WO2017164696A2 - 메시지 전송 방법 및 사용자기기 - Google Patents
메시지 전송 방법 및 사용자기기 Download PDFInfo
- Publication number
- WO2017164696A2 WO2017164696A2 PCT/KR2017/003207 KR2017003207W WO2017164696A2 WO 2017164696 A2 WO2017164696 A2 WO 2017164696A2 KR 2017003207 W KR2017003207 W KR 2017003207W WO 2017164696 A2 WO2017164696 A2 WO 2017164696A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- message
- nas
- data
- layer
- srb
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0252—Traffic management, e.g. flow control or congestion control per individual bearer or channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/12—Flow control between communication endpoints using signalling between network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/04—Interfaces between hierarchically different network devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
Definitions
- the present invention relates to a wireless communication system and to a method and apparatus for transmitting a message.
- Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
- a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- MCD division multiple access
- MCDMA multi-carrier frequency division multiple access
- MC-FDMA multi-carrier frequency division multiple access
- M2M smartphone-to-machine communication
- smart phones and tablet PCs which require high data transmission rates
- M2M smartphone-to-machine communication
- carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
- a node is a fixed point capable of transmitting / receiving a radio signal with a UE having one or more antennas.
- a communication system having a high density of nodes can provide higher performance communication services to the UE by cooperation between nodes.
- mMTC massive machine type communication
- eMBB enhanced mobile broadband communications
- mMTC massive machine type communications
- URLLC ultra-reliable and low latency communication
- a method for transmitting a message by a user device comprises: generating a NAS message at a non-access stratum (NAS) layer; Transferring the NAS message and type information from the NAS layer to an access stratum (AS) layer; And sending an AS message containing the NAS message to a network.
- the type information may indicate whether the NAS message is a first type message containing user data or a second type message without user data.
- a user device for transmitting a message includes a radio frequency (RF) unit and a processor configured to control the RF unit.
- the processor is configured to: generate a NAS message at a non-access stratum (NAS) layer; Transferring the NAS message and type information from the NAS layer to an access stratum (AS) layer; And control the RF unit to transmit an AS message containing the NAS message to a network.
- the type information may indicate whether the NAS message is a first type message containing user data or a second type message without user data.
- the AS message may further include the type information.
- the AS layer is based on the type information of each of the plurality of NAS messages. For example, the NAS message corresponding to the second type message may be transmitted before the NAS message corresponding to the first type message.
- SRB signaling radio bearer
- the AS message may be a radio resource control (RRC) message.
- RRC radio resource control
- the AS layer may transmit the AS message through a first signaling radio bearer (SRB) or a second SRB based on the type information.
- SRB signaling radio bearer
- the first SRB may be SRB1 with a packet data convergence protocol (PDCP), and the second SRB may be a new SRB having the same configuration as the SRB1 but without PDCP.
- PDCP packet data convergence protocol
- the type information may further indicate whether the user equipment is using a control plane CIoT EPS optimization that uses a control plane for the transport of user data. If the user equipment is using the control plane CIoT EPS optimization, the AS message can be sent on the new SRB, otherwise it can be sent on the SRB1.
- a wireless communication signal can be transmitted / received efficiently. Accordingly, the overall throughput of the wireless communication system can be high.
- a low complexity / low cost UE can communicate with a network while maintaining compatibility with existing systems.
- the UE can be implemented at low complexity / low cost.
- the UE and the network can communicate in a narrow band.
- a small amount of data can be transmitted / received efficiently.
- FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
- EPS Evolved Packet System
- EPC Evolved Packet Core
- FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
- 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
- FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
- FIG 5 illustrates LTE protocol stacks for the user plane and control plane.
- 6 is a flowchart for explaining a random access process.
- RRC 7 is a diagram illustrating a connection process in a radio resource control (RRC) layer.
- RRC radio resource control
- FIG. 8 illustrates user plane protocol stacks between UE and P-GW according to control plane CIoT optimization.
- FIG. 9 shows a functional view of the PDCP layer in the LTE / LTE-A system.
- FIG. 10 illustrates a flowchart of a method of transporting mobile originated (MO) data with control plane CIoT EPS optimization.
- FIG. 11 illustrates a method for transmitting a non-access stratum (NAS) message in accordance with the present invention.
- NAS non-access stratum
- FIG. 12 illustrates a flowchart of a method of transporting mobile terminated (MT) data with control plane CIoT EPS optimization.
- Fig. 13 is a diagram showing the configuration of a node device applied to the proposal of the present invention.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some of the components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
- the present specification provides 3GPP TS 36.211, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.322, 3GPP TS 36.323, 3GPP TS 36.331, 3GPP TS 23.401, 3GPP TS 24.301, 3GPP TS 23.228, 3GPP TS 29.228, 3GPP TS 23.218 , 3GPP TS 22.011, 3GPP TS 36.413 may be incorporate by reference.
- IP Multimedia Subsystem or IP Multimedia Core Network Subsystem An architectural framework for providing standardization for delivering voice or other multimedia services over IP.
- UMTS Universal Mobile Telecommunications System
- GSM Global System for Mobile Communication
- Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
- EPC Evolved Packet Core
- PS packet switched
- IP Internet Protocol
- UMTS is an evolutionary network.
- NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
- eNodeB / eNB base station of the E-UTRAN. It is installed outdoors and its coverage is macro cell size.
- UE User Equipment
- the UE may be referred to in terms of terminal (UE), mobile equipment (ME), mobile station (MS), and the like.
- the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
- the term UE or terminal may refer to an MTC device.
- HNB Home NodeB
- HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
- Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
- Packet Data Network-Gateway (PDN-GW) / PGW / P-GW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
- SGW Serving Gateway
- S-GW network node of EPS network performing mobility anchor, packet routing, idle mode packet buffering, triggering MME to page UE, etc. .
- PCRF Policy and Charging Rule Function
- OMA DM Open Mobile Alliance Device Management: A protocol designed for the management of mobile devices such as mobile phones, PDAs, portable computers, etc., and includes device configuration, firmware upgrades, and error reporting. Report).
- OAM Operaation Administration and Maintenance
- a group of network management functions that provides network fault indication, performance information, and data and diagnostics.
- Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
- EMM EPS Mobility Management: A sub-layer of the NAS layer, where the EMM is in the "EMM-Registered” or “EMM-Deregistered” state depending on whether the UE is network attached or detached. There may be.
- ECM Connection Management (ECM) connection A signaling connection for the exchange of NAS messages, established between the UE and the MME.
- An ECM connection is a logical connection consisting of an RRC connection between a UE and an eNB and an S1 signaling connection between the eNB and the MME. Once the ECM connection is established / terminated, the RRC and S1 signaling connections are established / terminated as well.
- the established ECM connection means that the UE has an RRC connection established with the eNB, and the MME means having an S1 signaling connection established with the eNB.
- the ECM may have an "ECM-Connected" or "ECM-Idle" state.
- AS Access-Stratum: Contains a protocol stack between the UE and a wireless (or access) network, and is responsible for transmitting data and network control signals.
- NAS configuration MO Management Object: A MO (Management object) used in the process of setting parameters related to NAS functionalities to the UE.
- Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
- MMS Multimedia Messaging Service
- WAP Wireless Application Protocol
- PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
- APN Access Point Name: A string indicating or identifying a PDN. In order to access the requested service or network, it goes through a specific P-GW, which means a predefined name (string) in the network so that the P-GW can be found. (For example, internet.mnc012.mcc345.gprs)
- RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between the UEs and provides connectivity to the core network.
- RNC Radio Network Controller
- HLR Home Location Register
- HSS Home Subscriber Server
- PLMN Public Land Mobile Network
- ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a UE to discover and select an available access on an operator basis as a network entity.
- EPC path (or infrastructure data path): user plane communication path through EPC
- E-UTRAN Radio Access Bearer refers to the concatenation of the S1 bearer and the corresponding data radio bearer. If there is an E-RAB, there is a one-to-one mapping between the E-RAB and the EPS bearer of the NAS.
- GTP GPRS Tunneling Protocol
- GTP A group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS and LTE networks.
- GTP and proxy mobile IPv6-based interfaces are specified on various interface points.
- GTP can be decomposed into several protocols (eg, GTP-C, GTP-U and GTP ').
- GTP-C is used within the GPRS core network for signaling between Gateway GPRS Support Nodes (GGSN) and Serving GPRS Support Nodes (SGSN).
- GGSN Gateway GPRS Support Nodes
- SGSN Serving GPRS Support Nodes
- GTP-C allows the SGSN to activate a session (eg PDN context activation), deactivate the same session, adjust the quality of service parameters for the user.
- GTP-U is used to carry user data within the GPRS core network and between the radio access network and the core network.
- EPS Evolved Packet System
- EPC Evolved Packet Core
- SAE System Architecture Evolution
- SAE is a research project to determine network structure supporting mobility between various kinds of networks.
- SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
- EPC is a core network (Core Network) of the IP mobile communication system for the 3GPP LTE system, it can support packet-based real-time and non-real-time services.
- existing mobile communication systems ie, 2nd or 3rd generation mobile communication systems
- two distinct sub-domains of CS Circuit-Switched
- PS Packet-Switched
- the function has been implemented.
- the sub-domains of CS and PS have been unified into one IP domain.
- a connection between a UE having an IP capability and a UE may include an IP-based base station (eg, evolved Node B (eNodeB)), an EPC, an application domain (eg, IMS (eg, IP Multimedia Subsystem)).
- eNodeB evolved Node B
- EPC an application domain
- IMS IP Multimedia Subsystem
- the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
- SGW serving gateway
- PDN GW packet data network gateway
- MME mobility management entity
- SGRS serving general packet
- Radio Service Upporting Node
- ePDG Enhanced Packet Data Gateway
- the SGW acts as the boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNB and the PDN GW.
- the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
- E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
- SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
- RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data Rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
- GSM Global System for Mobile Communication
- EDGE Enhanced Data Rates for Global Evolution
- the PDN GW corresponds to the termination point of the data interface towards the packet data network.
- the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
- mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
- untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
- I-WLANs Interworking Wireless Local Area Networks
- CDMA code-division multiple access
- WiMax trusted networks
- FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
- the MME is an element that performs signaling and control functions to support access, network resource allocation, tracking, paging, roaming, handover, etc. to the UE's network connection. .
- the MME controls control plane functions related to subscriber and session management.
- the MME manages numerous eNBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
- the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
- SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
- 3GPP networks eg GPRS networks.
- the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
- untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
- a UE having IP capability may be configured by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. It can connect to the providing IP service network (eg, IMS).
- IMS IP service network
- FIG. 1 also shows various reference points (eg, S1-U, S1-MME, etc.).
- reference points eg, S1-U, S1-MME, etc.
- Table 1 summarizes the reference points shown in FIG. 1.
- S1-MME Reference point for the control plane protocol between E-UTRAN and MME.
- S1-U Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNB path switching during handover.
- S3 It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).
- S4 It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
- S5 It provides user plane tunnelling and tunnel management between Serving GW and PDN GW.
- Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.
- S2a and S2b correspond to non-3GPP interfaces.
- S2a is a reference point that provides the user plane with relevant control and mobility support between a trusted non-3GPP connection and a PDN GW.
- S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
- FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
- the eNB is responsible for routing resources to the gateway, scheduling and sending paging messages, scheduling and sending broadcast channels (BCHs), and uplink and downlink resources while the Radio Resource Control (RRC) connection is active.
- Functions for dynamic allocation to the UE, configuration and provision for measurement of eNB, radio bearer control, radio admission control, and connection mobility control may be performed.
- paging can be generated, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
- FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNB
- FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a UE and an eNB. .
- the air interface protocol is based on the 3GPP radio access network standard.
- the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
- the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which are well known in communication systems, and include L1 (first layer), L2 (second layer), and L3 (third layer). Can be separated by).
- OSI Open System Interconnection
- the physical layer which is the first layer, provides an information transfer service using a physical channel.
- the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
- data is transmitted between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
- the physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
- one subframe includes a plurality of OFDM symbols and a plurality of subcarriers on the time axis.
- One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of OFDM symbols and a plurality of subcarriers.
- the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
- the physical channels present in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH), and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PUCCH Physical Uplink Control Channel
- the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channels to map several logical channels to one transport channel. Perform the role of multiplexing.
- the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
- the radio link control (RLC) layer of the second layer segments and concatenates the data received from the upper layer so that the lower layer is suitable for transmitting data through a radio interface. It controls the size of data.
- RLC radio link control
- the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Header Compression, which reduces the packet header size.
- the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
- the radio resource control layer (hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and reconfiguration of radio bearers (abbreviated as RB) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
- RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
- RBs are largely divided into a (user) data radio bearer (DRB) and a signaling radio bearer (SRB).
- DRB data radio bearer
- SRBs are defined as RBs used only for the transmission of RRC and NAS messages. In particular, three SRBs are currently defined:
- RRC messages (which may include piggybacked NAS messages) as well as for NAS messages prior to the establishment of SRB2, using a dedicated control channel (DCCH) logical channel.
- DCCH dedicated control channel
- SRB for RRC messages containing logged measurement information, as well as for NAS messages, using the DCCH logical channel.
- SRB2 has a lower-priority than SRB1 and is always secure. It is set by the E-UTRAN after activation.
- the UE If an RRC connection is established between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. .
- the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the corresponding UE in units of cells, and thus can effectively control the UE.
- the E-UTRAN cannot detect the existence of the UE, and the core network manages the unit of the tracking area (TA), which is a larger area than the cell. That is, the UE in the RRC_IDLE state is only identified whether the UE exists in a larger area unit than the cell, and the UE should transition to the RRC_CONNECTED state in order to receive a normal mobile communication service such as voice or data.
- TA is identified by a tracking area identity (TAI).
- the UE may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
- the UE When the user first powers up the UE, the UE first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers information of the UE in the core network. Thereafter, the UE stays in the RRC_IDLE state. The UE staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
- the UE staying in the RRC_IDLE state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and transitions to the RRC_CONNECTED state.
- RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
- a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
- NAS non-access stratum
- the NAS forms the highest stratum of the control plane between the UE and the MME at the air interface.
- the main functions of the protocols that are part of the NAS are the mobility support of the UE and the support of session management procedures for establishing and maintaining the IP connectivity between the UE and the P-GW. to be.
- NAS security is an additional feature of NAS that provides integrity protection and ciphering of services, eg NAS signaling messages, to NAS protocols.
- EPM EPS mobility management
- ESM basic procedures for EPS session management
- a complete NAS transaction consists of specific sequences of basic procedures.
- EMM mobility management
- the primary function of the mobility management sublayer is to support the mobility of the UE, such as informing the network of its current location and providing user identifier confidentiality.
- Another function of the mobility management sublayer is to provide connection management services to the session management sublayer and short message services (SMS) entity of the connection management sublayer. All EMM procedures are performed if a NAS signaling connection is established, otherwise the EMM sublayer initiates the establishment of a NAS signaling connection.
- EMM processes can be divided into three types depending on how they can be initiated: EMM common processes, EMM specific processes, and EMM connection management processes (S1 mode only). EMM common procedures may be initiated while there is a NAS signaling connection.
- EMM specific processes only one UE initiated EMM specific process may be running at any time.
- EMM specific processes include attach, detach, and tracking area update.
- EMM connection management processes include service request, paging request, transport of NAS messages, and general transport of NAS messages.
- Evolved Session Management belonging to the NAS layer performs functions such as default bearer management and dedicated bearer management, so that the UE is in charge of controlling the PS service from the network.
- the main function of the ESM sublayer is to support EPS bearer context handling in the UE and in the MME.
- the ESM may process (s) for activation, deactivation and modification of EPS bearer contexts and process (s) for requesting resources (IP connectivity or dedicated bearer resources to the PDN) by the UE. ).
- the default bearer resource is characterized in that it is allocated from the network when the network is first connected to a specific Packet Data Network (PDN).
- PDN Packet Data Network
- the network allocates an IP address available to the UE so that the UE can use the data service, and also allocates QoS of the default bearer.
- LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission / reception and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
- GBR guaranteed bit rate
- non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
- a non-GBR bearer is allocated.
