していた電力値よりも高い電力値で一定時間電力を出力し、インターバルを挟んだ後、当該インターバル開始前に出力していた電力値よりも高い電力値で一定時間電力を出力する、という処理を繰り返すことも含む。即ち、この場合における「所定時間」とは、上記の一定時間にインターバルの時間を加えた時間となる。
 このような構成の電力制御装置によると、第1条件の内容を、供給される電力が蓄電池の充電と負荷への電力供給に対して不足(の予兆がある)状態と設定しておくことで、蓄電池への充電のための出力電力を一段階下げることができ、無駄を最小限にしつつ、安定的に充電池及び負荷へ電力を供給することができる。
 また、前記蓄電池及び前記負荷に対して出力される電力が、前記電力入力部に供給される電力の安定供給水準を超える、ことが前記第1条件であって、前記電力入力部へ供給される電力の電圧値及び/又は電流値を計測する入力部センサをさらに有しており、前記充電電力制御手段は、前記入力部センサが出力する電圧値が所定の第1の閾値以下となった場合、前記入力部センサが出力する電流値が所定の第2の閾値以上となった場合、前記入力部センサが出力する電力値が所定の第3の閾値以上となった場合、の少なくともいずれかの場合に、前記第1条件を満たしたと判定する、ものであってもよい。また、同様に、前記負荷接続部から出力される電力の電流値を計測する負荷出力センサをさらに有しており、前記充電電力制御手段は、前記負荷出力センサが出力する電流値が所定の第4の閾値以上となった場合に、前記第1条件を満たしたと判定する、ものであってもよい。
 ここで、安定供給水準とは、供給される電力が蓄電池と負荷へ出力される電力の和よりも余裕のある状態を指し、例えば発電装置から電力の供給を受ける場合には、当該発電装置の発電量を下回らない状態である。なお、上記の第1から第4の閾値は一部或いはすべてが同じ値となることを妨げない。このような構成によれば、特に複雑な演算処理を行うことなく、センサが検知する電圧値及び/又は電流値に基づいて、蓄電池への充電電力の制御を行うことが可能になるため、電力制御の安定性を高めることができる。
 また、前記充電電力設定モードには、前記装置の運転開始時に実行される第1の充電電力設定モードと、前記装置の運転中に所定時間毎に実行される第2の充電電力設定モードと、前記装置の運転中に前記蓄電池及び前記負荷に対して出力される電力が所定の第2条件を満たした場合に実行される、第3の充電電力設定モードと、が含まれていてもよい。
 なお、上記の第2条件は、第1条件と同じ条件であってもよいし、第1の条件よりもさらに安全マージンを持たせた条件であってもよい。このような構成であると、装置の稼働状況に合わせて最適化された処理を実行することができる。
 また、前記充電電力制御手段は、前記第1の充電電力設定モードでは、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、前記第2の充電電力設定モードでは、当該第2の充電電力設定モード実行時に選択されている電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、前記第3の充電電力設定モードでは、一旦前記蓄電池への電力の出力を停止した後に、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行するものであってもよい。
 このような構成であると、装置の立ち上げ時に自動で蓄電池への充電電力の設定を行い、装置が運転中である場合も定期的に充電電力が適切かを見直して必要に応じて再設定を行い、また、充電及び負荷への出力に対して安定的な電力の供給が保証できなくなってきた場合には、蓄電池への充電電力を下げるようにすることもできる。これによって、装置の立ち上げ時から自動的かつ効率的に蓄電池への充電電力を設定することができるため、専門的な知識を有さないユーザーであっても装置を運用することができる。
 また、前記充電電力制御手段は、一の前記所定時間の開始時とその次の前記所定時間の開始時との間において、前記蓄電池への出力電力値を一旦低減させる処理を実行してもよい。
 また、本発明に係る蓄電池システムは、
 蓄電池と、
 前記蓄電池及び前記蓄電池とは異なる負荷に電気的に接続され、少なくとも前記蓄電池への電力の充電を制御する蓄電制御装置と、
 前記蓄電制御装置へ、商用電力系統とは異なる電力源からの電力を供給する自立電力供給設備と、を有する蓄電池システムであって、
 前記蓄電制御装置は、
 前記蓄電池との接続部において、蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備え、
 前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、所定時間毎に前記出力電力切り換え手段によって出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該所定の第1条件を満たした際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力値として決定する、
 ことを特徴とする。
 なお、自立電力供給設備、とは太陽光発電装置などの再生可能エネルギーの発電装置、燃料電池、蓄電池、及びこれらの制御装置などを含むことができる。
 また、前記蓄電池及び前記負荷に対して出力される電力が、前記自立電力供給設備から供給される電力の安定供給水準を超える、ことが前記第1条件であって、前記蓄電制御装置は、前記負荷に対して出力される電力の電流値が所定の第1の閾値以上となった場合、前記負荷に対して出力される電力の電力値が所定の第2の閾値以上となった場合、のいずれかを含む場合に、前記第1条件を満たしたと、判定するものであってもよい。
 また、前記蓄電池及び前記負荷に対して出力される電力が、前記自立電力供給設備から供給される電力の安定供給水準を超える、ことが前記第1条件であって、前記自立電力供給設備は、DC/DCコンバータ及びDC/ACインバータを備えるパワーコンディショナを含んでおり、前記蓄電制御装置は、前記パワーコンディショナから出力される電力の電圧値が所定の第3の閾値以下となった場合、前記パワーコンディショナから出力される電力の電流値が所定の第4の閾値以上となった場合、前記パワーコンディショナから出力される電力の電力値が所定の第5の閾値以上となった場合、前記DC/DCコンバータから出力される電力の電圧値が所定の第6の閾値以下となった場合、前記DC/DCコンバータから出力される電力の電圧値の偏差が所定の第7の閾値以上となった場合、のいずれかを含むものであってもよい。
