WO2017185554A1 - 一种无人机 - Google Patents

一种无人机 Download PDF

Info

Publication number
WO2017185554A1
WO2017185554A1 PCT/CN2016/093082 CN2016093082W WO2017185554A1 WO 2017185554 A1 WO2017185554 A1 WO 2017185554A1 CN 2016093082 W CN2016093082 W CN 2016093082W WO 2017185554 A1 WO2017185554 A1 WO 2017185554A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
polarized antenna
cable
copper tube
drone
Prior art date
Application number
PCT/CN2016/093082
Other languages
English (en)
French (fr)
Inventor
成转鹏
李圣源
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP16900063.5A priority Critical patent/EP3407421B1/en
Publication of WO2017185554A1 publication Critical patent/WO2017185554A1/zh
Priority to US16/142,619 priority patent/US10707564B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present application relates to the field of drone technology, and in particular, to a drone.
  • the drone is a non-manned aircraft controlled by radio remote control equipment.
  • the drone is remotely controlled, since one antenna of the drone is used at the source and the other antenna is used in the remote control device.
  • the wavefront is dispersed, so that electromagnetic waves travel along multiple paths to their destination.
  • the latter of the signal scattering portion causes problems such as attenuation, pattern (steep wall effect), and intermittent acceptance (pile fence).
  • a digital communication system such as an infinite Internet, it causes a slowdown in data transmission speed and an increase in errors.
  • the Applicant has found that the prior art has the following problem: the existing drone is highly restricted in the vertical direction, that is, its flying height is limited.
  • the purpose of the present application is to provide a drone that solves the problem that the flying height of the existing drone in the vertical direction is too low.
  • an embodiment of the present application provides a drone that includes at least a first dual-polarized antenna and a second dual-polarized antenna, where the first dual-polarized antenna is disposed on the drone In the horizontal direction, the second dual polarized antenna is disposed in a vertical direction of the drone.
  • the drone includes a fuselage and a first stand and a second stand that are oppositely disposed on opposite sides of the fuselage;
  • the first dual polarized antenna is horizontally disposed in the first tripod
  • the second dual polarized antenna is vertically disposed in the second stand.
  • the drone includes a body and a first stand and a second stand oppositely disposed under the fuselage;
  • the first stand includes a first connecting frame, a second connecting frame, and a third connecting frame, the first connecting frame, the second connecting frame and the third connecting frame are sequentially connected in sequence, and the first dual polarized antenna is horizontally disposed in the second connecting frame, the second double The polarized antenna is vertically disposed in the first connecting frame or the third connecting frame.
  • the interior of the first tripod is disposed at a distance from the contour line defining the shape of the first tripod by a plurality of first limit bars to limit the first dual-polarized antenna. .
  • the first dual-polarized antenna includes a first copper tube and a first radio frequency cable;
  • One end of the first radio frequency cable is provided with a first radio frequency connector, and the other end of the first radio frequency cable is sleeved in the first copper tube;
  • One end of the first copper tube is provided with a first soldering disc, and the other end of the first radio frequency cable is provided with a second soldering disc; the core of the first radio frequency cable passes through one end of the first copper tube And connecting the core wire of the first RF cable and the first copper tube by welding between the first solder pad and the second solder pad.
  • the first dual-polarized antenna further includes a first heat shrinkable sleeve, and the first copper tube and the first RF cable are sleeved in the first heat shrinkable sleeve.
  • the diameter of the core of the first RF cable is 1.37 mm.
  • the interior of the second tripod is disposed at a distance from the contour defining the shape of the second tripod by a plurality of second limit bars to limit the second dual-polarized antenna. .
  • the second dual-polarized antenna includes a second copper tube and a second radio frequency cable;
  • One end of the second RF cable is disposed with a second RF connector, and the other end of the second RF cable is sleeved in the second copper tube;
  • One end of the second copper tube is provided with a third soldering disc, and the other end of the second RF cable is provided with a fourth soldering disc; the core of the second RF cable passes through one end of the second copper tube And connecting the core wire of the second RF cable and the first copper tube by welding between the third soldering pad and the fourth soldering pad.
  • the second dual-polarized antenna further includes a second heat shrinkable sleeve, and the second copper tube and the second RF cable are both sleeved in the second heat shrinkable sleeve.
  • At least one second double is disposed in a direction perpendicular to the horizontal plane by providing at least one first dual-polarized antenna in a direction parallel to the horizontal plane.
  • Polarized antenna With the antenna designed by this structure, the drone of this embodiment enables the relatively weak signal in the direction of vertical polarization to be filled with a strong electromagnetic signal in the horizontal polarization direction, thereby extending the drone in the vertical direction. The height of the image in the direction.
  • FIG. 1 is a schematic structural diagram of a drone provided by an embodiment of the present application.
