WO2017183949A1 - 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 장치 - Google Patents

무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 장치 Download PDF

Info

Publication number
WO2017183949A1
WO2017183949A1 PCT/KR2017/004327 KR2017004327W WO2017183949A1 WO 2017183949 A1 WO2017183949 A1 WO 2017183949A1 KR 2017004327 W KR2017004327 W KR 2017004327W WO 2017183949 A1 WO2017183949 A1 WO 2017183949A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
mme
connection
message
Prior art date
Application number
PCT/KR2017/004327
Other languages
English (en)
French (fr)
Inventor
김석중
쑤지안
변대욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017183949A1 publication Critical patent/WO2017183949A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices

Definitions

  • the present invention relates to wireless communications, and more particularly, to an anchor base station identification method performed by a base station in a wireless communication system and a base station using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • paging may be transmitted to eNBs indicated by 'Information on Recommended Cells and eNBs for Paging' based on the 'Information on Recommended Cells and eNBs for Paging' received by the MME.
  • the present invention proposes a method and apparatus for solving the above-mentioned problems.
  • the technical problem to be solved by the present invention is to provide an anchor base station reporting method performed by a base station in a wireless communication system and a base station using the method.
  • an indicator indicating that the base station is an anchor base station is transmitted to a MME (Mobility Management Entity), wherein the anchor base station and the terminal
  • MME Mobility Management Entity
  • the anchor base station is a base station that stores the terminal context while the connection between the terminal and the base station is deactivated do.
  • the indicator may be included in a UE context release complete message and transmitted.
  • the terminal context release complete message may be transmitted in response to a UE context release command message.
  • the base station may receive a paging message from the MME in response to the terminal context release complete message including the indicator.
  • the indicator may be included in the S1 Setup Request message and transmitted.
  • the base station may receive an S1 setup response message in response to the S1 setup request message.
  • the base station may receive a paging message from the MME in response to the S1 setup request message including the indicator.
  • the base station may be an eNodeB (eNB).
  • eNB eNodeB
  • connection between the base station and the MME may be an S1 connection.
  • connection between the terminal and the base station is a radio resource control (RRC) connection
  • the deactivation of the connection between the terminal and the base station may be the release of the RRC connection
  • a base station includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in combination with the RF unit, wherein the processor indicates that the base station is an anchor base station.
  • the anchor base station is a base station for maintaining the connection between the base station and the MME while deactivating the connection between the terminal and the base station, the anchor base station is a connection between the terminal and the base station
  • the base station may be a base station storing a terminal context while being deactivated.
  • the base station may transmit to the MME an indicator (or identifier) indicating that the base station itself is an anchor base station. That is, in order for the MME to enable signaling reduction through the S1 interface for the terminals connected to the write, a method of transmitting an identifier indicating that the anchor base station is the anchor base station to the MME is proposed.
  • the MME can transmit the S1 paging message only to the anchor eNB, and based on the S1 paging message, the anchor eNB may trigger paging to the terminal through the Uu interface. Accordingly, the base station and the MME according to the present invention reduces the load of S1 paging, thereby increasing the efficiency of communication.
  • the MME can clearly identify which base station is the anchor base station, and the MME can allocate the anchor base station so that the paging areas do not overlap based on the identifier. Accordingly, in the wireless communication method according to the present invention, since the paging areas do not overlap, the wireless communication system can be operated efficiently.
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • FIG. 2 illustrates a wireless communication system to which the present invention can be applied.
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • FIG. 4 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 5 is a block diagram illustrating a radio protocol structure for a control plane.
  • 6 and 7 illustrate an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a flowchart illustrating an example of an S1 paging procedure.
  • FIG. 9 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to another embodiment of the present invention.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station (BS) may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point (AP). .
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal MTC UE or MTC device or MTC device: a terminal (eg, vending machine, etc.) having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC UE or MTC device or MTC device a terminal having a function of communicating via a mobile communication network (for example, communicating with an MTC server via a PLMN) and performing an MTC function; Meter reading, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • the MTC user uses a service provided by the MTC server.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • MTC-IWF MTC InterWorking Function
  • HPLMN Home PLMN
  • SCS provides the capability for use by one or more MTC applications.
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (i.e., ⁇ Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / Mobile Switching Center (MSC)) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • SEF Service Capability Exposure Function
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (SGW) (or S-GW), PDN GW (Packet Data Network Gateway) (or PGW or P-GW), A mobility management entity (MME), a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME mobility management entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME ', etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 3 illustrates the structure of an E-UTRAN and an EPC in a wireless communication system to which the present invention can be applied.
  • an eNB may select a gateway (eg, MME), route to a gateway during radio resource control (RRC) activation, scheduling of a broadcast channel (BCH), and the like.
  • a gateway eg, MME
  • RRC radio resource control
  • BCH broadcast channel
  • Dynamic resource allocation to the UE in transmission, uplink and downlink and may perform the function of mobility control connection in the LTE_ACTIVE state.
  • the gateway is responsible for paging initiation, LTE_IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and NAS signaling encryption. It can perform the functions of ciphering and integrity protection.
  • SAE System Architecture Evolution
  • 4 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 5 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • 6 and 7 illustrate an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
  • FIG. 6 illustrates a control plane protocol stack in the S1 interface
  • FIG. 7 illustrates a user plane interface protocol structure in the S1 interface.
  • the S1 control plane interface (S1-MME) is defined between the base station and "MME". Similar to the user plane, the transport network layer is based on IP transport. However, it is added to the SCTP (Stream Control Transmission Protocol) layer above the IP layer for reliable transmission of message signaling.
  • SCTP Stream Control Transmission Protocol
  • the application layer signaling protocol is referred to as S1-AP (S1 application protocol).
  • the SCTP layer provides guaranteed delivery of application layer messages.
  • Point-to-point transmission is used at the transport IP layer for protocol data unit (PDU) signaling transmission.
  • PDU protocol data unit
  • a single SCTP association per S1-MME 'interface instance uses a pair of stream identifiers for the S-MME' common procedure. Only some pairs of stream identifiers are used for the S1-MME only procedure.
  • the MME 'communication context identifier is assigned by the MME for the S1-MME' dedicated procedure, and the 'eNB' communication context identifier is assigned by the eNB for the S1-MME 'dedicated procedure.
  • the MME communication context identifier and the " eNB communication context identifier are used to distinguish the UE-specific S1-MME signaling transmission bearer.
  • Communication context identifiers are each carried in an S1-AP message.
  • the MME changes the state of the terminal that used the signaling connection to the ECM-IDLE state. And, the eNB releases the RRC connection of the terminal.
  • S1 user plane interface (S1-U) is defined between the eNB and the S-GW.
  • the S1-U interface provides non-guaranteed delivery of user plane PDUs between the eNB and the S-GW.
  • the transport network layer is based on IP transmission, and a GPRS Tunneling Protocol User Plane (GTP-U) layer is used above the UDP / IP layer to transfer user plane PDUs between the eNB and the S-GW.
  • GTP-U GPRS Tunneling Protocol User Plane
  • the purpose of the S1 paging procedure is to enable the MME to page the terminal (eg, UE) at a particular eNB.
  • the paging procedure will be described with reference to the drawings.
  • FIG. 8 is a flowchart illustrating an example of an S1 paging procedure.
  • the MME may transmit a paging message to the eNB (S810). More specifically, the MME initiates a paging procedure as it sends a paging message to the eNB. Upon receiving the paging message, the eNB may perform paging for the terminal in the cells associated with the tracking areas.
  • the paging message may be as shown in Table 2 below.
  • 'Message Type' may mean a type of a transmitted message.
  • 'UE Identity Index value' may mean a value of the UE identification index.
  • 'UE Paging Identity' means the identifier of the terminal to be paged.
  • 'Paging DRX (Discontinuous Reception)' may mean discontinuous reception of paging.
  • 'CSG Id List' may mean a list of IDs for a closed subscriber group (CSG).
  • 'Paging Priority' may mean the priority of paging.
  • 'Assistance Data for Paging' may mean auxiliary information about paging.
  • the MME may maintain the S1 connection of the activated terminal to hide mobility and state transitions from the core network. More specifically, in the light connection state, the connection (eg, RRC connection) between the terminal and the base station (eg, eNB) may be deactivated while maintaining the connection (eg, S1 connection) between the base station and the MME.
  • the connection eg, RRC connection
  • the base station eg, eNB
  • the MME sends an S1 / New Interface (NI) paging message. Without transmitting the downlink data may be directly transmitted to the anchor base station (eg, eNB).
