WO2017181655A1 - 一种三层结构的共挤型一次成型太阳能电池组件背板 - Google Patents

一种三层结构的共挤型一次成型太阳能电池组件背板 Download PDF

Info

Publication number
WO2017181655A1
WO2017181655A1 PCT/CN2016/105236 CN2016105236W WO2017181655A1 WO 2017181655 A1 WO2017181655 A1 WO 2017181655A1 CN 2016105236 W CN2016105236 W CN 2016105236W WO 2017181655 A1 WO2017181655 A1 WO 2017181655A1
Authority
WO
WIPO (PCT)
Prior art keywords
grafted
component
density polyethylene
dehydrated
methacrylate
Prior art date
Application number
PCT/CN2016/105236
Other languages
English (en)
French (fr)
Inventor
陈洪野
王磊
吴小平
宇野敬一
高畠博
Original Assignee
苏州赛伍应用技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州赛伍应用技术有限公司 filed Critical 苏州赛伍应用技术有限公司
Priority to JP2017527924A priority Critical patent/JP6422581B2/ja
Priority to US15/525,949 priority patent/US10622501B2/en
Priority to EP16863201.6A priority patent/EP3252832B1/en
Publication of WO2017181655A1 publication Critical patent/WO2017181655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the invention relates to a three-layer co-extruded one-shot solar cell module backsheet.
  • the solar cell module is usually a laminated structure mainly comprising a glass layer, an EVA encapsulating layer, a silicon cell sheet, an EVA encapsulating layer and a solar cell module back sheet which are sequentially disposed, wherein the silicon cell sheet is sealed by two layers of EVA film.
  • the main function of the solar cell module backplane is electrical insulation, which improves the mechanical strength of the solar cell module, prevents moisture from penetrating into the sealing layer, and affects the life of the cell and the power generation efficiency. Since the solar cell module back sheet is at the outermost surface of the solar cell module, the back sheet is required to have good environmental corrosion resistance, and thus the manufactured solar cell module back sheet must have good resistance to moisture and heat aging, high temperature resistance, hydrolysis resistance, and corrosion resistance. Performance, as well as resistance to ultraviolet light, good water resistance, high light reflection on the battery side, to improve the power generation efficiency of the battery. And can further reduce costs.
  • the solar cell backsheet is mainly composed of a fluorine film of 0.020-0.040 mm thick, a polyester (PET) film base layer of 0.100-0.300 mm thickness, and an EVA or polyolefin film or polyamide of 0.0200-0.180 mm thickness ( PA), or a film composed of modified polypropylene, a total of three layers of film material are composited by an adhesive.
  • the back plate has the following disadvantages: the back plate has thicker heat conduction efficiency, poor heat resistance, low light reflectivity affects battery power generation efficiency, and low UV resistance has caused premature pulverization of the layer of the battery surface, yellowing cracking and aging Failure, water vapor transmission rate is too high, causing PID phenomenon, induced Snail trails phenomenon reduces power generation efficiency, component repair is difficult, and the backboard is expensive.
  • the object of the present invention is to provide a three-layer solar cell module backboard with high water blocking rate, high light reflectivity, long-term aging resistance and good environmental performance in order to overcome the deficiencies of the prior art.
  • the backsheet is composed of an intermediate layer located in the middle and an outer layer on both sides of the intermediate layer and an inner layer three-layer film using dynamic cross-linking extrusion technology, which is also called reactive cross-linking extrusion technology.
  • Reactive cross-linking extrusion technology for one-time co-extrusion to form the solar cell module back sheet (4) is formed by co-extruding a three-layer film and a functional filler, and has high water blocking ability, high light reflectivity, long-term hydrolysis resistance, ultraviolet resistance and heat resistance.
  • the solar cell module back plate is composed of a crosslinked polymer alloy film as a core base layer in the three-layer structure, and an outer layer by a co-extruded crosslinked polymer alloy layer on the air side thereof, and the other The side of the cell is called the inner layer, and the co-extrusion cross-linking high score
  • the composition of the sub-alloy, the back sheet has better water blocking performance, higher reflectivity, better long-term hydrolysis resistance, ultraviolet resistance and aging resistance, and better dimensional thermal stability than the prior art. Better recycling of environmentally friendly performance and lower cost.
  • the coextruded structural backsheet of the prior art has better heat resistance, better dimensional stability, and stronger mechanical breaking strength.
  • the invention utilizes an inexpensive polyolefin polymer resin, grafts a reactive functional group by a grafting technique, and then blends with a polymer resin having a reactive group reactive with a graft functional group and is extruded.
  • the cross-linking reaction is carried out during the processing to form a cross-linking reaction, thereby realizing the cross-linking network to improve heat resistance, improve mechanical strength, and improve dimensional stability, and at the same time, each layer of the three layers has a polymer resin having a reactive group.
  • the cross-linking network is used to improve the hardness of the outer layer of the surface, such as abrasion resistance, scratch resistance, acid and alkali resistance, solvent resistance, ammonia resistance and salt spray resistance.
  • the technical solution adopted by the present invention is: a three-layered co-extrusion type one-time forming solar cell module back sheet, characterized in that the back sheet is located in the middle intermediate layer (3) and located
  • the outer layer (1) and the inner layer (2) on both sides of the intermediate layer (3) use dynamic cross-linking extrusion technology, also known as reactive cross-linking extrusion technology, also known as reactive extrusion.
  • the technology is co-extruded to form the solar cell module backsheet (4).
  • the intermediate layer (3) and the outer layer (1) and the inner layer (2) on both sides of the intermediate layer (3) both use dynamic cross-linking extrusion technology, also known as reactive cross-linking extrusion technology, also known as For reactive extrusion technology.
  • dynamic cross-linking extrusion technology also known as reactive cross-linking extrusion technology
  • For reactive extrusion technology also known as For reactive extrusion technology.
  • Dynamic crosslinking technology in English is: Dynamic crosslinking technology
  • the inner layer of each layer and the layer between the layers are cross-linked by the co-extrusion process to form a dense molecular network, thereby achieving heat resistance, thermal stability, and mechanical strength, and increasing the intermediate layer 3 and the intermediate layer 3
  • the purpose of the bonding force between the outer layer 1 and the inner layer 2 on the side is used for the purpose of increasing the bonding force between the intermediate layer 3 and the outer layer 1 and the inner layer 2 on both sides of the intermediate layer 3.
  • the intermediate layer 3 is composed of a polymer network plastic alloy obtained by blending one or more of component A, component B, component C, component D and functional filler and crosslinking reaction in coextrusion processing. ;
  • Component A consists of one or two selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene ( HDPE), ultra high molecular weight polyethylene (UHMWPE), polystyrene is the end segment and is polybutadiene
  • the ethylene-butene copolymer obtained by hydrogenation of a diene is an intermediate elastic block linear intercalated copolymer (SEBS), ethylene octene copolymer or ethylene pentene copolymer polyolefin elastomer (POE), homopolypropylene (PP) ), copolymerized polypropylene (PP), a mixture of homopolymerized polypropylene and copolymerized polypropylene, polystyrene (PS), polyphenylene sulfide (PPS), polyphenylene ether (PPO), polyamide (PA, One or more of PA6, PA11, PA12, PA66
  • Component B is selected from one or two of the following polymers, such as: linear low density polyethylene grafted dehydrated methacrylic acid methacrylate (LLDPE-g-GMA), low density polyethylene grafted methacrylic acid dehydrated Glyceride (LDPE-g-GMA), medium density polyethylene grafted dehydrated methacrylate (MDPE-g-GMA), high density polyethylene grafted dehydrated methacrylate (HDPE-g-GMA), Ultrahigh molecular weight polyethylene grafted dehydrated methacrylate (UHMWPE-g-GMA), polystyrene is the terminal segment and the ethylene-butene copolymer obtained by hydrogenation of polybutadiene is the linear of the intermediate elastic block.
  • LLDPE-g-GMA linear low density polyethylene grafted dehydrated methacrylic acid methacrylate
  • LDPE-g-GMA low density polyethylene grafted methacrylic acid dehydrated Glyceride
  • MDPE-g-GMA medium
  • Tri-inlaid copolymer grafted dehydrated methacrylic acid methacrylate SEBS-g-GMA
  • homopolypropylene grafted dehydrated methacrylic acid methacrylate PP-g-GMA