- a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
- the bearer allocated to the UE in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS bearer ID.
- EPS bearer ID This is called EPS bearer ID.
- One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
- FIG. 5 illustrates LTE protocol stacks for the user plane and control plane.
- FIG. 5 (a) illustrates user plane protocol stacks over UE-eNB-SGW-PGW-PDN
- FIG. 5 (b) illustrates control plane protocol stacks over UE-eNB-MME-SGW-PGW.
- the GTP-U protocol is used to forward user IP packets over an S1-U / S5 / X2 interface. If a GTP tunnel is established for data forwarding during LTE handover, an End Marker Packet is transferred over the GTP tunnel as the last packet.
- the S1AP protocol is applied to the S1-MME interface.
- the S1AP protocol supports functions such as S1 interface management, E-RAB management, NAS signaling delivery and UE context management.
- the S1AP protocol conveys an initial UE context to the eNB to set up E-RAB (s), and then manages modification or release of the UE context.
- the GTP-C protocol is applied to the S11 / S5 interfaces.
- the GTP-C protocol supports the exchange of control information for the creation, modification and termination of GTP tunnel (s).
- the GTP-C protocol creates data forwarding tunnels in case of LTE handover.
- protocol stacks and interfaces illustrated in FIGS. 3 and 4 may also apply to the same protocol stacks and interfaces of FIG. 5.
- 6 is a flowchart illustrating a random access procedure in 3GPP LTE.
- the random access procedure is performed for the UE to obtain UL synchronization with the base station or to be allocated UL radio resources.
- the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNB.
- PRACH physical random access channel
- Each cell has 64 candidate random access (RA) preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles. .
- RA random access
- ZC Zadoff-Chu
- the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting a random access preamble.
- the random access process in particular the contention-based random access process, includes three steps.
- the messages transmitted in the following steps 1, 2, and 3 may also be referred to as msg1, msg2, and msg4, respectively.
- the UE transmits a randomly selected random access preamble to the eNB.
- the UE selects one of the 64 candidate random access preambles.
- the corresponding subframe is selected by the PRACH configuration index.
- the UE transmits the selected random access preamble in the selected subframe.
- the eNB that receives the random access preamble sends a random access response (RAR) to the UE.
- the random access response is detected in two stages. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) Protocol Data Unit (PDU) on the PDSCH indicated by the detected PDCCH.
- the RAR includes timing advance (TA) information indicating timing offset information for UL synchronization, UL resource allocation information (UL grant information), a temporary UE identifier (eg, temporary cell-RNTI, TC-RNTI), and the like. .
- TA timing advance
- the UE may perform UL transmission according to resource allocation information (ie, scheduling information) and a TA value in the RAR.
- HARQ is applied to UL transmission corresponding to the RAR. Therefore, after performing the UL transmission, the UE may receive reception response information (eg, PHICH) corresponding to the UL transmission.
- RRC 7 shows a connection process in a radio resource control (RRC) layer.
- RRC radio resource control
- the RRC state is shown depending on whether the RRC is connected.
- the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with the entity of the RRC layer of the eNB, and when connected, is referred to as an RRC connected state.
- the non-state is called the RRC idle state.
- the E-UTRAN can grasp the existence of the corresponding UE in units of cells, and thus can effectively control the UE.
- the idle state UE is not known to the eNB, but is managed by the core network in units of a tracking area, which is a larger area unit than a cell.
- the tracking area is a collection unit of cells. That is, the idle state UE is only identified in a large area unit, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state.
- the UE When a user first powers up a UE, the UE first searches for a suitable cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNB through an RRC connection procedure and transitions to an RRC connected state. .
- the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
- RRC connection setup complete In order to establish an RRC connection with the eNB, a UE in an idle state must proceed with an RRC connection procedure as described above.
- the RRC connection process is largely performed by a UE transmitting an RRC connection request message to an eNB, an eNB sending an RRC connection setup message to the UE, and a UE completing the RRC connection setup to the eNB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 7 as follows.
- the UE When a UE in idle mode attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNB paging, the UE first receives an RRC connection request message. Send to the eNB.
- the eNB Upon receiving the RRC connection request message from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and sends an RRC connection setup message, which is a response message, to the UE. do.
- the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNB.
- a service request process is performed so that a new traffic is generated and a UE in an idle state transitions to an active state capable of transmitting / receiving traffic.
- the UE is registered in the network but the S1 connection is released due to traffic deactivation and no radio resources are allocated, that is, when the UE is in the EMM-Registered state but in the ECM-Idle state.
- the UE transitions to an ECM-connected state when the UE requests a service from the network and successfully completes the service request process.
- ECM connection RRC connection + S1 signaling connection
- ECM-Idle ECM-Idle
- the UE first notifies the UE that there is traffic to transmit, so that the UE can make a service request.
- the network trigger service request process will be described briefly as follows.
- a signal is generated / needed to be transmitted to a UE in which the MME is in an ECM-IDLE state, for example, an MME / HSS-initiated detach for an ECM-IDLE mode UE.
- the S-GW receives control signaling (eg, create bearer request or update bearer request)
- the MME initiates a network initiation service request.
- the S-GW When the S-GW receives a Create Bearer Request or Update Bearer Request (UE) for the UE, if ISR (Idle mode Signaling Reduction) is activated, and the S-GW is If the SGSN does not have downlink S1-U and the SGSN notifies the S-GW that the UE has moved to the PMM-IDLE state or the STANDBY state, the S-GW buffers a signaling message and downlink data. Send a Downlink Data Notification to trigger the MME and SGSN to page the UE. The S-GW sends a second downlink data notification for the bearer having a higher priority (ie, ARP priority level) than the bearer to which the first downlink data notification was sent, waiting for the user plane to be established.
- UE Create Bearer Request or Update Bearer Request
- the S-GW sends a new downlink data notification message indicating the high priority to the MME.
- the S-GW receives additional downlink data packets for a bearer of the same or higher priority as the bearer to which the first downlink data notification was sent or the second downlink in which the S-GW indicates the high priority.
- the S-GW buffers these downlink data packets and does not send a new downlink data notification.
- the S-GW will be informed about the current RAT type based on the UE triggered service request process.
- the S-GW will continue to execute the dedicated bearer activation or dedicated bearer modification process.
- the S-GW sends the corresponding buffered signaling to the MME or SGSN where the UE is currently staying and informs the P-GW of the current RAT type if the RAT type has changed compared to the last reported RAT type.
- the current RAT type information is conveyed from the P-GW to the PCRF. If the PCRF response leads to EPS bearer modification, the P-GW initiates a bearer update process.
- the S-GW includes both EPS bearer ID and ARP when sending downlink data notification. If the downlink data notification is triggered by the arrival of downlink data packets to the S-GW, the S-GW includes the EPS bearer ID and ARP associated with the bearer from which the downlink data packet was received.
- the S-GW includes the EPS bearer ID and ARP if present in the control signaling. If the ARP is not present in the control signaling, the S-GW includes the ARP in a stored EPS bearer context. If a LIPA PDN connection exists when the local gateway (L-GW) receives downlink data for a UE in ECM-IDLE state, the L-GW sends the first downlink user packet to the S-GW and all other downlinks. Buffer link packets. The S-GW triggers the MME to page the UE. See section 5.3.4.3 of the 3GPP TS 23.401 document for details on the network trigger service request process.
- L-GW local gateway
- the UE having the traffic to be transmitted transmits an RRC connection request to the eNB through a random access procedure including steps 1) to 3) of FIG. 7.
- the eNB accepts the RRC connection request of the UE, the RRC connection setup message is transmitted to the UE, and the UE having received the RRC connection setup message sends a service request to the RRC connection setup complete message to the eNB. See section 5.3.4.1 of the 3GPP TS 23.401 document for details on the UE triggered service request process.
- Initial NAS messages include an attach request; Detach request; Tracking area update request; Service request; And EXTENDED SERVICE RQUEST.
- the service request is a message sent to the network by the UE to request establishment of a NAS signaling connection and establishment of radio and S1 bearers.
- the extended service request may initiate a CS fallback or 1xCS fallback call or respond to a mobile terminated CS fallback or 1xCS fallback request request from the network; Or if the UE needs to provide additional information that cannot be provided via a service request message, to the network by the UE to request establishment of a NAS signaling connection and establishment of radio and S1 bearers for packet service. The message sent.
- the service request procedure is for transferring the EMM mode from the EMM-IDLE to the EMM-CONNECTED mode. If the UE is not using the control plane CIoT EPS optimization described below, the service request procedure also establishes radio and S1 bearers when user data or signaling is sent. If the UE is using control plane CIoT EPS optimization, the service request procedure may be used for UE-initiated transfer of CIoT data.
- the service request procedure may be performed when the network has downlink signaling pending; When the UE has uplink signaling pending; When the UE or the network is in pending EMM-IDLE mode with user data pending; Used when a UE in EMM-IDLE or EMM-CONNECTED mode requests to perform a mobile originating / terminating CS fallback or 1 ⁇ CS fallback.
- the service request procedure is initiated by the UE. However, for downlink transmission (transfer), cdma2000 ® signaling or EMM-IDLE mode, the signaling triggers a paging process using a given by the network.
- the network may activate a default EPS bearer context (ie, if the UE requests PDN connectivity with an attach request).
- the network may activate one or several dedicated EPS bearer contexts in parallel for PDN connections of the IP PDN type.
- an EPS session management (ESM) message for activating a default EPS bearer context may be transmitted in an information element in an EPS mobility management (EMM) message.
- EMM EPS session management
- the UE and the network execute the attach procedure, the default EPS bearer context activation procedure, and the dedicated EPS bearer context activation procedure in parallel.
- the UE and the network must complete the combined default EPS bearer context activation procedure and attach procedure before the dedicated EPS bearer context activation procedure is completed. If EMM-REGISTERED without PDN connection is not supported by the UE or MME, the success of the attach procedure depends on the success of the default EPS bearer context activation procedure. If the attach procedure fails, the ESM procedure also fails.
- EMM messages include, for example, attach accept, attach complete, attach rejection, attach request, authentication failure, authentication rejection, authentication request, authentication response, CS service notification, detach attachment. , Reject detach, downlink NAS transport, EMM information, EMM status, extended service request, service request, denial of service, accept tracking area update, reject tracking area update, reject tracking area update, Tracking area update request, uplink NAS transport, downlink generic NAS transport, uplink general NAS transport and the like.
- ESM messages include, for example, activate dedicate EPS bearer context accept, refuse activation only EPS bearer context, request activation only EPS bearer context, accept activation only EPS bearer context, activation default EPS bearer context.
- MTC machine type communication
- MTC mainly refers to information exchange performed between a machine and an eNB without human intervention or with minimal human intervention.
- MTC can be used for data communication such as meter reading, level measurement, surveillance camera utilization, measurement / detection / reporting such as inventory reporting of vending machines, etc. It may be used for updating an application or firmware.
- the amount of transmitted data is small, and data transmission or reception (hereinafter, transmission / reception) sometimes occurs. Due to the characteristics of the MTC, for the UE for MTC (hereinafter referred to as MTC UE), it is efficient to lower the UE manufacturing cost and reduce battery consumption at a low data rate.
- MTC UEs are less mobile, and thus, the channel environment is hardly changed.
- the MTC UE is likely to be located at a location that is not covered by a normal eNB, for example, a basement, a warehouse, or a mountain.
- the signal for the MTC UE is better to have a wider coverage than the signal for a legacy UE (hereinafter, a legacy UE).
- IoT Internet of Things
- CIoT cellular IoT
- NB-IoT narrowband
- CIoT can be used for relatively long periods of traffic (eg smoke alarm detection, power failure notifications from smart meters, tamper notifications, smart utilities (gas / Water / electricity) metering reports, software patches / updates, etc.) and 'IoT' devices with ultra-low complexity, power proposals and low data rates.
- traffic eg smoke alarm detection, power failure notifications from smart meters, tamper notifications, smart utilities (gas / Water / electricity) metering reports, software patches / updates, etc.
- 'IoT' devices with ultra-low complexity, power proposals and low data rates.
- User plane CIoT EPS optimization and control plane CIoT EPS optimization are also called U-plane solutions and C-plane solutions, respectively.
- Control plane CIoT EPS optimization is a signaling optimization that enables efficient transport of user data (IP, non-IP or SMS) onto the control plane.
- IP user data
- non-IP or SMS user data
- the control plane is different from the conventional data transfer in which a data radio bearer (DRB) is set up after transferring an idle-to-connected mode to transfer data through a path of a UE-eNB-SGW.
- DRB data radio bearer
- CIoT EPS optimization is a method of sending data PDUs to NAS messages via SRB.
- control plane CIoT EPS optimization For the control plane CIoT EPS optimization, a NAS message for data transport and a new interface for data transport between MME and SGW (based on GTP-U) S11-U are defined.
- the control plane CIoT EPS optimization does not use the existing DRB, but also defines the connection of the newly defined UE-eNB-MME-SGW path as a PDN connection, and the state in which the SRB is set up and can transmit data is in connected mode. It is defined as / state, and it is defined to perform S1 release process after the transmission of the data.
- the S11-U interface is used instead of the S1-U interface through the S1 release process. Is released.
- the data plane CIoT EPS optimization aims to reduce signaling when switching idle-to-connection mode for data transmission, and releases the RRC connection when switching the connection-to-pause mode, but the eNB clears the context of the UE. Unlike in the idle mode of, the suspended state in which the eNB maintains the context of the UE without erasing, a connection suspend process entering the suspended state, and resuming the connection from the suspended state to the connected mode ( connection resume) process.
- the data plane CIoT EPS optimization requires the transmission of data over existing data radio bearer (DRB), ie S1-U, but the access stratum (AS) parameters are connected to the UE. Even when the idle mode is switched, the cache is cached to the eNB.
- DRB data radio bearer
- AS access stratum
- FIG. 8 illustrates user plane protocol stacks between UE and P-GW according to control plane CIoT optimization.
- GTP-u is a protocol for tunneling user data between an MME and an S-GW as well as between an S-GW and a P-GW in a backbone network.
- GTP encapsulates all end user IP packets.
- UDP / IP is a backbone network protocol used to route user data and control signaling.
- the NAS is a connectionless layer used to carry data between the UE and the MME and may include header compression and security functions for user plane IP data.
- CIoT network or technology mainly provides IoT UE with optimized communication services in terms of core network, and NB-IoT (Narrowband internet of things) network or technology is an optimization of the existing LTE technology air interface for IoT. Say.
- NB-IoT is a wireless technology that provides IoT services using a narrowband frequency of about 200Khz.
- NB-IoT uses a very small frequency, compared to the conventional LTE technology using a minimum 1.25Mhz frequency band, it is possible to minimize the processing power and the power consumption on the UE side.
- CIoT solves the conventional attach process (see section 5.3.2 of 3GPP TS 23.401) or service request process (see section 5.3.4 of 3GPP TS 23.401) resulting in power wasting of the UE due to numerous message exchanges.
- the MME processes the data (C-plane solution)
- the UE and eNB maintain context and utilize it for the next connection even when the UE is in a state similar to the RRC idle state (U-plane solution). This is a technique for minimizing the power consumption of the UE.
- NB-IoT radio technology and CIoT technology can be applied separately. That is, even without using the NB-IoT wireless technology, it is possible to apply the CIoT technology through the conventional LTE wireless network.
- the CIoT technology can be applied to a UE that cannot use the NB-IoT radio technology, for example, a UE that is already released by applying only the LTE radio technology.
- S1 mode When the UE uses the S1 interface between the radio access network and the core network, it is referred to as S1 mode.
- S1 mode the UE connects to a network service through the E-UTRAN.
- S1 mode is divided into WB-S1 mode and NB-S1 mode according to the current radio access network.
- NB-S1 mode 3GPP TS 24.301 document, 3GPP TS 36.300 document, 3GPP TS 36.331 document, 3GPP TS 36.306). Documentation).
- NB-S1 mode 3GPP TS 24.301 document, 3GPP TS 36.300 document, 3GPP TS 36.331 document, 3GPP TS 36.306. Documentation).
- the system operates in S1 mode rather than NB-S1 mode, the system is said to operate in WB-S1 mode.