  • the anchor base station may first buffer the received downlink data and then trigger paging through the Uu interface.
  • the anchor base station may be referred to as an anchor base station having a UE context and maintaining an S1 connection.
  • the anchor base station may mean a base station in which a connection (eg, an RRC connection) between the terminal and the base station is deactivated and a connection (eg, an S1 connection) between the base station and the MME is maintained.
  • Light connections as described above can reduce network interface signals, as they provide mobility processing at the RAN level (eg, eNB level).
  • RAN-based paging processing and configuration can take into account terminal mobility and traffic patterns, thereby providing dynamic and optimal settings for these parameters.
  • the last serving base station completes the terminal context release including Information On Recommended Cells and Information Element (IE) for eNBs For Paging. You can send a (UE CONTEXT RELEASE COMPLETE) message.
  • IE Information On Recommended Cells and Information Element
  • the MME may transmit S1 paging to some eNBs along with Assistance Data For Recommended Cells in recommended cells using information provided by the last serving eNB.
  • paging may be transmitted to eNBs indicated by 'Information on Recommended Cells and eNBs for Paging' based on the 'Information on Recommended Cells and eNBs for Paging' received by the MME.
  • the anchor base station proposes a method for transmitting an identifier indicating that it is an anchor base station to the MME.
  • the MME can transmit the S1 paging message only to the anchor eNB, and based on the S1 paging message, the anchor eNB may trigger paging to the terminal through the Uu interface. Accordingly, the base station and the MME according to the present invention reduces the load of S1 paging, thereby increasing the efficiency of communication.
  • the MME may not know exactly which base station (eg, eNB) serves as the anchor base station, and in the conventional case, the candidate of the base station serving as the anchor may control the MME. Since it was determined irrelevant to, the area of the anchor base station (that is, the base station maintaining the connection between the base station and the MME, but deactivating the connection between the base station and the terminal) overlapped. This caused a problem that the paging areas overlap.
  • eNB base station maintaining the connection between the base station and the MME, but deactivating the connection between the base station and the terminal
  • the MME in order to solve the problem that the paging area may overlap as described above, and to more efficiently arrange the paging area, the MME provides information (or indicator) indicating that the anchor base station corresponds to the anchor base station.
  • the present invention proposes a method for enabling an MME to clearly know which base station is an anchor base station, and an apparatus using the same.
  • FIG. 9 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to an embodiment of the present invention.
  • the base station may transmit an indicator (or identifier) indicating that the base station is an anchor base station (S910).
  • the base station may have a meaning as a terminal node of a network which directly communicates with a terminal, and the base station may correspond to, for example, an eNB as described above.
  • the indicator indicating that the anchor base station may mean a kind of information indicating that the base station itself is an anchor base station.
  • the anchor base station may be referred to as an anchor base station having a UE context and maintaining an S1 connection.
  • the anchor base station may mean a base station in which a connection (eg, an RRC connection) between the terminal and the base station is deactivated and a connection (eg, an S1 connection) between the base station and the MME is maintained.
  • the anchor base station may mean a base station storing a terminal context while the connection between the terminal and the base station is inactive, the connection between the terminal and the base station is a radio resource control (RRC) connection, Deactivation of the connection between the base stations may mean that the RRC connection is released.
  • RRC radio resource control
  • two methods may exist largely about when the base station transmits to the MME an indicator indicating that the base station itself is an anchor base station. 1.
  • the indicator can be transmitted to the MME, 2.
  • the base station performs the S1 setup procedure, it can transmit the indicator to the MME.
  • One solution for solving the above problems is to use the terminal context release procedure to instruct the MME that the eNB maintains the S1 connection of the terminal (in other words, the eNB is write-connected to the terminal). That is, there may exist a method for indicating that the anchor eNB). Based on this indication, the MME may send paging only to the anchor eNB to limit the paging area.
  • FIG. 10 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to another embodiment of the present invention.
  • the base station may receive a UE context release command (UE CONTEXT RELEASE COMMAND) from the MME (S1010). That is, the MME may transmit a UE CONTEXT RELEASE COMMAND message to the eNB to release a UE context in the eNB.
  • the eNB which has been commanded to release the UE CONTEXT from the MME, may delete all of the UE CONTEXT that it has maintained. If the RRC connection is not yet released, the eNB may release the RRC connection by sending an RRC CONNECTION RELEASE message to the UE, thereby releasing the radio resources and radio bearers allocated to the user and deleting the UE CONTEXT.
  • the base station may transmit the terminal context release completion to the MME (S920).
  • the base station transmits the UE context release completion (UE CONTEXT RELEASE COMPLETE) to the MME, it can also transmit an indicator indicating that the base station itself is an anchor base station.
  • the indicator indicating that the anchor base station may be included in the terminal context release completion.
  • the terminal context release completion may also be expressed as a "terminal context release completion message.” More detailed description of this is as follows.
  • the eNB may transmit a UE CONTEXT RELEASE COMPLETE or a new message including an indicator indicating that the eNB is an anchor base station as shown in Table 3 below.
  • Table 3 shows the contents of the terminal context release completion message.
  • 'Message Type' may mean a type of a transmitted message.
  • 'Information on Recommended Cells and eNBs for Paging' may refer to information about cells and eNBs recommended for paging.
  • an indicator indicating that the anchor base station may refer to an indicator allowing the MME to identify whether the eNB is set as an anchor eNB.
  • the MME does not send the S1 paging message to eNBs indicated at 'Recommended eNBs for Paging' in the UE context release complete message, only for anchor eNBs.
  • S1 paging message can be sent. That is, through the above-described method, the MME may transmit the S1 paging message only to the anchor eNB.
  • Another solution to solve the problem as described above may be a method for instructing the eNB to maintain the S1 connection for the write connection terminal when performing the S1 setup procedure.
  • FIG. 11 is a flowchart of a method for transmitting an indicator indicating that the base station is an anchor, according to another embodiment of the present invention.
  • the base station may transmit an S1 SETUP REQUEST to the MME (S1110).
  • the base station may transmit an indicator indicating that the base station itself is an anchor base station, and the indicator may be included in the S1 setup request.
  • the base station may mean an eNB.
  • a more specific method of transmitting the indicator to the MME by the base station will be described.
  • the eNB may send an indicator for the anchor eNB to the MME using S1 SETUP REQUEST or a new message.
  • the indicator may mean an indicator for allowing the MME to identify whether the eNB is set as an anchor eNB.
  • the MME Upon receiving the message (ie, S1 setup request or new message including the indicator) from the eNB, the MME can store the indicator and use the indicator to identify the anchor eNB.
  • the MME Based on the indicator, if the MME has downlink data to be transmitted to the write-connected UE, the MME is eNBs indicated in 'Recommended eNBs for Paging' in the terminal context release complete message Rather than transmitting the S1 paging message to the S1 paging message can be sent only to the anchor eNB. That is, through the above-described method, the MME may transmit the S1 paging message only to the anchor eNB.
  • the base station may receive an S1 setup response (S1 SETUP RESPONSE) from the MME (S1120). That is, the base station may receive an S1 setup response message as a response to the S1 setup request.
  • S1 setup response S1 SETUP RESPONSE
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 1110 and a plurality of terminals (UEs) 1120.
  • UEs terminals
  • the network node 1110 includes a processor 1111, a memory 1112, and a communication module 1113.
  • the processor 1111 may execute the functions / operations / methods described herein. For example, the processor 1111 may transmit an indicator indicating that the base station itself is an anchor base station.
  • Layers of the wired / wireless interface protocol may be implemented by the processor 1111.
  • the memory 1112 is connected to the processor 1111 and stores various information for driving the processor 1111.
  • the communication module 1113 is connected to the processor 1111 and transmits and / or receives a wired / wireless signal.
  • a base station an MME, a C-SGN, an HSS, an SGW, a PGW, an SCEF, an SCS / AS, and the like may correspond thereto.
  • the communication module 1113 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 1120 includes a processor 1121, a memory 1122, and a communication module (or RF unit) 1123.
  • the processor 1111 may execute the functions / operations / methods described herein.
  • Layers of the air interface protocol may be implemented by the processor 1121.
  • the memory 1122 is connected to the processor 1121 and stores various information for driving the processor 1121.
  • the communication module 1123 is connected to the processor 1121 and transmits and / or receives a radio signal.
  • the memories 1112 and 1122 may be inside or outside the processors 1111 and 1121, and may be connected to the processors 1111 and 1121 by various well-known means.
  • the network node 1110 if the base station
  • the terminal 1120 may have a single antenna (multiple antenna) or multiple antenna (multiple antenna).
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Anchor base station reporting method performed by a base station and a device using the method in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system, various wireless in addition to the 3GPP LTE / LTE-A system It is possible to apply to a communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 기지국에 의해 수행되는 지시자 전송 방법에 있어서, 상기 기지국이 앵커 기지국임을 지시하는 지시자를 MME(Mobility Management Entity)에게 전송하되, 상기 앵커 기지국은 단말과 상기 기지국 간의 연결은 비활성화하면서 상기 기지국과 상기 MME 간의 연결은 유지하는 기지국이고, 상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국인 것을 특징으로 하는 방법을 제공한다.

