WO2017182005A1 - 一种半导体激光器制冷结构、半导体激光器及其叠阵 - Google Patents

一种半导体激光器制冷结构、半导体激光器及其叠阵 Download PDF

Info

Publication number
WO2017182005A1
WO2017182005A1 PCT/CN2017/081697 CN2017081697W WO2017182005A1 WO 2017182005 A1 WO2017182005 A1 WO 2017182005A1 CN 2017081697 W CN2017081697 W CN 2017081697W WO 2017182005 A1 WO2017182005 A1 WO 2017182005A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
conductive
semiconductor laser
end portion
heat sink
Prior art date
Application number
PCT/CN2017/081697
Other languages
English (en)
French (fr)
Inventor
刘兴胜
于冬杉
梁雪杰
张林博
贾阳涛
Original Assignee
西安炬光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610256791.3A external-priority patent/CN105703214A/zh
Priority claimed from CN201610256531.6A external-priority patent/CN105703213A/zh
Application filed by 西安炬光科技股份有限公司 filed Critical 西安炬光科技股份有限公司
Priority to US16/081,457 priority Critical patent/US10826266B2/en
Publication of WO2017182005A1 publication Critical patent/WO2017182005A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series

Definitions

  • the present application relates to the field of lasers, and in particular to a semiconductor laser refrigeration structure, a semiconductor laser, and a stack thereof.
  • the semiconductor laser package structure is mainly divided into two types: liquid cooling type and conduction cooling type.
  • the conduction cooling type is limited by the heat dissipation principle, and the power is also limited, and it is difficult to realize a high power device.
  • the liquid-cooled semiconductor laser package structure is currently the main choice for implementing high-power devices.
  • the liquid-cooled semiconductor laser package structure mainly includes two types of microchannels and macrochannels:
  • Microchannel liquid-cooled semiconductor laser because the microchannel heat sink dissipates very well (there is a tiny heat dissipation channel inside), so higher power can be realized, but due to the heat sink working, there is electrochemical corrosion, resulting in long-term use. There is a problem of channel blockage; the structure has high requirements for the quality of the refrigerating liquid. Once the customer uses the tap water or the water is not changed in time, it will soon fail;
  • the heat sinks of the above two types of lasers are all charged during the operation of the laser, and in use, there is a metal oxide plugging due to the electrochemical reaction of the refrigerant liquid and fails.
  • the present application provides a semiconductor laser refrigeration structure, a semiconductor laser, and a stack thereof, which meet the requirements of high power, environmental adaptability, and reliability to improve the problems in the prior art.
  • a semiconductor laser refrigeration structure includes a heat sink having a liquid refrigeration circuit therein; an upper surface of the heat sink is provided with a first insulating layer, and the first insulating layer is provided with a first conductive heat conductive layer;
  • the first conductive heat conducting layer is respectively disposed at different positions for arranging the laser chip and the negative conductive layer, wherein the positive electrode surface of the laser chip is directly bonded to the first conductive heat conductive layer, and the negative conductive layer and the surface of the first conductive heat conductive layer exist between An insulating interlayer, the negative conductive layer is connected to the negative electrode surface of the laser chip; or the first conductive heat conductive layer is divided into two regions insulated from each other as a positive electrode region and a negative electrode region, wherein the positive electrode region is used for the bond The positive electrode side of the laser chip is used to connect to the negative electrode surface of the laser chip.
  • a semiconductor laser refrigeration structure includes: a heat sink including opposite upper and lower surfaces; a positive conductive layer and a negative conductive layer insulated from each other on the upper surface, and the positive conductive layer Yu Providing a laser chip for electrically connecting with a positive electrode of the laser chip, the negative conductive layer for electrically connecting with a negative electrode of a laser chip disposed on the positive conductive layer; and an electrode connector including a first end, a second end portion and a first connecting portion connecting the first end portion and the second end portion, the first end portion is disposed on the positive electrode conductive layer, and the second end portion is disposed on the heat sink
  • the two surfaces are insulated from the heat sink, and the first connecting portion is disposed on the opposite end of the positive conductive layer on the heat sink.
  • a semiconductor laser comprising a laser chip and a semiconductor laser refrigerating structure as described above, the laser chip being disposed in a region of the semiconductor laser refrigeration structure for arranging a laser chip and electrically connected, a negative electrode of the laser chip and the semiconductor The region of the laser refrigeration structure for electrical connection to the negative electrode of the laser chip is electrically connected.
  • a semiconductor laser stack is constructed by using the semiconductor laser as a unit; a plurality of semiconductor lasers are sequentially arranged along a slow axis of the laser chip, or a plurality of semiconductor lasers are sequentially stacked along a fast axis of the laser chip.
  • the liquid cooling type Cooler structure is used to meet the heat dissipation requirements of high-power devices.
  • the heat sink is electrically insulated, and the insulation layer is insulated between the electrode and the Cooler connection surface, which ensures that the microchannel Cooler is completely insulated during operation, avoiding Electrochemical corrosion.
  • the laser chip does not directly contact the heat sink, which reduces the stress of the chip and eliminates the process of increasing the copper-tungsten sustained-release layer.
  • the positive and negative electrical connections under the premise of heat sink insulation are more reliable.
  • the designed U-shaped electrode connecting piece has a simple structure and is easy to use, and is very suitable for reliable use in semiconductor lasers.
  • the vertical stack structure how to realize the electrical connection of the upper and lower two Coolers is a technical difficulty.
  • the present application can directly apply the insulated Cooler to the vertical stacked structure by the structural design of the U-shaped electrode connecting piece. Based on the U-shaped electrode connecting piece, the anode of each Cooler is closely coupled with the positive electrode of the Cooler located thereon, and the insulating layer is insulated between the electrode and the Cooler, which does not affect the characteristics of the Cooler electrical isolation.
  • FIG. 1 is a schematic view showing the basic structure of a first embodiment of the present invention
  • Figure 2 is a schematic view of a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a U-shaped electrode connecting piece according to an embodiment of the present application.
  • Figure 4 is a schematic view of a first embodiment of the present application.
  • Figure 5 is a schematic view of a first embodiment of the present invention.
  • Figure 6 is a schematic diagram showing the basic structure of a second embodiment of the present application.
  • Figure 7 is a schematic view (main view) of a second embodiment of the present application.
  • Figure 8 is a schematic view (top view) of a second embodiment of the present application.
  • Figure 9 is a schematic view of a second embodiment of the present application.
  • FIG. 10 is a schematic view showing a first perspective structure of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 11 is a schematic view showing a second perspective structure of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 12 is a schematic view showing a third perspective structure of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 13 is a schematic view showing a fourth perspective structure of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 14 is a schematic view showing a fifth perspective structure of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 15 is a schematic structural view of an electrode connector of a semiconductor laser refrigeration structure provided by an embodiment of the present application.
  • 16 is a perspective view showing another schematic structural view of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 17 is another perspective view showing another structural diagram of a semiconductor laser refrigeration structure according to a third embodiment of the present application.
  • FIG. 18 is a schematic view showing another structure of an electrode connector of a semiconductor laser refrigeration structure according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a semiconductor laser according to a third embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a semiconductor laser stack provided by an embodiment of the present application.
  • the semiconductor laser refrigeration structure of the present application is mainly composed of a heat sink 1, a first insulating layer 3, a first conductive heat conductive layer 5, and a negative electrode conductive layer 6a, wherein the heat sink may be a liquid cooler.
  • the inside has a liquid refrigeration circuit, and the negative electrode conductive layer may be a negative electrode copper piece.
  • the heat sink and the negative electrode conductive layer are not particularly limited in this embodiment.
  • the semiconductor laser refrigeration structure can be used to fabricate a semiconductor laser after the laser chip is disposed.
  • the heat sink includes an upper surface and a lower surface, and the upper surface of the heat sink is provided with a first insulating layer, the first insulating layer is insulated from the laser chip, and the first insulating layer is provided with the first conductive heat conductive layer 5, on the first insulation layer
  • the first conductive heat conducting layer is respectively disposed at different positions for arranging the laser chip and the negative conductive layer, wherein the positive electrode surface of the laser chip is directly bonded to the first conductive heat conductive layer, and the negative conductive layer and the surface of the first conductive heat conductive layer are insulated.
  • the spacer layer insulates the negative electrode conductive layer from the first conductive heat conductive layer, and the negative electrode conductive layer may be connected to the negative electrode surface of the laser chip through a gold wire. Alternatively, it may be electrically connected to the negative electrode surface of the laser chip by other means.
  • the negative electrode copper sheet may be formed to form a negative electrode conductive layer of the semiconductor laser, and the first conductive heat conductive layer forms a positive electrode conductive layer of the semiconductor laser, wherein the position of the first conductive heat conductive layer for setting the laser chip may be An electrically conductive layer does not correspond to a region where the negative conductive layer is disposed.
  • the negative conductive layer is not limited to a copper sheet, and may be other conductive layers of other conductive materials.
  • the upper and lower surfaces of the upper surface and the lower surface in this embodiment are relative concepts, and are not defined by absolute orientation, wherein the upper surface and the lower surface are two opposite surfaces, that is, the lower surface of the heat sink is A surface that is far from the upper surface.
  • the heat sink material is preferably copper
  • the first conductive heat conductive layer is preferably a copper foil
  • the first insulating layer 3 and the first conductive heat conductive layer 5 are preferably realized in a single structure, such as a DBC (DirectBondedCopper) structure or a DPC (DirectPlateCopper), wherein the first
  • the material of the insulating layer may be an yttria ceramic of an aluminum nitride ceramic.
  • the specific materials of the heat sink, the first conductive heat conductive layer and the first insulating layer are not limited, and may be other, such as a heat sink, or may be ceramic, diamond, copper diamond composite materials, or the like.
  • the first conductive and thermally conductive layer may also be other conductive and thermally conductive materials, such as iron, etc., and the first conductive and thermally conductive layer may also be in other forms.
  • the semiconductor laser fabricated by the semiconductor laser refrigeration structure of the present application can be used as a constituent unit of a semiconductor laser stack.
  • the positive conductive layer and the negative conductive layer may be directly connected to a power source; for a stack of a plurality of semiconductor lasers, in order to facilitate the implementation of the stacked structure, as shown in FIG. 2, the lower surface of the heat sink may be disposed.
  • the second conductive and thermally conductive layer is connected to the first conductive and thermally conductive layer through a conductive connection to electrically connect the liquid cooler above and below.
  • the electrical connection has at least three preferred structures:
  • a conductive pipe 8 is disposed to connect the first conductive heat conductive layer and the second conductive heat conductive layer 9 underneath, and to ensure insulation from the heat sink;
  • the first conductive heat conductive layer and the bottom conductive layer 9 are connected by a gold wire 10.
  • the second insulating layer can adopt a lower cost PI (polyimide) insulating material.
  • the conductive connecting member may adopt a U-shaped connecting piece structure, and the U-shaped connecting piece is composed of two parallel end portions. And a bent end connecting the two parallel end straight portions.
  • the second conductive and thermally conductive layer may be attached to the surface of the second insulating layer as a second parallel end of the U-shaped connecting piece, and the first parallel end of the U-shaped connecting piece is directly attached to the first conductive heat conduction.
  • the layer surface may be a region of the first conductive heat conductive layer surface for arranging the laser chip, and preferably, the laser chip disposed on the first conductive heat conductive layer is not connected to the first parallel end of the U-shaped connecting sheet Straight contact.
  • the second parallel end of the U-shaped connecting piece can also be set An electrically conductive end portion disposed on the surface of the second electrically conductive layer.
  • the relative positions of the U-shaped connecting piece and the laser chip are preferably set to be respectively located at two ends of the liquid refrigerator, and the direction in which the two wires are connected is the axial direction, and the orientation of the bent end portion of the U-shaped connecting piece is set.
  • the U-shaped opening direction is satisfied as the axial direction.
  • the conductive connecting member is an internal communication pipe formed from the first conductive heat conductive layer through the liquid cooler to the second conductive heat conductive layer;
  • the conductive medium is provided, or the internal communication pipe itself has electrical conductivity to electrically connect the first conductive heat conductive layer and the second conductive heat conductive layer.
  • the conductive connecting member may be an electrical connecting strip or a gold wire of a flexible material; the conductive connecting member is located at a liquid cooler separately from a specific position where the laser chip is disposed.
  • the two ends, that is, the semiconductor laser formed in this embodiment, the conductive connecting member and the laser chip are respectively located at opposite ends of the liquid refrigerator, and the second conductive heat conducting layer extends beyond the heat sink at the end of the conductive connecting member, and the conductive connecting member is self-conducting.
  • the first electrically conductive thermally conductive layer is connected to the portion of the second electrically conductive thermally conductive layer that extends beyond the liquid cooler.
  • the conductive connecting member is connected from the first conductive heat conducting layer to the portion of the second conductive heat conducting layer extending beyond the heat sink, preferably from the first conductive heat conducting layer for arranging the laser chip to the heat sink.
  • the second conductive and thermally conductive layer is such that when the laser chip is disposed on the first conductive and thermally conductive layer, the conductive connection member can be electrically connected to the positive electrode of the laser chip.
  • the second conductive and thermally conductive layer may also extend beyond the liquid refrigerator at one end of the conductive connecting member, and directly electrically connect the first conductive heat conductive layer and the second conductive heat conductive layer through the conductive connecting material of the flexible material. Sexual connection.