- the CIoT mode includes the WB-S1 mode and the NB-S1 mode
- the NB-IoT corresponds to the NB-S1 mode, except for the NB-IoT, that is, the CIoT including the conventional LTE is in the WB-S1 mode. This can be said.
- CP optimization uses SRB, this operation is skipped in the PDCP layer.
- CP optimization operates in PDCP-TM (Transparent Mode), which skips the main operation of the PDCP layer. That is, depending on the CIoT EPS optimization used, the operation of the PDCP layer may be changed or whether the PDCP is used at all.
- PDCP-TM Transparent Mode
- Logical channels using PDCP are defined in the standard document.
- the PDCP standard document (e.g., 3GPP TS 36.323) includes SRBs, DRBs, and PDCPs mapped onto logical channels of a dedicated control channel (DCCH), dedicated traffic channel (DTCH) and sideline traffic channel (STCH) type ( It is specified to be used for sidelink radio bearers (SLRBs) carrying sidelink communication data.
- DCCH dedicated control channel
- DTCH dedicated traffic channel
- STCH sideline traffic channel
- SLRBs sidelink radio bearers
- a broadcast control channel BCCH
- PCCH paging control channel
- CCCH common control channel
- MTCH multicast traffic channel
- MCCH multicast control channel
- SBCCH sidelink broadcast channel
- SC-MCCH single Cell multicast control channel
- SC-MTCH single cell multicast transport channel
- SRB1 In the CP solution, ie CP optimization, the data is transferred over SRB1. SRB1 always uses PDCP with security applied. Thus, if PDCP is used for CP optimization, one byte PDCP header and four byte MAC-I are always included regardless of whether AS security is activated. This causes 5 bytes of header overhead even in case of CP optimization. Therefore, in the CP solution, it is recommended to bypass PDCP for SRB1. SRB1 is set up using PDCP as legacy to support AS security. Therefore, PDCP must be set for SRB1 in the UP solution.
- msg 5 eg, RRC connection setup complete message
- One of the solutions discussed as a solution to this problem is not to transmit all NAS messages to one SRB (ie, SRB1), but to use a new SRB instead of an existing SRB depending on whether PDCP is used.
- SRB1 SRB 1
- SRB2 SRB 1
- PDCP Packet Control Protocol
- a separate SRB or radio bearer may be used depending on whether PDCP is used. That is, when using existing S1-U or UP optimization, SRB1 may be used as before, and when using CP optimization, a new radio bearer (hereinafter referred to as SRB3) may be used. SRB3 is used instead of SRB1 in CP optimization. SRB3 is the same as SRB1 except that PDCP is bypassed. In other words, SRB3 has the same configuration as SRB1 except for PDCP.
- the problem with using SRB3 in CP optimization is that for a UE that supports both CP optimization and UP optimization or CP optimization and S1-U, it is not possible to know which path to select based on the received data.
- the UE should transmit a NAS message containing data to SRB3 if CP optimization is being used, and transmit the NAS message to SRB1 if UP optimization is used.
- the AS does not know whether the NAS message received from the upper layer is a signaling type message for the existing S1-U or UP optimization or a data type message for CP optimization. There is a problem of selecting which SRB to send the message to.
- the UE piggybacks data into NAS messages rather than the user plane and transmits them through the eNB-MME-SGW.
- the NAS message may be a conventional NAS message, or may be a newly defined NAS message for data transportation.
- the data is transmitted as well as the existing signaling through the NAS message, the following problem may occur.
- the UE or eNB carries the mobile originating (MO) / mobile terminating (MT) data in the NAS message and transmits the data through the SRB.
- the SRB also sends NAS messages of this data type, that is, NAS messages for user data, as well as NAS messages for existing signaling (e.g., EMM / ESM messages), which are transparent to the AS layers. Therefore, the AS does not know whether the NAS message currently being transmitted is a data type or a signaling type. However, if such a data type message and a signaling type message are concentrated on an AS at a moment, according to the present standards, the AS is based on first come first served (FCFS) without distinction between message types. The requested message is sent first.
- FCFS first come first served
- the case where priority processing for data of signaling is needed may be when prioritization (prioritization) in the queue of the transmitter of the UE is needed, and when the eNB determines which data or signaling of several UEs should be preferentially processed. It may be.
- the UE may need to establish a path through a tracking area update process (see section 5.3.3 of 3GPP TS 23.401) due to an MME change while sending data.
- the eNB may receive signaling of another UE at a time point of receiving data of one UE.
- the AS of the UE and the AS of the eNB cannot distinguish between the NAS message of the data type and the NAS message of the signaling type, and thus cannot handle the case where signaling must be processed first. .
- Problems 1 and 2 described above may occur in the case of mobile terminating (MT). Since the eNB does not know the type (data / signaling) of the NAS PDU, the eNB cannot perform a procedure such as SRB allocation or signaling priority processing for the downlink NAS PDU.
- MT mobile terminating
- a method of using a CP optimization or a UE supporting both CP optimization and UP optimization together to select a suitable one among a plurality of radio bearers is proposed.
- a UE that uses CP optimization, or supports both CP optimization and UP optimization, selects an appropriate one among several radio bearers when uplink or MO traffic is generated, or decides what kind of NAS PDU the UE preferentially processes I would like to suggest a method.
- FIG. 10 illustrates a flowchart of a method of transporting mobile originated (MO) data with control plane CIoT EPS optimization. See section 5.3.4B.2 of the 3GPP TS 23.401 document for a detailed description of MO data transport in the control plane CIoT EPS optimization shown in FIG. 10.
- MO data When MO data is generated for the UE using CP optimization, the MO data is transmitted to the network as shown in FIG. 10.
- the UE When the UE is in the idle mode (S1000), a service request is performed to switch to the connected mode (S1001).
- the UE delivers the NAS PDU to the network through the control plane interface rather than the user plane interface.
- the UE determines information to be delivered to the AS layer by combining current or available CIoT EPS optimization information with NAS message types to be transmitted.
- the classification may be as follows.
- Eg EMM message ESM message, service request for DRB setup, etc.
- the UE sends an initial message for data transmission: NAS signaling.
- NAS messages that execute initial setup, such as extended service requests / data service requests with NAS PDUs.
- NAS messages for sending only NAS PDUs such as generic NAS transport / ESM NAS container messages.
- Eg EMM message ESM message, service request for DRB setup, etc.
- FIG. 11 illustrates a method for transmitting a non-access stratum (NAS) message in accordance with the present invention.
- UE / MME represents “UE” in Invention Proposition 1, and “MME” in Invention Proposition 2 described later.
- AS / S1-AP represents “AS” in Inventive Proposition 1, and “S1-AP” in Inventive Proposition 2.
- the UE may inform the type of the NAS message to be transmitted to the AS layer according to the above-described classification or another classification (S1101 and S1102).
- the NAS layer of the UE should inform the AS layer whether the corresponding NAS message is NAS data or NAS signaling according to the above classification (S1101 and S1102).
- a UE in an idle mode needs to generate an SRB in RRC. If there is more than one SRB, the AS layer uses this information to determine which SRB to set up and send the corresponding NAS message. In other words, the SRB to be set up may be selected according to whether the message is a signaling type message or a data type message.
- the AS layer when the NAS layer informs the AS layer that the corresponding NAS message is NAS data, the AS layer sets up a conventional SRB1. When the NAS layer notifies that the NAS message is NAS signaling, the AS layer may set up a new SRB3. This may be implemented by giving an indication to the AS in the NAS, or may be implemented through UE internal operation. After the SRB selection, the setup of the SRB and transmission of the actual AS interval may follow conventional operation.
- the AS of the UE may determine which SRB to transmit the corresponding NAS message based on the NAS message type information received from the NAS. If there is only one type of channel / RB to which an SRB or NAS PDU is delivered as in the related art, or if both a NAS message of a data type and a NAS message of a signaling type can be delivered through the same SRB, the UE is as follows. One or both of the same two actions can be applied simultaneously.
- the UE may preferentially send signaling (S1105).
- the AS of the UE receives NAS PDU and NAS message type information from the NAS (S1101 and S1102). If there is only one type of SRB, the AS of the UE may include the NAS message type information in the RRC message (S1105).
- the transceiver of the UE transmits not only the conventional NAS PDU but also the NAS message type (S1101).
- the RRC of the eNB may know whether the NAS PDU, which is piggybacked in the current RRC message, is NAS signaling or NAS data through the NAS message type information. Based on this information, the eNB may apply differentiated handling between NAS signaling and NAS data. For example, the eNB may preferentially deliver signaling to the MME, and may drop from data if the eNB needs to drop a packet due to an overload or congestion situation.
- a core network or a base station selects an appropriate one among several radio bearers or a base station when downlink or MT traffic occurs. This paper proposes a method of determining which kind of NAS PDUs should be prioritized.
- FIG. 12 illustrates a flowchart of a method of transporting mobile terminated (MT) data with control plane CIoT EPS optimization. See section 5.3.4B.3 of the 3GPP TS 23.401 document for a detailed description of MT data transport in the control plane CIoT EPS optimization shown in FIG. 12.
- the network delivers MT data as shown in FIG. 12.
- the SGW forwards downlink data notification (DDN) to the MME (S1202), the MME forwards paging to the eNB (S1203), and the eNB forwards paging to the UE (S1204).
- DDN downlink data notification
- the MME forwards paging to the eNB
- the eNB forwards paging to the UE (S1204).
- S1200 When the UE is in the idle mode (S1200), a service request is performed to switch to the connected mode (S1205).
- the SGW delivers data to the MME through an S11 interface (which is a user plane interface between MME-SGWs) rather than the S1-U interface, and the MME transmits ESM data transport. Message to the NAS.
- the MME determines the information to be delivered to the S1-AP layer by combining the currently-used or available CIoT EPS optimization information with the NAS message type to be transmitted (S1213).
- the classification may be as follows.
- the NAS of the MME may inform the S1-AP layer of the NAS message type that the MME intends to transmit according to the above-described classification or other classification (S1101 and S1102). ).
- the NAS layer informs the lower layer AS layer whether the corresponding NAS message is NAS data or NAS signaling.
- the eNB may not know whether the currently delivered NAS PDU is data or signaling, and thus the MME may use the following method when delivering the NAS PDU to the S1-AP.
- the MME may preferentially send signaling when signaling and data are generated at the same time (S1105).
- S1-AP of the MME receives NAS PDU and NAS message type information (whether data or signaling) from the NAS of the MME (S1101, S1102).
- the MME may include additional information (hereinafter, NAS message type information) indicating what type of the corresponding NAS PDU is included in the S1-AP message including the NAS PDU. (S1101, S1102). This may be implemented as a separate information element (IE) or a flag on the S1-AP message.
- the transceiver of the MME may transmit an S1-AP message including this new information to the eNB.
- priority handling between various signaling and data may be applied as proposed in 2-1) (S1105).
- the NAS PDU in the S1-AP layer of the eNB is NAS signaling whether the NAS PDU piggybacked in the S1-AP message through NAS message type information included in the MME is NAS signaling. It can be seen. Based on this information, the eNB can apply distinct handling between NAS signaling and NAS data. For example, the eNB may preferentially deliver signaling to the UE, and if the eNB needs to drop or buffer a packet due to an overload or congestion situation, the eNB may drop or buffer data first.
- Fig. 13 is a diagram showing the configuration of a node device applied to the proposal of the present invention.
- the UE device 100 may include a transceiver 110, a processor 120, and a memory 130.
- the transceiver 110 may also be referred to as a radio frequency (RF) unit.
- the transceiver 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information to an external device. Alternatively, the transceiver 110 may be implemented by being separated into a transmitter and a receiver.
- the UE device 100 may be connected to the external device by wire and / or wirelessly.
- the processor 120 may control the overall operation of the UE device 100 and may be configured to perform a function of the UE device 100 to process and process information to be transmitted and received with an external device.
- the processor 120 may be configured to perform the UE operation proposed in the present invention.
- the processor 120 may control the transceiver 110 to transmit data or a message according to the proposal of the present invention.
- the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
- the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
- the transceiver 210 may also be referred to as a radio frequency (RF) unit.
- the transceiver 210 may be configured to transmit various signals, data and information to an external device, and receive various signals, data and information to an external device.
- the network node device 200 may be connected to an external device by wire and / or wirelessly.
- the transceiver 210 may be implemented by being separated into a transmitter and a receiver.
- the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
- the processor 220 may be configured to perform the network node operation proposed in the present invention.
- the processor 220 may control the transceiver 110 to transmit data or a message to the UE or another network node according to the proposal of the present invention.
- the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
- the specific configuration of the UE device 100 and the network device 200 as described above may be implemented such that the details described in the various embodiments of the present invention described above are applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
- Embodiments of the present invention described above may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of an apparatus, a process, or a function that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- the above-described communication method can be applied not only to 3GPP systems but also to various wireless communication systems including IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Information Transfer Between Computers (AREA)
Abstract
사용자기기의 비-접속 단(non-access stratum, NAS) 계층에서 NAS 메시지가 생성되면, 상기 NAS 계층은 상기 사용자기기의 접속 단(access stratum, AS) 계층으로 상기 NAS 메시지와 타입 정보를 전달한다. 상기 NAS 메시지를 담은 AS 메시지가 네트워크로 전송된다. 상기 타입 정보는 상기 NAS 메시지가 사용자 데이터를 담은 제1 타입 메시지인지 아니면 사용자 데이터가 없는 제2 타입 메시지인지를 나타낸다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서 메시지 전송 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 네트워크에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다.
한편, 사용자기기(user equipment, UE)가 주변에서 접속(access)할 수 있는 노드(node)의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 UE와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 UE에게 제공할 수 있다.
더 많은 통신 장치가 더 큰 통신 용량을 요구함에 따라, 레거시 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 광대역 통신에 대한 필요성이 대두되고 있다. 또한, 복수의 장치 및 객체(object)를 서로 연결하여 언제 어디서나 다양한 서비스를 제공하기 위한 대규모 기계 타입 통신(massive machine type communication, mMTC)는 차세대 통신에서 고려해야 할 주요 쟁점 중 하나이다.
또한, 신뢰도 및 대기 시간에 민감한 서비스/UE를 고려하여 설계될 통신 시스템에 대한 논의가 진행 중이다. 차세대(next generation) 무선 접속 기술의 도입은 향상된 모바일 광대역 통신(eMBB), mMTC, 초 신뢰성 및 저 대기 시간 통신(ultra-reliable and low latency communication, URLLC) 등을 고려하여 논의되고 있다.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 UE들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 UE들과 전송/수신하는 데이터와 제어정보의 양이 증가하고 있다. 기지국이 UE(들)과의 통신에 이용 가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 데이터 및/또는 제어정보를 UE(들)로부터/에게 효율적으로 수신/전송하기 위한 새로운 방안이 요구된다.
또한 스마트기기의 발달에 따라 적은 양의 데이터를 효율적으로 전송/수신 혹은 낮은 빈도로 발생하는 데이터를 효율적으로 전송/수신하기 위한 새로운 방안이 요구된다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 사용자기기가 메시지를 전송하는 방법이 제공된다. 상기 방법은: 비-접속 단(non-access stratum, NAS) 계층에서 NAS 메시지를 생성; 상기 NAS 계층에서 접속 단(access stratum, AS) 계층으로 상기 NAS 메시지와 타입 정보를 전달(transfer); 및 상기 NAS 메시지를 담은 AS 메시지를 네트워크에게 전송하는 것을 포함한다. 상기 타입 정보는 상기 NAS 메시지가 사용자 데이터를 담은 제1 타입 메시지인지 아니면 사용자 데이터가 없는 제2 타입 메시지인지를 나타낼 수 있다.
본 발명의 일 양상으로, 메시지를 전송하는 사용자기기가 제공된다. 상기 사용자기기는 무선 주파수(radio frequency, RF) 유닛, 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함한다. 상기 프로세서는: 비-접속 단(non-access stratum, NAS) 계층에서 NAS 메시지를 생성; 상기 NAS 계층에서 접속 단(access stratum, AS) 계층으로 상기 NAS 메시지와 타입 정보를 전달(transfer); 및 상기 NAS 메시지를 담은 AS 메시지를 네트워크에게 전송하도록 상기 RF 유닛을 제어할 수 있다. 상기 타입 정보는 상기 NAS 메시지가 사용자 데이터를 담은 제1 타입 메시지인지 아니면 사용자 데이터가 없는 제2 타입 메시지인지를 나타낼 수 있다.