 なお、ここでいう第1から第7の閾値は一部または全てが同じ値となることを妨げない。このような構成であると、自立電力供給設備におけるパワーコンディショナ(以下、単に自立電力パワコンともいう)の挙動(出力)に基づいて蓄電池への充電電力制御を行うことができるため、自立電力パワコンが過負荷になって停止することを防止することができる。
 また、前記充電電力設定モードには、前記装置運転開始時に実行される第1の充電電力設定モードと、前記装置の運転中に断続的に実行される第2の充電電力設定モードと、前記装置の運転中に前記入力部センサから出力される値が所定の第2の条件を満たした場合に実行される、第3の充電電力設定モードと、が含まれていてもよい。
 また、前記蓄電制御装置は、前記第1の充電電力設定モードでは、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、前記第2の充電電力設定モードでは、当該第2の充電電力設定モード実行時に選択されている電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、前記第3の充電電力設定モードでは、一旦前記蓄電池への電力の出力を停止した後に、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行する、ものであってもよい。
 また、前記蓄電制御装置は、一の前記所定時間の開始時とその次の前記所定時間の開始時との間において、前記蓄電池への出力電力値を一旦低減させる処理を実行してもよい。
 また、本発明に係る電力制御方法は、出力する電力の値を予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段、を備える蓄電制御装置を用いて蓄電池の充電電力を制御する方法であって、前記複数の異なる出力電力値から、いずれかの出力電力値を選択するステップと、前記選択した電力値で、所定時間前記蓄電池に電力を供給するステップと、前記蓄電制御装置に供給される電力が所定の条件を満たすか判定するステップと、前記所定の条件を満たすと判定された場合には、当該判定された際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力として定めるステップと、を有する。
 また、本発明は、上記の方法を蓄電池の制御装置に実行させるためのプログラム、そのようなプログラムを非一時的に記録したコンピュータ読取可能な記録媒体として捉えることもできる。
 また、上記構成及び処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
 本発明によれば、蓄電池への充電を制御する電力制御装置において、複雑な演算処理を行わずに、供給される電力に応じて自動で蓄電池への充電電力を設定することができる技術を提供することができる。
図1は、本発明の適用例に係る電力制御装置910の概略構成を示すブロック図である。 図2は、実施形態1に係る蓄電池システム10の概略構成を示すブロック図である。 図3は、実施形態1に係る蓄電パワコンで行わる充電電力設定制御の処理の流れを示すフローチャートである。 図4は、実施形態1の充電電力設定制御の処理における第1のサブルーチンの処理の流れを示すフローチャートである。 図5は、実施形態1の充電電力設定制御の処理における第1のサブルーチン時の制御タイミングを示すタイミングチャートである。 図6は、実施形態1の充電電力設定制御における、過負荷検出時の制御タイミングを示すタイミングチャートである。 図7は、実施形態1の充電電力設定制御の処理における第2のサブルーチンの処理の流れを示すフローチャートである。 図8は、実施形態1の変形例の充電電力設定制御における、充電電力設定時の処理のタイミングを示すタイミングチャートである。
 以下、図面を参照して、本発明の実施形態について説明する。
 <適用例>
 (適用例の構成)
 本発明は例えば、図1に示すような電力制御装置910に適用することができる。図1は本適用例に係る電力制御装置910の概略構成、及び電力制御装置910に接続される蓄電池920、負荷930、自立電力供給源940の関係を示すブロック図である。本適用例に係る電力制御装置910は、直流電力を交流電力に変換して出力する、いわゆるパワーコンディショナに該当する。以下では、直流のことをDC(Direct Current)、交流のことをAC(Alternating Current)、パワーコンディショナのことをパワコン、とも表記する。
 電力制御装置910は、蓄電制御部911、蓄電池接続部912、負荷接続部913、電力入力部914、双方向DC/DCコンバータ915、双方向DC/ACインバータ916、電力回路919を備えている。
 蓄電池920は、例えばリチウムイオン電池などの二次電池であり、蓄電池接続部912を介して、電力制御装置910と接続される。また、蓄電池920には、図示しないが電圧、温度などを監視するセンサが設けられており、当該センサの出力値は、電力制御装置910の蓄電制御部911に送信される。
 負荷930は、電力を消費する一般的な機器等であり、負荷接続部913を介して電力制御装置910と接続され、電力制御装置910から電力の供給を受ける。具体的には、例えば家庭内で使用されるエアコン、電子レンジ、テレビ等の各種電器製品や、商工業施設で使用される空調機や照明器具などの機械、照明設備等である。
 自立電力供給源940は、太陽光発電装置、風力発電装置などの再生可能エネルギーの発電装置、燃料電池、蓄電池、及びこれらの電力をDC/AC変換するパワコンなどであり、電力入力部914を介して電力制御装置910に電力を供給する。電力制御装置910に入力された電力は蓄電池920及び負荷930に供給される。
 (電力制御装置の構成)
 蓄電制御部911は、例えば、マイクロコンピュータであり、制御プログラムを格納する記憶媒体や制御プログラムにしたがって制御手順を実行するプロセッサを有する。蓄電制御部911は、本適用例において、充電電力制御手段に該当し、後述するように装置内に設けられた各種センサから情報を取得し、これらセンサが取得した情報に基づいて、蓄電池接続部912をはじめとする電力制御装置910の各構成を制御する。
 蓄電池接続部912は、蓄電池920と電力の入出力を行う端子を含んで構成される。また、当該出力端子は、出力する電力の値が異なる複数の出力用接続点(以下、タップともいう)を備える構成となっており、蓄電制御部911の制御により、接続するタップを切り換えることで、蓄電池920に対して出力される電力の値を切り換えることができる。具体的には、例えば負荷時タップ切り換え変圧器の2次側出力端などとすることができ、これに一定の電流を出力することで、出力電力値を切り換える。出力電力値をどのように設定するかについては任意であるが、例えば0W、250W、500W・・・1250W、1500Wなどと、250W刻みで設定することができる。なお、当該複数の出力用接続点が、本発明における出力電力切り換え手段に該当する。