  • the specific material of the conductive connecting member in the embodiment is not limited, and the flexible conductive material is satisfied, so that the first conductive heat conductive layer and the second conductive heat conductive layer can be electrically connected.
  • the first insulating layer, the second insulating layer, and the insulating spacer may be made of any one of aluminum nitride ceramic, yttria ceramic, and polyimide.
  • the first insulating layer, the second insulating layer, the insulating interlayer and the insulating medium at other positions may be respectively selected from different materials or the same material.
  • the semiconductor laser formed by the semiconductor laser refrigeration structure provided by the embodiment of the present application includes the semiconductor laser refrigeration structure and the laser chip 2 provided in the embodiments of the present application, and the laser chip and the negative electrode are respectively arranged at different positions of the first conductive heat conduction layer.
  • the semiconductor laser formed may be a liquid-cooled semiconductor laser.
  • a semiconductor laser stack can be easily assembled. Specifically, the stack is formed by sequentially arranging a plurality of semiconductor lasers along a slow axis of the laser chip, or by a plurality of semiconductor lasers along the laser chip. The axes are superimposed in sequence.
  • the specific connection form is usually that the negative conductive layer of the semiconductor laser at the top of the stack is connected to the negative pole of the power supply, and the first conductive heat conduction layer of the semiconductor laser at the bottom of the stack is connected to the positive pole of the power supply, and the stacked semiconductor lasers are connected in series or in parallel.
  • the semiconductor laser stack can be divided into two types of assembly: a horizontal array and a vertical stack:
  • horizontal array a plurality of semiconductor lasers are arranged in sequence along the slow axis of the laser chip, each of which is independently connected to the power source, or the first conductive heat conducting layer 5 and the negative conductive layer 6a are respectively connected in parallel to the power source;
  • the preparation process of the semiconductor laser of the present application can be as follows:
  • the heat sink has the same structure as the existing liquid refrigeration Cooler (cooler), and has a liquid refrigeration circuit;
  • the chip is fixed on the surface of the DPC using gold tin solder (hard solder can be used because the thermal expansion coefficient of AlN is close to that of the GaAs material of the chip).
  • thermosetting PI material polyimide
  • the above-mentioned semiconductor laser is used as a unit to form a stack, which can be assembled by a simple mechanical structure, sealed with a rubber seal ring, and electrically connected through a U-shaped electrode.
  • the semiconductor laser refrigeration structure of the present application is mainly composed of a heat sink, a first insulating layer and a first conductive and thermally conductive layer.
  • the heat sink may be the liquid refrigerator, and has a liquid refrigeration circuit inside.
  • the upper surface of the heat sink is provided with a first insulating layer, and the first conductive layer is disposed on the first insulating layer, and the first conductive heat conducting layer on the first insulating layer is further divided into two regions insulated from each other, respectively
  • the positive electrode region 51 and the negative electrode region 52 wherein the positive electrode region is used for the bond and the positive electrode face of the laser chip, and the negative electrode region is for connection with the negative electrode face of the laser chip.
  • the positive electrode region serves as the positive electrode conductive layer
  • the negative electrode region serves as the negative electrode conductive layer.
  • the positive electrode region and the negative electrode region may be two regions of the pitch which are divided by the first conductive heat conductive layer, and are hollow or blocked by an insulating medium.
  • the heat sink material is preferably copper
  • the first conductive heat conductive layer is preferably a copper foil
  • the first insulating layer 3 and the first conductive heat conductive layer 5 are preferably realized in a unitary structure. That is, when the first electrically conductive layer is preferably a copper foil, the first insulating layer 3 and the copper foil 5 are preferably realized in a unitary structure, such as a DBC (Direct Bonded Copper) structure or a DPC (DirectPlateCopper).
  • the material of the first insulating layer may be an aluminum nitride ceramic yttria ceramic.
  • the specific materials of the heat sink, the first conductive heat conductive layer and the first insulating layer are not limited, and may be other, such as a heat sink, or may be ceramic, diamond, copper diamond composite materials, or the like.
  • the first conductive and thermally conductive layer may also be other conductive and thermally conductive materials, such as iron, etc., and the first conductive and thermally conductive layer may also be in other forms.
  • the semiconductor laser fabricated by the semiconductor laser refrigeration structure of the embodiment of the present application can be used as a constituent unit of the semiconductor laser stack.
  • the positive electrode region and the negative electrode region may be directly connected to a power source;
  • a second surface may be disposed under the heat sink, that is, the lower surface of the heat sink.
  • the insulating layer 4 is provided with a second conductive and thermally conductive layer on the second insulating layer, and the second insulating layer insulates between the heat sink and the second conductive and thermally conductive layer.
  • the second conductive and thermally conductive layer is connected to the first conductive and thermally conductive layer through a conductive connection, and the upper portion of the heat sink is electrically connected to the lower side.
  • the electrical connection has at least two preferred structures:
  • a conductive duct 8 is provided to connect the first conductive heat conductive layer 5 and the second conductive heat conductive layer 9 underneath, and to ensure insulation from the heat sink.
  • the second insulating layer can adopt a lower cost PI (polyimide) insulating material.
  • the conductive connecting member may adopt a U-shaped connecting piece structure, and the U-shaped connecting piece is composed of two parallel end portions. And a bent end connecting the two parallel end straight portions.
  • the second conductive and thermally conductive layer may be attached to the surface of the second insulating layer as a second parallel end of the U-shaped connecting piece, and the first parallel end of the U-shaped connecting piece is directly attached to the first conductive heat conduction.
  • the surface of the layer is used to arrange the area of the laser chip, and the position where it is bonded is the area on the positive electrode area that is not bonded to the laser chip, and the contact with the negative electrode surface is avoided.
  • the second end straight portion of the U-shaped connecting piece may also be an electrically conductive end portion disposed on the surface of the second conductive heat conductive layer.
  • the relative positions of the U-shaped connecting piece and the positive electrode region are preferably disposed at two ends of the heat sink, that is, the semiconductor laser cooling structure provided by the embodiment and the laser chip form a semiconductor laser, the U-shaped connecting piece and the laser chip
  • the relative positions of the U-shaped connecting pieces are preferably disposed in the axial direction, and the direction in which the bent ends of the U-shaped connecting piece are disposed is such that the U-shaped opening direction is the axial direction.
  • the conductive connecting member is an internal communication pipe formed from the first conductive heat conductive layer through the liquid cooler to the second conductive heat conductive layer;
  • the conductive medium is provided, or the internal communication pipe itself has electrical conductivity to electrically connect the first conductive heat conductive layer and the second conductive heat conductive layer.
  • the insulating material is arbitrarily selected from the group consisting of aluminum nitride ceramics, cerium oxide ceramics, and polyimide
  • the first conductive heat conductive layer may be a copper foil.
  • the "optional selection" may mean that the first insulating layer and the second insulating layer and the insulating medium at other positions may be respectively selected from different materials or the same material.
  • the semiconductor laser formed by the semiconductor laser refrigeration structure provided by the embodiment of the present application includes a laser chip and a semiconductor laser refrigeration structure provided by the embodiment of the present application.
  • the positive electrode surface of the laser chip is directly bonded to the positive electrode region, and the laser chip is The negative electrode surface is connected to the negative electrode region through a gold wire.
  • the electrical connection between the negative electrode surface and the negative electrode region of the laser chip is not limited in this embodiment.
  • the semiconductor laser can be easily assembled by using the semiconductor laser as a unit, and the stack is formed by sequentially arranging a plurality of semiconductor lasers along the slow axis of the laser chip, or sequentially stacking a plurality of semiconductor lasers along the fast axis of the laser chip. .
  • the specific connection form is usually that the negative electrode region of the semiconductor laser at the top of the stack is connected to the negative pole of the power supply, and the positive electrode region of the semiconductor laser at the bottom of the stack is connected to the positive electrode of the power supply, and the stacked semiconductor lasers are connected in series or in parallel.
  • Semiconductor laser stacks can be divided into two types: horizontal array and vertical stack:
  • Horizontal array a plurality of semiconductor lasers are arranged in sequence along the slow axis of the laser chip, and each of them is independently connected to the power source, or the positive electrode region and the negative electrode region are connected in series/separately and then connected to the power source;
  • the heat sink itself has the same structure as the existing liquid refrigeration Cooler, and has a liquid refrigeration circuit
  • the chip is fixed on the surface of the DPC using gold tin solder (hard solder can be used because the thermal expansion coefficient of AlN is close to that of the GaAs material of the chip).
  • the first conductive heat conducting layer (positive electrode region and negative electrode region) is cured by a thermosetting PI material (polyimide) at a temperature of about 150 ° C, and is tightly bonded;
  • the above-mentioned semiconductor laser is used as a unit to form a stack, which can be assembled by a simple mechanical structure, sealed with a rubber sealing ring, and electrically connected through a conductive connecting member.
  • FIG. 10 shows a semiconductor laser refrigerating structure 100 provided by this embodiment.
  • the semiconductor laser refrigerating structure 100 includes a heat sink 110, a positive electrode conductive layer 120, a negative electrode conductive layer 130, and an electrode connecting member 140.
  • the heat sink includes opposite upper and lower surfaces, and sides connecting the upper surface and the lower surface, wherein the upper and lower surfaces of the upper surface and the lower surface do not represent absolute
  • the orientation is defined by the upper surface being the first surface 111 and the lower surface being the second surface 112.
  • the first surface 111 and the second surface 112 may be rectangular, having relatively long sides and relatively short sides, wherein the longer sides and the shorter sides are adjacent to each other.
  • the first surface and the second surface of the heat sink may also be other shapes, such as a square. If the first surface and the second surface are square, the longer side and the shorter side are respectively adjacent two sides.
  • the positive electrode conductive layer 120 and the negative electrode conductive layer 130 are disposed on the first surface 111 of the heat sink 110 and insulated from each other, and the positive electrode conductive layer and the negative electrode conductive layer are respectively insulated from the heat sink, and the electrode connector 140 extends from the positive electrode conductive layer 120 To the second surface 112 of the heat sink 110 to connect the positive conductive layer 120 with the second surface.
  • the heat dissipation mode of the heat sink 110 may be a liquid cooling type. If the heat sink 110 is of a liquid cooling type, the heat sink 110 may be a liquid refrigerator having a liquid refrigeration circuit inside. Wherein, the heat sink 110 can be made of an insulating, high thermal conductive material such as ceramic, diamond, copper diamond composite material or the like. The heat sink 110 may also be made of a non-insulating material, and a first insulating layer 150 is disposed on the first surface 111 of the heat sink 110. The first insulating layer 150 is located on the first surface 111 and the positive conductive layer 120 and the negative conductive layer.
  • the heat sink 110 is insulated from the positive conductive layer 120 and the negative conductive layer 130, as shown in FIG. Further, a third insulating layer 152 may be disposed on the second surface 112 of the heat sink 110 to insulate the second surface 112 of the heat sink 110 from the outside, and the semiconductor formed by using the semiconductor laser refrigeration structure provided by the embodiment of the present invention.
  • the heat sink of the semiconductor laser can be insulated from the adjacent semiconductor lasers.
  • the heat sink 110 is made of an insulating material
  • the positive conductive layer and the negative conductive layer may be directly disposed on the first surface of the heat sink, and the heat sink and the positive conductive layer and the negative conductive layer are insulated, without setting the first An insulating layer 150 and a third insulating layer 152.
  • the first table of the heat sink 110 The surface 111 may also be provided with a first insulating layer 150 between the heat sink 110 and the positive conductive layer 120 and the negative conductive layer 130.
  • the second surface 112 of the heat sink 110 may also be provided with a third insulating layer 152.
  • the heat sink 110, the first insulating layer 150, and the third insulating layer 152 may be an integrally formed structure, or the heat sink 110, the first insulating layer 150, the third insulating layer 152, and the positive conductive layer 120,
  • the negative electrode conductive layer 130 may be an integrally formed structure.
  • the positive conductive layer 120 is used to set a laser chip and is electrically connected to the positive electrode of the laser chip
  • the negative conductive layer 130 is used to be disposed on the positive conductive layer 120.
  • the negative electrode of the laser chip is electrically connected.
  • the positive conductive layer 120 and the negative conductive layer 130 may be disposed in the same layer, and are two mutually spaced and independent conductive regions, and the positive conductive layer 120 and the negative conductive layer 130 have a certain spacing, as shown in FIG. This arrangement is similar to the arrangement of the positive electrode region and the negative electrode region in the second embodiment.
  • the positive conductive layer 120 and the negative conductive layer 130 may be formed by disposing a first conductive heat conductive layer on the first surface 111 of the heat sink 110, and dividing the first conductive heat conductive layer into two regions spaced apart from each other, respectively forming The positive electrode conductive layer 120 and the negative electrode conductive layer 130.
  • the positive electrode conductive layer 120 and the negative electrode conductive layer 130 which are spaced apart from each other may be empty or may be insulated by an insulating medium to keep the positive conductive layer 120 and the negative electrode conductive layer 130 insulated.
  • the positive electrode conductive layer 120 and the negative electrode conductive layer 130 are stacked, the negative electrode conductive layer 130 and the positive electrode conductive layer 120 are disposed in different layers, and the positive electrode conductive layer 120 and the negative electrode are electrically conductive.
  • a second insulating layer 154 is disposed between the layers 130 to insulate between the positive conductive layer 120 and the negative conductive layer 130.
  • the positive conductive layer 120 and the negative conductive layer 130 may be disposed on a side of the heat sink 110, and the first insulating layer 150 is disposed between the heat sink 110 and the positive conductive layer 120.