본 발명의 각 양상에 있어서, 상기 AS 메시지는 상기 타입 정보를 더 포함할 수 있다.
본 발명의 각 양상에 있어서, 상기 AS 계층에 동일 시그널링 무선 베어러(signaling radio bearer, SRB)를 통해 전송될 NAS 메시지가 복수 개 존재하면, 상기 AS 계층은 상기 복수 개 NAS 메시지 각각의 타입 정보를 바탕으로, 제2 타입 메시지에 해당하는 NAS 메시지를 제1 타입 메시지에 해당하는 NAS 메시지보다 먼저 전송할 수 있다.
본 발명의 각 양상에 있어서, 상기 AS 메시지는 무선 자원 제어(radio resource control, RRC) 메시지일 수 있다.
본 발명의 각 양상에 있어서, 상기 AS 계층은 상기 타입 정보를 바탕으로 제1 시그널링 무선 베어러(signaling radio bearer, SRB) 또는 제2 SRB를 통해 상기 AS 메시지를 전송할 수 있다.
본 발명의 각 양상에 있어서, 상기 제1 SRB는 패킷 데이터 수렴 프로토콜(packet data convergence protocol, PDCP)가 있는 SRB1이고, 상기 제2 SRB는 상기 SRB1과 동일한 설정이지만 PDCP 없는 새로운 SRB일 수 있다.
본 발명의 각 양상에 있어서, 상기 타입 정보는 상기 사용자기기가 사용자 데이터의 수송에 제어 평면을 사용하는 제어 평면 CIoT EPS 최적화를 사용 중인지 여부를 더 나타낼 수 있다. 상기 사용자기기가 상기 제어 평면 CIoT EPS 최적화를 사용 중이면 상기 AS 메시지는 상기 새로운 SRB를 통해 전송되고, 그렇지 않으면 상기 SRB1을 통해 전송될 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 의하면, 무선 통신 신호가 효율적으로 전송/수신될 수 있다. 이에 따라, 무선 통신 시스템의 전체 처리량(throughput)이 높아질 수 있다.
본 발명에 의하면, 기존 시스템과의 호환성을 유지하면서, 저복잡도/저비용 UE가 네트워크와 통신할 수 있다.
본 발명에 의하면,UE가 저복잡도/저비용으로 구현될 수 있다.
본 발명에 의하면 UE와 네트워크가 좁은 대역(narrowband)에서 통신할 수 있다.
본 발명에 의하면, 적은 양의 데이터가 효율적으로 전송/수신될 수 있다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 사용자 평면 및 제어 평면을 위한 LTE 프로토콜 스택들을 예시한 것이다.
도 6은 임의 접속(random access) 과정을 설명하기 위한 흐름도이다.
도 7은 무선 자원 제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 8은 제어 평면 CIoT 최적화에 따른 UE와 P-GW 간 사용자 평면 프로토콜 스택들을 예시한 것이다.
도 9는 LTE/LTE-A 시스템에서 PDCP 계층의 기능적 관점(view)를 나타낸 것이다.
도 10은 제어 평면 CIoT EPS 최적화로 모바일 기원된(mobile originated, MO) 데이터를 수송하는 방법의 흐름도를 예시한 것이다.
도 11은 본 발명에 따라 비-접속 단(non-access stratum, NAS) 메시지를 전송하는 방법을 예시한 것이다.
도 12는 제어 평면 CIoT EPS 최적화로 모바일 종결되는(mobile terminated, MT) 데이터를 수송하는 방법의 흐름도를 예시한 것이다.
도 13은 본 발명의 제안에 적용되는 노드 장치의 구성을 도시하는 도면이다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 과정 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 과정 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 예를 들어, 본 명세서는 3GPP TS 36.211, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.322, 3GPP TS 36.323, 3GPP TS 36.331, 3GPP TS 23.401, 3GPP TS 24.301, 3GPP TS 23.228, 3GPP TS 29.228, 3GPP TS 23.218, 3GPP TS 22.011, 3GPP TS 36.413의 표준 문서들 중 하나 이상에 의해 뒷받침될(incorporate by reference) 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
먼저, 본 명세서에서 사용되는 용어들은 다음과 같이 정의된다.
- IMS(IP Multimedia Subsystem or IP Multimedia Core Network Subsystem): IP 상으로 음성 또는 다른 멀티미디어 서비스를 배달하기 위한 표준화를 제공하기 위한 구조적(architectural) 프레임워크(framework).
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 핵심(core) 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 접속(access) 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB/eNB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 UE(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 장치(device)를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW/P-GW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway)/S-GW: 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 휴지(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- PCRF (Policy and Charging Rule Function): 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS 네트워크의 네트워크 노드.
- OMA DM (Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 장치(device)들 관리를 위해 디자인 된 프로토콜로써, 장치 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 오류 보고 (Error Report)등의 기능을 수행함.
- OAM (Operation Administration and Maintenance): 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군.
- NAS(Non-Access Stratum): UE와 MME 간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 핵심(core) 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 과정 및 IP 주소 관리 등을 지원한다.
- EMM (EPS Mobility Management): NAS 계층의 서브-계층으로서, UE가 네트워크 어태치(attach)되어 있는지 디태치(detach)되어 있는지에 따라 EMM은 "EMM-Registered" 아니면 "EMM-Deregistered" 상태에 있을 수 있다.
- ECM (EMM Connection Management) 연결(connection): UE와 MME가 사이에 수립(establish)된, NAS 메시지의 교환(exchange)을 위한 시그널링 연결(connection). ECM 연결은 UE와 eNB 사이의 RRC 연결과 상기 eNB와 MME 사이의 S1 시그널링 연결로 구성된 논리(logical) 연결이다. ECM 연결이 수립(establish)/종결(terminate)되면, 상기 RRC 및 S1 시그널링 연결은 마찬가지로 수립/종결된다. 수립된 ECM 연결은 UE에게는 eNB와 수립된 RRC 연결을 갖는 것을 의미하며, MME에게는 상기 eNB와 수립된 S1 시그널링 연결을 갖는 것을 의미한다. NAS 시그널링 연결, 즉, ECM 연결이 수립되어 있는지에 따라, ECM은 "ECM-Connected" 아니면 "ECM-Idle" 상태를 가질 수 있다.
- AS (Access-Stratum): UE와 무선(혹은 접속) 네트워크 간의 프로토콜 스택을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.
- NAS 설정(configuration) MO (Management Object): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정하는 과정에서 사용되는 MO (Management object).
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- APN (Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 네트워크에 접속하기 위해서는 특정 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 네트워크 내에서 미리 정의한 이름(문자열)을 의미한다. (예를 들어, internet.mnc012.mcc345.gprs)
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 핵심 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- ANDSF(Access Network Discovery and Selection Function): 하나의 네트워크 엔티티(entity)로서 사업자 단위로 UE가 사용 가능한 접속(access)을 발견하고 선택하도록 하는 Policy를 제공.
- EPC 경로(또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로
- E-RAB (E-UTRAN Radio Access Bearer): S1 베어러와 해당 데이터 무선 베어러의 연결(concatenation)을 말한다. E-RAB가 존재하면 상기 E-RAB와 NAS의 EPS 베어러 사이에 일대일 매핑이 있다.
- GTP (GPRS Tunneling Protocol): GSM, UMTS 및 LTE 네트워크들 내에서 일반 패킷 무선 서비스(general packet radio service, GPRS)를 나르기 위해 사용되는 IP-기반 통신들 프로토콜들의 그룹. 3GPP 아키텍쳐 내에는, GTP 및 프록시 모바일 IPv6 기반 인터페이스들이 다양한 인터페이스 포인트 상에 특정(specify)되어 있다. GTP는 몇몇 프로토콜들(예, GTP-C, GTP-U 및 GTP')으로 분해(decompose)될 수 있다. GTP-C는 게이트웨이 GPRS 지원 노드들(GGSN) 및 서빙 GPRS 지원 노드들(SGSN) 간 시그널링을 위해 GPRS 핵심(core) 네트워크 내에서 사용된다. GTP-C는 상기 SGSN이 사용자를 위해 세션을 활성화(activate)(예, PDN 컨텍스트 활성화(activation))하는 것, 동일 세션을 비활성화(deactivate)하는 것, 서비스 파라미터들의 품질(quality)를 조정(adjust)하는 것, 또는 다른 SGSN으로부터 막 동작한 가입자(subscriber)를 위한 세션을 갱신하는 것을 허용한다. GTP-U는 상기 GPRS 핵심 네트워크 내에서 그리고 무선 접속 네트워크 및 핵심 네트워크 간에서 사용자 데이터를 나르기 위해 사용된다. 도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 핵심 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 핵심 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 UE와 UE 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 핵심 네트워크 사이의 경계점으로서 동작하고, eNB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, UE가 eNB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 접속(access), 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 휴지 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력(capability)를 가지는 UE는, 3GPP 접속(access)는 물론 비-3GPP 접속 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 운영자(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 접속할 수 있다.
또한, 도 1은 다양한 참조 포인트(reference point)들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 엔티티(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 참조 포인트라고 정의한다. 다음의 표 1은 도 1에 도시된 참조 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 참조 포인트들이 존재할 수 있다.
Reference Point | Description |
S1-MME | Reference point for the control plane protocol between E-UTRAN and MME. |
S1-U | Reference point between E-UTRAN and Serving GW for the per bearer user plane tunneling and inter eNB path switching during handover. |
S3 | It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO). |
S4 | It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling. |
S5 | It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity. |
S11 | Reference point between MME and Serving GW. |
SGi | It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.) |
도 1에 도시된 참조 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 접속 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 참조 포인트다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 방송 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 UE와 eNB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 UE와 eNB 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선 접속 네트워크 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 참조 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 전송측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간 축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 부반송파(subcarrier)로 구성된다. 여기서, 하나의 서브프레임(subframe)은 시간 축 상에 복수의 OFDM 심볼 (symbol)들과 복수의 부반송파들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 OFDM 심볼(Symbol)들과 복수의 부반송파들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 전송 측과 수신 측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel) 등으로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저, 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간(radio interface)으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더 압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선 자원 제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 UE와 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
RB들은 크게 (사용자) 데이터 무선 베어러(data radio bearer, DRB)와 시그널링 무선 베어러(signaling radio bearer, SRB)로 구분된다. SRB들은 RRC 및 NAS 메시지들의 전송을 위해서만 사용되는 RB들로서 정의된다. 특히 현재 다음의 3가지 SRB들이 정의되어 있다:
- 공통 제어 채널(common control channel, CCCH) 논리 채널을 사용하는 RRC 메시지들을 위한 SRB0;
- 전용 제어 채널(dedicated control channel, DCCH) 논리 채널을 사용하는, SRB2의 수립(establishment)에 앞서(prior to) NAS 메시지들을 위해서 뿐 아니라 (피기백된 NAS 메시지를 포함할 수 있는) RRC 메시지들을 위한 SRB1;
- DCCH 논리 채널을 사용하는, NAS 메시지들을 위해서 뿐 아니라 로그된(logged) 측정 정보를 포함하는 RRC 메시지를 위한 SRB 2. SRB2는 SRB1보다 낮은 우선순위(lower-priority)를 가지며 항상 보안(security) 활성화(activation) 후에 E-UTRAN에 의해 설정된다.
보안이 일단 활성화되면, NAS 혹은 비-3GPP 메시지들을 포함하는 것들을 포함한, SRB1 및 SRB2 상의 모든 RRC 메시지들은 PDCP에 의해 무결성(integrity) 보호되며 암호화(cipher)된다. NAS는 NAS 메시지들에 독립적으로 무결성 보호 및 암호화를 적용한다.
UE의 RRC와 무선 네트워크의 RRC 계층 사이에 RRC 연결(RRC connection)이 수립된(established) 경우 UE는 RRC 연결 모드(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 모드(Idle Mode)에 있게 된다.
이하 UE의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 UE의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 UE는 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 UE의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 UE는 E-UTRAN이 UE의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심 네트워크가 관리한다. 즉, RRC_IDLE 상태의 UE는 셀에 비하여 큰 지역 단위로 해당 UE의 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 UE가 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. UE는 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 UE의 전원을 맨 처음 켰을 때, UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심 네트워크에 UE의 정보를 등록한다. 이 후, UE는 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 UE는 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS는 무선 인터페이스에서 UE와 MME 간 제어 평면의 최상위 단(stratum)을 형성(form)한다. NAS의 부분인 프로토콜들의 주요 기능들은 UE의 이동성(mobility) 지원, 및 상기 UE와 P-GW 간 IP 연결성(connectivity)를 수립(establish) 및 유지(maintain)하기 위한 세션 관리 과정(procedure)들의 지원이다. NAS 보안(security)는 NAS 프로토콜들에 서비스들, 예를 들어, NAS 시그널링 메시지들의 무결성 보호 및 부호화(ciphering)를 제공하는 NAS의 추가 기능이다. 이러한 기능들의 지원을 위해 EPS 이동성 관리(EPS mobility management, EMM)을 위한 기초(elementary) 과정들과 EPS 세션 관리(EPS session management, ESM)을 위한 기초 과정들이 공급(supply)된다. 완전한(complete) NAS 처리(transaction)은 기초 과정들의 특정 시퀀스들로 구성된다.
무선 인터페이스에서 EPS 서비스들을 위한 이동성 관리(EMM)을 위해 사용되는 과정들을 설명한다. 이동성 관리 서브계층(sublayer)의 주요 기능은 네트워크에게 자신의 현재 위치를 알리고 사용자 식별자 비밀성(confidentiality)를 제공하는 것과 같은 UE의 이동성을 지원하는 것이다. 이동성 관리 서브계층의 다른 기능은 세션 관리 서브계층과, 연결 관리 서브계층의 단(short) 메시지 서비스들(SMS) 개체에게 연결 관리 서비스들을 제공하는 것이다. 모든 EMM 과정은 NAS 시그널링 연결이 수립되어 있으면 수행되고, 그렇지 않으면 EMM 서브계층이 NAS 시그널링 연결의 수립을 개시한다. EMM 과정들은 어떻게 개시될 수 있느냐에 따라 3가지 타입으로 구분될 수 있다: EMM 공통(common) 과정들, EMM 특정(specific) 과정들, EMM 연결 관리 과정들(S1 모드만). EMM 공통 과정들은 NAS 시그널링 연결이 존재하는 동안 개시될 수 있다. EMM 특정 과정들의 경우, 언제든지 오직 하나의 UE 개시(initiated) EMM 특정 과정만 구동(run) 중일 수 있다. EMM 특정 과정들에는 어태치, 디태치, 트랙킹 영역 갱신 등이 속한다. EMM 연결 관리 과정들에는 서비스 요청, 페이징 요청, NAS 메시지들의 수송(transport), NAS 메시지들의 일반(generic) 수송이 속한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 디폴트 베어러(default bearer) 관리, 전용 베어러(dedicated bearer) 관리와 같은 기능을 수행하여, UE가 네트워크로부터 PS 서비스를 이용하기 위한 제어를 담당한다. 다시 말해, ESM 서브계층의 주요 기능은 UE 내 및 MME 내 EPS 베어러 컨텍스트 핸들링을 지원하는 것이다. ESM은 EPS 베어러 컨텍스트들의 활성화, 불활성화(deactivation) 및 수정(modification)을 위한 과정(들) 및 UE에 의한 자원(PDN으로의 IP 연결성 혹은 전용(dedicated) 베어러 자원들) 요청을 위한 과정(들)을 포함한다. 디폴트 베어러 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 네트워크에 접속될 때 네트워크로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 UE가 데이터 서비스를 사용할 수 있도록 UE가 사용 가능한 IP 주소를 할당하며, 또한 디폴트 베어러의 QoS를 할당해준다. LTE에서는 크게 데이터 전송/수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 베어러와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR 베어러의 두 종류를 지원한다. 디폴트 베어러의 경우 Non-GBR 베어러를 할당 받는다. 전용 베어러의 경우에는 GBR 또는 Non-GBR의 QoS 특성을 가지는 베어러를 할당 받을 수 있다.