Description

무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 기지국에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
여기서, 종래의 경우에는 MME가 수신한 ‘Information on Recommended Cells and eNBs for Paging'에 기초하여, 'Information on Recommended Cells and eNBs for Paging'에서 지시하는 eNB들에 대해 페이징을 전송할 수 있었다.
하지만, 종래의 경우와 같이, MME가 'Information on Recommended Cells and eNBs for Paging'에서 지시하는 eNB들에 대해 페이징을 전송할 경우에는 지나치게 페이징 전송이 빈번하게 발생하는 문제점이 발생하였다.
이에 본 발명에서는 전술한 문제점을 해결하기 위한 방법 및 장치를 제안하고자 한다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 보고 방법 및 상기 방법을 이용하는 기지국을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 무선 통신 시스템에서 기지국에 의해 수행되는 지시자 전송 방법에 있어서, 상기 기지국이 앵커 기지국임을 지시하는 지시자를 MME(Mobility Management Entity)에게 전송하되, 상기 앵커 기지국은 단말과 상기 기지국 간의 연결은 비활성화하면서 상기 기지국과 상기 MME 간의 연결은 유지하는 기지국이고, 상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국인 것을 특징으로 하는 방법을 제공한다.
이떄, 상기 지시자는 단말 컨텍스트 릴리즈 완료(UE Context Release Complete) 메시지에 포함되어 전송될 수 있다.
이때, 상기 단말 컨텍스트 릴리즈 완료 메시지는 단말 컨텍스트 릴리즈 명령(UE Context Release Command) 메시지의 응답으로 전송될 수 있다.
이때, 상기 기지국은 상기 지시자가 포함된 상기 단말 컨텍스트 릴리즈 완료 메시지에 대한 응답으로 페이징 메시지를 상기 MME로부터 수신할 수 있다.
이때, 상기 지시자는 S1 셋업 요청(S1 Setup Request) 메시지에 포함되어 전송될 수 있다.
이때, 상기 기지국은 상기 S1 셋업 요청 메시지에 대한 응답으로 S1 셋업 응답 메시지를 수신할 수 있다.
이때, 상기 기지국은 상기 지시자가 포함된 상기 S1 셋업 요청 메시지에 대한 응답으로 페이징 메시지를 상기 MME로부터 수신할 수 있다.
이때, 상기 기지국은 eNodeB(eNB)일 수 있다.
이때, 상기 기지국과 상기 MME 간의 연결은 S1 연결일 수 있다.
이때, 상기 단말과 상기 기지국 간의 연결은 RRC(Radio Resource Control) 연결이고, 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 것은 상기 RRC 연결이 해제되는 것일 수 있다.
본 발명의 다른 실시예에 따르면, 기지국은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 상기 기지국이 앵커 기지국임을 지시하는 지시자를 MME(Mobility Management Entity)에게 전송하되, 상기 앵커 기지국은 단말과 상기 기지국 간의 연결은 비활성화하면서 상기 기지국과 상기 MME 간의 연결은 유지하는 기지국이고, 상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국인 것을 특징으로 하는 기지국일 수 있다.
본 발명에 따르면, 기지국은 기지국 자신이 앵커 기지국임을 지시하는 지시자(혹은 식별자)를 MME에게 전송할 수 있다. 즉, MME가 라이트 연결된 단말들에 대한 S1 인터페이스를 통해 시그널링 감소를 가능하게 하기 위하여, 앵커 기지국이 자신이 앵커 기지국임을 지시하는 식별자를 MME에게 전송하는 방법이 제안된다. 이를 통해, MME는 오로지 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있으며, S1 페이징 메시지에 기초하여, 앵커 eNB는 Uu 인터페이스를 통해 단말에게 페이징을 트리거할 수 있다. 이에 따라, 본 발명에 따른 기지국 및 MME는 S1 페이징의 로드가 줄어들어, 통신의 효율이 증대되게 된다. 추가적으로, 본 발명에 다르면, MME는 어느 기지국이 앵커 기지국인지를 명확히 파악할 수 있으며, MME는 상기 식별자에 기초하여 페이징 영역이 겹치지 않도록 앵커 기지국을 할당해줄 수 있다. 이에 따라, 본 발명에 따른 무선 통신 방법에서는 페이징 영역이 겹치지 않기에, 효율적으로 무선 통신 시스템이 운영될 수 있다.
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 2은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 4는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 5는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 6 및 도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 8은 S1 페이징 절차에 대한 예를 도시한 순서도다.
도 9는 본 발명의 일 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 10은 본 발명의 다른 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 11은 본 발명의 또 다른 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신(예를 들어, PLMN을 통해 MTC 서버와 통신) 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다. SCS는 하나 이상의 MTC 어플리케이션에 의한 사용을 위한 능력(capability)를 제공한다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- SCEF(Service Capability Exposure Function): 3GPP 네트워크 인터페이스에 의해 제공되는 서비스 및 능력(capability)를 안전하게 노출하기 위한 수단을 제공하는 서비스 능력 노출(service capability exposure)을 위한 3GPP 아키텍쳐 내 엔티티.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway)(또는 S-GW), PDN GW(Packet Data Network Gateway)(또는 PGW 또는 P-GW), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
