WO2016188025A1 - 一种点到多点隧道的保护方法和装置 - Google Patents

一种点到多点隧道的保护方法和装置 Download PDF

Info

Publication number
WO2016188025A1
WO2016188025A1 PCT/CN2015/092559 CN2015092559W WO2016188025A1 WO 2016188025 A1 WO2016188025 A1 WO 2016188025A1 CN 2015092559 W CN2015092559 W CN 2015092559W WO 2016188025 A1 WO2016188025 A1 WO 2016188025A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
tunnel
node
backup
primary path
Prior art date
Application number
PCT/CN2015/092559
Other languages
English (en)
French (fr)
Inventor
司徒嘉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016188025A1 publication Critical patent/WO2016188025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • This document relates to, but is not limited to, the field of MPLS (Multi-Protocol Label Switching), and specifically relates to a point-to-multipoint tunnel protection method, apparatus, and computer readable storage medium.
  • MPLS Multi-Protocol Label Switching
  • RSVP-TE Resource ReSerVation Protocol-Traffic Engineering
  • P2P peer-to-peer
  • P2MP-TE point-to-multipoint traffic engineering
  • FRR Fast ReRoute bypass
  • the end-to-end protection of the P2MP is to establish a LSP (Label Switching Path) to protect the primary LSP.
  • LSP Label Switching Path
  • traffic is switched to the backup LSP.
  • the standard and draft do not have a clear description and mature scheme for this scheme.
  • the FRR detour scheme with end-to-end protection is still to be studied.
  • a point-to-multipoint multicast traffic engineering (P2MP-) is established in the manner specified in RFC (Request for Comments) 4875 (RSVP-TE extension for P2MP-TE LSP).
  • TE Network topology diagram of the tunnel.
  • Figure 1 contains five router nodes 101, 102, 103, 104, 105.
  • the P2MP-TE tunnel main tree path sub-LSP1 (101-102-104) and sub-LSP2 (101-102-103) are established from 101, and 102 is a bifurcation point. End-to-end protection can be established if you want to protect these two sub-LSPs. In this scenario, the tunnel preparation path is usually established.
  • Sub-LSP3 (101-105-104), sub-LSP4 (101-105-103), and 105 are bifurcation points.
  • the primary path (sub-LSP1, sub-LSP2) is protected by the secondary path (sub-LSP3, sub-LSP4), which ensures (sub-LSP1, sub-LSP3), (sub-LSP2, sub-LSP4).
  • the two primary and secondary paths are independent of each other.
  • sub-LSP2 and sub-LSP3 overlap in the 202-203 path. When the overlapping path fails, the primary sub-LSP2 is disconnected, and the backup sub-LSP3 is also disconnected.
  • sub-LSP2 is indeed protected by sub-LSP4, but the traffic is interrupted when sub-LSP1 is switched to sub-LSP3.
  • the necessary premise for the entire tree switching is that the two primary and secondary tree paths do not overlap at all, and the entire backup tree path is intact.
  • the requirements are very high, which greatly limits the application scenario of the P2MP end-to-end protection networking.
  • the embodiment of the present invention provides a point-to-multipoint tunnel protection method and apparatus.
  • a point-to-multipoint tunnel protection method including:
  • the root node of the P2MP tunnel is notified, the traffic is switched to the P2P backup tunnel, and the first primary path is removed.
  • the method further includes:
  • the method further includes:
  • the first primary path and the P2P backup tunnel are removed, and the association between the first primary path and the P2P backup tunnel is released.
  • the excluding the first primary path, and establishing a P2P backup tunnel includes:
  • the method further includes:
  • establishing a hot standby path corresponding to the P2P backup tunnel includes:
  • the method further includes:
  • the root node When it is detected that the path between the node or the node through which the P2P backup tunnel passes is faulty, the root node is notified to switch the traffic to the hot standby path.
  • the method further includes:
  • the method further includes:
  • the association between the third primary path and the hot standby path is performed, or the P2P backup tunnel is re-established, and the third primary path is associated with the newly created P2P backup tunnel.
  • the embodiment of the invention further provides a protection device for a point-to-multipoint tunnel, comprising:
  • a primary path establishing module configured to establish a first primary path of a point-to-multipoint traffic engineering P2MP-TE tunnel from a multicast root node to a leaf node;
  • a backup path establishing module configured to exclude the first primary path, establish a P2P backup tunnel, and perform association between the first primary path and the P2P backup tunnel;
  • a switching module configured to notify a root node of the P2MP tunnel, switch traffic to the P2P backup tunnel, and tear down the path when detecting that the path between the node or the node through which the first primary path passes fails The first main path.
  • the primary path establishing module is further configured to:
  • the device further includes:
  • the clearing module is configured to remove the first primary path and the P2P backup tunnel, and release the association between the first primary path and the P2P backup tunnel.
  • the backup path establishing module excludes the first primary path, and establishing a P2P backup tunnel refers to:
  • the device further includes:
  • the hot standby path establishing module is configured to establish a hot standby path corresponding to the P2P backup tunnel.
  • the hot standby path establishing module establishes a hot standby path corresponding to the P2P backup tunnel, where:
  • the switching module is further configured to:
  • the root node When it is detected that the path between the node or the node through which the P2P backup tunnel passes is faulty, the root node is notified to switch the traffic to the hot standby path.
  • the primary path establishing module is further configured to:
  • the hot standby path establishing module is further configured to: perform association between the third primary path and the hot standby path, or,
  • the backup path establishing module is further configured to: re-establish a P2P backup tunnel, and associate the third primary path with the newly created P2P backup tunnel.
  • the embodiment of the present invention further provides a computer readable storage medium, which stores program instructions, and when the program instructions are executed by the processor, implements the point-to-multipoint tunnel protection method provided by the embodiments of the present invention.
  • the invention has the following beneficial effects:
  • the method and the device provided by the present invention are independent of each other and do not affect each other, and do not need to switch the active and standby of the entire P2MP tree, thereby reducing network resource consumption and network layout limitation.
  • the hot-standby end-to-end protection scheme in the P2P tunnel provides a secondary protection mechanism for the sub-LSP indirectly, so that protection can be provided when both the primary and backup faults occur.
  • FIG. 1 is a network topology diagram of an end-to-end protection path of a non-overlapping path between a primary and a backup LSP of a P2MP-TE tunnel in the prior art;
  • FIG. 2 is a network topology diagram of an end-to-end protection path in which an active/standby LSP of an existing P2MP-TE tunnel has an overlapping path;
  • FIG. 3 is a schematic diagram of a P2MP-TE sub-LSP protected by a P2P tunnel according to an embodiment of the present invention