네트워크에서 UE에게 할당한 베어러를 EPS(evolved packet service) 베어러라고 부르며, EPS 베어러를 할당할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS 베어러 ID라고 부른다. 하나의 EPS 베어러는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
EMM 과정과 ESM 과정에 대한 좀 더 자세한 설명은 3GPP TS 24.301 문서를 참조할 수 있다.
도 5는 사용자 평면 및 제어 평면을 위한 LTE 프로토콜 스택들을 예시한 것이다. 도 5(a)는 사용자 평면 프로토콜 스택들을 UE-eNB-SGW-PGW-PDN에 걸쳐 예시한 것이고, 도 5(b)는 제어 평면 프로토콜 스택들을 UE-eNB-MME-SGW-PGW에 걸쳐 예시한 것이다. 프로토콜 스택들의 키(key) 계층들의 기능(function)들을 간략하게 설명하면 다음과 같다.
도 5(a)를 참조하면, GTP-U 프로토콜은 S1-U/S5/X2 인터페이스 상으로(over) 사용자 IP 패킷들을 포워드하기 위해 사용된다. GTP 터널이 LTE 핸드오버동안 데이터 포워딩을 위해 수립되면 종단 마커 패킷(End Marker Packet)이 마지막 패킷으로서 상기 GTP 터널 상으로 전달(transfer)된다.
도 5(b)를 참조하면, S1AP 프로토콜은 S1-MME 인터페이스에 적용된다. S1AP 프로토콜은 S1 인터페이스 관리, E-RAB 관리, NAS 시그널링 전달 및 UE 컨텍스트 관리와 같은 기능을 지원한다. S1AP 프로토콜은 E-RAB(들)을 셋업하기 위해 초기 UE 컨텍스트를 eNB에게 전달하고, 그 후 상기 UE 컨텍스트의 수정 혹은 해제를 관리한다. S11/S5 인터페이스들에는 GTP-C 프로토콜이 적용된다. GTP-C 프로토콜은 GTP 터널(들)의 생성, 수정(modification) 및 종료(termination)를 위한 제어 정보의 교환(exchange)를 지원한다. GTP-C 프로토콜은 LTE 핸드오버의 경우에 데이터 포워딩 터널들을 생성한다.
도 3 및 도 4에서 예시된 프로토콜 스택들 및 인터페이스들에 대한 설명은 도 5의 동일 프로토콜 스택들 및 인터페이스들에도 그대로 적용될 수 있다.
도 6은 3GPP LTE에서 임의 접속 과정을 나타낸 흐름도이다.
임의 접속 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당 받기 위해 수행된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 임의 접속(random access, RA) 프리앰블이 있으며, 루트 인덱스는 UE가 64개의 후보 임의 접속 프리앰블을 생성하기 위한 논리적 인덱스이다.
임의 접속 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 임의 접속 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
임의 접속 과정, 특히, 경쟁-기반 임의 접속 과정은 다음의 3 단계를 포함한다. 다음의 단계 1, 2, 3에서 전송되는 메시지는 각각 msg1, msg2, msg4로 지칭되기도 한다.
> 1. UE는 임의로 선택된 임의접속 프리앰블을 eNB로 전송한다. UE는 64개의 후보 임의 접속 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 임의 접속 프리앰블을 선택된 서브프레임에서 전송한다.
> 2. 상기 임의 접속 프리앰블을 수신한 eNB는 임의 접속 응답(random access response, RAR)을 UE로 보낸다. 임의 접속 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 임의 접속 응답을 수신한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 UE 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다.
> 3. UE는 RAR 내의 자원 할당 정보(즉, 스케줄링 정보) 및 TA 값에 따라 UL 전송을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 UL 전송을 수행한 후, 상기 UL 전송에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.
도 7은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 7에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 휴지 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 UE의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 휴지 모드(idle state)의 UE는 eNB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심 네트워크가 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 휴지 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 UE는 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 휴지 모드(idle state)에 머무른다. 상기 휴지 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 휴지 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
휴지 모드(idle state)의 UE가 상기 eNB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 7을 참조하여 보다 상세하게 설명하면 다음과 같다.
> 1. 휴지 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNB로 전송한다.
> 2. 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
> 3. 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다.
새로운 트래픽이 발생하여 휴지 상태에 있는 UE가 트래픽 전송/수신이 가능한 활성화 상태로 천이하기 위해서 서비스 요청 과정이 수행된다. UE가 네트워크에 등록은 되어 있으나 트래픽 비활성화로 S1 연결이 해제되고 무선 자원이 할당되어 있지 않은 상태에서, 즉 UE가 EMM 등록 상태(EMM-Registered)에 있으나 ECM 휴지 상태(ECM-Idle)에 있을 때, UE가 전송할 트래픽이 발생하거나 네트워크에서 UE에게 전송할 트래픽이 발생하면, 상기 UE는 상기 네트워크로 서비스를 요청하여 그 서비스 요청 과정을 성공적으로 마치면 ECM 연결 상태(ECM-Connected)로 천이하고, 제어 평면에서 ECM 연결(RRC 연결 + S1 시그널링 연결)을 사용자 평면에서 E-RAB(DRB 및 S1 베어러)을 설정하여 트래픽을 전송/수신한다. 네트워크가 ECM 휴지 상태(ECM-Idle)에 있는 UE에게 트래픽을 전송하고자 경우, 먼저 상기 UE에게 전송할 트래픽이 있음을 페이징 메시지로 알려서 상기 UE가 서비스 요청을 할 수 있도록 한다.
상기 네트워크 트리거 서비스 요청 과정을 간략히 설명하면 다음과 같다. MME가 ECM-IDLE 상태에 있는 UE에게 전송할 하향링크 데이터가 발생하거나 시그널이 발생/필요한 경우, 예를 들어, ECM-IDLE 모드 UE를 위한 MME/HSS-개시 디태치(MME/HSS-initiated detach) 과정을 수행할 필요가 있으면 혹은 S-GW가 제어 시그널링(예, 생성 베어러 요청 혹은 갱신 베어러 요청)을 수신하면, 상기 MME는 네트워크 개시 서비스 요청을 시작한다. 상기 S-GW가 UE를 위해 생성 베어러 요청 혹은 갱신 베어러 요청(Create Bearer Request or Update Bearer Request)을 수신할 때, ISR(Idle mode Signaling Reduction)이 활성화(activate)되어 있으면, 그리고 상기 S-GW가 하향링크 S1-U를 가지고 있지 않고 상기 SGSN이 상기 S-GW에게 상기 UE가 PMM-IDLE 상태 혹은 스탠바이(STANDBY) 상태로 이동했다고 통지했으면, 상기 S-GW가 시그널링 메시지를 버퍼하고, 하향링크 데이터 통지(Downlink Data Notification)를 보내서 상기 MME와 SGSN이 상기 UE를 페이징하도록 트리거한다. 상기 S-GW가, 상기 사용자 평면이 수립되기를 기다리면서, 제1 하향링크 데이터 통지가 보내졌던 베어러보다 높은 우선순위(즉, ARP 우선순위 레벨)를 갖는 베어러를 위한 제2 하향링크 데이터 통지를 보내도록 트리거되면, 상기 S-GW는 상기 높은 우선순위를 나타내는 새로운 하향링크 데이터 통지 메시지를 상기 MME에게 보낸다. 상기 S-GW가 상기 제1 하향링크 데이터 통지가 보내졌던 베어러와 같거나 높은 우선순위의 베어러를 위한 추가 하향링크 데이터 패킷들을 수신하면 혹은 상기 S-GW가 상기 높은 우선순위를 나타내는 상기 제2 하향링크 데이터 통지 메시지를 보내고 이 UE를 위한 추가 하향링크 데이터 패킷들을 수신하면, 상기 S-GW는 이들 하향링크 데이터 패킷들을 버퍼하고 새로운 하향링크 데이터 통지를 보내지 않는다. 상기 S-GW는 UE 트리거 서비스 요청 과정을 기초로 한 현재 RAT 타입에 대해 통지 받을 것이다. 상기 S-GW는 전용(dedicated) 베어러 활성화 혹은 전용 베어러 수정 과정의 실행을 계속할 것이다. 즉, 상기 S-GW는 해당 버퍼된 시그널링을 UE가 현재 머무르고 있는 MME 혹은 SGSN에게 보내고 RAT 타입이 마지막으로 보고된 RAT 타입과 비교하여 변했으면 P-GW에게 현재 RAT 타입을 알릴 것이다. 동적 PCC가 배치(deploy)되면 상기 현재 RAT 타입 정보는 상기 P-GW로부터 PCRF로 수송(convey)된다. 상기 PCRF 응답으 EPS 베어러 수정으로 이어지면 상기 P-GW는 베어러 갱신 과정을 개시한다. 상기 S-GW가 하향링크 데이터 통지를 보낼 때 EPS 베어러 ID 및 ARP 둘 다를 포함시킨다. 상기 하향링크 데이터 통지가 상기 S-GW에의 하향링크 데이터 패킷들의 도착(arrival)에 의해 트리거되면, 상기 S-GW는 상기 하향링크 데이터 패킷이 수신되었던 베어러와 연관된 상기 EPS 베어러 ID 및 ARP를 포함시킨다. 상기 하향링크 데이터 통지가 제어 시그널링의 도착에 의해 트리거되면, 상기 S-GW는 상기 EPS 베어러 ID 및 ARP가 상기 제어 시그널링에 존재하면 포함시킨다. 상기 ARP가 상기 제어 시그널링에 존재하지 않으면, 상기 S-GW는 저장된 EPS 베어러 컨텍스트 내에 상기 ARP를 포함시킨다. 로컬 게이트웨이(L-GW)가 ECM-IDLE 상태에 있는 UE를 위한 하향링크 데이터를 수신할 때 LIPA PDN 연결이 존재하면 상기 L-GW는 첫 번째 하향링크 사용자 패킷을 S-GW에 보내고 모든 다른 하향링크 패킷들을 버퍼한다. 상기 S-GW는 상기 MME가 상기 UE를 페이징하도록 트리거한다. 네트워크 트리거 서비스 요청 과정에 관한 자세한 사항은 3GPP TS 23.401 문서의 섹션 5.3.4.3을 참고할 수 있다.
한편, 전송할 트래픽이 발생한 UE는 도 7의 단계 1)~3)을 포함하는 임의 접속 과정을 통해 RRC 연결 요청을 eNB에게 전송한다. eNB가 UE의 RRC 연결 요청을 수락하는 경우, UE에게 RRC 연결 셋업 메시지를 전송하고, 상기 RRC 연결 셋업 메시지를 수신한 UE는 RRC 연결 셋업 완료(complete) 메시지에 서비스 요청을 실어 eNB에게 전송한다. UE 트리거 서비스 요청 과정에 관한 자세한 사항은 3GPP TS 23.401 문서의 섹션 5.3.4.1을 참고할 수 있다.
UE가 EMM-IDLE 모드에 있고 초기 NAS 메시지를 전송할 필요가 있을 때, 상기 UE는 하위 계층에 RRC 연결을 수립할 것을 요청한다. 초기 NAS 메시지들에는 어태치 요청; 디태치 요청; 트랙킹 영역 갱신 요청; 서비스 요청; 및 확장 서비스 요청(EXTENDED SERVICE RQUEST)이 있다. 상기 서비스 요청은 NAS 시그널링 연결의 수립 및 무선 및 S1 베어러들의 수립을 요청하기 위해 UE에 의해 네트워크로 보내지는 메시지이다. 상기 확장 서비스 요청은 CS 폴백 혹은 1xCS 폴백 콜을 개시(initiate) 혹은 네트워크로부터의 모바일 종결(terminated) CS 폴백 혹은 1xCS 폴백 요청 요청에 응답(respond)하기 위해; 또는 UE가 서비스 요청 메시지를 통해 제공될 수 없는 추가 정보를 제공할 필요가 있으면, NAS 시그널링 연결의 수립 및 패킷 서비스를 위한 무선 및 S1 베어리들의 수립을 요청하기 위해, 상기 UE에 의해 상기 네트워크로 보내지는 메시지이다.
서비스 요청 절차는 EMM 모드를 EMM-IDLE로부터 EMM-CONNECTED 모드로 전환(transfer)시키기 위한 것이다. UE가 후술될 제어 평면 CIoT EPS 최적화를 사용 중이 아니면, 서비스 요청 절차는 사용자 데이터 혹은 시그널링이 보내질 때 무선 및 S1 베어러들도 수립한다. UE가 제어 평면 CIoT EPS 최적화를 사용 중이면, 서비스 요청 절차는 CIoT 데이터의 UE-개시(UE-initiated) 전달(transfer)를 위해 사용될 수 있다. 서비스 요청 절차는 네트워크가 펜딩 중인 하향링크 시그널링을 가질 때; UE가 펜딩 중인 상향링크 시그널링을 가질 때; UE 혹은 네트워크가 펜딩 중인 사용자 데이터를 가지고 상기 UE가 EMM-IDLE 모드에 있을 때; EMM-IDLE 혹은 EMM-CONNECTED 모드의 UE가 모바일 기원(originating)/종결(terminating) CS 폴백 혹은 1xCS 폴백을 수행하도록 요청했을 때 등에 사용된다. 서비스 요청 절차는 UE에 의해 개시(initiate)된다. 그러나, 시그널링의 하향링크 전달(transfer), cdma2000® 시그널링 혹은 EMM-IDLE 모드에 대해서는, 트리거가 페이징 절차를 사용하여 네트워크에 의해 주어진다.
EPS 어태치 절차 동안, (즉, UE가 어태치 요청으로 PDN 연결성(connectivity)을 요청하면) 네트워크는 디폴트 EPS 베어러 컨텍스트를 활성화할 수 있다. 또한, 네트워크는 IP PDN 타입의 PDN 연결들에 대해 하나 또는 여러 개의 전용 EPS 베어러 컨텍스트를 병렬로 활성화할 수 있다. 이를 위해 디폴트 EPS 베어러 컨텍스트 활성화를 위한 EPS 세션 관리(EPS session management, ESM) 메시지가 EPS 이동성 관리(EPS mobility management, EMM) 메시지 내 정보 요소(information element)에서 전송될 수 있다. 이 경우, UE와 네트워크는 어태치 절차, 디폴트 EPS 베어러 컨텍스트 활성화 절차 및 전용(dedicated) EPS 베어러 컨텍스트 활성화 절차를 병렬로 실행(execute)한다. UE 및 네트워크는 결합(combined) 디폴트 EPS 베어러 컨텍스트 활성화 절차 및 어태치 절차를 상기 전용 EPS 베어러 컨텍스트 활성화 절차가 완료되기 전에 완료해야 한다. PDN 연결 없는 EMM-REGISTERED가 UE 또는 MME에 의해 지원되지 않으면, 어태치 절차의 성공은 상기 디폴트 EPS 베어러 컨텍스트 활성화 절차의 성공에 의존한다. 어태치 절차가 실패하면, ESM 절차도 실패한다.
EMM 메시지들에는, 예를 들어, 어태치 수락, 어태치 완료, 어태치 거절, 어태치 요청, 인증(authentication) 실패, 인증 거절, 인증 요청, 인증 응답, CS 서비스 통지(notification), 디태치 수락, 디태치 거절, 하향링크 NAS 수송(transport), EMM 정보, EMM 상태(status), 확장(Extended) 서비스 요청, 서비스 요청, 서비스 거절, 트랙킹 영역 갱신 수락, 트랙킹 영역 갱신 완료, 트랙킹 영역 갱신 거절, 트랙킹 영역 갱신 요청, 상향링크 NAS 수송, 하향링크 일반(generic) NAS 수송, 상향링크 일반 NAS 수송 등이 있다. ESM 메시지들에는, 예를 들어, 활성화 전용 EPS 베어러 컨텍스트 수락(activate dedicate EPS bearer context accept), 활성화 전용 EPS 베어러 컨텍스트 거절, 활성화 전용 EPS 베어러 컨텍스트 요청, 활성화 전용 EPS 베어러 컨텍스트 수락, 활성화 디폴트 EPS 베어러 컨텍스트 수락, 활성화 디폴트 EPS 베어러 컨텍스트 거절, 활성화 디폴트 EPS 베어러 컨텍스트 요청, 베어러 자원 할당(allocation) 거절, 베어러 자원 할당 요청, 베어러 자원 수정(modification) 거절, 베어러 자원 수정 요청, 비활성화 EPS 베어러 컨텍스트 수락, 비활성화 EPS 베어러 컨텍스트 요청, ESM 정보 요청, ESM 정보 응답(response), ESM 상태(status) 등이 있다. 현재까지 정의된 EMM 메시지와 ESM 메시지에 대한 좀 더 자세한 사항은 3GPP 24.301 V13.4.0을 참조할 수 있다.