  • copolymerized polypropylene grafted methacrylic acid dehydrated Glyceryl ester PP-g-GMA
  • polystyrene grafted dehydrated methacrylate PS-g-GMA
  • PPO-g-GMA polyphenylene ether grafted dehydrated methacrylate
  • POE-g-GMA polycarbonate grafted methacrylic acid dehydrated Ester
  • EPDM-g-GMA ethylene propylene diene rubber grafted dehydrated methacrylate
  • Component C is selected from one or two of the following polymers, such as polyamide (PA, PA6, One or more of PA11, PA12, PA66, PA610, PA612, PA1010, PA1212), methyl methacrylate (PMMA), polyvinyl butyral (PVB), phenoxy resin (PHENOXYRESIN), crystallization Polyester polyols and the like.
  • PA polyamide
  • PA6 One or more of PA11, PA12, PA66, PA610, PA612, PA1010, PA1212
  • PMMA methyl methacrylate
  • PVB polyvinyl butyral
  • PHENOXYRESIN phenoxy resin
  • Crystallization Polyester polyols and the like.
  • Component D is a nylon polyolefin graft copolymer (or polyolefin and nylon graft polymer, PO-GRAFT-PA); polyolefin and nylon graft polymer can be ARKEMA polyolefin and nylon Graft polymer One or two of the components.
  • the functional filler is used to increase the reflective performance, heat dissipation performance, flame retardant performance, color decoration performance, and the inorganic filler is selected from the group consisting of titanium dioxide (TiO 2 ), aluminum oxide, aluminum hydroxide, talc, silicon dioxide, calcium carbonate, One or a mixture of two or more of carbon black, mica powder, barium sulfate, diatomaceous earth, pumice powder, diamond powder.
  • each component in the intermediate layer 3 is: A component in a weight ratio of 0 to 99%, optimized in 0-90%; component B in a weight ratio of 0.5% to 99%, optimized in 0.5%-80 %; C component in the weight ratio of 0.5% to 99%, optimized in 0.5% to 90%; D component in the weight ratio of 0 to 99%, optimized in 0 to 50%; functional filler in the weight ratio of 0.5% ⁇ 90%, optimized at 0.5%-30%.
  • the outer layer 1 is composed of a polymer network plastic alloy obtained by blending one or more of the E component, the F component, the G component and the functional filler and performing a crosslinking reaction in a co-extrusion process;
  • the E component is composed of one or two selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene ( HDPE), ultra high molecular weight polyethylene (UHMWPE), polystyrene end segment and ethylene-butene copolymer obtained by hydrogenation of polybutadiene as linear elastic block linear intercalated copolymer (SEBS), ethylene Octene copolymer or ethylenepentene copolymer polyolefin elastomer (POE), polyamide (one or more of PA, PA6, PA11, PA12, PA66, PA610, PA612 and PA1010), methyl methacrylate (PMMA) ), polyvinyl butyral (PVB), polyolefin and nylon graft polymer (PO-GRAFT-PA) and cyclic olefin copolymer (Cyclic Olefin Copolymer or Cyclic Olefin Polymer),
  • the F component is composed of one or two selected from the group consisting of linear low density polyethylene grafted dehydrated methacrylic acid methacrylate (LLDPE-g-GMA), low density polyethylene grafted methacrylic acid.
  • LLDPE-g-GMA linear low density polyethylene grafted dehydrated methacrylic acid methacrylate
  • MDPE-g-GMA medium density polyethylene grafted dehydrated methacrylate
  • HDPE-g-GMA high density polyethylene grafted dehydrated methacrylate
  • UHMWPE-g-GMA ultrahigh molecular weight polyethylene grafted dehydrated methacrylic acid methacrylate
  • SEBS-g-GMA Linear tri-inlaid copolymer grafted with dehydrated methacrylic acid methacrylate
  • SEBS-g-GMA ethylene octene copolymer or ethylene pentene copolymerized polyolefin elastomer grafted
  • Component G consists of one or two selected from the group consisting of polyamides (one or more of PA, PA6, PA11, PA12, PA66, PA610, PA612, PA1010, PA1212), A One or both of methyl acrylate (PMMA), polyvinyl butyral (PVB), phenoxy resin (PHENOXYRESIN), and crystalline polyester polyol.
  • polyamides one or more of PA, PA6, PA11, PA12, PA66, PA610, PA612, PA1010, PA1212
  • PMMA methyl acrylate
  • PVB polyvinyl butyral
  • PHENOXYRESIN phenoxy resin
  • crystalline polyester polyol crystalline polyester polyol
  • the functional filler is used to increase the reflective performance, heat dissipation performance, flame retardant performance, color decoration performance, and the inorganic filler is selected from the group consisting of titanium dioxide (TiO 2 ), aluminum oxide, aluminum hydroxide, talc, silicon dioxide, calcium carbonate, One or a mixture of two or more of carbon black, mica powder, barium sulfate, diatomaceous earth, pumice powder, diamond powder.
  • each component in the outer layer 1 is: E component in the weight ratio of 0 to 99%, optimized in the range of 0-90%; F component in the weight ratio of 0.5% to 99%, optimized in the 10% -90 %; G component in the weight ratio of 0.5% to 99%, optimized in the range of 0.5% to 90%; functional fillers in the weight ratio of 0.5% to 90%, optimized from 1% to 40%.
  • the inner layer 2 is composed of a polymer network plastic alloy obtained by blending one or more of the H component, the J component, the K component and the functional filler and performing a crosslinking reaction in a co-extrusion process;
  • the H component is composed of one or two selected from the group consisting of linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), low density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), polystyrene end segment and ethylene-butene copolymer obtained by hydrogenation of polybutadiene as linear elastic block linear intercalated copolymer (SEBS), ethylene Octene copolymer or ethylene pentenene copolymerized polyolefin elastomer (POE), polyamide (PA, One or more of PA6, PA11, PA12, PA66, PA610, PA612), methyl methacrylate (PMMA), polyvinyl butyral (PVB), polyolefin and nylon graft polymer (PO -GRAFT-PA) and one or both of a cyclic olefin copolymer (Cyclic Olefin Copolymer or Cyclic Olefin
  • the J component is composed of one or two selected from the group consisting of linear low density polyethylene grafted dehydrated methacrylic acid methacrylate (LLDPE-g-GMA), low density polyethylene grafted methacrylic acid.
  • LLDPE-g-GMA linear low density polyethylene grafted dehydrated methacrylic acid methacrylate
  • MDPE-g-GMA medium density polyethylene grafted dehydrated methacrylate
  • HDPE-g-GMA high density polyethylene grafted dehydrated methacrylate
  • UHMWPE-g-GMA ultrahigh molecular weight polyethylene grafted dehydrated methacrylic acid methacrylate
  • SEBS-g-GMA Linear tri-inlaid copolymer grafted with dehydrated methacrylic acid methacrylate
  • SEBS-g-GMA ethylene octene copolymer or ethylene pentene copolymerized polyolefin elastomer grafted
  • the K component is composed of one or two selected from the group consisting of polyamide (one or more of PA, PA6, PA11, PA12, PA66, PA610, PA612, PA1010, PA1212), One or both of methyl acrylate (PMMA), polyvinyl butyral (PVB), phenoxy resin (PHENOXYRESIN), and crystalline polyester polyol.
  • polyamide one or more of PA, PA6, PA11, PA12, PA66, PA610, PA612, PA1010, PA1212
  • PMMA methyl acrylate
  • PVB polyvinyl butyral
  • PHENOXYRESIN phenoxy resin
  • crystalline polyester polyol crystalline polyester polyol
  • the functional filler is used to increase the reflective performance, heat dissipation performance, flame retardant performance, color decoration performance, and the inorganic filler is selected from the group consisting of titanium dioxide (TiO 2 ), aluminum oxide, aluminum hydroxide, talc, silicon dioxide, calcium carbonate, One or a mixture of two or more of carbon black, mica powder, barium sulfate, diatomaceous earth, pumice powder, diamond powder.
  • the content of each component in the inner layer 2 is: the weight ratio of the H component is 0 to 99%, and the optimum is 0-90%;
  • the composition of J is 0.5% to 99% by weight, and the optimum is 10% to 90%; the K component is 0.5% to 99% by weight, and the optimum is 0.5% to 90%; and the functional filler is 0.5% by weight. ⁇ 90%, optimized at 1%-40%.
  • the thickness of the intermediate layer 3 is from 0.005 mm to 0.500 mm, wherein the thickness of the outer layer 1 is from 0.010 mm to 0.100 mm, and the thickness of the inner layer 2 is from 0.010 mm to 0.100 mm.
  • the surface gloss of the outer layer 1 is from 1 to 99, preferably from 5 to 90, wherein the gloss angle of the measured gloss is 60°; the surface gloss of the inner layer 2 is from 1 to 99, optimized at 5 ⁇ 90, wherein the gloss angle of the measured gloss is 60°; the gloss measurement method meets the following standards: ASTM D523, ASTMD1455, ASTMC346, ASTMC584, ASTMD2457, ENISO2813, DIN67530, ENISO7668, JISZ8741, MFT30064, TAPPIT480, GB9754, GB/T13891, GB7706 And GB8807 and so on.
  • the surface reflectance of the inner layer 2 is 1% to 99%, and is preferably 2% to 99%, where
  • FIG. 1 is a schematic structural view of a co-extrusion type one-time forming solar cell module back sheet according to the present invention
  • FIG. 2 is a schematic structural view of a solar cell module constructed by a back plate of a co-extruded one-shot solar cell module according to the present invention.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back sheet 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer, which are continuously produced by three layers of co-extrusion.