<표 1>
Figure PCTKR2017004327-appb-I000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 E-UTRAN 및 EPC의 구조를 예시한다.
도 3을 참조하면, eNB는 게이트웨이(예를 들어, MME)의 선택, 무선 자원 제어(RRC: radio resource control) 활성(activation) 동안 게이트웨이로의 라우팅, 방송 채널(BCH: broadcast channel)의 스케줄링 및 전송, 상향링크 및 하향링크에서 UE로 동적 자원 할당, 그리고 LTE_ACTIVE 상태에서 이동성 제어 연결의 기능을 수행할 수 있다. 상술한 바와 같이, EPC 내에서 게이트웨이는 페이징 개시(orgination), LTE_IDLE 상태 관리, 사용자 평면(user plane)의 암호화(ciphering), 시스템 구조 진화(SAE: System Architecture Evolution) 베어러 제어, 그리고 NAS 시그널링의 암호화(ciphering) 및 무결성(intergrity) 보호의 기능을 수행할 수 있다.
도 4는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 5는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 4 및 5을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 6 및 도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 6은 S1 인터페이스에서 제어 평면(control plane) 프로토콜 스택을 예시하고, 도 7은 S1 인터페이스에서 사용자 평면(user plane) 인터페이스 프로토콜 구조를 나타낸다.
도 6 및 도 7을 참조하면, S1 제어 평면 인터페이스(S1-MME)는 기지국과 MME 간에 정의된다. 사용자 평면과 유사하게 전송 네트워크 계층(transport network layer)은 IP 전송에 기반한다. 다만, 메시지 시그널링의 신뢰성이 있는 전송을 위해 IP 계층 상위에 SCTP(Stream Control Transmission Protocol) 계층에 추가된다. 어플리케이션 계층(application layer) 시그널링 프로토콜은 S1-AP(S1 application protocol)로 지칭된다.
SCTP 계층은 어플리케이션 계층 메시지의 보장된(guaranteed) 전달을 제공한다.
프로토콜 데이터 유닛(PDU: Protocol Data Unit) 시그널링 전송을 위해 전송 IP 계층에서 점대점 (point-to-point) 전송이 사용된다.
S1-MME 인터페이스 인스턴스(instance) 별로 단일의 SCTP 연계(association)는 S-MME 공통 절차를 위한 한 쌍의 스트림 식별자(stream identifier)를 사용한다. 스트림 식별자의 일부 쌍만이 S1-MME 전용 절차를 위해 사용된다. MME 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 MME에 의해 할당되고, eNB 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 eNB에 의해 할당된다. MME 통신 컨텍스트 식별자 및 eNB 통신 컨텍스트 식별자는 단말 특정한 S1-MME 시그널링 전송 베어러를 구별하기 위하여 사용된다. 통신 컨텍스트 식별자는 각각 S1-AP 메시지 내에서 전달된다.
S1 시그널링 전송 계층이 S1AP 계층에게 시그널링 연결이 단절되었다고 통지한 경우, MME는 해당 시그널링 연결을 사용하였던 단말의 상태를 ECM-IDLE 상태로 변경한다. 그리고, eNB은 해당 단말의 RRC 연결을 해제한다.
S1 사용자 평면 인터페이스(S1-U)는 eNB과 S-GW 간에 정의된다. S1-U 인터페이스는 eNB와 S-GW 간에 사용자 평면 PDU의 보장되지 않은(non-guaranteed) 전달을 제공한다. 전송 네트워크 계층은 IP 전송에 기반하고, eNB와 S-GW 간의 사용자 평면 PDU를 전달하기 위하여 UDP/IP 계층 상위에 GTP-U(GPRS Tunneling Protocol User Plane) 계층이 이용된다.
이하, S1 페이징 절차에 대해 설명한다.
S1 페이징 절차의 목적은, MME가 특정 eNB에서 단말(예컨대, UE)을 페이징 하는 것을 가능하게 하기 위함이다. 이하에서는, 페이징 절차에 대해 도면을 통해 설명하도록 한다.
도 8은 S1 페이징 절차에 대한 예를 도시한 순서도다.
도 8에 따르면, MME는 eNB에게 페이징 메시지를 전송할 수 있다(S810). 보다 구체적으로, MME는 페이징 메시지를 eNB에게 전송함에 따라 페이징 절차를 개시한다. 페이징 메시지를 수신하면, 상기 eNB는 트래킹 영역들에 관련되어 있는 셀들에서의 단말에 대해 페이징을 수행할 수 있다. 상기 페이징 메시지는 아래 표 2와 같을 수 있다.
IE/그룹 네임(IE/Group Name) 존재(Presence) 범위(Range) IE 타입 및 참조(IE type and reference) 의미 기술(Semantics description) 위험도(Criticality) 할당된 위험도(Assigned Criticality)
Message Type M 9.2.1.1 YES ignore
UE Identity Index value M 9.2.3.10 YES ignore
UE Paging Identity M 9.2.3.13 YES ignore
Paging DRX O 9.2.1.16 YES ignore
CN Domain M 9.2.3.22 YES ignore
List of TAIs 1 YES ignore
>TAI List Item 1 .. < maxnoofTAIs> EACH ignore
>>TAI M 9.2.3.16 -
CSG Id List 0..1 GLOBAL ignore
>CSG Id 1 .. < maxnoofCSGId> 9.2.1.62 -
Paging Priority O 9.2.1.78 YES ignore
UE Radio Capability for Paging O 9.2.1.98 YES ignore
Assistance Data for Paging O 9.2.1.x11 YES ignore
여기서, 'Message Type'은 전송되는 메시지의 타입을 의미할 수 있다. 'UE Identity Index value'는 단말 식별 인덱스의 값을 의미할 수 있다. 'UE Paging Identity'는 페이징되는 단말의 식별자를 의미한다. 'Paging DRX(Discontinuous Reception)'는 페이징에 대한 불연속적인 수신을 의미할 수 있다. 'CSG Id List'는 CSG(Closed Subscriber Group)에 대한 아이디의 리스트를 의미할 수 있다. 'Paging Priority'는 페이징의 우선 순위를 의미할 수 있다. 'Assistance Data for Paging'는 페이징에 대한 보조 정보를 의미할 수 있다.
이하, 라이트 연결(LIGHT CONNECTION)에 대해 설명한다.
라이트 연결중인 단말에서, MME는 코어 네트워크로부터 이동성 및 상태 전이를 숨기기 위해 활성화 된 단말의 S1 연결을 유지할 수 있다. 보다 구체적으로, 라이트 연결 상태에서는, 단말과 기지국(예컨대, eNB) 간의 연결(예컨대, RRC 연결)은 비활성화 되면서, 기지국과 MME 간의 연결(예컨대, S1 연결)은 유지할 수 있다.
이와 같이, 라이트 연결 상태에서는 단말과 기지국 간의 연결은 비활성화 되었음에도 불구하고, 기지국과 MME 간의 연결은 활성화 되어있기 때문에, 하향링크 데이터가 상위 단으로부터 도착한 경우, MME는 S1/New Interface(NI) 페이징 메시지를 전송하지 않고, 하향링크 데이터를 앵커 기지국(예컨대, eNB)에게 직접 전송할 수 있다. 앵커 기지국은 먼저 수신 된 하향링크 데이터를 버퍼링 한 다음, Uu 인터페이스를 통해 페이징을 트리거할 수 있다.
여기서, 앵커 기지국이라 함은, 단말 컨텍스트(UE CONTEXT)를 가지고 있으면서, S1 연결을 유지하고 있는 기지국을 앵커 기지국이라고 할 수 있다. 아울러, 앵커 기지국은 단말과 기지국 간의 연결(예컨대, RRC 연결)은 비활성화 되면서, 기지국과 MME 간의 연결(예컨대, S1 연결)은 유지되는 기지국을 의미할 수 있다.
전술한 바와 같은 라이트 연결은, RAN 수준(예컨대, eNB 수준)에서의 이동성 처리를 제공하기에, 네트워크 인터페이스 신호를 줄일 수 있다. 또한, RAN 기반의 페이징 처리 및 구성은 단말 이동성 및 트래픽 패턴을 고려할 수 있기에, 이들 파라미터에 대해 동적이고 최적의 설정을 제공 할 수 있다.
이하, 본 발명에 대해 설명한다.
페이징 영역에 대한 제한은 시그널링 오버 헤드의 감소를 발생시키며, 이를 통해 페이징 최적화가 달성될 수 있다. 이와 같은 페이징 최적화에서, 마지막 서빙 기지국은 추천되는 셀들에서의 정보(Information On Recommended Cells) 및 페이징에 대한 eNB들(eNBs For Paging) 에 대한 정보 엘리먼트(Information Element; IE)를 포함하는 단말 컨텍스트 릴리즈 완료(UE CONTEXT RELEASE COMPLETE) 메시지를 전송할 수 있다.
하향링크 데이터가 도착하면, MME는 마지막 서빙 eNB에 의해 제공된 정보를 이용하여, 추천되는 셀들에 해단 보조 데이터(Assistance Data For Recommended Cells)와 함께, S1 페이징을 일부 eNB에게 전송할 수 있다.
전술한 상황에서, 종래의 경우에는 MME가 수신한 ‘Information on Recommended Cells and eNBs for Paging'에 기초하여, 'Information on Recommended Cells and eNBs for Paging'에서 지시하는 eNB들에 대해 페이징을 전송할 수 있었다.
하지만, 종래의 경우와 같이, MME가 'Information on Recommended Cells and eNBs for Paging'에서 지시하는 eNB들에 대해 페이징을 전송할 경우에는 지나치게 페이징 전송이 빈번하게 발생하는 문제점이 발생하였다.
본 발명에서는, MME가 라이트 연결된 단말들에 대한 S1 인터페이스를 통해 시그널링 감소를 가능하게 하기 위하여, 앵커 기지국이 자신이 앵커 기지국임을 지시하는 식별자를 MME에게 전송하는 방법을 제시하고자 한다. 이를 통해, MME는 오로지 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있으며, S1 페이징 메시지에 기초하여, 앵커 eNB는 Uu 인터페이스를 통해 단말에게 페이징을 트리거할 수 있다. 이에 따라, 본 발명에 따른 기지국 및 MME는 S1 페이징의 로드가 줄어들어, 통신의 효율이 증대되게 된다.
아울러, 전술한 상황에서, 종래의 경우에는 MME가 어떤 기지국(예컨대, eNB)이 앵커 기지국의 역할을 하는지 정확히 알 수 없을 뿐만 아니라, 종래의 경우에는 앵커의 역할을 하는 기지국의 후보가 MME의 제어와는 관련 없이 결정되었기에, 앵커 기지국(즉, 기지국과 MME간의 연결은 유지하되, 기지국과 단말 간의 연결은 비활성화 시키는 기지국)의 영역이 겹치는 경우가 발생하였다. 이는, 페이징 영역이 겹치는 문제점을 야기시켰다.
본 발명에서는, 전술한 바와 같이 페이징 영역이 겹칠 수 있는 문제점을 해결하고, 페이징 영역을 보다 효율적으로 배치하기 위해, 앵커 기지국이 자신이 앵커 기지국에 해당한다는 점을 지시하는 정보(혹은 지시자)를 MME에게 전송함으로써, MME가 앵커 기지국이 어느 기지국인지 명확히 알 수 있도록 하는 방법과, 이를 이용하는 장치를 제안하고자 한다.
도 9는 본 발명의 일 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 9에 따르면, 기지국은 앵커 기지국임을 지시하는 지시자(혹은 식별자)를 MME에게 전송할 수 있다(S910). 여기서, 상기 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 가질 수 있으며, 기지국은 예컨대 전술한 바와 같이 eNB에 해당할 수 있다. 아울러, 앵커 기지국임을 지시하는 지시자는 기지국 자기 자신이 앵커 기지국임을 지시하는 일종의 정보를 의미할 수도 있다. 앵커 기지국이라 함은, 단말 컨텍스트(UE CONTEXT)를 가지고 있으면서, S1 연결을 유지하고 있는 기지국을 앵커 기지국이라고 할 수 있다. 아울러, 앵커 기지국은 단말과 기지국 간의 연결(예컨대, RRC 연결)은 비활성화 되면서, 기지국과 MME 간의 연결(예컨대, S1 연결)은 유지되는 기지국을 의미할 수 있다. 아울러, 상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국을 의미할 수 있으며, 상기 단말과 상기 기지국 간의 연결은 RRC(Radio Resource Control) 연결이고, 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 것은 상기 RRC 연결이 해제되는 것을 의미할 수도 있다.
여기서, 기지국이 언제 자기 자신이 앵커 기지국임을 지시하는 지시자를 MME에게 전송할 것인지 여부에 대해, 크게 두 가지 방법이 존재할 수 있다. 1. 기지국이 단말 컨텍스트 릴리즈 절차를 수행할 때, 상기 지시자를 MME에게 전송할 수 있으며, 2. 기지국이 S1 셋업 절차를 수행할 때, 상기 지시자를 MME에게 전송할 수 있다. 이하, 이에 대한 내용을 보다 구체적으로 설명한다.
1. 기지국이 단말 컨텍스트 릴리즈 절차를 수행할 때, 지시자(혹은 식별자)를 MME에게 전송하는 방법.
전술한 바와 같은 문제점을 해결하기 위한 한 가지 해결책은 단말 컨텍스트 릴리즈 절차를 사용함으로써, eNB가 단말의 S1 연결을 유지하고 있다는 점을 MME에게 지시(달리 말하면, 상기 eNB가 단말에 대해 라이트 연결중인 eNB 즉, 앵커 eNB라는 점을 지시)하는 방법이 존재할 수 있다. 이러한 지시에 기초하여, MME는 페이징 영역을 제한하기 위해 앵커 eNB에만 페이징을 전송할 수 있다.
도 10은 본 발명의 다른 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 10에 따르면, 기지국은 단말 컨텍스트 릴리즈 커맨드(UE CONTEXT RELEASE COMMAND)를 MME로부터 수신할 수 있다(S1010). 즉, MME는 eNB에 있는 단말 컨텍스트(UE CONTEXT)를 해제하기 위하여 eNB로 UE CONTEXT RELEASE COMMAND 메시지를 전송할 수 있다. MME로부터 UE CONTEXT 해제를 명령 받은 eNB는 유지하고 있던 UE CONTEXT를 모두 삭제할 수 있다. 만약 RRC 연결이 아직 해제되지 않은 상태이면 eNB는 UE로 RRC CONNECTION RELEASE 메시지를 전송하여 RRC 연결을 해제함으로써, 사용자에게 할당한 무선 자원과 무선 베어러들을 해제하고 UE CONTEXT를 삭제할 수 있다.
이후, 기지국은 단말 컨텍스트 릴리즈 완료를 MME에게 전송할 수 있다(S920). 여기서, 기지국이 단말 컨텍스트 릴리즈 완료(UE CONTEXT RELEASE COMPLETE)를 MME에게 전송할 때, 기지국 자신이 앵커 기지국임을 지시하는 지시자를 함께 전송할 수 있다. 여기서, 앵커 기지국임을 지시하는 지시자는 단말 컨텍스트 릴리즈 완료에 포함될 수 있다. 아울러, 상기 단말 컨텍스트 릴리즈 완료는 '단말 컨텍스트 릴리즈 완료 메시지'로도 표현될 수 있다. 이에 관한 내용을 보다 구체적으로 설명하면 아래와 같다.
MME로부터 메시지를 수신하면, eNB는 eNB 자신이 앵커 기지국임을 지시하는 지시자를 포함하는 UE CONTEXT RELEASE COMPLETE 또는 새로운 메시지를 아래 표 3과 같이 전송할 수 있다. 표 3은 단말 컨텍스트 릴리즈 완료 메시지의 컨텐츠를 나타낸 것이다.
IE/그룹 네임(IE/Group Name) 존재(Presence) 범위(Range) IE 타입 및 참조(IE type and reference) 의미 기술(Semantics description) 위험도(Criticality) 할당된 위험도(Assigned Criticality)
Message Type M 9.2.1.1 YES reject
MME UE S1AP ID M 9.2.3.3 YES ignore
eNB UE S1AP ID M 9.2.3.4 YES ignore
Criticality Diagnostics O 9.2.1.21 YES ignore
User Location Information O 9.2.1.93 YES ignore
Information on Recommended Cells and eNBs for Paging O 9.2.1.x22 YES ignore
Cell Identifier and Coverage Enhancement Level O 9.2.1.x32 YES ignore
Indication on anchor eNB O 9.2.1.y YES ignore
여기서, 'Message Type'은 전송되는 메시지의 종류를 의미할 수 있다. 'Information on Recommended Cells and eNBs for Paging'는 페이징에 대해 추천되는 셀들 그리고 eNB들에 대한 정보를 의미할 수 있다.
특히, 앵커 기지국임을 지시하는 지시자(예컨대, 표 2에서의 'Indication on anchor eNB')는 eNB가 앵커 eNB로써 설정되었는지 여부를 MME가 식별할 수 있도록 하는 지시자를 의미할 수 있다.
이 지시자에 기초하여, MME는 단말 컨텍스트 릴리즈 완료 메시지에서의 '페이징에 대해 추천되는 eNB들(Recommended eNBs for Paging)'에서 지시되는 eNB들에게 S1 페이징 메시지를 전송하는 것이 아니라, 오로지 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있다. 즉, 전술한 방법을 통해, MME는 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있다.
2. 기지국이 S1 셋업 절차를 수행할 때, 상기 지시자(혹은 식별자)를 MME에게 전송하는 방법.
전술한 바와 같은 문제점을 해결하기 위한 다른 해결책은, S1 셋업 절차를 수행할 때, eNB가 MME에게 라이트 연결 단말을 위하여 S1 연결을 유지시킬 것을 지시하는 방법이 있을 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른, 자신이 앵커 기지국임을 지시하는 지시자를 전송하는 방법의 순서도다.
도 11에 따르면, 기지국은 MME에게 S1 셋업 요청(S1 SETUP REQUEST)을 전송할 수 있다(S1110). 기지국이 MME에게 S1 셋업 요청을 전송할 때, 기지국은 기지국 자신이 앵커 기지국임을 지시하는 지시자를 함께 전송할 수 있으며, 이때의 지시자는 상기 S1 셋업 요청에 포함될 수도 있다. 아울러, 전술한 바와 같이, 상기 기지국은 eNB를 의미할 수 있다. 이하에서는, 기지국이 상기 지시자를 MME에게 전송하는 보다 구체적인 방법에 대해 설명한다.
eNB는 S1 SETUP REQUEST 또는 새로운 메시지를 사용하여 앵커 eNB에 대한 지시자를 MME에게 전송할 수 있다. 상기 지시자는 전술한 바와 같이, MME로 하여금 eNB가 앵커 eNB로 설정되어 있는지 아닌지 여부를 식별하는 지시자를 의미할 수 있다. 상기 메시지(즉, 상기 지시자를 포함하는 S1 셋업 요청 혹은 새로운 메시지)를 eNB로부터 수신하면, MME는 상기 지시자를 저장하고, 상기 지시자를 앵커 eNB를 식별하는데 사용할 수 있다.
상기 지시자에 기초하여, MME가 라이트 연결된 UE에게 송신될 하향링크 데이터를 갖는 경우, MME는 단말 컨텍스트 릴리즈 완료 메시지에서의 '페이징에 대해 추천되는 eNB들(Recommended eNBs for Paging)'에서 지시되는 eNB들에게 S1 페이징 메시지를 전송하는 것이 아니라, 오로지 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있다. 즉, 전술한 방법을 통해, MME는 앵커 eNB에 대해서만 S1 페이징 메시지를 전송할 수 있다.
이후, 기지국은 상기 MME로부터 S1 셋업 응답(S1 SETUP RESPONSE)을 수신할 수 있다(S1120). 즉, 기지국은 상기 S1 셋업 요청에 대한 응답으로써 S1 셋업 응답 메시지를 수신할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 12를 참조하면, 무선 통신 시스템은 네트워크 노드(1110)와 다수의 단말(UE)(1120)을 포함한다.
네트워크 노드(1110)는 프로세서(processor, 1111), 메모리(memory, 1112) 및 통신 모듈(communication module, 1113)을 포함한다.
일 실시예에 따르면, 프로세서(1111)는 본 발명이 설명하는 기능/동작/방법을 실시할 수 있다. 예를 들어, 프로세서(1111)는 기지국 자신이 앵커 기지국임을 지시하는 지시자를 전송할 수 있다.
유/무선 인터페이스 프로토콜의 계층들은 프로세서(1111)에 의해 구현될 수 있다. 메모리(1112)는 프로세서(1111)와 연결되어, 프로세서(1111)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1113)은 프로세서(1111)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(1110)의 일례로, 기지국, MME, C-SGN, HSS, SGW, PGW, SCEF, SCS/AS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(1110)가 기지국인 경우, 통신 모듈(1113)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1120)은 프로세서(1121), 메모리(1122) 및 통신 모듈(또는 RF부)(1123)을 포함한다.
일 실시예에 따르면, 프로세서(1111)는 본 발명이 설명하는 기능/동작/방법을 실시할 수 있다.
무선 인터페이스 프로토콜의 계층들은 프로세서(1121)에 의해 구현될 수 있다. 메모리(1122)는 프로세서(1121)와 연결되어, 프로세서(1121)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1123)는 프로세서(1121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1112, 1122)는 프로세서(1111, 1121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1111, 1121)와 연결될 수 있다. 또한, 네트워크 노드(1110)(기지국인 경우) 및/또는 단말(1120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명의 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 보고 방법 및 상기 방법을 이용하는 장치는 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 기지국에 의해 수행되는 지시자 전송 방법에 있어서,
    상기 기지국이 앵커 기지국임을 지시하는 지시자를 MME(Mobility Management Entity)에게 전송하되,
    상기 앵커 기지국은 단말과 상기 기지국 간의 연결은 비활성화하면서 상기 기지국과 상기 MME 간의 연결은 유지하는 기지국이고,
    상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국인 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 지시자는 단말 컨텍스트 릴리즈 완료(UE Context Release Complete) 메시지에 포함되어 전송되는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 단말 컨텍스트 릴리즈 완료 메시지는 단말 컨텍스트 릴리즈 명령(UE Context Release Command) 메시지의 응답으로 전송되는 것을 특징으로 하는 방법.
  4. 제2항에 있어서,
    상기 기지국은 상기 지시자가 포함된 상기 단말 컨텍스트 릴리즈 완료 메시지에 대한 응답으로 페이징 메시지를 상기 MME로부터 수신하는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 지시자는 S1 셋업 요청(S1 Setup Request) 메시지에 포함되어 전송되는 것을 특징으로 하는 방법.
  6. 제5항에 있어서,
    상기 기지국은 상기 S1 셋업 요청 메시지에 대한 응답으로 S1 셋업 응답 메시지를 수신하는 것을 특징으로 하는 방법.
  7. 제5항에 있어서,
    상기 기지국은 상기 지시자가 포함된 상기 S1 셋업 요청 메시지에 대한 응답으로 페이징 메시지를 상기 MME로부터 수신하는 것을 특징으로 하는 방법.
  8. 제1항에 있어서,
    상기 기지국은 eNodeB(eNB)인 것을 특징으로 하는 방법.
  9. 제1항에 있어서,
    상기 기지국과 상기 MME 간의 연결은 S1 연결인 것을 특징으로 하는 방법.
  10. 제1항에 있어서,
    상기 단말과 상기 기지국 간의 연결은 RRC(Radio Resource Control) 연결이고,
    상기 단말과 상기 기지국 간의 연결이 비활성화 되는 것은 상기 RRC 연결이 해제되는 것을 특징으로 하는 방법.
  11. 기지국은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    상기 기지국이 앵커 기지국임을 지시하는 지시자를 MME(Mobility Management Entity)에게 전송하되,
    상기 앵커 기지국은 단말과 상기 기지국 간의 연결은 비활성화하면서 상기 기지국과 상기 MME 간의 연결은 유지하는 기지국이고,
    상기 앵커 기지국은 상기 단말과 상기 기지국 간의 연결이 비활성화 되는 동안 단말 컨텍스트를 저장하고 있는 기지국인 것을 특징으로 하는 기지국.
  12. 제11항에 있어서,
    상기 지시자는 단말 컨텍스트 릴리즈 완료(UE Context Release Complete) 메시지에 포함되어 전송되는 것을 특징으로 하는 기지국.
  13. 제12항에 있어서,
    상기 단말 컨텍스트 릴리즈 완료 메시지는 단말 컨텍스트 릴리즈 명령(UE Context Release Command) 메시지의 응답으로 전송되는 것을 특징으로 하는 기지국.
  14. 제12항에 있어서,
    상기 기지국은 상기 지시자가 포함된 상기 단말 컨텍스트 릴리즈 완료 메시지에 대한 응답으로 페이징 메시지를 상기 MME로부터 수신하는 것을 특징으로 하는 기지국.
  15. 제11항에 있어서,
    상기 지시자는 S1 셋업 요청(S1 Setup Request) 메시지에 포함되어 전송되는 것을 특징으로 하는 기지국.
PCT/KR2017/004327 2016-04-22 2017-04-24 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 장치 WO2017183949A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662326019P 2016-04-22 2016-04-22
US62/326,019 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183949A1 true WO2017183949A1 (ko) 2017-10-26