최근, 기계 타입 통신(machine type communication, MTC)이 중요한 통신 표준화 이슈들 중 하나로서 대두되고 있다. MTC라 함은 주로 사람의 개입 없이 혹은 사람의 개입을 최소화한 채 기계(machine)와 eNB 사이에서 수행되는 정보 교환을 의미한다. 예를 들어, MTC는 계량기검침, 수위측정, 감시카메라의 활용, 자판기의 재고 보고 등과 같은 측정/감지/보고 등의 데이터 통신 등에 이용될 수 있으며, 소정 특성을 공유하는 복수의 UE들에 대한 자동 어플리케이션 혹은 펌웨어의 갱신 과정 등에 이용될 수 있다. MTC의 경우, 전송 데이터 양이 적고, 데이터 전송 또는 수신(이하 전송/수신)이 가끔씩 발생한다. 이러한 MTC의 특성 때문에 MTC를 위한 UE(이하 MTC UE)의 경우, 낮은 데이터 전송률에 맞춰 UE 제작 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. 또한 이러한 MTC UE는 이동성이 적고, 따라서 채널 환경이 거의 변하지 않는 특성을 지닌다. MTC UE가 계랑, 검침, 감시 등에 사용될 경우, MTC UE는 통상의 eNB의 커버리지가 미치지 못하는 위치, 예를 들어, 지하나 창고, 산간 등에 위치할 가능성이 높다. 이러한 MTC UE의 용도를 고려하면 MTC UE를 위한 신호는 기존 UE(이하 레거시 UE)를 위한 신호에 비해 넓은 커버리지를 지니는 것이 좋다
앞으로 엄청나게 많은 기기들이 IoT (internet of things)로 무선 연결될 것으로 예상된다. IoT라 함은 해당 물체(object)들이 데이터를 수집 및 교환하는 것을 가능하게 하는, 전자장치(electronics), 소프트웨어, 센서, 액츄에이터 및 네트워크 연결성을 구비한 물리적 기기(device), 연결된(connected) 기기들, 스마트 기기들, 건물들 및 다른 아이템들 등의 인터네트워킹을 의미한다. 다시 말해, IoT 지능적(intelligent) 어플리케이션들 및 서비스들을 위한 데이터를 교환하기 위한 연결성 및 통신을 가능하도록 하는, 물리적 물체들, 기계들(machines), 사람들 및 다른 기기들의 네트워크를 의미한다. IoT는 물체들이 현존하는(existing) 네트워크 기반시설(infrastructure)을 통해 원격으로 감지(sense) 및 제어되는 것을 허용하여, 개선된 효율성, 정확성 및 경제적 이들을 초래하는, 물리 및 디지털 세계 간의 직접 통합(integration)을 위한 기회들을 제공한다. 특히 본 발명에서는 3GPP 기술을 이용하는 IoT를 셀룰러 IoT(CIoT)라고 한다. 또한, 협대역(narrowband)(예, 약 200kHz의 주파수 대역)을 이용하여 IoT 신호를 전송/수신하는 CIoT를 NB-IoT라 한다.
CIoT는 상대적으로 긴 주기, 예를 들어, 수 십분 내지 년 단위로 전송되는 트래픽(예, 스모크 알람 검출, 스마트 미터기(meter)들로부터의 전력 실패 통지, 탬퍼(tamper) 통지, 스마트 유틸리티(가스/물/전기) 미터링 보고, 소프트웨어 패치/업데이트 등), 그리고 울트라-저 복잡도, 전력 제안 및 저 데이터 레이트의 'IoT' 기기들을 지원한다.
종래 EMM 휴지(EMM-Idle) 모드의 UE에게 데이터를 전송하기 위해서는 네트워크와의 연결을 만들어야 한다. 이를 위해서 서비스 요청 과정이 성공적으로 수행되어야 하는데, 저 복잡도/전력, 저 데이터 레이트의 CIoT를 위해 최적화된 전력 소비가 필수적인 CIoT에 바람직하지 못하다. 데이터를 어플리케이션에 보내기 위해, EPS 내 CIoT를 위한 2가지 최적화, 사용자 평면 CIoT EPS 최적화(optimization) 및 제어 평면 CIoT EPS 최적화가 정의되었다.
사용자 평면 CIoT EPS 최적화와 제어 평면 CIoT EPS 최적화는 각각 U-평면 솔루션 및 C-평면 솔루션으로 불리기도 한다.
제어 평면 CIoT EPS 최적화는 제어 평면 상으로 사용자 데이터(IP, 비-IP 혹은 SMS)의 효율적 수송을 가능하도록 하는 시그널링 최적화이다. 제어 평면 CIoT EPS 최적화 솔루션에서는 셋업된 데이터 무선 베어러가 없고, 대신에 시그널링 무선 베어러 상에서 데이터 패킷들이 보내진다. 다시 말해, 휴지(idle)-to-연결(connected) 모드 전환 후 데이터 무선 베어러(data radio bearer, DRB)를 셋업하여 UE-eNB-SGW의 경로를 통해 데이터를 전달하던 종래 데이터 전달과 달리 제어 평면 CIoT EPS 최적화는 SRB를 통해 NAS 메시지에 데이터 PDU를 실어 보내는 방법이다. 제어 평면 CIoT EPS 최적화를 위해 데이터 수송을 위한 NAS 메시지 및 MME와 SGW 간의 데이터 수송을 위한 새로운 인터페이스인 (GTP-U 기반의) S11-U가 정의된다. 제어 평면 CIoT EPS 최적화는 기존의 DRB를 사용하지는 않으나 새롭게 정의된 UE-eNB-MME-SGW 경로의 연결도 PDN 연결로서 정의하며, 역시 SRB가 셋업되어 데이터를 전송할 수 있는 상태는 연결된(connected) 모드/상태로서 정의하여, 해당 데이터의 전송을 마친 후에는 S1 해제 과정도 수행하도록 정의하고 있다. 단, S1-U 인터페이스를 해제하는 종래의 S1 해제 과정(3GPP TS 23.401 무서의 섹션 5.3.5 참조)과 달리, 제어 평면 CIoT EPS 최적화에서는 S1 해제 과정을 통해 S1-U 인터페이스 대신 S11-U 인터페이스가 해제된다.
한편, 데이터 평면 CIoT EPS 최적화는 데이터 전송을 위한 휴지-to-연결 모드 전환 시의 시그널링을 줄이는 것을 목표로, 연결-to-휴지 모드 전환 시 RRC 연결을 해제하되, eNB가 UE의 컨텍스트를 지우는 종래의 휴지 모드와 달리, eNB가 UE의 컨텍스트를 지우지 않고 유지하는 중단(suspended) 상태와, 상기 중단 상태로 진입하는 연결 중단(connection suspend) 과정 및 상기 중단 상태에서 다시 연결 모드로 전환하는 연결 재개(connection resume) 과정을 정의한다. 데이터 평면 CIoT EPS 최적화는 기존 데이터 무선 베어러(data radio bearer, DRB)를 통해, 즉, S1-U를 통해 데이터를 전송할 것을 요하지만 접속 층(access stratum, AS) 파라미터들을 UE의 연결(connected)-휴지(idle) 모드 전환 시에도 eNB에 캐싱(caching)한다.
도 8은 제어 평면 CIoT 최적화에 따른 UE와 P-GW 간 사용자 평면 프로토콜 스택들을 예시한 것이다.
도 8을 참조하면, GTP-u는 백본 네트워크에서 S-GW와 P-GW 간뿐 아니라 MME와 S-GW 간에 사용자 데이터를 터널링하는 프로토콜이다. GTP는 모든 종단(end) 사용자 IP 패킷들을 캡슐화(encapsulate)한다. UDP/IP는 사용자 데이터와 제어 시그널링을 라우팅하는 데 사용되는 백본 네트워크 프로토콜이다. NAS는 UE와 MME 간 데이터를 나르는 데 사용되는 비 접속 단 계층(layer)이며 사용자 평면 IP 데이터에 대한 헤더압축 및 보안 기능들을 포함할 수 있다.
CIoT 네트워크 또는 기술은 주로 코어 네트워크 측면에서, IoT UE에게 최적화된 통신 서비스를 제공하는 것이고, NB-IoT (narrowband internet of things) 네트워크 또는 기술은 기존의 LTE 기술의 무선 인터페이스를 IoT를 위해 최적화한 것을 말한다.
NB-IoT는 이름에서 알 수 있듯이 200Khz정도의 협대역 주파수를 이용하여 IoT 서비스를 제공하는 무선 기술이다. 종래 LTE 기술이 최소 1.25Mhz 주파수 대역을 사용하는 것에 비해서 NB-IoT는 아주 적은 주파수를 사용하므로, UE 측면에서는 프로세싱 전력의 최소화 및 전력 소모의 최소화를 도모할 수 있다.
CIoT는, 종래의 어태치 과정(3GPP TS 23.401의 섹션 5.3.2 참조) 혹은 서비스 요청 과정(3GPP TS 23.401의 섹션 5.3.4 참조)이 수많은 메시지 교환으로 인해 UE의 전력 낭비를 발생하는 것을 해결하기 위해서, MME가 데이터를 처리하거나(C-평면 솔루션), 혹은 UE가 RRC 휴지 상태와 비슷한 상태에 놓이더라도 UE 및 eNB가 컨텍스트를 유지하여 다음 번 연결에 활용하는 방식(U-평면 솔루션)을 통해서, UE의 전력 소모를 최소화하는 기술이다.
따라서, NB-IoT 무선 기술과 CIoT 기술은 개별적으로 적용이 가능하다. 즉, NB-IoT 무선 기술을 쓰지 않더라도, 종래의 LTE 무선 망을 통해서 CIoT 기술을 적용하는 것이 가능하다. 이는 NB-IoT 무선 기술을 사용할 수 없는 UE, 예를 들어, 이미 LTE 무선 기술만 적용되어 출시된 UE에게도, CIoT 기술을 적용할 수 있음을 의미한다. 또한, 종래의 LTE 무선 기술 기반의 셀에서, 스마트폰 같은 종래의 LTE UE를 지원하면서, 동시에 IoT UE를 지원할 수 있음을 의미한다.
UE가 무선 접속 네트워크 및 코어 네트워크 간에 S1 인터페이스를 사용하는 경우, S1 모드라고 한다. S1 모드의 경우, UE는 E-UTRAN를 통한 네트워크 서비스에 접속을 한다. 다중-접속 시스템에서, S1모드는 현재 무선 접속 네트워크에 따라 WB-S1 모드와 NB-S1 모드로 나뉜다.
다중-접속 시스템의 경우, 현재 서빙 E-UTRA가 NB-IoT에 의해서 S1 모드를 제공하면 NB-S1 모드로 동한다고 칭한다(3GPP TS 24.301 문서, 3GPP TS 36.300 문서, 3GPP TS 36.331 문서, 3GPP TS 36.306 문서 참조). 다중-접속 시스템의 경우, 시스템이 NB-S1 모드가 아닌 S1 모드로 동작하면 시스템이 WB-S1 모드에서 동작한다고 칭한다. 다시 말해, CIoT 모드에는 WB-S1 모드와 NB-S1 모드가 있으며, NB-IoT는 NB-S1 모드에 해당하고, NB-IoT를 제외한 나머지, 즉, 종래 LTE를 포함한 CIoT는 WB-S1 모드에 해당한다고 할 수 있다.
도 9는 LTE/LTE-A 시스템에서 PDCP 계층의 기능적 관점(view)를 나타낸 것이다. PDCP 계층에 관한 자세한 내용은 3GPP TS 36.323 문서를 참조한다.
CP 최적화와 UP 최적화의 동작 상 차이 중 하나는 PDCP 계층의 동작이다. 예를 들어, UP 최적화 혹은 종래 S1-U/DRB를 통해 데이터를 전송하는 경우에는 UE와 eNB의 PDCP 계층에서 AS 보안(security) 동작 및 IP 헤더 압축을 담당했다. 그러나 CP 최적화의 경우는 SRB를 사용하므로 PDCP 계층에서 이러한 동작은 스킵(skip)게 된다.
CP 최적화의 경우 이러한 PDCP 계층의 주요 동작을 스킵하는 PDCP-TM (Transparent Mode)으로 동작한다. 즉, 사용하는 CIoT EPS 최적화에 따라서 PDCP 계층의 동작이 달라지거나 혹은 아예 PDCP의 사용 여부가 달라진다고 볼 수 있다.
PDCP를 사용하는 논리 채널들이 표준 문서에 정의되어 있다. PDCP 표준 문서(예, 3GPP TS 36.323)에는 PDCP가 DCCH(dedicated control channel), DTCH(dedicated traffic channel) 및 STCH(sideline traffic channel) 타입의 논리 채널들 상에 매핑된 SRB들, DRB들, 및 (사이드링크 통신 데이터를 나르는) SLRB(sidelink radio bearer)들을 위해 사용된다고 특정되어 있다. 다시 말해, BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MTCH(multicast traffic channel), MCCH(multicast control channel), SBCCH(sidelink broadcast channel), SC-MCCH(single cell multicast control channel) 및 SC-MTCH(single cell multicast transport channel)는 PDCP를 바이패스한다.
그런데, CP 솔루션, 즉, CP 최적화에서 데이터는 SRB1 상으로(over) 전달(transfer)된다. SRB1은 적용된 보안이 있는 PDCP를 항상 사용한다. 따라서, CP 최적화에 PDCP가 사용되면, 1 바이트 PDCP 헤더 및 4 바이트 MAC-I가 AS 보안이 활성화(activate)되는지에 관계없이 항상 포함된다. 이는 CP 최적화의 경우에도 5 바이트의 헤더 오버헤드를 유발(cause)한다. 따라서 CP 솔루션에서는 SRB1에 대해 PDCP를 바이패스하는 것이 좋다. SRB1은 AS 보안을 지원하기 위해 레거시로서 PDCP를 사용하여 설정된다. 그러므로, PDCP는 UP 솔루션에서 SRB1을 위해 설정되어야 한다. UE가 임의 접속 과정에서 msg 5(예, RRC 연결 셋업 완료 메시지)를 전송할 때, CP 혹은 UP 솔루션이 전에 지시된 바 없으면, eNB로 하여금 어떻게 PDCP의 사용 여부를 알게 할 것인지 문제된다.
이에 대한 해결책으로 논의된 방안 중 하나는 종래처럼 모든 NAS 메시지를 하나의 SRB(즉, SRB1)로 전송하는 것이 아닌, PDCP의 사용 여부에 따라서 기존 SRB가 아닌 새로운 SRB를 사용하는 방법이다. 이 경우, 기존 SRB1의 사용에 영향을 주지 않으면서, 시그널링을 위해 사용되는 종래의 NAS 메시지와, 데이터를 전송하기 위해 CP 최적화를 위한 NAS 메시지의 효과적인 분리가 가능하다.
* 문제점 1. SRB의 선택
NB-IoT UE가 CP 최적화와 UP 최적화를 모두 지원하는 경우, 혹은 LTE/E-UTRAN을 사용하는 UE가 CP 최적화 및 UP 최적화를 모두 지원하는 경우, 다음과 같은 상황이 고려될 수 있다.