  • the film is formed by a high-temperature co-extrusion film forming process to form a polymer mixture film.
  • the raw material of the outer layer 1 is PA12 content 88% + TiO 2 content 12% (both mass content, the same below), thickness is 0.050 mm;
  • the chemical formula is [NH-(CH 2 ) 11 -CO] n ;
  • the raw material of the inner layer 2 is EVA19%+LLDPE69%+TiO 2 content 12%, and the thickness is 0.050 mm;
  • Inner layer 2 chemical formula: (C 2 H 4 ) x (C 4 H 6 O 2 ) + (C 2 H 4 ) n ;
  • the raw material of the intermediate layer 3 is a homopolymer PP content of 98% + a TiO 2 content of 2% and a thickness of 0.250 mm.
  • the film is processed by high temperature co-extrusion to form a polymer mixture film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back sheet 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the outer layer 1 material is made of PA12 content 88% + TiO 2 content 12%, thickness is 0.050 mm;
  • the raw material of the inner layer 2 is PA12 content 88% + TiO 2 content 12%, thickness is 0.050 mm;
  • the raw material of the intermediate layer 3 has a PA12 content of 98% + a TiO 2 content of 2% and a thickness of 0.250 mm.
  • the film is processed by high temperature co-extrusion to form a polymer mixture film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the material of the outer layer 1 is HDPE-g-GMA content 65%+PA12 content 23%+TiO 2 content 12%, thickness is 0.050 mm; wherein: HDPE chemical formula: [-CH 2 -CH 2 -] n ;
  • the inner layer 2 selects HDPE-g-GMA content 65%+PA12 content 23%+TiO2 content 12%, thickness is 0.050 mm;
  • the intermediate layer 3 has a homopolymer PP content of 58% + a PP-g-GMA content of 20% + a PA12 content of 20% + TiO 2 2%, and a thickness of 0.250 mm. After a high-temperature co-extrusion film forming process, a part of the cross-linking reaction occurs to form a mixed polymer alloy film.
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and a mixed polymer alloy film is formed in each layer, and the compatibility between the layers and the layers is passed through the polymer.
  • the reaction is fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the material of the outer layer 1 is HDPE-g-GMA content 64%+PA12 content 24%+TiO 2 content 12%, thickness 0.0550 mm;
  • the material of the intermediate layer 3 is a homopolymer PP content of 58% + a PP-g-GMA content of 20% + a PA12 content of 20% + TiO 2 2%, and a thickness of 0.250 mm. After a high-temperature co-extrusion film forming process, a part of the cross-linking reaction occurs to form a mixed polymer alloy film.
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and a mixed polymer alloy film is formed in each layer, and the compatibility between the layers and the layers is passed through the polymer.
  • the reaction is fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the material of the outer layer 1 is HDPE-g-GMA content 64%+PA12 content 24%+TiO 2 content 12%, thickness 0.0550 mm;
  • HDPE chemical formula [-CH 2 -CH 2 -] n ;
  • the material of the intermediate layer 3 is HDPE-g-GMA content 70%+PA12 content 24%+TiO 2 content 6%, and thickness 0.250 mm. After a high-temperature co-extrusion film forming process, a part of the cross-linking reaction occurs to form a mixed polymer alloy film.
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and a mixed polymer alloy film is formed in each layer, and the compatibility between the layers and the layers is passed through the polymer.
  • the reaction is fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the outer layer 1 raw material is HDPE-g-GMA content 64% + PA12 content 24% + TiO 2 content 12%, thickness is 0.050 mm;
  • the material of the intermediate layer 3 is homopolymerized or copolymerized with PP-g-GMA content of 60% + PA12 content of 16% + TiO 2 content of 4% + HDPE-g-GMA content of 20%, and thickness of 0.250 mm.
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and a mixed polymer alloy film is formed in each layer, and the compatibility between the layers and the layers is passed through the polymer.
  • the reaction is fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the outer layer 1 raw material is HDPE-g-GMA content 64% + PA12 content 24% + TiO 2 content 12%, thickness is 0.050 mm;
  • the intermediate layer 3 is made of a homopolymer PP content of 60% + a cyclic olefin copolymer (Cyclic Olefin Copolymer) of 26% + a TiO 2 content of 4% and a thickness of 0.250 mm; the chemical formula of the cyclic olefin copolymer is as follows:
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and each layer forms a mixed polymer alloy film while the layer passes through the polymer phase.
  • the capacitive and cross-linking reactions are fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the outer layer 1 is made of polyolefin and nylon graft polymer. Content 43%+HDPE-g-GMA content 30%+PA12 content 15%+TiO 2 content 12%, thickness 0.050mm;
  • Inner layer 2 raw material selection polyolefin and nylon graft polymer Content 43%+HDPE-g-GMA content 30%+PA12 content 15%+TiO 2 content 12%, thickness 0.050mm; intermediate layer 3 raw material is homopolymer PP content 46%+ homopolymer or copolymer PP-g- GMA content 30% + polyolefin and nylon graft polymer Content of 10% + PA12 content of 10% + TiO 2 content of 4%, a thickness of 0.250 mm; co-extrusion at high temperatures (Co-extrusion) the film processing, a part of cross-linking reaction to form a mixed polymer alloy film.
  • the three layers of materials are processed by a high-temperature co-extrusion film at a time, and a mixed polymer alloy film is formed in each layer, and the compatibility between the layers and the layers is passed through the polymer.
  • the reaction is fused and crosslinked to form an integrated polymer alloy film.
  • FIG. 1 is a schematic structural view of a three-layer solar cell module back plate 4, including an intermediate layer 3 in the middle and an outer layer 1 and an inner layer 2 on both sides of the intermediate layer.
  • the three layers are co-extruded by three layers. Made by continuous production.
  • the outer layer 1 is made of polyolefin and nylon graft polymer. Content 43%+HDPE-g-GMA content 30%+PA12 content 15%+TiO 2 content 12%, thickness 0.050mm;
  • Raw material for the intermediate layer 3 homopolymerization or copolymerization PP-g-GMA content is 75% + PA12 content of 21% + TiO 2 content of 4%, a thickness of 0.250 mm; temperature co-extruded through the film (Co-extrusion) process, a portion occurs The crosslinking reaction forms a mixed polymer alloy film.
  • the three layers of materials are once passed through a high temperature coextrusion (Co-extrusion) system.
  • a mixed polymer alloy film is formed in each layer, and the layer and the layer are bonded and crosslinked by a polymer compatibility and a crosslinking reaction to form an integrated polymer alloy film.
  • FIG. 2 is a schematic structural view of a solar cell module back sheet 9 of a common structure type, including an intermediate layer 10 in the middle, a fluorine film on the outer layer 11, and an adhesive layer 12 for bonding the outer layer 11 and the intermediate layer 10 together.
  • the inner layer 13 on the side of the battery sheet and the adhesive layer 14 which bonds the inner layer 13 and the intermediate layer 10 have a total of five layers, and are bonded together by a composite method.
  • the outer layer 11 is made of a fluorine-containing film and has a thickness of 0.025 mm; the inner layer 13 is LLDPE and has a thickness of 0.095 mm; the intermediate layer 10 is made of a PET film and has a thickness of 0.250 mm; and the adhesive layer 12 has a thickness of 0.015 mm, and an adhesive layer. 14 thickness is 0.015 mm, and the evaluation test results are compared with Table 1.
  • Example 4 Example 5, Example 6, Example 7, Example 8 and Example 9 is the best, and it is concluded that the performance of the embodiment using the dynamic crosslinking technique is significantly improved, and the technique is not used.
  • the backing plate of the same structure is obviously superior, and is also superior to the backing plate which is widely used in various structures at present.
  • the three-layer solar battery module back plate of the present invention has excellent heat dissipation rate, high light reflectivity, high water blocking rate, long-term aging resistance and the like.
  • the back sheet has better water blocking performance, higher reflectivity, better long-term hydrolysis resistance, ultraviolet resistance and aging resistance, better recycling and environmental protection performance, and lower the cost of.
  • the use of dynamic cross-linking or reactive extrusion technology and the direct non-crosslinking reaction of the prior art co-extrusion processing of the structural backsheet has better heat resistance, better dimensional stability, and stronger Mechanical breaking strength.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种三层结构的共挤型一次成型太阳能电池组件背板,背板由位于中间的中间层(3)和位于中间层两侧的外层(1)及内层(2)三层膜共挤形成。太阳能电池组件背板以三层结构由高分子合金膜为核芯基层,在其空气面一侧被称为外层由共挤高分子合金层组成,其另一侧电池侧被称为内层由共挤高分子合金组成。与现有技术的共挤结构背板相比具有更好的阻水性能,更高的反射率,更好的长期耐水解耐紫外耐热的老化性能,更好的可回收利用环保性能,更低的成本,更好的耐热性能,更好的尺寸稳定性,更强的机械断裂强度。