Family

ID=60116923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004327 WO2017183949A1 (ko) 2016-04-22 2017-04-24 무선 통신 시스템에서 기지국에 의해 수행되는 앵커 기지국 식별 방법 및 상기 방법을 이용하는 장치

Country Status (1)

Country Link
WO (1) WO2017183949A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020185134A1 (en) * 2019-03-08 2020-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Bearer connection handling of a communications network
CN111742582A (zh) * 2018-02-03 2020-10-02 高通股份有限公司 非活动模式用户设备与无线网络之间的数据传递

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120055552A (ko) * 2009-07-06 2012-05-31 록스타 비드코, 엘피 무선 통신을 위한 방법들 및 장치
KR20120099665A (ko) * 2009-11-04 2012-09-11 삼성전자주식회사 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
WO2013066074A1 (en) * 2011-11-01 2013-05-10 Lg Electronics Inc. Method and apparatus for releasing delay tolerant access user equipment in wireless communication system
US20150223198A1 (en) * 2014-01-31 2015-08-06 Nokia Solutions And Networks Oy Managing an Active Timer in a Power Save State
WO2016010523A1 (en) * 2014-07-15 2016-01-21 Nokia Solutions And Networks Oy Distributed implementation of self-organizing tracking areas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120055552A (ko) * 2009-07-06 2012-05-31 록스타 비드코, 엘피 무선 통신을 위한 방법들 및 장치
KR20120099665A (ko) * 2009-11-04 2012-09-11 삼성전자주식회사 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
WO2013066074A1 (en) * 2011-11-01 2013-05-10 Lg Electronics Inc. Method and apparatus for releasing delay tolerant access user equipment in wireless communication system
US20150223198A1 (en) * 2014-01-31 2015-08-06 Nokia Solutions And Networks Oy Managing an Active Timer in a Power Save State
WO2016010523A1 (en) * 2014-07-15 2016-01-21 Nokia Solutions And Networks Oy Distributed implementation of self-organizing tracking areas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742582A (zh) * 2018-02-03 2020-10-02 高通股份有限公司 非活动模式用户设备与无线网络之间的数据传递
CN111742582B (zh) * 2018-02-03 2023-05-23 高通股份有限公司 非活动模式用户设备与无线网络之间的数据传递
US11895585B2 (en) 2018-02-03 2024-02-06 Qualcomm Incorporated Data transfer between an inactive mode user equipment and a wireless network
WO2020185134A1 (en) * 2019-03-08 2020-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Bearer connection handling of a communications network

Similar Documents

Publication Publication Date Title
WO2017188787A2 (ko) 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017126928A1 (ko) 연결 모드 변경 방법 및 이동성 관리 개체
WO2016153307A1 (en) Method and apparatus for performing wt release procedure in wireless communication system
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2012108717A2 (en) Method for processing data associated with handover in a wireless network
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2014137098A1 (ko) 근접 서비스 범위 조정 방법 및 필터링 방법
WO2017126942A1 (ko) 데이터 수신 방법 및 사용자기기와, 데이터 전송 방법 및 기지국
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2016114612A1 (en) Method and apparatus for supporting standalone local gateway service for dual connectivity in wireless communication system
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2017131502A1 (ko) 트랙킹 영역 갱신 개시 방법 및 사용자기기
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2018143758A1 (ko) 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
WO2017078323A1 (ko) 페이징을 수행하는 방법 및 장치
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
WO2016003199A1 (ko) 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2017164696A2 (ko) 메시지 전송 방법 및 사용자기기
WO2017131481A1 (ko) 데이터 전송 방법 및 기지국과, 데이터 전달 방법 및 코어 노드
WO2017164686A1 (ko) 무선 통신 시스템에서 v2x 메시지 전송에 관련된 동작을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786217

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17786217

Country of ref document: EP

Kind code of ref document: A1