WO2017181756A1 - 一种隧道保护的方法及装置 - Google Patents

一种隧道保护的方法及装置 Download PDF

Info

Publication number
WO2017181756A1
WO2017181756A1 PCT/CN2017/072486 CN2017072486W WO2017181756A1 WO 2017181756 A1 WO2017181756 A1 WO 2017181756A1 CN 2017072486 W CN2017072486 W CN 2017072486W WO 2017181756 A1 WO2017181756 A1 WO 2017181756A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsp
primary
protection relationship
protection
relationship
Prior art date
Application number
PCT/CN2017/072486
Other languages
English (en)
French (fr)
Inventor
梁兰飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017181756A1 publication Critical patent/WO2017181756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for tunnel protection.
  • Multi-Protocol Label Switching Traffic Engineering is a technology that combines Traffic Engineering (TE) technology with Multi-Protocol Label Switching (MPLS).
  • RSVP-TE Resource ReSer Vation Protocol-Traffic Engineering
  • TE FRR Traffic Engineering Fast Reroute
  • TE HSB Traffic Engineering Hot Standby
  • the TE FRR protection technology is a local protection mode.
  • the TE FRR uses a pre-established Label Switched Path (LSP) to protect one or more LSPs.
  • LSP Label Switched Path
  • An LSP is called a primary LSP.
  • the two special node types in the protection process are: Point of Local Repair (PLR) and Merge Point (MP), where the PLR must be on the path of the primary LSP and cannot be the tail node; the MP must On the path of the primary LSP, and not the head node.
  • PLR Point of Local Repair
  • MP Merge Point
  • the TE FRR protection technology mainly has the following two implementation modes: Bypass protection and Detour protection.
  • the bypass protection mode is also called the device backup (Facility Backup). This protection mode protects multiple LSPs with a protection path. This protection path is called a bypass label switching path (Bypass LSP).
  • the bypass protection mode is shown in Figure 1.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3.
  • the bypass LSP1 (referred to as B1) path is R1 ⁇ L13b ⁇ R3, and B1 forms a node protection with the primary LSP.
  • the link failure detection mechanism such as the interface bidirectional forwarding detection technology, triggers the handover.
  • the flow is cut to B1.
  • the bypass LSP2 (B2) path is R2 ⁇ L23b ⁇ R3, which forms link protection with the primary LSP.
  • the primary LSP traffic is cut to B2.
  • the Detour protection mode is also called a one-to-one backup. This protection mode establishes an additional protection path in parallel for each segment of the primary LSP, and tries to ensure that any link or node of the primary LSP fails.
  • the service traffic of the primary LSP is affected.
  • This protection path is called a detour LSP.
  • the Detour protection method is shown in Figure 2.
  • the main LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3 ⁇ L34a ⁇ R4.
  • the Detour LSP (referred to as D1) path on R1 is R1 ⁇ L12b ⁇ R2 ⁇ L23a ⁇ R3 ⁇ L34a ⁇ R4, and protects the L12a link on the primary LSP.
  • D2 (R2 ⁇ L23b ⁇ R3 ⁇ L34a ⁇ R4) and D3 (R3 ⁇ L34b ⁇ R4) protect the L23a and L34a links of the primary LSP, respectively.
  • TE HSB is an end-to-end protection method.
  • the main LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3 ⁇ L34a ⁇ R4.
  • the primary LSP is protected by a hot-standby LSP.
  • the fault detection mechanism such as the bidirectional forwarding detection technology, triggers the primary LSP traffic to be switched to Hot.
  • -Standby LSP (R1 ⁇ L15b ⁇ R5 ⁇ L54b ⁇ R4).
  • the Graceful shutdown (GS) mechanism is described in RFC5817.
  • the graceful shutdown mechanism indicates that the Path Err message advertises the network resource information that the tunnel is closed by measuring the path error, so that the RSVP-TE dynamic tunnel can be rerouted. Try to avoid traffic interruptions.
  • the error code in the Path Err message is 25.
  • the error value is 7, the local link resource needs to be maintained. If the error value is 8, the local node resource needs to be maintained.
  • the original LSP path (the path before R3 gracefully closes) is: R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3 ⁇ L34a ⁇ R4.
  • the error code is 25, error A Path Err message with an Error Value of 8.
  • the original LSP receives the Path Err message and performs a make-before-break (MBB) to change the tunnel attributes without losing data or occupying extra bandwidth.
  • MBB make-before-break
  • MPLS-TE networks often have high reliability requirements, and TE FRR or TE HSB protection is generally required in the backbone network.
  • the protection LSP such as the Bypass LSP in the bypass mode, the Detour LSP in the Detour protection mode, or the Hot-Standby LSP in the TE HSB
  • the Bypass protection mode (as shown in Figure 1), if the bypass LSP is affected by the resource shutdown, the primary LSP fault traffic is switched to the bypass LSP, and the bypass LSP resource is shut down, resulting in the loss of service data traffic.
  • the present invention provides a method and an apparatus for tunnel protection, in order to solve the problem that service data that is gracefully shut down in an MPLS-TE network is easily lost and the reliability of traffic forwarding is improved.
  • the present invention provides a tunnel protection method, the method comprising:
  • the first node receives the measurement path error indication message sent by the downstream node on the first label switching path LSP for indicating that the node or the interface is closed, and records the node or interface information that is gracefully closed according to the measurement path error indication message.
  • the first node is a head node of the first LSP;
  • the first node selects the second LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establishes the second LSP and the primary LSP. The relationship between protection.
  • the step of establishing a protection relationship between the second LSP and the primary LSP includes: when the second LSP is a bypass Bypass LSP of the primary LSP, establishing the second LSP and Establishing a fast rerouting FRR Bypass protection relationship between the primary LSPs; or establishing a FRR Detour between the second LSP and the primary LSP when the second LSP is a detour LSP of the primary LSP And protecting the relationship; or, when the second LSP is a hot backup Hot-Standby LSP of the primary LSP, establishing a Hot-Standby protection relationship between the second LSP and the primary LSP.
  • the method further includes: determining the first LSP. Whether the relationship between the primary LSP and the primary LSP is established, and whether the traffic of the primary LSP is switched to the first LSP; When the first LSP is switched, the protection relationship between the first LSP and the primary LSP is removed; when the traffic of the primary LSP has been switched to the first LSP, the first LSP is maintained. The protection relationship between the primary LSPs is performed after the first LSP is first constructed and then the MBB is removed.
  • the step of removing the protection relationship between the first LSP and the primary LSP includes: tearing down the first LSP and The FRR Bypass protection relationship between the primary LSPs, and the third LSP on the link that does not gracefully close according to the recorded node or interface information that is gracefully closed, and establishes between the third LSP and the primary LSP.
  • the FRR Bypass protection relationship when the FRR bypass protection relationship is established between the first LSP and the primary LSP, the step of removing the protection relationship between the first LSP and the primary LSP includes: tearing down the first LSP and The FRR Bypass protection relationship between the primary LSPs, and the third LSP on the link that does not gracefully close according to the recorded node or interface information that is gracefully closed, and establishes between the third LSP and the primary LSP.
  • the FRR Bypass protection relationship when the FRR bypass protection relationship is established between the first LSP and the primary LSP, the step of removing the protection relationship between the first LSP and the primary LSP includes: tearing down the
  • the maintaining the protection relationship between the first LSP and the primary LSP includes: maintaining an FRR Bypass protection relationship between the first LSP and the primary LSP, and marking the first LSP as gracefully closed status.
  • the step of removing the protection relationship between the first LSP and the primary LSP includes: determining whether an upstream LSP is merged to And the first LSP; if yes, continuing to transmit the measurement path error indication message to the upstream LSP merged to the first LSP, and after the LSPs merged to the first LSP are all removed, the first LSP is removed.
  • An FRR Detour protection relationship between an LSP and a primary LSP and, according to the recorded node or interface information that is gracefully closed, selecting a fourth LSP on the link that does not gracefully close, establishing the fourth LSP and the primary
  • the FRR Detour protection relationship between the LSPs if not, the FRR Detour protection relationship between the first LSP and the primary LSP is directly removed, and the node or interface information that is gracefully closed according to the recorded record is selected on the link.
  • a fifth LSP that is gracefully closed does not occur, and an FRR Detour protection relationship between the fifth LSP and the primary LSP is established.
  • the step of maintaining the protection relationship between the first LSP and the primary LSP includes: maintaining an FRR Detour protection relationship between the first LSP and the primary LSP, marking the first LSP as an elegant closed state, and determining Whether the upstream LSP is merged into the first LSP; if yes, the measurement path error indication message is continuously delivered to the upstream LSP merged to the first LSP.
  • the step of removing the protection relationship between the first LSP and the primary LSP includes: gracefully shutting down according to the occurrence of the record.
  • the Hot-Standby protection relationship between the sixth LSP and the primary LSP is removed.
  • establishing a Hot-Standby protection relationship between the sixth LSP and the primary LSP is establishing a Hot-Standby protection relationship between the sixth LSP and the primary LSP.
  • performing MBB on the first LSP includes: performing MBB on the first LSP, and circumventing the node or interface address where graceful shutdown occurs according to the recorded node or interface information that is gracefully closed.
  • the present invention also provides a tunnel protection device, the device comprising:
  • a receiving module configured to receive a measurement path error indication message sent by a downstream node on the first label switching path LSP for indicating that the node or the interface is closed, and record an elegant closed node or interface according to the measurement path error indication message Information, wherein the first node is a head node of the first LSP;
  • Establishing a protection relationship module when configuring a protection LSP for a primary LSP, selecting a second LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establishing the second LSP and Protection relationship between the primary LSPs.
  • the establishing a protection relationship module is configured to establish fast rerouting FRR Bypass protection between the second LSP and the primary LSP when the second LSP is a bypass Bypass LSP of the primary LSP.
  • the FRR Detour protection relationship between the second LSP and the primary LSP is established when the second LSP is the detour LSP of the primary LSP; or the second LSP is the A Hot-Standby protection relationship between the second LSP and the primary LSP is established when the primary LSP is hot-backed by the Hot-Standby LSP.
  • the device further includes: a first determining module, configured to determine whether the first LSP is in a protection relationship with the primary LSP; and a second determining module, configured to establish between the first LSP and the primary LSP Determining whether the traffic of the primary LSP is switched to the first LSP, and removing the module, when the traffic of the primary LSP has not been switched to the first LSP, the first LSP and the LSP are removed.
  • a protection relationship between the primary LSPs, and a processing module configured to maintain a protection relationship between the first LSP and the primary LSP when the traffic of the primary LSP has been switched to the first LSP After the first LSP is executed, the MBB is removed after being built.
  • the removal module is specifically configured to remove the FRR Bypass protection relationship between the first LSP and the primary LSP, and according to the record An elegantly closed node or interface information is generated, and a third LSP that does not gracefully close on the link is selected, and an FRR Bypass protection relationship between the third LSP and the primary LSP is established.
  • the processing module is configured to maintain the first LSP and the primary
  • the protection relationship between the LSPs is specifically used to maintain the FRR Bypass protection relationship between the first LSP and the primary LSP, and mark the first LSP as an elegant closed state.