Description

一种三层结构的共挤型一次成型太阳能电池组件背板 技术领域
本发明涉及一种三层结构的共挤型一次成型太阳能电池组件背板。
背景技术
太阳能电池组件通常是一个叠层结构,主要包括依次设置的玻璃层、EVA封装层、硅电池片、EVA封装层和太阳能电池组件背板,其中硅电池片被两层EVA胶膜密封包裹。太阳能电池组件背板主要作用是电气绝缘,提高太阳能电池组件的机械强度,防止水汽渗透到密封层中,影响电池片的寿命及发电效率。由于太阳能电池组件背板在太阳能电池组件的最外面,要求背板具有良好的抗环境侵蚀性能,因而制造的太阳能电池组件背板必须具有良好的耐湿热老化性,耐高温,耐水解,耐腐蚀性能,以及抵御紫外光照射能力,良好的阻水能力,在电池侧具有高的光反射能力,以提高电池的发电效率。并且能够进一步降低成本。
现有技术中,太阳能电池背板主要由0.020-0.040mm厚的含氟薄膜,0.100-0.300mm厚的聚酯(PET)薄膜基层以及0.0200-0.180mm厚的EVA或聚烯烃薄膜或聚酰胺(PA),或改性聚丙烯构成的薄膜共计三层膜材料通过胶粘剂复合而成。该背板具有以下缺点:背板较厚导热效率差、耐热性较差,反光率低影响电池发电效率,耐UV性能低已引起电池片面的这层材质过早粉化,黄变开裂老化失效,水汽透过率过高引起PID现象,诱发闪电纹(Snail trails)现象降低了发电效率,组件返修困难,背板价格昂贵。
发明内容
本发明目的是为了克服现有技术的不足而提供一种阻水率高、反光率高,长期耐老化性能好,环保性能好的一种三层结构太阳能电池组件背板。所述背板由位于中间的中间层和位于中间层两侧的外层及内层三层膜均使用了动态交联挤出技术同时也被称为反应交联挤出技术。反应交联挤出技术一次性共挤形成所述太阳能电池组件背板(4)由三层膜和功能性填料共挤形成,其阻水能力高、反光率高,长期耐水解耐紫外耐热的耐老化性能好,尺寸热稳定性好,可回收利用环保性能好。所述太阳电池组件背板以所述三层结构由交联高分子合金膜为核芯基层,在其空气面一侧被称为外层由共挤交联高分子合金层组成,其另一侧即电池片侧被称为内层,由共挤交联高分 子合金组成,所述背板与现有技术相比具有更好的阻水性能,更高的反射率,和更好的长期耐水解耐紫外耐热的老化性能,更好的尺寸热稳定性,更好的可回收利用环保性能,更低的成本。与现有技术的共挤结构背板具有更好的耐热性能,更好的尺寸稳定性,更强的机械断裂强度。
本发明利用廉价的聚烯烃类高分子树脂,利用接枝技术接枝可反应的功能性基团,再利用带有可以与接枝功能性基团反应基团的高分子树脂共混并在挤出加工过程中进行交联反应,形成交联反应,从而实现交联网络提高耐热性,提高机械强度,提高尺寸稳定性,同时利用三层中每层都有带反应基团的高分子树脂作为相容剂实现加强层间的结合力。同时利用交联网络提高表面外层硬度耐摩擦,耐划伤,耐酸碱,耐溶剂,耐氨气,耐盐雾能力。
为达到上述目的,本发明所采用的技术方案为:这种三层结构的共挤型一次成型太阳能电池组件背板,其特征在于,所述背板由位于中间的中间层(3)和位于中间层(3)两侧的外层(1)及内层(2)三层膜均使用了动态交联挤出技术同时也被称为反应交联挤出技术,也被称为反应挤出技术共挤形成所述太阳能电池组件背板(4)。
中间层(3)和位于中间层(3)两侧的外层(1)及内层(2)均使用了动态交联挤出技术同时也被称为反应交联挤出技术,也被称为反应挤出技术。相应的英文名称如下:
动态交联技术英文为:Dynamic crosslinking technology
反应交联挤出技术英文为:Reactive crosslinking Extrusion technology
反应挤出技术英文为:Reactive Extrusion technology
即利用共挤过程中每层内部和层与层之间使高分子交联,形成致密分子网络,达到提高耐热性、热稳定性、和机械强度和增加中间层3和位于中间层3两侧的外层1及内层2层间结合力的目的。同时使用添加于中间层3的与外层1和内层2相容的相容剂来达到增加中间层3和位于中间层3两侧的外层1及内层2层间结合力的目的。
中间层3由A组份、B组份、C组份、D组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成;
A组份由选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、超高分子量聚乙烯(UHMWPE)、聚苯乙烯为末端段且以聚丁 二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物(SEBS)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体(POE)、均聚聚丙烯(PP)、共聚型聚丙烯(PP)、均聚型聚丙烯和共聚型聚丙烯的混合物、聚苯乙烯(PS)、聚苯硫醚(PPS)、聚苯醚(PPO)、聚酰胺(PA、PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA1212中的一种或多种),甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、聚碳酸酯(PC)和环烯烃类共聚物(Cyclic Olefin Copolymer或Cyclic Olefin Polymer)等。
B组份选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LLDPE-g-GMA)、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LDPE-g-GMA)、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯(MDPE-g-GMA)、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯(HDPE-g-GMA)、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯(UHMWPE-g-GMA)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯(SEBS-g-GMA)、均聚聚丙烯接枝甲基丙烯酸脱水甘油酯(PP-g-GMA)、共聚型聚丙烯接枝甲基丙烯酸脱水甘油酯(PP-g-GMA)、聚苯乙烯接枝甲基丙烯酸脱水甘油酯(PS-g-GMA)、聚苯醚接枝甲基丙烯酸脱水甘油酯(PPO-g-GMA)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯(POE-g-GMA)、聚碳酸酯接枝甲基丙烯酸脱水甘油酯(PC-g-GMA)、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯(EPDM-g-GMA)、线性低密度聚乙烯接枝马来酸酐(LLDPE-g-MAH)、低密度聚乙烯接枝马来酸酐(LDPE-g-MAH)、中密度聚乙烯接枝马来酸酐(MDPE-g-MAH)、高密度聚乙烯接枝马来酸酐(HDPE-g-MAH)、超高分子量聚乙烯接枝马来酸酐(UHMWPE-g-MAH)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝马来酸酐(SEBS-g-MAH)、均聚聚丙烯接枝马来酸酐(PP-g-MAH)、共聚型聚丙烯接枝马来酸酐(PP-g-MAH)、聚苯乙烯接枝马来酸酐(PS-g-MAH)、聚苯醚接枝马来酸酐(PPO-g-MAH)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐(POE-g-MAH)、聚碳酸酯接枝马来酸酐(PC-g-MAH)、三元乙丙橡胶接枝马来酸酐(EPDM-g-MAH)、等。
C组份选自以下聚合物中的一种或两种构成,如:聚酰胺(PA、PA6、 PA11、PA12、PA66、PA610、PA612、PA1010、PA1212中的一种或多种),甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、苯氧基树脂(PHENOXYRESIN)、结晶型聚酯多元醇等。
D组份为尼龙聚烯烃接枝共聚物(或称为聚烯烃与尼龙接枝物聚合物,PO-GRAFT-PA);聚烯烃与尼龙接枝物聚合物可以是ARKEMA公司的聚烯烃与尼龙接枝聚合物
Figure PCTCN2016105236-appb-000001
中的一种或两种构成。
功能性填料用以增加反光性能、散热性能、阻燃性能、色彩装饰性能,无机填料选自钛白粉(TiO2)、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉、金刚石粉中一种或两种及以上的混合物。
中间层3中各组分的含量为:A组份占重量比为0~99%,优化的在0-90%;B组份占重量比0.5%~99%,优化的在0.5%-80%;C组份占重量比0.5%~99%,优化的在0.5%~90%;D组份占重量比0~99%,优化的在0~50%;功能性填料占重量比0.5%~90%,优化的在0.5%-30%。
外层1由E组份、F组份、G组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成;