  • FIG. 4 is a flowchart of processing a P2MP-TE sub-LSP of a P2P tunnel protection according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of forming a hot-standby LSP secondary protection P2MP-TE sub-LSP in a P2P tunnel according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a P2MP-TE sub-LSP processing for forming a hot-standby LSP secondary protection in a P2P tunnel according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of two P2P tunnels protecting P2MP-TE two sub-LSPs without overlapping paths according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a process for protecting two sub-LSPs of a P2MP-TE without overlapping paths by two P2P tunnels according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of two P2P tunnels protecting the primary and secondary overlapping paths of two sub-LSPs in the P2MP-TE according to the embodiment of the present invention.
  • FIG. 10 is a flowchart of processing an overlapping path of two sub-LSPs of a P2MP-TE according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for protecting a point-to-multipoint tunnel according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a protection device for a point-to-multipoint tunnel according to an embodiment of the present invention.
  • the embodiment of the present invention provides a point-to-multipoint tunnel protection method, which is applied to a router or a switch supporting the MPLS-TE protocol, including:
  • S102 Exclude the first primary path, establish a P2P backup tunnel, and perform association between the first primary path and the P2P backup tunnel.
  • the P2MP-TE tunnel sub-LSP1 is established from the multicast root node to the leaf node, and the forwarding entries of each node along the sub-LSP1 are successfully delivered, and the sub-LSP 1 state is set to UP, when P2P After the forwarding of each node along the backup tunnel is successful, the P2P backup tunnel is set to UP.
  • the association between the first primary path and the P2P backup tunnel in step S102 is to perform a primary-secondary association between the P2MP sub-LSP1 and the P2P backup tunnel to form a protection relationship.
  • step S103 when the path or node (excluding the head and tail nodes) that the protected sub-LSP1 passes through fails, the root node is notified to quickly switch the traffic to the P2P backup tunnel.
  • the sub-LSP1 downstream signaling status block and forwarding entries are removed through the P2MP PATH-TEAR signaling packet to prevent duplicate traffic on the downstream and tail nodes.
  • the method after step S103 further includes:
  • the method after step S103 further includes:
  • the P2MP When the fault is rectified, the P2MP establishes a new sub-LSP2 to the same destination, and then switches traffic from the P2P backup tunnel back to the newly created sub-LSP2.
  • the sub-LSP2 and the P2P backup tunnel are re-associated to form a protection relationship.
  • Excluding the first primary path in the step S102, and establishing a P2P backup tunnel includes:
  • the R2 (record route object) address in the RESV (Reserved) message of the first primary path is used as an excluded address to establish the P2P backup tunnel.
  • the RRO address in the RESV packet of the sub-LSP1 is used as the best-effort address of the backup tunnel.
  • the protocol establishment process is a signaling interaction between two types of messages. It is first sent by the PATH protection from the root node to the tail node (leaf node), and then the tail node sends the RESV message to the root node. And at RESV The forwarding entry is sent in the packet process. After the root node receives the RESV packet, the identification path is established successfully and the tunnel is UP.
  • RRO is the object of the IP address of the path carried in the RESV message. The longer the path through which the RESV packet passes, the more IP addresses the RRO carries.
  • the first primary path sub-LSP1 is used as the best-effort path for establishing a P2P backup tunnel.
  • the path of the RRO address in the completely excluded RESV packet can be selected as the path of the P2P backup tunnel. Alternatively, the overlapping path can be selected.
  • the path establishes a P2P backup tunnel.
  • the method after step S103 further includes:
  • the hot-standby LSP of the P2P backup tunnel is set up to protect the P2P backup tunnel, which indirectly protects the P2MP sub-LSP1.
  • the hot-standby LSP is established when the root node is calculated by the R-node address in the RESV packet of the P2P backup tunnel.
  • the RRO address in the RESV packet of the P2P backup tunnel is used as the best-effort address.
  • the hot-standby LSP is established after the sub-LSP1 fails.
  • the fault path is bypassed when the path is calculated. Avoiding the establishment of the hot-standby may cause the path and the fault path of the P2MP sub-LSP1 to overlap, thus improving the secondary protection. Success rate.
  • step S106 further includes:
  • the P2P LSP backup tunnel forms a tunnel protection relationship.
  • the root node is notified to quickly switch traffic to the hot-standby LSP to form secondary protection.
  • step S106 further includes:
  • the P2MP When the fault is rectified, the P2MP establishes a new sub-LSP3 to the same destination, and then switches the traffic from the hot-standby LSP back to the P2MP sub-LSP3, and re-establishes the P2P backup tunnel, and re-associates the sub-LSP3 with the newly created P2P backup tunnel. Form a protective relationship.
  • step S108 further includes:
  • the sub-LSP affected by the fault will switch the traffic to the corresponding backup P2P tunnel, and the unaffected sub-LSP will not be switched. , continue to forward traffic.
  • an embodiment of the present invention provides a protection device for a point-to-multipoint tunnel, including:
  • the primary path establishing module 210 is configured to establish a first primary path of the point-to-multipoint traffic engineering P2MP-TE tunnel from the root node of the multicast to the leaf node;
  • the backup path establishing module 220 is configured to exclude the first primary path, establish a P2P backup tunnel, and perform association between the first primary path and the P2P backup tunnel.
  • the switching module 230 is configured to notify the root node of the P2MP tunnel when the path between the node or the node through which the first primary path passes is detected, switch the traffic to the P2P backup tunnel, and remove the The first main path is described.
  • the primary path establishing module 210 is further configured to:
  • the device further includes:
  • the clearing module 240 is configured to remove the first primary path and the P2P backup tunnel, and release the association between the first primary path and the P2P backup tunnel.
  • the backup path establishing module 220 excludes the first primary path, and establishing a P2P backup tunnel refers to:
  • the device also includes:
  • the hot standby path establishing module 250 is configured to establish a hot standby path corresponding to the P2P backup tunnel.
  • the hot standby path establishing module 250 establishes a hot standby path corresponding to the P2P backup tunnel, where:
  • the switching module 230 is further configured to:
  • the root node When it is detected that the path between the node or the node through which the P2P backup tunnel passes is faulty, the root node is notified to switch the traffic to the hot standby path.
  • the primary path establishing module 210 is further configured to:
