WO2017181956A1 - 通过智能终端与智能机器人建立连接并进行控制的方法 - Google Patents

通过智能终端与智能机器人建立连接并进行控制的方法 Download PDF

Info

Publication number
WO2017181956A1
WO2017181956A1 PCT/CN2017/081075 CN2017081075W WO2017181956A1 WO 2017181956 A1 WO2017181956 A1 WO 2017181956A1 CN 2017081075 W CN2017081075 W CN 2017081075W WO 2017181956 A1 WO2017181956 A1 WO 2017181956A1
Authority
WO
WIPO (PCT)
Prior art keywords
intelligent robot
intelligent
connection
robot
terminal
Prior art date
Application number
PCT/CN2017/081075
Other languages
English (en)
French (fr)
Inventor
孙天齐
Original Assignee
孙天齐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610251433.3A external-priority patent/CN105844881A/zh
Priority claimed from CN201610251117.6A external-priority patent/CN105931440A/zh
Priority claimed from CN201610251405.1A external-priority patent/CN105739437B/zh
Application filed by 孙天齐 filed Critical 孙天齐
Publication of WO2017181956A1 publication Critical patent/WO2017181956A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to the field of intelligent robots, and in particular to a method for establishing a connection and controlling by an intelligent terminal through an intelligent terminal.
  • the existing remote control operation of the intelligent robot mainly uses a dedicated remote controller to establish a connection with the intelligent robot, and controls the forward, backward, turning and arm movement of the intelligent robot through the buttons or the joystick on the dedicated remote controller.
  • a dedicated remote controller component for each type of intelligent robot in order to control different types of intelligent robots. This method leads to high production cost and lack of adaptability, if the intelligent robot itself After the upgrade or upgrade of the new equipment, the original remote control hardware can easily meet the operation of the new intelligent robot, and the remote control is generally only suitable for close-range operation, and it is impossible to remotely control the intelligent robot through the Internet.
  • connection and communication mode between the intelligent robot and the remote controller on the market is mainly through direct connection communication via Bluetooth, 2.4G wireless or WIFI, but the direct connection via Bluetooth and 2.4G wireless can only be applied to short-distance remote control.
  • the amount of data transmitted is small, and the application cost of 2.4G wireless technology is relatively high; the method of connecting directly to the Internet through WIFI is only applicable to remote control, and the information needs to be transferred through the server during communication, and the information transmission is slow, such as in a short distance.
  • Signal transmission performance is far less than direct communication.
  • the technical problem to be solved by the present invention is to provide a new method for establishing a connection with an intelligent robot and controlling the intelligent robot, which can solve the problem that the connection between the intelligent robot and the remote controller is single and the adaptability is poor, and the realization is low. And wireless control of multiple types of intelligent robots with high efficiency.
  • the technical solution adopted by the present invention is to provide a method for establishing a connection between an intelligent terminal and an intelligent robot, comprising the following steps:
  • the intelligent robot When the two cannot connect to the remote server through the Internet respectively, the intelligent robot opens its own AP hotspot, and the intelligent terminal uses the AP hotspot to join the local area network established by the smart robot's own AP hotspot and establish a connection with the intelligent robot;
  • the intelligent robot and the intelligent terminal establish a connection through the Internet or establish a connection through the AP hotspot.
  • the automatic connection is automatically established to establish a connection through the same local area network.
  • the smart terminal establishes a connection with the intelligent robot in the same local area network, and specifically includes the following steps:
  • the intelligent terminal sends a broadcast signal through the local area network, and after receiving the broadcast signal, the intelligent robot in the same local area network returns a response message carrying its own identity information, and saves it in a list on the smart terminal;
  • the corresponding intelligent robot on the smart terminal selection list establishes a connection.
  • the smart terminal establishes a connection with the intelligent robot through the Internet, and specifically includes the following steps:
  • the intelligent terminal and the intelligent robot are respectively connected to the remote server through the Internet;
  • the intelligent terminal sends a scan instruction to the remote server, and the remote server returns the response information of the intelligent robot identity controllable by the current smart terminal, and saves the form in a list on the smart terminal;
  • the corresponding intelligent robot on the smart terminal selection list establishes a connection.
  • the intelligent terminal manages to edit all the information lists stored in the intelligent robot, including the WIFI list and the list of controllable smart terminals, and the user sends the edited or modified list information to the intelligent robot through the instruction and synchronizes Save to the smart robot.
  • the connection is established by default through the local area network.
  • the invention also provides a method for controlling an intelligent robot through an intelligent terminal, comprising the following steps:
  • the analog rocker image is controlled by dragging the virtual rocker flag, and the corresponding motion signal is sent to the intelligent robot;
  • the intelligent robot judges and analyzes the received motion signal, and performs a corresponding action according to the analyzed motion signal.
  • Different types of intelligent robots are controlled by switching analog rocker images including, but not limited to, robotic arms, humanoid robots, and multi-footed robots.
  • the motion signal includes, but is not limited to, the rotation angle and the movement position of each joint of each frame, the coordinate position of each foot end of each frame with respect to the foot coordinate system, and the end of each frame relative to the center of the body.
  • the foot coordinate system is the coordinate origin of the joint point of each foot and the fuselage
  • the tangential line of the body through the coordinate origin is the X axis
  • the extension line connecting the coordinate origin and the center point of the fuselage is the Y axis
  • the axis perpendicular to the X-axis and the Y-axis through the coordinate origin is the coordinate system of the Z-axis;
  • the center coordinate of the fuselage is the coordinate point of the center point of the body of the intelligent robot.
  • the connecting line of the plane where the coordinate origin is parallel to the plane of the fuselage and perpendicular to the head of the intelligent robot is the Y axis
  • the origin of the coordinate is perpendicular to
  • the axis in the Y-axis direction is the X-axis
  • the coordinate system established by the axis of the coordinate origin and perpendicular to the plane of the fuselage is the Z-axis.
  • the correspondence between the foot coordinate system and the body center coordinate system is established by the coordinate transformation algorithm, and specifically includes the following steps:
  • the coordinates (x', y') of the fuselage center coordinate system (x, y) in the foot coordinate system are obtained by the rotation of the intelligent robot:
  • is the angle between the connection between the center point of the fuselage center and the head of the intelligent robot head and the line connecting the center point of the fuselage and the root of the foot at the connection point of the fuselage;
  • the corresponding coordinates of the end positions of the respective feet during the movement are calculated by the movement of the center point of the body.
  • the action group button is set on the simulation joystick interface, and the action group corresponding to the action group button is stored in the smart robot inside or in advance in a built-in or download manner.
  • the intelligent robot reminds the user through the light and the buzzing how the current intelligent robot establishes the connection.
  • the action group inside the intelligent robot is updated by means of network upgrade.
  • the video captured by the intelligent robot is displayed on the analog joystick interface, and the virtual joystick flag and the action group button are translucent.
  • the connection is preferentially established through the local area network; when the two cannot successfully establish a connection in the same local area network, the connection between the two is established through the Internet;
  • the intelligent robot opens its own AP hotspot, and the intelligent terminal uses the AP hotspot to join the local area network established by the robot's own AP hotspot and establishes a connection with the robot, so that the intelligent terminal and the intelligent robot are at a short distance.
  • no WIFI the same LAN or the Internet, you can connect.
  • the intelligent robot and the intelligent terminal establish a connection through the Internet or establish a connection through the AP hotspot.
  • the automatic connection is automatically established to establish a connection through the same local area network.