  • the removal module is specifically configured to determine whether an upstream LSP is merged into the first LSP; if yes, merge to the The upstream LSP of the first LSP continues to transmit the measurement path error indication message, and after the LSPs merged to the first LSP are all removed, the FRR Detour protection relationship between the first LSP and the primary LSP is removed; And selecting a fourth LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establishing an FRR Detour protection relationship between the fourth LSP and the primary LSP; if not, directly dismantling An FRR Detour protection relationship between the first LSP and the primary LSP, and a fifth LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establishes the fifth The FRR Detour protection relationship between the LSP and the primary LSP.
  • the processing module is configured to maintain the first LSP and the The protection relationship between the primary LSPs is specifically used to maintain the FRR Detour protection relationship between the first LSP and the primary LSP, marking the first LSP as an elegantly closed state, and determining whether an upstream LSP is merged into the first LSP. If yes, the measurement path error indication message is continuously delivered to the upstream LSP merged to the first LSP.
  • the removal module is specifically configured to: firstly construct the first LSP according to the recorded node or interface information that is gracefully closed. After the MBB is removed to the sixth LSP, the graceful shutdown is not performed on the link, and the hot-standby protection relationship between the first LSP and the primary LSP is removed, and the sixth LSP is established between the sixth LSP and the primary LSP. Hot-Standby protection relationship.
  • the processing module when the traffic of the primary LSP has been switched to the first LSP, and the hot-standby protection relationship is established between the first LSP and the primary LSP, the processing module is configured to perform the first LSP.
  • the MBB After the MBB is first built, the MBB is specifically configured to perform MBB on the first LSP, and the node or interface address that is gracefully closed is circumvented according to the recorded node or interface information that is gracefully closed.
  • the invention selects the second LSP that does not gracefully close on the link by recording the node or interface information that is gracefully closed, and effectively avoids the link that has gracefully closed, and solves the existing MPLS-TE network.
  • the problem that the service data is easily lost when the LSP is gracefully shut down is effectively avoided.
  • the node or interface that gracefully shuts down is effectively avoided, and the reliability of traffic forwarding in the MPLS-TE network is improved.
  • FIG. 1 is a schematic diagram showing a path of a Bypass protection method in the prior art
  • FIG. 2 is a schematic diagram showing a path of a Detour protection method in the prior art
  • FIG. 3 is a schematic diagram showing a path of a TE HSB protection mode in the prior art
  • FIG. 4 is a schematic view showing a path when an elegant shutdown occurs in the prior art
  • Figure 5 is a flow chart showing the steps of a method for tunnel protection in an embodiment of the present invention.
  • Figure 6 is a flow chart showing the steps of the method for tunnel protection after step 501 in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an implementation of establishing an FRR Bypass protection relationship between a second LSP and a primary LSP in an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing the implementation of the protection relationship between the first LSP and the primary LSP when the FRR bypass protection relationship is established between the first LSP and the primary LSP in the embodiment of the present invention
  • FIG. 9 is a schematic diagram showing the implementation of maintaining a protection relationship between a first LSP and a primary LSP when an FRR bypass protection relationship is established between the first LSP and the primary LSP in the embodiment of the present invention
  • FIG. 10 is a schematic diagram of an implementation of establishing an FRR Detour protection relationship between a second LSP and a primary LSP in an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing the implementation of the protection relationship between the first LSP and the primary LSP when the FRR Detour protection relationship is established between the first LSP and the primary LSP in the embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the implementation of maintaining a protection relationship between a first LSP and a primary LSP when an FRR Detour protection relationship is established between the first LSP and the primary LSP in the embodiment of the present invention
  • FIG. 13 is a schematic diagram of an implementation of establishing a Hot-Standby protection relationship between a second LSP and a primary LSP in an embodiment of the present invention
  • FIG. 14 is a schematic diagram showing the implementation of the protection relationship between the first LSP and the primary LSP when the hot-standby protection relationship is established between the first LSP and the primary LSP in the embodiment of the present invention
  • FIG. 15 is a schematic diagram of an implementation of performing MBB on a first LSP when a hot-standby protection relationship is established between a first LSP and a primary LSP in the embodiment of the present invention
  • Figure 16 is a diagram showing the apparatus for tunnel protection in the embodiment of the present invention.
  • FIG. 5 it is a flowchart of steps of a method for tunnel protection in an embodiment of the present invention, where the method includes the following steps:
  • Step 501 The first node receives a measurement path error indication message sent by a downstream node on the first label switching path LSP to indicate that the node or the interface is closed, and records the node or interface information that is gracefully closed according to the measurement path error indication message. .
  • the first node is a head node of the first LSP.
  • the node or interface information that is gracefully closed may be saved under the first LSP according to the Path Error message.
  • the node or interface information that occurs gracefully shut down can be the node or interface address where graceful shutdown occurs.
  • Step 502 When configuring the protection LSP for a primary LSP, the first node selects the second LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establishes the second LSP and the primary LSP. The relationship of protection.
  • the node or interface information that is gracefully closed may be recorded according to the record.
  • a second LSP that does not gracefully shut down is selected on the link, and a protection relationship between the second LSP and the primary LSP is established.
  • different types of protection relationships may be established according to the type of the second LSP. For example, if the second LSP is a Bypass LSP of the primary LSP, the second LSP is established.
  • the protection LSP when the protection LSP is configured for a primary LSP, the second LSP that does not gracefully close on the link is selected and the primary LSP is established between the primary LSP and the second LSP.
  • the protection relationship effectively circumvents the nodes or interfaces that have been gracefully closed, and solves the problem that the service data that is easily closed when the protection LSPs in the existing MPLS-TE network are gracefully shut down is improved, and the MPLS-TE network is improved. The reliability of traffic forwarding.
  • the node or the interface that needs to be gracefully shut down needs to be circumvented when the protection LSP is configured on the primary LSP.
  • the protection relationship is further processed to avoid traffic loss on the primary LSP and ensure the reliability of traffic forwarding.
  • FIG. 6 it is a flow chart of the steps of the method for tunnel protection after step 501. Specifically, after step 501, the method includes the following steps:
  • Step 601 Determine whether a protection relationship is established between the first LSP and the primary LSP.
  • the first node determines whether the primary LSP has a protection relationship with the primary LSP, and if yes, proceeds to step 602.
  • the protection relationship may include an FRR Bypass protection relationship, an FRR Detour protection relationship, and a Hot-Standby protection relationship.
  • Step 602 When a protection relationship is established between the first LSP and the primary LSP, determine whether the traffic of the primary LSP is switched to the first LSP.
  • this step specifically, when a protection relationship is established between the first LSP and the primary LSP, it is determined whether the traffic of the primary LSP is switched to the first LSP. If the primary LSP is not switched to the first LSP, the process proceeds to step 603. Switching to the first LSP proceeds to step 604.
  • Step 603 When the traffic of the primary LSP has not been switched to the first LSP, the protection relationship between the first LSP and the primary LSP is removed.
  • the protection relationship between the first LSP and the primary LSP is removed.
  • the protection relationship between the first LSP and the primary LSP is considered to be the FRR Bypass protection relationship, the FRR Detour protection relationship, or the Hot-Standby protection relationship.
  • the FRR bypass protection relationship between the first LSP and the primary LSP is also required to be gracefully closed according to the record.
  • the node or interface information is used to select the third LSP that does not gracefully close on the link, and establish an FRR Bypass protection relationship between the third LSP and the primary LSP.
  • the protection relationship between the first LSP and the primary LSP is the FRR Detour protection relationship
  • the first LSP needs to be merged into the first LSP when the protection relationship between the first LSP and the primary LSP is removed. Then, the measurement path error indication message is sent to the upstream LSP that is merged to the first LSP, and after the LSPs merged to the first LSP are all removed, the FRR Detour protection relationship between the first LSP and the primary LSP is removed, and the record is deleted according to the record.
  • the node or interface information that is gracefully closed is selected, and the fourth LSP that does not gracefully close on the link is selected, and the FRR Detour protection relationship between the fourth LSP and the primary LSP is established; if not, the first LSP and the primary LSP are directly removed.
  • the FRR Detour protection relationship between the fifth LSP and the primary LSP can be established by selecting the fifth LSP on the link that does not gracefully close according to the recorded node or interface information that is gracefully closed. .
  • the protection relationship between the first LSP and the primary LSP is a Hot-Standby protection relationship
  • the node or interface information that is gracefully closed based on the recorded information will be used.
  • the MBB is removed to the sixth LSP that does not gracefully shut down on the link.
  • the Hot-Standby protection relationship between the first LSP and the primary LSP is removed, and the Hot-Standby between the sixth LSP and the primary LSP is established. Protect the relationship.
  • step 604 when the traffic of the primary LSP has been switched to the first LSP, the protection relationship between the first LSP and the primary LSP is maintained or the MBB is performed after the first LSP is performed.
  • the first LSP when the traffic of the primary LSP has been switched to the first LSP, specifically, if the protection relationship between the first LSP and the primary LSP is an FRR bypass protection relationship or an FRR Detour protection relationship, the first LSP is maintained.
  • the protection relationship between the first LSP and the primary LSP is the FRR bypass protection relationship
  • the first LSP is marked as gracefully closed when the protection relationship between the first LSP and the primary LSP is maintained.
  • the protection relationship between the first LSP and the primary LSP is the FRR Detour protection relationship
  • the first LSP is gracefully closed when the FRR Detour protection relationship between the first LSP and the primary LSP is maintained, and the upstream LSP is determined. Merging to the first LSP; if yes, continuing to pass the measurement path error indication to the upstream LSP merged to the first LSP Message.
  • the MBB is performed on the first LSP, and the node or interface address where graceful shutdown occurs is circumvented according to the recorded node or interface information that is gracefully closed.
  • the second LSP on the link that does not gracefully close is selected according to the node or interface information that is gracefully closed. If the first LSP is in a protection relationship with the primary LSP and the traffic on the primary LSP has not been switched to the first LSP, the first LSP is the same as the primary LSP.
  • the protection relationship between the LSPs such as the FRR Bypass protection relationship, the FRR Detour protection relationship, and the Hot-Standby protection relationship, removes the protection relationship between the first LSP and the primary LSP.
  • the first LSP is associated with the primary LSP.