  • the hot spare path establishing module 250 is further configured to: perform association between the third primary path and the hot standby path, or the backup path establishing module 220 is further configured to: re-establish a P2P backup tunnel, perform a third The primary path is associated with the newly created P2P backup tunnel.
  • FIG. 3 shows a networking topology of a P2MP tunnel protection P2MP-TE sub-LSP according to an embodiment of the present invention
  • FIG. 4 shows a P2P tunnel protection P2MP-TE sub-LSP processing flow according to an embodiment of the present invention.
  • Figure 4 shows:
  • Step S401 the P2MP-TE tunnel sub-LSP1 is established from the multicast Root node 301 to the leaf node 305, and after passing through the 304 node, the RRO information in the RESV message is saved.
  • Step S402 After the sub-LSP1 is successfully established, the RRO information of the primary path of the sub-LSP1 is removed, ⁇ 305 inbound interface IP address, 304 TE router ID, and 304 inbound interface IP address ⁇ .
  • the LSP of the backup P2P tunnel is set to 301-302-305. After the success, the primary and backup protections of the P2P LSP and sub-LSP1 are formed. system.
  • step S403 when the path 301-304 is faulty, the detection mechanism is advertised to the 301 node, and the forwarding traffic is quickly switched to the backup P2P LSP.
  • 304 senses that the upstream interface is down through the PATH-TEAR packet to remove the sub-LSP1 at 304, 305 node signaling status block and forwarding entry.
  • step S404 when the path 301-304 is restored, the P2MP tunnel attempts to establish a new sub-LSP2. After the establishment is successful, the traffic is restored from the standby P2P LSP to the sub-LSP2. Then remove sub-LSP1, P2P backup tunnel and protection relationship.
  • FIG. 5 shows a networking topology of a P2P tunnel forming a hot-standby LSP secondary protection P2MP-TE sub-LSP according to an embodiment of the present invention
  • FIG. 6 shows a P2P tunnel hot-standby LSP secondary protection provided by an embodiment of the present invention.
  • the P2MP-TE sub-LSP processing flow is combined with Figure 5 and Figure 6:
  • step S601 the P2MP-TE tunnel sub-LSP1 is established from the multicast root node 501 to the leaf node 305, and passes through the 304 node.
  • the path of the backup P2P LSP is 501-502-505 and forms a protection relationship with the sub-LSP.
  • the path 501-504 fails, and the protection is quickly switched to the backup P2P LSP.
  • Step S602 The detection is started on the P2P LSP. Set up a protection LSP for the backup P2P LSP. Try to remove the path through which the P2P LSP passes. Establish a hot-standby LSP. The path is 501-502-503-505 and form an end-to-end protection relationship for the backup P2P tunnel.
  • step S603 when the path 502-505 fails, the detection mechanism is notified to the 501 node, and the forwarding traffic is quickly switched to the hot-standby LSP.
  • step S604 when the path 501-504 or 502-505 is restored, the P2MP tunnel attempts to establish a new sub-LSP2. After the establishment is successful, the traffic is restored from the standby P2P hot-standby LSP to the sub-LSP2. Then remove sub-LSP1, P2P backup tunnel and protection relationship.
  • FIG. 7 shows a network topology of two sub-LSPs in a P2MP-TE tunnel protected by two P2P tunnels according to an embodiment of the present invention.
  • FIG. 8 shows two P2P tunnels provided in the embodiment of the present invention respectively protecting P2MP-TE. Two sub-LSP processing flows in the tunnel, combined with Figure 7, Figure 8:
  • step S801 the P2MP-TE tunnels sub-LSP1 and sub-LSP2 are established from the multicast root node 701 to the leaf nodes 703 and 704 respectively through the branching point 702.
  • Step S802 After the sub-LSP1 is successfully established, the RRO information of the primary path of the sub-LSP1, ⁇ 703 inbound interface IP address, 702 TE router ID, and 702 inbound interface IP address ⁇ are excluded.
  • the path of the backup P2P tunnel 1 is set to 701-705-703.
  • the master/slave protection relationship between P2P tunnel 1 and sub-LSP1 is formed.
  • the sub-LSP2 backup P2P tunnel 2 path is 701-705-704, and the active/standby protection relationship is formed.
  • step S803 when the path 702-703 fails, the detection mechanism is notified to the 701 node, and the affected sub-LSP1 forwards the traffic to the backup P2P tunnel 1. At the same time, the signaling status block and forwarding entries of sub-LSP1 on 702, 703 will be removed to avoid double-streaming on Leaf1. At this time, the traffic reaching Leaf2 continues to be transmitted through the primary path sub-LSP2 and is not affected.
  • step S804 when the path 702-704 is restored, the P2MP tunnel attempts to re-establish the sub-LSP1. After the establishment is successful, the traffic is restored from the standby P2P backup tunnel 1 to the new sub-LSP1. Then delete the old protection relationship and form a new protection relationship. At this point, sub-LSP2 is not affected by any sub-LSP1 handover and recovery.
  • FIG. 9 shows a network topology of two sub-LSPs in a P2MP-TE tunnel protected by two P2P tunnels according to an embodiment of the present invention, wherein the sub-LSP2 path and the backup tunnel 1 path overlap
  • FIG. 10 shows the present invention.
  • the two P2P tunnels provided in the embodiment respectively protect the processing process of two sub-LSPs in the P2MP-TE tunnel, as shown in FIG. 9 and FIG. 10:
  • step S1001 the P2MP-TE tunnel sub-LSP1 is established from the multicast root node 901 to the leaf node 902, and the sub-LSP2 is established through the 902 to the leaf node 903.
  • Step S1002 After the sub-LSP1 is successfully established, the RRO information ⁇ 902 inbound interface IP address ⁇ of the primary path of the sub-LSP1 is excluded.
  • the path of the backup P2P tunnel 1 is set to 901-903-902.
  • the master/slave protection relationship between P2P tunnel 1 and sub-LSP1 is formed.
  • the sub-LSP2 backup P2P tunnel 2 path is 901-903, and the active/standby protection relationship is established. Sub-LSP2 and backup tunnel 1 overlap in the 902-903 path.
  • step S1003 when the path 902-903 fails, the detection mechanism is notified to the 901 node, and the affected sub-LSP2 forwards the traffic to the backup P2P tunnel 2. At the same time, the signaling status block and forwarding entries of sub-LSP1 at 902, 903 will be removed to avoid double-streaming on Leaf2. At this time, the backup tunnel 1 is affected by the failure and cannot be protected, but the traffic reaching Leaf1 continues to be transmitted through the primary path sub-LSP1 without being affected.
  • the embodiment of the present invention further provides a computer readable storage medium, which stores program instructions, and when the program instructions are executed by the processor, can implement a point-to-multipoint tunnel protection method provided by the embodiments of the present invention.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the protection switching between multiple sub-LSPs in the method provided by the embodiment of the present invention is independent of each other, and does not affect the overall switching between the primary and the backup of the entire P2MP tree, thereby reducing network resource consumption and networking layout. limit.
  • the hot-standby end-to-end protection scheme in the P2P tunnel provides a secondary protection mechanism for the sub-LSP indirectly, so that protection can be provided when both the primary and backup faults occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本文提出一种点到多点隧道的保护方法和装置,所述方法包括:建立从组播的根节点到叶子节点的点到P2MP-TE隧道的第一主路径;排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。