앞서 설명한 바와 같이 PDCP를 사용하는지 여부에 따라서 별개의 SRB 혹은 무선 베어러가 사용될 수 있다. 즉, 기존 S1-U 혹은 UP 최적화를 사용하는 경우에는 기존처럼 SRB1가 사용되고, CP 최적화를 사용하는 경우에는 새로운 무선 베어러(이하, SRB3)가 사용될 수 있다. SRB3는 CP 최적화에서 SRB1 대신에 사용된다. SRB3는 PDCP가 바이패스된다는 것을 제외하고 SRB1과 같다. 다시 말해, SRB3는 PDCP를 제외하고 SRB1과 동일한 설정(configuration)을 갖는다. CP 최적화에서 SRB3를 사용할 때의 문제는 CP 최적화 및 UP 최적화 혹은 CP 최적화 및 S1-U를 모두 지원하는 UE의 경우 수신한 데이터에 따라서 어떤 경로를 선택할 지 알 수 없다는 점이다. 예를 들어, UE는 CP 최적화를 사용 중인 경우에는 데이터를 담은 NAS 메시지를 SRB3로 전송해야 하고, UP 최적화를 사용 중인 경우에는 SRB1으로 상기 NAS 메시지를 전송해야 한다. 하지만 AS 입장에서는 상위 계층으로부터 받은 NAS 메시지가 기존 S1-U 혹은 UP 최적화를 위한 시그널링 타입의 메시지인지, 아니면 CP 최적화를 위한 데이터 타입 메시지인지를 알 수 없기 때문에 새로운 SRB가 생긴다고 해도 상위 계층에서 받은 NAS 메시지를 어느 SRB로 전송할 지 선택하는 문제가 발생한다.
* 문제점 2. NAS 상에서의 NAS
시그널링
및 데이터 간 우선순위 매김(prioritizing)
종래에는 시그널링이 SRB를 통해 수송되었고, 데이터는 DRB를 통해 수송되었다. 시그널링 타입의 메시지와 데이터 타입의 메시지가 동일 경로를 통해 수송되지 않았으므로, 시그널링 타입의 메시지와 데이터 타입의 메시지가 동일 시점에 동일 경로를 통해 전송되어야 할 경우가 발생하지 않았으므로, 동일 RB에서 시그널링과 데이터 간 우선 처리를 고민할 필요가 없었다.
그러나, UE가 CP 최적화를 사용하는 경우, 상기 UE는 데이터를 사용자 평면이 아닌 NAS 메시지에 피기백하여 eNB-MME-SGW를 통해 전송한다. 이 때 상기 NAS 메시지는 종래 사용되던 NAS 메시지일 수도 있고, 데이터 수송을 위해 새롭게 정의된 NAS 메시지일 수도 있다. 이렇게 NAS 메시지를 통하여 기존의 시그널링뿐 아니라 데이터를 전송하게 될 경우 다음과 같은 문제가 발생할 수 있다.
UE 혹은 eNB는 MO(mobile originating)/MT(mobile terminating) 데이터를 NAS 메시지에 실어서 SRB를 통해 전송하게 된다. 이 때 SRB로는 이러한 데이터 타입의 NAS 메시지, 즉, 사용자 데이터를 위한 NAS 메시지뿐 아니라 기존의 시그널링(예, EMM/ESM 메시지)을 위한 NAS 메시지도 전송되는데, NAS 메시지는 AS 계층들에게 투명(transparent)하므로, AS 입장에서는 현재 전송하는 NAS 메시지가 데이터 타입인지 시그널링 타입인지 알 수 없다. 그런데 만일 이러한 데이터 타입의 메시지와 시그널링 타입의 메시지가 AS에 한 순간에 집중되는 경우, 현재까지의 표준에 의하면 상기 AS는 메시지 타입에 대한 구분 없이 선입선출(first come first served, FCFS) 기반으로 먼저 요청된 메시지부터 전송하게 된다. 그러나 많은 경우 데이터와 시그널링 중 시그널링을 우선적으로 처리해야 할 필요가 있을 수 있다. 시그널링의 데이터에 대한 우선 처리가 필요한 경우는 UE의 전송기의 큐에서의 우선순위매김(prioritization)이 필요한 때일 수도 있고, eNB에서 여러 UE의 데이터나 시그널링 중 어떤 걸 우선적으로 처리할 지 판단할 때 일 수도 있다. 예를 들어 UE는 데이터를 보내던 중 MME 변경(change)로 인해 트랙킹 영역 갱신 과정(3GPP TS 23.401의 섹션 5.3.3 참조)을 통해 경로를 설정해야 할 수 있다. 또 eNB는 어느 UE의 데이터를 수신하는 시점에 다른 UE의 시그널링을 수신할 수도 있다. 그러나 현재까지의 표준에 의하면 UE의 AS와 eNB의 AS는 데이터 타입의 NAS 메시지와 시그널링 타입의 NAS 메시지 간을 구분하는 것이 불가능하여 시그널링을 데이터에 대해 우선 처리해야 할 경우에 대해 대처할 수가 없는 상태이다.
* 문제점 3. MT 경우에서의 우선순위 매김 문제
전술한 문제점 1 및 문제점 2는 MT(mobile terminating) 경우에도 동일하게 발생할 수 있다. eNB는 NAS PDU의 종류(데이터/시그널링)를 알 수 없는 상태이므로, 하향링크 NAS PDU에 대한 SRB의 할당 혹은 시그널링 우선 처리 등의 과정을 수행할 수 없다.
<발명제안 1. EPS 최적화 용도(usage)/NAS 타입의 NAS 통지(notification)>
본 발명에서는 CP 최적화를 사용하거나, CP 최적화와 UP 최적화를 같이 지원하는 UE가 여러 무선 베어러들 중 적당한 것을 선택하는 방법을 제안하고자 한다.
본 발명에서는 CP 최적화를 사용하거나, CP 최적화 및 UP 최적화를 같이 지원하는 UE가 상향링크 혹은 MO 트래픽 발생 시에 여러 무선 베어러 중 적당한 것을 선택 혹은 UE 어떤 종류의 NAS PDU를 우선적으로 처리할 지 결정하는 방법을 제안하고자 한다.
도 10은 제어 평면 CIoT EPS 최적화로 모바일 기원된(mobile originated, MO) 데이터를 수송하는 방법의 흐름도를 예시한 것이다. 도 10에 도시된 제어 평면 CIoT EPS 최적화에서 MO 데이터 수송에 관한 구체적인 설명은 3GPP TS 23.401 문서의 섹션 5.3.4B.2을 참조한다.
CP 최적화를 사용하는 UE에 대한 MO 데이터 발생시 네트워크에게 도 10과 같이 MO 데이터를 전달한다. UE가 휴지 모드인 경우(S1000), 연결(connected) 모드로의 전환을 위해 서비스 요청(service request)를 수행한다(S1001). 이 때 상기 UE가 CP CIoT 최적화를 사용할 경우, UE는 사용자 평면 인터페이스가 아니라 제어 평면 인터페이스를 통해 NAS PDU를 네트워크에게 전달한다.
공통적으로 UE는 현재 사용중인, 혹은 사용 가능한 CIoT EPS 최적화 정보와 현재 전송하려는 NAS 메시지 타입을 조합하여 AS 계층으로 전달할 정보를 판단한다. 그 분류는 다음과 같을 수 있다.
* 옵션 1)
> CP CIoT EPS 최적화를 사용하여 시그널링 메시지를 보낼 경우: NAS 시그널링.
예, 일반(normal) EMM/ESM 메시지.
> CP CIoT EPS 최적화를 사용하여 데이터 메시지를 보낼 경우: NAS 데이터.
예, NAS PDU가 있는 확장 서비스 요청 또는 데이터 서비스 요청(extended service request or data service request with NAS PDU)/일반 NAS 수송(generic NAS transport) 또는 ESM NAS 컨테이너 메시지 등 NAS PDU를 수송하기 위한 모든 NAS 메시지 타입.
> UP CIoT EPS 최적화를 사용하여 시그널링 메시지를 보낼 경우: NAS 시그널링.
예, EMM 메시지, ESM 메시지, DRB 셋업을 위한 서비스 요청 등.
* 옵션 2)
> UP CIoT EPS 최적화를 사용하여 시그널링 메시지를 보낼 경우: NAS 시그널링.
예, 어태치, 트랙킹 영역 갱신(TAU), ESM 메시지.
> CP CIoT EPS 최적화를 사용할 때,
>> 휴지 모드에서 UE가 데이터 전송을 위한 초기(initial) 메시지를 보낼 경우: NAS 시그널링.
예, NAS PDU가 있는 확장 서비스 요청/데이터 서비스 요청 등 초기 셋업을 실행(execute)하는 NAS 메시지.
>> 연결된(connected) 모드에서 UE가 데이터 전송을 위한 NAS 메시지를 보낼 경우: NAS 데이터.
예, 일반 NAS 수송(generic NAS transport)/ESM NAS 컨테이너 메시지 등 NAS PDU만을 전송하기 위한 NAS 메시지.
> UP CIoT EPS 최적화를 사용하여 시그널링 메시지를 보낼 경우: NAS 시그널링.
예, EMM 메시지, ESM 메시지, DRB 셋업을 위한 서비스 요청 등.
도 11은 본 발명에 따라 비-접속 단(non-access stratum, NAS) 메시지를 전송하는 방법을 예시한 것이다. 특히 도 11에서 "UE/MME"는 발명제안 1에서는 "UE"를 나타내고, 후술하는 발명제안 2에서는 "MME"를 나타내다. 도 11에서 "AS / S1-AP"는 발명제안 1에서는 "AS"를 나타내고, 발명제안 2에서는 "S1-AP"를 나타낸다.
UE는 NAS 계층에서 새로운 NAS 메시지를 보낼 경우 위에서 정한 분류 혹은 다른 분류에 따라 AS 계층으로 전송하려고 하는 상기 NAS 메시지의 타입을 알려줄 수 있다(S1101, S1102). 예를 들어, UE의 NAS 계층은 위에서 정한 분류에 따라 해당 NAS 메시지가 NAS 데이터인지 NAS 시그널링인지를 AS 계층에 알려줘야 한다(S1101, S1102). 휴지 모드의 UE가 초기 메시지를 보내기 위해서는 RRC에서 SRB를 생성해야 한다. SRB가 두 종류 이상일 경우, AS 계층은 이 정보를 바탕으로 어떤 SRB를 셋업하여 해당 NAS 메시지를 전송할 지 결정한다. 다시 말해, 메시지가 시그널링 타입의 메시지인지 아니면 데이터 타입의 메시지인지에 따라 셋업될 SRB가 선택될 수 있다. 예를 들어, NAS 계층이 AS 계층에게 해당 NAS 메시지가 NAS 데이터이라고 알리면 상기 AS 계층은 종래 SRB1을 셋업하고, 해당 NAS 메시지가 NAS 시그널링이라고 알리면 상기 AS 계층은 새로은 SRB3를 셋업할 수 있다. 이는 NAS에서 AS에게 지시(indication)을 주는 등의 방법으로 구현될 수 있으며, 혹은 UE 내부 동작을 통해 구현될 수 있다. SRB 선택 후 SRB의 셋업 및 실제 AS 구간의 전송은 종래 동작을 따를 수 있다.
앞선 설명에서 UE의 AS는 NAS로부터 전달받은 NAS 메시지 타입 정보를 바탕으로 어떤 SRB를 통해 해당 NAS 메시지를 전송할 지 결정할 수 있다. 만일 SRB, 혹은 NAS PDU가 전달되는 채널/RB의 종류가 종래와 같이 하나일 경우, 혹은 동일 SRB를 통해 데이터 타입의 NAS 메시지와 시그널링 타입의 NAS 메시지가 모두 전달될 수 있을 경우, UE는 다음과 같은 두 가지 동작 중 하나 혹은 두 가지 모두를 동시에 적용할 수 있다.
1-1) UE 내부 아웃고인 큐 우선순위(priority)
SRB가 한 종류만 있고, 시그널링과 데이터가 동시에 생성되었을 경우, UE는 시그널링을 우선적으로 보낼 수 있다(S1105).
1-2) RRC 메시지에 지시(indication) 포함
UE의 AS는 NAS PDU와 NAS 메시지 타입 정보를 NAS로부터 전달받는다(S1101, S1102). 만일 SRB가 한 종류만 있을 경우, UE의 AS는 RRC 메시지에 NAS 메시지 타입 정보를 포함시킬 수 있다(S1105). UE의 송수신 장치는 종래의 NAS PDU뿐만 아니라 NAS 메시지 타입을 함께 전송한다(S1101). eNB의 송수신 장치가 이를 수신하여 RRC 계층에서 받아들였을 때, eNB의 RRC는 NAS 메시지 타입 정보를 통해 현재 RRC 메시지에 피기백되어 있는 NAS PDU가 NAS 시그널링인지 NAS 데이터인지 알 수 있다. eNB는 이 정보를 바탕으로 NAS 시그널링과 NAS 데이터 간의 구별된(differentiated) 핸들링을 적용 가능하다. 예를 들어 eNB는 시그널링을 우선적으로 MME로 전달할 수 있으며, 만일 상기 eNB가 과부하(overload) 혹은 혼잡(congestion) 상황이어서 패킷을 드랍해야 할 경우 데이터부터 드랍할 수 있다.
<발명제안 2. 모바일 종결(mobile termination, MT) NAS 메시지를 위한 NAS 타입에 관한 네트워크의 통지>
본 발명에서는 CP 최적화를 사용하거나, CP 최적화 및 UP 최적화를 같이 지원하는 UE가 네트워크에서 서비스를 받고 있을 경우 하향링크 혹은 MT 트래픽 발생 시에 코어 네트워크 혹은 기지국이 여러 무선 베어러 중 적당한 것을 선택 혹은 기지국이 어떤 종류의 NAS PDU를 우선적으로 처리할 지 결정하는 방법을 제안하고자 한다.
도 12는 제어 평면 CIoT EPS 최적화로 모바일 종결되는(mobile terminated, MT) 데이터를 수송하는 방법의 흐름도를 예시한 것이다. 도 12에 도시된 제어 평면 CIoT EPS 최적화에서 MT 데이터 수송에 관한 구체적인 설명은 3GPP TS 23.401 문서의 섹션 5.3.4B.3을 참조한다.
CP 최적화를 사용하는 UE에 대한 MT 데이터 발생시(S1201) 네트워크는 도 12와 같이 MT 데이터를 전달한다.
종래 동작과 같이 SGW는 MME로 하향링크 데이터 통지(downlink data notification, DDN)을 전달하고(S1202), 상기 MME는 eNB에게 페이징을 전달하고(S1203), 상기 eNB는 UE에게 페이징을 전달한다(S1204). UE가 휴지 모드인 경우(S1200), 연결(connected) 모드로의 전환을 위해 서비스 요청(service request)를 수행한다(S1205). 이 때 상기 UE가 CP CIoT 최적화를 사용할 경우, SGW는 S1-U 인터페이스 아니라 (MME-SGW 간 사용자 평면 인터페이스인) S11 인터페이스를 통해 상기 MME로 데이터를 전달하고, 상기 MME는 ESM 데이터 수송(data transport) 메시지를 이용하여 NAS로 데이터를 전달한다.
공통적으로 MME는 UE가 현재 사용 중인, 혹은 사용 가능한 CIoT EPS 최적화 정보와 현재 전송하려는 NAS 메시지 타입을 조합하여, S1-AP 계층으로 전달할 정보를 판단한다(S1213). 그 분류는 다음과 같을 수 있다.
> CP CIoT EPS 최적화 혹은 UP CIoT EPS 최적화를 사용하여 시그널링 메시지를 보낼 경우: NAS 시그널링.
예, 일반 MT ESM 메시지.
- 활성화 디폴트 EPS 베어러 컨텍스트 요청(ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST)
- 활성화 전용 EPS 베어러 컨텍스트 요청(ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST)
- 수정 EPS 베어러 컨텍스트 요청(MODIFY EPS BEARER CONTEXT REQUEST)
- 비활성화 EPS 베어러 컨텍스트 요청(ACTIVATE EPS BEARER CONTEXT REQUEST)
> CP CIoT EPS 최적화를 사용하여 데이터를 메시지를 보낼 경우: NAS 데이터.
예, ESM 데이터 수송 메시지 등 NAS PDU를 전송하기 위한 모든 NAS 메시지 타입.