  • the intelligent robot can be applied to a variety of network environments, and the network resources can be utilized to the maximum extent, so that the connection between the intelligent robot and the intelligent terminal is wider and the adaptability is stronger.
  • FIG. 1 is a flow chart of a method for establishing a connection between an intelligent terminal and an intelligent robot according to the present invention
  • FIG. 3 is a flowchart of a method for controlling an intelligent robot through an intelligent terminal according to the present invention.
  • the embodiment of the invention provides a method for establishing a connection between an intelligent terminal and an intelligent robot. As shown in FIG. 1 , the method includes the following steps:
  • the intelligent robot checks whether the WIFI list is saved in the machine. If yes, it changes to S3; otherwise, it changes to S7.
  • the intelligent robot scans the surrounding WIFI hotspots.
  • the intelligent robot determines whether the scanned WIFI hotspot is consistent with the WIFI list stored in the local machine. If yes, the process goes to S5; otherwise, the process goes to S7.
  • the intelligent robot matches the scanned WIFI hotspots one by one with the WIFI list stored in the machine. If the connection is successful and the connection is successful, go to S6; otherwise, switch to S7.
  • the intelligent robot enters the WIFI mode and attempts to log in to the remote server, and then transfers to S8; if the network is unexpectedly interrupted in the WIFI mode, it transfers to S3.
  • the intelligent robot switches to AP mode and goes to S14.
  • the smart terminal connects to the nearby WIFI, and sends a broadcast signal through the local area network.
  • the intelligent terminal and the intelligent robot respectively try to connect to the remote server through the Internet and send a scan instruction to the remote server.
  • the remote server returns the response information of the intelligent robot identity controllable by the current smart terminal, and saves it in a list form on the smart terminal.
  • the smart terminal compares the response information list of the identity information carried by the intelligent robot with the response information of the intelligent robot identity controllable by the current smart terminal returned by the remote server. Yes, if the intelligent robot and the intelligent terminal are in the same local area network, then go to S12; if the intelligent robot and the intelligent terminal are not in the same local area network, but the intelligent robot is connected to other local area networks and has been connected to the remote server, then go to S13.
  • the smart terminal establishes a connection by using a corresponding intelligent robot on the remote server selection list, and proceeds to S15.
  • the intelligent terminal automatically recognizes and joins the local area network established by the intelligent robot's own AP hotspot through the intelligent robot AP hotspot and establishes a connection with the intelligent robot, and proceeds to S15.
  • the intelligent terminal selects to connect the nearby WIFI hotspot.
  • the broadcast signal is sent through the local area network, and all the intelligent robots in the same local area network receive the broadcast signal and return the identity information (such as the name, model, and The response information of the smart terminal is controlled by the smart terminal, and the smart terminal saves the received response information in a list form; at the same time, the smart terminal attempts to connect to the remote server via the Internet and sends a scan command, and if the smart terminal is connected to the remote server, the remote server will Returning the response information of the intelligent robot identity control information (such as name, model, which intelligent terminal can be controlled, etc.) that can be controlled by the current smart terminal to enter the remote server mode, and is also saved in a list form.
  • the intelligent robot identity control information such as name, model, which intelligent terminal can be controlled, etc.
  • the intelligent terminal compares and merges the two lists. If all the intelligent robots and the smart terminal are on the same local area network and are connected to the remote server, the smart terminal can communicate with the intelligent robot through the local area network or the remote server; however, the smart terminal passes the default priority.
  • the LAN is connected to the intelligent robot.
  • the smart terminal can communicate with the intelligent robot through the remote server.
  • the intelligent terminal finds that the intelligent robot is in the AP mode, then the AP through the intelligent robot The hotspot communicates with the intelligent robot.
  • the intelligent robot and the intelligent terminal establish a connection through the remote server or establish a connection through the AP hotspot.
  • the automatic connection is automatically established to establish a connection through the same local area network, and the intelligent robot connected with the best connection is selected to connect. .
  • the smart terminal can manage and edit all the information lists stored in the robot through the downloaded application, such as a WIFI list, a list of controllable smart terminals, etc., and the user edits or modifies the list of the smart terminal.
  • the information is sent to the intelligent robot through instructions and stored synchronously in the intelligent robot.
  • the intelligent robot can not only apply to various network environments, but also utilize network resources to the maximum extent efficiently.
  • one intelligent terminal can control multiple intelligent robots.
  • An intelligent robot can also be controlled by multiple intelligent terminals, but one intelligent terminal can only select one of the most suitable intelligent robots for connection communication.
  • a wireless network adapter supporting APmode is provided inside the intelligent robot.
  • the intelligent terminal and the intelligent robot can be connected through a local area network and the Internet, and the intelligent robot will be turned on without any network.
  • the self-AP hotspot is connected to the smart terminal; in addition, if no touch screen, connection control interface or other input device is installed on the intelligent robot, the internal information of the intelligent robot can be modified through the smart terminal to make it available in the new WIFI.
  • the connection between WIFI and the control of any intelligent terminal can solve the problem that the connection between the current intelligent robot and the intelligent terminal is single and the adaptability is poor.
  • FIG. 2 it is a startup flowchart of the intelligent robot of the present invention, which includes the following steps:
  • the intelligent robot checks whether the SSID list is stored in the machine. If yes, the process goes to S113; otherwise, the process goes to S118.
  • the intelligent robot scans the surrounding WIFI hotspot.
  • the intelligent robot determines whether there is a WIFI that is the same as the locally saved SSID. If yes, the process goes to S115; otherwise, the process goes to S118.
  • the intelligent robot matches the scanned WIFI with the SSID saved in the machine one by one and tries to connect.
  • the intelligent robot enters the WIFI mode and starts the listening mode, and then goes to S119; if the connection WIFI is interrupted unexpectedly, it goes to S113.
  • the intelligent robot turns on the AP mode and starts the listening mode.
  • the intelligent robot attempts to connect with a remote server.
  • S120 Determine whether the connection with the remote server is successful. If yes, go to S121; otherwise, go to S122.
  • the remote server authenticates the pre-connected intelligent robot, and determines whether the identity verification is successful. If yes, go to S123; otherwise, go to S122.
  • the intelligent robot is connected to the remote server and enters the remote server mode; if the connection between the intelligent robot and the remote server is unexpectedly interrupted, then the process proceeds to S122.
  • S124 Determine whether the smart robot is connected to the smart terminal. If yes, go to S125; otherwise, go to S113.
  • the intelligent robot performs self-test with a preset time (60 seconds) as a cycle, and then transfers to S124.
  • a new intelligent robot with a new or local WIFI list will be switched to AP mode when it is turned on.
  • the smart terminal scans to the intelligent robot's own AP hotspot, and joins the local area network established by the intelligent robot's own AP hotspot through the AP hotspot and establishes with the intelligent robot.
  • Connect enter the initial login address (for example, 192.168.1.1) and login information of the intelligent robot in the smart terminal, log in, modify the SSID of the intelligent robot and the initial login address through the smart terminal, and send it to the intelligent robot through the instruction and save it synchronously.
  • the intelligent robot will restart at this time; since the SSID code and the login address of each intelligent robot are the same, the SSID and the login address are modified to better distinguish each intelligent robot.
  • the intelligent robot After the intelligent robot starts, it automatically scans the surrounding WIFI hotspots. If there is a WIFI hotspot during scanning, the intelligent robot will scan the scanned WIFI hotspots with the WIFI list saved in the machine. If there is the same SSID, try to connect the WIFI with the pre-stored password one by one. Hotspots, if there is no same SSID, the intelligent robot will switch to AP mode; if the intelligent robot does not scan any WIFI hotspots, the intelligent robot will also switch to AP mode.