  • the protection relationship between the first LSP and the primary LSP is maintained according to the type of the protection relationship between the first LSP and the primary LSP.
  • An LSP performs the MBB process.
  • the present embodiment minimizes the impact of the graceful shutdown of the node or interface on the primary LSP in accordance with the recorded node or interface information that is gracefully closed, and effectively avoids the node or interface that is gracefully closed.
  • the problem that the data on the primary LSP is easily lost due to the graceful shutdown of the protection LSP is solved, and the reliability of the traffic forwarding in the MPLS-TE network is improved.
  • the FRR Bypass protection relationship when a protection relationship is not established between the first LSP and the primary LSP, the second LSP is established between the primary LSP and the primary LSP.
  • the protection relationship is established, and the protection relationship between the first LSP and the primary LSP is established, the protection relationship between the first LSP and the primary LSP is removed, the protection relationship between the first LSP and the primary LSP is maintained, or the MBB is performed on the first LSP.
  • the implementation of the FRR Bypass protection relationship between the second LSP and the primary LSP is established.
  • the primary LSP path is R1 ⁇ L12 ⁇ R2 ⁇ L23 ⁇ R3.
  • the L43 of the link in the first LSP Bypass LSP is gracefully shut down (gs).
  • the primary LSP path is R1 ⁇ L12 ⁇ R2 ⁇ L23 ⁇ R3, and the primary LSP forms an FRR Bypass protection relationship with the first Bypass LSP (R2 ⁇ L24 ⁇ R4 ⁇ L43 ⁇ R3), and the protection relationship is not switched. status.
  • a (25, 7) or (25, 8) Path Err message is sent to the R2 along the first Bypass LSP, and when the R2 receives the Path Err message, the first Bypass is received.
  • the LSP is marked as gracefully closed, and the unswitched FRR Bypass protection relationship is removed, and the primary LSP is established and the second bypass is not gracefully closed.
  • FRR Bypass protection relationship between LSPs R2 ⁇ L25 ⁇ R5 ⁇ L53 ⁇ R3
  • the FRR bypass protection relationship is established between the first LSP and the primary LSP, the protection relationship between the first LSP and the primary LSP is maintained.
  • the primary LSP path is R1 ⁇ L12 ⁇ R2 ⁇ L23 ⁇ R3, and the primary LSP and the first bypass LSP (R2 ⁇ L25 ⁇ R5 ⁇ L53 ⁇ R3) form an FRR Bypass protection relationship, and the L23 link fails.
  • the FRR Bypass protection relationship is in a switched state.
  • a (25, 7) or (25, 8) Path Err message is sent to the R2 along the first Bypass LSP, and when the R2 receives the Path Err message, the first Bypass LSP is received.
  • FIG. 10 an implementation diagram of establishing an FRR Detour protection relationship between a second LSP and a primary LSP is shown.
  • the primary LSP path is R1 ⁇ L12 ⁇ R2 ⁇ L23 ⁇ R3.
  • the FRR Detour protection relationship is configured, the R1 point forms an FRR Detour protection relationship.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3.
  • the R1 point forms the first Detour LSP (R1 ⁇ L12b ⁇ R2 ⁇ L23b ⁇ R3)
  • the R2 point forms the second.
  • Detour LSP (R2 ⁇ L23b ⁇ R3)
  • the protection relationship is in the unswitched state.
  • the L23b link is gracefully shut down, the Path Err message is sent upstream along the second Detour LSP.
  • the Path Err message reaches the R2 point.
  • the R2 point is ready to remove the second Detour LSP and the FRR Detour protection relationship. However, the first Detour is found.
  • the downstream path of the LSP is merged with the second Detour LSP.
  • the traffic passes through the second Detour LSP. Therefore, the second Detour LSP is not removed.
  • the Path Err message continues to be forwarded along the first Detour LSP. After the Path Err message reaches the R1 point, the R1 point first removes the first Detour LSP and sends a Path Tear message to R2.
  • the R2 removes the second Detour LSP.
  • the R2 point re-selects other links to form a new FRR Detour protection relationship according to the recorded node or interface information that is gracefully closed.
  • the new first Detour LSP path is: R1 ⁇ L12b ⁇ R2 ⁇ L23c ⁇ R3, new The two Detour LSP paths are: R2 ⁇ L23c ⁇ R3.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3.
  • the R1 point forms the first Detour LSP (R1 ⁇ L12b ⁇ R2 ⁇ L23b ⁇ R3)
  • the R2 point forms the second. Detour LSP (R2 ⁇ L23b ⁇ R3).
  • L12a fails, the primary LSP switches to the first Detour LSP.
  • the L23b link is gracefully shut down, the Path Err message is delivered to the R2 point.
  • the second Detour LSP is not removed.
  • a Detour LSP continues to be delivered upstream. Path Err After the message reaches the R1 point, since the primary LSP has been switched to the first Detour LSP, the R1 point does not respond to the first Detour LSP that gracefully shuts down, and the reselection of the link is handed over to the failback MBB of the primary LSP.
  • the implementation of the Hot-Standby protection relationship between the second LSP and the primary LSP is established.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3.
  • L23b is better than the L23c link. Therefore, when a Hot-Standby protection relationship is formed, it is preferably R1 ⁇ L12b ⁇ R2 ⁇ L23b ⁇ R3. However, because L23b is gracefully closed, the Path Err message is passed to R1. When the Hot-Standby protection relationship is re-formed, the L23b link is excluded.
  • the primary LSP forms a Hot-Standby protection relationship with R1 ⁇ L12b ⁇ R2 ⁇ L23c ⁇ R3.
  • the implementation of the protection relationship between the first LSP and the primary LSP is performed when a hot-standby protection relationship is established between the first LSP and the primary LSP.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3.
  • the Hot-Standby LSP path is R1 ⁇ L12b ⁇ R2 ⁇ L23b ⁇ R3, and the primary LSP and the Hot-Standby LSP.
  • a Hot-Standby protection relationship is formed and the protection relationship is in an unswitched state.
  • the L23b link is gracefully shut down, the Path Err message is delivered to R1, the Hot-Standby LSP is MBB processed, MBB is R1 ⁇ L12b ⁇ R2 ⁇ L23c ⁇ R3, and the primary LSP and the original Hot-Standby LSP are released from Hot-Standby protection. Relationship, re-establishing a Hot-Standby protection relationship with the new Hot-Standby LSP.
  • the primary LSP path is R1 ⁇ L12a ⁇ R2 ⁇ L23a ⁇ R3, and when the Hot-Standby protection relationship is configured, the Hot-Standby LSP is R1 ⁇ L12b ⁇ R2 ⁇ L23b ⁇ R3.
  • the L23b link is gracefully closed, and the Path Err message is delivered to R1.
  • the R1 node performs the MBB process according to the node or interface information that is gracefully closed in the Path Err message, and records the node or interface information that has been gracefully closed. Avoid the L23b link.
  • the reliability of traffic forwarding is improved by avoiding nodes or interfaces that are gracefully closed.
  • FIG. 16 a schematic diagram of a tunnel protection apparatus according to an embodiment of the present invention includes:
  • the receiving module 1601 is configured to receive a measurement path error indication message sent by a downstream node on the first label switching path LSP for indicating that the node or the interface is closed, and record the node or interface information that is gracefully closed according to the measurement path error indication message. ;
  • the protection relationship module 1602 is configured to: when configuring a protection LSP for a primary LSP, select a second LSP that does not gracefully close on the link according to the recorded node or interface information that is gracefully closed, and establish a second LSP and the primary LSP. Protection relationship between LSPs.
  • the protection relationship module is configured to establish a fast reroute FRR Bypass protection relationship between the second LSP and the primary LSP when the second LSP is the bypass bypass LSP of the primary LSP; or the second LSP is the primary LSP
  • the FRR Detour protection relationship between the second LSP and the primary LSP is established.
  • the second LSP is the hot standby Hot-Standby LSP of the primary LSP
  • the second LSP is established between the second LSP and the primary LSP. Hot-Standby protects the relationship.
  • the device further includes: a first determining module, configured to determine whether the first LSP is in a protection relationship with the primary LSP; and a second determining module, configured to establish a protection relationship between the first LSP and the primary LSP, Determining whether the traffic of the primary LSP is switched to the first LSP; and the removing module is configured to remove the protection relationship between the first LSP and the primary LSP when the traffic of the primary LSP has not been switched to the first LSP; When the traffic of the LSP has been switched to the first LSP, the protection relationship between the first LSP and the primary LSP is maintained or the MBB is removed after the first LSP is built.
  • a first determining module configured to determine whether the first LSP is in a protection relationship with the primary LSP
  • a second determining module configured to establish a protection relationship between the first LSP and the primary LSP, Determining whether the traffic of the primary LSP is switched to the first LSP
  • the removing module is configured to remove the protection relationship between the first LSP and the primary
  • the removal module is specifically configured to remove the FRR Bypass protection relationship between the first LSP and the primary LSP, and gracefully close according to the occurrence of the record.
  • the node or interface information is selected to be the third LSP on the link that does not gracefully close, and the FRR Bypass protection relationship between the third LSP and the primary LSP is established.
  • the processing module is configured to maintain a protection relationship between the first LSP and the primary LSP, and Specifically, the FRR Bypass protection relationship between the first LSP and the primary LSP is maintained, and the first LSP is marked as an elegant closed state.
  • the removal module is specifically configured to determine whether an upstream LSP is merged into the first LSP; if yes, the upstream LSP is merged to the first LSP.
  • the FRR Detour protection relationship between the first LSP and the primary LSP is removed; and the node or interface information that is gracefully closed according to the recorded occurrence And selecting the fourth LSP that does not gracefully close on the link, and establishing an FRR Detour protection relationship between the fourth LSP and the primary LSP; if not, directly removing the FRR Detour protection relationship between the first LSP and the primary LSP, and The FRR Detour protection relationship between the fifth LSP and the primary LSP is set up according to the recorded node or interface information that is gracefully closed.
  • the processing module is configured to maintain a protection relationship between the first LSP and the primary LSP, and Specifically, the FRR Detour protection relationship between the first LSP and the primary LSP is maintained, and the first LSP is marked as gracefully closed, and the upstream LSP is merged into the first LSP; if yes, the upstream LSP is merged to the upstream of the first LSP.
  • the LSP continues to pass the measurement path error indication message.
  • the removal module is specifically configured to: after the first LSP is first built and then the MBB is removed, according to the recorded node or interface information that is gracefully closed.
  • the sixth LSP that is gracefully shut down does not occur on the link, and the hot-standby protection relationship between the first LSP and the primary LSP is removed, and the hot-standby protection relationship between the sixth LSP and the primary LSP is established.
  • the traffic of the primary LSP is switched to the first LSP, and the first LSP is established between the primary LSP and the primary LSP.
  • the processing module is configured to perform MBB on the first LSP, and is specifically configured to perform MBB on the first LSP, and circumvent the graceful shutdown according to the recorded node or interface information that is gracefully closed. Node or interface address.
  • the modules or units in the tunnel protection device may pass through one or more digital signal processors (DSPs), application specific integrated circuits (ASICs), processors, microprocessors, controllers, and microcontrollers.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs Real-time programmable arrays
  • programmable logic devices or other electronic units, or any combination thereof.
  • the present disclosure relates to the field of communication, and solves the problem that the service data that is easily closed when the protection LSP is gracefully closed in the existing MPLS-TE network is effectively avoided, and the node or interface that gracefully closes is effectively avoided, and the MPLS-TE network is improved.
  • the reliability of traffic forwarding is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种隧道保护的方法及装置,其中,隧道保护的方法包括:第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据测量路径出错指示消息,记录发生优雅关闭的节点或接口信息,其中,第一节点为第一LSP的头节点;第一节点在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立第二LSP与主LSP之间的保护关系。本发明有效规避了发生优雅关闭的节点或接口,提高了MPLS-TE网络中流量转发的可靠性。

Description

一种隧道保护的方法及装置 技术领域
本发明涉及通信领域,尤其是涉及一种隧道保护的方法及装置。
背景技术
多协议标签交换流量工程(Multi-Protocol Label Switching Traffic Engineering)是一种将流量工程(Traffic Engineering,TE)技术与多协议标签交换(Multi-Protocol Label Switching,MPLS)相结合的技术,资源预留协议流量工程(Resource ReSer Vation Protocol-Traffic Engineering,RSVP-TE)用于在MPLS网络中建立TE动态隧道。关于TE动态隧道链路故障的保护技术,目前主要有流量工程快速重路由(Traffic Engineering Fast Reroute,TE FRR)和流量工程热备份(Traffic Engineering Hot Standby,TE HSB)两种。
TE FRR保护技术为一种局部保护方式,TE FRR使用一条预先建立的标签交换路径(Label Switched Path,LSP)来保护一条或多条LSP,其中,预先建立的LSP称为保护LSP,被保护的LSP称为主LSP。保护过程中两种特殊节点类型为:本地修复节点(Point of Local Repair,PLR)和汇聚节点(Merge Point,MP),其中,PLR必须在主LSP的路径上,且不能是尾节点;MP必须在主LSP的路径上,且不能是头节点。当局部链路或节点发生故障时,通过TE FRR技术,主LSP中的数据流量可以快速绕过故障链路或节点,从保护LSP进行转发。TE FRR保护技术主要有如下两种实现方式:旁路(Bypass)保护方式和绕路(Detour)保护方式。
Bypass保护方式也称为设备备份(Facility Backup),该保护方式用一条保护路径保护多条LSP,该保护路径称为旁路标签交换路径(Bypass LSP)。Bypass保护方式如图1所示,主LSP路径为R1→L12a→R2→L23a→R3。Bypass LSP1(简称B1)路径为R1→L13b→R3,B1与主LSP形成节点保护,当主LSP上L12a链路或R2节点故障时,通过链路失效检测机制,如接口双向转发检测技术触发切换,流量切至B1上。Bypass LSP2(简称B2)路径为R2→L23b→R3,与主LSP形成链路保护,当L23a链路故障时,主LSP流量切至B2。
Detour保护方式也称为一对一备份(One-to-one Backup),该保护方式分别为主LSP的每一段并行建立一条额外保护路径,尽力确保主LSP任何一条链路或节点失效都不会使主LSP的业务流量受到影响,该保护路径称为绕路标签交换路径(Detour LSP)。Detour保护方式如图2所示:主LSP路径为R1→L12a→R2→L23a→R3→L34a→R4。R1上形成Detour LSP(简称D1)路径为R1→L12b→R2→L23a→R3→L34a→R4,保护主LSP上L12a链路,当L12a发生故障时,主LSP流量切换至D1。同理,D2(R2 →L23b→R3→L34a→R4)和D3(R3→L34b→R4)分别保护主LSP的L23a和L34a链路。
TE HSB是一种端到端的保护方式。如图3所示,主LSP路径为R1→L12a→R2→L23a→R3→L34a→R4。主LSP形成之后,通过建立一条热备份标签交换路径(Hot-Standby LSP)对主LSP进行保护,当主LSP路径发生故障时,通过故障检测机制,如双向转发检测技术,触发主LSP流量切换至Hot-Standby LSP(R1→L15b→R5→L54b→R4)。
在RFC5817中对优雅关闭(Graceful shutdown,gs)机制进行了相关描述,优雅关闭机制通过测量路径出错指示Path Err消息通告隧道被关闭的网络资源信息,从而使RSVP-TE动态隧道能够进行重路由,尽量避免流量中断。其中Path Err消息中错误码为25,错误值为7时表示本地链路资源需要维护,错误值为8时表示本地节点资源需要维护。如图4所示,原LSP路径(R3优雅关闭之前的路径)为:R1→L12a→R2→L23a→R3→L34a→R4,R3节点优雅关闭时,发送错误码(Error Code)为25,错误值(Error Value)为8的Path Err消息。原LSP收到Path Err消息,进行先建后拆(make-before-break,MBB),在尽可能不丢失数据,也不占用额外带宽的前提下改变隧道属性。绕过发生优雅关闭的R3,MBB后的隧道新路径如图中新LSP路径为:R1→L12a→R2→L25a→R5→L54a→R4。
但是在实际网络部署中,由于MPLS-TE网络对可靠性往往有较高的要求,主干网络中一般会TE FRR或TE HSB保护。在部署这些保护技术的MPLS-TE网络中,如果保护LSP(如Bypass保护方式中的Bypass LSP、Detour保护方式中的Detour LSP、TE HSB中的Hot-Standby LSP)受资源关闭影响,将会大大降低保护的可靠性。比如:在Bypass保护方式中(如图1所示),如果Bypass LSP受到资源关闭的影响,主LSP故障流量切换至Bypass LSP后,Bypass LSP资源关闭,则会导致业务数据流量的丢失。
综上所述,在MPLS-TE网络中存在着保护LSP发生优雅关闭导致的业务数据容易流失的问题,降低了流量转发的可靠性。
发明内容
为了解决MPLS-TE网络中存在的保护LSP发生优雅关闭导致的业务数据容易流失的问题,提高流量转发的可靠性,本发明提供了一种隧道保护的方法及装置。
为了解决上述技术问题,本发明提供了一种隧道保护的方法,方法包括:
第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据所述测量路径出错指示消息,记录发生优雅关闭的节点或接口信息,其中,所述第一节点为第一LSP的头节点;
第一节点在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立所述第二LSP与所述主LSP 之间的保护关系。
可选的,所述建立所述第二LSP与所述主LSP之间的保护关系的步骤包括:所述第二LSP为所述主LSP的旁路Bypass LSP时,建立所述第二LSP与所述主LSP之间的快速重路由FRR Bypass保护关系;或者,所述第二LSP为所述主LSP的绕路Detour LSP时,建立所述第二LSP与所述主LSP之间的FRR Detour保护关系;或者,所述第二LSP为所述主LSP的热备份Hot-Standby LSP时,建立所述第二LSP与所述主LSP之间的Hot-Standby保护关系。
可选的,在所述第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息之后,所述方法还包括:判断所述第一LSP与所述主LSP是否建立有保护关系;在第一LSP与主LSP之间建立有保护关系时,判断所述主LSP的流量是否切换至所述第一LSP;在所述主LSP的流量尚未切换至所述第一LSP时,拆除所述第一LSP与所述主LSP之间的保护关系;在所述主LSP的流量已切换至所述第一LSP时,维持所述第一LSP与所述主LSP之间的保护关系或对所述第一LSP执行先建后拆MBB。
可选的,在第一LSP与主LSP之间建立有FRR Bypass保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:拆除所述第一LSP与主LSP之间的FRR Bypass保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,建立所述第三LSP与所述主LSP之间的FRR Bypass保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Bypass保护关系时,维持所述第一LSP与所述主LSP之间的保护关系;所述维持所述第一LSP与所述主LSP之间的保护关系的步骤包括:维持所述第一LSP与主LSP之间的FRR Bypass保护关系,以及标记第一LSP为优雅关闭状态。
可选的,在第一LSP与主LSP之间建立有FRR Detour保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:判断是否有上游LSP合并至所述第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息,并在合并至所述第一LSP的上游LSP全部拆除后,拆除所述第一LSP与主LSP之间的FRR Detour保护关系;以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立所述第四LSP与所述主LSP之间的FRR Detour保护关系;若否,直接拆除所述第一LSP与所述主LSP之间的FRR Detour保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立所述第五LSP与所述主LSP之间的FRR Detour保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Detour保护关系时,维持所述第一LSP与所述主LSP之间的保护关系, 所述维持所述第一LSP与所述主LSP之间的保护关系的步骤包括:维持所述第一LSP与主LSP之间的FRR Detour保护关系,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息。
可选的,在第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:根据记录的发生优雅关闭的节点或接口信息,将所述第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,以及,拆除所述第一LSP与主LSP之间的Hot-Standby保护关系,并建立所述第六LSP与所述主LSP之间的Hot-Standby保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有Hot-Standby保护关系时,对所述第一LSP执行先建后拆MBB,所述对所述第一LSP执行先建后拆MBB的步骤包括:对所述第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
依据本发明的另一个方面,本发明还提供了一种隧道保护的装置,所述装置包括:
接收模块,用于接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据所述测量路径出错指示消息,记录发生优雅关闭的节点或接口信息,其中,所述第一节点为第一LSP的头节点;
建立保护关系模块,用于在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立所述第二LSP与所述主LSP之间的保护关系。
可选的,所述建立保护关系模块用于,所述第二LSP为所述主LSP的旁路Bypass LSP时,建立所述第二LSP与所述主LSP之间的快速重路由FRR Bypass保护关系;或者,所述第二LSP为所述主LSP的绕路Detour LSP时,建立所述第二LSP与所述主LSP之间的FRR Detour保护关系;或者,所述第二LSP为所述主LSP的热备份Hot-Standby LSP时,建立所述第二LSP与所述主LSP之间的Hot-Standby保护关系。
可选的,所述装置还包括:第一判断模块,用于判断第一LSP与所述主LSP是否建立有保护关系;第二判断模块,用于在第一LSP与主LSP之间建立有保护关系时,判断所述主LSP的流量是否切换至所述第一LSP;拆除模块,用于在所述主LSP的流量尚未切换至所述第一LSP时,拆除所述第一LSP与所述主LSP之间的保护关系;处理模块,用于在所述主LSP的流量已切换至所述第一LSP时,维持所述第一LSP与所述主LSP之间的保护关系或对所述第一LSP执行先建后拆MBB。
可选的,在第一LSP与主LSP之间建立有FRR Bypass保护关系时,所述拆除模块具体用于,拆除所述第一LSP与主LSP之间的FRR Bypass保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,建立所述第三LSP与所述主LSP之间的FRR Bypass保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Bypass保护关系时,处理模块用于维持所述第一LSP与所述主LSP之间的保护关系,并具体用于,维持所述第一LSP与主LSP之间的FRR Bypass保护关系,以及标记第一LSP为优雅关闭状态。
可选的,在第一LSP与主LSP之间建立有FRR Detour保护关系时,所述拆除模块具体用于,判断是否有上游LSP合并至所述第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息,并在合并至所述第一LSP的上游LSP全部拆除后,拆除所述第一LSP与主LSP之间的FRR Detour保护关系;以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立所述第四LSP与所述主LSP之间的FRR Detour保护关系;若否,直接拆除所述第一LSP与所述主LSP之间的FRR Detour保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立所述第五LSP与所述主LSP之间的FRR Detour保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Detour保护关系时,所述处理模块用于维持所述第一LSP与所述主LSP之间的保护关系,并具体用于维持所述第一LSP与主LSP之间的FRR Detour保护关系,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息。
可选的,在第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述拆除模块具体用于,根据记录的发生优雅关闭的节点或接口信息,将所述第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,以及,拆除所述第一LSP与主LSP之间的Hot-Standby保护关系,并建立所述第六LSP与所述主LSP之间的Hot-Standby保护关系。
可选的,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述处理模块用于对所述第一LSP执行先建后拆MBB,并具体用于对所述第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
本发明的有益效果是:
本发明通过记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,有效的规避了已发生优雅关闭的链路,解决了现有MPLS-TE网络中存在的保护LSP发生优雅关闭时导致的业务数据容易流失的问题,有效规避了发生优雅关闭的节点或接口,提高了MPLS-TE网络中流量转发的可靠性。
附图说明
图1表示现有技术中Bypass保护方式的路径示意图;
图2表示现有技术中Detour保护方式的路径示意图;
图3表示现有技术中TE HSB保护方式的路径示意图;
图4表示现有技术中发生优雅关闭时的路径示意图;
图5表示本发明的实施例中一种隧道保护的方法的步骤流程图;
图6表示本发明的实施例中步骤501之后的隧道保护的方法的步骤流程图;
图7表示本发明的实施例中建立第二LSP与主LSP之间的FRR Bypass保护关系的实现示意图;
图8表示本发明的实施例中第一LSP与主LSP之间建立有FRR Bypass保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图;
图9表示本发明的实施例中第一LSP与主LSP之间建立有FRR Bypass保护关系时,维持第一LSP与主LSP之间的保护关系的实现示意图;
图10表示本发明的实施例中建立第二LSP与主LSP之间的FRR Detour保护关系的实现示意图;
图11表示本发明的实施例中第一LSP与主LSP之间建立有FRR Detour保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图;
图12表示本发明的实施例中第一LSP与主LSP之间建立有FRR Detour保护关系时,维持第一LSP与主LSP之间的保护关系的实现示意图;
图13表示本发明的实施例中建立第二LSP与主LSP之间Hot-Standby保护关系的实现示意图;
图14表示本发明的实施例中第一LSP与主LSP之间建立有Hot-Standby保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图;
图15表示本发明的实施例中第一LSP与主LSP之间建立有Hot-Standby保护关系时,对第一LSP执行MBB的实现示意图;
图16表示本发明的实施例中隧道保护的装置的示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图5所示,为本发明的实施例中隧道保护的方法的步骤流程图,该方法包括如下步骤:
步骤501,第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据测量路径出错指示消息,记录发生优雅关闭的节点或接口信息。
在本步骤中,第一节点为第一LSP的头节点。具体的,当第一LSP的第一节点接收到表示节点或接口关闭的测量路径出错指示Path Error消息时,可以根据该Path Error消息,在第一LSP下保存发生优雅关闭的节点或接口信息,其中,发生优雅关闭的节点或接口信息可以为发生优雅关闭的节点或接口地址。
步骤502,第一节点在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立第二LSP与主LSP之间的保护关系。
在本步骤中,具体的,若第一LSP与主LSP未形成保护关系,当第一LSP的第一节点为一主LSP配置保护LSP时,可以根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立第二LSP与主LSP之间的保护关系。具体的,在建立第二LSP与主LSP之间的保护关系时,可以根据第二LSP的类型建立不同类型的保护关系,例如,若第二LSP为主LSP的Bypass LSP,则建立第二LSP与主LSP之间的FRR Bypass保护关系;若第二LSP为主LSP的Detour LSP时,则建立第二LSP与主LSP之间的FRR Detour保护关系;若第二LSP为主LSP的Hot-Standby LSP,则建立第二LSP与主LSP之间的Hot-Standby保护关系。
这样,本实施例在为一主LSP配置保护LSP时,通过记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立主LSP与第二LSP之间的保护关系,有效的规避了已发生优雅关闭的节点或接口,解决了现有MPLS-TE网络中存在的保护LSP发生优雅关闭时导致的业务数据容易流失的问题,提高了MPLS-TE网络中流量转发的可靠性。
此外,当第一LSP上有节点或接口关闭时,除了在为主LSP配置保护LSP时需要规避发生优雅关闭的节点或接口,在第一LSP与主LSP已经形成保护关系时,同样需要对该保护关系进行进一步处理,以尽量避免主LSP上的流量流失,保证流量转发的可靠性。
具体的,如图6所示,为步骤501之后的隧道保护的方法的步骤流程图。具体的,在步骤501之后,该方法包括如下步骤:
步骤601,判断第一LSP与主LSP是否建立有保护关系。
在本步骤中,具体的,第一节点判断主LSP与主LSP是否建立有保护关系,若是,则进入步骤602。此外,具体的,该保护关系可以包括FRR Bypass保护关系、FRR Detour保护关系和Hot-Standby保护关系。
步骤602,在第一LSP与主LSP之间建立有保护关系时,判断主LSP的流量是否切换至第一LSP。
在本步骤中,具体的,在第一LSP与主LSP之间建立有保护关系时,判断主LSP的流量是否切换至第一LSP,若没有切换至第一LSP,则进入步骤603,若已经切换至第一LSP,则进入步骤604。
步骤603,在主LSP的流量尚未切换至第一LSP时,拆除第一LSP与主LSP之间的保护关系。
在本步骤中,在主LSP的流量尚未切换至第一LSP时,拆除第一LSP与主LSP之间的保护关系。具体的,在拆除第一LSP与主LSP之间的保护关系时,需要考虑第一LSP与主LSP之间的保护关系为FRR Bypass保护关系、FRR Detour保护关系还是Hot-Standby保护关系。
可选的,若第一LSP与主LSP之间建立的保护关系为FRR Bypass保护关系,则在拆除第一LSP与主LSP之间的FRR Bypass保护关系时,还需要根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,并建立第三LSP与主LSP之间的FRR Bypass保护关系。
若第一LSP与主LSP之间建立的保护关系为FRR Detour保护关系,则在拆除第一LSP与主LSP之间的保护关系时,需要首先判断是否有上游LSP合并至第一LSP,若是,则需要向合并至第一LSP的上游LSP继续传递测量路径出错指示消息,在合并至第一LSP的上游LSP全部拆除后,拆除第一LSP与主LSP之间的FRR Detour保护关系,并根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立第四LSP与主LSP之间的FRR Detour保护关系;若否,则直接拆除第一LSP与主LSP之间的FRR Detour保护关系,并根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立第五LSP与主LSP之间的FRR Detour保护关系即可。
若第一LSP与主LSP之间建立的保护关系为Hot-Standby保护关系,则在拆除第一LSP与主LSP之间的保护关系时,根据记录的发生优雅关闭的节点或接口信息,将第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,拆除第一LSP与主LSP之间的Hot-Standby保护关系,并建立第六LSP与主LSP之间的Hot-Standby保护关系。
步骤604,在主LSP的流量已切换至第一LSP时,维持第一LSP与主LSP之间的保护关系或对第一LSP执行先建后拆MBB。
在本步骤中,在主LSP的流量已切换至第一LSP时,具体的,若第一LSP与主LSP之间的保护关系为FRR Bypass保护关系或者FRR Detour保护关系,则维持第一LSP与主LSP之间的保护关系;若第一LSP与主LSP之间的保护关系为Hot-Standby保护关系,则对第一LSP执行MBB流程。
具体的,若第一LSP与主LSP之间的保护关系为FRR Bypass保护关系,则维持第一LSP与主LSP之间的保护关系时,标记第一LSP为优雅关闭状态。若第一LSP与主LSP之间的保护关系为FRR Detour保护关系,则维持第一LSP与主LSP之间的FRR Detour保护关系时,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;若是,则向合并至第一LSP的上游LSP继续传递测量路径出错指示 消息。若第一LSP与主LSP之间的保护关系为Hot-Standby保护关系,则对第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
这样,在记录发生优雅关闭的节点或接口信息之后,一方面在为一主LSP配置保护LSP时,根据该发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,规避链路上发生优雅关闭的节点或接口;另一方面,当该第一LSP与主LSP已经形成保护关系且主LSP上的流量尚未切换至第一LSP上时,则根据第一LSP与主LSP之间的保护关系类型,例如为FRR Bypass保护关系、FRR Detour保护关系和Hot-Standby保护关系,拆除第一LSP与主LSP之间的保护关系;再一方面,当该第一LSP与主LSP已经形成保护关系且主LSP上的流量已经切换至第一LSP上时,则根据第一LSP与主LSP之间的保护关系类型,维持第一LSP与主LSP之间的保护关系或对第一LSP执行MBB流程。这样,本实施例根据记录的发生优雅关闭的节点或接口信息,在上述不同情况下最大限度的降低了发生优雅关闭的节点或接口对主LSP的影响,有效规避了发生优雅关闭的节点或接口,解决了保护LSP发生优雅关闭导致的主LSP上的数据容易流失的问题,提高了MPLS-TE网络中流量转发的可靠性。
下面,结合图7至图15对FRR Bypass保护关系、FRR Detour保护关系和Hot-Standby保护关系中,第一LSP与主LSP之间没有建立保护关系时,建立第二LSP与主LSP之间的保护关系,以及第一LSP与主LSP之间建立有保护关系时,拆除第一LSP与主LSP之间的保护关系、维持第一LSP与主LSP之间的保护关系或对第一LSP执行MBB进行举例说明。
如图7所示,为建立第二LSP与主LSP之间的FRR Bypass保护关系的实现示意图。在图7中,主LSP路径为R1→L12→R2→L23→R3,此时配置FRR Bypass保护关系存在两条可选备份LSP:第一Bypass LSP(R2→L24→R4→L43→R3)和第二Bypass LSP(R2→L25→R5→L53→R3)。但第一LSP Bypass LSP中的链路中的L43发生优雅关闭(gs),则主LSP形成FRR Bypass保护关系时,优先选择未发生优雅关闭的第二Bypass LSP,即建立主LSP与第二LSP之间的FRR Bypass保护关系。
如图8所示,为第一LSP与主LSP之间建立有FRR Bypass保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图。在图8中,主LSP路径为R1→L12→R2→L23→R3,主LSP与第一Bypass LSP(R2→L24→R4→L43→R3)形成FRR Bypass保护关系,且该保护关系处于未切换状态。当链路L43或节点R4执行优雅关闭流程时,沿着第一Bypass LSP向R2发送(25,7)或(25,8)Path Err消息,R2收到此Path Err消息时,将第一Bypass LSP标记为优雅关闭状态,同时拆除未切换的FRR Bypass保护关系,并建立主LSP与未发生优雅关闭的第二Bypass  LSP(R2→L25→R5→L53→R3)之间的FRR Bypass保护关系。
如图9所示,为第一LSP与主LSP之间建立有FRR Bypass保护关系时,维持第一LSP与主LSP之间的保护关系的实现示意图。在图9中,主LSP路径为R1→L12→R2→L23→R3,主LSP与第一Bypass LSP(R2→L25→R5→L53→R3)形成FRR Bypass保护关系,且L23链路发生故障,FRR Bypass保护关系处于切换状态。当链路L53或节点R5发生优雅关闭时,沿着第一Bypass LSP向R2发送(25,7)或(25,8)Path Err消息,R2收到此Path Err消息时,将第一Bypass LSP标记为优雅关闭状态,但由于FRR Bypass保护关系是已切换状态,因此为了避免影响流量,维持第一LSP与主LSP之间的FRR Bypass保护关系,同时也不对第一Bypass LSP执行MBB流程,LSP数据链路的恢复交给主LSP的回切MBB。
如图10所示,为建立第二LSP与主LSP之间的FRR Detour保护关系的实现示意图。在图10中,主LSP路径为R1→L12→R2→L23→R3,此时配置FRR Detour保护关系时,R1点形成FRR Detour保护关系存在两条可选链路L13a和L13b。但是,L13a发生优雅关闭。则形成FRR Detour保护关系时排除发生优雅关闭的L13a链路,选择L13b链路形成FRR Detour保护关系。
如图11所示,为第一LSP与主LSP之间建立有FRR Detour保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图。在图11中,主LSP路径为R1→L12a→R2→L23a→R3,配置FRR Detour保护关系时,R1点形成第一Detour LSP(R1→L12b→R2→L23b→R3),R2点形成第二Detour LSP(R2→L23b→R3),该保护关系处于未切换状态。当L23b链路发生优雅关闭时,沿第二Detour LSP向上游发送Path Err消息,Path Err消息到达R2点,R2点准备拆除第二Detour LSP及FRR Detour保护关系,但此时发现有第一Detour LSP的下游路径与第二Detour LSP合并,此时为了防止上游第一Detour LSP切换时,流量通过第二Detour LSP,因此暂不拆除第二Detour LSP。此时Path Err消息沿第一Detour LSP继续向上游传递,Path Err消息到达R1点之后,R1点先拆除第一Detour LSP,并发送Path Tear消息至R2,R2拆除第二Detour LSP。最后R2点根据记录的发生优雅关闭的节点或接口信息,重新选择其它链路形成新的FRR Detour保护关系,新的第一Detour LSP路径为:R1→L12b→R2→L23c→R3,新的第二Detour LSP路径为:R2→L23c→R3。
如图12所示,为第一LSP与主LSP之间建立有FRR Detour保护关系时,维持第一LSP与主LSP之间的保护关系的实现示意图。在图12中,主LSP路径为R1→L12a→R2→L23a→R3,配置FRR Detour保护关系时,R1点形成第一Detour LSP(R1→L12b→R2→L23b→R3),R2点形成第二Detour LSP(R2→L23b→R3)。L12a发生故障时,主LSP切换至第一Detour LSP。此时,当L23b链路发生优雅关闭时,Path Err消息传递到R2点,由于第一Detour LSP下游与第二Detour LSP链路合并,此时暂不拆除第二Detour LSP,Path Err消息沿第一Detour LSP继续向上游传递。Path Err 消息到达R1点之后,由于主LSP已切换至第一Detour LSP,因此R1点不对发生优雅关闭的第一Detour LSP进行任何响应,链路的重新选择交给主LSP的回切MBB。
如图13所示,为建立第二LSP与主LSP之间Hot-Standby保护关系的实现示意图。在图13中,主LSP路径为R1→L12a→R2→L23a→R3,配置Hot-Standby保护关系时,L23b较L23c链路较优,因此形成Hot-Standby保护关系时,优选为R1→L12b→R2→L23b→R3。但由于L23b发生优雅关闭,Path Err消息传递到R1,Hot-Standby保护关系重新形成时排除L23b链路,主LSP与R1→L12b→R2→L23c→R3形成Hot-Standby保护关系。
如图14所示,为第一LSP与主LSP之间建立有Hot-Standby保护关系时,拆除第一LSP与主LSP之间的保护关系的实现示意图。在图14中,主LSP路径为R1→L12a→R2→L23a→R3,配置Hot-Standby保护关系时,Hot-Standby LSP路径为R1→L12b→R2→L23b→R3,主LSP与Hot-Standby LSP形成Hot-Standby保护关系且该保护关系处于未切换状态。此时L23b链路发生优雅关闭,Path Err消息传递到R1,Hot-Standby LSP进行MBB处理,MBB到R1→L12b→R2→L23c→R3,主LSP与原先的Hot-Standby LSP解除Hot-Standby保护关系,重新与新的Hot-Standby LSP形成Hot-Standby保护关系。
如图15所示,为第一LSP与主LSP之间建立有Hot-Standby保护关系时,对第一LSP执行MBB的实现示意图。在图15中,主LSP路径为R1→L12a→R2→L23a→R3,配置Hot-Standby保护关系时,Hot-Standby LSP为R1→L12b→R2→L23b→R3。当L12a链路发生故障时,主LSP流量切换至Hot-Standby LSP。此时L23b链路发生优雅关闭,Path Err消息传递到R1,R1节点根据Path Err消息中携带的发生优雅关闭的节点或接口信息,进行MBB流程,通过已记录的发生优雅关闭的节点或接口信息规避L23b链路。
这样,在本发明的实施例中,通过规避发生优雅关闭的节点或接口,提高了流量转发的可靠性。
依据本发明的另一个方面,如图16所示,为本发明的实施例中隧道保护的装置的示意图,该装置包括:
接收模块1601,用于接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据测量路径出错指示消息,记录发生优雅关闭的节点或接口信息;
建立保护关系模块1602,用于在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立第二LSP与主LSP之间的保护关系。
可选的,建立保护关系模块用于,第二LSP为主LSP的旁路Bypass LSP时,建立第二LSP与主LSP之间的快速重路由FRR Bypass保护关系;或者,第二LSP为主 LSP的绕路Detour LSP时,建立第二LSP与主LSP之间的FRR Detour保护关系;或者,第二LSP为主LSP的热备份Hot-Standby LSP时,建立第二LSP与主LSP之间的Hot-Standby保护关系。
可选的,装置还包括:第一判断模块,用于判断第一LSP与主LSP是否建立有保护关系;第二判断模块,用于在第一LSP与主LSP之间建立有保护关系时,判断主LSP的流量是否切换至第一LSP;拆除模块,用于在主LSP的流量尚未切换至第一LSP时,拆除第一LSP与主LSP之间的保护关系;处理模块,用于在主LSP的流量已切换至第一LSP时,维持第一LSP与主LSP之间的保护关系或对第一LSP执行先建后拆MBB。
可选的,在第一LSP与主LSP之间建立有FRR Bypass保护关系时,拆除模块具体用于,拆除第一LSP与主LSP之间的FRR Bypass保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,建立第三LSP与主LSP之间的FRR Bypass保护关系。
可选的,在主LSP的流量已切换至第一LSP且第一LSP与主LSP之间建立有FRR Bypass保护关系时,处理模块用于维持第一LSP与主LSP之间的保护关系,并具体用于,维持第一LSP与主LSP之间的FRR Bypass保护关系,以及标记第一LSP为优雅关闭状态。
可选的,在第一LSP与主LSP之间建立有FRR Detour保护关系时,拆除模块具体用于,判断是否有上游LSP合并至第一LSP;若是,则向合并至第一LSP的上游LSP继续传递测量路径出错指示消息,并在合并至第一LSP的上游LSP全部拆除后,拆除第一LSP与主LSP之间的FRR Detour保护关系;以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立第四LSP与主LSP之间的FRR Detour保护关系;若否,直接拆除第一LSP与主LSP之间的FRR Detour保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立第五LSP与主LSP之间的FRR Detour保护关系。
可选的,在主LSP的流量已切换至第一LSP且第一LSP与主LSP之间建立有FRR Detour保护关系时,处理模块用于维持第一LSP与主LSP之间的保护关系,并具体用于维持第一LSP与主LSP之间的FRR Detour保护关系,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;若是,则向合并至第一LSP的上游LSP继续传递测量路径出错指示消息。
可选的,在第一LSP与主LSP之间建立有Hot-Standby保护关系时,拆除模块具体用于,根据记录的发生优雅关闭的节点或接口信息,将第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,以及,拆除第一LSP与主LSP之间的Hot-Standby保护关系,并建立第六LSP与主LSP之间的Hot-Standby保护关系。
可选的,在主LSP的流量已切换至第一LSP且第一LSP与主LSP之间建立有 Hot-Standby保护关系时,处理模块用于对第一LSP执行先建后拆MBB,并具体用于对第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
本申请实施例提供的隧道保护的装置中的各个模块或单元可以通过一个或多个数字信号处理器(DSP)、专用集成电路(ASIC)、处理器、微处理器、控制器、微控制器、现场可编程阵列(FPGA)、可编程逻辑器件或其他电子单元或其任意组合来实现。在本申请实施例中描述的一些功能、处理或方法也可以通过在处理器上执行的软件来实现。
工业实用性
本公开涉及通信领域,解决了现有MPLS-TE网络中存在的保护LSP发生优雅关闭时导致的业务数据容易流失的问题,有效规避了发生优雅关闭的节点或接口,提高了MPLS-TE网络中流量转发的可靠性。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (18)

  1. 一种隧道保护的方法,包括:
    第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据所述测量路径出错指示消息,记录发生优雅关闭的节点或接口信息,其中,所述第一节点为第一LSP的头节点;
    第一节点在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立所述第二LSP与所述主LSP之间的保护关系。
  2. 根据权利要求1所述的方法,其中,所述建立所述第二LSP与所述主LSP之间的保护关系的步骤包括:
    所述第二LSP为所述主LSP的旁路Bypass LSP时,建立所述第二LSP与所述主LSP之间的快速重路由FRR Bypass保护关系;
    或者,所述第二LSP为所述主LSP的绕路Detour LSP时,建立所述第二LSP与所述主LSP之间的FRR Detour保护关系;
    或者,所述第二LSP为所述主LSP的热备份Hot-Standby LSP时,建立所述第二LSP与所述主LSP之间的Hot-Standby保护关系。
  3. 根据权利要求1所述的方法,其中,在所述第一节点接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息之后,所述方法还包括:
    判断所述第一LSP与所述主LSP是否建立有保护关系;
    在第一LSP与主LSP之间建立有保护关系时,判断所述主LSP的流量是否切换至所述第一LSP;
    在所述主LSP的流量尚未切换至所述第一LSP时,拆除所述第一LSP与所述主LSP之间的保护关系;
    在所述主LSP的流量已切换至所述第一LSP时,维持所述第一LSP与所述主LSP之间的保护关系或对所述第一LSP执行先建后拆MBB。
  4. 根据权利要求3所述的方法,其中,在第一LSP与主LSP之间建立有FRR Bypass保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:
    拆除所述第一LSP与主LSP之间的FRR Bypass保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,建立所述第三LSP与所述主LSP之间的FRR Bypass保护关系。
  5. 根据权利要求3或4所述的方法,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Bypass保护关系时,维持所述第一LSP与所述主LSP之间的保护关系;所述维持所述第一LSP与所述主LSP之间的保 护关系的步骤包括:
    维持所述第一LSP与主LSP之间的FRR Bypass保护关系,以及标记第一LSP为优雅关闭状态。
  6. 根据权利要求3所述的方法,其中,在第一LSP与主LSP之间建立有FRR Detour保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:
    判断是否有上游LSP合并至所述第一LSP;
    若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息,并在合并至所述第一LSP的上游LSP全部拆除后,拆除所述第一LSP与主LSP之间的FRR Detour保护关系;以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立所述第四LSP与所述主LSP之间的FRR Detour保护关系;
    若否,直接拆除所述第一LSP与所述主LSP之间的FRR Detour保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立所述第五LSP与所述主LSP之间的FRR Detour保护关系。
  7. 根据权利要求3或6所述的方法,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Detour保护关系时,维持所述第一LSP与所述主LSP之间的保护关系,所述维持所述第一LSP与所述主LSP之间的保护关系的步骤包括:
    维持所述第一LSP与主LSP之间的FRR Detour保护关系,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;
    若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息。
  8. 根据权利要求3所述的方法,其中,在第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述拆除所述第一LSP与所述主LSP之间的保护关系的步骤包括:
    根据记录的发生优雅关闭的节点或接口信息,将所述第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,以及,拆除所述第一LSP与主LSP之间的Hot-Standby保护关系,并建立所述第六LSP与所述主LSP之间的Hot-Standby保护关系。
  9. 根据权利要求3或8所述的方法,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有Hot-Standby保护关系时,对所述第一LSP执行先建后拆MBB,所述对所述第一LSP执行先建后拆MBB的步骤包括:
    对所述第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
  10. 一种隧道保护的装置,包括:
    接收模块,设置为接收第一标签交换路径LSP上的下游节点发送的用于表示节点或接口关闭的测量路径出错指示消息,并根据所述测量路径出错指示消息,记录发生优雅关闭的节点或接口信息;
    建立保护关系模块,设置为在为一主LSP配置保护LSP时,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第二LSP,并建立所述第二LSP与所述主LSP之间的保护关系。
  11. 根据权利要求10所述的装置,其中,所述建立保护关系模块设置为,
    所述第二LSP为所述主LSP的旁路Bypass LSP时,建立所述第二LSP与所述主LSP之间的快速重路由FRR Bypass保护关系;
    或者,所述第二LSP为所述主LSP的绕路Detour LSP时,建立所述第二LSP与所述主LSP之间的FRR Detour保护关系;
    或者,所述第二LSP为所述主LSP的热备份Hot-Standby LSP时,建立所述第二LSP与所述主LSP之间的Hot-Standby保护关系。
  12. 根据权利要求10所述的装置,还包括:
    第一判断模块,设置为判断第一LSP与所述主LSP是否建立有保护关系;
    第二判断模块,设置为在第一LSP与主LSP之间建立有保护关系时,判断所述主LSP的流量是否切换至所述第一LSP;
    拆除模块,设置为在所述主LSP的流量尚未切换至所述第一LSP时,拆除所述第一LSP与所述主LSP之间的保护关系;
    处理模块,设置为在所述主LSP的流量已切换至所述第一LSP时,维持所述第一LSP与所述主LSP之间的保护关系或对所述第一LSP执行先建后拆MBB。
  13. 根据权利要求12所述的装置,其中,在第一LSP与主LSP之间建立有FRR Bypass保护关系时,所述拆除模块设置为,拆除所述第一LSP与主LSP之间的FRR Bypass保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第三LSP,建立所述第三LSP与所述主LSP之间的FRR Bypass保护关系。
  14. 根据权利要求12或13所述的装置,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Bypass保护关系时,处理模块设置为维持所述第一LSP与所述主LSP之间的保护关系,并设置为,维持所述第一LSP与主LSP之间的FRR Bypass保护关系,以及标记第一LSP为优雅关闭状态。
  15. 根据权利要求12所述的装置,其中,在第一LSP与主LSP之间建立有FRR Detour保护关系时,所述拆除模块设置为,判断是否有上游LSP合并至所述第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息,并在合并至所述第一LSP的上游LSP全部拆除后,拆除所述第一LSP与主LSP之间 的FRR Detour保护关系;以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第四LSP,建立所述第四LSP与所述主LSP之间的FRR Detour保护关系;若否,直接拆除所述第一LSP与所述主LSP之间的FRR Detour保护关系,以及,根据记录的发生优雅关闭的节点或接口信息,选择链路上未发生优雅关闭的第五LSP,建立所述第五LSP与所述主LSP之间的FRR Detour保护关系。
  16. 根据权利要求12或15所述的装置,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有FRR Detour保护关系时,所述处理模块设置为维持所述第一LSP与所述主LSP之间的保护关系,并设置为维持所述第一LSP与主LSP之间的FRR Detour保护关系,标记第一LSP为优雅关闭状态,并判断是否有上游LSP合并至第一LSP;若是,则向合并至所述第一LSP的上游LSP继续传递所述测量路径出错指示消息。
  17. 根据权利要求12所述的装置,其中,在第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述拆除模块设置为,根据记录的发生优雅关闭的节点或接口信息,将所述第一LSP先建后拆MBB至链路上未发生优雅关闭的第六LSP,以及,拆除所述第一LSP与主LSP之间的Hot-Standby保护关系,并建立所述第六LSP与所述主LSP之间的Hot-Standby保护关系。
  18. 根据权利要求12或17所述的装置,其中,在所述主LSP的流量已切换至所述第一LSP且第一LSP与主LSP之间建立有Hot-Standby保护关系时,所述处理模块设置为对所述第一LSP执行先建后拆MBB,并设置为对所述第一LSP执行MBB,并根据记录的发生优雅关闭的节点或接口信息,规避发生优雅关闭的节点或接口地址。
PCT/CN2017/072486 2016-04-20 2017-01-24 一种隧道保护的方法及装置 WO2017181756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610249303.6 2016-04-20
CN201610249303.6A CN107306197A (zh) 2016-04-20 2016-04-20 一种隧道保护的方法及装置

Publications (1)

Publication Number Publication Date
WO2017181756A1 true WO2017181756A1 (zh) 2017-10-26

Family

ID=60115606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072486 WO2017181756A1 (zh) 2016-04-20 2017-01-24 一种隧道保护的方法及装置

Country Status (2)

Country Link
CN (1) CN107306197A (zh)
WO (1) WO2017181756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995026A (zh) * 2019-12-13 2021-06-18 中兴通讯股份有限公司 一种链路保护方法、装置,入口节点及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060497A (zh) * 2007-06-11 2007-10-24 杭州华三通信技术有限公司 一种流量工程隧道的建立方法和装置
CN101552715A (zh) * 2008-03-31 2009-10-07 华为技术有限公司 一种建立备份标签交换路径的方法及节点和系统
US20140003229A1 (en) * 2012-06-27 2014-01-02 Cisco Technology, Inc. System and Method for Efficient Point-to-Multi-point Traffic Engineering (P2MP-TE) Path Protection
CN104541477A (zh) * 2012-07-27 2015-04-22 阿尔卡特朗讯公司 用于信令传达和响应于在域间te lsp中的ero扩展失败的系统、方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423458A (zh) * 2001-11-30 2003-06-11 深圳市中兴通讯股份有限公司 一种ip网中实现信令链路冗余备份的方法
US10291553B2 (en) * 2014-05-06 2019-05-14 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Logical switch architecture for network virtualization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060497A (zh) * 2007-06-11 2007-10-24 杭州华三通信技术有限公司 一种流量工程隧道的建立方法和装置
CN101552715A (zh) * 2008-03-31 2009-10-07 华为技术有限公司 一种建立备份标签交换路径的方法及节点和系统
US20140003229A1 (en) * 2012-06-27 2014-01-02 Cisco Technology, Inc. System and Method for Efficient Point-to-Multi-point Traffic Engineering (P2MP-TE) Path Protection
CN104541477A (zh) * 2012-07-27 2015-04-22 阿尔卡特朗讯公司 用于信令传达和响应于在域间te lsp中的ero扩展失败的系统、方法和设备

Also Published As

Publication number Publication date
CN107306197A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
US7697417B2 (en) Methods and devices for re-routing MPLS traffic
EP2530892B1 (en) Consistency between mpls traffic engineering forwarding and control planes
US7675860B2 (en) Method and apparatus for determining a preferred backup tunnel to protect point-to-multipoint label switch paths
US9203732B2 (en) Recovery of traffic in a connection-oriented network
WO2012037820A1 (zh) 多协议标签交换系统、节点设备及双向隧道的建立方法
EP2360880B1 (en) Optimized fast re-route in MPLS-TP ring topologies
US8982691B2 (en) System and method providing standby bypass for double failure protection in MPLS network
US8705373B2 (en) Apparatus and method for packet forwarding
JP2017520997A (ja) 通信ネットワークにおける保護スイッチングの制御
EP2219329B1 (en) A fast reroute method and a label switch router
CN102158397A (zh) 一种重路由的方法和本地修复点节点
US20050259570A1 (en) Fault recovery method and program therefor
US9699073B2 (en) System and method for reducing traffic loss while using loop free alternate routes for multicast only fast reroute (MoFRR)
WO2013040930A1 (zh) 一种组播标签交换路径的中间节点保护方法及装置
WO2017152596A1 (zh) 一种p2mp主隧道节点保护的方法及装置
WO2016033870A1 (zh) 隧道信号劣化通知及切换方法、装置和计算机存储介质
CN101626317A (zh) 一种链路故障恢复的方法、系统和装置
CN101159681A (zh) 实现快速重路由的方法和节点
WO2016188025A1 (zh) 一种点到多点隧道的保护方法和装置
WO2017181756A1 (zh) 一种隧道保护的方法及装置
WO2016101492A1 (zh) 一种业务转发表的设置方法及装置
JP4671911B2 (ja) マルチキャストmplsにおけるlspの経路集約方法及びルータ及びlsp経路集約プログラム
WO2016134582A1 (zh) 一种实现rsvp-te协议报文处理的方法及装置
CN103795625A (zh) 多协议标签交换网络的快速重路由实现方法及装置
JP2007243479A (ja) 故障影響度判定方法及び装置及びプログラム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785242

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785242

Country of ref document: EP

Kind code of ref document: A1