 負荷接続部913は、負荷930へ電力を出力する端子、及び図示しない電流計を含んで構成される。電流計によって計測された電流値は、蓄電制御部911に送信される。
 電力入力部914は、自立電力供給源940から供給される電力を入力する端子、及び、図示しない電圧計、電流計を含んで構成される。電圧計、電流計によって計測されたそれぞれの値は、蓄電制御部911に送信される。
 また、双方向DC/DCコンバータ915は、双方向DC/ACインバータ916から出力される直流電圧を減圧して蓄電池接続部912に出力し、また、蓄電池920からの入力(放電)された直流の電圧を昇圧して双方向DC/ACインバータ916に出力する。
 双方向DC/ACインバータ916は、自立電力供給源940から供給される交流を直流に変換して双方向DC/DCコンバータ915に出力し、また、双方向DC/DCコンバータ915を介して蓄電池920から入力(放電)された直流を交流に変換して負荷接続部913へ出力する。
 電力回路919は、電力制御装置910内の蓄電池接続部912、負荷接続部913、電力入力部914、双方向DC/DCコンバータ915、双方向DC/ACインバータ916間で、伝送される電力のための回路である。なお、当該電力回路が、本発明における電力供給回路に該当する。
 (充電電力制御方法)
 以上のような構成を有する電力制御装置910において、蓄電池920への充電制御を実行する処理について説明する。まず、装置の運転開始時において、自立電力供給源940からの電力供給量判定を実行し、当該供給量に対してある程度のマージンが確保できるように、蓄電池920への充電電力を決定する。
 具体的には、蓄電池接続部912の接続タップを、一番低い電力値のタップを一定時間(例えば10秒)接続した後、高い電力値のタップ(例えば、一段階高い電力値のタップ)に接続を切り換えていき、電力入力部914へ供給される電力の電圧値が低下する電力値のタップを探索する。
 電力入力部914へ供給される電力の電圧値が低下した場合には、自立電力供給源940が過負荷の状態にあると考えられるため、一旦蓄電池接続部912の接続タップを0Wのタップに切り換えて、蓄電池920への電力の供給を停止する。そして、電力入力部914のセンサによって検出される電圧(或いは電流、電力)の値から、自立電力供給源940が過負荷の状態から回復したと判断できる場合には、電力入力部914へ供給される電力の電圧値が低下した際に接続されていた電力値のタップよりも低い電力値のタップ(例えば、一段階低い電力値のタップ)を選択し、これによって蓄電池920への充電電力を決定する。
 また、上記のようにして一旦充電電力を決定した後であっても、電力制御装置910の運転中には随時、充電電力の見直しを実行する。具体的には、一定時間毎(例えば30分毎)に、現在接続されているタップの電力値よりも一段階高い電力値のタップへと切り換える制御を行い、所定時間(例えば10秒)経過後に、電力入力部914へ供給される電力の電圧値が低下するか否かを判断する。ここで、電圧値が低下すれば、自立電力供給源940の過負荷の状態からの回復を待って、従前接続されていたタップへと再度切り換える制御を行い、従前の電力値を充電電力として引き続き運転を行う。一方、電圧値が低下しなければ、さらに高い電力値のタップへと順次切り換えていき、電力入力部914へ供給される電力の電圧値が低下した場合に、その際に接続されてタップよりも低い電力値のタップを選択し、当該電力値を充電電力として運転を継続する。なお、充電電力値の見直しの処理は、必ずしも現在接続されているタップの電力値を基準にする必要はなく、一定時間毎に接続するタップを0Wに戻し、充電電力の決定を行うのと同様の処理を行うようにしてもよい。
 また、負荷930への供給の増加や、自立電力供給源940の供給電力の低下などで、運転中に自立電力供給源940が過負荷の状態になった場合には、蓄電制御部911は一旦0Wのタップへ接続を切り換え、過負荷の状態が回復した場合には、装置の運転開始時と同様の処理を実行して、充電電力の再設定を行うようにする。
 以上、説明したような電力制御装置910の構成によると、電力供給源と蓄電池とを備える構成のシステムにおいて、負荷への電力供給と蓄電池の充電を並行して行う場合に、蓄電池への充電電力の設定を自動で行うことができる。また、電力制御装置へ入力される電力の電圧値に基づいて、タップを段階的に切り換えることにより蓄電池への充電電力を決定するため、複雑な演算処理なく充電電力を決定することができる。
 <実施形態1>
 次に、本発明の実施形態の一例である蓄電池システム10について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (システム構成)
 図2を参照して、本発明の実施形態に係る蓄電池システム10の全体構成について説明する。図2は、本実施形態に係る蓄電池システム10の概略構成を示すブロック図である。図2に示すように、蓄電池システム10は、蓄電池120、蓄電パワコン110、負荷130、太陽電池140、PV(Photovoltaic)パワコン141、を含んで構成され、蓄電パワコン110、負荷130、PVパワコン141は、商用電力系統150と接続している。
 当該システムにおいて、太陽電池140が発電した電力はPVパワコン141を介して負荷130、蓄電パワコン110に供給され、蓄電パワコン110に供給された電力はさらに蓄電池120へと出力されて、蓄電池120を充電するために用いられる。また、負荷130及び、蓄電池120への充電で消費される電力が少なく、太陽電池140が発電した電力に余剰がある場合には、当該余剰電力は商用電力系統150へ逆潮流される。
 また、太陽電池140で発電される電力が、負荷130での電力の消費分に不足する場合には、商用電力系統150から負荷130に当該不足分の電力が供給される。また、夜間など電力料金が低い時間帯に、蓄電池120のSOC(States Of Charge)が十分でない場合には、商用電力系統150から電力の供給を受けて、蓄電池120が充電される。
 なお、蓄電池120、負荷130、については適用例において説明したものと同様であるため、詳細な説明は省略する。
 蓄電パワコン110は、蓄電制御部111、蓄電池接続部112、系統側接続部113、双方向DC/DCコンバータ115、双方向DC/ACインバータ116及び電力回路を備えている。即ち、本実施形態における蓄電パワコン110は適用例の電力制御装置910と比べて、負荷接続部913、電力入力部914が無い点と、系統側接続部113を備えている点で異なっている。系統側接続部113は、電力の入出力端子、及び電圧計、電流計(共に図示しない)を備えており、図示しない分電盤を介して、負荷130及び商用電力系統150へ電力を出力したり、及びPVパワコン141、商用電力系統150から電力の供給を受けたりする。