Description

一种点到多点隧道的保护方法和装置 技术领域
本文涉及但不限于协议标签交换(MPLS,Multi-Protocol Label Switching)技术领域,具体涉及一种点到多点隧道的保护方法、装置和计算机可读存储介质。
背景技术
随着IPTV(交互式网络电视)等视频业务的快速兴起,网络对高效、可靠的组播传输提出了更高的需求,主要体现在QOS(Quality of Service,服务质量),复制能力,保护,恢复等方面。而目前只应用于单播(即P2P,点对点)场景的RSVP-TE(Resource ReSerVation Protocol-Traffic Engineering,基于流量工程扩展的资源预留协议)在上述方面已经可以满足需求。因此将P2MP(Point-to-Multipoint,点对多点)与RSVP-TE技术结合在一起,是视频传输业务发展的必然趋势。
目前,P2MP-TE(点到多点流量工程)保护主要有局部和端到端保护方式。FRR(Fast ReRoute,快速重路由)bypass(旁路)方式可以提供链路和节点保护,从而达到局部保护的目的。
P2MP端到端保护主要是建立一条备份LSP(Label Switching Path,标签交换路径),用来保护主LSP,当主路径或节点故障,则流量切换到备份LSP。但是标准、草案对于这种方案并没有明确说明和成熟的方案,对于具有端到端保护功能的FRR detour(绕道)方案也尚待研究。
如图1所示,给出了按照RFC(请求注解)4875(用于P2MP-TE LSP的RSVP-TE的扩展)中规定的方式,建立的一种点对多点组播流量工程(P2MP-TE)隧道的网络拓扑图。图1中包含5个路由器节点101、102、103、104、105。从101建立P2MP-TE隧道主树路径sub-LSP1(101-102-104)、sub-LSP2(101-102-103),102为分叉点。如果要保护这两个sub-LSP,可以建立端到端保护。在这种场景下,通常是建立隧道备树路径 sub-LSP3(101-105-104)、sub-LSP4(101-105-103),105为分叉点。这种方案目前存在几个方面的问题:
1、图1中,如果路径102-104故障,头结点发生切换,无法控制只切换sub-LSP1。因为当流量切换到101-105路径上,在105分叉点会进行流量复制,流量同样会转发给并没有故障的103,这样在103上会收到双份流量。目前,当流量切到备份路径上,主路径不再转发流量,整个P2MP主树流量切换到备树。这样做可以解决上述双份流量的问题,但对于其他正常转发并不需要切换的路径存在网络资源的浪费。在实际组网环境中,存在较大数量的叶子节点时,如果只是到达其中一个叶子链路出现故障,仍然需要切换到达其他叶子的流量到备份路径上,这种资源浪费的问题尤为突出。
2、即便整个P2MP主、备树切换,在一些场景下仍然可能存在问题。图2中,主路径(sub-LSP1,sub-LSP2)分别被备路径(sub-LSP3,sub-LSP4)保护,可以确保(sub-LSP1、sub-LSP3),(sub-LSP2、sub-LSP4)两两主备路径是互相独立的。但是sub-LSP2和sub-LSP3在202-203路径是重叠的,那么当重叠路径故障,主sub-LSP2断路,备份sub-LSP3同样断路。当主、备树发生切换时,sub-LSP2确实受到了sub-LSP4的保护,但是sub-LSP1切到sub-LSP3上却流量中断了。因此对于整个树切换的必要前提是两个主备树路径完全不重叠,并且整个备份树路径是完好的。这在现实组网中,要求是非常高的,大大局限了P2MP端到端保护组网的应用场景。
发明内容
以下是对本文详细描述的主题的概述,本概述并非是为了限制权利要求的保护范围。
为了解决上述主备路径整体切换带来的资源浪费以及主备路径树完全独立组网的局限性问题,本发明实施例提供一种点到多点隧道的保护方法和装置。
一种点到多点隧道的保护方法,包括:
建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。
可选地,所述方法还包括:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
可选地,所述方法还包括:
拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
可选地,所述排除所述第一主路径,建立P2P备份隧道包括:
将所述第一主路径的预留RESV报文中的记录路由对象RRO地址作为排除地址,建立所述P2P备份隧道。
可选地,所述方法还包括:
建立所述P2P备份隧道对应的热备用路径。
可选地,建立所述P2P备份隧道对应的热备用路径包括:
排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道和所述热备用路径的关联。
可选地,所述方法还包括:
当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
可选地,所述方法还包括:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径,将流量切换回所述第三主路径。
可选地,所述方法还包括:
进行所述第三主路径和所述热备用路径的关联,或者,重新建立P2P备份隧道,进行第三主路径和新建P2P备份隧道关联。
本发明实施例还提供一种点到多点隧道的保护装置,包括:
主路径建立模块,设置为建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
备份路径建立模块,设置为排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
切换模块,设置为当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。
可选地,所述主路径建立模块还设置为:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
可选地,所述装置还包括:
清除模块,设置为拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
可选地,所述备份路径建立模块排除所述第一主路径,建立P2P备份隧道是指:
将所述第一主路径的预留RESV报文中的记录路由对象RRO地址作为排除地址,建立所述P2P备份隧道。
可选地,所述装置,还包括:
热备用路径建立模块,设置为建立所述P2P备份隧道对应的热备用路径。
可选地,所述热备用路径建立模块建立所述P2P备份隧道对应的热备用路径是指:
排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道 和所述热备用路径的关联。
可选地,所述切换模块还设置为:
当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
可选地,所述主路径建立模块还设置为:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径,将流量切换回所述第三主路径。
可选地,热备用路径建立模块还设置为:进行所述第三主路径和所述热备用路径的关联,或者,
所述备份路径建立模块还设置为:重新建立P2P备份隧道,进行第三主路径和新建P2P备份隧道关联。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被处理器执行时实现本发明实施例所提供的所述一种点到多点隧道的保护方法。
本发明和现有技术相比,具有如下有益效果:
本发明提供的方法和装置多个sub-LSP之间的保护切换是相互独立的,互不影响,并不需要整个P2MP树的主备整体切换,减少了网络资源的消耗和组网布局的限制。并且利用P2P隧道内hot-standby端到端保护方案间接为sub-LSP提供二级保护机制,从而在出现主、备均出现故障时,可以提供保护。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是现有技术P2MP-TE隧道主、备LSP无重叠路径的端到端保护路径组网拓扑图;
图2是现有技术P2MP-TE隧道主、备LSP有重叠路径的端到端保护路径组网拓扑图;
图3是本发明实施例P2P隧道保护P2MP-TE sub-LSP示意图;
图4是本发明实施例P2P隧道保护P2MP-TE sub-LSP处理流程图;
图5是本发明实施例P2P隧道形成hot-standby LSP二级保护P2MP-TE sub-LSP示意图;
图6是本发明实施例P2P隧道形成hot-standby LSP二级保护P2MP-TE sub-LSP处理流程图;
图7是本发明实施例两个P2P隧道分别保护P2MP-TE两个sub-LSP无重叠路径示意图;
图8是本发明实施例两个P2P隧道分别保护P2MP-TE两个sub-LSP无重叠路径处理流程图。
图9是本发明实施例两个P2P隧道分别保护P2MP-TE两个sub-LSP主备有重叠路径示意图;
图10是本发明实施例两个P2P隧道分别保护P2MP-TE两个sub-LSP主备有重叠路径处理流程图;
图11是本发明实施例中一种点到多点隧道的保护方法的流程图;
图12是本发明实施例中一种点到多点隧道的保护装置的结构示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
如图11所示,本发明实施例提供一种点到多点隧道的保护方法,应用于支持MPLS-TE协议的路由器或交换机,包括:
S101、建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
S102、排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
S103、当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并 拆除所述第一主路径,具体地,拆除所述第一主路径的下游信令状态块和转发表项。
本发明实施例中,从组播的Root节点到Leaf节点建立P2MP-TE隧道sub-LSP1,沿sub-LSP1各节点转发表项都下发成功后,sub-LSP 1状态设置为UP,当P2P备份隧道沿路各节点转发都下发成功后,那么P2P备份隧道状态设置为UP。
本发明实施例中,步骤S102中进行所述第一主路径和所述P2P备份隧道的关联是将P2MP sub-LSP1和P2P备份隧道进行主备关联,形成保护关系。步骤S103中当被保护sub-LSP1经过的路径或节点(不包括头、尾节点)出现故障,通知Root节点将流量快速切换到P2P备份隧道上。并且通过P2MP PATH-TEAR(路径拆除)信令报文拆除sub-LSP1下游信令状态块和转发表项,以防止下游和尾节点出现双份流量。
步骤S103之后所述方法还包括:
S104、当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
步骤S103之后所述方法还包括:
S105、拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
当故障恢复,P2MP建立新sub-LSP2到同一目的地,再将流量从P2P备份隧道切换回新建的sub-LSP2上。并重新将sub-LSP2和P2P备份隧道建立关联,形成保护关系。
步骤S102中所述排除所述第一主路径,建立P2P备份隧道包括:
将所述第一主路径的RESV(预留)报文中的RRO(record route object,记录路由对象)地址作为排除地址,建立所述P2P备份隧道。
将sub-LSP1的RESV报文中的RRO地址作为备份隧道算路的尽力排除地址。协议建路过程是两种报文的信令交互,首先由PATH保护从根节点发给尾节点(leaf节点),然后再由尾节点发送RESV报文到根节点。并在RESV 报文过程中下发转发表项,当根节点收到RESV报文后,标识路径建立成功,隧道UP。
RRO是RESV报文中携带的经过路径的IP地址的对象。RESV报文经过的路径越长,这个RRO中携带的IP地址越多。
将第一主路径sub-LSP1作为建立P2P备份隧道的尽力排除路径,可以选则完全排除的RESV报文中的RRO地址的路径作为P2P备份隧道的路径;或者,还可以选择重叠路径较少的路径建立P2P备份隧道。
步骤S103之后所述方法还包括:
S106、建立所述P2P备份隧道对应的热备用路径。排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道和所述热备用路径的关联。
当sub-LSP1出现故障发生切换后,尝试建立P2P备份隧道的hot-standby LSP,来保护P2P备份隧道,从而间接保护P2MP sub-LSP1。
建立hot-standby LSP时与建立P2P备份隧道类似,将所述P2P备份隧道的RESV报文中的RRO地址作为排除地址,建立所述hot-standby LSP,hot-standby LSP在Root节点算路时将P2P备份隧道的RESV报文中的RRO地址作为尽力排除地址。
由于sub-LSP1出现故障后才建立hot-standby LSP,算路时绕过了故障路径,避免了一开始建立hot-standby可能导致路径和P2MP sub-LSP1的故障路径重叠,从而提高了二级保护的成功率。
步骤S106之后所述方法还包括:
S107、当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
hot-standby LSP建立成功后,和P2P LSP备份隧道形成隧道内保护关系。当P2P备份隧道路径出现故障时,通知Root节点,可以将流量快速切换到hot-standby LSP,从而形成二级保护。
步骤S106之后所述方法还包括:
S108、当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径, 将流量切换回所述第三主路径。
当故障恢复,P2MP建立新sub-LSP3到同一目的地,再将流量从hot-standby LSP切换回P2MP sub-LSP3上,并重新建立P2P备份隧道,重新将sub-LSP3和新建P2P备份隧道建立关联,形成保护关系。
步骤S108之后所述方法还包括:
进行所述第三主路径和所述热备用路径的关联。
应用本发明实施例提供的方法,在多个sub-LSP形成保护后,受故障影响的sub-LSP会将流量切换到对应的备份P2P隧道上,不受影响的sub-LSP将不会发生切换,继续转发流量。
如图12所示,本发明实施例提供一种点到多点隧道的保护装置,包括:
主路径建立模块210,设置为建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
备份路径建立模块220,设置为排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
切换模块230,设置为当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。
其中,所述主路径建立模块210还设置为:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
所述的装置还包括:
清除模块240,设置为拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
其中,所述备份路径建立模块220排除所述第一主路径,建立P2P备份隧道是指:
将所述第一主路径的RESV报文中的RRO地址作为排除地址,建立所述 P2P备份隧道。
所述装置还包括:
热备用路径建立模块250,设置为建立所述P2P备份隧道对应的热备用路径。
其中,所述热备用路径建立模块250建立所述P2P备份隧道对应的热备用路径是指:
排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道和所述热备用路径的关联。
其中,所述切换模块230还设置为:
当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
其中,所述主路径建立模块210还设置为:
当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径,将流量切换回所述第三主路径。
其中,热备用路径建立模块250还设置为:进行所述第三主路径和所述热备用路径的关联,或者,所述备份路径建立模块220还设置为:重新建立P2P备份隧道,进行第三主路径和新建P2P备份隧道关联。
实施例一
图3显示了本发明实施例提供的P2P隧道保护P2MP-TE sub-LSP的组网拓扑,图4显示了本发明实施例提供的P2P隧道保护P2MP-TE sub-LSP处理流程,结合图3,图4所示:
步骤S401,从组播的Root节点301建立P2MP-TE隧道sub-LSP1到叶子节点305,经过304节点,保存RESV消息中的RRO信息。
步骤S402,sub-LSP1建立成功后,排除sub-LSP1主路径的RRO信息{305入接口IP地址,304 TE router ID,304入接口IP地址}。建立备份P2P隧道LSP路径为301-302-305,成功后将形成P2P LSP和sub-LSP1的主备保护关 系。
步骤S403,当路径301-304出现故障,检测机制通告给301节点,转发流量快速切换到备份P2P LSP上。同时,304感知上游接口down通过PATH-TEAR报文拆除sub-LSP1在304、305节点信令状态块和转发表项。
步骤S404,当路径301-304恢复,P2MP隧道尝试建立新sub-LSP2,当建立成功后,将流量从备P2P LSP恢复到sub-LSP2上。然后拆除sub-LSP1,P2P备隧道以及保护关系。
实施例二
图5显示了本发明实施例提供的P2P隧道形成hot-standby LSP二级保护P2MP-TE sub-LSP的组网拓扑,图6显示了本发明实施例提供的P2P隧道hot-standby LSP二级保护P2MP-TE sub-LSP处理流程,结合图5,图6所示:
步骤S601,从组播的Root节点501建立P2MP-TE隧道sub-LSP1到叶子节点305,经过304节点。备份P2P LSP路径为501-502-505,并和sub-LSP形成保护关系。路径501-504故障,保护快速切换到备份P2P LSP上。
步骤S602,P2P LSP上开启检测。建立备份P2P LSP的保护LSP,尝试尽力排除P2P LSP经过的路径,建立hot-standby LSP,路径为501-502-503-505,并形成备份P2P隧道内端到端保护关系。
步骤S603,当路径502-505出现故障,检测机制通告给501节点,转发流量快速切换到hot-standby LSP上。
步骤S604,当路径501-504或者502-505恢复,P2MP隧道尝试建立新sub-LSP2,当建立成功后,将流量从备P2P hot-standby LSP恢复到sub-LSP2上。然后拆除sub-LSP1,P2P备隧道以及保护关系。
实施例三
图7显示了本发明实施例提供的两条P2P隧道分别保护P2MP-TE隧道中两个sub-LSP的组网拓扑,图8显示了本发明实施例提供的两条P2P隧道分别保护P2MP-TE隧道中两个sub-LSP处理流程,结合图7,图8所示:
步骤S801,从组播的Root节点701建立P2MP-TE隧道sub-LSP1、sub-LSP2经过分叉点702分别到叶子节点703、704。
步骤S802,sub-LSP1建立成功后,排除sub-LSP1主路径的RRO信息{703入接口IP地址,702 TE router ID,702入接口IP地址}。建立备份P2P隧道1路径为701-705-703,成功后将形成P2P隧道1和sub-LSP1的主备保护关系。同理,建立sub-LSP2备份P2P隧道2路径为701-705-704,并形成主备保护关系。
步骤S803,当路径702-703出现故障,检测机制通告给701节点,受影响的sub-LSP1转发流量快速切换到备份P2P隧道1上。同时,sub-LSP1在702、703上的信令状态块和转发表项将被拆除,以避免在Leaf1上出现双份流。这时,到达Leaf2的流量继续通过主路径sub-LSP2来传输,不受影响。
步骤S804,当路径702-704恢复,P2MP隧道尝试重建sub-LSP1,当建立成功后,将流量从备P2P备份隧道1恢复到新的sub-LSP1上。然后删除旧保护关系,形成新保护关系。至此,sub-LSP2没有受到任何sub-LSP1切换和恢复的影响。
实施例四
图9显示了本发明实施例提供的两条P2P隧道分别保护P2MP-TE隧道中两个sub-LSP的组网拓扑,其中sub-LSP2路径和备份隧道1路径有重叠,图10显示了本发明实施例提供的两条P2P隧道分别保护P2MP-TE隧道中两个sub-LSP处理流程,结合图9,图10所示:
步骤S1001,从组播的Root节点901建立P2MP-TE隧道sub-LSP1到叶子节点902,建立sub-LSP2经过902到叶子节点903。
步骤S1002,sub-LSP1建立成功后,排除sub-LSP1主路径的RRO信息{902入接口IP地址}。建立备份P2P隧道1路径为901-903-902,成功后将形成P2P隧道1和sub-LSP1的主备保护关系。同理,建立sub-LSP2备份P2P隧道2路径为901-903,并形成主备保护关系。sub-LSP2和备份隧道1在902-903路径重叠。
步骤S1003,当路径902-903出现故障,检测机制通告给901节点,受影响的sub-LSP2转发流量快速切换到备份P2P隧道2上。同时,sub-LSP1在902,903的信令状态块和转发表项将被拆除,以避免在Leaf2上出现双份流。 这时,备份隧道1受到故障的影响,无法起到保护作用,但到达Leaf1的流量继续通过主路径sub-LSP1来传输不受影响。
实施例五
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被处理器执行时可实现本发明实施例所提供的一种点到多点隧道的保护方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例提供的方法中多个sub-LSP之间的保护切换是相互独立的,互不影响,并不需要整个P2MP树的主备整体切换,减少了网络资源的消耗和组网布局的限制。并且利用P2P隧道内hot-standby端到端保护方案间接为sub-LSP提供二级保护机制,从而在出现主、备均出现故障时,可以提供保护。

Claims (19)

  1. 一种点到多点隧道的保护方法,包括:
    建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
    排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
    当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。
  2. 如权利要求1所述的方法,还包括:
    当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
  3. 如权利要求1所述的方法,还包括:
    拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
  4. 如权利要求1所述的方法,其中,所述排除所述第一主路径,建立P2P备份隧道包括:
    将所述第一主路径的预留RESV报文中的记录路由对象RRO地址作为排除地址,建立所述P2P备份隧道。
  5. 如权利要求1所述的方法,还包括:
    建立所述P2P备份隧道对应的热备用路径。
  6. 如权利要求5所述的方法,其中,建立所述P2P备份隧道对应的热备用路径包括:
    排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道和所述热备用路径的关联。
  7. 如权利要求5所述的方法,还包括:
    当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
  8. 如权利要求7所述的方法,还包括:
    当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径,将流量切换回所述第三主路径。
  9. 如权利要求8所述的方法,还包括:
    进行所述第三主路径和所述热备用路径的关联,或者,重新建立P2P备份隧道,进行第三主路径和新建P2P备份隧道关联。
  10. 一种点到多点隧道的保护装置,包括:
    主路径建立模块,设置为建立从组播的根节点到叶子节点的点到多点流量工程P2MP-TE隧道的第一主路径;
    备份路径建立模块,设置为排除所述第一主路径,建立P2P备份隧道,进行所述第一主路径和所述P2P备份隧道的关联;
    切换模块,设置为当检测到所述第一主路径经过的节点或者节点之间的路径出现故障时,通知所述P2MP隧道的根节点,将流量切换到所述P2P备份隧道,并拆除所述第一主路径。
  11. 如权利要求10所述的装置,其中,所述主路径建立模块还设置为:
    当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第二主路径,将流量切换回所述第二主路径。
  12. 如权利要求10所述的装置,还包括:
    清除模块,设置为拆除所述第一主路径和所述P2P备份隧道,并解除所述第一主路径和所述P2P备份隧道的关联。
  13. 如权利要求10所述的装置,其中,所述备份路径建立模块排除所述第一主路径,建立P2P备份隧道是指:
    将所述第一主路径的预留RESV报文中的记录路由对象RRO地址作为排除地址,建立所述P2P备份隧道。
  14. 如权利要求10所述的装置,还包括:
    热备用路径建立模块,设置为建立所述P2P备份隧道对应的热备用路径。
  15. 如权利要求14所述的装置,其中,所述热备用路径建立模块建立所述P2P备份隧道对应的热备用路径是指:
    排除所述P2P备份隧道,建立所述热备用路径,进行所述P2P备份隧道和所述热备用路径的关联。
  16. 如权利要求14所述的装置,其中,所述切换模块还设置为:
    当检测到所述P2P备份隧道经过的节点或者节点之间的路径出现故障时,通知所述根节点,将流量切换到所述热备用路径。
  17. 如权利要求16所述的装置,其中,所述主路径建立模块还设置为:
    当检测到所述第一主路径经过的节点或者节点之间的路径故障恢复时,重新建立从组播的根节点到叶子节点的P2MP-TE隧道的第三主路径,将流量切换回所述第三主路径。
  18. 如权利要求17所述的装置,其中,热备用路径建立模块还设置为:进行所述第三主路径和所述热备用路径的关联,或者,
    所述备份路径建立模块还设置为:重新建立P2P备份隧道,进行第三主路径和新建P2P备份隧道关联。
  19. 一种计算机可读存储介质,存储有程序指令,当该程序指令被处理器执行时实现权利要求1至9任一项所述的方法。
PCT/CN2015/092559 2015-05-22 2015-10-22 一种点到多点隧道的保护方法和装置 WO2016188025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510268113.4A CN106302165A (zh) 2015-05-22 2015-05-22 一种点到多点隧道的保护方法和装置
CN201510268113.4 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016188025A1 true WO2016188025A1 (zh) 2016-12-01

Family

ID=57392599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092559 WO2016188025A1 (zh) 2015-05-22 2015-10-22 一种点到多点隧道的保护方法和装置

Country Status (2)

Country Link
CN (1) CN106302165A (zh)
WO (1) WO2016188025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157557A (zh) * 2017-08-29 2022-03-08 北京华为数字技术有限公司 一种点到多点业务传输方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579918B (zh) * 2017-08-15 2020-05-12 新华三技术有限公司 一种邻居关系的维护方法和装置
CN112929261B (zh) * 2019-12-05 2024-03-12 中兴通讯股份有限公司 分段路由隧道的防断纤方法、装置,入口节点及存储介质
CN114785732B (zh) * 2022-05-05 2023-08-11 烽火通信科技股份有限公司 用于p2mp组播隧道路径保护的方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729348A (zh) * 2009-06-01 2010-06-09 中兴通讯股份有限公司 一种点到多点环的保护方法和系统
CN102123098A (zh) * 2011-03-15 2011-07-13 中兴通讯股份有限公司 一种p2mp组播隧道的保护切换方法和系统
CN102204190A (zh) * 2011-05-31 2011-09-28 华为技术有限公司 路径建立方法和装置
CN104429021A (zh) * 2012-06-27 2015-03-18 思科技术公司 用于有效的点到多点流量工程(p2mp-te)路径保护的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355315B2 (en) * 2006-11-27 2013-01-15 Cisco Technology, Inc. Failure protection for P2MP tunnel tail-end node
CN101453414B (zh) * 2007-11-30 2011-08-10 华为技术有限公司 点到多点标签交换路径的头节点保护方法、系统和设备
CN101729229A (zh) * 2009-06-18 2010-06-09 中兴通讯股份有限公司 点到多点闭环系统及其保护方法以及该系统中的节点设备
CN102546352B (zh) * 2010-12-08 2016-08-03 中兴通讯股份有限公司 一种实现点到多点标签交换路径保护的方法及系统
CN102447569B (zh) * 2011-12-29 2015-06-03 中兴通讯股份有限公司 一种点对多点组播业务的保护方法及网络设备
CN103297259B (zh) * 2012-02-29 2018-07-06 中兴通讯股份有限公司 点到多点组播业务的保护方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729348A (zh) * 2009-06-01 2010-06-09 中兴通讯股份有限公司 一种点到多点环的保护方法和系统
CN102123098A (zh) * 2011-03-15 2011-07-13 中兴通讯股份有限公司 一种p2mp组播隧道的保护切换方法和系统
CN102204190A (zh) * 2011-05-31 2011-09-28 华为技术有限公司 路径建立方法和装置
CN104429021A (zh) * 2012-06-27 2015-03-18 思科技术公司 用于有效的点到多点流量工程(p2mp-te)路径保护的系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157557A (zh) * 2017-08-29 2022-03-08 北京华为数字技术有限公司 一种点到多点业务传输方法和装置
CN114157557B (zh) * 2017-08-29 2023-12-29 北京华为数字技术有限公司 一种点到多点业务传输方法和装置

Also Published As

Publication number Publication date
CN106302165A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5200169B2 (ja) ラベルスイッチパスの入口および出口の保護
US7697417B2 (en) Methods and devices for re-routing MPLS traffic
US8004960B2 (en) Method and apparatus for forwarding label distribution protocol multicast traffic during fast reroute
US9036642B2 (en) Point-to point based multicast label distribution protocol local protection solution
US20020171886A1 (en) Automatic control plane recovery for agile optical networks
US9450778B2 (en) P2MP traffic protection in MPLS-TP ring topology
US20110199891A1 (en) System and Method for Protecting Ingress and Egress of a Point-to-Multipoint Label Switched Path
US20090219806A1 (en) Method, apparatus, and system for protecting head node of point to multipoint label switched path
EP2866394B1 (en) Method and device for sending inter-domain fault information
US20130336191A1 (en) mRSVP-TE Based Fast Reroute in Detour (1:1) Protection Mode
CN104954256A (zh) 用于重新配置点到多点标签交换路径的装置、系统和方法
KR20140001882A (ko) 네트워크 장애로부터 복구되기 위한 고속 플러딩 기반 고속 수렴
US20130094355A1 (en) Method for fast-re-routing (frr) in communication networks
WO2016188025A1 (zh) 一种点到多点隧道的保护方法和装置
WO2017152596A1 (zh) 一种p2mp主隧道节点保护的方法及装置
WO2011157130A2 (zh) 路径建立方法和装置
JP4392386B2 (ja) リカバリ方法、ならびに、そのリカバリ方法を実行する発信者ノード装置、中継ノード装置、および、着信者ノード装置
WO2013040930A1 (zh) 一种组播标签交换路径的中间节点保护方法及装置
US8918671B2 (en) Technique for protecting leaf nodes of a point-to-multipoint tree in a communications network in connected mode
US9137146B2 (en) Enhanced upstream label assignment (ULA) mechanism for point to multi-point (P2MP) and/or multi-point to multi-point (MP2MP) facility protection
US8995304B2 (en) Enhanced upstream label assignment (ULA) mechanism for point to multi-point (P2MP) and/or multi-point to multi-point (MP2MP) facility protection
JP4541367B2 (ja) 故障救済方法およびパケット通信装置
Bejerano et al. Resource reservation comparison of fault resilient routing schemes
WO2017181756A1 (zh) 一种隧道保护的方法及装置
JP5752645B2 (ja) マルチキャスト転送システムおよびマルチキャスト経路切替方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893101

Country of ref document: EP

Kind code of ref document: A1