E组份由选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、超高分子量聚乙烯(UHMWPE)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物(SEBS)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体(POE)、聚酰胺(PA、PA6、PA11、PA12、PA66、PA610、PA612和PA1010中的一种或多种)、甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、聚烯烃与尼龙接枝物聚合物(PO-GRAFT-PA)和环烯烃类共聚物(Cyclic Olefin Copolymer或Cyclic Olefin Polymer)等一种或几种构成。
F组份由选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LLDPE-g-GMA)、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LDPE-g-GMA)、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯(MDPE-g-GMA)、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯(HDPE-g-GMA)、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯(UHMWPE-g-GMA)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁 烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯(SEBS-g-GMA)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯(POE-g-GMA)、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯(EPDM-g-GMA)、线性低密度聚乙烯接枝马来酸酐(LLDPE-g-MAH)、低密度聚乙烯接枝马来酸酐(LDPE-g-MAH)、中密度聚乙烯接枝马来酸酐(MDPE-g-MAH)、高密度聚乙烯接枝马来酸酐(HDPE-g-MAH)、超高分子量聚乙烯接枝马来酸酐(UHMWPE-g-MAH)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝马来酸酐(SEBS-g-MAH)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐(POE-g-MAH)、三元乙丙橡胶接枝马来酸酐(EPDM-g-MAH)、,聚烯烃与尼龙接枝物聚合物可以是ARKEMA公司的聚烯烃与尼龙接枝聚合物
Figure PCTCN2016105236-appb-000002
等。
G组份由选自以下聚合物中的一种或两种构成,如:聚酰胺(PA、PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA1212中的一种或多种)、甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、苯氧基树脂(PHENOXYRESIN)、结晶型聚酯多元醇中的一种或两种构成。
功能性填料用以增加反光性能、散热性能、阻燃性能、色彩装饰性能,无机填料选自钛白粉(TiO2)、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉、金刚石粉中一种或两种及以上的混合物。
外层1中各组分的含量为:E组份占重量比为0~99%,优化的在0-90%;F组份占重量比0.5%~99%,优化的在10%-90%;G组份占重量比0.5%~99%,优化的在0.5%~90%;功能性填料占重量比0.5%~90%,优化的为1%-40%。
内层2由H组份,J组份,K组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成;
H组份由选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、低密度聚乙烯(HDPE)、超高分子量聚乙烯(UHMWPE)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物(SEBS)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体(POE)、聚酰胺(PA、 PA6、PA11、PA12、PA66、PA610、PA612中的一种或多种)、甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、聚烯烃与尼龙接枝物聚合物(PO-GRAFT-PA)和环烯烃类共聚物(Cyclic Olefin Copolymer或Cyclic Olefin Polymer)等的一种或两种构成。
J组份由选自以下聚合物中的一种或两种构成,如:线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LLDPE-g-GMA)、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯(LDPE-g-GMA)、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯(MDPE-g-GMA)、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯(HDPE-g-GMA)、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯(UHMWPE-g-GMA)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯(SEBS-g-GMA)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯(POE-g-GMA)、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯(EPDM-g-GMA)、线性低密度聚乙烯接枝马来酸酐(LLDPE-g-MAH)、低密度聚乙烯接枝马来酸酐(LDPE-g-MAH)、中密度聚乙烯接枝马来酸酐(MDPE-g-MAH)、高密度聚乙烯接枝马来酸酐(HDPE-g-MAH)、超高分子量聚乙烯接枝马来酸酐(UHMWPE-g-MAH)、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝马来酸酐(SEBS-g-MAH)、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐(POE-g-MAH)、三元乙丙橡胶接枝马来酸酐(EPDM-g-MAH)和聚烯烃与尼龙接枝物聚合物可以是ARKEMA公司的聚烯烃与尼龙接枝聚合物
Figure PCTCN2016105236-appb-000003
中的一种或两种构成。等。
K组份由选自以下聚合物中的一种或两种构成,如:聚酰胺(PA、PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA1212中的一种或多种)、甲基丙烯酸甲酯(PMMA)、聚乙烯醇缩丁醛(PVB)、苯氧基树脂(PHENOXYRESIN)、结晶型聚酯多元醇中的一种或两种构成。
功能性填料用以增加反光性能、散热性能、阻燃性能、色彩装饰性能,无机填料选自钛白粉(TiO2)、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉、金刚石粉中一种或两种及以上的混合物。
内层2中各组分的含量为:H组份占重量比为0~99%,优化的在0-90%;
J组份占重量比0.5%~99%,优化的在10%-90%;K组份占重量比0.5%~99%,优化的在0.5%~90%;功能性填料占重量比0.5%~90%,优化的在1%-40%。
中间层3的厚度为0.005mm-0.500mm,其中外层1的厚度为0.010mm-0.100mm,内层2的厚度为0.010mm-0.100mm。所述外层1的表面光泽度为1~99,优化的在5~90,其中测量光泽度光线投射角为60°;所述内层2的表面光泽度为1~99,优化的在5~90,其中测量光泽度光线投射角为60°;光泽度测量方法符合以下标准ASTMD523、ASTMD1455、ASTMC346、ASTMC584、ASTMD2457、ENISO2813、DIN67530、ENISO7668、JISZ8741、MFT30064、TAPPIT480、GB9754、GB/T13891、GB7706和GB8807等。所述内层2的表面反射率为1%~99%,优化的在2%~99%,其中测量反射率的光线波长范围在400-1100nm。
附图说明
图1为本发明一种共挤型一次成型太阳能电池组件背板的结构示意图;
图2为本发明一种共挤型一次成型太阳能电池组件背板构成的太阳能电池组件结构示意图。
具体实施方式
实施例1
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,通过三层共挤一次性连续生产制成;即经过高温共挤(Co-extrusion)制膜加工,形成高分子混合物膜。