 その他の点は、適用例に係る電力制御装置と概ね同様である。即ち、蓄電制御部111は、本適用例において、充電電力制御手段に該当し、電力線、通信線を介してシステム内の各種センサから情報を取得する。そして、取得した情報に基づいて、蓄電池接続部112をはじめとする蓄電パワコン110の各構成を制御する。
 なお、蓄電池接続部112、DC/DCコンバータ115、双方向DC/ACインバータ116については詳細な説明は省略する。
 太陽電池140は、例えば、光電変換セルを有する発電部がマトリクス状に接続され、所定の短絡電流を出力するように構成される。太陽電池140は、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、カルコパイライト系太陽電池、ペロブスカイト型太陽電池等、光電変換可能なものであれば、その種類は特に制限されない。
 また、PVパワコン141は、PV電力入力部142、PV電力出力部143、PV制御部144、DC/DCコンバータ145、DC/ACインバータ146を備えており、太陽電池140が発電した発電電力から取り出す電力を制御する。
 PV電力入力部142は、電力入力端子、電圧計、電流計(いずれも図示せず)を備えており、太陽電池140が出力した直流の電力をPVパワコン内に取り込む構成である。また、PV電力出力部143は、電力出力端子、電圧計、電流計(いずれも図示せず)を備えており、後述するように交流に変換された電力を、蓄電パワコン110、負荷130、商用電力系統150へ出力する。
 DC/DCコンバータ145は太陽電池140の直流電圧を昇圧し、DC/ACインバータ146は、DC/DCコンバータ145から出力された直流電圧を交流に変換し、PV電力出力部143へと出力する。例えば、直流電圧は、一般家庭用に、単相3線式正弦波出力の100V/200Vに変換される。
 PV制御部144は、例えば、マイクロコンピュータであり、制御プログラムを格納する記憶媒体や制御プログラムに従って制御手順を実行するプロセッサを有する。PV制御部144は、PVパワコン140の制御を司る構成であり、例えば、DC/DCコンバータ145とDC/ACインバータ146に対しこれらの動作を制御するための制御信号を出力する。なお、PV制御部140は、太陽電池140からの出力電力が最大となるようMPPT(Maximum Power Point Tracking:最大電力追従)制御を行うようにしてもよい。
 (蓄電池への充電電力制御の処理)
 次に、商用電力系統150からの電力供給が停電するなど、商用電力系統150との連系が遮断された場合での自立運転時に、蓄電パワコン110が蓄電池120への充電電力を制御する処理の流れについて説明する。図3は、自立運転時の蓄電パワコン110の充電電力制御の処理の流れを示すフローチャートである。
 図3に示すように、自立運転の開始時において、蓄電パワコン110の蓄電制御部111は、まず運転開始時の充電電力設定処理、即ち、PVパワコン141から出力される電力のうちどれだけの電力を蓄電池120への充電に用いるのかを設定する処理を行う(ステップS101)。
 図4は、運転開始時の充電電力設定処理の流れを示すフローチャートである。図4に示すように、蓄電制御部111はまず、蓄電池接続部112の接続タップを、一番低い電力値のタップにする(ステップS201)。そして、例えばPV電力出力部143から検出される電圧値が低下している、或いは検出される電流値が過電流である等の所定の条件を満たすか否かを判定する(ステップS202)。これによって、接続されたタップの電力値の電力を蓄電池120に充電すると、PVパワコン141が過負荷になるか否かが判断される。
 ステップS202で、所定の条件を満たさない、即ち、PVパワコン141が過負荷でないと判断された場合には、所定時間(例えば10秒)の経過を待って(ステップS203)、現在接続されているタップが最大の電力値のタップであるか否かを判定する(ステップS204)。ここで、最大電力のタップであると判断された場合には、ステップS209に進み、蓄電池への充電電力を現在接続されているタップの電力値に決定する。一方、ステップS204で、現在接続されているタップが最大電力値のタップではないと判断された場合には、蓄電制御部111は一段階高い電力値のタップへ切り換え(ステップS205)、ステップS202に戻ってその後の処理を繰り返す。
 ステップS202において、所定の条件を満たす、即ちPVパワコン141が過負荷であると判断された場合には、蓄電制御部111は一旦蓄電池接続部112の接続タップを0Wのタップに切り換えて、蓄電池120の充電を停止する(ステップS206)。そして、蓄電制御部111はPVパワコン141の過負荷状態からの回復を待って(ステップS207)、過負荷と判断された際に接続されていた電力値のタップから、一段階低い電力値のタップを選択する(ステップS208)。そして、当該選択されたタップの電力値を蓄電池120への充電電力として決定し(ステップS209)、運転開始時の充電電力設定処理のサブルーチンを終了する。図5に、運転開始時の充電電力設定処理のタイミングを示すタイミングチャートを例示する。なお、ステップS208において選択されるタップが0Wのタップとなる場合には、蓄電池120への充電は行われない。
 蓄電制御部111は、ステップS101で運転開始時の充電電力設定を終えた後も、PVパワコン141が過負荷(例えば、負荷130の消費電力と充電電力の和が太陽電池140の出力を超える状態)になっていないかを継続して監視する。具体的には、例えば、PV電力出力部143における電圧計の出力信号を受信し、PVパワコン141からの出力電圧の低下を検知することによりPVパワコン114が過負荷か否かを判定する(ステップS102)。ここで、過負荷でないと判断された場合には、ステップS106に進む。
 一方、ステップS102においてPVパワコン141が過負荷の状態であると判断された場合には、蓄電制御部111は蓄電池接続部112のタップを0Wのタップに切り換えて、蓄電池120への充電を一旦停止する(ステップS103)。そして、PVパワコン141が過負荷の状態から回復するまで待機し、回復後に蓄電池120への充電電力の再設定処理を実行する(ステップS104、S105)。図6に、蓄電パワコン110の運転中に、PVパワコン141の過負荷を検出した際の処理のタイミングを示すタイミングチャートを例示する。なお、再設定処理の詳細は、運転開始時の充電電力設定の処理と同様であるため詳細な説明は省略する。