  • FIG. 2 is a schematic perspective structural view of a first stand provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first dual-polarized antenna provided in a first leg according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a second dual-polarized antenna provided in a second leg according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a first dual-polarized antenna hidden heat shrinkable sleeve provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a first dual-polarized antenna provided with a heat shrinkable sleeve after being provided in an embodiment of the present application;
  • FIG. 7 is a schematic structural view of a second dual-polarized antenna hidden heat shrinkable sleeve provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second dual-polarized antenna provided with a heat shrinkable sleeve after being provided in an embodiment of the present application.
  • the unmanned aerial vehicle of this embodiment includes an unmanned fixed wing aircraft, an unmanned vertical take-off and landing machine, an unmanned multi-rotor aircraft, and an unmanned parachute wing machine.
  • UAVs can also better include unmanned airships and unmanned helicopters.
  • the drone of the present embodiment may be constituted only by a rotor, a power generating body, and a body that receives or transmits a control signal, or may be constituted by a rotor, a power generating body, and a body or a stand that receives or transmits a control signal.
  • the drone of the embodiment is provided with at least one first dual-polarized antenna.
  • the drone of the embodiment further has at least one second dual-polarized antenna.
  • the first dual-polarized antenna and the second dual-polarized antenna are not specifically limited to the setting position of the drone, as long as the position of the first dual-polarized antenna is in the horizontal direction of the drone, and second The dual-polarized antenna is available in the vertical direction of the drone.
  • the first dual-polarized antenna and the second dual-polarized antenna may be disposed in the body of the drone, and may be disposed on the device attached to the drone for setting the dual-polarized antenna, or may be set in use. On other flying equipment of the auxiliary drone.
  • the flying machine of the present embodiment has a flying height that exceeds the vertical flying height of the vertically polarized state of the antenna during flight in the vertical direction.
  • the number of the first dual-polarized antenna and the second dual-polarized antenna provided by the drone is not limited to a single one, and the designer can set according to the size, performance requirements, and work purpose and environment of the drone.
  • a plurality of first dual polarized antennas and a second dual polarized antenna is set according to the size, performance requirements, and work purpose and environment of the drone.
  • Setting a plurality of first dual-polarized antennas and a second dual-polarized antenna helps to improve the horizontal flying of the drone Line distance and vertical flight height.
  • FIG. 1 is a schematic structural diagram of a drone provided in Embodiment 1 of the present application.
  • the drone of this embodiment is a quadrotor drone that operates in a MIMO mode.
  • a MIMO antenna represents multiple input multiple output, typically used for IEEE 802.11n, but can also be used with other 802.11 technologies.
  • MIMO technology can be roughly divided into two categories: transmit/receive diversity and spatial multiplexing.
  • a MIMO antenna is sometimes referred to as spatially diverse because it uses multiple spatial channels to transmit and receive data, and MIMO technology can increase channel capacity. Therefore, the channel and capacity of the drone receiving or transmitting signals of the embodiment are large, which is advantageous for improving the flying height of the drone and facilitating control of the drone.
  • the drone includes a body 10, a first stand 11 and a second stand 12, the first stand 11 is disposed on the first side 10A of the body 10, and the second stand 12 is disposed on the second side of the body 10. Side 10B.
  • FIG. 2 is a perspective structural view of a first tripod according to Embodiment 1 of the present application.
  • the first stand 11 includes three connecting frames.
  • one end of the first connecting frame 111 is connected to the body 10
  • one end of the third connecting frame 113 is The other end of the first connecting frame 111 is connected to one end of the second connecting frame 112, and the other end of the second connecting frame 112 is connected to the other end of the third connecting frame 113.
  • Each connector is made of a highly hard material.
  • each of the connecting brackets is an integrally connected, and the first leg is formed by one-time die-casting each of the connecting brackets.
  • the use of an integrated connection helps to improve the stability of the drone when it hits the ground.
  • each of the connecting brackets herein may also be a separate connection, and is not limited to an integrated connection.
  • the second leg of the embodiment includes a fourth connecting frame, a fifth connecting frame and a sixth connecting frame, and the fourth connecting frame, the fifth connecting frame and the sixth connecting frame are sequentially connected in sequence.
  • the overall structure of the second stand and the first stand are the same, and will not be repeated here.
  • FIG. 3 is a schematic structural diagram of a first dual-polarized antenna provided in a first tripod according to Embodiment 1 of the present application
  • FIG. 4 is a second double provided in Embodiment 1 of the present application.
  • the first dual-polarized antenna 31 of the present embodiment is disposed in the first stand 11 in a direction parallel to a horizontal plane
  • the second dual-polarization Antenna 32 is in the water
  • the second leg 12 is disposed in a direction perpendicular to the plane.
  • the dual-polarized antennas are respectively disposed in the first stand 11 or the second stand 12, on the one hand, the space of the stand can be fully utilized, and on the other hand, it can avoid being caused by being disposed in the fuselage.