  • the monitoring service When the intelligent robot switches to AP mode, the monitoring service will be started. The intelligent robot will automatically check whether there is a smart terminal connection every 60 seconds. If it is connected, repeat the above self-checking operation. If there is no connection, the intelligent robot will rescan the surrounding WIFI hotspot. , so reciprocating.
  • the intelligent robot If the intelligent robot is connected to the WIFI successfully, the WIFI mode is entered, and the monitoring service is also turned on to determine whether there is a smart terminal connected thereto.
  • the intelligent robot tries to connect to the remote server. For example, the intelligent robot connects to the remote server.
  • the remote server will verify and identify the identity of the intelligent robot. If the verification is successful, the intelligent robot successfully logs into the remote server to enter the remote server mode and can remotely communicate with the intelligent terminal. Communication connection, if the verification fails or is not connected to the remote server, the intelligent robot will maintain the local WIFI mode and will try to connect with the remote server in a 60 second cycle.
  • WIFI can not access the Internet, or the remote server itself. In the event of a failure, the intelligent robot will not be able to connect to the remote server.
  • the intelligent robot When the intelligent robot is in any connected state, it will inform the user through the corresponding way (such as light, beep, etc.) that the current intelligent robot is in the remote server mode, local area network (local WIFI) mode or AP mode.
  • the corresponding way such as light, beep, etc.
  • the above-mentioned intelligent robot self-test operation in a cycle of 60 seconds is to realize that the intelligent robot can select a better connection mode to support higher network bandwidth, and can perform high-quality audio and video transmission with the intelligent terminal.
  • the manner of editing and modifying the information in the intelligent robot is not limited to the above-described preferred embodiment. If a touch screen or other display input device is installed on the intelligent robot, the method of scanning and inputting the SSID password directly on the intelligent robot may not be used.
  • the smart terminal can be connected in advance to connect to the new WIFI hotspot.
  • the invention also provides a method for controlling an intelligent robot through an intelligent terminal, as shown in FIG. 3, comprising the following steps:
  • the intelligent robot judges and analyzes the received motion signal, and performs a corresponding action according to the analyzed motion signal.
  • the invention adds different analog rocker images by upgrading the analog rocker interface; and controls different types of intelligent robots by switching the analog rocker images, including but not limited to mechanical arms, humanoid robots and multi-foot robots.
  • the above intelligent robot control software includes a plurality of applications for controlling the intelligent robot, including but not limited to controlling the intelligent robot to advance, retreat, rotate, and control the intelligent robot to shoot video.
  • the motion signals sent to the intelligent robot include, but are not limited to, the joint rotation angle and the movement position of each frame, the coordinate position of each foot end of each frame with respect to the foot coordinate system, and the end of each frame relative to the body center coordinates.
  • the above-mentioned foot coordinate system uses the connection point of each foot and the fuselage as the coordinate origin, and the tangential line of the body through the coordinate origin is the X-axis, and the extension line of the coordinate origin and the center point of the fuselage is the Y-axis, and the coordinate origin is perpendicular to the coordinate origin.
  • the axes of the X-axis and the Y-axis are the coordinate system of the Z-axis, a total of six.
  • the center coordinate system of the above-mentioned fuselage is based on the center point of the body of the intelligent robot as the coordinate origin.
  • the connecting line whose origin is parallel to the plane of the fuselage and perpendicular to the plane of the head of the intelligent robot is the Y axis
  • the axis passing through the coordinate origin and perpendicular to the Y axis is the X axis, passing through the coordinate origin and perpendicular to the plane of the fuselage
  • the axis is the coordinate system established by the Z axis.
  • the virtual field plane coordinate system is a coordinate system in which a certain point of the center point or the edge of the virtual field plane is taken as the coordinate origin, the virtual field plane is the XY plane, and the axis originating from the coordinate origin and perpendicular to the XY plane is the Z axis.
  • the virtual field plane coordinate system is used by the intelligent robot to find the target moving position according to the motion signal, and calculate the moving path.
  • the translational straight path of each foot end is calculated with reference to the position of the end of each foot in the standard standing posture, and since the relative position of the foot end and the center point of the body is fixed in the standard standing posture, Therefore, when the fuselage is in any position, the coordinates of the end of each foot can be calculated, so the translation path of each foot end can be calculated through the translational path of the center point of the fuselage.
  • the correspondence between the foot coordinate system and the body center coordinate system is established by the coordinate transformation algorithm, which specifically includes the following steps:
  • the coordinates (x', y') of the fuselage center coordinate system (x, y) in the foot coordinate system are obtained by the rotation of the intelligent robot:
  • is the angle between the connection between the center point of the fuselage center and the head of the intelligent robot head and the line connecting the center point of the fuselage and the root of the foot at the connection point of the fuselage;
  • the corresponding coordinates of the end positions of the respective feet during the movement are calculated by the movement of the center point of the body.
  • Each frame above refers to each frame in the entire action cycle of the intelligent robot, and each foot is independent of each week.
  • the term refers to each foot as a unit, doing its own actions independently, without interference from other feet.
  • the 1st foot starts from 0 seconds, and takes 3 seconds as the cycle.
  • the average is divided into 9 frames per cycle, making an upward Lifting - moving forward and landing - backwards and squatting;
  • 2nd foot starts from 0.8 seconds, with a period of 5 seconds, and the average is divided into 15 frames per cycle, making an upward lift - swinging left and right twice - falling The action back to the original position.
  • the movements of the 1st and 2nd feet are irrelevant, but the internal program of the intelligent robot calculates the posture of each frame of the entire intelligent robot based on the independent actions of the two feet and executes it. Therefore, from the perspective of the intelligent robot as a whole, it is a set. Complete action.
  • the action group button is set on the analog joystick interface, and the action group corresponding to the action group button is stored in the smart robot in a built-in or download manner in advance, and the action group inside the smart robot can also be updated by network upgrade.
  • the connection is preferentially established through the local area network; when the two cannot successfully establish a connection in the same local area network, the connection between the two is established through the Internet;
  • the intelligent robot opens its own AP hotspot, and the intelligent terminal uses the AP hotspot to join the local area network established by the robot's own AP hotspot and establishes a connection with the robot, so that the intelligent terminal and the intelligent robot are at a short distance.
  • no WIFI the same LAN or the Internet, you can connect.
  • the intelligent robot and the intelligent terminal establish a connection through the Internet or establish a connection through the AP hotspot.
  • the automatic connection is automatically established to establish a connection through the same local area network.
  • the intelligent robot can be applied to a variety of network environments, and the network resources can be utilized to the maximum extent, so that the connection between the intelligent robot and the intelligent terminal is wider and more adaptive.
  • the wireless connection between the intelligent robots displays an analog joystick image matching the currently connected intelligent robot type in the analog joystick interface of the intelligent robot control software, and controls the analog rocker image by dragging the virtual rocker flag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种通过智能终端与智能机器人建立连接并进行控制的方法,该建立连接的方法包括:判断智能终端与智能机器人能否在同一局域网内建立连接;当二者不能建立连接时,判断二者能否通过互联网分别连接至远程服务器,并建立二者的连接;当二者不能通过互联网连接时,智能机器人打开自身AP热点,智能终端利用该AP热点加入由智能机器人自身AP热点建立的局域网并与其建立连接;二者无论是通过互联网还是通过AP热点建立连接,当发现可通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接。该方法使智能机器人与智能终端之间连接方式更广泛,自适应性更强,实现了以较低的成本和较高的效率对多种类型智能机器人的无线控制。

