WO2017183739A1 - 완전해수에서 양식가능한 틸라피아와 그 육종방법 - Google Patents

완전해수에서 양식가능한 틸라피아와 그 육종방법 Download PDF

Info

Publication number
WO2017183739A1
WO2017183739A1 PCT/KR2016/004038 KR2016004038W WO2017183739A1 WO 2017183739 A1 WO2017183739 A1 WO 2017183739A1 KR 2016004038 W KR2016004038 W KR 2016004038W WO 2017183739 A1 WO2017183739 A1 WO 2017183739A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilapia
seawater
fish
breeding
species
Prior art date
Application number
PCT/KR2016/004038
Other languages
English (en)
French (fr)
Inventor
배대강
Original Assignee
배대강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배대강 filed Critical 배대강
Priority to PCT/KR2016/004038 priority Critical patent/WO2017183739A1/ko
Priority to KR1020187029752A priority patent/KR20180134901A/ko
Publication of WO2017183739A1 publication Critical patent/WO2017183739A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/90Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
    • A01K61/95Sorting, grading, counting or marking live aquatic animals, e.g. sex determination specially adapted for fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a tilapia that can survive in complete seawater and a method of breeding the same, and more particularly, to breed a hybrid species capable of surviving in a fresh seawater through a long-term selection breeding process of tilapia, a freshwater fish species. It relates to tilapia that can be farmed in seawater and their breeding methods.
  • Tilapia is a freshwater fish native to South Africa, and it is recorded that it has been farmed in Egypt for about 2,000 years.
  • the first scientific farming was carried out in Kenya in 1924 and soon spread throughout Africa, and then to the East in the 1940s and North America in the 1950s.
  • breeding is carried out in more than 100 countries around the world. In May 1955, Korea was introduced through the Inland Water Research Institute in Thailand.
  • the species transplanted in Korea are Oreochromis niloticus and Oreochromis mossambicus, and these species are collectively called tilapia. Since it is used as an alternative to red dome, it is also known as reverse dome and freshwater dome depending on the region. In Korean Walk, it is said that it is transplanted in Thailand and it is written as 'Taerae'.
  • the limit of the water temperature of tilapia includes all kinds in the range of 14 to 45 ° C, and the optimum temperature range is 24 to 32 ° C. Therefore, the breeding of the tilapia is mostly made out of open-land farming at high water temperatures in tropical or subtropical areas. However, in the temperate regions such as the United States, except for these regions, high-density breeding in tanks on land is developing in recent years due to climate relations. Especially, tilapia cannot survive in winter under climatic conditions such as Korea, so the land circulating filtration system that can control water temperature is the only breeding method.
  • omega 3 unsaturated fatty acids
  • DHA unsaturated fatty acids
  • vitamin B calcium
  • iron and the like proteins
  • Protein is twice as much as beef
  • fat is 1/13 of pork
  • vitamin C is 4.7 times as much as pork. This tilapia is being watched by the United Nations Food and Agriculture Organization for its nutritional value and productivity.
  • Koreans enjoy sashimi, and consumers' perception that freshwater fish are inadequate for sashimi due to concerns about infection of Lucasstoma against freshwater fish species and abuse of antibiotic use.
  • tilapia is very popular in various dishes because of its mild taste, especially in the United States, such as baking, frying, burning, roasting, and soups.In Korea, it is used only for limited cooking ingredients such as sashimi and spicy soup. Then there was a problem that the producers of tilapia suffered from the limitation of domestic consumption due to the above problems and the resulting decrease in domestic production.
  • the problem to be solved by the cultivable tilapia and its breeding method in the complete seawater according to the present invention is as follows.
  • Koreans try to solve the problem that tilapia is unsuitable for fish sashimi due to concerns about the infection of Khanstoma on freshwater fish species and the abuse of antibiotics.
  • tilapia is very popular in various dishes because of its mild taste, especially in the United States, such as baking, frying, burning, roasting, and soups.In Korea, it is used only for limited cooking ingredients such as sashimi and spicy soup. Then, to solve the problem that the producers of tilapia suffered from the limitation of domestic consumption due to the above problems and the resulting decrease in domestic production.
  • tilapia and its breeding method which can be farmed in complete seawater according to the present application are as follows.
  • the tilapia which has undergone the seawater adaptation experiment, was grown to have a weight of 150 g or more by using soybean meal in water selected from salinity of 0.1PPT or more and less than 15PPT or 15PPT or more and 33PPT or less.
  • the tilapia can be made to produce hybrids in water selected from salinity of at least 0.1 ppt to less than 15 ppt or at least 15 ppt to 33 ppt.
  • seawater adaptation experiment and the tilapia surviving in the seawater adaptation experiment can be crossed with each other to produce a new hybrid species 8 to 10 times, so that breeding hybrids can be bred in complete seawater.
  • the cultivated tilapia and its breeding method in the complete seawater according to the present invention has the following effects.
  • tilapia which can be bred in complete seawater, is expected to increase domestic consumption, thereby leading to an increase in production, which may help imports of farmed farmers.
  • offshore cage farming is likely to favor export to sub-tropical and tropical countries in that it is more advantageous than offshore farming. It is expected that exports of fry and species, as well as adult fish, will be bright.
  • the feed of other fish species currently farmed has a fish meal content ratio of 40% to 60% or more so that fish can grow, and there is a problem of high cost and low efficiency.By breeding omnivorous tilapia in seawater, taking advantage of seawater fish At the same time, it is possible to raise the feed using soybean meal without using fish meal, so it is low cost and high efficiency.
  • the hybrid species according to the present invention can survive up to 8 °C ⁇ 9 °C, tropical, subtropical region
  • the mass production of tilapia can be possible in the offshore of Korea from early spring to early winter, and its demand will be expanded not only with sashimi, Maeuntang, but also with fish paste.
  • FIG. 1 is a flow chart briefly showing a method for breeding tilapia breeding in complete seawater according to an embodiment of the present invention.
  • FIG. 2 is a photograph briefly showing a seawater experiment site for realizing a tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention.
  • FIG. 2 is a photograph briefly showing a seawater experiment site for realizing a tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention.
  • Figure 3 is a photo briefly showing a scattering field for realizing a tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention.
  • Figure 4 is a photo briefly showing the hatchery for realizing the method of breeding tilapia breeding in complete seawater according to an embodiment of the present invention.
  • Figure 5 is a simplified view of the cheerleaders for realizing the method of breeding tilapia breeding in complete seawater according to an embodiment of the present invention.
  • FIG. 6 is a photograph briefly showing a fish farm for realizing a tilapia breeding method that can be farmed in complete seawater according to an embodiment of the present invention.
  • Figure 7 is a photograph showing the operation of separating the spawned eggs from mating fish for hybrid production in a tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention.
  • FIG. 8 is a photograph showing the scattered eggs for the production of hybrid species in the tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention.
  • FIG. 9 is a photograph showing tilapia that are aquaculture in complete seawater according to one embodiment of the present invention.
  • FIG. 10 is a photograph showing that tilapia cultivated in complete seawater according to an embodiment of the present invention are active in complete seawater.
  • FIG. 1 is a flow chart briefly showing a method for breeding tilapia breeding in complete seawater according to an embodiment of the present invention
  • Figure 2 is a seawater for realizing a method for growing tilapia breeding in complete seawater according to an embodiment of the present invention
  • Figure 3 is a photograph showing a brief experiment site
  • Figure 3 is a photograph showing a scattering field for realizing the method of breeding tilapia breeding in complete seawater according to an embodiment of the present invention.
  • Figure 4 is a photograph showing a brief hatchery for realizing the method of breeding tilapia breeding in complete seawater according to an embodiment of the present invention
  • Figure 5 is a method for growing tilapia breeding in complete seawater according to an embodiment of the present invention
  • Figure 6 is a simplified view of the cheerleader maturation for realizing
  • Figure 6 is a photograph briefly showing a fish farm for realizing a tilapia breeding method that can be farmed in complete seawater according to an embodiment of the present invention.
  • Figure 7 is a photograph showing the operation of separating the spawned eggs from mating fish for breeding in the tilapia breeding method capable of farming in complete seawater according to an embodiment of the present invention
  • Figure 8 is an embodiment of the present invention Fig.
  • FIG. 9 is a photograph showing the scattered eggs for the production of hybrid species in the tilapia breeding method capable of growing in complete seawater
  • FIG. 9 is a photograph illustrating tilapia farming in complete seawater according to an embodiment of the present invention.
  • FIG. 10 is a photograph illustrating tilapia farming in complete seawater according to an embodiment of the present invention, which will be described with reference to FIGS. 1 to 10.
  • tilapia mainly lives in the lower streams and lives in lakes and sub-regions, and adapts well to a wide range of water temperature and salinity. Usually lives in water temperature 17-35 °C, 15 °C to stop eating and the fry die. Adults also die below 12 ° C. Salinity can be adapted to fresh water (0 to 0.5 ppt) as well as to brackish water (0.5 to 17 ppt). However, it is generally not possible to survive above 25 ppt. Eat algae, aquatic plants, pieces of organic matter, zooplankton and young fry.
  • the spawning season is a season with high water temperature, and males make a circular spawning field with a width of 15-50cm and a depth of 5-10cm on the sand and mud bottom and induce females to spawn.
  • the eggs laid by the female are put in the mouth, and the males inhale the eggs in the mouth, and fertilization occurs in the oral cavity.
  • the number of eggs laid varies depending on the size, but the 11-cm individual produces about 300 pear-shaped eggs (long diameter 1.9-3.0 mm). They hatch in three to five days, sometimes swim out of the female's mouth 10-14 days after spawning, or use the female's mouth as a shelter until day 22.
  • tilapia is a freshwater fish species, but it has photo-inflammatory properties that can survive in brackish water as well as freshwater, and also has an ecological characteristic of being dead below 12 °C as a tropical fish species.
  • the object of the present invention is to improve the ecological characteristics of the conventional tilapia to extend the survival range beyond the brackish area to complete seawater, and to breed breeding tilapia hybrids that can survive at lower temperatures.
  • the tilapia and the breeding method of the aquaculture in complete seawater according to an embodiment of the present invention will be described in detail.
  • the method of breeding tilapia growable in complete seawater (1) preparing tilapia (Oreochromis mossambicus); (2) performing seawater adaptation experiments on tilapia prepared in step (1); (3) producing a first hybrid species by crossing the male and female of the tilapia surviving in the experiment of step (2) with each other; (4) performing the seawater adaptation experiment again on the first hybrid produced in step (3); (5) producing a second hybrid species by crossing each other again and again between the male and female of the first hybrid species surviving in the seawater adaptation experiment of step (4); And (6) repeating the seawater adaptation experiments to the hybrid species in the same manner as in the above steps (4) to (5), and mating the hybrid species surviving in the seawater adaptation experiment to produce a new hybrid species again. It is characterized by including.
  • the step (1) is a preparation step, a step of preparing tilapia (reochromis mossambicus) for producing seawater adaptation experiments and hybrids.
  • Tilapia is classified into three genera of Tilapia, Sarotherodon and Oreochromis by Ethelwynn Trewavas in 1983.
  • the Oreochromis mossambicus which is a fish species known to be able to withstand salinity because it is intended for breeding tilapia breeding in seawater, was prepared as tilapia for the first seawater adaptation experiment.
  • the inventor of the present invention reports this as being imported from Genoma.
  • the tilapia may be prepared without the adult, but the research was conducted without government offices or other support agencies, and seawater adaptation experiments were performed by preparing the non-adult larvae to reduce research expenses.
  • the measure was to reduce the economic burden because of the high probability of death in seawater adaptation experiments.
  • the fry survived in the seawater adaptation experiment, it could be expected that the adult would survive in the seawater adaptation experiment, unless there were other special circumstances. On the contrary, in the case of adults, the survival probability would be greater in the seawater adaptation experiment. It can be seen that securing the fry to withstand salinity is more in accordance with the spirit of the present invention.
  • Step (2) is a seawater adaptation experiment step, as shown in Figure 2, is a step of performing a seawater adaptation experiment on the tilapia prepared in step (1).
  • the seawater adaptation experiment is characterized by increasing the salinity by 3PPT every 7 days, based on the water temperature of 20 ⁇ 32 °C, 15PPT of salinity, finally confirming the survival of the tilapia in the complete seawater of 33PPT do.
  • tilapia is a freshwater fish species has a photo-inflammatory to adapt to fresh water (0 ⁇ 0.5PPT) as well as brackish water (0.5 ⁇ 17PPT), it is generally a limit that can not survive above 25PPT.
  • the step (3) is the first hybrid species production step, as shown in Figures 3 to 5, specifically, the first hybrid species by crossing the male and female of the tilapia surviving in the experiment of the step (2) with each other Production stage. That is, to breed fish species that can withstand salinity of seawater better by crossing tilapia surviving in water having a salinity of 33 PPT, which is the final stage of the seawater adaptation experiment, the individuals surviving through the seawater adaptation experiment. It is a step of producing a first crossbreed by interbreeding.
  • the surviving fry from the seawater adaptation experiment were recovered to grow and cross freshwater (0 to 0.5PPT) or brackish water (0.5 to 17PPT). Or in seawater (17-35 PPT).
  • the feed is a feed using soybean meal. Soybean meal can be grown healthier and more economically than fish meal.
  • the tilapia which has undergone the seawater adaptation experiment, is grown to have a weight of 150 g or more by using soybean meal in water selected from salinity of 0.1PPT or more and less than 15PPT or 15PPT or more and 33PPT or less, and then the tilapia grown to 150g or more.
  • the hybridization species can be produced in water selected from salinity of 0.1PPT or more and less than 15PPT or 15PPT or more and less than 33PPT.
  • fresh water is referred to as water having a salinity of 0 to 0.5 PPT
  • brackish water to 0.5 to 17 PPT is referred to as water having a salinity of 17 to 35 PPT.
  • brackish water when proceeding in water with salinity of brackish water or seawater, brackish water may be a salinity for which normal tilapia can survive, but also younger fry have a higher probability of mortality than in freshwater, which is already due to seawater adaptation experiments.
  • the individuals who survived the selection of the fry in the riders do not necessarily have a reason to grow and breed in the rider.
  • a surviving individual that does not die in the process will produce a hybrid that adapts better to salinity.
  • it is reasonable to produce a hybrid species by making an adult by making use of the surviving individuals in the seawater adaptation experiment in order to proceed with the whole experiment because very few individuals survived the first seawater adaptation experiment.
  • the tilapia which survived the initial seawater adaptation test, is already an adult, and thus can directly produce a hybrid species through mating without requiring a time and a process for additional growth.
  • the production of such hybrid species in fresh water and the progress of the hybrid production stage in brackish water or seawater can be assumed.
  • the step (4) is a step of performing the seawater adaptation experiment again to the first hybrid species produced in the step (3). This is carried out in the same manner as the seawater adaptation experiment of step (2). In other words, the salinity is increased by 3 PPT every 7 days, based on water of 20-32 ° C., water of 15 PPT, and finally, the survival of the tilapia in 33 PPT of seawater is finally confirmed.
  • the difference between the step (2) and the step (4) is that, in the case of the step (2), the target of the seawater adaptation experiment is the usual tilapia prepared in the step (1), and in the case of the step (4)
  • the object of the seawater adaptation experiment is that the first hybrid species produced in step (3). That is, the first hybrid species may be recovered to recover the first hybrid species surviving through the seawater adaptation experiment to produce a second hybrid species, which is the next step, to produce a hybrid with enhanced viability in seawater.
  • the step (5) is a step of producing a second hybrid by crossing again the male and female of the first hybrid species surviving in the seawater adaptation experiment of the step (4).
  • the step (6) in the same manner as the steps (4) to (5), the seawater adaptation experiments to the hybrid species, the hybrids survived in the seawater adaptation experiments to cross each other to produce a new hybrid species again As a step, repeat 8 to 10 times to allow breeding of breeding hybrids in complete seawater.
  • the 8 to 10 iterations, the seawater adaptation experiment of the first hybrid species of step (4) to the second hybrid species production of the step (5) is the first time
  • the seawater adaptation experiment of the second hybrid species and the first Production of the third hybrid species may be referred to as the second time
  • the eight times are repeated, the seawater adaptation experiment of the eightth hybrid species and the ninth hybrid species are produced.
  • the final hybrid species produced by the 8 to 10 repetition is the final hybrid species, as shown in Figure 9, the final hybrid species endures 7 days at 33PPT, which is the final stage of the seawater adaptation experiment, the food intake in complete seawater It is possible to continue to survive, and also, as shown in Figure 10, these final hybrids do not increase the salinity step by step, such as the seawater adaptation experiment, can survive even if put directly into the water of 25PPT ⁇ 28PPT salinity After 2-3 days, even with 33PPT salinity of water was able to continue to survive. In other words, they produced a cultivable tilapia hybrid in complete seawater.
  • the water temperature is maintained at 25 °C, starting from 15PPT and increased by 3PPT every 7 days, the result of the seawater adaptation experiment showed that normal feeding activity was possible up to 21PPT, swimming was not active from 24PPT, and red spots on the skin from 27PPT This appearing object has begun to form. At 30 ppt, it began to die (individuals with red spots are near annihilation). At this time, the drug treatment was useless, almost died at 33PPT, and 2 out of 1000 survived. The remaining two survived for one month at 33 ppt.
  • the parent fish used in the tank are kept in the tank for backup.
  • the total number of surviving animals for backup is seven.
  • the male and female average weight is about 160g.
  • the candidates were selected to spawn 200 females and 150 males. At this time, the average weight of parent fish is about 160g.
  • tilapia and its breeding method that can be farmed in complete seawater according to an embodiment of the present invention, first, there has been a recognition that the freshwater fish species are inadequate due to the fear of infection by Gandistoma,
  • breeding tilapia it is possible to eliminate the concern about Gandistoma against tilapia, and can also be farmed at sea like cage cages, so that tilapia, which is harmless to the human body, can be consumed by fish without misuse of antibiotics.
  • tilapia there was a negative perception of consumers about tilapia due to the fact that the conventional photo-inflammatory properties were mixed with the fish and sea fish.
  • the tilapia can be bred in complete seawater, so it can be used as a fish sashimi as described above.
  • the consumption of tilapia which can be bred in complete seawater, is expected to increase domestic consumption, resulting in an increase in production, which may help imports of farmed farmers.
  • offshore cage farming is likely to favor export to sub-tropical and tropical countries in that it is more advantageous than offshore farming. It is expected that the export prospects of fry and species, as well as adult fish, to high consumption countries are expected to be bright.
  • Fifth, in terrestrial breeding, conventional seawater fish farming techniques could not produce by circulating filtration, but according to the present invention, tilapia Since it is possible to breed in a circulating filtration system, it is possible to reduce mortality due to red tide and environmental pollution, and it is more cost-effective than in the case of flow-type foods, so it is possible to expect the substitution effect by lowering the production cost.
  • Fish feed must have a fish meal content of 40% to 60% or more to grow fish.
  • offshore cage farming is more advantageous than offshore farming, so it can be exported to subtropical and tropical countries. It is expected that the export prospects of fry and species as well as adult fish are bright.
  • the present invention in terms of land breeding, it is more cost-effective than the conventional diet of the seawater fish farming technology can lower the production cost to see the import substitution effect, and also reduce the environmental pollution due to the circulating filtration method in terms of environment There is industrial availability.
  • tilapia according to the present invention is so cost-effective by using a soybean meal feed with reduced fish meal content compared to other fish species, and can produce high production at low cost when farming it in seawater, and thus industrial availability is high.
  • the tilapia according to the present invention can be mass production of tilapia through the cage farming in the offshore of Korea, and accordingly, the range of the tilapia is expanded to a material such as fish cakes in a limited demand range such as sashimi, and imported fish meal. It is highly applicable to the industry, such as a substitution effect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