 また、蓄電制御部111は、自立運転中は定期的(例えば30分毎)に、太陽電池140の発電電力を最も無駄なく活用できるよう蓄電池120への充電電力が適正かを見直し、調整する処理を行う(ステップS106、ステップS107)。図7は、自立運転中に充電電力の適正化調整を実施する際の処理の流れを示すフローチャートである。
 図7に示すように、蓄電制御部111はまず、現在選択されているタップが最大電力値のタップか否かを判定する(ステップS301)。ここで、最大電力値のタップであると判断された場合には、当該電力値を引き続き充電電力値として決定し、処理を終了する(ステップS307)。
 一方、ステップS301で最大電力値のタップでないと判断された場合には、現在選択されているタップよりも一段階高い電力値のタップを選択する(ステップS302)。そして、例えばPV電力出力部143から検出される電圧値が低下している、或いは検出される電流値が過電流である等の所定の条件を満たすか否かを判定する(ステップS303)。これによって、接続されたタップの電力値の電力を蓄電池120に充電すると、PVパワコン141が過負荷になるか否かが判断される。
 ステップS303で、所定の条件を満たさない、即ち、PVパワコン141が過負荷でないと判断された場合には、所定時間(例えば10秒)の経過を待って、ステップS301に戻り、その後の処理を繰り返す。
 一方、ステップS303において、所定の条件を満たす、即ちPVパワコン141が過負荷であると判断された場合には、蓄電制御部111は一旦蓄電池接続部112の接続タップを0Wのタップに切り換えて、蓄電池120の充電を停止する(ステップS304)。そして、蓄電制御部111はPVパワコン141の過負荷状態からの回復を待って(ステップS305)、過負荷と判断された際に接続されていた電力値のタップから、一段階低い電力値のタップを選択する(ステップS306)。そして、当該選択されたタップの電力値を蓄電池120への充電電力として決定し(ステップS307)、自立運転中充電電力調整処理のサブルーチンを終了する。
 蓄電制御部111は、自立運転中はステップS102からステップS107の処理を継続的に実行し、自立運転が終了すると、一連のルーティンを終了する(ステップS108)。なお、本実施形態におけるステップS101の処理が本発明における第1の充電電力設定モードに、ステップS107の処理が本発明における第2の充電電力設定モードに、ステップS103からステップS105の処理が本発明における第3の充電電力設定モードに相当する。
 なお、上記の実施形態において、第1から第3の充電電力設定モードでは、PVパワコン141が過負荷であると判定された場合、その際に接続されていた電力値のタップから、一段階低い電力値のタップが選択されるようになっていたが、それよりもさらに低い電力値のタップが選択されるのであってもよい。即ち、過負荷であると判定された電力値よりも低い値の電力が蓄電池への出力電力値として選択されるようになっていればよい。
 以上、説明したような蓄電システムによると、商用電力系統150との連系が遮断された場合であっても、太陽光発電設備の発電電力を、負荷に安定的に供給しつつ、余剰電力がある場合には蓄電池への充電を行う分散型発電システムを構築することができる。また、蓄電池への充電電力の設定が自動で実行されるため、ユーザーが煩雑な設定処理を行う必要がない。さらに、充電電力の設定をPVパワコンの出力する電圧などに基づいて蓄電池との接続部におけるタップを切り換えることにより行うため、複雑な演算処理を必要とせず、安定した蓄電パワコンの動作を得ることができる。
 <その他>
 上記の実施形態は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明はその技術的思想の範囲内で種々の変形が可能である。例えば、上記実施形態では、充電電力切り換えモードにおいて一段階高い値のタップに切り換えて、蓄電池120の出力電力値を一段階ずつ高くしていたが、2段階以上高い値のタップに切り換えるようにしてもよい。また、上記実施形態では、PVパワコン140が過負荷になる電力値が判明した場合に、過負荷となった際に接続されていたタップの電力値よりも、一段階低い電力値のタップを選択し、蓄電池120への充電電力値を決定していたが、さらに低い電力値のタップを選択するようにしてもよい。
また、上記の実施形態では、充電電力切り換えモードでは蓄電池120への充電を継続しながらより高い電力値のタップへ切り換えていたが、蓄電池への出力電力の切り換えをタップ以外の構成・手段により行うようにしてもよい。例えば、蓄電池接続部112の電力出力端子を、無段階的に出力電力値が切り換え可能な端子とすることができる。
 また、充電電力切り換えモードにおいて、蓄電池120への充電を断続的に実行するようにしてもよい。例えば、所定時間ある電力値で蓄電池12への充電を行った後、一定時間充電を待機するインターバルを挟んで、インターバル前の充電電力値よりも高い電力値で、所定時間蓄電池120に充電を実行するようにしてもよい。図8にそのような充電電力切り換え処理を行う場合のタイミングを示す。なお、上記のインターバルでは、蓄電池への充電を待機、即ち電力出力を停止していたが、蓄電池への出力電力値をインターバル開始時よりも低い値とするのであってもよい。
 このような処理を行うことで、蓄電池120への充電電力を設定するための処理時に、PVパワコン141が過負荷の状態となる時間を短縮することができ、蓄電池120への充電電力値を決定するための処理を原因として、PVパワコン141が過負荷となって停止してしまうことを抑止することができる。
 また、上記の実施形態においては、PVパワコン140から出力される電圧、電流に基づいて、PVパワコン140の過負荷を判定する構成となっていたが、電圧計・電流計及び通信回路を適宜配置することにより、他の情報に基づいて、PVパワコン140の過負荷を検知してもよい。例えば、太陽電池の出力電圧又は出力電流、特定負荷への出力電流、PVパワコン内のDC/DCコンバータの出力電圧、出力電圧の偏差、などに基づいて、過負荷を検知することも考えられる。
 また、上記実施形態のシステム構成についても、多様な構成とすることができる。例えば、実施形態1の構成に加えて、さらに、蓄電パワコン110と接続される、特定負荷などが設けられるシステム構成であってもよい。
 また、上記の実施形態においては、太陽光発電システムを例としたが、その他の自立電力供給設備、例えば、風力発電装置などの他の再生可能エネルギーの発電装置、燃料電池、複数の蓄電池などに適用することもできる。
 また、上記の実施形態では、商用電力系統150からシステムが遮断された場合における蓄電パワコンの電力制御を例に説明したが、システムと商用電力系統150とが遮断されていない状態で同様の制御を行うことを妨げるものではない。
 本発明の一の態様は、
 少なくとも蓄電池への電力の充電を制御する電力制御装置(910)であって、
 前記蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備える、蓄電池接続部(912)と、
 前記蓄電池とは異なる負荷へ電力を出力する負荷接続部(913)と、
 外部からの電力の供給を受けつける電力入力部(914)と、
 前記電力入力部から入力された電力を前記負荷接続部及び前記蓄電池接続部へ供給する電力供給回路(919)と、
 前記複数の異なる出力電力値から前記蓄電池に出力される一の出力電力値を選択することにより、前記蓄電池へ出力する電力の値を決定する充電電力制御手段(911)と、を有し、
 前記充電電力制御手段は、前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、前記出力電力切り換え手段によって所定時間毎に出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該第1条件を満たした際に選択されていた出力電力値よりも低い値の出力電力値を前記蓄電池への充電電力値として決定する、
 ことを特徴とする。
 また、本発明の他の一の態様は、
 蓄電池(120)と、
 前記蓄電池及び前記蓄電池とは異なる負荷に電気的に接続され、少なくとも前記蓄電池への電力の充電を制御する蓄電制御装置(110)と、
 前記蓄電制御装置へ、商用電力系統とは異なる電力源からの電力を供給する自立電力供給設備(140;141)と、を有する蓄電池システム(10)であって、
 前記蓄電制御装置は、
 前記蓄電池との接続部において、蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備え、
 前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、前記出力電力切り換え手段によって所定時間毎に出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該所定の第1条件を満たした際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力値として決定する、
 ことを特徴とする。
 また、本発明のさらに他の一の態様は、
 出力する電力の値を予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段、を備える蓄電制御装置を用いて蓄電池の充電電力を制御する方法であって、
 前記複数の異なる出力電力値から、いずれかの出力電力値を選択するステップ(S201)と、
 前記選択した電力値で、所定時間前記蓄電池に電力を供給するステップ(S203)と、
 前記蓄電制御装置に供給される電力が所定の条件を満たすか判定するステップ(S202)と、
 前記所定の条件を満たすと判定された場合には、当該判定された際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力として定めるステップ(S209)と、
 を有する。
 10・・・蓄電池システム
 110・・・蓄電パワコン
 111、911・・・蓄電制御部
 112、912・・・蓄電池接続部
 113・・・系統側接続部
 115、915・・・双方向DC/DCコンバータ
 116、916・・・双方向DC/ACインバータ
 120、920・・・蓄電池
 130、930・・・負荷
 140・・・太陽電池
 141・・・PVパワコン
 142・・・PV電力入力部
 143・・・PV電力出力部
 144・・・PV制御部
 145・・・DC/DCコンバータ
 146・・・DC/ACインバータ
 150・・・商用電力系統
 910・・・電力制御装置
 913・・・負荷接続部
 914・・・電力入力部
 919・・・電力回路

Claims (14)

  1.  少なくとも蓄電池への電力の充電を制御する電力制御装置であって、
     前記蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備える、蓄電池接続部と、
     前記蓄電池とは異なる負荷へ電力を出力する負荷接続部と、
     外部からの電力の供給を受けつける電力入力部と、
     前記電力入力部から入力された電力を前記負荷接続部及び前記蓄電池接続部へ供給する電力供給回路と、
     前記複数の異なる出力電力値から前記蓄電池に出力される一の出力電力値を選択することにより、前記蓄電池へ出力する電力の値を決定する充電電力制御手段と、を有し、
     前記充電電力制御手段は、前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、前記出力電力切り換え手段によって所定時間毎に出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該第1条件を満たした際に選択されていた出力電力値よりも低い値の出力電力値を前記蓄電池への充電電力値として決定する、
     ことを特徴とする電力制御装置。
  2.  前記蓄電池及び前記負荷に対して出力される電力が、前記電力入力部に供給される電力の安定供給水準を超える、ことが前記第1条件であって、
     前記電力入力部へ供給される電力の電圧値及び/又は電流値を計測する入力部センサをさらに有しており、
     前記充電電力制御手段は、
     前記入力部センサが出力する電圧値が所定の第1の閾値以下となった場合、
     前記入力部センサが出力する電流値が所定の第2の閾値以上となった場合、
     前記入力部センサが出力する電力値が所定の第3の閾値以上となった場合、
     の少なくともいずれかの場合に、前記第1条件を満たしたと判定する、
     ことを特徴とする、請求項1に記載の電力制御措置。
  3.  前記蓄電池及び前記負荷に対して出力される電力が、前記電力入力部に供給される電力の安定供給水準を超える、ことが前記第1条件であって、
     前記負荷接続部から出力される電力の電流値を計測する負荷出力センサをさらに有しており、
     前記充電電力制御手段は、
     前記負荷出力センサが出力する電流値が所定の第4の閾値以上となった場合に、前記第1条件を満たしたと判定する、
     ことを特徴とする、請求項1に記載の電力制御装置。
  4.  前記充電電力設定モードには、
     前記電力制御装置の運転開始時に実行される第1の充電電力設定モードと、
     前記電力制御装置の運転中に所定時間毎に実行される第2の充電電力設定モードと、
     前記電力制御装置の運転中に前記蓄電池及び前記負荷に対して出力される電力が所定の第2条件を満たした場合に実行される、第3の充電電力設定モードと、が含まれる、
     ことを特徴とする、請求項1から3のいずれか一項に記載の電力制御装置。
  5.  前記充電電力制御手段は、
     前記第1の充電電力設定モードでは、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、
     前記第2の充電電力設定モードでは、当該第2の充電電力設定モード実行時に選択されている電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、
     前記第3の充電電力設定モードでは、一旦前記蓄電池への電力の出力を停止した後に、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行する、
     ことを特徴とする、請求項4に記載の電力制御装置。
  6.  前記充電電力制御手段は、一の前記所定時間の開始時とその次の前記所定時間の開始時との間において、前記蓄電池への出力電力値を一旦低減させる処理を実行する、
     ことを特徴とする、請求項1から5のいずれか一項に記載の電力制御装置。
  7.  蓄電池と、
     前記蓄電池及び前記蓄電池とは異なる負荷に電気的に接続され、少なくとも前記蓄電池への電力の充電を制御する蓄電制御装置と、
     前記蓄電制御装置へ、商用電力系統とは異なる電力源からの電力を供給する自立電力供給設備と、を有する蓄電池システムであって、
     前記蓄電制御装置は、
     前記蓄電池との接続部において、蓄電池に対して出力する電力の値を、予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段を備え、
     前記蓄電池への出力電力値を決定する充電電力設定モードを実行し、その実行時において、前記蓄電池及び前記負荷に対して出力される電力が所定の第1条件を満たすまでは、前記出力電力切り換え手段によって所定時間毎に出力電力値をより高い値に切り換えて電力を出力し、前記第1条件を満たした場合に、当該所定の第1条件を満たした際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力値として決定する、
     ことを特徴とする、蓄電池システム。
  8.  前記蓄電池及び前記負荷に対して出力される電力が、前記自立電力供給設備から供給される電力の安定供給水準を超える、ことが前記第1条件であって、
     前記蓄電制御装置は、
     前記負荷に対して出力される電力の電流値が所定の第1の閾値以上となった場合、前記負荷に対して出力される電力の電力値が所定の第2の閾値以上となった場合、のいずれかを含む場合に、前記第1条件を満たしたと、判定する
     ことを特徴とする請求項7に記載の蓄電池システム。
  9.  前記蓄電池及び前記負荷に対して出力される電力が、前記自立電力供給設備から供給される電力の安定供給水準を超える、ことが前記第1条件であって、
     前記自立電力供給設備は、DC/DCコンバータ及びDC/ACインバータを備えるパワーコンディショナを含んでおり、
     前記蓄電制御装置は、
     前記パワーコンディショナから出力される電力の電圧値が所定の第3の閾値以下となった場合、
     前記パワーコンディショナから出力される電力の電流値が所定の第4の閾値以上となった場合、
     前記パワーコンディショナから出力される電力の電力値が所定の第5の閾値以上となった場合、
     前記DC/DCコンバータから出力される電力の電圧値が所定の第6の閾値以下となった場合、
     前記DC/DCコンバータから出力される電力の電圧値の偏差が所定の第7の閾値以上となった場合、
     のいずれかを含む、
     ことを特徴とする請求項7に記載の蓄電池システム。
  10.  前記充電電力設定モードには、
     前記蓄電制御装置の運転開始時に実行される第1の充電電力設定モードと、
     前記蓄電制御装置の運転中に断続的に実行される第2の充電電力設定モードと、
     前記蓄電制御装置の運転中に前記蓄電池及び前記負荷に対して出力される電力が所定の第2の条件を満たした場合に実行される、第3の充電電力設定モードと、が含まれる、
     ことを特徴とする、請求項7から9のいずれか一項に記載の蓄電池システム。
  11.  前記蓄電制御装置は、
     前記第1の充電電力設定モードでは、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、
     前記第2の充電電力設定モードでは、当該第2の充電電力設定モード実行時に選択されている電力値から高い値の電力値へ出力電力値を切り換える制御を実行し、
     前記第3の充電電力設定モードでは、一旦前記蓄電池への電力の出力を停止した後に、前記複数の異なる出力電力値のうち最も低い電力値から高い値の電力値へ出力電力値を切り換える制御を実行する、
     ことを特徴とする請求項10に記載の蓄電池システム。
  12.  前記蓄電制御装置は、一の前記所定時間の開始時とその次の前記所定時間の開始時との間において、前記蓄電池への出力電力値を一旦低減させる処理を実行する、
     ことを特徴とする、請求項7から11のいずれか一項に記載の蓄電池システム。
  13.  出力する電力の値を予め設定される複数の異なる出力電力値から選択可能な出力電力切り換え手段、を備える蓄電制御装置を用いて蓄電池の充電電力を制御する方法であって、
     前記複数の異なる出力電力値から、いずれかの出力電力値を選択するステップと、
     前記選択した電力値で、所定時間前記蓄電池に電力を供給するステップと、
     前記蓄電制御装置に供給される電力が所定の条件を満たすか判定するステップと、
     前記所定の条件を満たすと判定された場合には、当該判定された際に選択されていた出力電力値よりも低い出力電力値を、前記蓄電池への充電電力として定めるステップと、
     を有する、蓄電池の充電電力制御方法。
  14.  請求項13に記載の各ステップを、制御端末に実行させるためのプログラム。
PCT/JP2020/009439 2019-08-27 2020-03-05 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム WO2021038926A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154987 2019-08-27
JP2019154987A JP2021035236A (ja) 2019-08-27 2019-08-27 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2021038926A1 true WO2021038926A1 (ja) 2021-03-04