  • the appearance design of the fuselage is not aesthetically pleasing.
  • the body 10 includes a signal receiving circuit and a signal transmitting circuit.
  • Each of the dual polarized antennas is electrically connected to the signal receiving circuit and the signal transmitting circuit, respectively.
  • the signal receiving circuit receives the signal fed back by the antenna and processes the signal, and the signal transmitting circuit transmits the signal through the antenna.
  • the interior of the first stand 11 of the present embodiment is provided with a plurality of first limit bars 114 at a certain distance along a contour line defining the shape of the first stand 11.
  • the first limit bar 114 limits the first dual-polarized antenna 31 to prevent the first stand 11 from being generated during the flight of the drone. A problem of shaking the first dual-polarized antenna 31 occurs.
  • FIG. 5 is a schematic structural diagram of a first dual-polarized antenna hidden heat shrinkable sleeve provided by an embodiment of the present application
  • FIG. 6 is a first dual-polarized antenna provided by an embodiment of the present application. Schematic diagram of the structure after the heat shrinkable sleeve is placed.
  • the first dual-polarized antenna 31 includes a first copper tube 311, a first RF cable 312, and a first heat shrink sleeve 313.
  • One end 312A of the first RF cable 312 is disposed first.
  • the first end of the first copper tube 311 is disposed in the first copper tube 311.
  • the first end 311A of the first copper tube 311 is provided with a first soldering disc (not shown), and the first radio frequency cable is disposed.
  • the other end 312B of the 312 is provided with a second solder pad (not shown).
  • the first RF cable 312 of this embodiment includes a core wire 3121 and an outer shield layer encasing the core wire.
  • the diameter of the core wire 3121 of the first RF cable 312 of the present embodiment is 1.37 mm.
  • the core wire 3121 of the first RF cable 312 passes through one end 311A of the first copper tube 311, and a weld 50 is formed by welding between the first solder pad and the second solder pad. The welding here connects the core wire 3121 of the first RF cable 312 with the first copper tube 311.
  • the first RF connector 314 of this embodiment uses an MMCX radio frequency connector.
  • the first RF connector 314 herein can also adopt other RF connectors.
  • the first copper tube 311 and the first RF cable 312 of the embodiment are sleeved in the first heat shrinkable sleeve 313.
  • the first heat shrinkable sleeve 313 is for protecting the first dual polarized antenna 31, preventing the drone from damaging the first dual polarized antenna 31 due to shaking during flight.
  • the interior of the second stand 12 of the present embodiment is provided with a plurality of second limit bars 121 at a certain distance along a contour line defining the shape of the second stand 12, and the second dual-polarized antenna is disposed.
  • the second limit bar 121 limits the second dual-polarized antenna 32 to prevent the second stand 12 from swaying and making the second double pole during the flight. The problem of moving the antenna 32 occurs.
  • FIG. 7 is a schematic structural diagram of a second dual-polarized antenna hidden heat shrinkable sleeve provided by an embodiment of the present application
  • FIG. 8 is a second dual-polarized antenna provided by an embodiment of the present application. Schematic diagram of the structure after the heat shrinkable sleeve is placed.
  • the second dual-polarized antenna 32 includes a second copper tube 321, a second RF cable 322, and a second heat shrink sleeve 323.
  • the second end of the second RF cable 322 is provided with a second end 322A.
  • the RF connector 324 is disposed, and the other end 322B of the second RF cable 322 is sleeved in the second copper tube 321 .
  • One end 321A of the second copper tube 321 is provided with a third soldering disc (not shown), and the second RF cable is disposed.
  • the other end 322B of the 322 is provided with a fourth soldering pad (not shown).
  • the second RF cable 322 of the present embodiment includes a core wire 3221 and an outer shield layer encasing the core wire.
  • the diameter of the core wire 3221 of the second RF cable 322 of the present embodiment is 1.37 mm.
  • the core wire 3221 of the second RF cable 322 passes through the one end 321A of the second copper tube 321, and is welded by the solder between the third solder pad and the fourth solder pad. The welding here connects the core wire 3221 of the second RF cable 322 and the second copper tube 321 .
  • the second RF connector 324 of this embodiment uses an MMCX RF connector.
  • the second RF connector 324 herein can also use other RF connectors.
  • the second copper tube 321 and the second RF cable 322 of the embodiment are sleeved in the second heat shrinkable sleeve 323.
  • the second heat shrinkable sleeve 323 serves to protect the second dual polarized antenna 32 from damage to the second dual polarized antenna 32 due to sloshing during flight.
  • the first dual-polarized antenna 31 and the second dual-polarized antenna 32 of the embodiment adopt a coaxial antenna type, and have the characteristics of small volume, light weight, simple structure, low cost, and easy integration.
  • the first dual-polarized antenna 31 is horizontally disposed in the second connecting frame 112 of the first stand 11, and the second dual-polarized antenna 32 is vertical.
  • the first connecting frame 111 or the third connecting frame 113 of the first stand 11 is disposed.
  • first dual-polarized antenna 31 is horizontally disposed in the fifth connecting frame of the second leg, and the second dual-polarized antenna 31 is vertically disposed in the second frame.
  • the fourth or sixth connecting frame of the tripod helps to improve the horizontal flight distance and vertical flight height of the drone; on the other hand, it can save design space.

Abstract

本申请涉及无人机技术领域,尤其涉及一种无人机。该无人机至少包括第一双极化天线和第二双极化天线,所述第一双极化天线设置于所述无人机的水平方向上,所述第二双极化天线设置于所述无人机的竖直方向上。采用此结构设计的天线,本申请的无人机使在竖直极化的方向上,相对较弱的信号得到水平极化方向的强电磁信号的填补,从而使无人机延长在竖直方向上的图传高度。

Description

一种无人机 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机。
背景技术
无人机是通过无线电遥控设备进行控制的不载人飞机。远程控制无人机时,由于无人机的一根天线在源头使用,另一个天线在遥控设备中使用。在某些情况下,这样的设计产生了多径效应的问题。当一个电磁场遇到障碍物如山峰,峡谷,建筑物,以及设施线等时,波阵面被分散,从而电磁波沿着多条路径到达目的地。信号散射部分的后到者引起了如衰减、花样(陡壁效应),以及间歇接受(尖桩篱栅)等问题。在无限互联网等数字通信系统中,它会造成数据传输速度的减慢和错误的增加。
在实现本申请的过程中,申请人发现现有技术存在以下问题:现有无人机在竖直方向上图传高度受限制,即其飞行高度受到限制。
发明内容
为了克服上述技术问题,本申请目的旨在提供一种无人机,其解决了现有无人机在竖直方向上的飞行高度过低的问题。
为解决上述技术问题,本申请实施例提供一种无人机,其至少包括第一双极化天线和第二双极化天线,所述第一双极化天线设置于所述无人机的水平方向上,所述第二双极化天线设置于所述无人机的竖直方向上。
可选地,所述无人机包括机身以及相对设置于所述机身两侧的第一脚架和第二脚架;
所述第一双极化天线水平设置于所述第一脚架内;
所述第二双极化天线竖直设置于所述第二脚架内。
可选地,所述无人机包括机身以及相对设置于所述机身下方的第一脚架和第二脚架;所述第一脚架包括第一连接架、第二连接架以及 第三连接架,所述第一连接架、第二连接架以及第三连接架依次顺次连接,所述第一双极化天线水平设置于所述第二连接架内,所述第二双极化天线竖直设置于所述第一连接架或所述第三连接架内。
可选地,所述第一脚架的内部沿着界定所述第一脚架形状的轮廓线间隔一定距离设置若干个第一限位栏,以对所述第一双极化天线进行限位。
可选地,所述第一双极化天线包括第一铜管和第一射频线缆;
所述第一射频线缆的一端设置第一射频连接器,并且所述第一射频线缆的另一端套设于所述第一铜管内;
所述第一铜管的一端设置第一焊锡盘,所述第一射频线缆的另一端设置第二焊锡盘;所述第一射频线缆的芯线穿过所述第一铜管的一端,并且通过所述第一焊锡盘和所述第二焊锡盘之间的焊接,将所述第一射频线缆的芯线和所述第一铜管进行连接。
可选地,所述第一双极化天线还包括第一热缩套管,所述第一铜管和所述第一射频线缆均套设于所述第一热缩套管内。
可选地,所述第一射频线缆的芯线的直径是1.37毫米。
可选地,所述第二脚架的内部沿着界定所述第二脚架形状的轮廓线间隔一定距离设置若干个第二限位栏,以对所述第二双极化天线进行限位。
可选地,所述第二双极化天线包括第二铜管和第二射频线缆;
所述第二射频线缆的一端设置第二射频连接器,并且所述第二射频线缆的另一端套设于所述第二铜管内;
所述第二铜管的一端设置第三焊锡盘,所述第二射频线缆的另一端设置第四焊锡盘;所述第二射频线缆的芯线穿过所述第二铜管的一端,并且通过所述第三焊锡盘和所述第四焊锡盘之间的焊接,将所述第二射频线缆的芯线和所述第一铜管进行连接。
可选地,所述第二双极化天线还包括第二热缩套管,所述第二铜管和所述第二射频线缆均套设于所述第二热缩套管内。
在本申请实施例中,通过在与水平面平行的方向上至少设置一条第一双极化天线,在与所述水平面竖直的方向上至少设置一条第二双 极化天线。采用此结构设计的天线,本实施例的无人机使在竖直极化的方向上,相对较弱的信号得到水平极化方向的强电磁信号的填补,从而使无人机延长在竖直方向上的图传高度。
附图说明
图1是本申请实施例提供的无人机的结构示意图;
图2是本申请实施例提供的第一脚架的立体结构示意图;
图3是本申请实施例提供的第一双极化天线设置在第一脚架内的结构示意图;
图4是本申请实施例提供的第二双极化天线设置在第二脚架内的结构示意图;
图5是本申请实施例提供的第一双极化天线隐藏热缩套管后的结构示意图;
图6是本申请实施例提供的第一双极化天线套设热缩套管后的结构示意图;
图7是本申请实施例提供的第二双极化天线隐藏热缩套管后的结构示意图;
图8是本申请实施例提供的第二双极化天线套设热缩套管后的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“竖直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本 申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了方便说明并且理解本申请的技术方案,以下说明所使用的方位词均以附图所展示的方位为准。
实施例一
本实施例的无人机包括无人固定翼机、无人竖直起降机、无人多旋翼飞行器、无人伞翼机。无人机还可以更佳的包括无人飞艇以及无人直升机。本实施例的无人机可以只由旋翼、产生动力以及接收或发送控制信号的机身构成,也可以由旋翼、产生动力以及接收或发送控制信号的机身、脚架构成。
在无人机的水平方向上,本实施例的无人机至少设置一条第一双极化天线。在无人机的竖直方向上,本实施例的无人机还至少设置一条第二双极化天线。此处,第一双极化天线和第二双极化天线并不具体的限定在无人机的设置位置,只要第一双极化天线的位置是在无人机的水平方向上,第二双极化天线在无人机的竖直方向上即可。比如,第一双极化天线和第二双极化天线可以设置在无人机的机身内,可以设置在无人机附带用于设置双极化天线的设备上,或者还可以设置在用于辅助无人机的其他飞行设备上。
在本实施例中,为了获得更高距离的图传信号,我们将原有单一的竖直极化基础上,增加了水平极化方式,这样使得原有竖直极化的方向图上增益很低的信号得到了水平极化方向图最强电磁信号的填补,增益值从原来的-20dBi增加到2dBi。遥控器外置天线水平放置时,其接收到的水平极化图传信号功率容量会变得很高。因此,本实施例的无人机在竖直方向飞行过程中,其飞行高度远超过天线竖直极化状态的竖直飞行高度。
在本实施例中,无人机设置第一双极化天线和第二双极化天线的数量并不局限于单条,设计者可以根据无人机的大小、性能要求以及作业目的和环境来设置多条第一双极化天线和第二双极化天线。设置多条第一双极化天线和第二双极化天线,有助于提高无人机的水平飞 行距离和竖直飞行高度。
请参考图1,图1是本申请实施例一提供的无人机的结构示意图。如图1所示,本实施例的无人机是四旋翼无人机,工作在MIMO模式。MIMO天线表示多输入多输出,通常用于IEEE 802.11n,但也可以用于其他802.11技术。MIMO技术大致可以分为两类:发射/接收分集和空间复用。MIMO天线有时被称作空间多样,因为它使用多空间通道传送和接收数据,利用MIMO技术可以提高信道的容量。因此,本实施例的无人机接收或发送信号的信道和容量大,有利于提升无人机的飞行高度和便于控制无人机。
该无人机包括机身10、第一脚架11以及第二脚架12,第一脚架11设置于机身10的第一侧面10A,第二脚架12设置与机身10的第二侧面10B。
请参考图2,图2是本申请实施例一提供的第一脚架的立体结构图。如图2所示,第一脚架11包括三个连接架,第一脚架11装配到机身10时,第一连接架111的一端和机身10连接,第三连接架113的一端和机身10连接,第一连接架111的另一端和第二连接架112的一端连接,第二连接架112的另一端和第三连接架113的另一端连接。各个连接架由高硬质材料制成。
在本实施例中,各个连接架是一体化连接,通过一次性压铸各个连接架而形成第一脚架。采用一体化连接,有助于提高无人机着地时的稳定性。当然,此处各个连接架还可以是分体连接,并不局限于一体化连接。
本实施例的第二脚架包括第四连接架、第五连接架以及第六连接架,所述第四连接架、第五连接架以及第六连接架依次顺次连接。第二脚架和第一脚架的整体结构相同,在此不一一赘述。
请一并参考图3和图4,图3是本申请实施例一提供的第一双极化天线设置在第一脚架内的结构示意图,图4是本申请实施例一提供的第二双极化天线设置在第二脚架内的结构示意图。如图3和图4所示,可选地,本实施例的第一双极化天线31在与水平面平行的方向上,设置于所述第一脚架11内,所述第二双极化天线32在与所述水 平面垂直的方向上,设置于所述第二脚架12内。
将双极化天线分别设置于第一脚架11或第二脚架12内,一方面,其能够充分地利用脚架闲置的空间,另一方面,其能够避免因设置于机身内而引起机身外观结构设计不够美观的问题。