본 발명은 완전해수에서 양식가능한 틸라피아와 그 육종방법에 관한 것으로서, 보다 상세하게는 (1) 틸라피아(Oreochromis mossambicus)를 준비하는 단계; (2) 상기 단계(1)에서 준비된 틸라피아에 해수적응실험을 시행하는 단계; (3) 상기 단계(2)의 실험에서 생존한 상기 틸라피아의 암,수를 서로 교배하여 제1교배종을 생산하는 단계; (4) 상기 단계(3)에서 생산된 제1교배종에 상기 해수적응실험을 다시 시행하는 단계; (5) 상기 단계(4)의 해수적응실험에서 생존한 상기 제1교배종의 암,수를 다시 서로 교배하여 제2교배종을 생산하는 단계; 및 (6) 상기 단계(4) 내지 (5)와 같은 방식으로, 교배종에 상기 해수적응실험하고, 상기 해수적응실험에서 생존한 교배종을 서로 교배하여 다시 새로운 교배종을 생산하는 것을 반복하는 단계;를 포함하는 것을 특징으로 한다. 본 발명에 의한 완전해수에서 양식가능한 틸라피아와 그 육종방법은 다음과 같은 효과가 있다. 첫째, 담수어종의 경우 간디스토마의 감염 염려로 인해 횟감으로 부적절하다는 인식이 있어왔는데, 완전해수에서 틸라피아를 사육함으로써, 틸라피아에 대한 간디스토마에 대한 감염 염려를 불식할 수 있고, 또한 가두리 양식장과 같이 바다에서 양식할 수 있어 항생제의 오남용 없이 인체에 무해한 틸라피아를 생선회로 섭취할 수 있다. 둘째, 특히 틸라피아의 경우, 종래 광염성 성질을 악용, 해수어류와 혼합하여 판매한 사실로 인해 소비자의 틸라피아에 대한 부정적 인식문제가 있었으나, 완전해수에서 사육이 가능하도록 하여, 상기와 같이 생선 횟감으로 사용할 수 있어, 해수어류로 속여 판매하는 등의 부정적 인식을 탈피할 수 있을 것이다. 셋째, 완전해수에서 사육할 수 있게 되는 경우, 가두리 양식 등을 통해 기존의 육상 양어 시설에서보다 대량으로 사육할 수 있고, 해수의 풍부한 영양분 등으로 사료 등 사육에 필요한 비용을 절감할 수 있다. 넷째, 완전해수에서 사육이 가능한 틸라피아의 상기의 효과로 인한 국내에서의 소비량 증가가 예상되고, 그로 인한 생산의 증대로 이어져 양식농가의 수입에 도움이 될 수 있다. 또한, 외국의 틸라피아에 대한 선호도에 비추어 볼 때, 근해의 가두리 양식은 노지양식에 비해 유리하다는 점 등에서 아열대, 열대지방의 국가로 치어수출이 가능할 것이며, 대규모 양식이 가능할 수 있어 틸라피아에 대한 선호도와 소비도가 높은 외국으로 성어뿐만 아니라 치어나 종의 수출 전망도 밝을 것으로 기대된다. 다섯째, 육상사육에 있어서, 종래 해수 어류의 양식기술로는 순환여과방식으로 생산할 수 없었으나, 본 발명에 의한 틸라피아는 완전순환여과방식으로 사육 가능하므로 적조로 인한 폐사나, 환경오염을 줄일 수 있으며, 유수식의 경우보다 비용면에서 효율적이어서 생산원가를 낮추어 수입대체효과를 기대할 수 있다. 여섯째, 현재 양식되는 다른 어종의 사료는 어분함량비율이 40%∼60%이상이 되어야 어류가 자랄 수 있어, 고비용 저효율의 문제점이 있었는데, 잡식성의 틸라피아를 해수에서 사육하여, 해수 어류의 장점을 살리면서도, 어분을 사용하지 않고 대두박 등을 이용한 사료로 사육가능함으로써 저비용 고효율적이다. 일곱째, 통상의 틸라피아는 수온이 15℃이면 먹는 것을 중지하고 치어는 폐사하며, 성체도 12℃ 이하가 되면 죽는데, 본 발명에 의한 교배종은 8℃∼9℃까지 생존이 가능하여, 열대, 아열대지역뿐만 아니라 우리나라 근해에서도 초봄에서 초겨울에까지 가두리 양식을 통한 틸라피아의 대량생산이 가능할 수 있어, 횟감, 매운탕 뿐만 아니라 어묵의 재료 등으로 그 수요가 확대될 수 있을 것이다.

Description

[규칙 제26조에 의한 보정 22.06.2016] 완전해수에서 양식가능한 틸라피아와 그 육종방법
본 발명은 완전해수에서 생존 가능한 틸라피아와 그 육종방법에 관한 것으로서, 보다 상세하게는 담수어종인 틸라피아를 장기간에 걸친 선발 육종과정을 거쳐 완전해수에서 생존할 수 있는 교배종을 육종한 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아와 그 육종방법에 관한 것이다.
틸라피아는 아프리가 동남부가 원산지인 민물고기로, 이집트에서 약 2천여 년 전부터 양식을 해 왔다고 기록되어 있다. 과학적인 양식은 1924년 케냐에서 처음으로 실시되어 곧 아프리카 전역으로 확산되었으며, 1940년대에는 동양으로, 1950년대에는 북미 등으로 이식되었다. 현재는 전세계 100여개국에서 사육이 이루어지고 있으며 우리나라에는 1955년 5월에 태국에서 내수면연구소를 통해 도입되었다.
우리나라에 이식된 종은 Oreochromis niloticus와 Oreochromis mossambicus이며, 이들 종을 합쳐서 일반적으로 틸라피아라고 부른다. 붉은돔의 대체어로 이용되므로 지역에 따라 역돔, 민물돔이라고도 한다. 「한국어도보」에서는 태국에서 이식되었다 하여 '태래어(泰來漁)'라고 적고 있다.
틸라피아의 서식수온의 한계는 14∼45℃의 범위에 대체로 모든 종류가 포함되고, 최적수온 범위는 24∼32℃이다. 따라서 상기 틸라피아의 사육은 대부분 열대나 아열대 지역의 수온이 높은 곳에서 노지양식으로 이루어지고 있다. 그러나 이들 지역을 제외한 미국 등 온대지역에서는 기후관계로 육상의 탱크 내 고밀도 사육이 근년에 발달하고 있다. 특히 우리나라와 같이 4계절이 뚜렷한 기후조건 하에서는 겨울철에 틸라피아가 생존할 수 없기 때문에 수온을 조절할 수 있는 육상의 순환여과시스템이 유일한 사육방법이다.
이러한 틸라피아는 전 세계적으로 그 생산량이 매년 증가하고 있으며, 2000년대에 들어서 급격하게 증가하고 있다. 전 세계어류양식 생산량 측면에서 보면 잉어과 어류가 1위, 그 다음으로 틸라피아가 세계 2위의 주요 양식 대상 종으로 급부상하고 있다(FAO(국제연합식량농업기구), 2013). 이는 다른 어류에 비해 담수(0.5PPT)에서부터 기수지역(0.5∼17PPT)에 이르기까지 광범위한 지역에 걸쳐서 생존할 수 있는 광염성이며, 환경의 변화가 심한 각종 수질환경에 대한 강한 내병성을 가지고 있으며, 성장과 번식이 빠르고, 식물식성으로서 고밀도로 양식할 수 있기 때문인 것으로 판단하고 있다. 또한, 영양학적으로 오메가3, 불포화지방산, DHA를 다량으로 함유하고 있으며, 비타민 B, 칼슘, 철 등을 많이 함유하고 있다. 단백질 함량은 소고기의 2배, 지방 함량은 돼지고기의 1/13 수준, 비타민C는 돼지고기의 4.7배나 된다. 이러한 틸라피아는 세계연합식량농업기구가 그 영양학적 가치와 생산성에 주목하고 있다.
또한, 국내에서도 우리나라 음식문화의 바다 돔류 생선회를 선호하는 경향과 틸라피아의 외형과 맛이 감성돔과 거의 유사함으로 인해, 역돔이란 이름으로 인기 있는 양식대상 종으로 부상하였으며, 한 때 그 생산량은 2,000톤에 도달하기도 하였다. 그러나 국내에서는 이 종의 광염성 성질을 악용하여 담수노지에서 양식한 틸라피아를 저염분 해수(20PPT)에서 해수어류와 혼합하여 판매하는 사실이 언론에 보도되어 현재 그 생산량은 명맥을 유지할 뿐이다(서울신문, 2013).
이러한 틸라피아의 국내 생산량이 극히 저조한 이유, 문제점 및 완전해수에서 틸라피아를 사육할 필요성과 종래기술의 문제점을 살펴보면 다음과 같다.
첫째, 우리나라 사람들은 생선회를 즐기는 데, 담수어종에 대한 간디스토마의 감염우려, 항생제 사용의 남용우려 등으로 인해 담수어종이 생선회에 부적합하다는 소비자의 인식을 들 수 있다.
둘째, 특히 틸라피아의 경우 상기와 같이, 광염성 성질을 악용, 해수어류와 혼합하여 판매한 사실로 인해 소비자의 틸라피아에 대한 부정적 인식을 들수 있다.
셋째, 틸라피아는 특히 미국 등에서 굽거나, 튀기거나, 태우거나, 볶거나, 수프 등에 넣는 등 그 순한 맛 덕분에 각종 요리의 재료로 인기가 높은데, 국내에서는 횟감과 매운탕 등 한정된 요리의 재료로 사용될 뿐이어서 상기와 같은 문제로 인한 국내소비량의 한계와 그로 인한 국내 생산량의 감소로 인한 틸라피아의 생산자가 피해를 입게 되는 문제점이 있었다.
넷째, 종래 해수 어류의 양식 기술로는 순환여과방식의 채택이 어려워, 적조로 인한 피해나 환경오염 문제가 있었고, 넙치 등에 사용되는 종래의 유수식 육상양식은 많은 동력이 필요한 점에서 비용이 많이 든다는 문제점과 어병이 제어되지 않는다는 문제점이 있었다.
다섯째, 현재 양식되는 다른 어종의 사료는 어분함량비율이 40%∼60%이상이 되어야 어류가 자랄 수 있어, 고비용 저효율의 문제점이 있었다.
본 발명에 따른 완전해수에서 양식가능한 틸라피아와 그 육종방법이 해결하고자 하는 과제는 다음과 같다.
첫째, 우리나라 사람들은 생선회를 즐기는 데, 담수어종에 대한 간디스토마의 감염우려, 항생제 사용의 남용우려 등으로 인해 틸라피아가 생선 횟감으로 부적합하다는 문제를 해결하고자 한다.
둘째, 틸라피아의 경우 상기와 같이, 광염성 성질을 악용, 해수어류와 혼합하여 판매한 사실로 인해 소비자의 틸라피아에 대한 부정적 인식문제를 해결하고자 한다.
셋째, 틸라피아는 특히 미국 등에서 굽거나, 튀기거나, 태우거나, 볶거나, 수프 등에 넣는 등 그 순한 맛 덕분에 각종 요리의 재료로 인기가 높은데, 국내에서는 횟감과 매운탕 등 한정된 요리의 재료로 사용될 뿐이어서 상기와 같은 문제로 인한 국내소비량의 한계와 그로 인한 국내 생산량의 감소로 인한 틸라피아의 생산자가 피해를 입게 되는 문제점을 해결하고자 한다.
넷째, 종래 해수 어류의 양식 기술로는 순환여과방식의 채택이 어려워, 적조피해나 환경오염 문제가 있었고, 종래의 유수식 육상양식은 많은 동력이 필요한 점에서 비용이 많이 든다는 문제점과 어병이 제어되지 않는다는 문제점을 해결하고자 한다.
다섯째, 현재 양식되는 다른 어종의 사료는 어분함량비율이 40%∼60%이상이 되어야 어류가 자랄 수 있어, 고비용 저효율의 문제점을 해결하고자 한다.
상기 과제를 해결하기 위한 본원에 의한 완전해수에서 양식가능한 틸라피아와 그 육종방법은 다음과 같다.
(1) 틸라피아(Oreochromis mossambicus)를 준비하는 단계; (2) 상기 단계(1)에서 준비된 틸라피아에 해수적응실험을 시행하는 단계; (3) 상기 단계(2)의 실험에서 생존한 상기 틸라피아의 암,수를 서로 교배하여 제1교배종을 생산하는 단계; (4) 상기 단계(3)에서 생산된 제1교배종에 상기 해수적응실험을 다시 시행하는 단계; (5) 상기 단계(4)의 해수적응실험에서 생존한 상기 제1교배종의 암,수를 다시 서로 교배하여 제2교배종을 생산하는 단계; 및 (6) 상기 단계(4) 내지 (5)와 같은 방식으로, 교배종에 상기 해수적응실험하고, 상기 해수적응실험에서 생존한 교배종을 서로 교배하여 다시 새로운 교배종을 생산하는 것을 반복하는 단계;를 포함하는 것을 특징으로 한다.
또한, 상기 해수적응실험은, 수온 20∼32℃의, 염도 15PPT의 물을 기준으로, 7일 단위로 3PPT씩 염도를 증가시켜, 최종적으로 33PPT의 완전해수에서 상기 틸라피아의 생존 여부를 확인하는 것을 특징으로 한다.
또한, 상기 해수적응실험을 거친 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서, 대두박 사료를 이용하여 체중 150g이상 되도록 성장시키고, 상기 체중 150g이상 되도록 성장한 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서 교배종을 생산하도록 할 수 있다.
또한, 상기 해수적응실험과 상기 해수적응실험에서 생존한 틸라피아를 서로 교배하여 새로운 교배종 생산을 8회∼10회 반복하여, 완전해수에서 양식가능한 교배종이 육종되도록 할 수 있다.
본 발명에 의한 완전해수에서 양식가능한 틸라피아와 그 육종방법은 다음과 같은 효과가 있다.
첫째, 담수어종의 경우 간디스토마의 감염 염려로 인해 횟감으로 부적절하다는 인식이 있어왔는데, 완전해수에서 틸라피아를 사육함으로써, 틸라피아에 대한 간디스토마에 대한 감염 염려를 불식할 수 있고, 또한 가두리 양식장과 같이 바다에서 양식할 수 있어 항생제의 오남용 없이 인체에 무해한 틸라피아를 생선회로 섭취할 수 있다.
둘째, 특히 틸라피아의 경우, 종래 광염성 성질을 악용, 해수어류와 혼합하여 판매한 사실로 인해 소비자의 틸라피아에 대한 부정적 인식문제가 있었으나, 완전해수에서 사육이 가능하도록 하여, 상기와 같이 생선 횟감으로 사용할 수 있어, 해수어류로 속여 판매하는 등의 부정적 인식을 탈피할 수 있을 것이다.
셋째, 완전해수에서 사육할 수 있게 되는 경우, 가두리 양식 등을 통해 기존의 육상 양어 시설에서보다 대량으로 사육할 수 있고, 해수의 풍부한 영양분 등으로 사료 등 사육에 필요한 비용을 절감할 수 있다.
넷째, 완전해수에서 사육이 가능한 틸라피아의 상기의 효과로 인한 국내에서의 소비량 증가가 예상되고, 그로 인한 생산의 증대로 이어져 양식농가의 수입에 도움이 될 수 있다. 또한, 외국의 틸라피아에 대한 선호도에 비추어 볼 때, 근해의 가두리 양식은 노지양식에 비해 유리하다는 점 등에서 아열대, 열대지방의 국가로 치어수출이 가능할 것이며, 대규모 양식이 가능할 수 있어 틸라피아에 대한 선호도와 소비도가 높은 외국으로 성어뿐만 아니라 치어나 종의 수출 전망도 밝을 것으로 기대된다.
다섯째, 육상사육에 있어서, 종래 해수 어류의 양식기술로는 순환여과방식으로 생산할 수 없었으나, 본 발명에 의한 틸라피아는 완전순환여과방식으로 사육 가능하므로 적조로 인한 폐사나, 환경오염을 줄일 수 있으며, 유수식의 경우보다 비용면에서 효율적이어서 생산원가를 낮추어 수입대체효과를 기대할 수 있다.
여섯째, 현재 양식되는 다른 어종의 사료는 어분함량비율이 40%∼60%이상이 되어야 어류가 자랄 수 있어, 고비용 저효율의 문제점이 있었는데, 잡식성의 틸라피아를 해수에서 사육하여, 해수 어류의 장점을 살리면서도, 어분을 사용하지 않고 대두박 등을 이용한 사료로 사육가능함으로써 저비용 고효율적이다.
일곱째, 통상의 틸라피아는 수온이 15℃이면 먹는 것을 중지하고 치어는 폐사하며, 성체도 12℃ 이하가 되면 죽는데, 본 발명에 의한 교배종은 8℃∼9℃까지 생존이 가능하여, 열대, 아열대지역뿐만 아니라 우리나라 근해에서도 초봄에서 초겨울에까지 가두리 양식을 통한 틸라피아의 대량생산이 가능할 수 있어, 횟감, 매운탕 뿐만 아니라 어묵의 재료 등으로 그 수요가 확대될 수 있을 것이다.
도 1은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 간략히 도시한 순서도.
도 2는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 해수실험장을 간략히 도시한 사진.
도 3은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 산란장을 간략히 도시한 사진.
도 4는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 부화장을 간략히 도시한 사진.
도 5는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 치어성숙장을 간략히 도시한 사진.
도 6은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 성어양어장을 간략히 도시한 사진.
도 7은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법에 있어서 교배종 생산을 위한 산란된 알을 친어에서 분리하는 작업을 도시한 사진.
도 8은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법에 있어서 교배종 생산을 위한 산란된 알을 도시한 사진.
도 9은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아를 도시한 사진.
도 10은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아가 완전해수에서 활동하는 사진.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 연결 되어 있다고 할 때, 이는 직접적으로 연결 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 간접적으로 연결 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 1은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 간략히 도시한 순서도이고, 도 2는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 해수실험장을 간략히 도시한 사진이며, 도 3은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 산란장을 간략히 도시한 사진이다. 도 4는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 부화장을 간략히 도시한 사진이고, 도 5는 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 치어성숙장을 간략히 도시한 사진이며, 도 6은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법을 실현하기 위한 성어양어장을 간략히 도시한 사진이다. 도 7은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법에 있어서 교배종 생산을 위한 산란된 알을 친어에서 분리하는 작업을 도시한 사진이며, 도 8은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아 육종방법에 있어서 교배종 생산을 위한 산란된 알을 도시한 사진이고, 도 9은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아를 도시한 사진이다. 도 10은 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아가 완전해수에서 활동하는 사진으로써, 상기 도 1 내지 도 10과 함께 설명한다.
먼저 통상의 틸라피아(Oreochromis mossambicus)의 생태를 살펴 보면, 틸라피아는 주로 하천의 하류에 살고 호소나 하구역에서도 서식하면서 수온이나 염도의 넓은 범위에도 잘 적응한다. 보통 수온 17∼35℃에서 살며 15℃이면 먹는 것을 중지하고 치어는 폐사한다. 성체도 12℃ 이하가 되면 죽는다. 염도는 담수어종임에도 담수(0∼0.5PPT)뿐만 아니라 기수지역(0.5∼17PPT)에도 적응할 수 있다. 그러나 25PPT이상에선 생존할 수 없는 것이 일반적이다. 조류, 수서식물, 유기물 조각, 동물성 플랑크톤과 어린 치어 등을 먹는다. 일반적으로 어릴때는 동물성 먹이를 주로 먹으며, 성장함에 따라 식성이 식물성이나 잡식성으로 변한다. 산란기는 수온이 높은 계절로 수컷이 모래와 진흙 바닥에 폭 15∼50㎝, 깊이 5∼10㎝의 원형의 산란장을 만들고 암컷을 유도하여 산란한다. 암컷이 산란한 알을 입에 넣고 수컷이 방정한 것을 입으로 흡입하여 구강내에서 수정 발생한다. 산란된 알의 수는 크기에 따라 다르지만 11㎝의 개체는 약 300개의 서양배 모양의 알(장경 1.9∼3.0㎜)을 낳는다. 3∼5일 만에 부화하고, 산란 후 10∼14일째 암컷의 입에서 나와 유영하기도 하며 22일째까지는 암컷의 입을 피난처로 이용하기도 한다.
즉 통상의 틸라피아는 담수어종이며 다만 담수뿐만 아니라 기수지역에서도 생존할 수 있는 광염성을 가지며, 또한, 열대어종으로서 12℃이하에서는 폐사한다는 생태적 특징을 가진다. 본 발명은 이러한 통상적인 틸라피아의 생태적 특징을 개량하여 기수지역을 넘어 완전해수에까지 생존범위를 넓히고, 또한, 보다 저온에서도 생존할 수 있는 틸라피아 교배종을 육종하는 것이 목적이다. 이하에서 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아와 그 육종방법에 대해 자세히 살펴보기로 한다.
도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아의 육종방법은, (1) 틸라피아(Oreochromis mossambicus)를 준비하는 단계; (2) 상기 단계(1)에서 준비된 틸라피아에 해수적응실험을 시행하는 단계; (3) 상기 단계(2)의 실험에서 생존한 상기 틸라피아의 암,수를 서로 교배하여 제1교배종을 생산하는 단계; (4) 상기 단계(3)에서 생산된 제1교배종에 상기 해수적응실험을 다시 시행하는 단계; (5) 상기 단계(4)의 해수적응실험에서 생존한 상기 제1교배종의 암,수를 다시 서로 교배하여 제2교배종을 생산하는 단계; 및 (6) 상기 단계(4) 내지 (5)와 같은 방식으로, 교배종에 상기 해수적응실험하고, 상기 해수적응실험에서 생존한 교배종을 서로 교배하여 다시 새로운 교배종을 생산하는 것을 반복하는 단계;를 포함하는 것을 특징으로 한다.
본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아와 그 육종방법을 단계별로 자세히 살펴보기로 한다.
(1) 준비단계
상기 단계(1)은 준비단계로서, 해수적응실험과 교배종을 생산하기 위한 틸라피아(reochromis mossambicus)를 준비하는 단계이다. 틸라피아는 1983년 Ethelwynn Trewavas에 의해 Tilapia, Sarotherodon, Oreochromis의 3속으로 분류되고 있으며 전세계적으로 아종을 포함하여 총 100여 종이 알려져 있는데, 국내에 이식된 종은 Oreochromis niloticus와 Oreochromis mossambicus가 있다. 본 발명의 경우 해수에서 양식가능한 틸라피아 육종을 위한 목적이므로 염도에 비교적 잘 견딜수 있다고 알려진 어종인 상기 Oreochromis mossambicus를 최초 해수적응실험을 위한 틸라피아로 준비하였다. 본 발명의 발명자는 이를 제노마에서 수입한 것으로 보고하고 있다.
상기 틸라피아는 성체를 준비하여도 관계없으나, 관공서나 기타 지원처 없이 진행된 연구로 연구비의 절감을 위해 성체가 아닌 치어로 준비하여 해수적응실험을 하였다. 해수적응실험에서 폐사할 확률이 크기 때문에 경제적 부담을 줄이기 위한 조치였다. 또한, 치어가 해수적응실험에서 생존한다면 다른 특별한 사정이 없는 이상 성체도 해수적응실험에서 생존할 것이라는 예상을 할 수 있었고, 오히려 성체의 경우 해수적응실험에서 생존확률은 더 커질 것인 바, 해수의 염도에 견딜 수 있는 치어를 확보하는 것이 본 발명의 취지에 더욱더 부합되는 것으로 볼 수 있다.
(2) 해수적응실험단계
상기 단계(2)는 해수적응실험단계로서, 도 2에 도시된 바와 같이, 상기 단계(1)에서 준비된 틸라피아에 해수적응실험을 시행하는 단계이다. 상기 해수적응실험은, 수온 20∼32℃의, 염도 15PPT의 물을 기준으로, 7일 단위로 3PPT씩 염도를 증가시켜, 최종적으로 33PPT의 완전해수에서 상기 틸라피아의 생존 여부를 확인하는 것을 특징으로 한다. 즉, 통상의 틸라피아는 담수어종임에도 담수(0∼0.5PPT)뿐만 아니라 기수지역(0.5∼17PPT)에도 적응할 수 있는 광염성을 가지고 있는데, 25PPT이상에선 생존할 수 없는 한계를 가진 것이 일반적이다. 이러한 광염성을 가진 틸라피아라도 갑자기 담수에서 완전해수(33PPT)로 환경을 바꾸는 경우 폐사확률이 100%인바, 단계적으로 염도를 올려 그 염도에 적응할 수 있도록 하기 위함이다. 따라서 먼저 염도 15PPT부터 시작하여 7일 단위로 3PPT를 올려, 최종적으로 33PPT에 이르도록 한다. 참고로, 해수의 평균 염도는 33PPT∼35PPT이고, 우리나라의 근해의 염도는 33PPT에 가깝다. 즉 최초 7일동안 15PPT의 염도로 맞추어 해수적응실험을 시작하여, 8일째 3PPT를 올려 18PPT에서 적응시키고, 최종적으로 33PPT의 염도에서 7일동안 생존여부를 확인하도록 한다. 이러한 단계를 거쳐 생존한 틸라피아를 회수하여 다음 단계인 교배종을 생산하는 단계로 옮겨 가게 된다.
(3) 제1교배종 생산단계
상기 단계(3)은 제1교배종 생산단계로서, 도 3 내지 도 5에 도시된 바와 같이, 구체적으로 상기 단계(2)의 실험에서 생존한 상기 틸라피아의 암,수를 서로 교배하여 제1교배종을 생산하는 단계이다. 즉 상기 해수적응실험의 최종단계인 33PPT의 염도를 가진 물에서 생존한 틸라피아를 서로 교배하여, 해수의 염도에 보다 잘 견딜 수 있는 어종을 육종하기 위한 것으로, 상기 해수적응실험을 거쳐 생존한 개체들 간의 교배를 통해 제1교배종을 생산하는 단계이다.
상기 해수적응실험에서 치어를 사용한 경우, 도 3 내지 도 8에 도시된 바와 같이, 상기 해수적응실험에서 생존한 치어를 회수하여 성장 및 교배를 담수(0∼0.5PPT)나 기수(0.5∼17PPT) 또는 해수(17∼35PPT)에서 가능할 것이다. 이때 사료는, 대두박을 사용한 사료를 사용한다. 어분을 이용한 사료보다 대두박을 사용한 사료는 건강하고 경제적으로 성장시킬 수 있다. 상기 해수적응실험을 거친 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서, 대두박 사료를 이용하여 체중 150g이상 되도록 성장시키고, 상기 체중 150g이상 되도록 성장한 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서 교배종을 생산할 수 있다. 이하에서는 담수를 0∼0.5PPT의 염도를 가진 물, 기수를 0.5∼17PPT의 염도를 가진 물, 해수를 17∼35PPT의 염도를 가진 물로 칭한다.
먼저, 담수에서 진행하는 경우, 담수에서 성장시키고, 상기 치어가 성장한 성체들의 암, 수 간의 교배를 통해 제1교배종을 생산할 수 있는데, 이러한 이유는 최초의 해수적응실험에서 생존한 틸라피아는 상기 해수적응실험에서 생존하였다 하더라도 교배를 통해 개량을 거치지 않은 통상의 틸라피아인 만큼 완전해수에서 오랫동안 생존하기가 어려워 전체실험의 진행을 계속하기 위해서는 상기 해수적응실험에서 생존한 틸라피아의 생존을 유지시킬 수 있어야 하기 때문이다. 또한, 해수의 염도를 유지하는 데에도 경제적 부담이 가중될 수 있는 문제점이 있기 때문이다.
다음으로, 기수나 해수의 염도를 가진 물에서 진행하는 경우, 기수는 통상의 틸라피아가 생존할 수 있는 염도일 것이나, 역시 어린 치어의 경우 담수에서보다 폐사 확률이 커 이미 상기 해수적응실험으로 인해 해수에서 생존한 치어를 선별한 개체이므로 굳이 기수에서 성장 및 교배를 할 이유가 크지 않다. 물론 그 과정에서 폐사하지 않고 생존한 개체가 보다 염도에 잘 적응하는 교배종을 생산할 확률은 크다. 그러나 아래 실험예에서 설명할 것이나 최초 상기 해수적응실험에서 생존한 개체가 극히 적어 전체실험을 진행하기 위해서는 상기 해수적응실험에서 생존한 개체를 살려 성체로 만들어 교배종을 생산함이 타당할 것으로 보인다. 따라서 기수나 해수의 염도를 가진 물에서보다 담수 또는 염도가 낮은 기수에서 상기 최초 해수적응실험에서 생존한 치어를 성장 및 교배시키는 작업을 하는 것이 경제적인 면에서나 전체실험의 측면에서나 타당하다고 보인다. 다만, 염도가 높은 기수나 해수에서 성장 및 교배작업을 행하는 것을 배제하는 것은 아니다.
즉, 기수나 해수의 염도를 가진 물에서 성장시키고, 성장한 틸라피아를 담수,기수 및 해수 중 어느 하나의 물에서 교배할 수도 있고, 역으로 담수에서 성장시킨 틸라피아를 담수,기수 및 해수 중 어느 하나의 물에서 교배할 수 있을 것이다. 상술한 담수, 기수 및 해수에서의 성장 및 교배는 아래에서 서술하는 성장 및 교배에도 같이 적용될 수 있다.
다음으로, 상기 준비된 틸라피아가 성체인 경우, 최초의 상기 해수적응시험에서 생존한 틸라피아는 이미 성체이므로 별도의 성장에 필요한 시간, 공정이 필요없이 곧바로 교배를 통한 교배종을 생산할 수 있다. 상기 치어의 경우와 마찬가지로 이러한 교배종 생산을 담수에서 진행하는 경우와 기수 또는 해수에서 교배종 생산단계의 진행을 상정할 수 있을 것이다.
담수에서 진행하는 경우에는 상기 치어의 경우와 마찬가지의 이유 즉 최초의 상기 해수적응실험을 거쳐 생존한 틸라피아는 통상의 틸라피아이므로, 염도를 견딜수 있는 한계가 분명히 존재한다. 상기 해수적응실험에서 생존하였으나 계속 해수에서 생존할 수 있는지 여부는 불확실하며 종전에 알려진 바로는 25PPT 이상에서는 생존이 불가능하다고 하므로, 교배종을 생산하여야 전체실험이 진행되는 이상 그 이하의 염도를 가진 물에서 교배종 생산 작업을 진행함이 위험부담을 줄일 수 있고, 또한 해수 즉 일정 염도를 유지하기 위해서는 경제적 부담이 가중된다는 점도 무시할 수 없다.
기수나 해수에서 진행하는 경우, 상기 치어의 경우와 마찬가지로 성체인 경우라도 담수에서보다 기수나 해수에서는 그 폐사의 위험이 더 큰 것이 사실이다. 상기 전체실험의 진행을 위해서는 무엇보다 상기 해수적응실험을 거쳐 생존한 개체로부터 교배종을 생산할 수 있어야 하므로, 그 위험부담을 줄이기 위해 기수나 해수에서 교배하는 것보다 담수에서 교배하여 교배종을 생산하는 것이 교배종의 생산확률과 그 교배종의 치어를 확보하는 데 유리하다. 다만, 기수나 해수에서 교배종을 생산하는 것을 배제하는 것은 아니다.
(4) 해수적응실험단계
상기 단계(4)는, 상기 단계(3)에서 생산된 제1교배종에 상기 해수적응실험을 다시 시행하는 단계이다. 이는 상기 단계(2)의 해수적응실험과 동일한 방식으로 진행된다. 즉 수온 20∼32℃의, 염도 15PPT의 물을 기준으로, 7일 단위로 3PPT씩 염도를 증가시켜, 최종적으로 33PPT의 완전해수에서 상기 틸라피아의 생존 여부를 확인하는 방식이다. 단지 상기 단계(2)와 상기 단계(4)가 다른 점은, 상기 단계(2)의 경우 상기 해수적응실험의 대상은 상기 단계(1)에서 준비된 통상의 틸라피아이고, 상기 단계(4)의 경우 상기 해수적응실험의 대상은 상기 단계(3)에서 생산된 제1교배종이라는 점이다. 즉 제1교배종을 다시 상기 해수적응실험을 통해 생존한 제1교배종을 회수하여 다음 단계인 제2교배종을 생산하도록 하여, 보다 해수에 생존 능력이 강화된 교배종을 생산할 수 있도록 할 수 있다.
(5) 제2교배종 생산단계
상기 단계(5)는, 상기 단계(4)의 해수적응실험에서 생존한 상기 제1교배종의 암,수를 다시 서로 교배하여 제2교배종을 생산하는 단계이다.
(6) 해수적응실험과 교배종 생산의 반복단계
상기 단계(6)은, 상기 단계(4) 내지 (5)와 같은 방식으로, 교배종에 상기 해수적응실험하고, 상기 해수적응실험에서 생존한 교배종을 서로 교배하여 다시 새로운 교배종을 생산하는 것을 반복하는 단계로서, 8회∼10회 반복하여, 완전해수에서 양식가능한 교배종이 육종되도록 한다. 상기 8회∼10회 반복은, 상기 단계(4)의 제1교배종의 상기 해수적응실험에서부터 상기 단계 (5)의 제2교배종 생산을 1회째라고 보면, 제2교배종의 상기 해수적응실험과 제3교배종 생산을 2회째라고 할 수 있으며, 상기 8회 반복한 경우, 제8교배종의 상기 해수적응실험과 제9교배종을 생산하는 것을 말한다. 이러한 상기 해수적응실험과 교배종생산의 반복을 통해, 해수에 적응력이 강한 형질을 지닌 틸라피아 교배종을 육종하게 되는 것이다. 즉 해수적응력이 강한 형질을 지닌 틸라피아의 교배종 간의 교배로, 보다 더 강한 해수적응력을 가진 틸라피아 교배종을 만들어 내는 것이다. 아래 실험예에서 설명하겠으나, 상기 8회∼10회 반복으로 상기 해수적응실험에서 100% 양식가능한 교배종을 탄생시킬 수 있었다. 이러한 8회∼10회 반복으로 탄생한 교배종을 최종교배종이라고 하면, 도 9에 도시된 바와 같이, 최종교배종은 상기 해수적응실험의 최종단계인 33PPT에서 7일을 견디는 외에, 완전해수에서 먹이섭취가 가능하며, 생존을 계속 유지할 수 있었고, 또한, 도 10에 도시된 바와 같이, 이러한 최종교배종은 상기 해수적응실험과 같이 단계적으로 염도를 올리지 않고, 곧바로 25PPT∼28PPT 염도의 물에 투입하더라도 생존할 수 있었고, 2∼3일 후 33PPT 염도의 물 투입하더라도 계속적으로 생존할 수 있었다. 즉 완전해수에서 양식가능한 틸라피아 교배종을 만들어 낸 것이다.
이와 더불어 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아의 육종방법에 따르면, 상기 실험을 10여년간 유지하면서 또 다른 효과를 가져올 수 있었는데, 그것은 우리나라의 경우 4계절이 뚜렷한 바, 겨울에는 수온이 내려가 자연적인 상태에서는 틸라피아가 생존하기 어려운 환경이 수개월 이상 지속된다. 상기 실험을 위해 육상수조에서 인공적으로 수온을 조절하여 상기 틸라피아를 관리할 수 밖에 없었는데, 이러한 과정에서 겨울철 수온조절에 있어서 경제적 비용으로 인해 틸라피아 및 교배종이 생존할수 있는 수온의 한계까지 내리는 경우가 발생하였고, 이에 따라 통상의 틸라피아가 생존할 수 있는 한계온도인 12℃이하의 온도에서도 적응하여 생존이 가능한 교배종이 탄생하게 되었다. 즉 현재의 실험결과에 따르면 8℃∼9℃에서도 생존이 가능하며 정상적인 먹이섭취, 성장 및 교배가 이루어지는 교배종이 탄생하였다. 이로써 우리나라 근해에서 가두리 양식을 통해서 상기 최종교잡종의 양식이 가능할 수 있는 길이 일부 열리게 되었다.
아래에서는, 발명자의 실험일지를 토대로 한 본 발명의 일실시예를 살펴본다.
[실시예] - 발명자의 실험일지
1. 2003년(실험시작) - 0.2% 생존
- 제노마에서 수입한 치어 5만마리 중 1,000마리를 경상대학교에 보내 해수실험을 시작, 어종은 해수에서 강한 어종인 Oreochromis mossambicus로 선택하였음.
- 해수적응실험방법
수온은 25℃를 유지하며, 15PPT에서 시작하여 7일을 주기로 3PPT씩 높여 상기 해수적응실험을 한 결과 21PPT까지는 정상적인 섭이 활동이 가능했고, 24PPT 부터는 유영이 활발하지 않았으며, 27PPT 부터는 피부에 붉은 반점이 나타나는 개체가 생기기 시작하였음. 30PPT 에서는 죽기 시작하였고(붉은 반점이 발생한 개체는 전멸에 가까움). 이때 약처리는 소용이 없었으며, 33PPT에서는 거의 폐사하였고 1000마리 중 2마리가 생존함. 상기 살아 남은 2마리는 33PPT에서 한 달간 생존하였음.
- 상기와 같은 환경의 실험수조를 도천양어장(발명자의 양어장)에 설치하여 상기 해수적응실험과 동일한 방법으로 실험하였고, 실험결과는 2000마리 중 0.2%인 4마리가 생존함. 생존한 4마리의 치어를 성장시켜 교배하면 보다 나은 결과를 예상하여 분리, 사육하기 시작함.
2. 2004년 - 0.2% 생존
- 2003년 생존한 4마리 중 수놈은 3마리, 암놈 1마리였고, 5월말경 개체중량 300g ~ 350g을 산란 수조에 암,수 1:2로 산란을 시도함. 매칭 후 15일 경과시 암놈이 폐사. 폐사 원인은 좁은 수조에서 수놈의 공격이 심해 상처를 입고 상처에 세균 감염으로 인함.
- 완전해수에서 양식가능한 개체를 일단 증가시켜야 실험이 가능하다는 판단하에 2003년과 같은 실험을 2회 반복하여 총 5마리(암놈 3, 수놈 2)의 개체를 추가로 확보함. 더이상은 해수적응실험에서 개체의 희생이 많아 상기의 개체로만 실험하기로 함.
3. 2005년 - 0.78% 생존
- 7월 20일경 암놈(개체중량 600g) 3마리와 수놈을 1:1로 매칭, 이때 수놈은 무리하게 공격을 하지 못하도록 윗입술 끝부분을 잘라서 매칭을 시도하였음. 매칭 30일 경과 후 산란행위가 있었고, 15일 경과 후 각 수조에서 치어 발견됨. 친어만 옮기고 그 자리에서 성장시킴.
- 10월 말경 각 수조에서 약 600마리의 치어를 확보하였음.(어미가 적은 결과 치어 수가 많지 않음)
- 11월 초에 상기 해수적응실험과 동일한 방법으로 해수적응실험을 행함. 실험결과는 900마리 중 7마리가 생존함. 생존한 7마리를 별도로 독립시켜 친어로 성장시킴.
4. 2006년 - 1.5% 생존
- 2005년에 상기 해수적응실험에서 생존한 7마리는 7월경 200∼250g에 도달했고, 암놈이 4마리, 수놈이 3마리.
- 종전과 같이 산란준비를 하여 1:1로 매칭시도하여 한 달 반 후에 치어가 발견되었고, 2주 후 친어를 별도의 수조로 옮겨 보관 사육함.
- 10월 말경 개체 무게 0.5g~1g 정도 크기에서 해수적응 실험을 전과 같이 실행.
- 약 900마리를 실험한 결과 15마리가 생존했고 전년대비 생존율이 높아짐. 15마리를 2개수조에 나누어 친어로 키우기 위해 특별관리함.
- 앞에 사용한 친어는 한 탱크에 넣어 백업용으로 계속관리함. 백업용 총 생존 마리 수 7 마리임.
5. 2007년 - 6% 생존
- 상기 2006년 해수적응실험에서 생존한 15마리 치어 중 사육 과정에서 3마리는 겨울동안 죽고 12마리 생존(암7, 수5 ).
- 7월 말 200~250g 크기에서 산란시도 1:1로 5쌍 산란시도.
약 1달 후 치어발견, 2주후 친어옮김.
- 10월 말경 개체무게 0.5~1g 정도의 치어 5000마리 확보. 전과 같이 해수적응실험 결과 약 6% 300마리 개체를 확보함.
- 100마리씩 3개수조에 넣어 친어 후보로 양성.
- 백업용 친어 수조의 미수로 19마리가 성장 중임.
6. 2008년 - 15% 생존
- 6월 말경 산란준비를 앞당겨 시도했는데, 300마리 중 평균 무게 150g 정도여서 7월경으로 산란 시도를 미룸. 직감적으로 성장이 조금 느린 듯 함.
- 7월 말경 평균무게 160g을 미수 300마리를 직경 7.5㎥ 큰 탱크에 넣어 산란 시도.
암수비를 50:50으로보고 확인하지 않음. 9월 초순 치어발견. 15일 후 친어 옮김.
- 10. 26 치어 작업 약10,000 마리의 치어확보. 11월 초순 해수적응 실험 시작 결과 약 15% 인 1,500마리가 해수에서 완전하게 생존했고, 해수에서 섭이활동도 왕성함.
7. 2009년 - 23% 생존
- 7월 초에 지난해 생산된 1,500마리 중 우량한 암,수를 선별해서 암놈200, 수놈100여 마리를 큰수조에서 산란시도. 이때 산란조에 들어간 암,수의 평균 무게는 170g 정도임.
- 8월 초에 치어발견. 8월 말경 친어 옮기고 성장을 촉진하기 위해 고급 치어사료를 먹임.
- 10월 중순경 치어 15,000마리를 확보함. 해수적응실험을 전과 동일하게 시도했고 3,450마리가 생존하여 약23%의 생존율을 보임.
- 이를 2탱크에 넣어 사양관리함.
8. 2010년 - 57% 생존
- 6월 말에 해수에 살고있는 3,450마리 중 암놈 200마리 수놈 150마리를 우량한 크기로 선별해서 산란 시도함. 이때 평균무게는 170g 정도
- 7월 말경 치어를 발견하고 8.20 친어옮김. 성장촉진을 위해 고급사료를 공급해서 사양관리함.
- 10월 중순경 치어 18,000마리 확보. 이를 해수적응 실험결과 절반 이상인 9,600마리가 33PPT에서 사료를 먹고 자람.
- 이후 수온 20~22℃ 정도에서 양식하던 중, 2011.1 중순에 저온에서 세균성 질병으로 약 5,000마리 폐사함. 세균성 질병이 발생한 이유는, 저온에서 무리하게 사료를 투여한 결과 먹지않은 사료로 인해 세균의 급발생이 원인.
9. 2011년 - 88% 생존
- 7월 초에 남은 치어를 선별해서 암놈 200마리 수놈 150마리를 산란 시도. 이때 암수 평균 무게160g 정도임.
- 8월 초에 치어발견하고 20일 후 친어옮김
- 10월 중순경 치어 18,000마리를 확보하고, 해수적응시험결과 약 90% 가까운 15.900마리를 확보.
이 실험결과를 보아 100% 양식가능한 종을 만들 수 있겠다는 자신감이 생김.
10. 2012년 - 99.9% 생존
- 7월 초에 친어 후보를 선별해서 암놈 200마리, 수놈 150마리를 산란 시도. 이때 친어 평균 무게는 160g 정도.
- 8월 초에 치어를 발견하고 20일 경과 후 친어 옮김.
- 10월 중순경 치어 17,000마리를 확보하고, 해수적응실험 결과 99.9%가 생존했고 20마리 정도가 폐사함.
- 이중 500마리 정도를 35PPT 까지 농도를 올렸음에도 생존했고 단, 먹이활동은 활발하지 않았음.
11. 2013년 - 100% 생존
- 7월 초에 지난해와 동일한 실험을 시도했고 100% 생존 결과를 얻음. 이 종은 성장이 다소 늦어지나 완전해수에서 생존은 문제가 없었음.
- 성장속도를 높이기 위하여 Family 를 다양하게 해서 선발 육종하면 가능할 것 같고, 연구비가 준비 되면 DNA 를 분석해서 성장속도를 높일 계획임.
상술한 바와 같이, 본 발명의 일실시예에 따른 완전해수에서 양식가능한 틸라피아와 그 육종방법은, 첫째, 담수어종의 경우 간디스토마의 감염 염려로 인해 횟감으로 부적절하다는 인식이 있어왔는데, 완전해수에서 틸라피아를 사육함으로써, 틸라피아에 대한 간디스토마에 대한 감염 염려를 불식할 수 있고, 또한 가두리 양식장과 같이 바다에서 양식할 수 있어 항생제의 오남용 없이 인체에 무해한 틸라피아를 생선회로 섭취할 수 있으며, 둘째, 특히 틸라피아의 경우, 종래 광염성 성질을 악용, 해수어류와 혼합하여 판매한 사실로 인해 소비자의 틸라피아에 대한 부정적 인식문제가 있었으나, 완전해수에서 사육이 가능하도록 하여, 상기와 같이 생선 횟감으로 사용할 수 있어, 해수어류로 속여 판매하는 등의 부정적 인식을 탈피할 수 있을 것이고, 셋째, 완전해수에서 사육할 수 있게 되는 경우, 가두리 양식 등을 통해 기존의 육상 양어 시설에서보다 대량으로 사육할 수 있고, 해수의 풍부한 영양분 등으로 사료 등 사육에 필요한 비용을 절감할 수 있다. 또한, 넷째, 완전해수에서 사육이 가능한 틸라피아의 상기의 효과로 인한 국내에서의 소비량 증가가 예상되고, 그로 인한 생산의 증대로 이어져 양식농가의 수입에 도움이 될 수 있다. 또한, 외국의 틸라피아에 대한 선호도에 비추어 볼 때, 근해의 가두리 양식은 노지양식에 비해 유리하다는 점 등에서 아열대, 열대지방의 국가로 치어수출이 가능할 것이며, 대규모 양식이 가능할 수 있어 틸라피아에 대한 선호도와 소비도가 높은 외국으로 성어뿐만 아니라 치어나 종의 수출 전망도 밝을 것으로 기대되고, 다섯째, 육상사육에 있어서, 종래 해수 어류의 양식기술로는 순환여과방식으로 생산할 수 없었으나, 본 발명에 의한 틸라피아는 완전순환여과방식으로 사육 가능하므로 적조로 인한 폐사나, 환경오염을 줄일 수 있으며, 유수식의 경우보다 비용면에서 효율적이어서 생산원가를 낮추어 수입대체효과를 기대할 수 있으며, 여섯째, 현재 양식되는 다른 어종의 사료는 어분함량비율이 40%∼60%이상이 되어야 어류가 자랄 수 있어, 고비용 저효율의 문제점이 있었는데, 잡식성의 틸라피아를 해수에서 사육하여, 해수 어류의 장점을 살리면서도, 어분을 사용하지 않고 대두박 등을 이용한 사료로 사육가능함으로써 저비용 고효율적이다. 일곱째, 통상의 틸라피아는 수온이 15℃이면 먹는 것을 중지하고 치어는 폐사하며, 성체도 12℃ 이하가 되면 죽는데, 본 발명에 의한 교배종은 8℃∼9℃까지 생존이 가능하여, 열대, 아열대지역뿐만 아니라 우리나라 근해에서도 초봄에서 초겨울에까지 가두리 양식을 통한 틸라피아의 대량생산이 가능할 수 있어, 횟감, 매운탕 뿐만 아니라 어묵의 재료 등으로 그 수요가 확대될 수 있는 이점이 있다.
이상 설명한 본 발명은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에 의하여 다양한 변형이나 응용이 가능하며, 본 발명에 따른 기술적 사상의 범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.
본 발명에 의한 완전해수에서 양식가능한 틸라피아와 그 육종방법의 산업상 이용가능성은 다음과 같다.
첫째, 담수어종의 경우 간디스토마의 감염 염려로 인해 횟감으로 부적절하다는 인식이 있어왔는데, 완전해수에서 틸라피아를 사육함으로써, 틸라피아에 대한 간디스토마에 대한 감염 염려를 불식할 수 있고, 또한 가두리 양식장과 같이 바다에서 양식할 수 있어 항생제의 오남용 없이 인체에 무해한 틸라피아를 생선회로 섭취할 수 있어 그 수요가 확대될 수 있고, 그에따라 생산량의 확대에 따른 양어산업도 더불어 확대시킬 수 있다.
둘째, 완전해수에서 사육할 수 있게 되는 경우, 가두리 양식 등을 통해 기존의 육상 양어 시설에서보다 대량으로 사육할 수 있고, 해수의 풍부한 영양분 등으로 사료 등 사육에 필요한 비용을 절감할 수 있어, 대량생산 및 비용절감 측면에서 산업상 이용가능성이 크다.
셋째, 외국의 틸라피아에 대한 선호도에 비추어 볼 때, 근해의 가두리 양식은 노지양식에 비해 유리하다는 점 등에서 아열대, 열대지방의 국가로 치어수출이 가능할 것이며, 대규모 양식이 가능할 수 있어 틸라피아에 대한 선호도와 소비도가 높은 외국으로 성어뿐만 아니라 치어나 종의 수출 전망도 밝을 것으로 기대된다.
넷째, 본 발명은 육상 사육에 있어서, 종래 해수어류의 양식기술인 유수식보다 비용면에서 효율적이어서 생산원가를 낮추어 수입대체효과를 바라볼 수 있고, 또한 환경측면에서 순환여과방식으로 인한 환경오염을 줄일 수 있는 산업상 이용가능성이 있다.
다섯째, 본 발명에 의한 틸라피아는 다른 어종에 비해 어분의 함량이 감소된 대두박 사료를 사용함으로써 비용측면에서 효율적이어서 이를 해수에서 양식하는 경우 저비용으로 높은 생산고를 이룰 수 있어, 산업상 이용가능성이 크다.
여섯째, 본 발명에 의한 틸라피아는 우리나라 근해에서도 가두리 양식을 통한 틸라피아의 대량생산이 가능할 수 있고, 그에 따라 기존의 횟감 등의 한정된 수요범위에서 어묵 등의 재료 등으로 그 범위가 확대되어, 어분의 수입대체효과를 가져올 수 있는 등 산업상 이용가능성이 크다.
대한민국 공개특허공보 제특1996-0033249호 (공개일자: 1996년10월22일)

Claims (5)

  1. (1) 틸라피아(Oreochromis mossambicus)를 준비하는 단계;
    (2) 상기 단계(1)에서 준비된 틸라피아에 해수적응실험을 시행하는 단계;
    (3) 상기 단계(2)의 실험에서 생존한 상기 틸라피아의 암,수를 서로 교배하여 제1교배종을 생산하는 단계;
    (4) 상기 단계(3)에서 생산된 제1교배종에 상기 해수적응실험을 다시 시행하는 단계;
    (5) 상기 단계(4)의 해수적응실험에서 생존한 상기 제1교배종의 암,수를 다시 서로 교배하여 제2교배종을 생산하는 단계; 및
    (6) 상기 단계(4) 내지 (5)와 같은 방식으로, 교배종에 상기 해수적응실험하고, 상기 해수적응실험에서 생존한 교배종을 서로 교배하여 다시 새로운 교배종을 생산하는 것을 반복하는 단계;를 포함하는 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아의 육종방법.
  2. 제1항에 있어서,
    상기 해수적응실험은, 수온 20∼32℃의, 염도 15PPT의 물을 기준으로, 7일 단위로 3PPT씩 염도를 증가시켜, 최종적으로 33PPT의 완전해수에서 상기 틸라피아의 생존 여부를 확인하는 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아의 육종방법.
  3. 제1항에 있어서,
    상기 해수적응실험을 거친 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서, 대두박 사료를 이용하여 체중 150g이상 되도록 성장시키고, 상기 체중 150g이상 되도록 성장한 틸라피아를 0.1PPT이상∼15PPT미만 또는 15PPT이상∼33PPT이하의 염도 중 어느 하나를 선택한 물에서 교배종을 생산하는 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아의 육종방법.
  4. 제1항에 있어서,
    상기 해수적응실험과 상기 해수적응실험에서 생존한 틸라피아를 서로 교배하여 새로운 교배종 생산을 8회∼10회 반복하여, 완전해수에서 양식가능한 교배종이 육종된 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아의 육종방법.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 육종방법에 의해 육종되는 것을 특징으로 하는, 완전해수에서 양식가능한 틸라피아.
PCT/KR2016/004038 2016-04-19 2016-04-19 완전해수에서 양식가능한 틸라피아와 그 육종방법 WO2017183739A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2016/004038 WO2017183739A1 (ko) 2016-04-19 2016-04-19 완전해수에서 양식가능한 틸라피아와 그 육종방법
KR1020187029752A KR20180134901A (ko) 2016-04-19 2016-04-19 완전해수에서 생존가능한 틸라피아와 그 육종방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/004038 WO2017183739A1 (ko) 2016-04-19 2016-04-19 완전해수에서 양식가능한 틸라피아와 그 육종방법

Publications (1)

Publication Number Publication Date
WO2017183739A1 true WO2017183739A1 (ko) 2017-10-26

Family

ID=60116917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004038 WO2017183739A1 (ko) 2016-04-19 2016-04-19 완전해수에서 양식가능한 틸라피아와 그 육종방법

Country Status (2)

Country Link
KR (1) KR20180134901A (ko)
WO (1) WO2017183739A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655603A (zh) * 2020-12-21 2021-04-16 新疆维吾尔自治区水产科学研究所 一种对虾养殖池塘中大型丝状藻类的生物防控方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107950458A (zh) * 2017-09-14 2018-04-24 余姚市水产技术推广中心 一种青鱼优质群体的人工筛选方法及其筛选装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820041B1 (ko) * 2007-08-03 2008-04-08 김종철 삼투압 조절능력을 이용한 어류의 양식방법
KR100844339B1 (ko) * 2007-08-28 2008-07-07 유병덕 검정잉어 및 그 육종방법
KR20090111066A (ko) * 2008-04-21 2009-10-26 김태호 철갑상어의 해수순치 방법 및 이의 유통방법
CN101766140A (zh) * 2010-01-27 2010-07-07 河北中捷罗非鱼养殖有限公司 罗非鱼海水驯化方法
KR100979406B1 (ko) * 2010-03-11 2010-09-01 전라남도 송어 및 연어류의 해수순치 및 양식 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820041B1 (ko) * 2007-08-03 2008-04-08 김종철 삼투압 조절능력을 이용한 어류의 양식방법
KR100844339B1 (ko) * 2007-08-28 2008-07-07 유병덕 검정잉어 및 그 육종방법
KR20090111066A (ko) * 2008-04-21 2009-10-26 김태호 철갑상어의 해수순치 방법 및 이의 유통방법
CN101766140A (zh) * 2010-01-27 2010-07-07 河北中捷罗非鱼养殖有限公司 罗非鱼海水驯化方法
KR100979406B1 (ko) * 2010-03-11 2010-09-01 전라남도 송어 및 연어류의 해수순치 및 양식 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112655603A (zh) * 2020-12-21 2021-04-16 新疆维吾尔自治区水产科学研究所 一种对虾养殖池塘中大型丝状藻类的生物防控方法
CN112655603B (zh) * 2020-12-21 2022-05-31 新疆维吾尔自治区水产科学研究所 一种对虾养殖池塘中大型丝状藻类的生物防控方法

Also Published As

Publication number Publication date
KR20180134901A (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
Maitland et al. Conservation of freshwater fish in the British Isles: the current status and biology of threatened species
CN103503824B (zh) 引进印度蓝孔雀的人工繁养方法
CN103070115B (zh) 一种有机草鱼分段养殖方法
Bilio Controlled reproduction and domestication in aquaculture
CN104604759A (zh) 一种草鱼的养殖方法
CN101213949A (zh) 一种大闸蟹的养殖方法
CN103548731A (zh) 一种泥鳅育苗方法
CN103858795A (zh) 提高暗纹东方鲀当年小规格鱼种越冬成活率的方法
CN114651751B (zh) 黄唇鱼人工育苗方法
WO2017183739A1 (ko) 완전해수에서 양식가능한 틸라피아와 그 육종방법
CN107873574A (zh) 一种小丑鱼在亚热带养殖方法
CN107155956B (zh) 一种玫瑰毒鮋的人工苗种培育方法
KR20160079592A (ko) 농어 치어를 순치시켜 성육시키는 양식방법
CN101513172B (zh) 纹缟虾虎鱼人工综合调控生态因子的繁殖方法
CN112568159A (zh) 一种有机虾养殖病害防控方法
CN102119678B (zh) 鬼鲉网箱养殖方法
CN112616739A (zh) 一种盐田虾养殖有效防治桃拉综合征方法
CN101971783B (zh) 江鳕全人工生态模拟养殖技术
CN104026051B (zh) 一种沙塘鳢繁育方法
CN110432188A (zh) 一种虹鳟海水驯化方法
CN100418413C (zh) 一种改良文蛤品种的方法
CN101731166B (zh) 葛氏鲈塘鳢人工繁殖方法
CN113455428B (zh) 一种马夫鱼的人工育苗方法
Watanabe et al. Marine finfish aquaculture
CN103270998A (zh) 人工繁育大鲵的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187029752

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899508

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899508

Country of ref document: EP

Kind code of ref document: A1