Family

ID=74676232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009439 WO2021038926A1 (ja) 2019-08-27 2020-03-05 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム

Country Status (2)

Country Link
JP (2) JP2021035236A (ja)
WO (1) WO2021038926A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444550B1 (en) 2021-05-03 2022-09-13 Ekergy Energy, Inc. Multi switch inverter, personal power plant system using thereof and method to generate AC power sine wave
US11677333B2 (en) 2021-05-03 2023-06-13 Ekergy Energy, Inc. Multi switch inverter, personal power plant system using thereof and method to generate AC power sine wave

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303533A1 (en) 2021-03-05 2024-01-10 Toppan Inc. Distance image capturing device and distance image capturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050921A (ja) * 2015-08-31 2017-03-09 住友電気工業株式会社 電源装置及びその充電制御方法
JP2017184342A (ja) * 2016-03-28 2017-10-05 京セラ株式会社 蓄電装置及びパワーコンディショナ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050921A (ja) * 2015-08-31 2017-03-09 住友電気工業株式会社 電源装置及びその充電制御方法
JP2017184342A (ja) * 2016-03-28 2017-10-05 京セラ株式会社 蓄電装置及びパワーコンディショナ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444550B1 (en) 2021-05-03 2022-09-13 Ekergy Energy, Inc. Multi switch inverter, personal power plant system using thereof and method to generate AC power sine wave
US11677333B2 (en) 2021-05-03 2023-06-13 Ekergy Energy, Inc. Multi switch inverter, personal power plant system using thereof and method to generate AC power sine wave

Also Published As

Publication number Publication date
JP2024009124A (ja) 2024-01-19
JP2021035236A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5857247B2 (ja) 電力管理システム
WO2012049915A1 (ja) 電力管理システム
JP5903622B2 (ja) 電力供給システムおよび充放電用パワーコンディショナ
WO2021038926A1 (ja) 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
JP5175451B2 (ja) 電力供給システム
US9692257B2 (en) Control device, conversion device, control method, and electricity distribution system
TWI497866B (zh) Charging equipment
EP2515412A1 (en) Charge/discharge system
JPWO2012050014A1 (ja) 電力管理システム
KR20120067732A (ko) 전력 저장 시스템 및 그 제어 방법
KR20120027782A (ko) 최대 전력점 추종 장치 및 방법, 이를 이용한 계통 연계형 전력 저장 시스템의 운전 방법
JP2011250608A (ja) 太陽電池システム
JP2012147508A (ja) 直流給電システム
WO2012049955A1 (ja) 電力管理システム
JP2012088086A (ja) 電力管理システム
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
KR101436019B1 (ko) 듀얼 인버터를 구비한 독립형 태양광발전 시스템의 제어방법
JP6363412B2 (ja) パワーコンディショナ及び電力制御方法
KR101533337B1 (ko) 듀얼 인버터를 구비한 독립형 태양광발전 시스템 및 이로 구성되는 소규모 전력망의 전력을 제어하는 중앙제어시스템
US10916946B2 (en) Energy storage apparatus
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
WO2012049973A1 (ja) 電力管理システム
KR101456475B1 (ko) 듀얼 인버터를 구비한 독립형 태양광발전 시스템 및 이의 제어방법
KR101436015B1 (ko) 듀얼 인버터를 구비한 독립형 태양광발전 시스템의 제어방법
JP3242499U (ja) 電力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858611

Country of ref document: EP

Kind code of ref document: A1