机身10包括信号接收电路和信号发送电路。各个双极化天线分别与信号接收电路和信号发送电路电连接。信号接收电路接收由天线反馈入的信号并处理该信号,信号发送电路通过天线发送信号。
如图3所示,本实施例第一脚架11的内部沿着界定所述第一脚架11形状的轮廓线间隔一定距离设置若干个第一限位栏114。将第一双极化天线31装配第一脚架11内部后,第一限位栏114对第一双极化天线31进行限位,防止无人机在飞行过程中,第一脚架11产生晃动而使第一双极化天线31移动的问题发生。
请一并参考图5和图6,图5是本申请实施例提供的第一双极化天线隐藏热缩套管后的结构示意图,图6是本申请实施例提供的第一双极化天线套设热缩套管后的结构示意图。如图5和图6所示,第一双极化天线31包括第一铜管311、第一射频线缆312和第一热缩套管313,第一射频线缆312的一端312A设置第一射频连接器314,并且第一射频线缆312的另一端312B套设于第一铜管311内,第一铜管311的一端311A设置第一焊锡盘(未图示),第一射频线缆312的另一端312B设置第二焊锡盘(未图示)。本实施例的第一射频线缆312包括芯线3121以及包裹所述芯线的外部屏蔽层。可选地,本实施例的第一射频线缆312的芯线3121的直径是1.37毫米。
第一射频线缆312的芯线3121穿过第一铜管311的一端311A,并且通过第一焊锡盘和第二焊锡盘之间的焊接,形成焊接处50。此处的焊接将第一射频线缆312的芯线3121和第一铜管311连接。
本实施例的第一射频连接器314采用MMCX射频连接器,当然,此处的第一射频连接器314还可以采用其他射频连接器。
本实施例的第一铜管311和第一射频线缆312均套设于第一热缩套管313内。第一热缩套管313用于保护第一双极化天线31,防止无人机在飞行过程中由于晃动而损坏第一双极化天线31。
如图4所示,本实施例第二脚架12的内部沿着界定所述第二脚架12形状的轮廓线间隔一定距离设置若干个第二限位栏121,将第二双极化天线32装配第二脚架12内部后,第二限位栏121对第二双极化天线32进行限位,防止无人机在飞行过程中,第二脚架12产生晃动而使第二双极化天线32移动的问题发生。
请一并参考图7和图8,图7是本申请实施例提供的第二双极化天线隐藏热缩套管后的结构示意图,图8是本申请实施例提供的第二双极化天线套设热缩套管后的结构示意图。如图7和图8所示,第二双极化天线32包括第二铜管321、第二射频线缆322和第二热缩套管323,第二射频线缆322的一端322A设置第二射频连接器324,并且第二射频线缆322的另一端322B套设于第二铜管321内,第二铜管321的一端321A设置第三焊锡盘(未图示),第二射频线缆322的另一端322B设置第四焊锡盘(未图示)。本实施例的第二射频线缆322包括芯线3221以及包裹所述芯线的外部屏蔽层。可选地,本实施例的第二射频线缆322的芯线3221的直径是1.37毫米。
第二射频线缆322的芯线3221穿过第二铜管321的一端321A,并且通过第三焊锡盘和第四焊锡盘之间的焊接,形成焊接处60。此处的焊接将第二射频线缆322的芯线3221和第二铜管321连接。
本实施例的第二射频连接器324采用MMCX射频连接器,当然,此处的第二射频连接器324还可以采用其他射频连接器。
本实施例的第二铜管321和第二射频线缆322均套设于第二热缩套管323内。第二热缩套管323用于保护第二双极化天线32,防止无人机在飞行过程中由于晃动而损坏第二双极化天线32。
本实施例的第一双极化天线31和第二双极化天线32采用同轴天线型式,其具有体积小、重量轻、结构简单、成本低、易集成等特点。
实施例二
本实施例和实施例一的区别点在于:请再参考图2,第一双极化天线31水平设置于第一脚架11的第二连接架112内,第二双极化天线32竖直设置于第一脚架11的第一连接架111或第三连接架113内。采用此种结构设计,一方面,有助于提高无人机的水平飞行距离和竖 直飞行高度;另一方面,其能够节省设计空间。
实施例三
本实施例和实施例一或实施例二的区别点在于:第一双极化天线31水平设置于第二脚架的第五连接架内,第二双极化天线31竖直设置于第二脚架的第四连接架或第六连接架内。采用此种结构设计,一方面,有助于提高无人机的水平飞行距离和竖直飞行高度;另一方面,其能够节省设计空间。
在上述各个实施例中,各个实施例的具体实施方式可以相互组合实现,在此不一一赘述。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种无人机,其特征在于,至少包括第一双极化天线和第二双极化天线,所述第一双极化天线设置于所述无人机的水平方向上,所述第二双极化天线设置于所述无人机的竖直方向上。
  2. 根据权利要求1所述的无人机,其特征在于,
    所述无人机包括机身以及相对设置于所述机身下方的第一脚架和第二脚架;
    所述第一双极化天线水平设置于所述第一脚架内;
    所述第二双极化天线竖直设置于所述第二脚架内。
  3. 根据权利要求1所述的无人机,其特征在于,
    所述无人机包括机身以及相对设置于所述机身下方的第一脚架和第二脚架;
    所述第一脚架包括第一连接架、第二连接架以及第三连接架,所述第一连接架、第二连接架以及第三连接架依次顺次连接,所述第一双极化天线水平设置于所述第二连接架内,所述第二双极化天线竖直设置于所述第一连接架或所述第三连接架内。
  4. 根据权利要求2或3所述的无人机,其特征在于,所述第一脚架的内部沿着界定所述第一脚架形状的轮廓线间隔一定距离设置若干个第一限位栏,以对所述第一双极化天线进行限位。
  5. 根据权利要求1至3任一项所述的无人机,其特征在于,所述第一双极化天线包括第一铜管和第一射频线缆;
    所述第一射频线缆的一端设置第一射频连接器,并且所述第一射频线缆的另一端套设于所述第一铜管内;
    所述第一铜管的一端设置第一焊锡盘,所述第一射频线缆的另一端设置第二焊锡盘;所述第一射频线缆的芯线穿过所述第一铜管的一端,并且通过所述第一焊锡盘和所述第二焊锡盘之间的焊接,将所述第一射频线缆的芯线和所述第一铜管进行连接。
  6. 根据权利要求5所述的无人机,其特征在于,所述第一双极化天线还包括第一热缩套管,所述第一铜管和所述第一射频线缆均套 设于所述第一热缩套管内。
  7. 根据权利要求6所述的无人机,其特征在于,所述第一射频线缆的芯线的直径是1.37毫米。
  8. 根据权利要求2或3所述的无人机,其特征在于,所述第二脚架的内部沿着界定所述第二脚架形状的轮廓线间隔一定距离设置若干个第二限位栏,以对所述第二双极化天线进行限位。
  9. 根据权利要求1至3任一项所述的无人机,其特征在于,所述第二双极化天线包括第二铜管和第二射频线缆;
    所述第二射频线缆的一端设置第二射频连接器,并且所述第二射频线缆的另一端套设于所述第二铜管内;
    所述第二铜管的一端设置第三焊锡盘,所述第二射频线缆的另一端设置第四焊锡盘;所述第二射频线缆的芯线穿过所述第二铜管的一端,并且通过所述第三焊锡盘和所述第四焊锡盘之间的焊接,将所述第二射频线缆的芯线和所述第一铜管进行连接。
  10. 根据权利要求9所述的无人机,其特征在于,所述第二双极化天线还包括第二热缩套管,所述第二铜管和所述第二射频线缆均套设于所述第二热缩套管内。
PCT/CN2016/093082 2016-04-28 2016-08-03 一种无人机 WO2017185554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16900063.5A EP3407421B1 (en) 2016-04-28 2016-08-03 Unmanned aerial vehicle
US16/142,619 US10707564B2 (en) 2016-04-28 2018-09-26 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620374088.8U CN205583125U (zh) 2016-04-28 2016-04-28 一种无人机
CN201620374088.8 2016-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/142,619 Continuation US10707564B2 (en) 2016-04-28 2018-09-26 Unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2017185554A1 true WO2017185554A1 (zh) 2017-11-02

Family

ID=56857732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093082 WO2017185554A1 (zh) 2016-04-28 2016-08-03 一种无人机

Country Status (4)

Country Link
US (1) US10707564B2 (zh)
EP (1) EP3407421B1 (zh)
CN (1) CN205583125U (zh)
WO (1) WO2017185554A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206907920U (zh) * 2016-12-14 2018-01-19 深圳市道通智能航空技术有限公司 一种双频段微带天线及应用该天线的无人机
CN110277631A (zh) * 2019-06-14 2019-09-24 深圳市道通智能航空技术有限公司 一种双频天线及飞行器
CN210864418U (zh) * 2019-12-19 2020-06-26 广州极飞科技有限公司 自驾控制装置及具有其的无人驾驶装置
CN112249303A (zh) * 2020-10-26 2021-01-22 东莞理工学院 一种扑翼微型飞行机器人的尾翼平衡器
WO2022099577A1 (zh) * 2020-11-13 2022-05-19 深圳市大疆创新科技有限公司 无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315309A (en) * 1991-09-06 1994-05-24 Mcdonnell Douglas Helicopter Company Dual polarization antenna
CN102331575A (zh) * 2011-06-23 2012-01-25 中国电子科技集团公司第三十八研究所 一种单航过全极化干涉合成孔径雷达
CN202221473U (zh) * 2011-06-23 2012-05-16 中国电子科技集团公司第三十八研究所 一种单航过全极化干涉合成孔径雷达
CN202405421U (zh) * 2011-12-08 2012-08-29 京信通信系统(中国)有限公司 一种移动通信系统及其多波束天线装置
CN103165984A (zh) * 2011-12-08 2013-06-19 京信通信系统(中国)有限公司 一种移动通信系统及其多波束天线装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006104158A1 (ja) * 2005-03-28 2008-09-11 ヤマハ発動機株式会社 無人ヘリコプタ
CN103490842B (zh) * 2013-09-26 2016-09-28 深圳市大疆创新科技有限公司 数据传输系统及方法
CN203921192U (zh) * 2014-06-26 2014-11-05 深圳市大疆创新科技有限公司 一种飞行器及其信号线保护组件
CN104134861A (zh) * 2014-07-23 2014-11-05 深圳市视晶无线技术有限公司 Mimo天线系统、近似全向的天线装置及其高增益微型天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315309A (en) * 1991-09-06 1994-05-24 Mcdonnell Douglas Helicopter Company Dual polarization antenna
CN102331575A (zh) * 2011-06-23 2012-01-25 中国电子科技集团公司第三十八研究所 一种单航过全极化干涉合成孔径雷达
CN202221473U (zh) * 2011-06-23 2012-05-16 中国电子科技集团公司第三十八研究所 一种单航过全极化干涉合成孔径雷达
CN202405421U (zh) * 2011-12-08 2012-08-29 京信通信系统(中国)有限公司 一种移动通信系统及其多波束天线装置
CN103165984A (zh) * 2011-12-08 2013-06-19 京信通信系统(中国)有限公司 一种移动通信系统及其多波束天线装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407421A4 *

Also Published As

Publication number Publication date
EP3407421A4 (en) 2019-02-20
CN205583125U (zh) 2016-09-14
EP3407421B1 (en) 2020-10-28
US20190036203A1 (en) 2019-01-31
US10707564B2 (en) 2020-07-07
EP3407421A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2017185554A1 (zh) 一种无人机
US10854962B2 (en) Integrated antenna in an aerial vehicle
US9415869B1 (en) Mobile antenna array
JP6653684B2 (ja) 無線中継装置、遠隔制御装置及び通信システム
CN105719450A (zh) 长程无人机遥控装备
US10303415B1 (en) Mobile display array
US20190341679A1 (en) Zero weight airborne antenna with near perfect radiation efficiency utilizing conductive airframe elements and method
US8493278B2 (en) Antennas and methods to provide adaptable omnidirectional ground nulls
US20160248168A1 (en) Lightweight plastic antenna
US11975864B2 (en) Multi sensor support structure
Crespo et al. Setup of a communication and control systems of a quadrotor type Unmanned Aerial Vehicle
EP3453615B1 (en) Antenna and unmanned aerial vehicle
JP3197684U (ja) マルチコプター
CN204103048U (zh) 双频带双极性天线
JP7032352B2 (ja) アンテナ装置、通信中継装置及び通信システム
CN210310879U (zh) 无人飞行器
CN106487927A (zh) 一种多旋翼无人机的通信控制系统
EP3950491B1 (en) Self-driving control apparatus and driverless apparatus provided with same
CN105514579A (zh) 一种限制空间安装的c波段宽带垂直极化套筒天线
CN111918819A (zh) 无人飞行器
CN109075432A (zh) 一种天线及无人机
CN210182573U (zh) 结合有无人机地面收发天线地网的遮阳防水装置
CN209822874U (zh) 一种用于无人机的天线结构
CN207199831U (zh) 波束上仰高增益全向天线
WO2020052046A1 (zh) 一种天线组件、图传天线及无人机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016900063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900063

Country of ref document: EP

Effective date: 20180823

NENP Non-entry into the national phase

Ref country code: DE