其中:外层1的原材料为PA12含量88%+TiO2含量12%(均是质量含量,下同),厚度为0.050mm;
化学式为[NH-(CH2)11-CO]n;内层2的原材料为EVA19%+LLDPE69%+TiO2含量12%,厚度为0.050mm;
内层2化学式:(C2H4)x(C4H6O2)+(C2H4)n
其中,EVA化学式:(C2H4)x(C4H6O2)y,LLDPE化学式:(C2H4)n
中间层3的原材料为均聚PP含量98%+TiO2含量2%,厚度为0.250mm,
其中,PP化学式:(C3H6)n
经过高温共挤(Co-extrusion)制膜加工,形成高分子混合物膜。
实施例2
如图1所示的三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,
其中,外层1原材料材质为PA12含量88%+TiO2含量12%,厚度为0.050mm;
PA12的化学式:[NH-(CH2)11-CO]n
内层2的原材料为PA12含量88%+TiO2含量12%,厚度为0.050mm;
中间层3的原材料PA12含量98%+TiO2含量2%,厚度为0.250mm。
经过高温共挤(Co-extrusion)制膜加工,形成高分子混合物膜。
实施例3
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中,外层1原材料材质为HDPE-g-GMA含量65%+PA12含量23%+TiO2含量12%,厚度为0.050mm;其中:HDPE化学式:[-CH2-CH2-]n
内层2选择HDPE-g-GMA含量65%+PA12含量23%+TiO2含量12%,厚度为0.050mm;
中间层3为均聚PP含量58%+PP-g-GMA含量20%+PA12含量20%+TiO2 2%,厚度为0.250mm。经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例4
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中,外层1原材料材质为HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
内层2原材料选择LLDPE含量20%+POE含量48%+POE-g-GMA含量10%+PA12含量10%+TiO2含量12%,厚度为0.050mm;
中间层3原材料材质为均聚PP含量58%+PP-g-GMA含量20%+PA12含量20%+TiO2 2%,厚度为0.250mm。经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例5
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中,外层1原材料材质为HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
其中:HDPE化学式:[-CH2-CH2-]n
内层2原材料选择HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
中间层3原材料材质为HDPE-g-GMA含量70%+PA12含量24%+TiO2含量6%,厚度为0.250mm。经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例6
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中外层1原材料材质为HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
内层2原材料选择HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
中间层3原材料材质为均聚或共聚PP-g-GMA含量60%+PA12含量16%+TiO2含量4%+HDPE-g-GMA含量20%,厚度为0.250mm。
经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例7
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中外层1原材料材质为HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
内层2原材料选择HDPE-g-GMA含量64%+PA12含量24%+TiO2含量12%,厚度为0.050mm;
中间层3原材料材质为均聚PP含量60%+环烯烃类共聚物(Cyclic Olefin Copolymer)26%+TiO2含量4%,厚度为0.250mm;环烯烃类共聚物化学式如下所示:
Figure PCTCN2016105236-appb-000004
经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相 容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例8
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中外层1原材料材质为聚烯烃与尼龙接枝物聚合物
Figure PCTCN2016105236-appb-000005
含量43%+HDPE-g-GMA含量30%+PA12含量15%+TiO2含量12%,厚度为0.050mm;
内层2原材料选择聚烯烃与尼龙接枝物聚合物
Figure PCTCN2016105236-appb-000006
含量43%+HDPE-g-GMA含量30%+PA12含量15%+TiO2含量12%,厚度为0.050mm;中间层3原材料材质为均聚PP含量46%+均聚或共聚PP-g-GMA含量30%+聚烯烃与尼龙接枝物聚合物
Figure PCTCN2016105236-appb-000007
含量10%+PA12含量10%+TiO2含量4%,厚度为0.250mm;经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例9
如图1所示为三层结构的太阳能电池组件背板4结构示意图,包括位于中间的中间层3以及位于中间层两侧的外层1和内层2,三层由三层共挤,一次性连续生产制成。
其中外层1原材料材质为聚烯烃与尼龙接枝物聚合物
Figure PCTCN2016105236-appb-000008
含量43%+HDPE-g-GMA含量30%+PA12含量15%+TiO2含量12%,厚度为0.050mm;
内层2原材料选择聚烯烃与尼龙接枝物聚合物
Figure PCTCN2016105236-appb-000009
含量43%+HDPE-g-GMA含量30%+PA12含量15%+TiO2含量12%,厚度为0.050mm;
中间层3原材料材质为均聚或共聚PP-g-GMA含量75%+PA12含量21%+TiO2含量4%,厚度为0.250mm;经过高温共挤(Co-extrusion)制膜加工,一部分发生交联反应,形成混合高分子合金膜。
在实际制造过程中,这三层材料时一次性通过高温共挤(Co-extrusion)制 膜加工,每层形成混合高分子合金膜同时,层与层之间通过高分子的相容性和交联反应融合交联粘接在一起形成一体化的高分子合金膜。
实施例10
如图2所示为常见结构类型的太阳能电池组件背板9结构示意图,包括位于中间的中间层10以及位于外层11的氟膜和将外层11与中间层10粘接起来的胶粘剂层12,和位于电池片侧的内层13以及将内层13与中间层10粘接起来的胶层14共5层结构,使用复合法粘接在一起。其中,外层11材质为含氟薄膜,厚度为0.025mm;内层13为LLDPE,厚度为0.095mm;中间层10材质为PET膜,厚度为0.250mm;胶粘剂层12厚度为0.015mm,胶粘剂层14厚度为0.015mm,评价测试结果对比表1。
表1 实施例1至10中太阳能电池组件背板的评价测试结果
Figure PCTCN2016105236-appb-000010
Figure PCTCN2016105236-appb-000011
Figure PCTCN2016105236-appb-000012
Figure PCTCN2016105236-appb-000013
Figure PCTCN2016105236-appb-000014
实施例4,实施例5,实施例6,实施例7,实施例8和实施例9综合评价最好,由此结论,使用动态交联技术的实施例性能明显提升,较未使用这种技术相同结构的背板明显优异,同时也优于不同结构在目前大量使用的背板。
注:◎=最优
○=优
△=良
╳=差
通过上述实施例可以看出,本发明中的三层结构的太阳能电池组件背板具有散热率高、反光率高,阻水率高,长期耐老化性能好等优良性能。所述背板与现有技术相比具有更好的阻水性能,更高的反射率,和更好的长期耐水解耐紫外耐热的老化性能,更好的可回收利用环保性能,更低的成本。使用了动态交联或叫作反应性挤出技术后与现有技术的直接不交联反应共挤出加工成型的结构背板具有更好的耐热性能,更好的尺寸稳定性,更强的机械断裂强度。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护 范围之内。