Description

通过智能终端与智能机器人建立连接并进行控制的方法 技术领域
本发明涉及智能机器人领域,具体涉及通过智能终端与智能机器人建立连接并进行控制的方法。
背景技术
现有的对智能机器人的遥控操作主要是使用专用遥控器与智能机器人建立连接后,通过专用遥控器上面的按键或摇杆控制智能机器人前进、后退、转身及手臂动作等。但是,由于智能机器人包括很多种类,要想控制不同类型的智能机器人就需要针对每种类型的智能机器人开发专用的遥控器组件,这种方式导致制作成本较高而且适应性不足,如果智能机器人本身进行了改造升级或推出新设备之后,原来的遥控器硬件则很容易无法满足对新智能机器人的操作,而且遥控器一般只适用于近距离的操作,无法实现通过互联网对智能机器人进行遥控。
现在市场上智能机器人与遥控器的连接与通信方式主要为通过蓝牙、2.4G无线或WIFI等方式进行直接连接通信,但是通过蓝牙、2.4G无线进行直接连接的方式仅能适用于短距离遥控且传输数据量小时,而且2.4G无线技术的应用成本较高;通过WIFI连接互联网进行直接连接的方式,仅适用于远程控制,通信时需经过服务器进行信息中转,信息传输慢,如在近距离内则信号传输性能远不如直连通信。
有鉴于此,急需一种与智能机器人建立连接并控制智能机器人的新方法,能够解决智能机器人与遥控器之间连接方式单一,自适应性差的问题,并实现以较低的成本和较高的效率对多种类型的智能机器人进行无线控制。
发明内容
本发明所要解决的技术问题是提供一种与智能机器人建立连接并控制智能机器人的新方法,能够解决智能机器人与遥控器之间连接方式单一,自适应性差的问题,并实现以较低的成本和较高的效率对多种类型的智能机器人进行无线控制。
为了解决上述技术问题,本发明所采用的技术方案是提供一种智能终端与智能机器人建立连接的方法,包括以下步骤:
判断智能终端与智能机器人能否在同一局域网内建立连接;
当二者不能在同一局域网内成功建立连接时,判断二者能否通过互联网分别连接至远程服务器,并建立二者之间的连接;
当二者不能通过互联网分别连接至远程服务器时,智能机器人打开自身AP热点,智能终端利用该AP热点加入由智能机器人自身AP热点建立的局域网并与智能机器人建立连接;
智能机器人与智能终端无论是通过互联网建立连接,还是通过AP热点建立连接,当发现可以通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接。
在上述技术方案中,智能终端与智能机器人在同一局域网内建立连接,具体包括以下步骤:
智能终端通过局域网发送广播信号,同一局域网内的智能机器人接收到广播信号后,返回携带自己身份信息的响应信息,并在智能终端上以列表形式保存;
智能终端选择列表上的相应智能机器人建立连接。
在上述技术方案中,智能终端与智能机器人通过互联网建立连接,具体包括以下步骤:
智能终端与智能机器人分别通过互联网连接到远程服务器;
智能终端发送扫描指令至远程服务器,远程服务器返回当前智能终端可控制的智能机器人身份的响应信息,并在智能终端上以列表形式保存;
智能终端选择列表上的相应智能机器人建立连接。
在上述技术方案中,智能终端管理编辑智能机器人内保存的所有信息列表,包括WIFI列表与可受控的智能终端列表,用户将编辑或修改过的列表信息通过指令的方式发送至智能机器人并同步保存至智能机器人内。
在上述技术方案中,若智能机器人与智能终端在同一局域网内且可连接远程服务器,默认通过局域网建立连接。
本发明还提供了一种通过智能终端控制智能机器人的方法,包括以下步骤:
在智能终端上下载并打开智能机器人控制软件;
采用如上所述的方法,建立智能终端与智能机器人之间的无线连接;
在智能机器人控制软件的模拟摇杆界面中显示与当前连接的智能机器人类型相匹配的模拟摇杆图像;
在模拟摇杆界面中,通过拖动虚拟摇杆标志对模拟摇杆图像进行控制,向智能机器人发送相应的动作信号;
智能机器人对接收到的动作信号进行判断及解析,根据解析出来的动作信号执行相应的动作。
在上述技术方案中,
通过升级模拟摇杆界面来添加不同的模拟摇杆图像;
通过切换模拟摇杆图像来控制不同类型的智能机器人,智能机器人包括但不限于机械臂、人形机器人和多足机器人。
在上述技术方案中,动作信号包括但不限于:每一帧各关节旋转角度与移动位置、每一帧各足末端相对于足坐标系的坐标位置、每一帧各足末端相对于机身中心坐标系的坐标位置、每一帧各足末端相对于虚拟场地平面坐标系的坐标位置、各足独立周期在起止时间内的坐标位置列表以及头 部旋转信号。
在上述技术方案中,足坐标系为以每足根部与机身连接点为坐标原点,经坐标原点的机身切线为X轴,以坐标原点与机身圆心点的连接延长线为Y轴、经坐标原点垂直于X轴和Y轴的轴为Z轴的坐标系;
机身中心坐标系为以智能机器人的机身圆心点为坐标原点,经坐标原点平行于机身平面并垂直于智能机器人头部的摄像头所在平面的连接线为Y轴,经坐标原点并垂直于Y轴方向的轴为X轴,经坐标原点并垂直于机身平面的轴为Z轴建立起来的坐标系。
在上述技术方案中,通过坐标变换算法建立足坐标系与机身中心坐标系的对应关系具体包括以下步骤:
通过智能机器人旋转得到机身中心坐标系(x,y)在足坐标系中的坐标(x’,y’)为:
Figure PCTCN2017081075-appb-000001
其中,θ为机身圆心点和智能机器人头部摄像头方向的连线与机身圆心点和足根部在机身连接点连线的夹角;
通过智能机器人旋转之后再进行平移得到机身中心坐标系(x,y,z)在足坐标系中的坐标(x”,y”,z”),其中x”=x’;y”=y’+r;r为机身半径,即机身圆心点到足根部在机身连接点的距离;由于z轴未发生变换,所以z”=z;
利用上述方法,通过机身圆心点的移动推算出移动过程中各足末端位置的对应坐标。
在上述技术方案中,在模拟摇杆界面上设置动作组按键,预先将与动作组按键对应的动作组以内置或下载的方式存储到智能机器人内部。
在上述技术方案中,智能机器人通过灯光、蜂鸣声提醒用户当前智能机器人采用何种方式建立连接。
在上述技术方案中,通过网络升级的方式对智能机器人内部的动作组进行更新。
在上述技术方案中,在模拟摇杆界面上显示智能机器人拍摄到的视频,并将虚拟摇杆标志与动作组按键半透明化。
本发明,当智能终端与智能机器人能在同一局域网内建立连接时,则优先通过局域网建立连接;当二者不能在同一局域网内成功建立连接时,则通过互联网建立二者之间的连接;当二者不能通过互联网分别连接至远程服务器时,智能机器人打开自身AP热点,智能终端利用该AP热点加入由机器人自身AP热点建立的局域网并与机器人建立连接,使智能终端与智能机器人无论在短距离还是无WIFI、同一局域网或互联网的情况下,都可以进行连接。
同时,智能机器人与智能终端无论是通过互联网建立连接,还是通过AP热点建立连接,当发现可以通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接。使智能机器人可适用多种网络环境,并最大程度地高效利用网络资源,使智能机器人与智能终端之间连接方式更广泛,自适应性更强。
通过在智能终端上下载并打开智能机器人控制软件,建立智能终端与智能机器人之间的无线连接,在智能机器人控制软件的模拟摇杆界面中显示与当前连接的智能机器人类型相匹配的模拟摇杆图像,通过拖动虚拟摇杆标志对模拟摇杆图像进行控制,向智能机器人发送相应的动作信号,避免了针对不同类型智能机器人重新开发遥控装置的工作量,实现了以较低的成本和较高的效率对多种类型智能机器人的无线控制。
附图说明
图1为本发明提供的一种智能终端与智能机器人建立连接的方法流程图;
图2为本发明提供的智能机器人的启动流程图;
图3为本发明提供的一种通过智能终端控制智能机器人的方法流程图。
具体实施方式
下面结合说明书附图和具体实施方式对本发明做出详细的说明。
本发明实施例提供了一种智能终端与智能机器人建立连接的方法,如图1所示,包括以下步骤:
S1、智能机器人启动。
S2、智能机器人检查本机内是否保存了WIFI列表,若是,则转S3;否则转S7。
S3、智能机器人扫描周边WIFI热点。
S4、智能机器人判断扫描到WIFI热点是否存在与本机内保存的WIFI列表内一致的,若存在,则转S5;否则转S7。
S5、智能机器人将扫描到的WIFI热点逐个与本机内保存的WIFI列表相匹配,若匹配且连接成功,转S6;否则转S7。
S6、智能机器人进入WIFI模式并尝试登录远程服务器,转S8;若WIFI模式中网络意外中断,则转S3。
S7、智能机器人切换至AP模式,转S14。
S8、智能终端连接附近的WIFI,并通过局域网发送广播信号。
S9、同一局域网内的所有智能机器人接收到智能终端发送的广播信号后,返回携带自己身份信息的响应信息,并在智能终端上以列表形式保存。
S10、智能终端与智能机器人分别通过互联网尝试连接远程服务器并发送扫描指令至远程服务器,远程服务器返回当前智能终端可控制的智能机器人身份的响应信息,并在智能终端上以列表形式保存。
S11、智能终端将智能机器人返回的携带身份信息的响应信息列表与远程服务器返回的当前智能终端可控制的智能机器人身份的响应信息进行比 对,若智能机器人与智能终端在同一局域网内,则转S12;若智能机器人与智能终端不在同一局域网内,但智能机器人连接了其他局域网并已经连接上远程服务器,则转S13。
S12、智能终端选择列表上的相应智能机器人建立连接,转S15。
S13、智能终端通过远程服务器选择列表上的相应智能机器人建立连接,转S15。
S14、智能终端自动识别并通过智能机器人AP热点加入由智能机器人自身AP热点建立的局域网并与智能机器人建立连接,转S15。
S15、连接结束。
下面介绍本发明智能终端与智能机器人建立连接的工作原理:
本发明中,智能终端选择连接附近的WIFI热点,当智能终端连接上WIFI后,通过局域网发送广播信号,同一局域网内的所有智能机器人接收到广播信号后返回包含身份信息(如名字、型号、可被哪些智能终端控制等)的响应信息,智能终端将接收到的响应信息以列表形式保存;同时智能终端尝试通过互联网连接远程服务器并发送扫描指令,若智能终端连接上远程服务器,远程服务器将会返回当前智能终端可控制的进入远程服务器模式的包含智能机器人身份信息(如名字、型号、可被哪些智能终端控制等)的响应信息,同样以列表形式保存。
智能终端将两份列表进行比对合并,如果所有智能机器人与智能终端在同一局域网并已经连接上远程服务器,则智能终端可以通过局域网或远程服务器与智能机器人进行连接通信;但是智能终端默认优先通过局域网与智能机器人进行连接。
如果所有智能机器人与智能终端不在同一局域网内,但有些智能机器人已经连接上远程服务器,此时智能终端可通过远程服务器与智能机器人进行连接通信。
若智能终端发现智能机器人处于AP模式时,则通过智能机器人的AP 热点与智能机器人进行连接通信。
智能机器人与智能终端无论是通过远程服务器建立连接,还是通过AP热点建立连接,当发现可以通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接,选择与其最佳连接的智能机器人连接通信。
智能终端与智能机器人连接后,智能终端可通过下载后的应用程序管理编辑机器人内保存的所有信息列表,如WIFI列表、可受控的智能终端列表等,用户将智能终端编辑或修改过的列表信息通过指令的方式发送至智能机器人并同步保存至智能机器人内,这样智能机器人不但适用多种网络环境,并可最大程度地高效利用网络资源,另外,一台智能终端可控制多台智能机器人,一台智能机器人也可被多台智能终端所控制,但一台智能终端只能选定一台最适合的智能机器人进行连接通信。
本发明中,在智能机器人内部设有支持APmode的无线网络适配器,在有网络的情况下,智能终端与智能机器人除了可通过局域网和互联网进行连接,在无任何网络的情况下,智能机器人将打开自身AP热点供智能终端与其连接;另外,如智能机器人上未安装任何触摸屏、连接控制接口或其他输入设备的情况下时,可通过智能终端修改智能机器人的内部信息,使其可在新的WIFI的环境下连接WIFI并可被任意一台智能终端控制,解决了当前智能机器人与智能终端之间连接方式单一,自适应性差的问题。
下面介绍本发明中智能机器人的启动过程,如图2所示,为本发明智能机器人的启动流程图,包括以下步骤:
S111、智能机器人开机启动。
S112、智能机器人检查本机内是否保存有SSID列表,若是,则转S113;否则转S118。
S113、智能机器人扫描周边的WIFI热点。
S114、智能机器人判断是否存在与本地保存的SSID相同的WIFI,若存在,则转S115;否则转S118。
S115、智能机器人将扫描到的WIFI与本机内保存的SSID逐个匹配并尝试连接。
S116、判断是否有匹配的WIFI且连接成功,若有,则转S117;否则转S118。
S117、智能机器人进入WIFI模式并开启监听模式,转S119;若连接WIFI意外中断,则转S113。
S118、智能机器人开启AP模式并开启监听模式。
S119、智能机器人尝试与远程服务器连接。
S120、判断是否与远程服务器连接成功,若是,转S121;否则转S122。
S121、远程服务器对预连接的智能机器人进行身份验证,判断身份验证是否成功,若是,转S123;否则转S122。
S122、达到预设时间(60秒)后,转S119。
S123、智能机器人与远程服务器连接且进入远程服务器模式;若智能机器人与远程服务器连接意外中断,则转S122。
S124、判断智能机器人是否已连接智能终端,若是,则转S125;否则转S113。
S125、智能机器人以预设时间(60秒)为周期进行自检,转S124。
一台新的或本地WIFI列表为空的智能机器人,开启后将切换至AP模式,智能终端扫描到智能机器人自身AP热点,通过该AP热点加入由智能机器人自身AP热点建立的局域网并与智能机器人建立连接,在智能终端中输入智能机器人的初始登录地址(例如192.168.1.1)与登录信息,进行登录,通过智能终端修改智能机器人的SSID与初始登录地址并通过指令的方式发送至智能机器人并同步保存至智能机器人内,此时智能机器人将重新启动;由于每个智能机器人出厂时的SSID码与登录地址是相同的,修改SSID与登录地址是为了更好地区分每个智能机器人。
下面介绍本发明中智能机器人启动的工作原理:
智能机器人启动后首先自动扫描周边WIFI热点,若扫描时存在WIFI热点,智能机器人将扫描到的WIFI热点与本机内保存的WIFI列表相匹配,如有相同SSID则逐个尝试用预存的密码连接WIFI热点,如没有相同SSID则智能机器人将切换至AP模式;若智能机器人没有扫描到任何WIFI热点,智能机器人同样将切换至AP模式。
当智能机器人切换至AP模式后将开启监听服务,智能机器人每60秒自检是否有智能终端连接,若连接,则重复上述自检操作,若没有连接,则智能机器人将重新扫描周边的WIFI热点,如此往复。
若智能机器人连接WIFI成功,则进入WIFI模式,同样也会开启监听服务判断是否有智能终端与之连接。智能机器人尝试连接远程服务器,如智能机器人连接上远程服务器,远程服务器将对智能机器人的身份进行验证识别,若验证成功,则智能机器人成功登入远程服务器进入远程服务器模式,并可与智能终端进行远程通信连接,若验证失败或没有连上远程服务器,智能机器人将保持本地WIFI模式并将以60秒为周期尝试与远程服务器连接,另外,当网络出现故障有WIFI也无法上网,或是远程服务器自身出现故障时,都将导致智能机器人连接不上远程服务器。
智能机器人在任何连接状态时,将通过相应方式(如灯光、蜂鸣声等)告知用户当前智能机器人正处于远程服务器模式、局域网(本地WIFI)模式或AP模式。
上述智能机器人以60秒为周期的自检操作是为了实现智能机器人可以选择更好的连接方式,以支持更高的网络宽带,可与智能终端进行高质量的音视频传输。
本发明中编辑修改智能机器人内的信息方式不局限于上述最佳实施方式,如果在智能机器人上安装触摸屏或其他显示输入设备,可以通过直接在智能机器人上扫描及输入SSID密码的方式,不必与智能终端事先连接好才能连接新WIFI热点。
本发明还提供了一种通过智能终端控制智能机器人的方法,如图3所示,包括以下步骤:
S101、在智能终端上下载并打开智能机器人控制软件。
S102、采用上述的智能终端与智能机器人建立连接的方法,建立智能终端与智能机器人之间的无线连接。
S103、在智能机器人控制软件的模拟摇杆界面中显示与当前连接的智能机器人类型相匹配的模拟摇杆图像。
S104、在模拟摇杆界面中,通过拖动虚拟摇杆标志对模拟摇杆图像进行控制,向智能机器人发送相应的动作信号。
S105、智能机器人对接收到的动作信号进行判断及解析,根据解析出来的动作信号执行相应的动作。
本发明通过升级模拟摇杆界面来添加不同的模拟摇杆图像;通过切换模拟摇杆图像来控制不同类型的智能机器人,智能机器人包括但不限于机械臂、人形机器人和多足机器人。
上述智能机器人控制软件包括多个用于控制智能机器人的应用程序,包括但不限于控制智能机器人前进、后退、旋转以及控制智能机器人拍摄视频等。
向智能机器人发送的动作信号包括但不限于:每一帧各关节旋转角度与移动位置、每一帧各足末端相对于足坐标系的坐标位置、每一帧各足末端相对于机身中心坐标系的坐标位置、每一帧各足末端相对于虚拟场地平面坐标系的坐标位置、各足独立周期在起止时间内的坐标位置列表以及头部旋转信号。
上述足坐标系为以每足根部与机身连接点为坐标原点,经坐标原点的机身切线为X轴,以坐标原点与机身圆心点的连接延长线为Y轴、经坐标原点垂直于X轴和Y轴的轴为Z轴的坐标系,共6个。
上述机身中心坐标系为以智能机器人的机身圆心点为坐标原点,经坐 标原点平行于机身平面并垂直于智能机器人头部的摄像头所在平面的连接线为Y轴,经坐标原点并垂直于Y轴方向的轴为X轴,经坐标原点并垂直于机身平面的轴为Z轴建立起来的坐标系。
上述虚拟场地平面坐标系为以虚拟场地平面的中心点或边缘的某个点为坐标原点,虚拟场地平面为X-Y平面,经坐标原点并垂直于X-Y平面的轴为Z轴建立起来的坐标系,虚拟场地平面坐标系用于智能机器人根据动作信号寻找目标移动位置,计算移动路径。
在本发明中,以在标准站立姿态下各足末端的位置为参照,计算出各足末端的平移直线路径,由于在标准站立姿态下,足末端和机身圆心点的相对位置是固定的,所以在机身位于任意位置时,都能算出各足末端的坐标,所以也就能通过机身圆心点平移路径计算出各足末端的平移路径。
通过坐标变换算法建立足坐标系与机身中心坐标系的对应关系具体包括以下步骤:
通过智能机器人旋转得到机身中心坐标系(x,y)在足坐标系中的坐标(x’,y’)为:
Figure PCTCN2017081075-appb-000002
其中,θ为机身圆心点和智能机器人头部摄像头方向的连线与机身圆心点和足根部在机身连接点连线的夹角;
通过智能机器人旋转之后再进行平移得到机身中心坐标系(x,y,z)在足坐标系中的坐标(x”,y”,z”),其中x”=x’;y”=y’+r;r为机身半径,即机身圆心点到足根部在机身连接点的距离;由于z轴未发生变换,所以z”=z;
利用上述方法,通过机身圆心点的移动推算出移动过程中各足末端位置的对应坐标。
上述每一帧指的是智能机器人整个动作周期内的每一帧,各足独立周 期指的是以各足为单位,独立做自己的动作,不受其他足的干涉,例如:1号足从0秒开始,以3秒为周期,每周期平均分为9帧,做一个向上抬起-向前移动落地-向后蹬地的循环动作;2号足从0.8秒开始,以5秒为周期,每周期平均分为15帧,做一个向上抬起-左右摆动两次-落回原位的动作。1号足和2号足的动作互不相干,但智能机器人内部程序根据这两个足的独立动作计算出整个智能机器人每一帧的姿态并执行,因此从智能机器人整体看来则是一套完整动作。
在模拟摇杆界面上设置动作组按键,预先将与动作组按键对应的动作组以内置或下载的方式存储到智能机器人内部,还可以通过网络升级的方式对智能机器人内部的动作组进行更新。
在模拟摇杆界面上显示智能机器人拍摄到的视频,并将虚拟摇杆标志与动作组按键半透明化,以便操作智能机器人的同时观察智能机器人的动作效果。
本发明,当智能终端与智能机器人能在同一局域网内建立连接时,则优先通过局域网建立连接;当二者不能在同一局域网内成功建立连接时,则通过互联网建立二者之间的连接;当二者不能通过互联网分别连接至远程服务器时,智能机器人打开自身AP热点,智能终端利用该AP热点加入由机器人自身AP热点建立的局域网并与机器人建立连接,使智能终端与智能机器人无论在短距离还是无WIFI、同一局域网或互联网的情况下,都可以进行连接。
同时,智能机器人与智能终端无论是通过互联网建立连接,还是通过AP热点建立连接,当发现可以通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接。使智能机器人可适用多种网络环境,并最大程度地高效利用网络资源,使智能机器人与智能终端之间的连接方式更广泛,自适应性更强。
通过在智能终端上下载并打开智能机器人控制软件,建立智能终端与 智能机器人之间的无线连接,在智能机器人控制软件的模拟摇杆界面中显示与当前连接的智能机器人类型相匹配的模拟摇杆图像,通过拖动虚拟摇杆标志对模拟摇杆图像进行控制,向智能机器人发送相应的动作信号,适用于多种网络环境和多种类型的智能机器人,避免了针对不同类型智能机器人重新开发遥控装置的工作量,实现了以较低的成本和较高的效率对多种类型智能机器人的无线控制。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (14)

  1. 智能终端与智能机器人建立连接的方法,其特征在于,包括以下步骤:
    判断智能终端与智能机器人能否在同一局域网内建立连接;
    当二者不能在同一局域网内成功建立连接时,判断二者能否通过互联网分别连接至远程服务器,并建立二者之间的连接;
    当二者不能通过互联网分别连接至远程服务器时,智能机器人打开自身AP热点,智能终端利用该AP热点加入由智能机器人自身AP热点建立的局域网并与智能机器人建立连接;
    智能机器人与智能终端无论是通过互联网建立连接,还是通过AP热点建立连接,当发现可以通过同一局域网建立连接时,则自动切换为通过同一局域网建立连接。
  2. 如权利要求1所述的智能终端与智能机器人建立连接的方法,其特征在于,智能终端与智能机器人在同一局域网内建立连接,具体包括以下步骤:
    智能终端通过局域网发送广播信号,同一局域网内的智能机器人接收到广播信号后,返回携带自己身份信息的响应信息,并在智能终端上以列表形式保存;
    智能终端选择列表上的相应智能机器人建立连接。
  3. 如权利要求1所述的智能终端与智能机器人建立连接的方法,其特征在于,智能终端与智能机器人通过互联网建立连接,具体包括以下步骤:
    智能终端与智能机器人分别通过互联网连接到远程服务器;
    智能终端发送扫描指令至远程服务器,远程服务器返回当前智能终端可控制的智能机器人身份的响应信息,并在智能终端上以列表形式保存;
    智能终端选择列表上的相应智能机器人建立连接。
  4. 如权利要求1所述的智能终端与智能机器人建立连接的方法,其特 征在于,智能终端管理编辑智能机器人内保存的所有信息列表,包括WIFI列表与可受控的智能终端列表,用户将编辑或修改过的列表信息通过指令的方式发送至智能机器人并同步保存至智能机器人内。
  5. 如权利要求1所述的智能终端与智能机器人建立连接的方法,其特征在于,若智能机器人与智能终端在同一局域网内且可连接远程服务器,默认通过局域网建立连接。
  6. 通过智能终端控制智能机器人的方法,其特征在于,包括以下步骤:
    在智能终端上下载并打开智能机器人控制软件;
    采用如权利要求1-5任一项所述的方法,建立智能终端与智能机器人之间的无线连接;
    在智能机器人控制软件的模拟摇杆界面中显示与当前连接的智能机器人类型相匹配的模拟摇杆图像;
    在模拟摇杆界面中,通过拖动虚拟摇杆标志对模拟摇杆图像进行控制,向智能机器人发送相应的动作信号;
    智能机器人对接收到的动作信号进行判断及解析,根据解析出来的动作信号执行相应的动作。
  7. 如权利要求6所述的通过智能终端控制智能机器人的方法,其特征在于,
    通过升级模拟摇杆界面来添加不同的模拟摇杆图像;
    通过切换模拟摇杆图像来控制不同类型的智能机器人,智能机器人包括但不限于机械臂、人形机器人和多足机器人。
  8. 如权利要求7所述的通过智能终端控制智能机器人的方法,其特征在于,动作信号包括但不限于:每一帧各关节旋转角度与移动位置、每一帧各足末端相对于足坐标系的坐标位置、每一帧各足末端相对于机身中心坐标系的坐标位置、每一帧各足末端相对于虚拟场地平面坐标系的坐标位置、各足独立周期在起止时间内的坐标位置列表以及头部旋转信号。
  9. 如权利要求8所述的通过智能终端控制智能机器人的方法,其特征在于,足坐标系为以每足根部与机身连接点为坐标原点,经坐标原点的机身切线为X轴,以坐标原点与机身圆心点的连接延长线为Y轴、经坐标原点垂直于X轴和Y轴的轴为Z轴的坐标系;
    机身中心坐标系为以智能机器人的机身圆心点为坐标原点,经坐标原点平行于机身平面并垂直于智能机器人头部的摄像头所在平面的连接线为Y轴,经坐标原点并垂直于Y轴方向的轴为X轴,经坐标原点并垂直于机身平面的轴为Z轴建立起来的坐标系。
  10. 如权利要求9所述的通过智能终端控制智能机器人的方法,其特征在于,通过坐标变换算法建立足坐标系与机身中心坐标系的对应关系具体包括以下步骤:
    通过智能机器人旋转得到机身中心坐标系(x,y)在足坐标系中的坐标(x’,y’)为:
    Figure PCTCN2017081075-appb-100001
    其中,θ为机身圆心点和智能机器人头部摄像头方向的连线与机身圆心点和足根部在机身连接点连线的夹角;
    通过智能机器人旋转之后再进行平移得到机身中心坐标系(x,y,z)在足坐标系中的坐标(x”,y”,z”),其中x”=x’;y”=y’+r;r为机身半径,即机身圆心点到足根部在机身连接点的距离;由于z轴未发生变换,所以z”=z;
    利用上述方法,通过机身圆心点的移动推算出移动过程中各足末端位置的对应坐标。
  11. 如权利要求6所述的通过智能终端控制智能机器人的方法,其特征在于,在模拟摇杆界面上设置动作组按键,预先将与动作组按键对应的动作组以内置或下载的方式存储到智能机器人内部。
  12. 如权利要求6所述的通过智能终端控制智能机器人的方法,其特征在于,智能机器人通过灯光、蜂鸣声提醒用户当前智能机器人采用何种方式建立连接。
  13. 如权利要求11所述的通过智能终端控制智能机器人的方法,其特征在于,通过网络升级的方式对智能机器人内部的动作组进行更新。
  14. 如权利要求11所述的通过智能终端控制智能机器人的方法,其特征在于,在模拟摇杆界面上显示智能机器人拍摄到的视频,并将虚拟摇杆标志与动作组按键半透明化。
PCT/CN2017/081075 2016-04-21 2017-04-19 通过智能终端与智能机器人建立连接并进行控制的方法 WO2017181956A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610251433.3A CN105844881A (zh) 2016-04-21 2016-04-21 机器人与遥控器建立连接的方法
CN201610251117.6A CN105931440A (zh) 2016-04-21 2016-04-21 机器人与遥控器建立连接的方法
CN201610251405.1 2016-04-21
CN201610251405.1A CN105739437B (zh) 2016-04-21 2016-04-21 通过智能终端控制机器人的方法
CN201610251433.3 2016-04-21
CN201610251117.6 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017181956A1 true WO2017181956A1 (zh) 2017-10-26

Family

ID=60116587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081075 WO2017181956A1 (zh) 2016-04-21 2017-04-19 通过智能终端与智能机器人建立连接并进行控制的方法

Country Status (1)

Country Link
WO (1) WO2017181956A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565397A (zh) * 2020-04-28 2020-08-21 北京芯创睿胜科技有限公司 管理获取WiFi设备兼容热点的系统及方法
CN112153614A (zh) * 2020-08-19 2020-12-29 北京旷视机器人技术有限公司 应用于机器人的控制方法、装置、机器人及存储介质
CN113179491A (zh) * 2021-04-29 2021-07-27 北京云迹科技有限公司 多网络通讯方法、装置、机器人及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938393B1 (fr) * 2008-11-10 2011-07-29 Gostai Procede de connexion d'un equipement communicant a un point d'acces sans fil, et systeme informatique et equipement pour la mise en oeuvre du procede
CN103916875A (zh) * 2014-04-24 2014-07-09 山东大学 基于wifi无线网络多类控制终端的管理与规划系统
CN104301891A (zh) * 2014-09-18 2015-01-21 深圳市螺光科技有限公司 智能设备与WiFi路由器互联的方法和系统
CN105307166A (zh) * 2014-05-27 2016-02-03 华为技术有限公司 终端切换方法、接入设备、终端及系统
CN105739437A (zh) * 2016-04-21 2016-07-06 奇弩(北京)科技有限公司 通过智能终端控制机器人的方法
CN105844881A (zh) * 2016-04-21 2016-08-10 奇弩(北京)科技有限公司 机器人与遥控器建立连接的方法
CN105931440A (zh) * 2016-04-21 2016-09-07 奇弩(北京)科技有限公司 机器人与遥控器建立连接的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938393B1 (fr) * 2008-11-10 2011-07-29 Gostai Procede de connexion d'un equipement communicant a un point d'acces sans fil, et systeme informatique et equipement pour la mise en oeuvre du procede
CN103916875A (zh) * 2014-04-24 2014-07-09 山东大学 基于wifi无线网络多类控制终端的管理与规划系统
CN105307166A (zh) * 2014-05-27 2016-02-03 华为技术有限公司 终端切换方法、接入设备、终端及系统
CN104301891A (zh) * 2014-09-18 2015-01-21 深圳市螺光科技有限公司 智能设备与WiFi路由器互联的方法和系统
CN105739437A (zh) * 2016-04-21 2016-07-06 奇弩(北京)科技有限公司 通过智能终端控制机器人的方法
CN105844881A (zh) * 2016-04-21 2016-08-10 奇弩(北京)科技有限公司 机器人与遥控器建立连接的方法
CN105931440A (zh) * 2016-04-21 2016-09-07 奇弩(北京)科技有限公司 机器人与遥控器建立连接的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565397A (zh) * 2020-04-28 2020-08-21 北京芯创睿胜科技有限公司 管理获取WiFi设备兼容热点的系统及方法
CN112153614A (zh) * 2020-08-19 2020-12-29 北京旷视机器人技术有限公司 应用于机器人的控制方法、装置、机器人及存储介质
CN113179491A (zh) * 2021-04-29 2021-07-27 北京云迹科技有限公司 多网络通讯方法、装置、机器人及存储介质
CN113179491B (zh) * 2021-04-29 2022-09-16 北京云迹科技股份有限公司 多网络通讯方法、装置、机器人及存储介质

Similar Documents

Publication Publication Date Title
CN110515682B (zh) 信息处理装置、非暂时性计算机可读介质和信息处理方法
WO2020168569A1 (zh) 智能设备配网方法、装置、电子设备及存储介质
WO2017181956A1 (zh) 通过智能终端与智能机器人建立连接并进行控制的方法
CN103916875B (zh) 基于wifi无线网络多类控制终端的管理与规划系统
KR102473262B1 (ko) 통신 연결의 형성 또는 해제를 제어하는 전자 장치 및 그 동작 방법
US20150127124A1 (en) Information processing system, information processing method, information processing apparatus, portable terminal, and control method and control program thereof
Corujo et al. Using an open-source IEEE 802.21 implementation for network-based localized mobility management
CN108189029B (zh) 模块化机器人的控制系统、模块化机器人系统及控制模块化机器人的方法
JP7089301B2 (ja) ロボットを制御するシステム、方法及びコンピュータ読み取り可能な媒体
JP2000049800A (ja) ネットワークリモートコントロールシステム
WO2015159588A1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2014155853A1 (ja) 遠隔作業支援システム及び遠隔作業支援プログラム記憶媒体
CN105739437B (zh) 通过智能终端控制机器人的方法
US20200187335A1 (en) Systems and methods for determining lighting fixture arrangement information
JP5470516B2 (ja) 移動体操作用無線通信装置および通信制御プログラムならびに移動体
CN106302562B (zh) 家电的远程控制系统及其控制方法
CN113645596A (zh) 一种基于物联网的电动床组网配对方法和装置
US20200184222A1 (en) Augmented reality tools for lighting design
JP2009000408A (ja) 電子ペット情報移行方法、電子ペットシステム、携帯電話端末及びペット型ロボット
CN108259601A (zh) 车联网中车机和手机应用程序基于usb的通信装置及方法
CN105786169B (zh) 多个电子设备进行协同动作的方法、电子设备
CN108234494A (zh) 一种互动直播方法和系统
WO2023202131A1 (zh) 设备互联方法、装置、电子设备及存储介质
CN109121128B (zh) 多工业机器人组网下用户信息更新的方法及系统
CN109100988B (zh) 一种工业机器人协同作业的方法及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785440

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785440

Country of ref document: EP

Kind code of ref document: A1