  • the arrangement manner is similar to the arrangement between the first conductive heat conductive layer and the negative electrode conductive layer in the first embodiment.
  • the positive conductive layer of the set mode is not provided with the negative conductive layer.
  • the position can be used to set the laser chip.
  • the position where the first conductive conductive layer is not provided with the negative conductive layer can be used to set the laser chip.
  • the area of the positive electrode conductive layer 120 disposed in a stacked manner is larger than the area of the negative electrode conductive layer 130, and the positive electrode conductive layer 120 is located between the negative electrode conductive layer 130 and the heat sink 110 so that the positive electrode conductive layer 120 and the negative electrode conductive layer
  • the unstacked area of 130 may be used to set the laser chip, and the side of the negative conductive layer 130 away from the positive conductive layer may be used to connect to the negative electrode of the laser chip.
  • the negative conductive layer 130 may be adjacent to the heat sink 110, between the heat sink and the negative conductive layer.
  • a first insulating layer is disposed, and a second insulating layer is disposed between the negative conductive layer 130 and the positive conductive layer 120.
  • the area of the negative electrode conductive layer is larger than the area of the positive electrode conductive layer.
  • the negative electrode conductive layer 130 may be a copper piece, or a copper piece may be disposed on the negative electrode conductive layer 130 for electrical connection with the negative electrode of the laser chip.
  • the first surface 111 of the heat sink 110 may include a first portion and a second portion. As shown in FIGS. 10 and 12, the first portion may be the extension of the longer side of the first surface 111 of the heat sink 110.
  • the positive conductive layer 120 and the negative conductive layer 130 are disposed on the first portion, and a fourth insulating layer 156 is disposed on the second portion, the fourth insulating layer 156 having a height slightly higher than that disposed on the heat sink 110
  • the height of the fourth insulating layer 156 refers to the distance between the surface of the fourth insulating layer 156 away from the heat sink 110 and the heat sink 110.
  • the fourth insulating layer 156 may be an insulating layer portion of the first insulating layer 150 corresponding to the second portion of the first surface 111.
  • the electrode connector 140 includes a first end portion 146, a second end portion 148, and a first connecting portion 142 that connects the first end portion and the second end portion.
  • the first end portion 146 is disposed on the positive electrode conductive layer 120 , specifically, the surface of the positive electrode conductive layer 120 away from the heat sink 110 , and the second end portion 148 is disposed on the surface of the positive electrode conductive layer 120 .
  • the opposite end of the positive conductive layer on the heat sink is not at the opposite end of the positive conductive layer on the heat sink, for example, the heat sink includes one end and the other end opposite to each other, wherein one end is provided with a positive conductive layer, then A connecting portion is not disposed at the other end.
  • the second end portion 148 of the electrode connecting member 140 may be disposed on a side of the third insulating layer 152 away from the first surface 111, so that the second The end 148 is insulated from the heat sink 110.
  • the second end portion can serve as a second conductive and thermally conductive layer disposed on the third insulating layer.
  • the first end portion and the second end portion are disposed in a wrong manner, so that the plurality of semiconductor lasers fabricated by the semiconductor laser refrigeration structure provided in the embodiment are stacked into a stack, and the second end is The portion is in contact with the negative electrode conductive layer of the adjacent semiconductor laser and insulated from the positive electrode conductive layer of the adjacent semiconductor laser.
  • the second end portion may be disposed on a second surface corresponding to the negative electrode conductive layer, and when the plurality of semiconductor lasers are stacked, the second end of the semiconductor laser is in contact with the negative conductive layer of the adjacent semiconductor laser. Sexually connected and insulated from the positive conductive layer of an adjacent semiconductor laser.
  • the extending direction of the first end portion 146 and the second end portion 148 may be opposite to the first surface 111 .
  • the extending direction of the shorter sides is uniform, and the specific lengths of the first end portion 146 and the second end portion 148 are not limited in this embodiment, and the length between the first end portion 146 and the second end portion 148 is different from each other. Nor is it limited.
  • the first end portion 146 may be made as short as possible while the electrode connection member 140 is stably disposed on the heat sink 110.
  • the length of the first end portion 146 is longer than the first surface of the heat sink 110.
  • Half of the shorter side of 111 is short.
  • the first connecting portion 142 is opposite to the side surface of the heat sink 110 between the first surface 111 and the second surface 112 and is insulated from each other.
  • the heat sink is made of an insulating material. Heat sink and first connection The joints are insulated from each other; or there is a gap between the heat sink and the first connecting portion to insulate the first connecting portion from the heat sink; or an insulating layer is disposed between the heat sink and the first connecting portion to make the heat sink and the heat sink The first connecting portions are insulated from each other.
  • the connecting line between the first end portion 146 and the first connecting portion 142 is located on the longer side of the first surface 111 of the heat sink 110, and the connecting line between the second end portion 148 and the first connecting portion 142 is located at the heat sink 110 The longer side of the two surfaces 112.
  • a C-shaped structure may be formed between the first end portion 146, the first connecting portion 142, and the second end portion 148, and the opening direction of the C-shaped structure faces the shorter side of the first surface 111 of the heat sink 110.
  • the extension direction, and one end of the heat sink whose opening direction faces is the opposite end of the positive electrode conductive layer on the heat sink, and may be an end adjacent to one end of the positive electrode conductive layer as shown in FIG. As shown in FIG.
  • the opening direction of the C-shaped structure formed by the electrode connecting member may be different from that of the first embodiment and the second embodiment, and the electrode connecting members of the first embodiment and the second embodiment are The opening faces the end of the positive electrode conductive layer.
  • the openings of the first embodiment and the second embodiment electrode connector face the laser chip, and the bent end of the electrode connector is at the opposite end of the laser chip.
  • One end of the heat sink facing the opening direction of the electrode connector of the middle C-type structure is an end adjacent to one end of the positive electrode conductive layer, and the first connection portion of the electrode connection member is at the adjacent end of the positive electrode conductive layer, when forming the semiconductor laser
  • the opening of the electrode connector of the present embodiment faces the adjacent end of the laser chip. As indicated by the direction of the straight arrow in Fig. 11, the direction in which the shorter sides extend and the direction of the shorter sides are from one longer side of the first surface to the other longer side.
  • the number of electrode connectors 140 may be greater than or equal to one.
  • the first connecting portions 142 of 140 are parallel to each other in the extending direction of the first side or the shorter side of the second surface of the heat sink 110.
  • the electrode connector 140 further includes a third end portion 146b and a second connecting portion 142b.
  • the third end portion 146b is disposed on the positive electrode conductive layer, and the first end portion 146 and the third end portion 146b are oppositely disposed in the extending direction of the second end portion, the third end portion is The second end is set in phase error.
  • the first end portion 146 and the third end portion 146b are in the shorter side direction of the first surface 111. Relative settings.
  • the first end portion 146 and the third end portion 146b are respectively disposed at opposite ends of the heat sink, and the opposite ends are the two ends at which the longer sides are located. And the first end portion 146 and the third end portion 146b both extend in the shorter side direction of the first surface 111 and extend relative to each other. Wherein, the first end portion 146 extends from the longer side of the first surface 111 where it is located to the third end portion, and the third end portion 146b is located from the longer side of the first surface thereof to the first end portion 146. Position extension. The first end portion 146 and the third end portion 146b are both disposed on the positive electrode conductive layer 120.
  • the first connecting portion 142 and the second connecting portion 142b are oppositely disposed in the extending direction of the second end portion when the second end portion is on the shorter side of the first surface 111.
  • the first connecting portion 142 and the second connecting portion 142b are oppositely disposed in a shorter side direction of the first surface 111, and respectively have two sides corresponding to two longer sides of the first surface 111 Relatively placed and insulated from the sides.
  • the second end The portion 148 extends in the shorter side direction of the first surface 111, extending from a position of one longer side of the second surface 112 to a position of the other longer side of the second surface 112.
  • the second end portion may extend from the position of one longer side of the second surface 112 to the second surface 112 in another area corresponding to the position where the second surface is located with the negative conductive layer.
  • the location of the side In a specific embodiment, as shown in FIG. 17, the shape of the second end portion may be the same as that of the negative electrode conductive layer, or slightly smaller than the negative electrode conductive layer, and the second end portion is disposed on the second surface of the heat sink. The area corresponding to the position where the negative electrode conductive layer is located.
  • both ends of the second end portion 148 are connected to the first connecting portion 142 and the second connecting portion 142b, respectively.
  • One end of the first end portion 146 and the second end portion 148 are connected by the first connecting portion 142, and the other ends of the third end portion 146b and the second end portion 148 are connected by the second connecting portion 142b, and are formed as shown in FIG.
  • the electrode connector 140 of the U-shaped structure shown in FIG. 18 allows the electrode connector 140 to be stably disposed on the heat sink 110.
  • the opening direction of the electrode connector 140 of the U-shaped structure faces the heat sink 110.
  • the first surface 111 specifically, may be the direction in which the shortest connection line of the second surface 112 and the first surface 111 is located.
  • the electrode connector 140 is formed by using the semiconductor laser refrigerating structure 100 to electrically connect the first end portion 146 of the electrode connecting member 140 to the positive electrode conductive layer 120 when forming the stack.
  • the two ends 148 are electrically connected to the positive conductive layer 120.
  • the electrode connector 140 is electrically connected to the negative electrode conductive layer 130 of the other semiconductor laser, and the specific structure thereof is not limited.
  • the semiconductor laser 200 can be formed by applying the laser refrigerating structure 100 provided in this embodiment, and the semiconductor laser includes the laser chip 210 and the semiconductor laser refrigerating structure 100 described in this embodiment.
  • the laser chip 210 is disposed on the positive conductive layer 120 of the semiconductor laser refrigerating structure 100, and the positive electrode of the laser chip 210 is electrically connected to the positive conductive layer 120, which may be
  • the positive electrode of the laser chip 210 is bonded to the positive electrode conductive layer 120 by solder, and the position where the laser chip 210 is disposed at the positive electrode conductive layer 120 is preferably a region where the positive electrode conductive layer 120 is not in contact with the first end portion 146 of the electrode connector 140.
  • the negative electrode of the laser chip 210 is electrically connected to the negative conductive layer 130 of the semiconductor laser refrigerating structure 100.
  • the laser chip 210 and the negative electrode conductive layer 130 may be electrically connected through a conductive metal wire, such as a gold wire, and, referring to FIG. 19, the highest height of the connecting wire is lower than that of the semiconductor laser.
  • the height of the fourth insulating layer 156 of the structure 100 is not limited, and the negative electrode of the laser chip 210 may be electrically connected by other means.
  • the negative conductive layer 130 is provided.
  • the positive electrode of the laser chip 210 can be bonded to the positive conductive layer 120 disposed on the heat sink 110 by solder, and the negative electrode of the laser chip 210 can be electrically connected to the conductive chip through the conductive metal wire.
  • the negative conductive layer 130 is disposed on the heat sink 110.
  • a semiconductor laser stack 300 is illustrated in FIG. 20, including a plurality of semiconductor lasers 200 provided by the present embodiment.
  • the plurality of semiconductor lasers 200 are sequentially stacked along the laser chip 210 in the connection direction of the first surface 111 and the second surface 112 of the heat sink 110, as shown in FIG. 20, and are electrically connected by the electrode connector 140.
  • the first end portion 146 of the electrode connecting member 140 of the first semiconductor laser 200 is electrically connected to the positive conductive layer 120, Since the second end portion 148 communicates with the first end portion 146 through the first connecting portion 142, and communicates with the third end portion 146b through the second connecting portion 142b, the second end portion 148 disposed on the second surface 112 of the heat sink 110 is The positive electrode conductive layer 120 is electrically connected.
  • the second end portion 148 of the first semiconductor laser 200 is in contact with the negative conductive layer of the adjacent second semiconductor laser 200, and the negative conductive layer is connected to the laser chip 210.
  • the metal connection line is insulated from the positive conductive layer of the adjacent second semiconductor laser 200, and the positive conductive layer 120 of the first semiconductor laser 200 and the negative conductive layer 130 of the second semiconductor laser 200 pass through the electrode connecting member. 140 achieves electrical connection.
  • FIG. 20 only shows the case where the two semiconductor lasers 200 are superimposed on each other.
  • the semiconductor laser array 300 may include a plurality of semiconductor lasers 200, the specific number of which is in this embodiment. There is no limitation in the embodiment.
  • the insulating layer disposed on the surface of the heat sink 110 can achieve insulation between the heat sinks 110 of the semiconductor laser 200.
  • the fourth insulating layer 156 when the fourth insulating layer 156 is disposed on the first surface 111 of the heat sink 110 of the semiconductor laser 200, the fourth insulating layer 156 having a height slightly higher than the height of other devices disposed on the heat sink 110 causes the semiconductor laser
  • the conductive metal line between the laser chip 210 and the negative electrode conductive layer 130 in 200 is not pressed by other devices, and the height of the fourth insulating layer 156 is only slightly higher, so that one of the adjacent two semiconductor lasers 200
  • the second end portion 148 of the electrode connector 140 may be in contact with the negative electrode conductive layer 130 of the other semiconductor laser 200 to achieve electrical connection.
  • the present embodiment provides an electrode connector for use in the semiconductor laser refrigeration structure of the above embodiment, or a semiconductor laser, or a semiconductor laser stack.
  • the electrode connecting member includes a first end portion, a second end portion, and a first connecting end portion and the second end portion a connecting portion, the first end portion and the second end portion extending in the same direction and perpendicular to the extending direction of the first connecting portion.

Abstract

一种半导体激光器制冷结构、半导体激光器及其叠阵,满足高功率、环境适应性以及可靠性等要求。半导体激光器制冷结构包括热沉(1),热沉内部具有液体制冷回路;热沉的上表面设置有第一绝缘层(3),第一绝缘层设置有第一导电导热层(5);第一导电导热层在不同位置分别用于布置激光芯片(2)和负极导电层(6a),其中激光芯片的正极面直接键合于第一导电导热层,负极导电层与第一导电导热层表面之间存在绝缘隔层(11a),负极导电层用于与激光芯片的负极面连接;或者,第一导电导热层分为互相绝缘的两个区域,分别作为正极区(51)和负极区(52),其中正极区用于键合激光芯片的正极面,负极区用于与激光芯片的负极面连接。

Description

一种半导体激光器制冷结构、半导体激光器及其叠阵
本申请要求于2016年04月22日提交中国专利局、申请号为CN201610256531.6、申请名称为“一种热沉绝缘的液体制冷半导体激光器及其叠阵”以及于2016年04月22日提交中国专利局、申请号为CN201610256791.3、申请名称为“一种基于绝缘热沉的液体制冷半导体激光器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光器领域,具体涉及一种半导体激光器制冷结构、半导体激光器及其叠阵。
背景技术
目前半导体激光器封装结构主要分为液体制冷型和传导冷却型两大类,传导冷却型由于散热原理的限制,在功率的实现上也受到了限制,很难实现大功率器件。液体制冷型的半导体激光器封装结构是目前实现大功率器件的主要选择方式。
液体制冷型的半导体激光器封装结构主要包括微通道和宏通道两类:
1)微通道液体制冷型半导体激光器,由于微通道热沉散热非常好(内部有微小的散热通道),所以可以实现较高功率,但由于其热沉带电工作,存在电化学腐蚀,导致长期使用存在通道堵塞的问题;该结构对制冷液体水质的要求很高,一旦客户使用自来水或换水不及时,很快就会失效;
2)现有宏通道液体制冷型半导体激光器,虽然宏通道热沉具有较大的液体通道,明显改善了微通道热沉堵塞的问题,但是由于自身散热效率限制,在实现更高功率方面受到限制。虽然其内部通道大,可以降低水质要求。但由于其热沉带电工作,如果水质太差(比如自来水),产品还是会在使用中因电化学反应产生的金属氧化堵塞物而失效;
上述两种结构激光器的热沉均在激光器工作时带电,使用中均存在制冷液的电化学反应产生的金属氧化堵塞物而失效。
发明内容
有鉴于此,本申请提供一种半导体激光器制冷结构、半导体激光器及其叠阵,满足高功率、环境适应性以及可靠性等要求,以改善现有技术中的问题。
本申请的技术方案如下:
一种半导体激光器制冷结构,包括热沉,该热沉内部具有液体制冷回路;所述热沉的上表面设置有第一绝缘层,所述第一绝缘层设置有第一导电导热层;所述第一导电导热层在不同位置分别用于布置激光芯片和负极导电层,其中激光芯片的正极面直接键合于第一导电导热层,所述负极导电层与第一导电导热层表面之间存在绝缘隔层,负极导电层用于与激光芯片的负极面连接;或者,所述第一导电导热层分为互相绝缘的两个区域,分别作为正极区和负极区,其中正极区用于键和激光芯片的正极面,所述负极区用于与激光芯片的负极面连接。
一种半导体激光器制冷结构,包括:热沉,所述热沉包括相对设置的上表面与下表面;设置于所述上表面的彼此绝缘的正极导电层以及负极导电层,所述正极导电层用于 设置激光芯片且用于与所述激光芯片的正极电连接,所述负极导电层用于与设置于所述正极导电层的激光芯片的负极电连接;电极连接件,包括第一端部、第二端部以及连接所述第一端部与所述第二端部的第一连接部,所述第一端部设置于正极导电层,所述第二端部设置于所述热沉的第二表面,与所述热沉绝缘,所述第一连接部设置于所述热沉上所述正极导电层的非对端。
一种半导体激光器,包括激光芯片以及上述的半导体激光器制冷结构,所述激光芯片设置于所述半导体激光器制冷结构的用于布置激光芯片的区域并且电连接,所述激光芯片的负极与所述半导体激光器制冷结构的用于与激光芯片的负极连接的区域电连接。
一种半导体激光器叠阵,以上述半导体激光器为单元;由多个半导体激光器沿激光芯片的慢轴依次排列构成,或者由多个半导体激光器沿激光芯片的快轴依次叠加构成。
本申请具有以下优点:
1、使用液体制冷型Cooler结构,满足了高功率器件的散热需求,同时热沉电绝缘,并在电极和Cooler连接面都有绝缘层隔绝,可以保证微通道Cooler在工作中完全绝缘,避免了电化学腐蚀。
2、激光芯片不直接接触热沉,降低了芯片应力,省去了增加铜钨缓释层工序。
3、热沉绝缘前提下的正负极电连接更加可靠,尤其设计的U型电极连接片结构简明,使用方便,非常适合在半导体激光器中可靠使用。在垂直叠阵结构中,如何实现上下2个Cooler的电联接是一项技术难点。本申请通过U型电极连接片的结构设计,可以将绝缘的Cooler直接应用到垂直叠阵结构中。基于U型电极连接片,每个Cooler的负极和位于其上的Cooler的正极紧密联接,电极和Cooler间有绝缘层隔绝,不会影响Cooler电隔绝的特性。
附图说明
图1为本发明第一实施例的基本结构示意图;
图2为本发明第一实施例的示意图;
图3为本申请实施例提供的U型电极连接片的结构示意图。
图4为本申请第一实施例的示意图;
图5为本发明第一实施例的示意图;
图6为本申请第二实施例的基本结构示意图;
图7为本申请第二实施例的示意图(主视图);
图8为本申请第二实施例的示意图(俯视图);
图9为本申请第二实施例的示意图;
图10示出了本申请第三实施例提供的半导体激光器制冷结构的第一种视角结构示意图;
图11示出了本申请第三实施例提供的半导体激光器制冷结构的第二种视角结构示意图;
图12示出了本申请第三实施例提供的半导体激光器制冷结构的第三种视角结构示意图;
图13示出了本申请第三实施例提供的半导体激光器制冷结构的第四种视角结构示意图;
图14示出了本申请第三实施例提供的半导体激光器制冷结构的第五种视角结构示意图;
图15示出了本申请实施例提供的半导体激光器制冷结构的电极连接件的一种结构示意图;
图16示出了本申请第三实施例提供的半导体激光器制冷结构的另一种结构示意图的一种视角图;
图17示出了本申请第三实施例提供的半导体激光器制冷结构的另一种结构示意图另一种视角图;
图18示出了本申请实施例提供的半导体激光器制冷结构的电极连接件的另一种结构示意图;
图19示出了本申请第三实施例提供的半导体激光器的一种结构示意图;
图20示出了本申请实施例提供的半导体激光器叠阵的一种结构示意图。
附图标号说明:
1-热沉,2-激光芯片,3-第一绝缘层,4-第二绝缘层,5-第一导电导热层,6a-负极导电层,7-U型连接片;8-导电管道,9-第二导电导热层,10-金线,11a-绝缘隔层;51-正极区,52-负极区,6b-绝缘垫层,11b-用于阻隔正极区和负极区的绝缘块;100-半导体激光器制冷结构,110-热沉,111-热沉110的第一表面,112-热沉110的第二表面,120-正极导电层,130-负极导电层,140-电极连接件,150-第一绝缘层,152-第三绝缘层,154-第二绝缘层,156-第四绝缘层,142-电极连接件140的第一连接部,146-第一端部,148-第二端部,146b-第三端部,142b-第二连接部,200-半导体激光器,210-激光芯片,300-半导体激光器叠阵。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
第一实施例
如图1所示,本申请的半导体激光器制冷结构,主要由热沉1、第一绝缘层3、第一导电导热层5和负极导电层6a组成,其中,该热沉可以是液体制冷器,内部具有液体制冷回路,负极导电层可以是负极铜片,当然,热沉以及负极导电层在本实施例中并不具体限定。该半导体激光器制冷结构可以用于设置激光芯片后制作半导体激光器。
具体的,热沉包括上表面以及下表面,热沉的上表面设置有第一绝缘层,第一绝缘层使得热沉与激光芯片绝缘隔离,所述第一绝缘层设置有第一导电导热层5,第一绝缘层上 的第一导电导热层在不同位置分别用于布置激光芯片和负极导电层,其中激光芯片的正极面直接键合于第一导电导热层,负极导电层与第一导电导热层表面之间存在绝缘隔层,使负极导电层与第一导电导热层之间绝缘,负极导电层可以通过金线与激光芯片的负极面连接,当然,也可以通过其他方式与激光芯片的负极面电连接。本实施例中,可以是负极铜片形成该半导体激光器的负极导电层,第一导电导热层形成该半导体激光器的正极导电层,其中,第一导电导热层用于设置激光芯片的位置可以是第一导电导热层未对应设置负极导电层的区域。当然,在本实施例中,负极导电层并不限定为铜片,也可以是其他导电材料其他形态的导电层。
可以理解的,本实施例中的上表面、下表面的上、下是相对的概念,而并非绝对方位的限定,其中上表面与下表面为两个相对的表面,即热沉的下表面为与上表面相远离的表面。
其中,热沉材料优选铜,第一导电导热层优选为铜箔,第一绝缘层3和第一导电导热层5优选一体结构实现,比如DBC(DirectBondedCopper)结构或者DPC(DirectPlateCopper),其中第一绝缘层的材质可采用氮化铝陶瓷者氧化铍陶瓷。当然,在本实施例中,热沉、第一导电导热层以及第一绝缘层的具体材料并不作为限定,也可以是其他,如热沉还可以是陶瓷、金刚石、铜金刚石复合材料等,第一导电导热层也可以是其他导电导热材料,如铁等,第一导电导热层也可以是其他形态。
本申请的半导体激光器制冷结构制成的半导体激光器可以作为半导体激光器叠阵的组成单元。对于单个半导体激光器,这里的正极导电层和负极导电层可以直接连接电源;对于多个半导体激光器构成的叠阵,为了便于叠阵结构的实现,如图2所示,可以热沉的下表面设置有第二绝缘层4,在第二绝缘层上设置有第二导电导热层,第二绝缘层使热沉与第二导电导热层之间绝缘。且第二导电导热层通过导电连接件连接至所述第一导电导热层,使液体制冷器上方与下方电连接。电连接方式至少有以下三种优选的结构:
1)如图2、图3所示的U型电极连接方式;
2)如图4所示,设置导电管道8,连通第一导电导热层和下方的第二导电导热层9,且保证与热沉绝缘;
3)如图5所示,第一导电导热层与底部的导电层9通过金线10连接。
考虑到第一绝缘层采用DBC结构,目前成本较高,所以第二绝缘层可采用成本较低的PI(聚酰亚胺)绝缘材料。
具体的,对应于各种电连接方式,在一种具体的实施方式中,如图2所示,导电连接件可以采用U型连接片的结构形式,U型连接片由两个平行端直部和连接这两个平行端直部的弯折端部构成。其中,所述第二导电导热层可以作为U型连接片的第二平行端直部与第二绝缘层表面贴合,该U型连接片的第一平行端直部贴合于第一导电导热层表面,具体其贴合的位置可以为第一导电导热层表面用于布置激光芯片的区域,且优选的,在第一导电导热层布置的激光芯片不与U型连接片的第一平行端直部接触。当然,U型连接片的第二平行端直部也可以是设 置于第二导电导热层表面的导电导热的端直部。
其中,所述U型连接片与激光芯片的相对位置优选设置为分别位于液体制冷器的两端,设两者连线的方向为轴向,则U型连接片的弯折端部的设置方位满足U型开口方向为轴向。
另外,在另一种具体的实施方式中,如图4所示,导电连接件是自第一导电导热层贯穿液体制冷器至第二导电导热层形成的内部连通管道;该内部连通管道中设置有导电介质,或该内部连通管道自身具有导电性,使第一导电导热层与第二导电导热层之间电性连接。
本实施例还提供了一种实施方式,如图5所示,导电连接件可以是柔性材质的电连接条或金线;该导电连接件与设置激光芯片的具体位置相对分别位于液体制冷器的两端,即本实施例形成的半导体激光器中导电连接件与激光芯片相对分别位于液体制冷器的两端,第二导电导热层在导电连接件所在的一端平面延展超出热沉,导电连接件自第一导电导热层绕过热沉连接至第二导电导热层平面延展超出液体制冷器的部位。
进一步的,导电连接件自第一导电导热层绕过热沉连接至第二导电导热层平面延展超出热沉的部位,优选的从第一导电导热层用于布置激光芯片的区域绕过热沉连接至第二导电导热层,使在第一导电导热层设置激光芯片时,导电连接件可以与激光芯片的正极电性连接。在该实施方式中,第二导电导热层也可以未在导电连接件所在的一端平面延展超出液体制冷器,直接通过该柔性材质的导电连接件将第一导电导热层与第二导电导热层电性连接。其中,本实施方式中导电连接件的具体材质并不作为限定,满足柔性导电,使可以将第一导电导热层与第二导电导热层电性连接即可。
在本实施例中,第一绝缘层、第二绝缘层和绝缘隔层可以分别采用氮化铝陶瓷、氧化铍陶瓷和聚酰亚胺中的任意一种材质。其中,第一绝缘层、第二绝缘层、绝缘隔层以及其他位置的绝缘介质可以分别选择不同的材质,也可以选择同一种材质。
应用本申请实施例提供的半导体激光器制冷结构形成的半导体激光器中,包括在本申请实施例提供的半导体激光器制冷结构以及激光芯片2,第一导电导热层的不同位置分别布置有激光芯片和负极导电层。其中,形成的半导体激光器可以是液体制冷半导体激光器。
以前述半导体激光器为单元,可简便地组装获得半导体激光器叠阵,具体来说,该叠阵由多个半导体激光器沿激光芯片的慢轴依次排列构成,或者由多个半导体激光器沿激光芯片的快轴依次叠加构成。
具体连接形式通常是叠阵最上方的半导体激光器的负极导电层引出接电源负极,叠阵最下方的半导体激光器的第一导电导热层引出接电源正极,叠阵的半导体激光器相互串联或并联。
具体的,半导体激光器叠阵可分为水平阵列和垂直叠阵两种组装形式:
1)水平阵列:多个半导体激光器沿激光芯片的慢轴依次排列,各自独立连接电源,或者第一导电导热层5、负极导电层6a分别并联后接至电源;
2)垂直叠阵:多个半导体激光器沿激光芯片的快轴叠加排列,负极导电层6a与相邻半导体激光器的第二导电导热层9(正极导电层)连接,实现串联。
以图2所示结构为例,本申请的半导体激光器的制备过程可以如下:
1.热沉同现有液体制冷Cooler(制冷器)结构相同,具有液体制冷回路;
2.芯片使用金锡焊料固定在DPC表面(由于AlN热膨胀系数同芯片的GaAs材质接近,可以使用硬焊料)。
3.将载有芯片的DPC同Cooler通过焊料回流(熔点较低)的方式固定在一起;
4.负极电极和U型电极,通过一种热固性PI材质(聚酰亚胺),在150℃左右温度下固化,并紧密结合;
5.最后,通过金线键合的方式,将芯片N面和负极电极联接;
这样,就完成了一个半导体激光器单元的封装过程。
以上述半导体激光器为单元制作叠阵,可通过简单的机械结构组装,使用橡胶密封圈密封水路,通过U型电极完成电连接。
第二实施例
如图6所示,本申请的半导体激光器制冷结构,主要由热沉、第一绝缘层和第一导电导热层组成。其中,该热沉可以是该液体制冷器,内部具有液体制冷回路。热沉的上表面设置有第一绝缘层,在第一绝缘层上设置有第一导电导热层,在第一绝缘层上的第一导电导热层又分为互相绝缘的两个区域,分别作为正极区51和负极区52,其中正极区用于键和激光芯片的正极面,所述负极区用于与激光芯片的负极面连接。其中,正极区作为正极导电层,负极区作为负极导电层,当激光芯片键和于正极区,第一绝缘层使得热沉与激光芯片绝缘隔离。
具体的,所述正极区和负极区可以是由第一导电导热层分割而成的两个保持间距的区域,两者之间为空或者采用绝缘介质阻隔。
热沉材料优选铜,第一导电导热层优选为铜箔,第一绝缘层3和第一导电导热层5优选一体结构实现。也就是说,当第一导电导热层优选为铜箔,第一绝缘层3和铜箔5优选一体结构实现,比如DBC(DirectBondedCopper)结构或者DPC(DirectPlateCopper)。其中第一绝缘层的材质可采用氮化铝陶瓷者氧化铍陶瓷。当然,在本实施例中,热沉、第一导电导热层以及第一绝缘层的具体材料并不作为限定,也可以是其他,如热沉还可以是陶瓷、金刚石、铜金刚石复合材料等,第一导电导热层也可以是其他导电导热材料,如铁等,第一导电导热层也可以是其他形态。
本申请实施例的半导体激光器制冷结构制成的半导体激光器可以作为半导体激光器叠阵的组成单元。对于单个半导体激光器,这里的正极区和负极区可以直接连接电源;对于多个半导体激光器构成的叠阵,为了便于叠阵结构的实现,可以在热沉下方,即热沉的下表面设置第二绝缘层4,在第二绝缘层上设置有第二导电导热层,第二绝缘层使热沉与第二导电导热层之间绝缘。且第二导电导热层通过导电连接件连接至所述第一导电导热层,使热沉上方与下方电连接。电连接方式至少有以下两种优选的结构:
1)如图7、图8所示的U型电极连接方式;
2)如图9所示,设置导电管道8,连通第一导电导热层5和下方的第二导电导热层9,且保证与热沉绝缘。
考虑到第一绝缘层采用DBC结构,目前成本较高,所以第二绝缘层可采用成本较低的PI(聚酰亚胺)绝缘材料。
具体的,对应于各种电连接方式,在一种具体的实施方式中,如图7所示,导电连接件可以采用U型连接片的结构形式,U型连接片由两个平行端直部和连接这两个平行端直部的弯折端部构成。其中,所述第二导电导热层可以作为U型连接片的第二平行端直部与第二绝缘层表面贴合,该U型连接片的第一平行端直部贴合于第一导电导热层表面用于布置激光芯片的区域,具体其贴合的位置为正极区上未与激光芯片键合的区域,并避免与负极面接触。当然,U型连接片的第二端直部也可以是设置于第二导电导热层表面的导电导热的端直部。
其中,所述U型连接片与正极区的相对位置优选设置为分别位于热沉的两端,即本实施例提供的半导体激光器制冷结构与激光芯片形成半导体激光器时,U型连接片与激光芯片的相对位置优选设置为分别位于液体制冷器的两端,设两者连线的方向为轴向,则U型连接片的弯折端部的设置方位满足U型开口方向为轴向。
另外,在另一种具体的实施方式中,如图9所示,导电连接件是自第一导电导热层贯穿液体制冷器至第二导电导热层形成的内部连通管道;该内部连通管道中设置有导电介质,或该内部连通管道自身具有导电性,使第一导电导热层与第二导电导热层之间电性连接。
其中,本实施例中,绝缘材料是从氮化铝陶瓷、氧化铍陶瓷和聚酰亚胺中任意选取,第一导电导热层可以为铜箔。该“任意选取”,可以是指第一绝缘层和第二绝缘层以及其他位置的绝缘介质可以分别选择不同的材质,也可以选择同一种材质。
应用本申请实施例提供的半导体激光器制冷结构形成的半导体激光器中,包括激光芯片以及在本申请实施例提供的半导体激光器制冷结构,激光芯片的正极面直接键合于所述正极区,激光芯片的负极面通过金线与所述负极区连接,当然,激光芯片的负极面与负极区之间的电性连接方式在本实施例中并不限定。
以前述半导体激光器为单元,可简便地组装获得半导体激光器叠阵,该叠阵由多个半导体激光器沿激光芯片的慢轴依次排列构成,或者由多个半导体激光器沿激光芯片的快轴依次叠加构成。
具体连接形式通常是叠阵最上方的半导体激光器的负极区引出接电源负极,叠阵最下方的半导体激光器的正极区引出接电源正极,叠阵的半导体激光器相互串联或并联。
半导体激光器叠阵可分为水平阵列和垂直叠阵两种组装形式:
1)水平阵列:多个半导体激光器沿激光芯片的慢轴依次排列,各自独立连接电源,或者正极区、负极区串联/分别并联后接至电源;
2)垂直叠阵:多个半导体激光器沿激光芯片的快轴叠加排列,负极区与相邻半导体激光器的第二导电导热层连接,实现串联。
本申请实施例的半导体激光器的制备过程如下:
1.热沉自身同现有液体制冷Cooler结构相同,具有液体制冷回路;
2.芯片使用金锡焊料固定在DPC表面(由于AlN热膨胀系数同芯片的GaAs材质接近,可以使用硬焊料)。
3.将载有芯片的DPC同Cooler通过焊料回流(熔点较低)的方式固定在一起;
4.第一导电导热层(正极区和负极区)通过一种热固性PI材质(聚酰亚胺),在150℃左右温度下固化,并紧密结合;
5.最后,通过金线键合的方式,将芯片N面和负极区联接;
这样,就完成了一个半导体激光器单元的封装过程。
以上述半导体激光器为单元制作叠阵,可通过简单的机械结构组装,使用橡胶密封圈密封水路,通过导电连接件完成电连接。
第三实施例
图10示出了本实施例提供的半导体激光器制冷结构100,请参见图10,该半导体激光器制冷结构100包括热沉110、正极导电层120、负极导电层130以及电极连接件140。
其中,如图10所示,所述热沉包括相对设置的上表面以及下表面,以及连接所述上表面和下表面的侧面,其中,该上表面与下表面的上、下并不表示绝对的方位限定,设上表面为第一表面111,下表面为第二表面112。其中,所述第一表面111和第二表面112可以为长方形,具有相对较长的边以及相对较短的边,其中,较长的边和较短的边彼此相邻。当然,热沉的第一表面与第二表面也可以是其他形状,如正方形,若第一表面与第二表面是正方形,较长边和较短边分别为相邻的两条边。正极导电层120以及负极导电层130设置于所述热沉110的第一表面111且彼此绝缘,并且,正极导电层以及负极导电层分别与热沉绝缘,电极连接件140从正极导电层120延伸至所述热沉110的第二表面112,以连通正极导电层120与第二表面。
具体的,在本申请实施例中,热沉110的散热方式可以为液体制冷型。若热沉110为液体制冷型,热沉110可以是液体制冷器,内部具有液体制冷回路。其中,该热沉110可以由绝缘、高导热材料制成,如陶瓷、金刚石、铜金刚石复合材料等。该热沉110也可以由非绝缘材料制成,并在热沉110的第一表面111设置第一绝缘层150,该第一绝缘层150位于第一表面111与正极导电层120以及负极导电层130之间,使热沉110与正极导电层120以及负极导电层130之间绝缘,如图10所示。进一步的,在热沉110的第二表面112也可以设置第三绝缘层152,使热沉110的第二表面112与外部绝缘,在利用本实用新型实施例提供的半导体激光器制冷结构形成的半导体激光器层叠为叠阵时,使半导体激光器的热沉可以与相邻的半导体激光器绝缘。
其中,若热沉110由绝缘材料制成,则可以直接在热沉的第一表面设置正极导电层以及负极导电层,热沉与正极导电层与负极导电层处于绝缘状态,而不需要设置第一绝缘层150以及第三绝缘层152。当然,若热沉110由绝缘材料制成,热沉110的第一表 面111也可以设置位于热沉110与正极导电层120以及负极导电层130之间的第一绝缘层150,热沉110的第二表面112也可以设置第三绝缘层152。
在本申请实施例中,热沉110、第一绝缘层150、第三绝缘层152可以为一体成型结构,或热沉110、第一绝缘层150、第三绝缘层152以及正极导电层120、负极导电层130可以为一体成型结构。
另外,在本申请实施例中,所述正极导电层120用于设置激光芯片且用于与所述激光芯片的正极电连接,所述负极导电层130用于与设置于所述正极导电层120的激光芯片的负极电连接。
具体的,正极导电层120以及负极导电层130可以设置在同一层,且为两个彼此间隔且独立的导电区域,正极导电层120以及负极导电层130之间具有一定间距,如图11所示,该设置方式与第二实施例中正极区以及负极区的设置方式相似。其中,正极导电层120与负极导电层130的形成可以是,在热沉110的第一表面111设置有第一导电导热层,将第一导电导热层分割为彼此间隔的两个区域,分别形成正极导电层120以及负极导电层130。进一步的,彼此间隔的正极导电层120与负极导电层130之间可以为空,或者采用绝缘介质阻隔,使正极导电层120以及负极导电层130之间保持绝缘。
另外,也可以是,如图12所示,正极导电层120与负极导电层130之间层叠设置,负极导电层130与所述正极导电层120设置在不同层,且正极导电层120与负极导电层130之间设置有第二绝缘层154,使正极导电层120与负极导电层130之间绝缘。
其中,层叠设置的正极导电层120与负极导电层130中,可以是正极导电层120位于靠近热沉110的一侧,第一绝缘层150设置于所述热沉110与正极导电层120之间,如图12所示,该设置方式与第一实施例中第一导电导热层与负极导电层之间的设置方式类似,本实施例中,该设置方式的正极导电层未设置负极导电层的位置可以用于设置激光芯片,第一实施例中,第一导电导热层未设置负极导电层的位置可以用于设置激光芯片。优选的,此结构中,层叠设置的正极导电层120的面积大于负极导电层130的面积,正极导电层120位于负极导电层130与热沉110之间,使在正极导电层120与负极导电层130未层叠的区域可以用于设置激光芯片,负极导电层130远离正极导电层的一面可以用于与激光芯片的负极连接。
另外,在本实施例中,设置于在不同层的负极导电层130与所述正极导电层120中,也可以是,负极导电层130靠近所述热沉110,热沉与负极导电层之间设置有第一绝缘层,负极导电层130与所述正极导电层120之间设置有第二绝缘层。此结构下,优选负极导电层的面积大于正极导电层的面积。
在本实施例中,负极导电层130可以为铜片,或者在负极导电层130设置铜片用于与激光芯片的负极电连接。
进一步的,在本实施例中,热沉110的第一表面111可以包括第一部分以及第二部分。如图10及图12所示,第一部分可以为热沉110的第一表面111的较长边延伸方向 的一端,正极导电层120以及负极导电层130设置于第一部分,并且,在第二部分设置第四绝缘层156,所述第四绝缘层156的高度略高于设置于所述热沉110的其他器件的高度,且使当在正极导电层120设置激光芯片以及激光芯片负极与负极导电层130之间的电连接线时,第四绝缘层156的高度仍然可以略高于包括激光芯片以及电连接线的其他器件的高度。可以理解的,第四绝缘层156的高度指第四绝缘层156远离热沉110的表面与热沉110之间的距离。另外,当在热沉110的第一表面111设置第一绝缘层150,该第四绝缘层156可以为第一绝缘层150对应第一表面111的第二部分的绝缘层部分。
如图10所示,本实施例中,电极连接件140包括第一端部146、第二端部148以及连接所述第一端部与所述第二端部的第一连接部142。
具体的,请参见图10及图11,所述第一端部146设置于正极导电层120,具体可以是设置于正极导电层120远离热沉110的表面,所述第二端部148设置于所述热沉110的远离所述第一表面111的第二表面112,该第二端部与热沉绝缘,所述第一连接部设置于所述热沉上所述正极导电层的非对端,当该半导体激光器制冷结构设置激光芯片形成半导体激光器时,第一连接部不在激光芯片的对端。其中,热沉上所述正极导电层的非对端为,不是在热沉上正极导电层的对端,例如,热沉包括彼此相对的一端以及另一端,其中一端设置正极导电层,则第一连接部未设置于该另一端。另外,当热沉的第二表面112设置有第三绝缘层152,则可以是将电极连接件140的第二端部148设置于第三绝缘层152远离第一表面111的一面,使第二端部148与热沉110之间绝缘。其中,该第二端部可以作为设置于第三绝缘层的第二导电导热层。
进一步的,如图10所示,第一端部与所述第二端部相错设置,使由本实施例提供的半导体激光器制冷结构制成的多个半导体激光器层叠为叠阵时,第二端部与相邻的半导体激光器的负极导电层接触,且与相邻的半导体激光器的正极导电层之间绝缘。
进一步的,可以将第二端部设置于第二表面与负极导电层对应的区域,实现多个半导体激光器层叠设置时,半导体激光器的第二端部与相邻的半导体激光器的负极导电层接触电性连接,且与相邻的半导体激光器的正极导电层之间绝缘。
其中,如图11及图13、图14所示,以热沉为矩形立方体为例,可以是,所述第一端部146以及第二端部148的延伸方向与所述第一表面111的较短边的延伸方向一致,第一端部146以及第二端部148的具体长度在本实施例中并不作为限制,且第一端部146以及第二端部148彼此之间的长度大小也不做限定。在本实施例中,可以在保持电极连接件140稳定设置于热沉110的基础上,使第一端部146尽可能较短,例如,第一端部146的长度比热沉110第一表面111较短边的一半短。
另外,如图10所示,所述第一连接部142与所述第一表面111以及第二表面112之间的热沉110的侧面相对且彼此绝缘,具体可以是,热沉为绝缘材料使热沉与第一连 接部彼此绝缘;或者是热沉与第一连接部之间具有间隙,使第一连接部与热沉绝缘;又或者是热沉与第一连接部之间设置有绝缘层,使热沉与第一连接部之间彼此绝缘。
第一端部146与第一连接部142之间的连接线位于热沉110第一表面111的较长边,第二端部148与第一连接部142之间的连接线位于热沉110第二表面112的较长边。如图15所示,第一端部146、第一连接部142以及第二端部148之间可以形成C型结构,该C型结构的开口方向朝向热沉110第一表面111的较短边的延伸方向,且其开口方向朝向的热沉的一端为热沉上正极导电层的非对端,可以是如图14所示的与设置正极导电层的一端相邻的一端。如图13所示,本实施例中,可以是,电极连接件形成的C型结构的开口方向与第一实施例以及第二实施例不同,第一实施例以及第二实施例电极连接件的开口朝向正极导电层所在一端,在形成半导体激光器时,第一实施例以及第二实施例电极连接件的开口朝向激光芯片,电极连接件的弯折端部处于激光芯片的对端,本实施例中C型结构的电极连接件开口方向朝向的热沉的一端为与设置正极导电层的一端相邻的一端,电极连接件的第一连接部处于正极导电层的邻端,在形成半导体激光器时,本实施例的电极连接件的开口朝向激光芯片的邻端。如图11中直线箭头方向所示,较短边的延伸方向以及较短边的方向为从第一表面的一条较长边向另一条较长边的方向。
在本实施例中,电极连接件140的数量可以大于或等于1。优选的,可以为2个,其中,当为如图15所示的两个C型结构的电极连接件140时,该两个C型结构的电极连接件140彼此相对,即两个电极连接件140的第一连接部142在热沉110第一表面或第二表面的较短边的延伸方向上彼此平行。
进一步的,在本实施例中,如图16,所述电极连接件140还包括第三端部146b以及第二连接部142b。其中,第三端部146b设置于正极导电层,且所述第一端部146以及所述第三端部146b在第二端部的延伸方向上相对设置,所述第三端部与所述第二端部相错设置。当第二端部在第一表面的较短边方向上延伸,请参见图16,所述第一端部146以及所述第三端部146b在所述第一表面111的较短边方向上相对设置。
进一步的,如图16所示,第一端部146以及所述第三端部146b分别设置于热沉的相对的两端,该相对的两端为较长边所在的两端。且第一端部146与第三端部146b均在第一表面111的较短边方向上延伸,且相对延伸。其中,第一端部146从其所在的第一表面111的较长边向第三端部所在位置延伸,第三端部146b从其所在第一表面的较长边向第一端部146所在位置延伸。第一端部146与第三端部146b均设置于正极导电层120。
如图17及图18所示,所述第一连接部142以及所述第二连接部142b在第二端部的延伸方向上相对设置,当第二端部在第一表面111的较短边方向上延伸,该第一连接部142以及所述第二连接部142b在所述第一表面111的较短边方向上相对设置,分别与第一表面111两条较长边对应的两个侧面相对设置,且与侧面保持绝缘。所述第二端 部148在所述第一表面111的较短边方向上延伸,从第二表面112的一条较长边所在位置延伸至第二表面112另一条较长边所在位置。其中,可以是第二端部可以在第二表面与负极导电层所在位置相对应的区域内,以任意方式从第二表面112的一条较长边所在位置延伸至第二表面112另一条较长边所在位置。在一种具体的实施方式中,如图17所示,第二端部的形状可以与负极导电层的形状相同,或者略小于负极导电层,且第二端部设置于热沉的第二表面与负极导电层所在位置相对应的区域。
并且,所述第二端部148的两端分别与第一连接部142以及所述第二连接部142b连接。其中,第一端部146以及第二端部148的一端通过第一连接部142连接,第三端部146b以及第二端部148的另一端通过第二连接部142b连接,形成如图17及图18所示的U型结构的电极连接件140,使电极连接件140可以稳定地设置于热沉110,如图17所示,该U型结构的电极连接件140的开口方向朝向热沉110的第一表面111,具体的,可以是第二表面112与第一表面111的最短连接线所在方向。
在本实施例中,电极连接件140使用该半导体激光器制冷结构100制成半导体激光器在形成叠阵时,通过电极连接件140的第一端部146与正极导电层120的电性连接,使第二端部148与正极导电层120电性连接,当一个半导体激光器的第二端部148与另一个半导体激光器的负极区域接触时,该一个半导体激光器的正极导电层120与另一个半导体激光器的负极导电层130通过该电极连接件140实现电连接。因此,在本实施例中,电极连接件140在满足该一个半导体激光器的正极导电层120与另一个半导体激光器的负极导电层130实现电连接的基础上,其具体结构并不作为限定。
应用本实施例提供的激光器制冷结构100可以形成半导体激光器200,该半导体激光器包括激光芯片210以及本实施例所述的半导体激光器制冷结构100。其中,如图13及图19所示,所述激光芯片210设置于所述半导体激光器制冷结构100的正极导电层120,所述激光芯片210的正极与所述正极导电层120电连接,可以是通过焊料将激光芯片210的正极键合于正极导电层120,且激光芯片210在正极导电层120设置的位置优选为正极导电层120未与电极连接件140的第一端部146接触的区域。
另外,所述激光芯片210的负极与所述半导体激光器制冷结构100的负极导电层130电连接。具体的,如图13及图19所示,激光芯片210与负极导电层130可以通过导电金属线进行电连接,如金线,并且,请参见图19,连接线的最高高度低于半导体激光器制冷结构100的第四绝缘层156的高度。当然,在本实施例中,激光芯片210的负极与半导体激光器制冷结构100的负极导电层130之间的具体连接方式并不作为限定,也可以通过其他方式是使激光芯片210的负极电性连接于负极导电层130。
在制作本实施例提供的半导体激光器200时,可以通过焊料将激光芯片210的正极键合于设置于热沉110的正极导电层120,再通过导电金属线将激光芯片210的负极电性连接于设置于热沉110的负极导电层130。
如图20示出了一种半导体激光器叠阵300,包括本实施例提供的多个半导体激光器200。其中,多个半导体激光器200沿激光芯片210在热沉110的第一表面111以及第二表面112的连线方向上依次层叠,如图20所示,并通过电极连接件140电性连接。
具体的,层叠设置的多个半导体激光器200中,相邻的两个半导体激光器200之间,第一半导体激光器200中电极连接件140的第一端部146与正极导电层120的电性连接,由于第二端部148通过第一连接部142与第一端部146连通,通过第二连接部142b与第三端部146b连通,设置于热沉110第二表面112的第二端部148与正极导电层120电性连接。当两个相邻的半导体激光器200层叠设置时,第一半导体激光器200的第二端部148与相邻的第二半导体激光器200的负极导电层接触,且避开负极导电层连接激光芯片210的金属连接线,且与相邻的第二半导体激光器200的正极导电层之间保持绝缘,该第一半导体激光器200的正极导电层120与第二半导体激光器200的负极导电层130通过该电极连接件140实现电连接。可以理解的,图20仅示出了两个半导体激光器200相互叠加的情况,在本实施例中,半导体激光器叠阵300中可以包括多个半导体激光器200,其具体个数在本实施例本申请实施例中并不限制。
在半导体激光器叠阵300中多个半导体激光器200相互叠加时,设置于热沉110表面的绝缘层可以实现半导体激光器200的热沉110之间的绝缘。
其中,当在半导体激光器200的热沉110的第一表面111设置有第四绝缘层156时,高度略高于设置于所述热沉110的其他器件的高度的第四绝缘层156使半导体激光器200中激光芯片210与负极导电层130之间的导电金属线不至于被其他器件压到,并且,第四绝缘层156的高度仅略高,使相邻的两个半导体激光器200中,其中一个的电极连接件140的第二端部148可以与另一个半导体激光器200的负极导电层130接触而实现电连接。
第四实施例
本实施例提供了一种电极连接件,应用于上述实施例中的半导体激光器制冷结构,或者半导体激光器,或者半导体激光器叠阵。其中,如图2、图7、如图15及图18所示,所述电极连接件包括第一端部、第二端部以及连接所述第一端部与所述第二端部的第一连接部,所述第一端部以及所述第二端部的延伸方向一致,且与所述第一连接部的延伸方向垂直。
该电极连接件的具体结构可以参照上述实施例,在本实施例中不再赘述。
需要说明的是,本说明书中的各个实施例描述的侧重点可能不同,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性 的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种半导体激光器制冷结构,其特征在于:包括热沉,该热沉内部具有液体制冷回路;所述热沉的上表面设置有第一绝缘层,所述第一绝缘层设置有第一导电导热层;
    所述第一导电导热层在不同位置分别用于布置激光芯片和负极导电层,其中激光芯片的正极面直接键合于第一导电导热层,所述负极导电层与第一导电导热层表面之间存在绝缘隔层,负极导电层用于与激光芯片的负极面连接;或者,
    所述第一导电导热层分为互相绝缘的两个区域,分别作为正极区和负极区,其中正极区用于键合激光芯片的正极面,所述负极区用于与激光芯片的负极面连接。
  2. 根据权利要求1所述的半导体激光器制冷结构,其特征在于:热沉的下表面设置有第二绝缘层,在第二绝缘层上设置有第二导电导热层,第二导电导热层通过导电连接件连接至所述第一导电导热层。
  3. 根据权利要求1所述的半导体激光器制冷结构,其特征在于:所述正极区和负极区是由第一导电导热层分割而成的两个保持间距的区域,两者之间为空或者采用绝缘介质阻隔。
  4. 根据权利要求1所述的半导体激光器制冷结构,其特征在于:所述第一导电导热层和第一绝缘层为一体结构。
  5. 根据权利要求1所述的半导体激光器制冷结构,其特征在于:所述第一导电导热层和第一绝缘层采用DBC结构或者DPC结构,其中绝缘部分采用氮化铝陶瓷或者氧化铍陶瓷。
  6. 根据权利要求2所述的半导体激光器制冷结构,其特征在于:所述导电连接件采用U型连接片的结构形式,U型连接片由两个平行端直部和连接这两个平行端直部的弯折端部构成;所述第二导电导热层作为U型连接片的第二平行端直部与第二绝缘层表面贴合,该U型连接片的第一平行端直部贴合于第一导电导热层表面用于布置激光芯片的区域。
  7. 根据权利要求6所述的半导体激光器制冷结构,其特征在于:所述U型连接片与激光芯片相对分别位于热沉的两端,设两者连线的方向为轴向,则U型连接片的弯折端部的设置方位满足U型开口方向为轴向。
  8. 根据权利要求2所述的半导体激光器制冷结构,其特征在于:所述导电连接件是自第一导电导热层贯穿热沉至第二导电导热层形成的内部连通管道;该内部连通管道中设置有导电介质,或该内部连通管道自身具有导电性。
  9. 根据权利要求2所述的半导体激光器制冷结构,其特征在于:所述电极连接件包括第一端部、第二端部以及连接所述第一端部与所述第二端部的第一连接部,所述第一端部设置于第一导电导热层用于布置激光芯片的区域,所述热沉的第二导电导热层作为所述第二端部,所述第一连接部设置于所述热沉上所述正极导电层的非对端。
  10. 根据权利要求9所述的半导体激光器制冷结构,其特征在于,所述电极连接件还包括第三端部以及第二连接部,所述第三端部设置于正极导电层,所述第三端部以及所述第一端部在所述第二端部的延伸方向上相对设置,所述第一连接部以及所述第二连接部在所述第二端部的延伸方向上相对设置,所述第一连接部连接所述第一端部以及所述第二端部的一端,所述第二连接部连接所述第三端部以及所述第二端部的另一端。
  11. 根据权利要求10所述的半导体激光器制冷结构,其特征在于,所述电极连接件的数量大于或等于1。
  12. 根据权利要求9所述的半导体激光器制冷结构,其特征在于,所述第一端部与所述第二端部相错设置。
  13. 根据权利要求9所述的半导体激光器制冷结构,其特征在于,所述第二端部设置于所述下表面与负极导电层或者负极区对应的区域。
  14. 根据权利要求2所述的半导体激光器制冷结构,其特征在于:所述导电连接件是柔性材质的电连接条或金线;该导电连接件与激光芯片相对分别位于热沉的两端,第二导电导热层在导电连接件所在的一端平面延展超出热沉,导电连接件自第一导电导热层用于布置激光芯片的区域绕过热沉连接至第二导电导热层平面延展超出热沉的部位。
  15. 根据权利要求1所述的半导体激光器制冷结构,其特征在于:所述第一绝缘层、第二绝缘层和绝缘隔层分别采用氮化铝陶瓷、氧化铍陶瓷和聚酰亚胺中的任意一种材质,第一导电导热层为铜箔。
  16. 一种半导体激光器制冷结构,其特征在于,包括:
    热沉,所述热沉包括相对设置的上表面与下表面;
    设置于所述上表面的彼此绝缘的正极导电层以及负极导电层,所述正极导电层用于设置激光芯片且用于与所述激光芯片的正极电连接,所述负极导电层用于与设置于所述正极导电层的激光芯片的负极电连接;
    电极连接件,包括第一端部、第二端部以及连接所述第一端部与所述第二端部的第一连接部,所述第一端部设置于正极导电层,所述第二端部设置于所述热沉的第二表面,与所述热沉绝缘,所述第一连接部设置于所述热沉上所述正极导电层的非对端。
  17. 一种半导体激光器,其特征在于,包括激光芯片以及权利要求1至16任一项所述的半导体激光器制冷结构,所述激光芯片设置于所述半导体激光器制冷结构的用于布置激光芯片的区域并且电连接,所述激光芯片的负极与所述半导体激光器制冷结构的用于与激光芯片的负极连接的区域电连接。
  18. 一种半导体激光器叠阵,其特征在于:以权利要求17所述的半导体激光器为单元;由多个半导体激光器沿激光芯片的慢轴依次排列构成,或者由多个半导体激光器沿激光芯片的快轴依次叠加构成。
PCT/CN2017/081697 2016-04-22 2017-04-24 一种半导体激光器制冷结构、半导体激光器及其叠阵 WO2017182005A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/081,457 US10826266B2 (en) 2016-04-22 2017-04-24 Refrigeration structure of semiconductor laser, and semiconductor laser and stack thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610256791.3A CN105703214A (zh) 2016-04-22 2016-04-22 一种基于绝缘热沉的液体制冷半导体激光器
CN201610256531.6A CN105703213A (zh) 2016-04-22 2016-04-22 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN201610256791.3 2016-04-22
CN201610256531.6 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017182005A1 true WO2017182005A1 (zh) 2017-10-26

Family

ID=60115691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081697 WO2017182005A1 (zh) 2016-04-22 2017-04-24 一种半导体激光器制冷结构、半导体激光器及其叠阵

Country Status (2)

Country Link
US (1) US10826266B2 (zh)
WO (1) WO2017182005A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784621A (zh) * 2022-06-22 2022-07-22 度亘激光技术(苏州)有限公司 负极片及激光器封装方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207530573U (zh) * 2017-11-22 2018-06-22 汪玉华 汽车应急启动电源
US11328980B2 (en) 2020-07-10 2022-05-10 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive power devices on direct bond copper embedded in PCB driver boards
CN116937322B (zh) * 2023-08-04 2024-01-23 中科启迪光电子科技(广州)有限公司 一种垂直腔面发射激光器
CN117895324A (zh) * 2024-03-11 2024-04-16 北京凯普林光电科技股份有限公司 一种巴条激光器封装结构及制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141575A1 (en) * 2003-12-22 2005-06-30 Dirk Lorenzen Diode laser subelement and arrangements with such diode laser subelement
US9001856B1 (en) * 2014-03-20 2015-04-07 Coherent, Inc. Diode laser bar mounted on a copper heat-sink
WO2016063814A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 レーザ光源装置
CN105703214A (zh) * 2016-04-22 2016-06-22 西安炬光科技股份有限公司 一种基于绝缘热沉的液体制冷半导体激光器
CN105703213A (zh) * 2016-04-22 2016-06-22 西安炬光科技股份有限公司 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN205622042U (zh) * 2016-04-22 2016-10-05 西安炬光科技股份有限公司 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN205724361U (zh) * 2016-04-22 2016-11-23 西安炬光科技股份有限公司 一种基于绝缘热沉的液体制冷半导体激光器以及叠阵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105430A (en) * 1991-04-09 1992-04-14 The United States Of America As Represented By The United States Department Of Energy Thin planar package for cooling an array of edge-emitting laser diodes
JP3681581B2 (ja) * 1999-07-30 2005-08-10 ファナック株式会社 冷却装置とそれを備えた面発光装置
US20060262819A1 (en) * 2005-05-18 2006-11-23 Georg Treusch Diode laser component with an integrated cooling element
US20070291803A1 (en) * 2006-06-15 2007-12-20 Trevor Crum Active Gas Cooling for Emitter Bars

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141575A1 (en) * 2003-12-22 2005-06-30 Dirk Lorenzen Diode laser subelement and arrangements with such diode laser subelement
US9001856B1 (en) * 2014-03-20 2015-04-07 Coherent, Inc. Diode laser bar mounted on a copper heat-sink
WO2016063814A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 レーザ光源装置
CN105703214A (zh) * 2016-04-22 2016-06-22 西安炬光科技股份有限公司 一种基于绝缘热沉的液体制冷半导体激光器
CN105703213A (zh) * 2016-04-22 2016-06-22 西安炬光科技股份有限公司 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN205622042U (zh) * 2016-04-22 2016-10-05 西安炬光科技股份有限公司 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN205724361U (zh) * 2016-04-22 2016-11-23 西安炬光科技股份有限公司 一种基于绝缘热沉的液体制冷半导体激光器以及叠阵

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784621A (zh) * 2022-06-22 2022-07-22 度亘激光技术(苏州)有限公司 负极片及激光器封装方法
CN114784621B (zh) * 2022-06-22 2022-09-20 度亘激光技术(苏州)有限公司 负极片及激光器封装方法

Also Published As

Publication number Publication date
US20200028321A1 (en) 2020-01-23
US10826266B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2017182005A1 (zh) 一种半导体激光器制冷结构、半导体激光器及其叠阵
WO2018227655A1 (zh) 一种低寄生电感功率模块及双面散热低寄生电感功率模块
KR102048478B1 (ko) 양면냉각형 파워 모듈 및 그의 제조 방법
TWI299581B (en) Thermoelectric device and method of manufacturing the same
JP6337957B2 (ja) 半導体モジュールユニットおよび半導体モジュール
JP4663469B2 (ja) 熱交換装置
CN105703214A (zh) 一种基于绝缘热沉的液体制冷半导体激光器
CN101789404A (zh) 散热器
JP6003624B2 (ja) 半導体モジュール
JP2012119597A (ja) 半導体装置及びその製造方法
CN105703213A (zh) 一种热沉绝缘的液体制冷半导体激光器及其叠阵
TW201624779A (zh) 熱電轉換裝置及其應用系統
CN109314063A (zh) 电力用半导体装置
JP2019153752A (ja) 半導体装置
US6344686B1 (en) Power electronic component including cooling means
JP2004006603A (ja) 半導体パワーデバイス
JP2005094842A (ja) インバータ装置及びその製造方法
JPWO2015064231A1 (ja) 半導体モジュール
CN205724361U (zh) 一种基于绝缘热沉的液体制冷半导体激光器以及叠阵
CN102693969A (zh) 一种igbt功率模块
KR101508793B1 (ko) 열전소자 모듈을 이용한 열교환기의 제조방법
CN205622042U (zh) 一种热沉绝缘的液体制冷半导体激光器及其叠阵
CN115188722A (zh) 一种用于半导体芯片封装的结构
CN111670505A (zh) 用于发电的热电模块及相应的制造方法
JP2015176975A (ja) 半導体装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785489

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785489

Country of ref document: EP

Kind code of ref document: A1