Claims (11)

  1. 一种三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:它由位于中间的中间层(3)以及位于中间层(3)两侧的外层(1)和内层(2)三层膜共挤形成;
    中间层(3)由A组份、B组份、C组份、D组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成;
    A组份由线性低密度聚乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物、乙烯辛烯共聚聚烯烃弹性体、乙烯戊烯共聚聚烯烃弹性体、均聚聚丙烯、共聚聚丙烯、均聚聚丙烯/共聚型聚丙烯混合物、聚苯乙烯、聚苯硫醚、聚苯醚、聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、聚碳酸酯和环烯烃类共聚物中的一种或两种构成;
    B组份由线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯、均聚聚丙烯接枝甲基丙烯酸脱水甘油酯、共聚型聚丙烯接枝甲基丙烯酸脱水甘油酯、聚苯乙烯接枝甲基丙烯酸脱水甘油酯、聚苯醚接枝甲基丙烯酸脱水甘油酯、乙烯辛烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯、乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯、聚碳酸酯接枝甲基丙烯酸脱水甘油酯、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯、线性低密度聚乙烯接枝马来酸酐、低密度聚乙烯接枝马来酸酐、中密度聚乙烯接枝马来酸酐、高密度聚乙烯接枝马来酸酐、超高分子量聚乙烯接枝马来酸酐、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝马来酸酐、均聚聚丙烯接枝马来酸酐、共聚型聚丙烯接枝马来酸酐、聚苯乙烯接枝马来酸酐、聚苯醚接枝马来酸酐、乙烯辛烯共聚聚烯烃弹性体接枝马来酸酐、乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐、聚碳酸酯接枝马来酸酐、三元乙丙橡胶接枝马来酸酐和环烯烃类共聚物中的一种或两种构成。
    C组份由聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、苯氧基树脂和结晶型聚酯多元醇中的一种或两种构成;
    D组份为尼龙聚烯烃接枝共聚物;
    所述功能性填料选自钛白粉、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉和金刚石粉中一种或多种的混合物。
  2. 根据权利要求1所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于,所述中间层(3)中各组分的含量为:A组份占重量比为0~99%,B组份占重量比为0.5%~99%,C组份占重量比为0.5%~99%,D组份占重量比为0~99%,功能性填料占重量比为0.5%~90%。
  3. 根据权利要求2所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于,所述中间层(3)中各组分的含量为:A组份占重量比为0~90%,B组份占重量比为0.5%-80%,C组份占重量比为0.5%~90%,D组份占重量比为0~50%,功能性填料占重量比为0.5%~30%。
  4. 根据权利要求1或2所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:所述外层(1)由E组份、F组份、G组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成,E组份由线性低密度聚乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物、乙烯辛烯共聚聚烯烃弹性体、乙烯戊烯共聚聚烯烃弹性体、聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、环烯烃类共聚物中的一种或两种;
    F组份由线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯、线性低密度聚乙烯接枝马来酸酐、低密度聚乙烯接枝马来酸酐、中密度聚乙烯接枝马来酸酐、高密度聚乙烯接枝马来酸酐、超高分子量聚乙烯接枝马来酸酐、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝马来酸酐、乙烯辛烯共聚或乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐、三元乙丙橡胶接枝马 来酸酐、尼龙聚烯烃接枝共聚物中的一种或两种构成。
    G组份由聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、苯氧基树脂、结晶型聚酯多元醇中的一种或两种构成;
    所述功能性填料选自钛白粉、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉和金刚石粉中一种或多种的混合物。
  5. 根据权利要求4所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:E组份占重量比为0~99%、F组份占重量比为0.5%~99%、G组份占重量比为0.5%~99%和功能性填料占重量比为0.5%~90%。
  6. 根据权利要求5所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:E组份占重量比为0~90%、F组份占重量比为0.5%~90%、G组份占重量比为0.5%~90%和功能性填料占重量比为1%~40%。
  7. 根据权利要求1或2所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:所述内层(2)由H组份、J组份、K组份和功能性填料中的一种或多种共混并在共挤加工中进行交联反应得到的高分子网络塑料合金构成,
    H组份由线性低密度聚乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物、乙烯辛烯共聚聚烯烃弹性体、乙烯戊烯共聚聚烯烃弹性体、聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、环烯烃类共聚物中的一种或两种构成;
    J组份由线性低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、低密度聚乙烯接枝甲基丙烯酸脱水甘油酯、中密度聚乙烯接枝甲基丙烯酸脱水甘油酯、高密度聚乙烯接枝甲基丙烯酸脱水甘油酯、超高分子量聚乙烯接枝甲基丙烯酸脱水甘油酯、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物接枝甲基丙烯酸脱水甘油酯、乙烯辛烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯、乙烯戊烯共聚聚烯烃弹性体接枝甲基丙烯酸脱水甘油酯、三元乙丙橡胶接枝甲基丙烯酸脱水甘油酯、线性低密度聚乙烯接枝马来酸酐、低密度聚乙烯接枝马来酸酐、中密度聚乙烯接枝马来酸酐、高密度聚乙烯接枝马来酸酐、超高分子量聚乙烯接枝马来酸酐、聚苯乙烯为末端段且以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌 段的线性三嵌共聚物接枝马来酸酐、乙烯辛烯共聚聚烯烃弹性体接枝马来酸酐、乙烯戊烯共聚聚烯烃弹性体接枝马来酸酐、三元乙丙橡胶接枝马来酸酐和尼龙聚烯烃接枝共聚物中的一种或两种构成;
    K组份由聚酰胺、甲基丙烯酸甲酯、聚乙烯醇缩丁醛、苯氧基树脂、结晶型聚酯多元醇中的一种或两种构成;
    所述功能性填料选自钛白粉、三氧化二铝、氢氧化铝、滑石粉、二氧化硅、碳酸钙、碳黑、云母粉、硫酸钡、硅藻土、浮石粉和金刚石粉中一种或多种的混合物。
  8. 根据权利要求7所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:
    H组份占重量比为0~99%,J组份占重量比为0.5%~99%,K组份占重量比为0.5%~99%,功能性填料占重量比为0.5%~90%。
  9. 根据权利要求8所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:H组份占重量比为0~90%、J组份占重量比为0.5%~90%、K组份占重量比为0.5%~90%和功能性填料占重量比为1%~40%。
  10. 根据权利要求1所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:所述中间层(3)的厚度为0.010mm-0.500mm,外层(1)的厚度为0.010mm-0.100mm,内层(2)的厚度为0.010mm-0.100mm。
  11. 根据权利要求1所述三层结构的共挤型一次成型太阳能电池组件背板,其特征在于:当测量光泽度光线投射角为60°时,所述外层(1)的表面光泽度为1~99,所述内层(2)的表面光泽度为1~99;当测量反射率的光线波长范围在400-1100nm时,所述内层(2)的表面反射率为1%~99%。
PCT/CN2016/105236 2016-04-18 2016-11-09 一种三层结构的共挤型一次成型太阳能电池组件背板 WO2017181655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017527924A JP6422581B2 (ja) 2016-04-18 2016-11-09 3層構造を有する共押出により一回成形する太陽電池モジュールバックシート
US15/525,949 US10622501B2 (en) 2016-04-18 2016-11-09 Co-extruded one-time-formed solar cell module backboard in three-layer structure
EP16863201.6A EP3252832B1 (en) 2016-04-18 2016-11-09 Co-extruded one-time formed backplate having three-layer structure for solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610236772.4 2016-04-18
CN201610236772.4A CN105870237B (zh) 2016-04-18 2016-04-18 一种三层结构的共挤型一次成型太阳能电池组件背板

Publications (1)

Publication Number Publication Date
WO2017181655A1 true WO2017181655A1 (zh) 2017-10-26

Family

ID=56633079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105236 WO2017181655A1 (zh) 2016-04-18 2016-11-09 一种三层结构的共挤型一次成型太阳能电池组件背板

Country Status (5)