도 11을 참조하면, NAS 계층에서 새로운 NAS 메시지를 보낼 경우, MME의 NAS는 위에서 정한 분류 혹은 다른 분류에 따라 상기 MME가 전송하고자 하는 NAS 메시지 타입을 S1-AP 계층에게 알려줄 수 있다(S1101, S1102). 예를 들어 위에서 정한 분류에 따르면 NAS 계층은 해당 NAS 메시지가 NAS 데이터인지 NAS 시그널링인지를 하위 계층인 AS 계층으로 알려준다.
S1-AP 계층을 통해 NAS PDU가 eNB로 전달 시, eNB는 현재 전달된 NAS PDU가 데이터인지 시그널링인지 알 수 없으므로 MME는 S1-AP로 NAS PDU를 전달할 때 다음과 같은 방법을 이용할 수 있다.
2-1) MME 내부 아웃고잉 큐 우선순위
MME는 S1-AP로 NAS-PDU를 전달할 때, 시그널링과 데이터가 동시에 생성되었을 경우, 시그널링을 우선적으로 보낼 수 있다(S1105).
2-2) S1-AP 메시지에 지시 포함
MME의 S1-AP는 NAS PDU와 NAS 메시지 타입 정보(데이터인지 시그널링인지)를 상기 MME의 NAS로부터 전달받는다(S1101, S1102). 상기 MME는 S1-AP를 통해 NAS PDU를 eNB로 전송 시 해당 NAS PDU가 어떤 타입인지를 나타내는 별도의 정보(이하, NAS 메시지 타입 정보)를 상기 NAS PDU를 담은 S1-AP 메시지에 포함시킬 수 있다(S1101, S1102). 이는 S1-AP 메시지 상의 별도의 정보 요소(information element, IE) 혹은 플래그 등으로 구현될 수 있다. MME의 송수신 장치는 이러한 새로운 정보를 포함한 S1-AP 메시지를 eNB로 전송할 수 있다. 이 때 여러 시그널링과 데이터 간의 우선순위 핸들링은 2-1)에서 제안한 바에 따라 적용될 수 있다(S1105). eNB의 송수신 장치가 상기 S1-AP 메시지를 수신하면 상기 eNB의 S1-AP 계층에서는 상기 MME에 포함된 NAS 메시지 타입 정보를 통해 상기 S1-AP 메시지에 피기백되어 있는 NAS PDU가 NAS 시그널링인지 NAS 데이터인지 알 수 있다. eNB는 이 정보를 바탕으로 NAS 시그널링과 NAS 데이터 간의 구별된 핸들링을 적용 가능하다. 예를 들어 eNB는 시그널링을 우선적으로 UE로 전달할 수 있으며, 만일 eNB가 과부하(overload) 혹은 혼잡 상황이어서 패킷을 드랍 혹은 버퍼해야 할 경우 데이터부터 드랍 혹은 버퍼할 수 있다.
도 13은 본 발명의 제안에 적용되는 노드 장치의 구성을 도시하는 도면이다.
제안하는 실시 예에 따른 UE 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 무선 주파수(radio frequency, RF) 유닛으로 칭해지기도 한다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 전송하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 또는, 송수신장치(110)는 전송부와 수신부로 분리되어 구현될 수도 있다. UE 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 UE 장치(100) 전반의 동작을 제어할 수 있으며, UE 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 UE 동작을 수행하도록 구성될 수 있다. 프로세서(120)은 본 발명의 제안에 따라 데이터 혹은 메시지를 전송하도록 송수신장치(110)을 제어할 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 13을 참조하면 제안하는 실시 예에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 무선 주파수(radio frequency, RF) 유닛으로 칭해지기도 한다. 송수신장치(210)는 외부 장치로 각종 신호, 데이터 및 정보를 전송하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 송수신장치(210)는 전송부와 수신부로 분리되어 구현될 수도 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 프로세서(220)은 본 발명의 제안에 따라 데이터 혹은 메시지를 UE 혹은 다른 네트워크 노드에 전송하도록 송수신장치(110)을 제어할 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
또한, 위와 같은 UE 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 과정 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 통신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
Claims (14)
- 사용자기기가 메시지를 전송함에 있어서,비-접속 단(non-access stratum, NAS) 계층에서 NAS 메시지를 생성;상기 NAS 계층에서 접속 단(access stratum, AS) 계층으로 상기 NAS 메시지와 타입 정보를 전달(transfer); 및상기 NAS 메시지를 담은 AS 메시지를 네트워크에게 전송하는 것을 포함하며,상기 타입 정보는 상기 NAS 메시지가 사용자 데이터를 담은 제1 타입 메시지인지 아니면 사용자 데이터가 없는 제2 타입 메시지인지를 나타내는,메시지 전송 방법.
- 제1항에 있어서,상기 AS 메시지는 상기 타입 정보를 더 포함하는,메시지 전송 방법.
- 제1항에 있어서,상기 AS 계층에 동일 시그널링 무선 베어러(signaling radio bearer, SRB)를 통해 전송될 NAS 메시지가 복수 개 존재하면, 상기 AS 계층은 상기 복수 개 NAS 메시지 각각의 타입 정보를 바탕으로, 제2 타입 메시지에 해당하는 NAS 메시지를 제1 타입 메시지에 해당하는 NAS 메시지보다 먼저 전송하는,메시지 전송 방법.
- 제1항에 있어서,상기 AS 메시지는 무선 자원 제어(radio resource control, RRC) 메시지인,메시지 전송 방법.
- 제1항에 있어서,상기 AS 계층은 상기 타입 정보를 바탕으로 제1 시그널링 무선 베어러(signaling radio bearer, SRB) 또는 제2 SRB를 통해 상기 AS 메시지를 전송하는,메시지 전송 방법.
- 제5항에 있어서,상기 제1 SRB는 패킷 데이터 수렴 프로토콜(packet data convergence protocol, PDCP)가 있는 SRB1이고, 상기 제2 SRB는 상기 SRB1과 동일한 설정이지만 PDCP 없는 새로운 SRB인,메시지 전송 방법.
- 제6항에 있어서,상기 타입 정보는 상기 사용자기기가 사용자 데이터의 수송에 제어 평면을 사용하는 제어 평면 CIoT EPS 최적화를 사용 중인지 여부를 더 나타내고,상기 사용자기기가 상기 제어 평면 CIoT EPS 최적화를 사용 중이면 상기 AS 메시지는 상기 새로운 SRB를 통해 전송되고, 그렇지 않으면 상기 SRB1을 통해 전송되는,메시지 전송 방법.
- 사용자기기가 메시지를 전송함에 있어서,무선 주파수(radio frequency, RF) 유닛, 및상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하며, 상기 프로세서는:비-접속 단(non-access stratum, NAS) 계층에서 NAS 메시지를 생성;상기 NAS 계층에서 접속 단(access stratum, AS) 계층으로 상기 NAS 메시지와 타입 정보를 전달(transfer); 및상기 NAS 메시지를 담은 AS 메시지를 네트워크에게 전송하도록 상기 RF 유닛을 제어하며,상기 타입 정보는 상기 NAS 메시지가 사용자 데이터를 담은 제1 타입 메시지인지 아니면 사용자 데이터가 없는 제2 타입 메시지인지를 나타내는,사용자기기.
- 제8항에 있어서,상기 AS 메시지는 상기 타입 정보를 더 포함하는,사용자기기.
- 제8항에 있어서,상기 AS 계층에 시그널링 무선 베어러(signaling radio bearer, SRB)를 통해 전송될 NAS 메시지가 복수 개 존재하면, 상기 프로세서는 상기 복수 개 NAS 메시지 각각의 타입 정보를 바탕으로, 제2 타입 메시지에 해당하는 NAS 메시지를 제1 타입 메시지에 해당하는 NAS 메시지보다 먼저 전송하도록 상기 RF 유닛을 제어하는,사용자기기.
- 제8항에 있어서,상기 AS 메시지는 무선 자원 제어(radio resource control, RRC) 메시지인,사용자기기.
- 제8항에 있어서,상기 AS 메시지는 상기 타입 정보를 바탕으로 제1 시그널링 무선 베어러(signaling radio bearer, SRB) 또는 제2 SRB를 통해 전송되는,사용자기기.
- 제12항에 있어서,상기 제1 SRB는 패킷 데이터 수렴 프로토콜(packet data convergence protocol, PDCP)가 있는 SRB1이고, 상기 제2 SRB는 상기 SRB1과 동일한 설정이지만 PDCP 없는 새로운 SRB인,사용자기기.
- 제13항에 있어서,상기 타입 정보는 상기 사용자기기가 사용자 데이터의 수송에 제어 평면을 사용하는 제어 평면 CIoT EPS 최적화를 사용 중인지 여부를 더 나타내고,상기 사용자기기가 상기 제어 평면 CIoT EPS 최적화를 사용 중이면 상기 AS 메시지는 상기 새로운 SRB를 통해 전송되고, 그렇지 않으면 상기 SRB1을 통해 전송되는,사용자기기.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17770666.0A EP3435699B1 (en) | 2016-03-24 | 2017-03-24 | Method for transmitting message and user equipment |
US16/088,056 US10805835B2 (en) | 2016-03-24 | 2017-03-24 | Method for transmitting message and user equipment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662312480P | 2016-03-24 | 2016-03-24 | |
US62/312,480 | 2016-03-24 | ||
US201662418182P | 2016-11-06 | 2016-11-06 | |
US62/418,182 | 2016-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2017164696A2 true WO2017164696A2 (ko) | 2017-09-28 |
WO2017164696A3 WO2017164696A3 (ko) | 2018-09-07 |
Family
ID=59900504
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/003208 WO2017164697A1 (ko) | 2016-03-24 | 2017-03-24 | 메시지 전송 방법 및 이동성 관리 엔티티 |
PCT/KR2017/003207 WO2017164696A2 (ko) | 2016-03-24 | 2017-03-24 | 메시지 전송 방법 및 사용자기기 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/003208 WO2017164697A1 (ko) | 2016-03-24 | 2017-03-24 | 메시지 전송 방법 및 이동성 관리 엔티티 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10805835B2 (ko) |
EP (1) | EP3435699B1 (ko) |
WO (2) | WO2017164697A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6208296B1 (ja) * | 2015-11-05 | 2017-10-04 | 株式会社Nttドコモ | ユーザ装置、基地局、及び接続確立方法 |
WO2017189038A1 (en) * | 2016-04-29 | 2017-11-02 | Intel IP Corporation | CELLULAR IoT CONTROL AND USER PLANE SWITCHING |
CN108617032B (zh) * | 2017-01-09 | 2019-12-27 | 电信科学技术研究院 | 一种ue空闲态处理方法、mm功能实体及sm功能实体 |
US10764938B2 (en) * | 2018-08-22 | 2020-09-01 | Verizon Patent And Licensing Inc. | Systems and methods for managing small data over a non-access stratum |
WO2020096963A1 (en) * | 2018-11-05 | 2020-05-14 | Google Llc | Method for handling a mobility management state transition after fallback to rrc establishment |
CN109845312B (zh) * | 2019-01-04 | 2022-09-16 | 北京小米移动软件有限公司 | 数据传输方法、装置、计算机设备及系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1172955A2 (en) * | 2000-07-14 | 2002-01-16 | Mitsubishi Denki Kabushiki Kaisha | Methods and devices of allocating slots to child stations |
KR101213285B1 (ko) | 2006-01-04 | 2012-12-17 | 삼성전자주식회사 | 이동통신 시스템에서 아이들모드 단말기의 세션 설정 프로토콜 데이터를 전송하는 방법 및 장치 |
US8532614B2 (en) | 2007-10-25 | 2013-09-10 | Interdigital Patent Holdings, Inc. | Non-access stratum architecture and protocol enhancements for long term evolution mobile units |
JP4384700B1 (ja) * | 2008-06-23 | 2009-12-16 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信方法、移動局及び無線基地局 |
RU2450490C1 (ru) * | 2008-10-30 | 2012-05-10 | Панасоник Корпорэйшн | Устройство базовой станции, устройство шлюза, способ установки соединения вызова и система беспроводной связи |
WO2012149982A1 (en) | 2011-05-05 | 2012-11-08 | Telefonaktiebolaget L M Ericsson (Publ) | Security mechanism for mobile users |
CN103052045B (zh) * | 2011-10-17 | 2019-03-12 | 中兴通讯股份有限公司 | 一种消息类型的指示方法、系统及装置 |
ES2922758T3 (es) * | 2011-11-28 | 2022-09-20 | Alcatel Lucent | Soporte de transacciones de plano de usuario a través de una red móvil |
US8811289B2 (en) * | 2012-06-28 | 2014-08-19 | Tektronix, Inc. | S1-MME and LTE-Uu interface correlation in long term evolution networks |
US20140057566A1 (en) * | 2012-08-21 | 2014-02-27 | Interdigital Patent Holdings, Inc. | Enhanced higher layer discovery methods for proximity services |
-
2017
- 2017-03-24 WO PCT/KR2017/003208 patent/WO2017164697A1/ko active Application Filing
- 2017-03-24 WO PCT/KR2017/003207 patent/WO2017164696A2/ko active Application Filing
- 2017-03-24 EP EP17770666.0A patent/EP3435699B1/en active Active
- 2017-03-24 US US16/088,056 patent/US10805835B2/en active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP3435699A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3435699A4 (en) | 2019-08-21 |
EP3435699A2 (en) | 2019-01-30 |
WO2017164697A1 (ko) | 2017-09-28 |
WO2017164696A3 (ko) | 2018-09-07 |
US10805835B2 (en) | 2020-10-13 |
US20190116519A1 (en) | 2019-04-18 |
EP3435699B1 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017164674A1 (ko) | 기지국에서 연결 모드 변경 방법 및 기지국과, 사용자기기에서 연결 모드 변경 방법 및 사용자기기 | |
WO2018199668A1 (ko) | 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치 | |
WO2017119778A1 (ko) | 사용자기기 및 데이터 전송 방법과, 네트워크 노드 및 데이터 전송 방법 | |
WO2017126928A1 (ko) | 연결 모드 변경 방법 및 이동성 관리 개체 | |
WO2018155934A1 (ko) | 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치 | |
WO2017135779A1 (ko) | 무선 통신 시스템에서 rrc 연결 재개를 수행하는 방법 및 장치 | |
WO2017126942A1 (ko) | 데이터 수신 방법 및 사용자기기와, 데이터 전송 방법 및 기지국 | |
WO2019066544A1 (ko) | 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치 | |
WO2018230928A1 (ko) | 무선 통신 시스템에서 사용자 기기의 위치 정보를 리포팅하는 방법 및 장치 | |
WO2018084635A1 (ko) | 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치 | |
WO2017164641A2 (ko) | 데이터 유닛을 전송하는 방법 및 사용자기기와, 데이터 유닛을 수신하는 방법 및 사용자기기 | |
WO2017142362A1 (ko) | 무선 통신 시스템에서 위치 등록 관련 메시지 송수신 방법 및 이를 위한 장치 | |
WO2017171427A1 (ko) | 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기 | |
WO2017191973A1 (ko) | 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치 | |
WO2017146523A1 (ko) | 네트워크로의 연결 요청 방법 및 사용자기기 | |
WO2019022442A9 (ko) | 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치 | |
WO2017188787A2 (ko) | 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치 | |
WO2018169281A1 (ko) | 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국 | |
WO2017003230A1 (ko) | V2x 통신 시스템에서 단말의 v2x 통신 방법 및 단말 | |
WO2017142363A1 (ko) | 서비스 요청 전송 및 사용자기기, 그리고 서비스 요청 수신 및 기지국 | |
WO2016190672A1 (ko) | 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말 | |
WO2015174702A1 (ko) | 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치 | |
WO2017164696A2 (ko) | 메시지 전송 방법 및 사용자기기 | |
WO2017138780A1 (ko) | 데이터 전송 방법 및 사용자기기, 및 데이터 수신 방법 및 기지국 | |
WO2017126948A1 (ko) | 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017770666 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017770666 Country of ref document: EP Effective date: 20181024 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17770666 Country of ref document: EP Kind code of ref document: A2 |