Country Link
US (1) US10622501B2 (zh)
EP (1) EP3252832B1 (zh)
JP (1) JP6422581B2 (zh)
CN (1) CN105870237B (zh)
WO (1) WO2017181655A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114474929A (zh) * 2022-01-25 2022-05-13 浙江大学台州研究院 一种改性官能化环烯烃共聚物透明光伏背板及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870237B (zh) * 2016-04-18 2017-05-03 苏州赛伍应用技术有限公司 一种三层结构的共挤型一次成型太阳能电池组件背板
CN106279904A (zh) * 2016-08-18 2017-01-04 苏州度辰新材料有限公司 一种挤出型太阳能背板及其制备方法
CN108075006A (zh) * 2016-11-15 2018-05-25 上海海优威新材料股份有限公司 多层结构的太阳能电池背板
CN106784099A (zh) * 2016-12-19 2017-05-31 韩华新能源(启东)有限公司 一种增加双面组件背面发电量的方法
CN107146824B (zh) * 2017-03-31 2019-11-05 常州回天新材料有限公司 易于返工的太阳能背板用pe薄膜
CN109326666B (zh) * 2017-07-28 2021-07-09 苏州赛伍应用技术股份有限公司 太阳能电池背板用主绝缘功能膜、背板和太阳能电池组件
CN108329586A (zh) * 2018-01-30 2018-07-27 苏州赛伍应用技术股份有限公司 一种三层结构水汽阻隔膜及其制备方法
CN108456351B (zh) * 2018-01-30 2021-09-28 苏州赛伍应用技术股份有限公司 一种水汽阻隔膜及其制备方法
CN108503959B (zh) * 2018-02-28 2021-04-09 乐凯胶片股份有限公司 一种太阳能电池背板用聚烯烃薄膜
CN108955064A (zh) * 2018-09-05 2018-12-07 长虹美菱股份有限公司 一种冰箱玻璃搁架防护结构及防护件的制备方法
CN109560157B (zh) * 2018-12-03 2019-11-05 常州回天新材料有限公司 一种太阳能电池背板
CN109705762A (zh) * 2018-12-31 2019-05-03 湖北德威包装科技有限公司 易解卷cpp保护膜
CN109971061A (zh) * 2019-03-29 2019-07-05 苏州赛伍应用技术股份有限公司 一种光伏电池背板用聚烯烃膜及其制备方法
EP4062457A1 (en) 2019-11-22 2022-09-28 Endurance Solar Solutions B.V. Photovoltaic module backsheet comprising polyolefin layers
CN112606504A (zh) * 2020-11-24 2021-04-06 苏州奥美材料科技有限公司 一种高cti值高阻燃复合薄膜及其制备方法
CN112802916B (zh) * 2021-01-12 2023-09-22 浙江中聚材料有限公司 一种高水汽阻隔性太阳能光伏背板及其制备工艺和应用
CN115027115A (zh) * 2022-03-24 2022-09-09 深圳市新创源精密智造有限公司 一种环保复合型盖带及其制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157591A (zh) * 2011-01-11 2011-08-17 山东东岳高分子材料有限公司 一种太阳能电池背板及其制备方法
CN102612432A (zh) * 2009-09-01 2012-07-25 陶氏环球技术有限责任公司 用于刚性光伏组件的背板
CN102779874A (zh) * 2012-07-09 2012-11-14 苏州爱康光伏新材料有限公司 多层共挤太阳能电池用背板及其生产方法
CN103050563A (zh) * 2012-12-28 2013-04-17 苏州度辰新材料有限公司 一种太阳能背板及其制造方法
CN103057223A (zh) * 2012-12-28 2013-04-24 苏州度辰新材料有限公司 一种聚酰胺太阳能背板
CN103066141A (zh) * 2012-12-28 2013-04-24 苏州度辰新材料有限公司 一种改性聚丙烯树脂组合物及由其制造的太阳能背板
CN104538474A (zh) * 2014-12-30 2015-04-22 苏州度辰新材料有限公司 一种光伏电池用背板及其制备方法
CN105870237A (zh) * 2016-04-18 2016-08-17 苏州赛伍应用技术有限公司 一种三层结构的共挤型一次成型太阳能电池组件背板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223925A (ja) * 2003-01-23 2004-08-12 Mitsubishi Plastics Ind Ltd 積層シート、太陽電池用裏面保護シート、並びに太陽電池及び太陽電池モジュール
CN102300709B (zh) * 2009-01-31 2016-05-04 新日本理化株式会社 聚丙烯基树脂成形体
US20110244241A1 (en) * 2010-03-08 2011-10-06 Aditya Ranade Adhesion in ectfe/polyester co-extruded structures using tie layers
EP2422976B1 (de) * 2010-07-30 2017-03-08 Ems-Patent Ag Photovoltaikmodul-Mehrschichtrückfolie sowie deren Herstellung und Verwendung bei der Produktion photovoltaischer Module
CN102569452B (zh) * 2010-10-20 2014-10-15 苏州尚善新材料科技有限公司 太阳能电池组件聚合物背板及其制造方法
CN102420264B (zh) * 2011-11-25 2013-06-05 宁波长阳科技有限公司 一种太阳能电池背板及其制备方法
FR2989974B1 (fr) * 2012-04-26 2015-04-10 Arkema France Composition thermoplastique presentant un taux de greffage polyamide eleve
US20140144499A1 (en) * 2012-11-29 2014-05-29 Honeywell International, Inc. Photovoltaic module backsheet having a thermoplastic polyolefin composite layer
CN103057232A (zh) * 2013-01-08 2013-04-24 常州百佳薄膜科技有限公司 一种高阻隔聚酯薄膜及其制备方法
CN103252953B (zh) * 2013-04-27 2015-04-01 杭州福斯特光伏材料股份有限公司 一种具备抗pid作用的一体化光伏组件背板材料
JPWO2015046017A1 (ja) * 2013-09-24 2017-03-09 東レ株式会社 太陽電池用多層シート、太陽電池用封止材一体型裏面保護シート、及び、太陽電池モジュール
CN103722840A (zh) * 2014-01-08 2014-04-16 苏州尚善新材料科技有限公司 免胶黏剂且耐湿热的太阳能电池背板及其制造方法
CN107658353A (zh) * 2015-10-10 2018-02-02 帝斯曼尚善太阳能科技(苏州)有限公司 一种太阳能电池绝缘片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612432A (zh) * 2009-09-01 2012-07-25 陶氏环球技术有限责任公司 用于刚性光伏组件的背板
CN102157591A (zh) * 2011-01-11 2011-08-17 山东东岳高分子材料有限公司 一种太阳能电池背板及其制备方法
CN102779874A (zh) * 2012-07-09 2012-11-14 苏州爱康光伏新材料有限公司 多层共挤太阳能电池用背板及其生产方法
CN103050563A (zh) * 2012-12-28 2013-04-17 苏州度辰新材料有限公司 一种太阳能背板及其制造方法
CN103057223A (zh) * 2012-12-28 2013-04-24 苏州度辰新材料有限公司 一种聚酰胺太阳能背板
CN103066141A (zh) * 2012-12-28 2013-04-24 苏州度辰新材料有限公司 一种改性聚丙烯树脂组合物及由其制造的太阳能背板
CN104538474A (zh) * 2014-12-30 2015-04-22 苏州度辰新材料有限公司 一种光伏电池用背板及其制备方法
CN105870237A (zh) * 2016-04-18 2016-08-17 苏州赛伍应用技术有限公司 一种三层结构的共挤型一次成型太阳能电池组件背板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114474929A (zh) * 2022-01-25 2022-05-13 浙江大学台州研究院 一种改性官能化环烯烃共聚物透明光伏背板及其制备方法

Also Published As

Publication number Publication date
EP3252832B1 (en) 2022-05-11
JP2018518035A (ja) 2018-07-05
US20190181284A1 (en) 2019-06-13
CN105870237A (zh) 2016-08-17
EP3252832A4 (en) 2018-08-29
JP6422581B2 (ja) 2018-11-14
EP3252832A1 (en) 2017-12-06
CN105870237B (zh) 2017-05-03
US10622501B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2017181655A1 (zh) 一种三层结构的共挤型一次成型太阳能电池组件背板
CN108198884B (zh) 耐湿热的太阳能电池背板及其制造方法
US20130209795A1 (en) Polymer backsheet of solar cell assembly and manufacturing process thereof
TWI499506B (zh) 具有聚丙烯系背板的光伏打模組
US20130092226A1 (en) Multilayer film backing for photovoltaic modules
JP5735225B2 (ja) 太陽電池用積層シート及び太陽電池モジュール
JP2009078559A (ja) フッ素重合体をベースにした可撓性フィルム
US20130092232A1 (en) Multilayer film having polyamide and polypropylene layers
WO2013118570A1 (ja) 太陽電池用保護シートおよび太陽電池モジュール
JP2023052164A (ja) 背面封止材に面しているポリオレフィンをベースとする機能層を含むバックシート
CN109473498B (zh) 一种封装一体化背板及其制备方法
CN112606498B (zh) 一种可粘结的tpo防水卷材、其制备方法及应用
JP5395597B2 (ja) 太陽電池用表面保護シート
JP2022189861A (ja) 太陽電池モジュール用の封止材シート、及びそれを用いた太陽電池モジュール
CN103715288A (zh) 耐湿热太阳能电池背板及其制造方法
WO2013077874A1 (en) Integrated films for use in solar modules
JP2011056701A (ja) 太陽電池用シート及び太陽電池モジュール
CN107408594B (zh) 用于太阳能模块的背面膜
JP5639798B2 (ja) 太陽電池モジュール
JP2001096690A (ja) 外装建材
JP2011129672A (ja) 太陽電池用表面保護シート
TWI474925B (zh) 樹脂密封片及太陽能電池模組
CN116194271A (zh) 聚合太阳能电池板背板和制造方法
JP2022078112A (ja) 太陽電池モジュール用の封止材シート、それを用いた太陽電池モジュール、及び太陽電池モジュールの製造方法
CN118082315A (zh) 覆膜金属板、制备方法以及屋面

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016863201

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017527924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE