WO2017179233A1 - Hard coating and cutting tool - Google Patents

Hard coating and cutting tool Download PDF

Info

Publication number
WO2017179233A1
WO2017179233A1 PCT/JP2016/083385 JP2016083385W WO2017179233A1 WO 2017179233 A1 WO2017179233 A1 WO 2017179233A1 JP 2016083385 W JP2016083385 W JP 2016083385W WO 2017179233 A1 WO2017179233 A1 WO 2017179233A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
interface
hard coating
layer structure
structure layer
Prior art date
Application number
PCT/JP2016/083385
Other languages
French (fr)
Japanese (ja)
Inventor
パール クリストッファー アルムスコーグ
慶春 内海
津田 圭一
田中 敬三
瀬戸山 誠
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018511878A priority Critical patent/JP6666431B2/en
Publication of WO2017179233A1 publication Critical patent/WO2017179233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention relates to a hard coating and a cutting tool.
  • This application claims priority based on Japanese Patent Application No. 2016-081127, which is a Japanese patent application filed on April 14, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses a technique for reducing the occurrence of droplets, which is a problem of hard coatings produced by the AIP method, by appropriately controlling various conditions of arc discharge. Is disclosed.
  • Patent Document 2 discloses that a hard film and a hard film can be obtained by reducing the grain size of crystal grains located in the vicinity of the interface with the base material among the crystal grains constituting the hard film.
  • Patent Document 3 discloses that a hard film in which an A layer composed of a fine grained structure and a B layer composed of a columnar structure are alternately laminated is provided on a base material, whereby Techniques for improving chipping and wear resistance are disclosed.
  • the hard film according to one embodiment of the present disclosure is a hard film formed on a base material, and the hard film includes a two-layer structure layer in which a lower layer and an upper layer are laminated in order from the base material side.
  • the lower surface of the lower layer constituting the lower end surface located on the substrate side of the two-layer structure layer is defined as a first interface
  • the interface between the upper surface of the lower layer and the lower surface of the upper layer is defined as a second interface.
  • the average grain diameter G 1 of the crystal grains at a position 100 nm away from the second interface the average grain diameter G 2 of the crystal grains at a position 100 nm away from the second interface toward the first interface side, and from the second interface to the third interface side.
  • the cutting tool which concerns on 1 aspect of this indication is equipped with a base material and said hard film which coat
  • FIG. 1 is a schematic cross-sectional view showing an example of a configuration in which a hard coating according to the first embodiment is provided on a substrate.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the two-layer structure layer according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an arrangement state of the base material in the chamber of the HiPIMS apparatus when the two-layer structure layer is manufactured.
  • FIG. 4 is a schematic plan view showing an example of a cutting tool according to the third embodiment.
  • 5 is a cross-sectional view taken along the line XX shown in FIG.
  • FIG. 6 is a schematic diagram for explaining how to obtain the ratio Tf / Tm.
  • FIG. 7 is a schematic perspective view showing an example of a cutting tool according to the fourth embodiment.
  • FIG. 8 is a cross-sectional perspective view showing a Y region in the hatched portion of FIG. 7, and is a view showing an aspect in which the cutting edge has a sharp edge shape.
  • FIG. 9 is a diagram showing an aspect in which honing is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 7.
  • FIG. 10 is a diagram showing an aspect in which the negative cutting is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 7.
  • Patent Document 1 cannot sufficiently solve the problem of droplets.
  • the hard coating disclosed in Patent Document 2 has insufficient fracture toughness due to the large crystal grain size on the surface of the hard coating.
  • the crystal grains constituting the columnar structure are likely to fall off due to the structure of the B layer.
  • an object of the present disclosure is to provide a hard coating capable of extending the tool life and a cutting tool including the hard coating. [Effects of the present disclosure] Based on the above, it is possible to provide a hard coating and a cutting tool capable of extending the tool life.
  • Non-patent Document 1 J. Mater. Res., Vol. 27, No. 5 (2012), 780-792 (Non-patent Document 1), focusing on the High Power Impulse Magnetron Sputtering (HiPIMS) method.
  • HiPIMS High Power Impulse Magnetron Sputtering
  • the hard coating according to one embodiment of the present disclosure is a hard coating formed on a base material, and the hard coating is a two-layer structure in which a lower layer and an upper layer are laminated in order from the base material side.
  • the lower surface of the lower layer constituting the lower end surface located on the substrate side of the two-layer structure layer is the first interface
  • the interface between the upper surface of the lower layer and the lower surface of the upper layer is the second interface
  • the upper surface of the upper layer constituting the upper end surface opposite to the lower end surface of the layer structure layer is the third interface
  • the cross section parallel to the thickness direction of the two-layer structure layer is observed, Average grain size G 1 of crystal grains at a position 100 nm away from the interface side, average grain diameter G 2 of crystal grains at a position 100 nm away from the second interface toward the first interface side, third from the second interface the average particle diameter G 3 of crystal grains in the 100nm away toward the interface side, and a third field
  • the average particle diameter of G 1 in the first interface side is small, it exhibits high adhesion to the others to form the first interface. Meanwhile, since the average particle diameter G 4 in the third interface side is small, it can exhibit high fracture toughness at the surface of the hard coating.
  • the two-layer structure layer is simply composed of fine particles having a small average particle diameter, the two-layer structure layer has a high compressive residual stress due to the film forming environment. In this case, the two-layer structure layer is easily peeled off, and there is a concern about the occurrence of abnormal wear. Further, if the two-layer structure layer is a normal columnar crystal, that is, a columnar crystal having a uniform average grain size in the growth direction, there is a concern that the chipping resistance may be reduced due to dropping of the columnar crystal. On the other hand, in the two-layer structure layer, as is clear from the above relational expression, the average grain size of the crystal grains contained in the two-layer structure layer varies specifically in the thickness direction.
  • the hard coating of this embodiment can exhibit high adhesion and high fracture toughness while suppressing a decrease in wear resistance, fracture resistance, and the like by having the above two-layer structure layer. . For this reason, according to the hard film of this embodiment, the tool life can be prolonged.
  • the lower layer includes crystal grains having an average particle diameter increasing from the first interface side toward the second interface, and the upper layer is directed from the second interface toward the third interface side. Crystal grains whose average grain size decreases. Thereby, it can further be excellent in the above-mentioned effect.
  • the ratio Tt / Tb of the upper layer thickness Tt and the lower layer thickness Tb is preferably 0.2 or more and 0.75 or less. Thereby, it can further be excellent in the above-mentioned effect.
  • the two-layer structure layer includes one or more first elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Al and Si in the periodic table; , C, N, and O.
  • the composition is composed of one or more second elements selected from the group consisting of C, N, and O.
  • the two-layer structure layer has two or more kinds of first elements in its composition, and the concentrations of the two or more kinds of first elements are each periodically in the thickness direction of the upper layer. To change. As a result, strain is accumulated in the crystal grains located between the second interface and the third interface, so that the hardness of the two-layer structure layer can be increased.
  • the upper surface of the upper layer has an arithmetic average roughness Ra of 0.07 ⁇ m or less and a maximum height Rz of 0.50 ⁇ m or less.
  • the hard coating can have excellent surface smoothness.
  • the hard coating preferably has less than 10 irregularities having a height difference of 1 ⁇ m or more in a range of 100 ⁇ m ⁇ 100 ⁇ m on the upper surface of the upper layer of the two-layer structure layer. In this case, the hard coating can have excellent surface smoothness.
  • a cutting tool includes a base material and a hard coating that covers a surface of the base material, and the hard coating is the hard coating. According to the cutting tool, the tool life can be extended and the cutting performance can be stabilized.
  • the cutting tool preferably has a ratio Tf / Tm of a hard coating thickness Tf covering the groove and a hard coating thickness Tm covering the margin of 0.8 to 1.5. Thereby, the tool life of the cutting tool can be further extended.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto. Also, in this specification, those having no particular atomic ratio in chemical formulas such as “TiAlN”, “TiN”, “TiCN” do not indicate that the atomic ratio of each element is only “1”. Any conventionally known atomic ratio is not necessarily limited to the stoichiometric range.
  • FIG. 1 is a schematic cross-sectional view showing an example of a configuration in which a hard coating according to the first embodiment is provided on a substrate.
  • the cross section shown in FIG. 1 is a cross section parallel to the thickness direction of the hard coating (the vertical direction in the figure).
  • the hard coating 100 is formed on the substrate 200.
  • the hard coating 100 has a configuration in which the base layer 20, the two-layer structure layer 10, and the surface layer 30 are laminated on the base material 200 in this order from the base material 200 side.
  • the hard coating 100 may not have the base layer 20 and / or the surface layer 30.
  • the hard coating 100 may cover the entire surface of the substrate 200 or may cover only a part (for example, a region that greatly contributes to cutting performance).
  • a conventionally known substrate known as a tool substrate can be used without any particular limitation.
  • examples thereof include tungsten carbide (WC) based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, and the like.
  • the base material 200 may be integrally formed, and may be a combination of a plurality of parts.
  • the shape of the substrate 200 is not particularly limited, and a drill, an end mill, a drill tip changeable cutting tip, an end mill tip replacement insert, a milling throwaway tip, a turning throwaway tip, a metal saw, a gear cutting tool, Any base material used for a reamer, tap, cutting tool, wear-resistant tool, friction stir welding tool, or the like may be used. 4 and 5 illustrate the case where a drill is used as a base material.
  • the thickness of the hard coating 100 can be set to, for example, 0.3 to 15 ⁇ m (0.3 ⁇ m to 15 ⁇ m).
  • the thickness is less than 0.3 ⁇ m, it is difficult to exhibit the characteristics resulting from having the hard coating 100, and when it exceeds 15 ⁇ m, the adhesion between the substrate 200 and the hard coating 100 tends to be reduced.
  • the thickness of the hard coating 100 is obtained as follows. First, a measurement sample including a cross section of the hard coating 100 is prepared. This measurement sample is obtained, for example, by cutting the substrate 200 provided with the hard coating 100 along the thickness direction of the hard coating 100 (so that a cross section substantially perpendicular to the hard coating 100 is obtained). If necessary, the cross section of the hard coating 100 is polished and smoothed. Next, the cross section is observed with a scanning electron microscope (SEM), and the magnification is adjusted (for example, about 15000 times) so that the entire area of the hard coating 100 in the thickness direction is included in the observed image. And the thickness is measured at five or more points, and the calculated average value is taken as the thickness. In addition, the thickness of each layer mentioned later is calculated
  • SEM scanning electron microscope
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the two-layer structure layer according to the first embodiment.
  • the cross section shown in FIG. 2 is a cross section parallel to the thickness direction of the hard coating (the vertical direction in the figure).
  • the two-layer structure layer 10 has a two-layer structure in which a lower layer 1 and an upper layer 2 are laminated in order from the substrate 200 side.
  • This two-layer structure layer is a layer produced by the characteristic HiPIMS method described later.
  • the two-layer structure layer 10 has three interfaces (first interface to third interface).
  • the lower surface (position A in FIG. 2) of the lower layer 1 constituting the lower end surface (the surface in contact with the base layer 20 in FIG. 1) located on the substrate 200 side in the two-layer structure layer 10. The first interface.
  • the interface (position B in FIG. 2) between the upper surface of the lower layer 1 and the lower surface of the upper layer 2 is the second interface.
  • the upper surface (position C in FIG. 2) of the upper layer 2 constituting the upper end surface opposite to the lower end surface (the surface in contact with the surface layer 30 in FIG. 1) of the two-layer structure layer 10 is the third interface.
  • the first interface is an interface formed by contact between the base layer 20 (the base material 200 when the base layer 20 is not provided) and the lower layer 1, and the third interface is the surface.
  • This is an interface formed by contacting the upper layer 2 with the layer 30 (the air layer or the outside when the surface layer 30 is not provided). That is, the first interface and the third interface coincide with the surface of the two-layer structure layer 10.
  • the second interface is an interface existing inside the two-layer structure layer 10. The position of each interface can be confirmed by observing the cross section of the two-layer structure layer 10 using TEM or SEM. In addition, when using SEM, it is preferable to carry out the ion milling process for the cross section for accurate observation. In addition, it is desirable to observe with an acceleration voltage as low as about 5 kV.
  • the two-layer structure layer 10 includes a plurality of crystal grains. That is, the two-layer structure layer 10 has a polycrystalline structure.
  • the average grain size G 1 of the crystal grains at a position 100 nm away from the first interface toward the second interface side the average grain size G 2 of crystal grains at a position 100 nm away from one interface side
  • the average grain size G 3 of crystal grains at a position 100 nm away from the second interface toward the third interface side and the third interface
  • the average grain size G 4 of the crystal grains satisfies the relational expression of G 2 > G 3 > G 4 > G 1 .
  • the average particle diameters G 1 to G 4 are determined as follows. First, a measurement sample including a cross section of the two-layer structure layer 10 is prepared. This measurement sample is obtained, for example, by cutting the base material 200 provided with the hard coating 100 along the thickness direction of the hard coating 100 (so that a cross section substantially perpendicular to the two-layer structure layer 10 is obtained). . If necessary, the cross section of the two-layer structure layer 10 is polished and smoothed. Next, the cross-section is observed with a TEM, and the magnification is adjusted so that at least the entire region of the two-layer structure layer 10 is included in the observation image (for example, about 20000 to 50000 times), and the first interface, the second interface, and the third interface are adjusted. The interface (positions A to C in FIG. 2) is specified.
  • a BF image including a position P 2 separated by 100 nm toward the first interface side, a BF image including a position P 3 separated by 100 nm from the second interface toward the third interface side, and a BF including a third interface Take multiple images of each. From these photographed BF images, the widths of all the crystal grains that were clearly confirmed to be one crystal grain at each of the positions P 1 to P 3 and the third interface were measured, The grain size of the crystal grains.
  • the average value of the measured crystal grain sizes is calculated for each of the positions P 1 to P 3 and the third interface, and is set as the average grain size G 1 to G 4 .
  • the hard coating 100 of the present embodiment can extend the tool life by having the above-described two-layer structure layer 10. The reason for this will be described below, including inferences based on the research of the present inventors.
  • the average particle diameters G 1 to G 4 at the position P 1 , position P 2 , position P 3 and the third interface are G 2 > G
  • the relational expression 3 > G 4 > G 1 is satisfied. That is, the two-layer structure layer 10 has a relatively small average particle size in the vicinity of the first interface and the third interface, and has a relatively large average particle size in the vicinity of the second interface. Since the grain structure at the first interface in contact with the underlayer 20 is dense, the adhesion between the two-layer structure layer 10 and the underlayer 20 is improved.
  • the third interface is the outermost surface of the two-layer structure layer 10 and is the portion that is most loaded during cutting in the two-layer structure layer 10, but the two-layer structure is formed by the dense grain structure on this surface. The fracture toughness of the structural layer 10 is improved.
  • the two-layer structure layer 10 is simply composed of fine granular crystals having a uniform and small particle size, the two-layer structure is caused due to the film forming environment for forming such a layer.
  • the layer will have a high compressive residual stress.
  • the two-layer structure layer is easily peeled off, and there is a concern about the occurrence of abnormal wear.
  • the two-layer structure layer is simply composed of uniform and large granular crystals, there is a concern that the adhesion on the first interface side and the fracture toughness on the third interface side will be reduced.
  • the two-layer structure layer is a normal columnar crystal, that is, a columnar crystal having a uniform grain size in the growth direction, there is a concern that the chipping resistance may be reduced due to dropping of the columnar crystal.
  • the two-layer structure layer 10 is different from any of the above-described structures, and the average grain sizes G 1 to G 4 of the crystal grains contained therein are such that G 2 > G 3 > G 4 > G 1 . It has a characteristic configuration that satisfies the relational expression. Due to such a change in average grain size, in addition to excellent adhesion on the first interface side and excellent fracture toughness and smoothness on the third interface side, dropout of crystal grains is suppressed by a mechanical action.
  • the hard coating 100 including the two-layer structure layer 10 can exhibit high adhesion and high fracture toughness while suppressing a decrease in wear resistance and fracture resistance. For this reason, according to the hard coating 100 of this embodiment, the tool life can be prolonged.
  • the lower layer 1 includes crystal grains 3 whose average grain size increases from the first interface side toward the second interface side
  • the upper layer 2 includes the second layer 2. It is preferable to include crystal grains 4 whose average particle diameter decreases from the interface toward the third interface. Thereby, since said mechanical effect
  • the average particle diameters G 1 to G 4 preferably satisfy the following.
  • the hard coating 100 can be further excellent in the above-described effects.
  • Average particle diameter G 1 50 nm or less
  • Average particle diameter G 2 200 to 600 nm
  • Average particle size G 3 75 to 300 nm
  • Average particle size G 4 150 nm or less.
  • the average particle diameter G 1 is more preferably 40 nm or less, further preferably 30 nm or less, and still more preferably 20 nm or less.
  • the average particle size G 2 is more preferably 230 to 400 nm, further preferably 260 to 340 nm, and still more preferably 280 to 300 nm.
  • the average particle size G 3 is more preferably 100 to 200 nm, still more preferably 120 to 160 nm.
  • the average particle size G 4 is more preferably 85 nm or less, and even more preferably 60 nm or less.
  • the lower limit of the average particle size G 1 is not particularly limited, but when the particle size is very small, it becomes difficult to maintain the denseness of the interface, and is particularly preferably 5 nm from the viewpoint of production quality. Is 10 nm, more preferably 15 nm.
  • the lower limit of the average particle size G 4 is not particularly limited, but is preferably 20 nm, and more preferably 30 nm. Thereby, the fall of the abrasion resistance in a 3rd interface can be suppressed.
  • the thickness of the two-layer structure layer 10 is preferably 0.3 ⁇ m or more. If it is less than 0.3 ⁇ m, the tool life tends to be insufficient. This is considered to be because if the thickness is too small, it is difficult to bring about the change in the average particle diameter as described above in the two-layer structure layer 10.
  • the thickness of the two-layer structure layer 10 is preferably 10 ⁇ m or less. When exceeding 10 micrometers, there exists a tendency for the chipping resistance of the two-layer structure layer 10 to fall. This is presumably because if the thickness of the two-layer structure layer 10 is too large, the compressive residual stress in the layer becomes too large, and the adhesion between the underlayer or base material and the two-layer structure layer 10 is reduced. .
  • the thickness of the two-layer structure layer 10 is more preferably 0.45 to 9.0 ⁇ m, further preferably 0.9 to 8.8 ⁇ m, and particularly preferably 1 to 7 ⁇ m.
  • the ratio Tt / Tb between the thickness Tt of the upper layer 2 and the thickness Tb of the lower layer 1 is preferably 0.2 to 0.75.
  • the lower layer 1 and the upper layer 2 tend to have compressive residual stress, and the compressive residual stress in the lower layer 1 tends to be smaller than the compressive residual stress in the upper layer 2. If the compressive residual stress in the entire two-layer structure layer 10 is too large, peeling of the two-layer structure layer 10 is a concern, but if the ratio Tt / Tb satisfies the above range, an excessive increase in compressive residual stress is suppressed. Therefore, the occurrence of peeling can be suppressed.
  • the ratio Tt / Tb is more preferably 0.2 to 0.5.
  • compressive residual stress is a kind of internal stress (strain energy) existing in a layer, and is represented by a numerical value of “ ⁇ ” (minus).
  • strain energy
  • the upper surface of the upper layer 2 preferably has an arithmetic average roughness Ra of 0.07 ⁇ m or less and a maximum height Rz of 0.50 ⁇ m or less.
  • Ra arithmetic average roughness
  • Rz a maximum height
  • Ra and Rz are defined in JIS B 0601 (2001) and ISO 4287 (1997). These values can be obtained by measuring the surface of the two-layer structure layer 10 under the following measurement conditions using a shape measurement laser microscope (“VK-X110”, manufactured by Keyence Corporation). Note that it is preferable to perform image processing with a tilt correction function before measurement.
  • the Ra and the Rz are more preferably 0.061 ⁇ m or less and 0.47 ⁇ m or less, respectively, and more preferably 0.05 ⁇ m or less and 0.40 ⁇ m or less.
  • two layers having such a highly smooth surface (upper surface of the upper layer 2) can be obtained by performing various processes such as increasing the frequency of blasting of each part of the apparatus used for manufacturing the two-layer structure layer 10.
  • the structural layer 10 can be manufactured.
  • the Ra and Rz values can also be reduced by controlling the average particle size G 4 at the third interface to be small.
  • the number of irregularities (total number of concave portions and convex portions) having a height difference of 1 ⁇ m or more in the range of 100 ⁇ m ⁇ 100 ⁇ m is preferably less than ten.
  • a smooth surface constitutes the outermost surface of the hard coating 100 (a surface in contact with the work material)
  • the cutting resistance during cutting can be remarkably suppressed, so abnormal wear is prevented. Therefore, the tool life can be stabilized. It is the same as described above that it is particularly suitable for rotary tools such as drills and end mills.
  • the number of irregularities can be obtained as follows. First, the surface (100 ⁇ m ⁇ 100 ⁇ m) of the two-layer structure layer 10 is observed at a magnification of 100 times by using a shape measurement laser microscope (“VK-X110”, manufactured by Keyence Corporation) and using the concavo-convex portion function. At this time, image processing of the observed image is performed using the tilt correction function, the height threshold is set to the size of “distribution average ⁇ unevenness having a height difference to be measured”, and the number of target unevennesses is measured. To do.
  • VK-X110 shape measurement laser microscope
  • the convex mode is selected and the height threshold is set to “average value + 1 ⁇ m”, then the concave threshold mode is changed and the height threshold is set to “average” Set the value to “-1 ⁇ m” and measure. Thereby, the number of irregularities having a height difference of 1 ⁇ m or more is required. Note that a minute region of 100 pixels or less is set not to be measured.
  • the number of the irregularities is more preferably 5 or less, further preferably 3 or less, and particularly preferably 0.
  • the two-layer structure layer 10 having such a highly smooth surface is manufactured by performing various processes such as increasing the frequency of the blast process of each part of the apparatus used for manufacturing the two-layer structure layer 10. Can do. As described above, it is difficult to produce such a hard film with high surface smoothness by the AIP method.
  • the number of irregularities having a height difference of 0.5 ⁇ m or more in the range of 100 ⁇ m ⁇ 100 ⁇ m is preferably 10 or less, more preferably 2 or less, and still more preferably Is 1 or less, particularly preferably 0.
  • the number of irregularities having a height difference of 0.3 ⁇ m or more is preferably 10 or less, more preferably 5 or less, further preferably 2 or less, and particularly preferably 0. .
  • the number of these irregularities can also be determined according to the above method.
  • the two-layer structure layer 10 includes a group 4 element (Ti, Zr, Hf, etc.), a group 5 element (V, Nb, Ta, etc.), a group 6 element (Cr, Mo, W, etc.) of the periodic table. ), One or more first elements selected from the group consisting of Al and Si, and one or more second elements selected from the group consisting of B, C, N and O.
  • composition of the two-layer structure layer 10 include TiAlN, TiCrN, TiAlCrN, TiN, CrN, AlCrN, AlCrSiN, TiSiN, and TiCN.
  • the two-layer structure layer 10 has a composition which used Ti and Al as the 1st element. This is because it can be particularly excellent in oxidation resistance and hardness.
  • the composition of the two-layer structure layer 10 is preferably Ti 1-x Al x N (0.45 ⁇ x ⁇ 0.7). This is because it has an excellent balance between hardness at high temperature and oxidation resistance, and therefore has high versatility. Furthermore, the two-layer structure layer 10 having a composition satisfying Ti 1-x Al x N (0.45 ⁇ x ⁇ 0.7) has at least one selected from the group consisting of Si, Nb, W, B, and O. It is preferable that seed elements (however, the concentration of each element in the two-layer structure layer 10 is 1 to 5 atomic%) are added. By adding such an element, it is possible to improve the wear resistance by further improving the hardness. The composition of the two-layer structure layer 10 can be confirmed by observing the cross section of the two-layer structure layer 10 with EDS.
  • ⁇ Underlayer and surface layer> As each of the foundation layer 20 and the surface layer 30, a known layer can be used without particular limitation as a layer provided on the base material surface of a conventional tool.
  • the hard coating 100 has the base layer 20 and / or the surface layer 30, these layers can be manufactured by a conventionally well-known manufacturing method.
  • a manufacturing method of the two-layer structure layer 10 that can be manufactured for the first time by a characteristic manufacturing method using the HiPIMS method will be described with reference to FIG.
  • the case where the two-layer structure layer 10 made of TiAlN is formed on the surface of the substrate 200 will be described as an example.
  • FIG. 3 is a schematic diagram showing an arrangement state of the base material in the chamber of the HiPIMS apparatus when the two-layer structure layer is manufactured.
  • the HiPIMS apparatus is a HiPIMS apparatus capable of performing the HiPIMS method.
  • a target 50 serving as a raw material for the two-layer structure layer 10 is disposed in a chamber (not shown). 3 shows two targets 50, the number of targets 50 is not particularly limited.
  • a table 51 that is rotatable in the direction of the arrow in the figure is arranged between the plurality of targets 50 arranged in the chamber.
  • the table 51 is supported on the table 51 by a rotating shaft 52 and is indicated by the arrow in the figure.
  • a plurality of substrate holders 53 that can rotate in the direction are arranged.
  • a plurality of base materials 200 are placed on the base material holder 53.
  • the substrate 200 can also be rotated by itself.
  • the number of rotating shafts 52 and the number of substrate holders 53 are not limited to those shown in FIG. Further, a heater (not shown) that can heat the substrate 200 is disposed in the chamber.
  • the target 50 is connected to a negative electrode of a pulse power source for supplying pulse power.
  • the positive electrode of the short pulse power supply is grounded (not shown).
  • the table 51 is electrically connected to a negative electrode of a bias power source (not shown) for applying a bias voltage.
  • the positive electrode of the bias power source is grounded (not shown).
  • As the bias power source DC (direct current), pulse DC, RF (high frequency), MF (medium wave number), HiPIMS, or the like can be used.
  • the base material 200 is arranged in the chamber and the target 50 is arranged.
  • Each target 50 has the same composition.
  • a polycrystal having a composition of Ti 0.5 Al 0.5 can be used as the target 50.
  • the chamber is evacuated and inert gas (Ar) and nitrogen gas are introduced.
  • a bias voltage is applied to the table 51 via a bias power source, and pulse power is supplied to the target 50 via a pulse power source to perform the film forming operation of the HiPIMS apparatus (first step).
  • the film forming conditions in the first step are as follows.
  • Bias voltage 0 to 50
  • Pulse power 30-60kW Average power: 6-8kW (per target)
  • Pulse width 10 to 150 ⁇ s
  • Power density 170-340 W / cm 2 (per target)
  • Ar partial pressure 1 Pa or less
  • N 2 partial pressure Control to form a film in a transition mode.
  • the film forming operation of the HiPIMS apparatus is performed under the following film forming conditions (second step).
  • the upper layer 2 is formed. From the viewpoint of manufacturing cost, cleanliness of the two-layer structure layer 10 and the like, it is preferable that the first step and the second step are performed continuously.
  • Bias voltage 100 to 200
  • Pulse power 30-60kW Average power: 3-5 kW (per target)
  • Pulse width 100 to 500 ⁇ s
  • Power density 170-340 W / cm 2 (per target)
  • Ar partial pressure 1 Pa or less
  • N 2 partial pressure Control to form a film in a transition mode.
  • the two-layer structure layer 10 made of the lower layer 1 and the upper layer 2 and having the composition TiAlN is manufactured.
  • “power density” is a value obtained by dividing the maximum value of pulse power by the total area of the surface on which the target is sputtered.
  • the characteristic point in the above manufacturing method is that the pulse power in both steps is optimized and then the first step.
  • the pulse width, average power, and bias voltage are different from the pulse width, average power, and bias voltage in the second step.
  • the two-layer structure layer 10 having the above-described characteristics is formed.
  • the amount of ions and / or atoms reaching the substrate 200 is relatively large, 2.7 to 4.0 pieces ⁇ cm ⁇ 2 ⁇ s ⁇ 1.
  • the pulse power and average power are adjusted.
  • the appropriate values of the pulse power and the average power vary depending on the material. For this reason, the generation density of crystal nuclei on the surface of the substrate 200 is increased.
  • the bombardment to the growth surface energy given to the growth surface due to ion bombardment
  • the crystal nuclei coalesce and the crystal nuclei that become the basis of crystal growth become large. .
  • the average grain size in the vicinity of the position A (FIG. 2) becomes large, and as a result, it becomes difficult to form a dense crystal grain structure having an appropriate adhesion force in the vicinity of the position A.
  • the bias voltage in the first step is as small as 0 to 50 (-V).
  • the bombardment by ions and / or atoms with respect to the surface of the substrate 200 is reduced.
  • the average grain size in the vicinity of the position A can be reduced, and as a result, a dense crystal grain structure having excellent adhesion in the vicinity of the position A can be formed.
  • the bombardment in the first step is small, the compressive residual stress in the crystal grain structure is small. Further, the compressive residual stress in the crystal grain structure is relieved at the timing when the pulse power is not supplied to the target 50. Due to these synergistic effects, the compressive residual stress applied in the first step becomes sufficiently small, so that the fine crystal grains grow competitively. For this reason, the average grain size of crystal grains increases from position A to position B (FIG. 2).
  • the second step the amount of ions and / or atoms reaching the substrate 200 decreases, the pulse width increases, and the bias voltage increases to 100 to 200 ( ⁇ V).
  • the bombardment with respect to the growth surface in the vicinity of the position B becomes large.
  • the crystal grains growing from the position B grow while being exposed to etching by ion bombardment.
  • the growth rate of the crystal grains in the second step becomes smaller than the growth rate of the crystal grains in the first step, and the average grain size gradually decreases. For this reason, the average grain diameter of crystal grains decreases from position B to position C.
  • the crystal grain structure can be made dense in the vicinity of the position C, and in addition, a synergistic effect by light etching can be used. It is also possible to improve the smoothness of the surface shape.
  • the manufacturing method of the two-layer structure layer 10 was explained in full detail, even if it uses methods other than HiPIMS method, it is difficult to manufacture the two-layer structure layer 10.
  • the AIP method when used, there is no timing at which power is not supplied to the target, and hence the above-described relaxation of the residual compressive stress does not occur.
  • the amount of ions and / or atoms that reach the substrate tends to be significantly greater than in the HiPIMS method. For this reason, when a film is formed with a small bias voltage, crystal nuclei in the initial stage of film formation cannot be reduced. Further, when the film is formed with a large bias voltage so as to obtain a dense film, the average particle diameter of the crystal grains cannot be gradually increased because the bombardment is too large.
  • the ionization rate necessary for adjusting the bombardment cannot be achieved.
  • crystal nuclei at the initial stage of film formation cannot be reduced.
  • the hard coating of this embodiment is the same as the hard coating of the first embodiment except that the composition of the upper layer of the two-layer structure layer changes periodically.
  • differences from the first embodiment will be described in detail.
  • the two-layer structure layer 10 included in the hard coating 100 of the present embodiment has two or more first elements in its composition. Then, in the thickness direction of the upper layer 2, the concentrations of the two or more first elements periodically change. Such periodic changes in composition (types of constituent elements and constituent ratios of constituent elements) can be confirmed using TEM or TEM-attached EDS.
  • peripherally changing means that when the increase and decrease of the concentration of the first element, which is continuous in the growth direction (vertical direction in the figure) of the two-layer structure layer 10, is one set of periods, It means that there are at least one set of periods in the thickness direction of the layer 2.
  • concentration of Al which is the first element
  • the concentration of Ti which is another first element
  • the concentration of the first element can periodically change so as to draw a shape such as a sine wave when the vertical axis is the concentration and the thickness direction of the upper layer 2 is the vertical direction in the drawing.
  • the upper layer 2 having such a feature can be obtained by appropriately adjusting the bias voltage, the pulse power, and the average power among the various film forming conditions in the second step described above. By adjusting these conditions as appropriate, one of the reasons why the upper layer 2 has the above structure is presumed.
  • the upper layer 2 is a region that grows while being exposed to etching by ion bombardment as described above.
  • the distance between the target 50 and the base material 200 changes periodically as the table 51 rotates.
  • there are periodically a timing at which the upper layer 2 grown on the base material 200 is easily etched (a timing when it is difficult to grow) and a timing at which it is difficult to etch (a timing when it is easy to grow). It becomes.
  • the upper layer 2 made of TiAlN is grown, Ti and Al are easily etched, and Al is more easily etched. That is, at the timing at which etching is easy, both Ti and Al are etched, but Al is etched more.
  • the Al concentration is low in a region formed at a timing that is easily etched (Ti concentration is high), and the Al concentration is high in a region that is formed at a timing that is difficult to etch. (Ti concentration decreases). Therefore, as a result, the concentrations of Ti and Al in the growing crystal grains change periodically.
  • the upper layer 2 of the present embodiment formed in this way has higher adhesion between the layers than a conventional super multi-layer structure manufactured using two types of targets having different compositions. For this reason, delamination does not occur easily in the upper layer 2, and therefore it can have higher fracture toughness than the conventional super multi-layer structure.
  • the thickness of the period (one set) in the upper layer 2 is preferably 1 to 10 nm. In this case, since the magnitude of strain accumulated in the crystal grains of the upper layer 2 is suitable, the two-layer structure layer 10 is further excellent in hardness.
  • the thickness of the period is more preferably 4 to 8 nm.
  • Cycle thickness is measured as follows. First, a cross-sectional sample of the two-layer structure layer 10 is obtained, and the cross-section is analyzed using a TEM-attached energy dispersive X-ray analysis (EDX) apparatus. Thereby, the atomic ratio of the first element in the cross section can be calculated. And the distance of the position where the density
  • EDX TEM-attached energy dispersive X-ray analysis
  • the total atomic ratio of two or more first elements constituting the composition of the two-layer structure layer 10 is 1, the ratio of at least one first element in the thickness direction of the upper layer 2 is 0. It is preferable that the fluctuation periodically occurs in the range of 2 to 0.7, and the difference between the maximum value and the minimum value of the first element is 0.2 to 0.5. In this case, the above-described distortion can be accumulated while maintaining excellent adhesion, and thus the hardness (abrasion resistance) is excellent. Among these, when Ti and Al are contained in two or more kinds of first elements constituting the two-layer structure layer 10, this effect becomes remarkable.
  • the composition in the thickness direction of the upper layer 2 changes from Ti 1-x Al x N (0.4 ⁇ x ⁇ 0.7) to Ti 1 ⁇ y Al y N (0.2 ⁇ y ⁇ 0.4) is continuously changed, and the difference between the maximum value of Al and the minimum value of Al is 0.2 to 0.4.
  • the fracture resistance fracture toughness
  • the composition of the lower layer 1 is preferably Ti 1-z Al z N (0.45 ⁇ z ⁇ 0.7). It is because it is excellent in abrasion resistance and oxidation resistance.
  • FIG. 4 is a schematic plan view showing an example of a cutting tool according to the third embodiment.
  • 5 is a cross-sectional view taken along the line XX shown in FIG.
  • a two-blade drill is exemplified.
  • the cutting tool 70 has a structure composed of a body 71 and a shank 72.
  • the body 71 has an outer peripheral blade portion 73 and a groove portion 74.
  • outer peripheral blade portion 73 has a margin 73a.
  • the cutting tool 70 includes a base material 81 and a hard coating 82 that covers the surface of the base material 81. The entire surface of the substrate 81 may be covered with the hard coating 82, or a part of the substrate 81 may be covered.
  • a drill is exemplified as the cutting tool 70 which is one of the rotary tools, but an end mill can be used in addition to the drill. That is, the rotary tool includes a base material 81 having a margin 73a with no clearance angle with respect to the work material, a groove portion 74 for flowing out chips, and a hard coating 82.
  • a suitable cutting tool 70 is a drill.
  • the base material 81 is the base material 200 described above, and the hard coating 82 is at least one of the hard coating 100 according to the first embodiment and the hard coating 100 according to the second embodiment.
  • the cutting tool 70 can exhibit the effect of the hard coating 100, and can thus have a long tool life.
  • the hard coating 100 is provided at least on the surface of the margin 73a. This is because the effect of the hard coating 100 is appropriately exhibited.
  • a hard coating 100 is provided on the entire surface of the body 71.
  • the cutting tool 70 has the hard film 100 as follows. First, a cross section of the cutting tool 70 (for example, the cross section shown in FIG. 5) is prepared, and the cutting tool 70 is embedded in resin so that the cross section is exposed on the surface. Next, after polishing the exposed cross section as necessary, the cross section is observed using an SEM.
  • a cross section of the cutting tool 70 for example, the cross section shown in FIG. 5
  • the cutting tool 70 is embedded in resin so that the cross section is exposed on the surface.
  • the cross section is observed using an SEM.
  • the ratio Tf / Tm between the thickness Tf of the hard coating 100 covering the groove 74 and the thickness Tm of the hard coating 100 covering the margin 73a is 0.8 to 1.5. It is preferable. The reason is as follows.
  • the thickness Tf of the hard coating 100 that covers the groove 74 and the thickness Tm of the hard coating 100 that covers the margin 73a are compared with the cutting tool before the post-processing.
  • the ratio Tf / Tm was greatly related to the cutting performance, and is particularly a portion where damage such as wear and chipping is likely to occur. For this reason, if the thickness Tm of the hard coating 100 in this portion is too small compared to the thickness Tf, the tool life and the tool performance are lowered.
  • the hard coating 100 can also have a smooth outermost surface. Therefore, when such a hard coating 100 is provided on the surface of the base material 81, it is not necessary to perform the post-treatment as described above, and therefore the ratio Tf / Tm in the cutting tool obtained as the final product is relatively high. Can be small.
  • the hard coating 100 according to the present embodiment is difficult to manufacture by the AIP method in which the ratio Tf / Tm is relatively small, 0.8 to 1.5, and the surface smoothness is sufficiently high. It can have the mode which was.
  • the hard coating 100 having such an aspect synergistically combines the characteristics of a long tool life due to a relatively small ratio Tf / Tm and a reduction in cutting resistance due to a smooth surface. It can be demonstrated.
  • a circle S is a virtual circle that includes a cross section of the body 71 and is drawn by connecting the leading ends 73aa of the margin 73a, and the diameter thereof is D.
  • the circle S1 is a virtual circle whose center point is the contact point between the tip 73aa of the margin 73a and the circle S and whose radius D1 is 1 / 10D.
  • the line L1 is a virtual line connecting the tip 73aa and the center point P of the circle S.
  • the line L2 is a virtual line that connects the back end 73b of the land width and the center point P of the circle S.
  • the line L3 is a virtual line that equally divides the angle 2 ⁇ formed by the line L1 and the line L2.
  • the circle S2 is a virtual circle whose center point is the contact point between the line L3 and the outer periphery of the body 71 and whose radius D2 is 1 / 10D.
  • the thickness Tm of the hard coating 100 covering the margin 73a is the thickness of the hard coating 100 on the margin 73a located in the circle S1, and is an average value of measured values at at least five arbitrary points.
  • the thickness Tf of the hard coating 100 covering the groove 74 is the thickness of the hard coating 100 on the groove 74 located in the circle S2, and is an average value of measured values at at least five arbitrary points.
  • FIG. 7 is a schematic perspective view showing an example of a cutting tool according to the fourth embodiment.
  • FIG. 8 is a diagram showing a hatched portion in FIG. 7, and is a cross-sectional perspective view showing a Y region. In this embodiment, a throw-away tip is exemplified.
  • the cutting tool 90 has a surface including an upper surface, a lower surface, and four side surfaces, and has a rectangular column shape that is slightly thin in the vertical direction as a whole. Further, the cutting tool 90 is formed with a through-hole penetrating the upper and lower surfaces, and in the boundary portion of the four side surfaces of the cutting tool 90, adjacent side surfaces are connected by an arc surface.
  • the upper surface and the lower surface form a rake face 91, and the four side faces (and the arc surface connecting them) form a flank face 92. Further, the boundary portion between the rake face 91 and the flank face 92 functions as the cutting edge 93.
  • the cutting tool 90 of the present embodiment has a surface (upper surface, lower surface, four side surfaces, an arc surface connecting these side surfaces, and an inner peripheral surface of the through hole), and the surface is a rake surface 91 and a clearance.
  • the rake face 91 and a part (boundary portion) of the flank face 92 including the face 92 form a cutting edge 93.
  • the cutting tool 90 includes a base 94 and a hard coating 95 that covers the surface of the base 94.
  • the entire surface of the substrate 94 may be covered with the hard coating 95, or a part of the substrate 94 may be covered.
  • the substrate 94 is the above-described substrate 200, and the hard coating 95 is at least one of the hard coating 100 according to the first embodiment and the hard coating 100 according to the second embodiment.
  • the cutting tool 90 can exhibit the effect of the hard coating 100, and can thus have a long tool life.
  • the hard coating 100 is provided at least in a portion that contacts the work material and a portion that contacts the chips.
  • the cutting edge 93 is the “boundary portion of the rake face 91 and the flank 92” as described above, which is “the ridge line that forms the boundary between the rake face 91 and the flank 92, the rake face 91 and the flank face”.
  • the part which combined the part which becomes a ridgeline part in 92 is meant.
  • the region of the cutting edge 93 defined in this way is determined by the shape of the cutting edge 93 of the cutting tool 90.
  • the area of the cutting edge 93 of each shape is shown in FIGS.
  • FIG. 8 shows a cutting tool 90 having a sharp edge shape.
  • the ridge line forming the boundary between the rake face 91 and the flank 92 corresponds to the ridge line E in the drawing.
  • the portion of the rake face 91 and the flank 92 near the ridge line E is an area where the distance (straight line distance) D from the ridge line E is 100 ⁇ m or less (in FIG. 8, a region where point hatching is performed). Defined. Therefore, for example, the cutting edge 93 located on the flank 92 side in the cutting tool 90 having a sharp edge shape is a portion corresponding to a region that is located on the flank 92 side in FIG.
  • FIG. 9 shows a cutting tool 90 having a honing shape.
  • a virtual plane R including a rake face 91, a virtual plane F including a flank 92, a virtual ridge line EE formed by intersecting the virtual plane R and the virtual plane F, and a rake face A virtual boundary line ER serving as a boundary of the divergence between 91 and the virtual plane R and a virtual boundary line EF serving as a boundary between the flank 92 and the virtual plane F are illustrated.
  • the “ridge line E” is read as “virtual ridge line EE”.
  • the portion of the rake face 91 and the flank 92 near the virtual ridge line EE is a region sandwiched between the virtual boundary line ER and the virtual boundary line EF (in FIG. The area to be hatched). Therefore, referring to FIG. 9, the cutting edge 93 in the honing-shaped cutting tool 90 is located on the flank 92 side and is subjected to the point hatching, the rake face 91 side, and the point hatching. This is a region that is combined with the region to which is applied.
  • FIG. 10 shows a negative land-shaped cutting tool 90.
  • the virtual plane R including the rake face 91, the virtual plane F including the flank 92, the virtual ridge line EE formed by the intersection of the virtual plane R and the virtual plane F, and the divergence between the rake face 91 and the virtual plane R.
  • a virtual boundary line ER serving as a boundary of the virtual boundary line EF and a virtual boundary line EF serving as a boundary between the flank 92 and the virtual plane F are illustrated.
  • the “ridge line E” is read as “virtual edge line EE”.
  • the portion of the rake face 91 and the flank 92 that is in the vicinity of the virtual ridge line EE is an area between the virtual boundary line ER and the virtual boundary line EF (in FIG. The area to be hatched). Accordingly, referring to FIG. 10, the cutting edge 93 in the negative land-shaped cutting tool 90 is located on the flank 92 side, is located on the rake face 91 side, and is located on the rake face 91 side. This is a region that is combined with the region to which is applied.
  • vacuuming is performed so that the pressure in the chamber becomes 0.005 Pa or less, and argon gas is introduced, and 150 ( ⁇ V) is applied to the substrate while maintaining the pressure in the chamber at 0.7 to 0.9 Pa.
  • a glow discharge was generated in argon by applying a voltage of ⁇ 600 ( ⁇ V) and passing a current through the etching filament.
  • the substrate surface was cleaned with argon ions for 15 to 120 minutes. After the cleaning process, the argon gas was exhausted from the chamber.
  • the first step and the first step were performed under the film formation conditions shown in Table 1. Two steps were sequentially performed to form a hard film on the substrate. In each column relating to the film formation conditions in Table 1, the description on the left side separated by a slash is the condition for the first step, and the description on the right side is the condition for the second step.
  • the pressure in the chamber in each process was set to 0.57 to 0.62 Pa.
  • Examples 2 to 21, Comparative Examples 1 and 2> The film formation conditions were changed as shown in Table 1, and a hard film was formed on the substrate in the same manner as in Example 1 except that the target and gas suitable for the composition of each target film were used. Carried out.
  • Comparative Examples 3 to 5 a film forming process was performed on the substrate using an arc discharge device instead of the HiPIMS device.
  • the arc current was 150 A, and the nitrogen pressure was 5.3 Pa.
  • post-treatment was performed by a conventionally known method.
  • the average particle diameters G 1 to G 4 specified according to the above-described method were calculated. Furthermore, regarding the surface of the hard coating, Ra and Rz were calculated according to the method described above. Further, the surface of the hard coating has a height difference of 1 ⁇ m or more, a number of unevennesses of 0.5 ⁇ m or more, and a height difference of 0.3 ⁇ m or more in the range of 100 ⁇ m ⁇ 100 ⁇ m. The number of irregularities was calculated according to the method described above. The results are shown in Tables 1 and 2.
  • the average particle diameter continuously increases from the first interface toward the second interface, and continuously from the second interface toward the third interface.
  • the two-layer structure layer satisfying the relational expression of G 2 > G 3 > G 4 > G 1 was formed.
  • a bilayer structure layer having such a change in average particle diameter was not formed.
  • Example 23 and Comparative Example 7 As a base material, a throwaway tip having a material made of cemented carbide and a sintered body of ISO H20 grade cubic boron nitride and having a shape of “4NU-DNGA150408” manufactured by Sumitomo Electric Industries, Ltd. was prepared. A hard film was formed on the substrate in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 4.
  • Example 22 had a smooth surface shape of the work material after cutting and was excellent in surface appearance.
  • Example 23 had higher wear resistance and lower maximum height Rz than Comparative Example 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A hard coating that is formed on a substrate, wherein the hard coating comprises a bilayer structure layer made by laminating, in order from the substrate side, a lower layer and an upper layer. When the lower surface of the lower layer that is located on the substrate side of the bilayer structure layer and configures the lower end face is a first interface, the interface between the upper surface of the lower layer and the lower surface of the upper layer is a second interface, the upper surface of the upper layer that configures the upper end face opposite to the lower end face of the bilayer structure layer is a third interface, and a cross-section of the bilayer structure layer that is parallel to the thickness direction thereof is viewed, the average grain diameter G1 of crystal grains at a distance of 100 nm from the first interface toward the second interface, the average grain diameter G2 of crystal grains at a distance of 100 nm from the second interface toward the first interface, the average grain diameter G3 of crystal grains at a distance of 100 nm from the second interface toward the third interface, and the average grain diameter G4 of crystal grains at the third interface satisfy the relational expression G2>G3>G4>G1.

Description

硬質被膜および切削工具Hard coating and cutting tool
 本発明は、硬質被膜および切削工具に関する。本出願は、2016年4月14日に出願した日本特許出願である特願2016-081127号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present invention relates to a hard coating and a cutting tool. This application claims priority based on Japanese Patent Application No. 2016-081127, which is a Japanese patent application filed on April 14, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 切削性能に優れた切削工具として、基材の表面にTiAlN等の硬質被膜が設けられた切削工具がある。このような硬質被膜の形成方法の一つとして、アークイオンプレーティング(AIP)法がある。たとえば特開2002-160107号公報(特許文献1)には、アーク放電の各種条件を適切に制御することにより、AIP法により作製される硬質被膜の問題点であるドロップレットの発生を低減する技術が開示されている。 As a cutting tool having excellent cutting performance, there is a cutting tool in which a hard coating such as TiAlN is provided on the surface of a base material. One method for forming such a hard coating is an arc ion plating (AIP) method. For example, Japanese Patent Laid-Open No. 2002-160107 (Patent Document 1) discloses a technique for reducing the occurrence of droplets, which is a problem of hard coatings produced by the AIP method, by appropriately controlling various conditions of arc discharge. Is disclosed.
 また硬質被膜の他の形成方法として、化学蒸着(CVD)法がある。たとえば、特開2013-212575号公報(特許文献2)には、硬質被膜を構成する結晶粒のうち、基材との界面近傍に位置する結晶粒の粒径を小さくすることにより、硬質被膜と基材との密着性を向上させる技術が開示されている。特開2014-061588号公報(特許文献3)には、微粒粒状組織からなるA層と柱状組織からなるB層とが交互に積層された硬質被膜を基材上に設けることにより、工具の耐チッピング性および耐摩耗性を向上させる技術が開示されている。 Another method for forming a hard coating is a chemical vapor deposition (CVD) method. For example, Japanese Patent Laid-Open No. 2013-212575 (Patent Document 2) discloses that a hard film and a hard film can be obtained by reducing the grain size of crystal grains located in the vicinity of the interface with the base material among the crystal grains constituting the hard film. A technique for improving the adhesion to a substrate is disclosed. Japanese Patent Application Laid-Open No. 2014-061588 (Patent Document 3) discloses that a hard film in which an A layer composed of a fine grained structure and a B layer composed of a columnar structure are alternately laminated is provided on a base material, whereby Techniques for improving chipping and wear resistance are disclosed.
特開2002-160107号公報JP 2002-160107 A 特開2013-212575号公報JP 2013-212575 A 特開2014-061588号公報JP 2014-061588 A
 本開示の一態様に係る硬質被膜は、基材上に形成される硬質被膜であって、硬質被膜は、基材側から順に下部層と上部層とが積層されてなる二層構造層を含み、二層構造層のうち基材側に位置する下端面を構成する下部層の下面を第1界面とし、下部層の上面と上部層の下面との界面を第2界面とし、二層構造層のうち下端面の反対の上端面を構成する上部層の上面を第3界面とし、かつ二層構造層においてその厚み方向に平行な断面を観察した場合に、第1界面から第2界面側に向けて100nm離れた位置における結晶粒の平均粒径G1、第2界面から第1界面側に向けて100nm離れた位置における結晶粒の平均粒径G2、第2界面から第3界面側に向けて100nm離れた位置における結晶粒の平均粒径G3、および第3界面における結晶粒の平均粒径G4は、G2>G3>G4>G1の関係式を満たす。 The hard film according to one embodiment of the present disclosure is a hard film formed on a base material, and the hard film includes a two-layer structure layer in which a lower layer and an upper layer are laminated in order from the base material side. The lower surface of the lower layer constituting the lower end surface located on the substrate side of the two-layer structure layer is defined as a first interface, and the interface between the upper surface of the lower layer and the lower surface of the upper layer is defined as a second interface. When the upper surface of the upper layer constituting the upper end surface opposite to the lower end surface is the third interface and a cross section parallel to the thickness direction is observed in the two-layer structure layer, the first interface is moved to the second interface side. The average grain diameter G 1 of the crystal grains at a position 100 nm away from the second interface, the average grain diameter G 2 of the crystal grains at a position 100 nm away from the second interface toward the first interface side, and from the second interface to the third interface side. Contact to 100nm crystal grains having an average grain size of G 3 at a position away and third interface, towards That the average particle size G 4 of the crystal grains satisfies the G 2> G 3> G 4 > G 1 relationship.
 本開示の一態様に係る切削工具は、基材と、該基材の表面を被覆する上記の硬質被膜とを備える。 The cutting tool which concerns on 1 aspect of this indication is equipped with a base material and said hard film which coat | covers the surface of this base material.
図1は、第1の実施形態に係る硬質被膜を基材上に設けた構成の一例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a configuration in which a hard coating according to the first embodiment is provided on a substrate. 図2は、第1の実施形態に係る二層構造層の構成の一例を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the two-layer structure layer according to the first embodiment. 図3は、二層構造層作製時におけるHiPIMS装置のチャンバ内での基材の配置状態を示す模式図である。FIG. 3 is a schematic diagram showing an arrangement state of the base material in the chamber of the HiPIMS apparatus when the two-layer structure layer is manufactured. 図4は、第3の実施形態に係る切削工具の一例を示す概略的な平面図である。FIG. 4 is a schematic plan view showing an example of a cutting tool according to the third embodiment. 図5は、図4に示すX-X線に関する矢視断面図である。5 is a cross-sectional view taken along the line XX shown in FIG. 図6は、比Tf/Tmの求め方を説明するための概略的な図である。FIG. 6 is a schematic diagram for explaining how to obtain the ratio Tf / Tm. 図7は、第4の実施形態に係る切削工具の一例を示す概略的な斜視図である。FIG. 7 is a schematic perspective view showing an example of a cutting tool according to the fourth embodiment. 図8は、図7の斜線部分のうちのY領域を示す断面斜視図であり、切れ刃がシャープエッジ形状を有する態様を示す図である。FIG. 8 is a cross-sectional perspective view showing a Y region in the hatched portion of FIG. 7, and is a view showing an aspect in which the cutting edge has a sharp edge shape. 図9は、図7に示す断面斜視図において、切れ刃にホーニング加工が施されている態様を示す図である。FIG. 9 is a diagram showing an aspect in which honing is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 7. 図10は、図7に示す断面斜視図において、切れ刃にネガランド加工が施されている態様を示す図である。FIG. 10 is a diagram showing an aspect in which the negative cutting is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 7.
[本開示が解決しようとする課題]
 しかし、特許文献1の技術では、ドロップレットの問題を十分には解消できていない。また特許文献2に開示される硬質被膜では、硬質被膜の表面における結晶粒の粒径が大きいために、破壊靱性が不十分となる。また特許文献3に開示される硬質被膜では、B層の構造上、柱状組織を構成する結晶粒の脱落が生じ易い。このように、いずれの硬質被膜においてもその特性に不十分な点があるために、該硬質被膜を備える工具の長寿命化は不十分なのが実情である。
[Problems to be solved by this disclosure]
However, the technique of Patent Document 1 cannot sufficiently solve the problem of droplets. Further, the hard coating disclosed in Patent Document 2 has insufficient fracture toughness due to the large crystal grain size on the surface of the hard coating. Further, in the hard coating disclosed in Patent Document 3, the crystal grains constituting the columnar structure are likely to fall off due to the structure of the B layer. As described above, since there is an insufficient point in the characteristics of any hard coating, it is a fact that the tool having the hard coating has an insufficient life.
 上記のような課題に鑑み、本開示は、工具寿命の長期化が可能な硬質被膜および該硬質被膜を備える切削工具を提供することを目的とする。
[本開示の効果]
 上記によれば、工具寿命の長期化が可能となる硬質被膜および切削工具を提供することができる。
In view of the above problems, an object of the present disclosure is to provide a hard coating capable of extending the tool life and a cutting tool including the hard coating.
[Effects of the present disclosure]
Based on the above, it is possible to provide a hard coating and a cutting tool capable of extending the tool life.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 本発明者らは、従来のAIP法およびCVD法によって作製される硬質被膜の性能には限界があると考え、これらの手法に替えて、J. Mater. Res., vol.27, No.5(2012), 780-792(非特許文献1)に記載されるHigh Power Impulse Magnetron Sputtering(HiPIMS)法に着目した。HiPIMS法を用いた硬質被膜の作製に関し鋭意検討を重ねたところ、基材に印加するバイアス電圧を二段階で変化させることによって、特異的な形状を有する結晶粒を含む硬質被膜を作製させることができることを知見し、さらに検討を進めることにより、本開示に係る硬質被膜を完成させた。 The present inventors consider that there is a limit to the performance of the hard coating produced by the conventional AIP method and CVD method, and instead of these methods, J. Mater. Res., Vol. 27, No. 5 (2012), 780-792 (Non-patent Document 1), focusing on the High Power Impulse Magnetron Sputtering (HiPIMS) method. As a result of intensive investigations on the production of a hard film using the HiPIMS method, it is possible to produce a hard film containing crystal grains having a specific shape by changing the bias voltage applied to the substrate in two stages. The hard film which concerns on this indication was completed by discovering that it was possible and progressing further examination.
 〔1〕本開示の一態様に係る硬質被膜は、基材上に形成される硬質被膜であって、硬質被膜は、基材側から順に下部層と上部層とが積層されてなる二層構造層を含み、二層構造層のうち基材側に位置する下端面を構成する下部層の下面を第1界面とし、下部層の上面と上部層の下面との界面を第2界面とし、二層構造層のうち下端面の反対の上端面を構成する上部層の上面を第3界面とし、かつ二層構造層においてその厚み方向に平行な断面を観察した場合に、第1界面から第2界面側に向けて100nm離れた位置における結晶粒の平均粒径G1、第2界面から第1界面側に向けて100nm離れた位置における結晶粒の平均粒径G2、第2界面から第3界面側に向けて100nm離れた位置における結晶粒の平均粒径G3、および第3界面における結晶粒の平均粒径G4は、G2>G3>G4>G1の関係式を満たす。 [1] The hard coating according to one embodiment of the present disclosure is a hard coating formed on a base material, and the hard coating is a two-layer structure in which a lower layer and an upper layer are laminated in order from the base material side. The lower surface of the lower layer constituting the lower end surface located on the substrate side of the two-layer structure layer is the first interface, and the interface between the upper surface of the lower layer and the lower surface of the upper layer is the second interface, When the upper surface of the upper layer constituting the upper end surface opposite to the lower end surface of the layer structure layer is the third interface, and the cross section parallel to the thickness direction of the two-layer structure layer is observed, Average grain size G 1 of crystal grains at a position 100 nm away from the interface side, average grain diameter G 2 of crystal grains at a position 100 nm away from the second interface toward the first interface side, third from the second interface the average particle diameter G 3 of crystal grains in the 100nm away toward the interface side, and a third field The average particle diameter G 4 of crystal grains in satisfies G 2> G 3> G 4 > G 1 relationship.
 上記硬質被膜に含まれる二層構造層によれば、第1界面側における平均粒径G1が小さいため、第1界面を形成する他者との高い密着性を発揮する。一方、第3界面側における平均粒径G4が小さいため、硬質被膜の表面側において高い破壊靱性を発揮することができる。 According to the two-layer structure layer included in the hard coating, since the average particle diameter of G 1 in the first interface side is small, it exhibits high adhesion to the others to form the first interface. Meanwhile, since the average particle diameter G 4 in the third interface side is small, it can exhibit high fracture toughness at the surface of the hard coating.
 ここで仮に、二層構造層が単に平均粒径の小さな微粒から構成される場合には、成膜環境に起因して二層構造層は高い圧縮残留応力を有することとなる。この場合、二層構造層が自己剥離し易くなり、これに伴う異常摩耗の発生が懸念される。また仮に、二層構造層が通常の柱状結晶、すなわち成長方向において均一な平均粒径を有する柱状結晶である場合には、柱状結晶の脱落による耐欠損性の低下が懸念される。これに対し上記二層構造層においては、上記関係式から明らかなように、二層構造層に含まれる結晶粒の平均粒径は、厚み方向において特異的に変化している。これにより、上述のような異常摩耗の発生(耐摩耗性の低下)および耐欠損性の低下が抑制される。したがって、本実施形態の硬質被膜は、上記の二層構造層を有することにより、耐摩耗性および耐欠損性等の低下を抑制しつつ、高い密着性と高い破壊靱性とを発揮することができる。このため、本実施形態の硬質被膜によれば、工具寿命の長期化が可能となる。 Here, if the two-layer structure layer is simply composed of fine particles having a small average particle diameter, the two-layer structure layer has a high compressive residual stress due to the film forming environment. In this case, the two-layer structure layer is easily peeled off, and there is a concern about the occurrence of abnormal wear. Further, if the two-layer structure layer is a normal columnar crystal, that is, a columnar crystal having a uniform average grain size in the growth direction, there is a concern that the chipping resistance may be reduced due to dropping of the columnar crystal. On the other hand, in the two-layer structure layer, as is clear from the above relational expression, the average grain size of the crystal grains contained in the two-layer structure layer varies specifically in the thickness direction. Thereby, occurrence of abnormal wear as described above (decrease in wear resistance) and reduction in fracture resistance are suppressed. Therefore, the hard coating of this embodiment can exhibit high adhesion and high fracture toughness while suppressing a decrease in wear resistance, fracture resistance, and the like by having the above two-layer structure layer. . For this reason, according to the hard film of this embodiment, the tool life can be prolonged.
 〔2〕上記硬質被膜において好ましくは、下部層は、第1界面側から第2界面に向けて平均粒径が増大する結晶粒を含み、上部層は、第2界面から第3界面側に向けて平均粒径が減少する結晶粒を含む。これにより、上記効果にさらに優れることができる。 [2] In the hard coating, preferably, the lower layer includes crystal grains having an average particle diameter increasing from the first interface side toward the second interface, and the upper layer is directed from the second interface toward the third interface side. Crystal grains whose average grain size decreases. Thereby, it can further be excellent in the above-mentioned effect.
 〔3〕上記硬質被膜において好ましくは、平均粒径G1は50nm以下であり、平均粒径G2は200nm以上600nm以下であり、平均粒径G3は75nm以上300nm以下であり、平均粒径G4は150nm以下である。これにより、上記効果にさらに優れることができる。 [3] In the preferred above hard coating, the average particle size wherein G 1 is a 50nm or less, the average particle size G 2 is is a 200nm or 600nm or less, the average particle size G 3 are is at 300nm inclusive 75 nm, average particle size G 4 is 150 nm or less. Thereby, it can further be excellent in the above-mentioned effect.
 〔4〕上記硬質被膜において好ましくは、上部層の厚みTtと下部層の厚みTbとの比Tt/Tbは、0.2以上0.75以下である。これにより、上記効果にさらに優れることができる。 [4] In the hard coating, the ratio Tt / Tb of the upper layer thickness Tt and the lower layer thickness Tb is preferably 0.2 or more and 0.75 or less. Thereby, it can further be excellent in the above-mentioned effect.
 〔5〕上記硬質被膜において好ましくは、二層構造層は、周期表の4族元素、5族元素、6族元素、AlおよびSiからなる群より選ばれる1種以上の第1元素と、B、C、NおよびOからなる群より選ばれる1種以上の第2元素とからなる組成を有する。これにより、硬質被膜の硬度を向上させることができ、もって耐摩耗性を向上させることができる。 [5] Preferably, in the hard coating, the two-layer structure layer includes one or more first elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Al and Si in the periodic table; , C, N, and O. The composition is composed of one or more second elements selected from the group consisting of C, N, and O. As a result, the hardness of the hard coating can be improved, and thus the wear resistance can be improved.
 〔6〕上記硬質被膜において好ましくは、二層構造層はその組成中に2種以上の第1元素を有し、上部層の厚み方向において、2種以上の第1元素の濃度がそれぞれ周期的に変化する。これにより第2界面と第3界面との間に位置する結晶粒に歪が蓄積されるため、二層構造層の硬度を高めることができる。 [6] Preferably, in the hard coating, the two-layer structure layer has two or more kinds of first elements in its composition, and the concentrations of the two or more kinds of first elements are each periodically in the thickness direction of the upper layer. To change. As a result, strain is accumulated in the crystal grains located between the second interface and the third interface, so that the hardness of the two-layer structure layer can be increased.
 〔7〕上記硬質被膜は好ましくは、上部層の上面は、0.07μm以下の算術平均粗さRaと、0.50μm以下の最大高さRzとを有する。この場合、硬質被膜は優れた表面平滑性を有することができる。 [7] In the hard coating, preferably, the upper surface of the upper layer has an arithmetic average roughness Ra of 0.07 μm or less and a maximum height Rz of 0.50 μm or less. In this case, the hard coating can have excellent surface smoothness.
 〔8〕上記硬質被膜は好ましくは、二層構造層の上部層の上面の100μm×100μmの範囲において、1μm以上の高低差を有する凹凸の数が10個未満である。この場合、硬質被膜は優れた表面平滑性を有することができる。 [8] The hard coating preferably has less than 10 irregularities having a height difference of 1 μm or more in a range of 100 μm × 100 μm on the upper surface of the upper layer of the two-layer structure layer. In this case, the hard coating can have excellent surface smoothness.
 〔9〕本開示の一態様に係る切削工具は、基材と、該基材の表面を被覆する硬質被膜を備え、該硬質被膜は上記硬質被膜である。上記切削工具によれば、工具寿命の長期化が可能となり、また切削性能の安定化も可能となる。 [9] A cutting tool according to one embodiment of the present disclosure includes a base material and a hard coating that covers a surface of the base material, and the hard coating is the hard coating. According to the cutting tool, the tool life can be extended and the cutting performance can be stabilized.
 〔10〕上記切削工具は好ましくは、溝部を被覆する硬質被膜の厚みTfとマージンを被覆する硬質被膜の厚みTmの比Tf/Tmが、0.8以上1.5以下である。これにより、切削工具はさらに工具寿命の長期化が可能となる。 [10] Preferably, the cutting tool preferably has a ratio Tf / Tm of a hard coating thickness Tf covering the groove and a hard coating thickness Tm covering the margin of 0.8 to 1.5. Thereby, the tool life of the cutting tool can be further extended.
 [本発明の実施形態の詳細]
 以下、本発明の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。また本明細書において、「TiAlN」、「TiN」、「TiCN」等の化学式において特に原子比を特定していないものは、各元素の原子比が「1」のみであることを示すものではなく、従来公知のあらゆる原子比を含み、必ずしも化学量論的範囲のものに限定されない。
[Details of the embodiment of the present invention]
Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto. Also, in this specification, those having no particular atomic ratio in chemical formulas such as “TiAlN”, “TiN”, “TiCN” do not indicate that the atomic ratio of each element is only “1”. Any conventionally known atomic ratio is not necessarily limited to the stoichiometric range.
 [第1の実施形態]
 <硬質被膜>
 図1は、第1の実施形態に係る硬質被膜を基材上に設けた構成の一例を示す模式的な断面図である。図1に示す断面は、硬質被膜の厚み方向(図の上下方向)に平行な断面である。
[First Embodiment]
<Hard coating>
FIG. 1 is a schematic cross-sectional view showing an example of a configuration in which a hard coating according to the first embodiment is provided on a substrate. The cross section shown in FIG. 1 is a cross section parallel to the thickness direction of the hard coating (the vertical direction in the figure).
 図1を参照し、硬質被膜100は、基材200上に形成される。本実施形態において硬質被膜100は、基材200上に、基材200側から順に下地層20、二層構造層10、および表面層30が積層された構成を有している。なお硬質被膜100は、下地層20および/または表面層30を有していなくてもよい。また硬質被膜100は、基材200の全面を被覆してもよく、一部(たとえば切削性能に大きくに寄与する領域)のみを被覆しても良い。 Referring to FIG. 1, the hard coating 100 is formed on the substrate 200. In the present embodiment, the hard coating 100 has a configuration in which the base layer 20, the two-layer structure layer 10, and the surface layer 30 are laminated on the base material 200 in this order from the base material 200 side. The hard coating 100 may not have the base layer 20 and / or the surface layer 30. The hard coating 100 may cover the entire surface of the substrate 200 or may cover only a part (for example, a region that greatly contributes to cutting performance).
 硬質被膜100が設けられる基材200は、工具の基材として知られる従来公知のものを特に限定なく使用することができる。たとえば、炭化タングステン(WC)基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化ホウ素焼結体、およびダイヤモンド焼結体などが挙げられる。なお、基材200は一体形成されていてもよく、複数の部品が組み合されたものであってもよい。 As the substrate 200 on which the hard coating 100 is provided, a conventionally known substrate known as a tool substrate can be used without any particular limitation. Examples thereof include tungsten carbide (WC) based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, diamond sintered body, and the like. In addition, the base material 200 may be integrally formed, and may be a combination of a plurality of parts.
 基材200の形状も特に制限されず、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型チップ、フライス加工用スローアウェイチップ、旋削加工用スローアウェイチップ、メタルソー、歯切工具、リーマ、タップ、切削バイト、耐摩工具、摩擦撹拌接合用ツール等に用いられるいずれの基材の形状を有していても良い。なお図4および図5には、ドリルを基材とした場合が例示されている。 The shape of the substrate 200 is not particularly limited, and a drill, an end mill, a drill tip changeable cutting tip, an end mill tip replacement insert, a milling throwaway tip, a turning throwaway tip, a metal saw, a gear cutting tool, Any base material used for a reamer, tap, cutting tool, wear-resistant tool, friction stir welding tool, or the like may be used. 4 and 5 illustrate the case where a drill is used as a base material.
 図1に戻り、硬質被膜100の厚みはたとえば0.3~15μm(0.3μm以上15μm以下)とすることができる。厚みが0.3μm未満の場合、硬質被膜100を有することに起因する特性を発揮し難く、15μmを超えると、基材200と硬質被膜100との密着性が低下する傾向がある。 Referring back to FIG. 1, the thickness of the hard coating 100 can be set to, for example, 0.3 to 15 μm (0.3 μm to 15 μm). When the thickness is less than 0.3 μm, it is difficult to exhibit the characteristics resulting from having the hard coating 100, and when it exceeds 15 μm, the adhesion between the substrate 200 and the hard coating 100 tends to be reduced.
 硬質被膜100の厚みは次のようにして求められる。まず、硬質被膜100の断面を含む測定試料を準備する。この測定試料は、たとえば硬質被膜100が設けられた基材200を、硬質被膜100の厚み方向に沿って(硬質被膜100に略垂直な断面が得られるように)切断することにより得られる。なお必要に応じて、硬質被膜100の断面を研磨処理して平滑にする。次に、断面を走査型電子顕微鏡(SEM)で観察し、観察画像に硬質被膜100の厚み方向の全域が含まれるように倍率を調整(たとえば15000倍程度)する。そして、その厚みを5点以上測定し、算出された平均値を厚みとする。なお後述する各層の厚みも同様にして求められる。 The thickness of the hard coating 100 is obtained as follows. First, a measurement sample including a cross section of the hard coating 100 is prepared. This measurement sample is obtained, for example, by cutting the substrate 200 provided with the hard coating 100 along the thickness direction of the hard coating 100 (so that a cross section substantially perpendicular to the hard coating 100 is obtained). If necessary, the cross section of the hard coating 100 is polished and smoothed. Next, the cross section is observed with a scanning electron microscope (SEM), and the magnification is adjusted (for example, about 15000 times) so that the entire area of the hard coating 100 in the thickness direction is included in the observed image. And the thickness is measured at five or more points, and the calculated average value is taken as the thickness. In addition, the thickness of each layer mentioned later is calculated | required similarly.
 <二層構造層>
 図2は、第1の実施形態に係る二層構造層の構成の一例を示す模式的な断面図である。図2に示す断面は、硬質被膜の厚み方向(図の上下方向)に平行な断面である。
<Double layer structure layer>
FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the two-layer structure layer according to the first embodiment. The cross section shown in FIG. 2 is a cross section parallel to the thickness direction of the hard coating (the vertical direction in the figure).
 図2を参照し、二層構造層10は、基材200側から順に下部層1と上部層2とが積層された二層構造を有する。この二層構造層は、後述する特徴的なHiPIMS法により作製される層である。 Referring to FIG. 2, the two-layer structure layer 10 has a two-layer structure in which a lower layer 1 and an upper layer 2 are laminated in order from the substrate 200 side. This two-layer structure layer is a layer produced by the characteristic HiPIMS method described later.
 二層構造層10は3つの界面(第1界面~第3界面)を有している。本明細書において、二層構造層10のうち基材200側に位置する下端面(図1において下地層20と接している面)を構成する下部層1の下面(図2の位置A)が、第1界面である。下部層1の上面と上部層2の下面との界面(図2の位置B)が、第2界面である。二層構造層10のうち下端面の反対の上端面(図1において表面層30と接している面)を構成する上部層2の上面(図2の位置C)が、第3界面である。 The two-layer structure layer 10 has three interfaces (first interface to third interface). In this specification, the lower surface (position A in FIG. 2) of the lower layer 1 constituting the lower end surface (the surface in contact with the base layer 20 in FIG. 1) located on the substrate 200 side in the two-layer structure layer 10. , The first interface. The interface (position B in FIG. 2) between the upper surface of the lower layer 1 and the lower surface of the upper layer 2 is the second interface. The upper surface (position C in FIG. 2) of the upper layer 2 constituting the upper end surface opposite to the lower end surface (the surface in contact with the surface layer 30 in FIG. 1) of the two-layer structure layer 10 is the third interface.
 図2から分かるように、第1界面は、下地層20(下地層20が設けられていない場合には基材200)と下部層1とが接してなる界面であり、第3界面は、表面層30(表面層30が設けられていない場合には空気層すなわち外部)と上部層2とが接してなる界面である。つまり、第1界面および第3界面は、二層構造層10の表面と一致する。一方、第2界面は、二層構造層10の内部に存在する界面である。各界面の位置は、TEMまたはSEMを用いて二層構造層10の断面を観察することによって確認することができる。なおSEMを用いる場合には、正確な観察のために、断面をイオンミーリング処理することが好ましい。加えて、5kV程度の低い加速電圧で観察するのが望ましい。 As can be seen from FIG. 2, the first interface is an interface formed by contact between the base layer 20 (the base material 200 when the base layer 20 is not provided) and the lower layer 1, and the third interface is the surface. This is an interface formed by contacting the upper layer 2 with the layer 30 (the air layer or the outside when the surface layer 30 is not provided). That is, the first interface and the third interface coincide with the surface of the two-layer structure layer 10. On the other hand, the second interface is an interface existing inside the two-layer structure layer 10. The position of each interface can be confirmed by observing the cross section of the two-layer structure layer 10 using TEM or SEM. In addition, when using SEM, it is preferable to carry out the ion milling process for the cross section for accurate observation. In addition, it is desirable to observe with an acceleration voltage as low as about 5 kV.
 二層構造層10は、複数の結晶粒を含んでいる。すなわち二層構造層10は多結晶構造を有する。特に二層構造層10においてその厚み方向に平行な断面を観察した場合に、第1界面から第2界面側に向けて100nm離れた位置における結晶粒の平均粒径G1、第2界面から第1界面側に向けて100nm離れた位置における結晶粒の平均粒径G2、第2界面から第3界面側に向けて100nm離れた位置における結晶粒の平均粒径G3、および第3界面における結晶粒の平均粒径G4が、G2>G3>G4>G1の関係式を満たすことを特徴とする。 The two-layer structure layer 10 includes a plurality of crystal grains. That is, the two-layer structure layer 10 has a polycrystalline structure. In particular, when a cross section parallel to the thickness direction of the two-layer structure layer 10 is observed, the average grain size G 1 of the crystal grains at a position 100 nm away from the first interface toward the second interface side, The average grain size G 2 of crystal grains at a position 100 nm away from one interface side, the average grain size G 3 of crystal grains at a position 100 nm away from the second interface toward the third interface side, and the third interface The average grain size G 4 of the crystal grains satisfies the relational expression of G 2 > G 3 > G 4 > G 1 .
 平均粒径G1~G4は次のようにして決定される。まず、二層構造層10の断面を含む測定試料を準備する。この測定試料は、たとえば硬質被膜100が設けられた基材200を、硬質被膜100の厚み方向に沿って(二層構造層10に略垂直な断面が得られるように)切断することにより得られる。必要に応じて、二層構造層10の断面を研磨処理して平滑にする。次に、断面をTEMで観察し、観察画像に少なくとも二層構造層10の全体領域が含まれるように倍率を調整し(たとえば20000~50000倍程度)、第1界面、第2界面および第3界面(図2の位置A~C)を特定する。 The average particle diameters G 1 to G 4 are determined as follows. First, a measurement sample including a cross section of the two-layer structure layer 10 is prepared. This measurement sample is obtained, for example, by cutting the base material 200 provided with the hard coating 100 along the thickness direction of the hard coating 100 (so that a cross section substantially perpendicular to the two-layer structure layer 10 is obtained). . If necessary, the cross section of the two-layer structure layer 10 is polished and smoothed. Next, the cross-section is observed with a TEM, and the magnification is adjusted so that at least the entire region of the two-layer structure layer 10 is included in the observation image (for example, about 20000 to 50000 times), and the first interface, the second interface, and the third interface are adjusted. The interface (positions A to C in FIG. 2) is specified.
 続いてTEMの倍率を調整することにより(たとえば200000~500000倍程度)、第1界面から第2界面側に向けて100nm離れた位置P1が含まれるBF(Bright Field)像、第2界面から第1界面側に向けて100nm離れた位置P2が含まれるBF像、第2界面から第3界面側に向けて100nm離れた位置P3が含まれるBF像、および第3界面が含まれるBF像を、それぞれ複数枚撮影する。撮影したこれらのBF像の中から、各位置P1~P3および第3界面において、明確に一つの結晶粒であることを確認することができたすべての結晶粒についてその幅を測定し、該結晶粒の粒径とする。 Subsequently, by adjusting the magnification of the TEM (for example, about 200,000 to 500,000 times), a BF (Bright Field) image including a position P 1 100 nm away from the first interface toward the second interface side, from the second interface A BF image including a position P 2 separated by 100 nm toward the first interface side, a BF image including a position P 3 separated by 100 nm from the second interface toward the third interface side, and a BF including a third interface Take multiple images of each. From these photographed BF images, the widths of all the crystal grains that were clearly confirmed to be one crystal grain at each of the positions P 1 to P 3 and the third interface were measured, The grain size of the crystal grains.
 最後に、測定された結晶粒の粒径の平均値を各位置P1~P3および第3界面ごとにそれぞれ算出し、平均粒径G1~G4とする。 Finally, the average value of the measured crystal grain sizes is calculated for each of the positions P 1 to P 3 and the third interface, and is set as the average grain size G 1 to G 4 .
 本実施形態の硬質被膜100は、上述の二層構造層10を有することにより、工具寿命を長期化することができる。この理由ついて、本発明者らの研究に基づく推察も含めながら以下に説明する。 The hard coating 100 of the present embodiment can extend the tool life by having the above-described two-layer structure layer 10. The reason for this will be described below, including inferences based on the research of the present inventors.
 二層構造層10はその厚み方向に平行な断面を観察した場合に、位置P1、位置P2、位置P3および第3界面における各平均粒径G1~G4が、G2>G3>G4>G1の関係式を満たす。すなわち二層構造層10においては、第1界面近傍および第3界面近傍では比較的小さな平均粒径を有し、第2界面近傍では、比較的大きな平均粒径を有することとなる。下地層20と接してなる第1界面における結晶粒組織が緻密であることにより、二層構造層10と下地層20との密着性が向上する。また第3界面は、二層構造層10の最表面であって、二層構造層10において切削時に最も負荷がかかる部分であるが、この面における結晶粒組織が緻密であることにより、二層構造層10の破壊靱性が向上する。 When the cross-section parallel to the thickness direction of the two-layer structure layer 10 is observed, the average particle diameters G 1 to G 4 at the position P 1 , position P 2 , position P 3 and the third interface are G 2 > G The relational expression 3 > G 4 > G 1 is satisfied. That is, the two-layer structure layer 10 has a relatively small average particle size in the vicinity of the first interface and the third interface, and has a relatively large average particle size in the vicinity of the second interface. Since the grain structure at the first interface in contact with the underlayer 20 is dense, the adhesion between the two-layer structure layer 10 and the underlayer 20 is improved. Further, the third interface is the outermost surface of the two-layer structure layer 10 and is the portion that is most loaded during cutting in the two-layer structure layer 10, but the two-layer structure is formed by the dense grain structure on this surface. The fracture toughness of the structural layer 10 is improved.
 ここで仮に、二層構造層10の第3界面側が単に均一かつ小さい粒径の微粒粒状晶から構成される場合、このような層を形成するための成膜環境に起因して、二層構造層は高い圧縮残留応力を有することとなる。この場合、二層構造層が自己剥離し易くなり、これに伴う異常摩耗の発生が懸念される。また仮に、二層構造層が単に均一かつ大きい粒状晶から構成される場合、第1界面側における密着性や第3界面側における破壊靱性の低下が懸念される。また仮に、二層構造層が通常の柱状結晶、すなわち成長方向において均一な粒径を有する柱状結晶である場合には、柱状結晶の脱落による耐欠損性の低下が懸念される。 Here, if the third interface side of the two-layer structure layer 10 is simply composed of fine granular crystals having a uniform and small particle size, the two-layer structure is caused due to the film forming environment for forming such a layer. The layer will have a high compressive residual stress. In this case, the two-layer structure layer is easily peeled off, and there is a concern about the occurrence of abnormal wear. Also, if the two-layer structure layer is simply composed of uniform and large granular crystals, there is a concern that the adhesion on the first interface side and the fracture toughness on the third interface side will be reduced. Further, if the two-layer structure layer is a normal columnar crystal, that is, a columnar crystal having a uniform grain size in the growth direction, there is a concern that the chipping resistance may be reduced due to dropping of the columnar crystal.
 これに対し二層構造層10では、上記のいずれの構成とも相違しており、内部に含まれる結晶粒の平均粒径G1~G4が、G2>G3>G4>G1の関係式を満たすという特徴的な構成を有している。このような平均粒径の変化により、第1界面側における優れた密着力、第3界面側における優れた破壊靱性および平滑性に加え、力学的な作用によって結晶粒の脱落が抑制される。 On the other hand, the two-layer structure layer 10 is different from any of the above-described structures, and the average grain sizes G 1 to G 4 of the crystal grains contained therein are such that G 2 > G 3 > G 4 > G 1 . It has a characteristic configuration that satisfies the relational expression. Due to such a change in average grain size, in addition to excellent adhesion on the first interface side and excellent fracture toughness and smoothness on the third interface side, dropout of crystal grains is suppressed by a mechanical action.
 したがって、二層構造層10を含む硬質被膜100は、耐摩耗性および耐欠損性等の低下を抑制しつつ、高い密着性と高い破壊靱性とを発揮することができる。このため、本実施形態の硬質被膜100によれば、工具寿命の長期化が可能となる。 Therefore, the hard coating 100 including the two-layer structure layer 10 can exhibit high adhesion and high fracture toughness while suppressing a decrease in wear resistance and fracture resistance. For this reason, according to the hard coating 100 of this embodiment, the tool life can be prolonged.
 また本実施形態においては、図2に示されるように、下部層1は、第1界面側から第2界面に向けて平均粒径が増大する結晶粒3を含み、上部層2は、第2界面から第3界面側に向けて平均粒径が減少する結晶粒4を含むことが好ましい。これにより、上記の力学的な作用が好適に発揮されるため、より高い密着性とより高い破壊靱性とを発揮することができる。 In the present embodiment, as shown in FIG. 2, the lower layer 1 includes crystal grains 3 whose average grain size increases from the first interface side toward the second interface side, and the upper layer 2 includes the second layer 2. It is preferable to include crystal grains 4 whose average particle diameter decreases from the interface toward the third interface. Thereby, since said mechanical effect | action is exhibited suitably, higher adhesiveness and higher fracture toughness can be exhibited.
 また本実施形態において平均粒径G1~G4は以下を満たすことが好ましい。この場合、硬質被膜100は、さらに上述の効果に優れることができる。
平均粒径G1:50nm以下
平均粒径G2:200~600nm
平均粒径G3:75~300nm
平均粒径G4:150nm以下。
In the present embodiment, the average particle diameters G 1 to G 4 preferably satisfy the following. In this case, the hard coating 100 can be further excellent in the above-described effects.
Average particle diameter G 1 : 50 nm or less Average particle diameter G 2 : 200 to 600 nm
Average particle size G 3 : 75 to 300 nm
Average particle size G 4 : 150 nm or less.
 平均粒径G1は、より好ましくは40nm以下であり、さらに好ましくは30nm以下であり、よりさらに好ましくは20nm以下である。平均粒径G2は、より好ましくは230~400nmであり、さらに好ましくは260~340nmであり、よりさらに好ましくは280~300nm以下である。平均粒径G3は、より好ましくは100~200nmであり、さらに好ましくは120~160nmである。平均粒径G4は、より好ましくは85nm以下であり、さらに好ましくは60nm以下である。 The average particle diameter G 1 is more preferably 40 nm or less, further preferably 30 nm or less, and still more preferably 20 nm or less. The average particle size G 2 is more preferably 230 to 400 nm, further preferably 260 to 340 nm, and still more preferably 280 to 300 nm. The average particle size G 3 is more preferably 100 to 200 nm, still more preferably 120 to 160 nm. The average particle size G 4 is more preferably 85 nm or less, and even more preferably 60 nm or less.
 なお、平均粒径G1の下限値は特に制限されないが、非常に微粒径となると界面の緻密性を保つことが困難となり、特に生産の品質の観点からは好ましくは5nmであり、より好ましくは10nmであり、さらに好ましくは15nmである。また平均粒径G4の下限値は特に制限されないが、好ましくは20nmであり、より好ましくは30nmである。これにより、第3界面における耐摩耗性の低下を抑制することができる。 The lower limit of the average particle size G 1 is not particularly limited, but when the particle size is very small, it becomes difficult to maintain the denseness of the interface, and is particularly preferably 5 nm from the viewpoint of production quality. Is 10 nm, more preferably 15 nm. The lower limit of the average particle size G 4 is not particularly limited, but is preferably 20 nm, and more preferably 30 nm. Thereby, the fall of the abrasion resistance in a 3rd interface can be suppressed.
 また本実施形態において、二層構造層10の厚みは好ましくは0.3μm以上である。0.3μm未満の場合、工具の長寿命化が不十分となる傾向がある。これは、厚みが小さすぎると、二層構造層10内に上述のような平均粒径の変化をもたらすことが困難になるためと考えられる。また二層構造層10の厚みは好ましくは10μm以下である。10μmを超える場合、二層構造層10の耐チッピング性が低下する傾向がある。これは、二層構造層10の厚みが大きすぎると、層内の圧縮残留応力が大きくなり過ぎるために、下地層または基材と二層構造層10との密着性が低下するためと考えられる。二層構造層10の厚みは、より好ましくは0.45~9.0μmであり、さらに好ましくは0.9~8.8μmであり、特に好ましくは1~7μmである。 In the present embodiment, the thickness of the two-layer structure layer 10 is preferably 0.3 μm or more. If it is less than 0.3 μm, the tool life tends to be insufficient. This is considered to be because if the thickness is too small, it is difficult to bring about the change in the average particle diameter as described above in the two-layer structure layer 10. The thickness of the two-layer structure layer 10 is preferably 10 μm or less. When exceeding 10 micrometers, there exists a tendency for the chipping resistance of the two-layer structure layer 10 to fall. This is presumably because if the thickness of the two-layer structure layer 10 is too large, the compressive residual stress in the layer becomes too large, and the adhesion between the underlayer or base material and the two-layer structure layer 10 is reduced. . The thickness of the two-layer structure layer 10 is more preferably 0.45 to 9.0 μm, further preferably 0.9 to 8.8 μm, and particularly preferably 1 to 7 μm.
 また本実施形態において、上部層2の厚みTtと下部層1の厚みTbとの比Tt/Tbは、好ましくは0.2~0.75である。本発明者らの検討により、比Tt/Tbがこれを満たす場合に、適切に上記効果を発揮できることが確認されている。この理由の一つして以下のことが推察される。 In this embodiment, the ratio Tt / Tb between the thickness Tt of the upper layer 2 and the thickness Tb of the lower layer 1 is preferably 0.2 to 0.75. As a result of studies by the present inventors, it has been confirmed that when the ratio Tt / Tb satisfies this ratio, the above-described effects can be appropriately exhibited. One of the reasons is as follows.
 後述する製造方法上、下部層1および上部層2は圧縮残留応力を有し易く、かつ下部層1における圧縮残留応力は、上部層2における圧縮残留応力よりも小さい傾向がある。二層構造層10全体における圧縮残留応力が大きすぎると、二層構造層10の剥離が懸念されるが、比Tt/Tbが上記範囲を満たす場合には、圧縮残留応力の過剰な増加を抑制することができ、もって剥離の発生が抑制され得る。比Tt/Tbは、より好ましくは0.2~0.5である。 In the manufacturing method described later, the lower layer 1 and the upper layer 2 tend to have compressive residual stress, and the compressive residual stress in the lower layer 1 tends to be smaller than the compressive residual stress in the upper layer 2. If the compressive residual stress in the entire two-layer structure layer 10 is too large, peeling of the two-layer structure layer 10 is a concern, but if the ratio Tt / Tb satisfies the above range, an excessive increase in compressive residual stress is suppressed. Therefore, the occurrence of peeling can be suppressed. The ratio Tt / Tb is more preferably 0.2 to 0.5.
 なお「圧縮残留応力」とは、層内に存在する内部応力(歪エネルギー)の一種であって、「-」(マイナス)の数値で表される応力をいう。このため、圧縮残留応力が大きいという概念は、上記数値の絶対値が大きくなることを意味し、また圧縮残留応力が小さいという概念は、上記数値の絶対値が小さくなることを意味する。 Note that “compressive residual stress” is a kind of internal stress (strain energy) existing in a layer, and is represented by a numerical value of “−” (minus). For this reason, the concept that the compressive residual stress is large means that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small means that the absolute value of the numerical value is small.
 また本実施形態において、上部層2の上面は0.07μm以下の算術平均粗さRaと、0.50μm以下の最大高さRzとを有することが好ましい。たとえばこのような平滑な面が硬質被膜100の最表面(被削材に接触する面)を構成する場合には、切削抵抗を顕著に抑制することができるため、異常摩耗を抑制することができ、もって工具寿命を安定させることができる。特に、ドリルおよびエンドミルのような回転工具に対してこのような硬質被膜100を用いた場合、切屑の排出性を向上させることができる。 In this embodiment, the upper surface of the upper layer 2 preferably has an arithmetic average roughness Ra of 0.07 μm or less and a maximum height Rz of 0.50 μm or less. For example, when such a smooth surface constitutes the outermost surface of the hard coating 100 (a surface that contacts the work material), the cutting resistance can be remarkably suppressed, so that abnormal wear can be suppressed. Thus, the tool life can be stabilized. In particular, when such a hard coating 100 is used for a rotary tool such as a drill and an end mill, the chip discharging property can be improved.
 上記RaおよびRzは、JIS B 0601(2001)およびISO4287(1997)に規定されるものである。これらの値は、形状測定レーザーマイクロスコープ(「VK-X110」、キーエンス社製)を用い、以下の計測条件下で二層構造層10の表面を測定することによって求めることができる。なお、測定前に傾き補正機能でイメージ処理を行うことが好ましい。 The above Ra and Rz are defined in JIS B 0601 (2001) and ISO 4287 (1997). These values can be obtained by measuring the surface of the two-layer structure layer 10 under the following measurement conditions using a shape measurement laser microscope (“VK-X110”, manufactured by Keyence Corporation). Note that it is preferable to perform image processing with a tilt correction function before measurement.
 (計測条件)
倍率        :100倍
使用機能      :複数線粗さ
複数線設定     :周囲10本、間引き20本
カットオフλs    :2.5μm
カットオフλc    :0.25mm
スタイラスモード  :オン
スタイラス先端角度 :60°
スタイラス先端半径 :2μm
ノイズフィルター  :無し。
(Measurement conditions)
Magnification: 100 times Function used: Multi-line roughness Multi-line setting: 10 surroundings, 20 thinning cut-off λs: 2.5 μm
Cut-off λc: 0.25 mm
Stylus mode: On-stylus tip angle: 60 °
Stylus tip radius: 2 μm
Noise filter: None.
 上記Raおよび上記Rzは、それぞれ0.061μm以下および0.47μm以下がより好ましく、0.05μm以下および0.40μm以下であることがさらに好ましい。たとえば、二層構造層10の製造に用いる装置各部のブラスト処理の頻度を上げる等の種々の処理を実施することにより、このような平滑性の高い表面(上部層2の上面)を有する二層構造層10を製造することができる。また、第3界面における平均粒径G4を小さく制御することによっても、上記RaおよびRzの値を小さくすることができる。 The Ra and the Rz are more preferably 0.061 μm or less and 0.47 μm or less, respectively, and more preferably 0.05 μm or less and 0.40 μm or less. For example, two layers having such a highly smooth surface (upper surface of the upper layer 2) can be obtained by performing various processes such as increasing the frequency of blasting of each part of the apparatus used for manufacturing the two-layer structure layer 10. The structural layer 10 can be manufactured. The Ra and Rz values can also be reduced by controlling the average particle size G 4 at the third interface to be small.
 なお、上記のような表面の平滑性の高い硬質膜は、AIP法によって製造することは困難である。AIP法によって形成された硬質被膜には、ドロップレットが存在するためである。AIP法によって形成された硬質被膜の表面に対し、研磨等の後処理を実施することによって表面平滑性をある程度向上させることができるが、その場合にも、上記のような高い平滑性を付与することは困難である。換言すれば、本実施形態の二層構造層10によれば、研磨等の後処理を実施することなく、優れた平滑性を発揮することができる。 In addition, it is difficult to manufacture a hard film with high surface smoothness as described above by the AIP method. This is because droplets exist in the hard coating formed by the AIP method. Surface smoothness can be improved to some extent by performing post-treatment such as polishing on the surface of the hard film formed by the AIP method, but in this case as well, the above high smoothness is imparted. It is difficult. In other words, according to the two-layer structure layer 10 of the present embodiment, excellent smoothness can be exhibited without performing post-treatment such as polishing.
 また、二層構造層10の上部層2の上面に関し、100μm×100μmの範囲において1μm以上の高低差を有する凹凸の数(凹部および凸部の総数)は、10個未満であることが好ましい。たとえば、このような平滑な面が硬質被膜100の最表面(被削材に接触する面)を構成する場合には、切削加工時の切削抵抗を顕著に抑制することができるため、異常摩耗を抑制することができ、もって工具寿命を安定させることができる。特に、ドリルおよびエンドミルのような回転工具に好適であることは上記と同様である。 Further, with respect to the upper surface of the upper layer 2 of the two-layer structure layer 10, the number of irregularities (total number of concave portions and convex portions) having a height difference of 1 μm or more in the range of 100 μm × 100 μm is preferably less than ten. For example, when such a smooth surface constitutes the outermost surface of the hard coating 100 (a surface in contact with the work material), the cutting resistance during cutting can be remarkably suppressed, so abnormal wear is prevented. Therefore, the tool life can be stabilized. It is the same as described above that it is particularly suitable for rotary tools such as drills and end mills.
 上記凹凸の数は、次のようにして求めることができる。まず、形状測定レーザーマイクロスコープ(「VK-X110」、キーエンス社製)を用い、凹凸部機能を使用して、100倍の倍率で二層構造層10の表面(100μm×100μm)を観察する。このとき、傾き補正機能を用いて観察画像のイメージ処理を実施し、高さ閾値を「分布平均±測定したい高低差を有する凹凸」の大きさに設定して、対象とする凹凸の数を測定する。たとえば、高低差1μm以上の凹凸を測定すべく、まず凸部モードを選定して高さ閾値を「平均値+1μm」に設定して測定し、次いで凹部モードに変更して高さ閾値を「平均値-1μm」に設定して測定する。これにより、1μm以上の高低差を有する凹凸の数が求められる。なお、100ピクセル以下の微小領域は測定しないように設定される。 The number of irregularities can be obtained as follows. First, the surface (100 μm × 100 μm) of the two-layer structure layer 10 is observed at a magnification of 100 times by using a shape measurement laser microscope (“VK-X110”, manufactured by Keyence Corporation) and using the concavo-convex portion function. At this time, image processing of the observed image is performed using the tilt correction function, the height threshold is set to the size of “distribution average ± unevenness having a height difference to be measured”, and the number of target unevennesses is measured. To do. For example, in order to measure unevenness with a height difference of 1 μm or more, first, the convex mode is selected and the height threshold is set to “average value + 1 μm”, then the concave threshold mode is changed and the height threshold is set to “average” Set the value to “-1 μm” and measure. Thereby, the number of irregularities having a height difference of 1 μm or more is required. Note that a minute region of 100 pixels or less is set not to be measured.
 上記凹凸の数は、より好ましくは5個以下であり、さらに好ましくは3個以下であり、特に好ましくは0個である。たとえば、二層構造層10の製造に用いる装置各部のブラスト処理の頻度を上げる等の種々の処理を実施することにより、このような平滑性の高い表面を有する二層構造層10を製造することができる。なお、このような表面の平滑性の高い硬質膜をAIP法によって製造することが困難であることは上述のとおりである。 The number of the irregularities is more preferably 5 or less, further preferably 3 or less, and particularly preferably 0. For example, the two-layer structure layer 10 having such a highly smooth surface is manufactured by performing various processes such as increasing the frequency of the blast process of each part of the apparatus used for manufacturing the two-layer structure layer 10. Can do. As described above, it is difficult to produce such a hard film with high surface smoothness by the AIP method.
 また、二層構造層10の上面に関し、100μm×100μmの範囲において0.5μm以上の高低差を有する凹凸の数は、好ましくは10個以下であり、より好ましくは2個以下であり、さらに好ましくは1個以下であり、特に好ましくは0個である。同様に、0.3μm以上の高低差を有する凹凸の数は、好ましくは10個以下であり、より好ましくは5個以下であり、さらに好ましくは2個以下であり、特に好ましくは0個である。これらの凹凸の数も、上記の方法に準じて求めることができる。 Further, with respect to the upper surface of the two-layer structure layer 10, the number of irregularities having a height difference of 0.5 μm or more in the range of 100 μm × 100 μm is preferably 10 or less, more preferably 2 or less, and still more preferably Is 1 or less, particularly preferably 0. Similarly, the number of irregularities having a height difference of 0.3 μm or more is preferably 10 or less, more preferably 5 or less, further preferably 2 or less, and particularly preferably 0. . The number of these irregularities can also be determined according to the above method.
 また本実施形態において、二層構造層10は、周期表の4族元素(Ti、Zr、Hfなど)、5族元素(V、Nb、Taなど)、6族元素(Cr、Mo、Wなど)、AlおよびSiからなる群より選ばれる1種以上の第1元素と、B、C、NおよびOからなる群より選ばれる1種以上の第2元素とからなる組成を有することが好ましい。 In the present embodiment, the two-layer structure layer 10 includes a group 4 element (Ti, Zr, Hf, etc.), a group 5 element (V, Nb, Ta, etc.), a group 6 element (Cr, Mo, W, etc.) of the periodic table. ), One or more first elements selected from the group consisting of Al and Si, and one or more second elements selected from the group consisting of B, C, N and O.
 具体的な二層構造層10の組成としては、TiAlN、TiCrN、TiAlCrN、TiN、CrN、AlCrN、AlCrSiN、TiSiN、TiCN等が挙げられる。なかでも、二層構造層10が、TiとAlとを第1元素とした組成を有することが好ましい。耐酸化性および硬度において特に優れることができるためである。 Specific examples of the composition of the two-layer structure layer 10 include TiAlN, TiCrN, TiAlCrN, TiN, CrN, AlCrN, AlCrSiN, TiSiN, and TiCN. Especially, it is preferable that the two-layer structure layer 10 has a composition which used Ti and Al as the 1st element. This is because it can be particularly excellent in oxidation resistance and hardness.
 特に、二層構造層10の組成はTi1-xAlxN(0.45≦x≦0.7)であることが好ましい。高温時の硬度と耐酸化性とのバランスに優れ、故に高い汎用性を有するためである。さらにTi1-xAlxN(0.45≦x≦0.7)を満たす組成を有する二層構造層10には、Si、Nb、W、BおよびOからなる群より選択される少なくとも1種の元素(ただし、各元素の二層構造層10内での濃度は1~5原子%)が添加されていることが好ましい。このような元素の添加により、硬度のさらなる向上による耐摩耗性の向上が可能となる。二層構造層10の組成は、二層構造層10の断面をEDSで観察することにより確認することができる。 In particular, the composition of the two-layer structure layer 10 is preferably Ti 1-x Al x N (0.45 ≦ x ≦ 0.7). This is because it has an excellent balance between hardness at high temperature and oxidation resistance, and therefore has high versatility. Furthermore, the two-layer structure layer 10 having a composition satisfying Ti 1-x Al x N (0.45 ≦ x ≦ 0.7) has at least one selected from the group consisting of Si, Nb, W, B, and O. It is preferable that seed elements (however, the concentration of each element in the two-layer structure layer 10 is 1 to 5 atomic%) are added. By adding such an element, it is possible to improve the wear resistance by further improving the hardness. The composition of the two-layer structure layer 10 can be confirmed by observing the cross section of the two-layer structure layer 10 with EDS.
 <下地層および表面層>
 下地層20および表面層30のそれぞれは、従来工具の基材表面に設けられる層として公知のものを特に限定なく使用することができる。
<Underlayer and surface layer>
As each of the foundation layer 20 and the surface layer 30, a known layer can be used without particular limitation as a layer provided on the base material surface of a conventional tool.
 <硬質被膜の製造方法>
 硬質被膜100が下地層20および/または表面層30を有する場合、これらの層は従来公知の製造方法により製造することができる。以下、HiPIMS法を用いた特徴的な製造方法によって初めて製造可能となった二層構造層10の製造方法について図3を用いて説明する。ここでは、一例として基材200の表面にTiAlNからなる二層構造層10を形成する場合について説明する。
<Method for producing hard coating>
When the hard coating 100 has the base layer 20 and / or the surface layer 30, these layers can be manufactured by a conventionally well-known manufacturing method. Hereinafter, a manufacturing method of the two-layer structure layer 10 that can be manufactured for the first time by a characteristic manufacturing method using the HiPIMS method will be described with reference to FIG. Here, the case where the two-layer structure layer 10 made of TiAlN is formed on the surface of the substrate 200 will be described as an example.
 図3は、二層構造層作製時におけるHiPIMS装置のチャンバ内での基材の配置状態を示す模式図である。なおHiPIMS装置とは、HiPIMS法を実施可能なHiPIMS装置である。図3を参照し、チャンバ(不図示)内には、二層構造層10の原料となるターゲット50が配置されている。なお、図3では2つのターゲット50を示すが、ターゲット50の数は特に制限されない。 FIG. 3 is a schematic diagram showing an arrangement state of the base material in the chamber of the HiPIMS apparatus when the two-layer structure layer is manufactured. The HiPIMS apparatus is a HiPIMS apparatus capable of performing the HiPIMS method. Referring to FIG. 3, a target 50 serving as a raw material for the two-layer structure layer 10 is disposed in a chamber (not shown). 3 shows two targets 50, the number of targets 50 is not particularly limited.
 チャンバ内に配置される複数のターゲット50の間には、図中の矢印方向に回転可能なテーブル51が配置されており、テーブル51上には、回転軸52によって支持され、かつ図中の矢印方向に回転可能となる複数の基材ホルダー53が配置されている。基材ホルダー53には、複数の基材200が載置される。基材200はそれ自身での回転も可能である。なお回転軸52の数および基材ホルダー53の数は図3に示すものに限られない。またチャンバ内には、基材200を加熱可能なヒータ(不図示)が配置されている。 A table 51 that is rotatable in the direction of the arrow in the figure is arranged between the plurality of targets 50 arranged in the chamber. The table 51 is supported on the table 51 by a rotating shaft 52 and is indicated by the arrow in the figure. A plurality of substrate holders 53 that can rotate in the direction are arranged. A plurality of base materials 200 are placed on the base material holder 53. The substrate 200 can also be rotated by itself. The number of rotating shafts 52 and the number of substrate holders 53 are not limited to those shown in FIG. Further, a heater (not shown) that can heat the substrate 200 is disposed in the chamber.
 ターゲット50には、パルス電力を供給するためのパルス電源の負極が接続されている。短パルス電源の正極はアース接続されている(不図示)。テーブル51には、バイアス電圧を印加するためのバイアス電源(不図示)の負極が電気的に接続されている。バイアス電源の正極はアース接続されている(不図示)。バイアス電源としてはDC(直流)、パルスDC、RF(高周波)、MF(中波数)、HiPIMS等が使用できる。 The target 50 is connected to a negative electrode of a pulse power source for supplying pulse power. The positive electrode of the short pulse power supply is grounded (not shown). The table 51 is electrically connected to a negative electrode of a bias power source (not shown) for applying a bias voltage. The positive electrode of the bias power source is grounded (not shown). As the bias power source, DC (direct current), pulse DC, RF (high frequency), MF (medium wave number), HiPIMS, or the like can be used.
 二層構造層10の製造時に際し、まず図3に示すようにチャンバ内に基材200を配置するとともに、ターゲット50を配置する。ターゲット50は、それぞれ同じ組成を有している。たとえば、ターゲット50として、Ti0.5Al0.5の組成を有する多結晶を用いることができる。そしてチャンバ内を真空にし、不活性ガス(Ar)および窒素ガスを導入する。またテーブル51に対し、バイアス電源を介してバイアス電圧を印加するとともに、ターゲット50に対し、パルス電源を介してパルス電力を供給して、HiPIMS装置の成膜動作を実施させる(第1工程)。第1工程における成膜条件は以下のとおりである。 When manufacturing the two-layer structure layer 10, first, as shown in FIG. 3, the base material 200 is arranged in the chamber and the target 50 is arranged. Each target 50 has the same composition. For example, as the target 50, a polycrystal having a composition of Ti 0.5 Al 0.5 can be used. Then, the chamber is evacuated and inert gas (Ar) and nitrogen gas are introduced. In addition, a bias voltage is applied to the table 51 via a bias power source, and pulse power is supplied to the target 50 via a pulse power source to perform the film forming operation of the HiPIMS apparatus (first step). The film forming conditions in the first step are as follows.
 (第1工程の成膜条件)
バイアス電圧 :0~50(-V)
パルス電力  :30~60kW
平均電力   :6~8kW(ターゲット1個当たり)
パルス幅   :10~150μs
電力密度   :170~340W/cm2(ターゲット1個当たり)
Ar分圧   :1Pa以下
2分圧    :遷移モードで成膜するように制御。
(Film forming conditions for the first step)
Bias voltage: 0 to 50 (-V)
Pulse power: 30-60kW
Average power: 6-8kW (per target)
Pulse width: 10 to 150 μs
Power density: 170-340 W / cm 2 (per target)
Ar partial pressure: 1 Pa or less N 2 partial pressure: Control to form a film in a transition mode.
 これにより、チャンバ内にプラズマ60が発生し、かつターゲット50にイオンが衝突することにより、ターゲット50から金属原子および/または金属イオンが放出され、窒素原子と共に基材200の表面に付着する。この第1工程により、下部層1が形成される。 Thereby, plasma 60 is generated in the chamber, and ions collide with the target 50, whereby metal atoms and / or metal ions are released from the target 50 and adhere to the surface of the substrate 200 together with nitrogen atoms. By this first step, the lower layer 1 is formed.
 次いで、以下の成膜条件下で、HiPIMS装置の成膜動作を実施する(第2工程)。この第2工程により、上部層2が形成される。製造コスト、二層構造層10の清浄性等の観点から、第1工程および第2工程は連続して実施されることが好ましい。 Next, the film forming operation of the HiPIMS apparatus is performed under the following film forming conditions (second step). By this second step, the upper layer 2 is formed. From the viewpoint of manufacturing cost, cleanliness of the two-layer structure layer 10 and the like, it is preferable that the first step and the second step are performed continuously.
 (第2工程の成膜条件)
バイアス電圧 :100~200(-V)
パルス電力  :30~60kW
平均電力   :3~5kW(ターゲット1個当たり)
パルス幅   :100~500μs
電力密度   :170~340W/cm2(ターゲット1個当たり)
Ar分圧   :1Pa以下
2分圧    :遷移モードで成膜するように制御。
(Deposition conditions for the second step)
Bias voltage: 100 to 200 (-V)
Pulse power: 30-60kW
Average power: 3-5 kW (per target)
Pulse width: 100 to 500 μs
Power density: 170-340 W / cm 2 (per target)
Ar partial pressure: 1 Pa or less N 2 partial pressure: Control to form a film in a transition mode.
 以上により、下部層1および上部層2からなり、かつ組成がTiAlNからなる二層構造層10が製造される。なお各成膜条件において、「電力密度」はパルス電力の最大値をターゲットがスパッタされる面の全体の面積で割った値である。 As described above, the two-layer structure layer 10 made of the lower layer 1 and the upper layer 2 and having the composition TiAlN is manufactured. In each film forming condition, “power density” is a value obtained by dividing the maximum value of pulse power by the total area of the surface on which the target is sputtered.
 第1工程の成膜条件と第2工程の成膜条件との対比から明らかなように、上記製造方法において特徴的な点は、両工程におけるパルス電力を最適化した上で、第1工程におけるパルス幅、平均電力およびバイアス電圧の大きさと第2工程におけるパルス幅、平均電力およびバイアス電圧の大きさとを相違させる点にある。これにより、上述の特徴を有する二層構造層10が形成される。その理由は明確ではないが、本発明者らの検討に基づいて以下のように推察される。 As is clear from the comparison between the film forming conditions in the first step and the film forming conditions in the second step, the characteristic point in the above manufacturing method is that the pulse power in both steps is optimized and then the first step. The pulse width, average power, and bias voltage are different from the pulse width, average power, and bias voltage in the second step. Thereby, the two-layer structure layer 10 having the above-described characteristics is formed. Although the reason is not clear, it is guessed as follows based on examination of the present inventors.
 上記の第1工程の成膜条件下では、基材200上に到達するイオンおよび/または原子の量が、2.7~4.0個・cm-2・s-1と比較的多くなるようにパルス電力および平均電力が調整される。なお、パルス電力および平均電力の適正値は、材料によって異なる。このため、基材200表面上での結晶核の発生密度は高くなる。ただしこのとき、成長面へのボンバード(イオンの衝撃に伴い成長面に与えられたエネルギー)が大きいと、結晶核が合体してしまうために、結晶成長の基となる結晶核が大きくなってしまう。このために、位置A近傍(図2)における平均粒径が大きくなってしまい、結果的に、位置A近傍において適切な密着力を有する緻密な結晶粒組織の形成が難しくなる。 Under the film forming conditions in the first step, the amount of ions and / or atoms reaching the substrate 200 is relatively large, 2.7 to 4.0 pieces · cm −2 · s −1. The pulse power and average power are adjusted. The appropriate values of the pulse power and the average power vary depending on the material. For this reason, the generation density of crystal nuclei on the surface of the substrate 200 is increased. However, at this time, if the bombardment to the growth surface (energy given to the growth surface due to ion bombardment) is large, the crystal nuclei coalesce and the crystal nuclei that become the basis of crystal growth become large. . For this reason, the average grain size in the vicinity of the position A (FIG. 2) becomes large, and as a result, it becomes difficult to form a dense crystal grain structure having an appropriate adhesion force in the vicinity of the position A.
 しかし、第1工程におけるバイアス電圧は0~50(-V)と小さい。この場合、基材200の表面に対するイオンおよび/または原子によるボンバードは小さくなる。このため、位置A近傍における平均粒径を小さくすることができ、結果的に、位置A近傍において優れた密着力を有する緻密な結晶粒組織を形成することができる。 However, the bias voltage in the first step is as small as 0 to 50 (-V). In this case, the bombardment by ions and / or atoms with respect to the surface of the substrate 200 is reduced. For this reason, the average grain size in the vicinity of the position A can be reduced, and as a result, a dense crystal grain structure having excellent adhesion in the vicinity of the position A can be formed.
 また、第1工程におけるボンバードが小さいために、結晶粒組織内の圧縮残留応力は小さくなる。また、ターゲット50に対してパルス電力が供給されないタイミングに、結晶粒組織内の圧縮残留応力が緩和される。これらの相乗効果により、第1工程において付与される圧縮残留応力が十分に小さくなるために、微粒の結晶粒は競争的に成長することとなる。このため、位置Aから位置B(図2)にかけて結晶粒の平均粒径は増大する。 Also, since the bombardment in the first step is small, the compressive residual stress in the crystal grain structure is small. Further, the compressive residual stress in the crystal grain structure is relieved at the timing when the pulse power is not supplied to the target 50. Due to these synergistic effects, the compressive residual stress applied in the first step becomes sufficiently small, so that the fine crystal grains grow competitively. For this reason, the average grain size of crystal grains increases from position A to position B (FIG. 2).
 一方、第2工程においては、基材200上に到達するイオンおよび/または原子の量は下がり、パルス幅が長くなり、バイアス電圧が100~200(-V)と大きくなる。この場合、位置B近傍の成長面に対するボンバードは大きくなる。このため、位置Bから成長する結晶粒は、イオンボンバードによるエッチングに曝されながら成長することとなる。これにより、第2工程における結晶粒の成長速度は、第1工程における結晶粒の成長速度よりも小さくなり、かつその平均粒径も徐々に減少する。このため、位置Bから位置Cにかけて結晶粒の平均粒径は減少することとなる。また、基材200上に到達するイオンおよび/または原子の量を最適化することよって、位置C近傍において結晶粒組織を緻密にすることができ、加えて軽いエッチングによる相乗効果によって、位置Cにおける表面形状の平滑性を高めることも可能である。 On the other hand, in the second step, the amount of ions and / or atoms reaching the substrate 200 decreases, the pulse width increases, and the bias voltage increases to 100 to 200 (−V). In this case, the bombardment with respect to the growth surface in the vicinity of the position B becomes large. For this reason, the crystal grains growing from the position B grow while being exposed to etching by ion bombardment. Thereby, the growth rate of the crystal grains in the second step becomes smaller than the growth rate of the crystal grains in the first step, and the average grain size gradually decreases. For this reason, the average grain diameter of crystal grains decreases from position B to position C. Further, by optimizing the amount of ions and / or atoms that reach the substrate 200, the crystal grain structure can be made dense in the vicinity of the position C, and in addition, a synergistic effect by light etching can be used. It is also possible to improve the smoothness of the surface shape.
 第1工程および第2工程の成膜条件に関し、より好適な値は以下のとおりである。左側(前者)に記載される範囲はより好ましい範囲であり、右側(後)に記載される範囲はさらに好ましい範囲である。
バイアス電圧(第1工程):10~40、20~30(-V)
バイアス電圧(第2工程):100~175、100~140(-V)
パルス電力(第1工程) :40~55、45~50kW
パルス電力(第2工程) :45~60、50~60kW
パルス幅(第1工程)  :50~150、75~120μs
パルス幅(第2工程)  :200~400、250~350μs
電力密度(第1工程)  :226~311、255~283W/cm2
電力密度(第2工程)  :255~340、283~340W/cm2
平均電力(第1工程)  :6.5~8.0、7.0~8.0kW平均電力(第2工程)  :3.5~4.5、3.5~4.0kW。
Regarding the film forming conditions in the first step and the second step, more preferable values are as follows. The range described on the left side (the former) is a more preferable range, and the range described on the right side (the rear) is a more preferable range.
Bias voltage (first step): 10 to 40, 20 to 30 (-V)
Bias voltage (second step): 100 to 175, 100 to 140 (-V)
Pulse power (first step): 40 to 55, 45 to 50 kW
Pulse power (second process): 45-60, 50-60 kW
Pulse width (first step): 50 to 150, 75 to 120 μs
Pulse width (second step): 200 to 400, 250 to 350 μs
Power density (first step): 226 to 311, 255 to 283 W / cm 2
Power density (second step): 255 to 340, 283 to 340 W / cm 2
Average power (first step): 6.5 to 8.0, 7.0 to 8.0 kW Average power (second step): 3.5 to 4.5, 3.5 to 4.0 kW.
 以上、二層構造層10の製造方法について詳述したが、HiPIMS法以外の他の方法を用いても、二層構造層10を製造することは困難である。たとえば、AIP法を用いた場合、ターゲットに対して電力が供給されないタイミングは存在せず、故に上述のような残留圧縮応力の緩和は起こらない。また、基材上に到達するイオンおよび/または原子の量は、HiPIMS法よりも顕著に大きい傾向がある。このため、小さなバイアス電圧で成膜した場合、成膜初期における結晶核を小さくすることができない。また、緻密な被膜を得るべく大きなバイアス電圧で成膜した場合、ボンバードが大きすぎるために、結晶粒の平均粒径を徐々に増大させることができない。 As mentioned above, although the manufacturing method of the two-layer structure layer 10 was explained in full detail, even if it uses methods other than HiPIMS method, it is difficult to manufacture the two-layer structure layer 10. For example, when the AIP method is used, there is no timing at which power is not supplied to the target, and hence the above-described relaxation of the residual compressive stress does not occur. Also, the amount of ions and / or atoms that reach the substrate tends to be significantly greater than in the HiPIMS method. For this reason, when a film is formed with a small bias voltage, crystal nuclei in the initial stage of film formation cannot be reduced. Further, when the film is formed with a large bias voltage so as to obtain a dense film, the average particle diameter of the crystal grains cannot be gradually increased because the bombardment is too large.
 またスパッタ法を用いた場合、ボンバードを調整するために必要なイオン化率が達成できない。また小さなバイアス電圧で成膜した場合、成膜初期における結晶核を小さくすることができない。小さなバイアス電圧で成膜した場合、緻密性を保つことも困難である。 Also, when the sputtering method is used, the ionization rate necessary for adjusting the bombardment cannot be achieved. In addition, when a film is formed with a small bias voltage, crystal nuclei at the initial stage of film formation cannot be reduced. When the film is formed with a small bias voltage, it is difficult to maintain the denseness.
 またCVD法を用いた場合、成膜される層には引張残留応力が付与されることとなるため、位置Bから位置Cに向けて平均粒径が小さくなるような結晶粒を意図的に成長させることはできないと考えられる。 In addition, when the CVD method is used, a tensile residual stress is applied to the layer to be deposited, so that a crystal grain whose average grain size decreases from position B to position C is intentionally grown. It is thought that it cannot be made.
 [第2の実施形態]
 <硬質被膜>
 本実施形態の硬質被膜は、二層構造層の上部層の組成が周期的に変化する点以外は、第1の実施形態の硬質被膜と同様である。以下、第1の実施形態と相違する点について詳述する。
[Second Embodiment]
<Hard coating>
The hard coating of this embodiment is the same as the hard coating of the first embodiment except that the composition of the upper layer of the two-layer structure layer changes periodically. Hereinafter, differences from the first embodiment will be described in detail.
 図2を参照し、本実施形態の硬質被膜100に含まれる二層構造層10は、その組成中に2種以上の第1元素を有する。そして、上部層2の厚み方向において、2種以上の第1元素の濃度がそれぞれ周期的に変化する。このような組成の周期的な変化(構成元素の種類および構成元素の構成比率)は、TEMまたはTEM付帯のEDSを用いて確認することができる。 Referring to FIG. 2, the two-layer structure layer 10 included in the hard coating 100 of the present embodiment has two or more first elements in its composition. Then, in the thickness direction of the upper layer 2, the concentrations of the two or more first elements periodically change. Such periodic changes in composition (types of constituent elements and constituent ratios of constituent elements) can be confirmed using TEM or TEM-attached EDS.
 ここで「周期的に変化する」とは、二層構造層10の成長方向(図の上下方向)において連続する、第1元素の濃度の増加と減少とを周期の1セットとしたとき、上部層2の厚み方向において少なくとも1セット以上の周期が存在することを意味する。たとえば、二層構造層10全体の組成がTi1-xAlxNの場合、上部層2の厚み方向において第1元素であるAlの濃度が連続的に増加と減少とを繰り返すこととなる。また、Alの濃度の変化に伴い、他の第1元素であるTiの濃度も連続的に増加と減少とを繰り返すこととなる。第1元素の濃度は、縦軸を濃度とし、上部層2の厚み方向(図の上下方向)とした場合に、正弦波等の形状を描くように周期的に変化し得る。 Here, “periodically changing” means that when the increase and decrease of the concentration of the first element, which is continuous in the growth direction (vertical direction in the figure) of the two-layer structure layer 10, is one set of periods, It means that there are at least one set of periods in the thickness direction of the layer 2. For example, when the composition of the entire two-layer structure layer 10 is Ti 1-x Al x N, the concentration of Al, which is the first element, continuously increases and decreases in the thickness direction of the upper layer 2. As the Al concentration changes, the concentration of Ti, which is another first element, also continuously increases and decreases. The concentration of the first element can periodically change so as to draw a shape such as a sine wave when the vertical axis is the concentration and the thickness direction of the upper layer 2 is the vertical direction in the drawing.
 上部層2の厚み方向において第1元素の濃度が周期的に変化するような構造を有する場合、上部層2の結晶粒内に適度な歪みが蓄積される。このため、このような結晶粒は、組成の周期的な変化を有さない場合と比して、より高い硬度を有することができる。 When it has a structure in which the concentration of the first element periodically changes in the thickness direction of the upper layer 2, moderate strain is accumulated in the crystal grains of the upper layer 2. For this reason, such a crystal grain can have higher hardness compared with the case where there is no periodic change of a composition.
 このような特徴を備えた上部層2は、たとえば、上述の第2工程における各種成膜条件のうち、バイアス電圧、パルス電力、および平均電力を適宜調整することにより可能となる。これらの条件を適宜調整することによって、上部層2が上記のような構造となる理由の一つとして、次のことが推察される。 The upper layer 2 having such a feature can be obtained by appropriately adjusting the bias voltage, the pulse power, and the average power among the various film forming conditions in the second step described above. By adjusting these conditions as appropriate, one of the reasons why the upper layer 2 has the above structure is presumed.
 上部層2は、上述のようにイオンボンバードによるエッチングに曝されながら成長する領域である。そして、HiPIMS装置のチャンバ内において、テーブル51の回転に伴い、ターゲット50と基材200との距離が周期的に変化する。このため、第2工程には、基材200上に成長する上部層2がエッチングされ易いタイミング(成長し難いタイミング)と、エッチングされ難いタイミング(成長し易いタイミング)とが周期的に存在することとなる。たとえば、TiAlNからなる上部層2を成長させる場合、TiとAlとはエッチングされ易さが異なっており、Alのほうがエッチングされ易い性質を有する。すなわち、エッチングされ易いタイミングにおいては、TiとAlとの両者がエッチングされるものの、Alのほうがより多くエッチングされることとなる。 The upper layer 2 is a region that grows while being exposed to etching by ion bombardment as described above. In the chamber of the HiPIMS apparatus, the distance between the target 50 and the base material 200 changes periodically as the table 51 rotates. For this reason, in the second step, there are periodically a timing at which the upper layer 2 grown on the base material 200 is easily etched (a timing when it is difficult to grow) and a timing at which it is difficult to etch (a timing when it is easy to grow). It becomes. For example, when the upper layer 2 made of TiAlN is grown, Ti and Al are easily etched, and Al is more easily etched. That is, at the timing at which etching is easy, both Ti and Al are etched, but Al is etched more.
 このため、上部層2のうち、エッチングされ易いタイミングに形成される領域ではAlの濃度が低くなり(Tiの濃度が高くなり)、エッチングされ難いタイミングに形成される領域ではAlの濃度が高くなる(Tiの濃度が低くなる)。したがって、結果的に、成長する結晶粒中におけるTiおよびAlの各濃度が周期的に変化する。 Therefore, in the upper layer 2, the Al concentration is low in a region formed at a timing that is easily etched (Ti concentration is high), and the Al concentration is high in a region that is formed at a timing that is difficult to etch. (Ti concentration decreases). Therefore, as a result, the concentrations of Ti and Al in the growing crystal grains change periodically.
 このようにして形成される本実施形態の上部層2は、組成の異なる2種のターゲットを用いて作製される従来の超多層構造と比して、層間の密着力が高い。このため、上部層2においては層間の剥離が起こり難く、もって従来の超多層構造よりも高い破壊靱性を有し得る。 The upper layer 2 of the present embodiment formed in this way has higher adhesion between the layers than a conventional super multi-layer structure manufactured using two types of targets having different compositions. For this reason, delamination does not occur easily in the upper layer 2, and therefore it can have higher fracture toughness than the conventional super multi-layer structure.
 以上詳述した本実施形態の二層構造層10において、上部層2における周期(1セット)の厚みは、好ましくは1~10nmである。この場合、上部層2の結晶粒内に蓄積される歪みの大きさが好適となるために、二層構造層10はさらに硬度に優れることとなる。周期の厚みはより好ましくは4~8nmである。 In the two-layer structure layer 10 of the present embodiment described in detail above, the thickness of the period (one set) in the upper layer 2 is preferably 1 to 10 nm. In this case, since the magnitude of strain accumulated in the crystal grains of the upper layer 2 is suitable, the two-layer structure layer 10 is further excellent in hardness. The thickness of the period is more preferably 4 to 8 nm.
 周期の厚みは次のようにして測定される。まず、二層構造層10の断面サンプルを得て、その断面をTEM付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置を用いて分析する。これにより、断面における第1元素の原子比を算出することができる。そして、任意の第1元素の濃度が最大となる位置と最小となる位置との距離を10箇所で測定し、この平均値を周期の厚みとする。 Cycle thickness is measured as follows. First, a cross-sectional sample of the two-layer structure layer 10 is obtained, and the cross-section is analyzed using a TEM-attached energy dispersive X-ray analysis (EDX) apparatus. Thereby, the atomic ratio of the first element in the cross section can be calculated. And the distance of the position where the density | concentration of arbitrary 1st elements becomes the maximum and the position where it becomes the minimum is measured in 10 places, and let this average value be the thickness of a period.
 また二層構造層10の組成を構成する2種以上の第1元素の原子割合の合計を1としたときに、上部層2の厚み方向において、少なくとも1種の第1元素の割合が0.2~0.7の範囲で周期的に変動し、かつ該第1元素における最大値と最小値との差が0.2~0.5であることが好ましい。この場合、優れた密着力を維持しつつ、上述の歪みを蓄積させることができ、もって硬度(耐摩耗性)に優れることとなる。なかでも、二層構造層10を構成する2種以上の第1元素にTiおよびAlが含まれる場合には、この効果が顕著となる。 Further, when the total atomic ratio of two or more first elements constituting the composition of the two-layer structure layer 10 is 1, the ratio of at least one first element in the thickness direction of the upper layer 2 is 0. It is preferable that the fluctuation periodically occurs in the range of 2 to 0.7, and the difference between the maximum value and the minimum value of the first element is 0.2 to 0.5. In this case, the above-described distortion can be accumulated while maintaining excellent adhesion, and thus the hardness (abrasion resistance) is excellent. Among these, when Ti and Al are contained in two or more kinds of first elements constituting the two-layer structure layer 10, this effect becomes remarkable.
 特に、二層構造層10の組成がTiAlNである場合には、上部層2の厚み方向においてその組成が、Ti1-xAlxN(0.4<x≦0.7)からTi1-yAlyN(0.2≦y≦0.4)に連続的に変化し、かつAlの最大値であるxとAlの最小値であるyとの差が0.2~0.4であることが好ましい。この場合、耐欠損性(破壊靱性)に顕著に優れることとなる。またこの場合に、下部層1の組成はTi1-zAlzN(0.45≦z≦0.7)であることが好ましい。耐摩耗性および耐酸化性に優れるためである。 In particular, when the composition of the two-layer structure layer 10 is TiAlN, the composition in the thickness direction of the upper layer 2 changes from Ti 1-x Al x N (0.4 <x ≦ 0.7) to Ti 1− y Al y N (0.2 ≦ y ≦ 0.4) is continuously changed, and the difference between the maximum value of Al and the minimum value of Al is 0.2 to 0.4. Preferably there is. In this case, the fracture resistance (fracture toughness) is remarkably excellent. In this case, the composition of the lower layer 1 is preferably Ti 1-z Al z N (0.45 ≦ z ≦ 0.7). It is because it is excellent in abrasion resistance and oxidation resistance.
 [第3の実施形態]
 <切削工具>
 図4は、第3の実施形態に係る切削工具の一例を示す概略的な平面図である。図5は、図4に示すX-X線に関する矢視断面図である。本実施形態では、2枚刃のドリルが例示される。
[Third Embodiment]
<Cutting tools>
FIG. 4 is a schematic plan view showing an example of a cutting tool according to the third embodiment. 5 is a cross-sectional view taken along the line XX shown in FIG. In the present embodiment, a two-blade drill is exemplified.
 図4を参照し、切削工具70は、ボディー71とシャンク72とから構成される構造を有する。ボディー71は、外周刃部73と溝部74とを有する。図5を参照し、外周刃部73は、マージン73aを有する。また切削工具70は、基材81と、基材81の表面を被覆する硬質被膜82とを備える。基材81の表面全体が硬質被膜82によって被覆されていてもよく、基材81の一部が被覆されていてもよい。 Referring to FIG. 4, the cutting tool 70 has a structure composed of a body 71 and a shank 72. The body 71 has an outer peripheral blade portion 73 and a groove portion 74. Referring to FIG. 5, outer peripheral blade portion 73 has a margin 73a. The cutting tool 70 includes a base material 81 and a hard coating 82 that covers the surface of the base material 81. The entire surface of the substrate 81 may be covered with the hard coating 82, or a part of the substrate 81 may be covered.
 本実施形態においては、回転工具の一つである切削工具70としてドリルを例示するが、ドリルの他、エンドミルを挙げることができる。すなわち回転工具とは、被削材に対する逃げ角のないマージン73a、および切り屑を外に流し出すための溝部74を有する基材81と、硬質被膜82とを備えるものである。好適な切削工具70はドリルである。 In the present embodiment, a drill is exemplified as the cutting tool 70 which is one of the rotary tools, but an end mill can be used in addition to the drill. That is, the rotary tool includes a base material 81 having a margin 73a with no clearance angle with respect to the work material, a groove portion 74 for flowing out chips, and a hard coating 82. A suitable cutting tool 70 is a drill.
 基材81は上述の基材200であり、硬質被膜82は第1の実施形態に係る硬質被膜100および第2の実施形態に係る硬質被膜100の少なくとも一方である。このため、切削工具70は、硬質被膜100の効果を発揮することができ、もって長い工具寿命を有することができる。切削工具70においては、少なくともマージン73aの表面に硬質被膜100が設けられていることが好ましい。硬質被膜100の効果を適切に発揮させるためである。特に、図5に示すように、ボディー71の表面全体に硬質被膜100が設けられていることが好ましい。 The base material 81 is the base material 200 described above, and the hard coating 82 is at least one of the hard coating 100 according to the first embodiment and the hard coating 100 according to the second embodiment. For this reason, the cutting tool 70 can exhibit the effect of the hard coating 100, and can thus have a long tool life. In the cutting tool 70, it is preferable that the hard coating 100 is provided at least on the surface of the margin 73a. This is because the effect of the hard coating 100 is appropriately exhibited. In particular, as shown in FIG. 5, it is preferable that a hard coating 100 is provided on the entire surface of the body 71.
 なお、切削工具70が硬質被膜100を有することは、次のようにして確認することができる。まず、切削工具70の断面(たとえば図5に示す断面)を作製し、この断面が表面に露出するように切削工具70を樹脂に埋め込む。次いで、露出する断面を必要に応じて研磨処理した後、SEMを用いて該断面を観察する。 In addition, it can confirm that the cutting tool 70 has the hard film 100 as follows. First, a cross section of the cutting tool 70 (for example, the cross section shown in FIG. 5) is prepared, and the cutting tool 70 is embedded in resin so that the cross section is exposed on the surface. Next, after polishing the exposed cross section as necessary, the cross section is observed using an SEM.
 本実施形態の切削工具70において、溝部74を被覆する硬質被膜100の厚みTfと、マージン73aを被覆する硬質被膜100の厚みTmとの比Tf/Tmが、0.8~1.5であることが好ましい。その理由は以下のとおりである。 In the cutting tool 70 of the present embodiment, the ratio Tf / Tm between the thickness Tf of the hard coating 100 covering the groove 74 and the thickness Tm of the hard coating 100 covering the margin 73a is 0.8 to 1.5. It is preferable. The reason is as follows.
 従来、AIP法等により基材81の表面に硬質被膜を設けた場合、ドロップレッドの存在により、その表面の平滑性が十分ではなかった。このため、切削抵抗を低減させるために、形成された硬質被膜の表面に対して研磨処理を実施する例もある。しかしこれらの後処理は、処理の性質上、溝部74上の硬質被膜100と比してマージン73a上の硬質被膜100をより多く除去してしまうものである。 Conventionally, when a hard coating is provided on the surface of the substrate 81 by the AIP method or the like, the smoothness of the surface has not been sufficient due to the presence of drop red. For this reason, in order to reduce cutting resistance, there also exists an example which grind | polishes with respect to the surface of the formed hard film. However, these post-treatments remove more of the hard coating 100 on the margin 73a than the hard coating 100 on the groove 74 due to the nature of the treatment.
 このため、後処理を経た後の切削工具においては、後処理前の切削工具と比して、溝部74を被覆する硬質被膜100の厚みTfとマージン73aを被覆する硬質被膜100の厚みTmとの比Tf/Tmが大きくなる傾向があった。マージン73a上の硬質被膜100は、切削性能に大きく関係するものであり、特に摩耗、欠損等の損傷が起こり易い部分である。このため、この部分の硬質被膜100の厚みTmが厚みTfと比してあまりに小さいと、工具寿命の低下や工具性能の低下が引き起こされる。 For this reason, in the cutting tool after the post-treatment, the thickness Tf of the hard coating 100 that covers the groove 74 and the thickness Tm of the hard coating 100 that covers the margin 73a are compared with the cutting tool before the post-processing. There was a tendency for the ratio Tf / Tm to increase. The hard coating 100 on the margin 73a is greatly related to the cutting performance, and is particularly a portion where damage such as wear and chipping is likely to occur. For this reason, if the thickness Tm of the hard coating 100 in this portion is too small compared to the thickness Tf, the tool life and the tool performance are lowered.
 これに対し二層構造層10は、上述のように平滑な表面を有し得るため、硬質被膜100もまた平滑な最表面を有し得る。したがって、このような硬質被膜100を基材81の表面に設けた場合には、上記のような後処理を実施する必要がなく、故に最終製品として得られる切削工具における比Tf/Tmを比較的小さくすることができる。 On the other hand, since the two-layer structure layer 10 can have a smooth surface as described above, the hard coating 100 can also have a smooth outermost surface. Therefore, when such a hard coating 100 is provided on the surface of the base material 81, it is not necessary to perform the post-treatment as described above, and therefore the ratio Tf / Tm in the cutting tool obtained as the final product is relatively high. Can be small.
 すなわち、本実施形態に係る硬質被膜100によれば、比Tf/Tmが0.8~1.5と比較的小さくありながら、その表面の平滑性が十分に高いという、AIP法では製造が困難であった態様を有することができる。このような態様を有する硬質被膜100は、比Tf/Tmが比較的小さいことに起因する工具寿命の長期化と、表面が平滑なことに起因する切削抵抗の低減との両特性を相乗的に発揮することができる。 That is, the hard coating 100 according to the present embodiment is difficult to manufacture by the AIP method in which the ratio Tf / Tm is relatively small, 0.8 to 1.5, and the surface smoothness is sufficiently high. It can have the mode which was. The hard coating 100 having such an aspect synergistically combines the characteristics of a long tool life due to a relatively small ratio Tf / Tm and a reduction in cutting resistance due to a smooth surface. It can be demonstrated.
 TfおよびTmは、次のようにして決定される。図6において、円Sは、ボディー71の断面を内部に含み、かつマージン73aの先端73aaを繋ぐことにより描かれる仮想の円であり、その直径をDとする。円S1は、マージン73aの先端73aaと円Sとの接点を中心点とし、かつその半径D1が1/10Dとなる仮想の円である。線L1は、先端73aaと円Sの中心点Pとを繋ぐ仮想の線である。線L2は、ランド幅の裏先端73bと円Sの中心点Pとを繋ぐ仮想の線である。線L3は、線L1と線L2との成す角2αを等分する仮想の線である。円S2は、線L3とボディー71の外周との接点を中心点とし、かつその半径D2が1/10Dとなる仮想の円である。 Tf and Tm are determined as follows. In FIG. 6, a circle S is a virtual circle that includes a cross section of the body 71 and is drawn by connecting the leading ends 73aa of the margin 73a, and the diameter thereof is D. The circle S1 is a virtual circle whose center point is the contact point between the tip 73aa of the margin 73a and the circle S and whose radius D1 is 1 / 10D. The line L1 is a virtual line connecting the tip 73aa and the center point P of the circle S. The line L2 is a virtual line that connects the back end 73b of the land width and the center point P of the circle S. The line L3 is a virtual line that equally divides the angle 2α formed by the line L1 and the line L2. The circle S2 is a virtual circle whose center point is the contact point between the line L3 and the outer periphery of the body 71 and whose radius D2 is 1 / 10D.
 マージン73aを被覆する硬質被膜100の厚みTmとは、円S1内に位置するマージン73a上の硬質被膜100の厚みであり、少なくとも任意の5点における各測定値の平均値である。溝部74を被覆する硬質被膜100の厚みTfとは、円S2内に位置する溝部74上の硬質被膜100の厚みであり、少なくとも任意の5点における各測定値の平均値である。 The thickness Tm of the hard coating 100 covering the margin 73a is the thickness of the hard coating 100 on the margin 73a located in the circle S1, and is an average value of measured values at at least five arbitrary points. The thickness Tf of the hard coating 100 covering the groove 74 is the thickness of the hard coating 100 on the groove 74 located in the circle S2, and is an average value of measured values at at least five arbitrary points.
 [第4の実施形態]
 <切削工具>
 図7は、第4の実施形態に係る切削工具の一例を示す概略的な斜視図である。図8は、図7の斜線部分を示す図であり、Y領域を示す断面斜視図である。本実施形態では、スローアウェイチップが例示される。
[Fourth Embodiment]
<Cutting tools>
FIG. 7 is a schematic perspective view showing an example of a cutting tool according to the fourth embodiment. FIG. 8 is a diagram showing a hatched portion in FIG. 7, and is a cross-sectional perspective view showing a Y region. In this embodiment, a throw-away tip is exemplified.
 図7を参照し、切削工具90は、上面、下面および四つの側面を含む表面を有しており、全体として、上下方向にやや薄い四角柱形状である。また、切削工具90には、上下面を貫通する貫通孔が形成されており、切削工具90の4つの側面の境界部分においては、隣り合う側面同士が円弧面で繋がれている。 Referring to FIG. 7, the cutting tool 90 has a surface including an upper surface, a lower surface, and four side surfaces, and has a rectangular column shape that is slightly thin in the vertical direction as a whole. Further, the cutting tool 90 is formed with a through-hole penetrating the upper and lower surfaces, and in the boundary portion of the four side surfaces of the cutting tool 90, adjacent side surfaces are connected by an arc surface.
 本実施形態の切削工具90では、上面および下面がすくい面91を成し、4つの側面(およびこれらを繋ぐ円弧面)が逃げ面92を成す。また、すくい面91と逃げ面92との境界部分が切れ刃93として機能する。換言すれば、本実施形態の切削工具90は、表面(上面、下面、四つの側面、これらの側面を繋ぐ円弧面、および貫通孔の内周面)を有し、表面はすくい面91および逃げ面92を含み、すくい面91および逃げ面92の一部(境界部分)が切れ刃93を成す。 In the cutting tool 90 of the present embodiment, the upper surface and the lower surface form a rake face 91, and the four side faces (and the arc surface connecting them) form a flank face 92. Further, the boundary portion between the rake face 91 and the flank face 92 functions as the cutting edge 93. In other words, the cutting tool 90 of the present embodiment has a surface (upper surface, lower surface, four side surfaces, an arc surface connecting these side surfaces, and an inner peripheral surface of the through hole), and the surface is a rake surface 91 and a clearance. The rake face 91 and a part (boundary portion) of the flank face 92 including the face 92 form a cutting edge 93.
 図8を参照し、切削工具90は、基材94と、基材94の表面を被覆する硬質被膜95とを備える。基材94の表面全体が硬質被膜95によって被覆されていてもよく、基材94の一部が被覆されていてもよい。 Referring to FIG. 8, the cutting tool 90 includes a base 94 and a hard coating 95 that covers the surface of the base 94. The entire surface of the substrate 94 may be covered with the hard coating 95, or a part of the substrate 94 may be covered.
 基材94は上述の基材200であり、硬質被膜95は第1の実施形態に係る硬質被膜100および第2の実施形態に係る硬質被膜100の少なくとも一方である。このため、切削工具90は、硬質被膜100の効果を発揮することができ、もって長い工具寿命を有することができる。切削工具90においては、少なくとも被削材と接触する部分および切屑と接触する部分に硬質被膜100が設けられていることが好ましい。 The substrate 94 is the above-described substrate 200, and the hard coating 95 is at least one of the hard coating 100 according to the first embodiment and the hard coating 100 according to the second embodiment. For this reason, the cutting tool 90 can exhibit the effect of the hard coating 100, and can thus have a long tool life. In the cutting tool 90, it is preferable that the hard coating 100 is provided at least in a portion that contacts the work material and a portion that contacts the chips.
 ここで切れ刃93は、上記のように「すくい面91および逃げ面92の境界部分」であり、これは「すくい面91と逃げ面92との境界を成す稜線と、すくい面91および逃げ面92のうち稜線近傍となる部分と、を併せた部分」を意味する。このように規定される切れ刃93の領域は、切削工具90の切れ刃93の形状によって決定される。各形状の切れ刃93の領域を図8~図10に示す。 Here, the cutting edge 93 is the “boundary portion of the rake face 91 and the flank 92” as described above, which is “the ridge line that forms the boundary between the rake face 91 and the flank 92, the rake face 91 and the flank face”. The part which combined the part which becomes a ridgeline part in 92 "is meant. The region of the cutting edge 93 defined in this way is determined by the shape of the cutting edge 93 of the cutting tool 90. The area of the cutting edge 93 of each shape is shown in FIGS.
 図8に、シャープエッジ形状を有する切削工具90を示す。このようなシャープエッジ形状の切削工具90において、「すくい面91と逃げ面92との境界を成す稜線」は、図中の稜線Eに相当する。また「すくい面91および逃げ面92のうち稜線E近傍となる部分」は、稜線Eからの距離(直線距離)Dが、100μm以下の領域(図8において、点ハッチングが施される領域)と定義される。したがって、たとえばシャープエッジ形状の切削工具90における逃げ面92側に位置する切れ刃93とは、図8において逃げ面92側に位置し、かつ点ハッチングが施される領域に対応する部分となる。 FIG. 8 shows a cutting tool 90 having a sharp edge shape. In such a sharp edge-shaped cutting tool 90, “the ridge line forming the boundary between the rake face 91 and the flank 92” corresponds to the ridge line E in the drawing. Further, “the portion of the rake face 91 and the flank 92 near the ridge line E” is an area where the distance (straight line distance) D from the ridge line E is 100 μm or less (in FIG. 8, a region where point hatching is performed). Defined. Therefore, for example, the cutting edge 93 located on the flank 92 side in the cutting tool 90 having a sharp edge shape is a portion corresponding to a region that is located on the flank 92 side in FIG.
 図9に、ホーニング形状を有する切削工具90を示す。図9においては、切削工具90の各部の他、すくい面91を含む仮想平面R、逃げ面92を含む仮想平面F、仮想平面Rと仮想平面Fとが交差してなる仮想稜線EE、すくい面91と仮想平面Rとの乖離の境界となる仮想境界線ER、および逃げ面92と仮想平面Fとの乖離の境界となる仮想境界線EFが示されている。なお、ホーニング形状の切削工具90において、上記の「稜線E」は、「仮想稜線EE」と読み替える。 FIG. 9 shows a cutting tool 90 having a honing shape. In FIG. 9, in addition to each part of the cutting tool 90, a virtual plane R including a rake face 91, a virtual plane F including a flank 92, a virtual ridge line EE formed by intersecting the virtual plane R and the virtual plane F, and a rake face A virtual boundary line ER serving as a boundary of the divergence between 91 and the virtual plane R and a virtual boundary line EF serving as a boundary between the flank 92 and the virtual plane F are illustrated. In the honing-shaped cutting tool 90, the “ridge line E” is read as “virtual ridge line EE”.
 このようなホーニング形状の切削工具90において、「すくい面91および逃げ面92のうち仮想稜線EE近傍となる部分」は、仮想境界線ERおよび仮想境界線EFとに挟まれる領域(図9において点ハッチングが施される領域)と定義される。したがって、図9を参照し、ホーニング形状の切削工具90における切れ刃93とは、逃げ面92側に位置し、かつ点ハッチングが施される領域と、すくい面91側に位置し、かつ点ハッチングが施される領域とを合わせた領域となる。 In such a honing-shaped cutting tool 90, “the portion of the rake face 91 and the flank 92 near the virtual ridge line EE” is a region sandwiched between the virtual boundary line ER and the virtual boundary line EF (in FIG. The area to be hatched). Therefore, referring to FIG. 9, the cutting edge 93 in the honing-shaped cutting tool 90 is located on the flank 92 side and is subjected to the point hatching, the rake face 91 side, and the point hatching. This is a region that is combined with the region to which is applied.
 図10に、ネガランド形状の切削工具90を示す。図10においても、すくい面91を含む仮想平面R、逃げ面92を含む仮想平面F、仮想平面Rと仮想平面Fとが交差してなる仮想稜線EE、すくい面91と仮想平面Rとの乖離の境界となる仮想境界線ER、および逃げ面92と仮想平面Fとの乖離の境界となる仮想境界線EFが示されている。なお、ネガランド形状の切削工具90においても、上記の「稜線E」は、「仮想稜線EE」と読み替える。 FIG. 10 shows a negative land-shaped cutting tool 90. Also in FIG. 10, the virtual plane R including the rake face 91, the virtual plane F including the flank 92, the virtual ridge line EE formed by the intersection of the virtual plane R and the virtual plane F, and the divergence between the rake face 91 and the virtual plane R. A virtual boundary line ER serving as a boundary of the virtual boundary line EF and a virtual boundary line EF serving as a boundary between the flank 92 and the virtual plane F are illustrated. In the negative land-shaped cutting tool 90, the “ridge line E” is read as “virtual edge line EE”.
 このようなネガランド形状の切削工具90において、「すくい面91および逃げ面92のうち仮想稜線EE近傍となる部分」は、仮想境界線ERおよび仮想境界線EFとに挟まれる領域(図10において点ハッチングが施される領域)と定義される。したがって、図10を参照し、ネガランド形状の切削工具90における切れ刃93とは、逃げ面92側に位置し、かつ点ハッチングが施される領域と、すくい面91側に位置し、かつ点ハッチングが施される領域とを合わせた領域となる。 In such a negative-land-shaped cutting tool 90, “the portion of the rake face 91 and the flank 92 that is in the vicinity of the virtual ridge line EE” is an area between the virtual boundary line ER and the virtual boundary line EF (in FIG. The area to be hatched). Accordingly, referring to FIG. 10, the cutting edge 93 in the negative land-shaped cutting tool 90 is located on the flank 92 side, is located on the rake face 91 side, and is located on the rake face 91 side. This is a region that is combined with the region to which is applied.
 以下実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 [検討1]
 <実施例1>
 基材として、材質がISO K30グレードの超硬合金であるドリル(直径1.0mm、2枚刃、L/D=15)を準備した。次にこの基材をHiPIMS装置のチャンバ内のテーブル上に設置した。チャンバ内には、チタンとアルミニウムとの合金からなる複数のターゲットを配置した。
[Study 1]
<Example 1>
As a base material, a drill (diameter: 1.0 mm, 2-flute, L / D = 15) which is a cemented carbide of ISO K30 grade was prepared. Next, this base material was placed on a table in the chamber of the HiPIMS apparatus. A plurality of targets made of an alloy of titanium and aluminum were placed in the chamber.
 その後、チャンバ内の圧力が0.005Pa以下となるように真空引きしてアルゴンガスを導入し、チャンバ内の圧力を0.7~0.9Paに維持しながら、基材に150(-V)~600(-V)の電圧をかけてエッチング用フィラメントに電流を流すことによって、アルゴン中でグロー放電を発生させた。これにより、アルゴンイオンによる基材表面のクリーニング処理を15~120分間行なった。クリーニング処理後、チャンバ内からアルゴンガスを排気させた。 After that, vacuuming is performed so that the pressure in the chamber becomes 0.005 Pa or less, and argon gas is introduced, and 150 (−V) is applied to the substrate while maintaining the pressure in the chamber at 0.7 to 0.9 Pa. A glow discharge was generated in argon by applying a voltage of ˜600 (−V) and passing a current through the etching filament. As a result, the substrate surface was cleaned with argon ions for 15 to 120 minutes. After the cleaning process, the argon gas was exhausted from the chamber.
 そして、アルゴンガス(0.43Pa)および窒素ガス(0.14~0.19Pa、遷移モードで成膜できるように調整)を導入しながら、表1に示す成膜条件下で第1工程および第2工程を順に実施して、基材上への硬質被膜の成膜を実施した。なお、表1の成膜条件に関する各欄において、スラッシュで区切る左側の記載が第1工程の条件であり、右側の記載が第2工程の条件である。各工程におけるチャンバ内圧力は0.57~0.62Paとした。 Then, while introducing argon gas (0.43 Pa) and nitrogen gas (0.14 to 0.19 Pa, adjusted so that the film can be formed in the transition mode), the first step and the first step were performed under the film formation conditions shown in Table 1. Two steps were sequentially performed to form a hard film on the substrate. In each column relating to the film formation conditions in Table 1, the description on the left side separated by a slash is the condition for the first step, and the description on the right side is the condition for the second step. The pressure in the chamber in each process was set to 0.57 to 0.62 Pa.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例2~21、比較例1および2>
 成膜条件を表1に示すように変更し、また目的とする各被膜の組成に適したターゲットおよびガスを用いた以外は、実施例1と同様にして基材上への硬質被膜の成膜を実施した。
<Examples 2 to 21, Comparative Examples 1 and 2>
The film formation conditions were changed as shown in Table 1, and a hard film was formed on the substrate in the same manner as in Example 1 except that the target and gas suitable for the composition of each target film were used. Carried out.
 <比較例3~5>
 比較例3~5においては、HiPIMS装置に代えてアーク放電装置を用いて、上記基材上に成膜処理を実施した。比較例3~5において、アーク電流は150Aとし、窒素圧力は5.3Paとした。また、比較例4および比較例5においては従来公知の方法により後処理を実施した。
<Comparative Examples 3 to 5>
In Comparative Examples 3 to 5, a film forming process was performed on the substrate using an arc discharge device instead of the HiPIMS device. In Comparative Examples 3 to 5, the arc current was 150 A, and the nitrogen pressure was 5.3 Pa. In Comparative Example 4 and Comparative Example 5, post-treatment was performed by a conventionally known method.
 <硬質被膜の組成および構造の確認>
 実施例1~21および比較例1~5の表面被覆超硬ドリルを、ダイヤモンド回転刃を備えた切断機を用いて切断し、表面被覆超硬ドリルのマージンに位置する硬質被膜の断面を含む測定試料を準備した。そして、TEMによる断面観察により第1~第3界面を特定した上で上部層および下部層の各組成、および各層の厚さ(TtおよびTb)を確認した。また上部層の組成が厚み方向に周期的に変化していた場合には、その周期の10セットの厚みを測定し、その平均値を算出した。
<Confirmation of composition and structure of hard coating>
The surface-coated carbide drills of Examples 1 to 21 and Comparative Examples 1 to 5 were cut using a cutting machine equipped with a diamond rotary blade, and the measurements were made including the cross section of the hard coating located at the margin of the surface-coated carbide drill. Samples were prepared. Then, the first to third interfaces were identified by cross-sectional observation with TEM, and the respective compositions of the upper layer and the lower layer and the thicknesses (Tt and Tb) of each layer were confirmed. When the composition of the upper layer was periodically changed in the thickness direction, the thickness of 10 sets of the cycle was measured, and the average value was calculated.
 また、各実施例および各比較例に関し、上述の方法に従って特定された平均粒径G1~G4を算出した。さらに、硬質被膜の表面に関し、RaおよびRzを上述の方法に従って算出した。また、硬質被膜の表面であって100μm×100μmの範囲に関し、1μm以上の高低差を有する凹凸の数、0.5μm以上の高低差を有する凹凸の数、および0.3μm以上の高低差を有する凹凸の数を、上述の方法に従って算出した。各結果を表1および表2に示す。 For each example and each comparative example, the average particle diameters G 1 to G 4 specified according to the above-described method were calculated. Furthermore, regarding the surface of the hard coating, Ra and Rz were calculated according to the method described above. Further, the surface of the hard coating has a height difference of 1 μm or more, a number of unevennesses of 0.5 μm or more, and a height difference of 0.3 μm or more in the range of 100 μm × 100 μm. The number of irregularities was calculated according to the method described above. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2を参照し、実施例1~21においては、平均粒径が第1界面から第2界面に向けて連続的に増大するとともに、第2界面から第3界面に向けて連続的に減少しており、G2>G3>G4>G1の関係式を満たす二層構造層が形成されていた。一方、比較例1~5においては、このような平均粒径の変化を有する二層構造層は形成されなかった。 With reference to Table 1 and Table 2, in Examples 1 to 21, the average particle diameter continuously increases from the first interface toward the second interface, and continuously from the second interface toward the third interface. The two-layer structure layer satisfying the relational expression of G 2 > G 3 > G 4 > G 1 was formed. On the other hand, in Comparative Examples 1 to 5, a bilayer structure layer having such a change in average particle diameter was not formed.
 なお、表1において「上部層」の欄に2つの組成が記載されているものは、上部層において組成の周期的な変動が観察されたものである。たとえば実施例2の上部層においては、Ti0.55Al0.45NからTi0.75Al0.25Nまで連続的にTiの割合が大きくなり、引き続きTi0.55Al0.45Nにまで連続的にTiの割合が小さくなる厚み8nmの周期(1セット分)が観察された。 In Table 1, those in which two compositions are described in the column of “upper layer” are those in which periodic fluctuations in the composition are observed in the upper layer. For example, in the upper layer of Example 2, the thickness of Ti continuously increases from Ti 0.55 Al 0.45 N to Ti 0.75 Al 0.25 N, and then the thickness of Ti decreases continuously to Ti 0.55 Al 0.45 N. An 8 nm period (one set) was observed.
 <比Tf/Tmの算出>
 実施例1~6および比較例1~5の表面被覆超硬ドリルにおいて、マージン上の硬質被膜の厚みTmと、溝部上の硬質被膜との厚みTfを測定し、これらの比Tf/Tmを算出した。その結果を表3に示す。
<Calculation of ratio Tf / Tm>
In the surface-coated carbide drills of Examples 1 to 6 and Comparative Examples 1 to 5, the thickness Tm of the hard coating on the margin and the thickness Tf of the hard coating on the groove are measured, and the ratio Tf / Tm is calculated. did. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <切削試験>
 実施例1~21および比較例1~5の表面被覆超硬ドリルを用いて、以下の条件で穴あけ試験を行い、表面被覆超硬ドリルが欠損するまで切削加工を継続させた。欠損するまでに穴あけ加工が実施された穴数を表3に示す。
<Cutting test>
Using the surface-coated carbide drills of Examples 1 to 21 and Comparative Examples 1 to 5, a drilling test was performed under the following conditions, and cutting was continued until the surface-coated carbide drill was broken. Table 3 shows the number of holes that have been drilled until they are missing.
 (切削条件)
 被削材:SUS420
 切削速度:40m/min
 送り量:0.03mm/rev.
 穴深さ:15mm
 切削油:有り(内部給油)。
(Cutting conditions)
Work material: SUS420
Cutting speed: 40 m / min
Feed amount: 0.03 mm / rev.
Hole depth: 15mm
Cutting oil: Yes (internal lubrication).
 表3を参照し、実施例1~21の表面被覆超硬ドリルによれば、比較例1~5の表面被覆超硬ドリルよりも多くの穴をあけることができた。したがって、実施例1~21の表面被覆超硬ドリルにおいては、工具寿命の長期化が可能となった。 Referring to Table 3, according to the surface-coated carbide drills of Examples 1 to 21, it was possible to drill more holes than the surface-coated carbide drills of Comparative Examples 1 to 5. Therefore, in the surface-coated carbide drills of Examples 1 to 21, the tool life can be extended.
 [検討2]
 <実施例22および比較例6>
 基材として、材質が住友電気工業製ISO P20グレードサーメットであり、形状が「ISO:TNGG160404」であるスローアウェイチップを準備して、成膜条件を表4に示すように変更した以外は、実施例1と同様にして基材上への硬質被膜の成膜を実施した。
[Study 2]
<Example 22 and Comparative Example 6>
Implementation was performed except that a throwaway tip having a material of ISO P20 grade cermet made by Sumitomo Electric Industries and having a shape of “ISO: TNGG160404” was prepared and the film forming conditions were changed as shown in Table 4. In the same manner as in Example 1, a hard film was formed on the substrate.
 <実施例23および比較例7>
 基材として、材質が超硬合金上にISO H20グレードの立方晶窒化硼素焼結体を配したものであり、形状が住友電気工業製の「4NU-DNGA150408」であるスローアウェイチップを準備して、成膜条件を表4に示すように変更した以外は、実施例1と同様にして基材上への硬質被膜の成膜を実施した。
<Example 23 and Comparative Example 7>
As a base material, a throwaway tip having a material made of cemented carbide and a sintered body of ISO H20 grade cubic boron nitride and having a shape of “4NU-DNGA150408” manufactured by Sumitomo Electric Industries, Ltd. was prepared. A hard film was formed on the substrate in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <硬質被膜の組成および構造の確認>
 実施例1と同様にして、硬質被膜の組成および構造を確認した。各結果を表4および表5に示す。
<Confirmation of composition and structure of hard coating>
In the same manner as in Example 1, the composition and structure of the hard coating were confirmed. Each result is shown in Table 4 and Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <切削試験>
 実施例22および比較例6のスローアウェイチップを用いて、以下の条件で10分間サーメット旋削試験を行い、旋削後の被削材の面粗さRaをJIS B 0601(2001)に準じて測定した。また、被削材表面の光沢を目視により確認した。その結果を表6に示す。
<Cutting test>
Using the throw-away tip of Example 22 and Comparative Example 6, a cermet turning test was performed for 10 minutes under the following conditions, and the surface roughness Ra of the work material after turning was measured according to JIS B 0601 (2001). . Further, the gloss of the work material surface was visually confirmed. The results are shown in Table 6.
 (サーメット旋削条件)
 被削材:SCM415
 切削速度:230m/min.
 送り量:0.2mm/rev.
 切り込み量:1.0mm
 切削油:有り。
(Cermet turning conditions)
Work material: SCM415
Cutting speed: 230 m / min.
Feed amount: 0.2 mm / rev.
Cutting depth: 1.0mm
Cutting oil: Yes.
 また実施例23および比較例7の切削工具を用いて、以下の条件で切削距離が5kmとなるようにcBN旋削試験を行い、旋削後の被削材の面粗さRzをJIS B 0601(2001)に準じて測定した。また切削工具の逃げ面摩耗量Vbを測定した。その結果を表6に示す。 Further, using the cutting tools of Example 23 and Comparative Example 7, a cBN turning test was performed so that the cutting distance was 5 km under the following conditions, and the surface roughness Rz of the work material after turning was set to JIS B 0601 (2001). ). Further, the flank wear amount Vb of the cutting tool was measured. The results are shown in Table 6.
 (cBN旋削条件)
 被削材:SCM415(HRC=60)
 切削速度:200m/min.
 送り量:0.1mm/rev.
 切り込み量:0.1mm
 切削油:無し。
(CBN turning conditions)
Work material: SCM415 (HRC = 60)
Cutting speed: 200 m / min.
Feed amount: 0.1 mm / rev.
Cutting depth: 0.1 mm
Cutting oil: None.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6を参照し、実施例22は比較例6と比して、切削後の被削材の表面形状が平滑であり、また面外観にも優れていた。また実施例23は比較例7と比して、耐摩耗性が高く、また最大高さRzも低かった。 Referring to Table 6, in comparison with Comparative Example 6, Example 22 had a smooth surface shape of the work material after cutting and was excellent in surface appearance. In addition, Example 23 had higher wear resistance and lower maximum height Rz than Comparative Example 7.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown not by the above-described embodiments and examples but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 下部層、2 上部層、3,4 結晶粒、5 粒径、10 二層構造層、20 下地層、30 表面層、50 ターゲット、51 テーブル、52 回転軸、53 基材ホルダー、60 プラズマ、70,90 切削工具、71 ボディー、72 シャンク、73 外周刃部、73a マージン、73aa 先端、73b ランド幅の裏先端、74 溝部、81,94,200 基材、82,95,100 硬質被膜、91 すくい面、92 逃げ面、93 切れ刃。 1 lower layer, 2 upper layer, 3, 4 crystal grain, 5 grain size, 10 two-layer structure layer, 20 underlayer, 30 surface layer, 50 target, 51 table, 52 rotating shaft, 53 substrate holder, 60 plasma, 70, 90 cutting tool, 71 body, 72 shank, 73 outer peripheral edge, 73a margin, 73aa tip, 73b land width back tip, 74 groove, 81, 94, 200 substrate, 82, 95, 100 hard coating, 91 Rake face, 92 flank face, 93 cutting edge.

Claims (10)

  1.  基材上に形成される硬質被膜であって、
     前記硬質被膜は、前記基材側から順に下部層と上部層とが積層されてなる二層構造層を含み、
     前記二層構造層のうち前記基材側に位置する下端面を構成する前記下部層の下面を第1界面とし、前記下部層の上面と前記上部層の下面との界面を第2界面とし、前記二層構造層のうち前記下端面の反対の上端面を構成する前記上部層の上面を第3界面とし、かつ
     前記二層構造層においてその厚み方向に平行な断面を観察した場合に、
     前記第1界面から前記第2界面側に向けて100nm離れた位置における結晶粒の平均粒径G1、前記第2界面から前記第1界面側に向けて100nm離れた位置における結晶粒の平均粒径G2、前記第2界面から前記第3界面側に向けて100nm離れた位置における結晶粒の平均粒径G3、および前記第3界面における結晶粒の平均粒径G4は、G2>G3>G4>G1の関係式を満たす、硬質被膜。
    A hard coating formed on a substrate,
    The hard coating includes a two-layer structure layer in which a lower layer and an upper layer are laminated in order from the base material side,
    Of the two-layer structure layer, the lower surface of the lower layer constituting the lower end surface located on the substrate side is a first interface, and the interface between the upper surface of the lower layer and the lower surface of the upper layer is a second interface, When the upper surface of the upper layer constituting the upper end surface opposite to the lower end surface of the two-layer structure layer is a third interface, and the cross-section parallel to the thickness direction is observed in the two-layer structure layer,
    Average grain size G 1 of crystal grains at a position 100 nm away from the first interface toward the second interface side, Average grain size of crystal grains at a position 100 nm away from the second interface toward the first interface side The diameter G 2 , the average grain size G 3 of the crystal grains at a position 100 nm away from the second interface toward the third interface side, and the average grain size G 4 of the crystal grains at the third interface are G 2 > A hard coating satisfying the relational expression of G 3 > G 4 > G 1 .
  2.  前記下部層は、前記第1界面側から前記第2界面に向けて平均粒径が増大する結晶粒を含み、前記上部層は、前記第2界面から前記第3界面側に向けて平均粒径が減少する結晶粒を含む、請求項1に記載の硬質被膜。 The lower layer includes crystal grains whose average grain size increases from the first interface side toward the second interface, and the upper layer has an average grain size from the second interface toward the third interface side. The hard coating according to claim 1, wherein the hard coating contains crystal grains that decrease in size.
  3.  前記平均粒径G1は50nm以下であり、
     前記平均粒径G2は200nm以上600nm以下であり、
     前記平均粒径G3は75nm以上300nm以下であり、
     前記平均粒径G4は150nm以下である、請求項1または請求項2に記載の硬質被膜。
    The average particle size G 1 is 50 nm or less,
    The average particle size G 2 is 200 nm or more and 600 nm or less,
    The average particle size G 3 are is at 300nm inclusive 75 nm,
    The hard coating film according to claim 1, wherein the average particle size G 4 is 150 nm or less.
  4.  前記上部層の厚みTtと前記下部層の厚みTbとの比Tt/Tbは、0.2以上0.75以下である、請求項1から請求項3のいずれか1項に記載の硬質被膜。 The hard coating film according to any one of claims 1 to 3, wherein a ratio Tt / Tb between a thickness Tt of the upper layer and a thickness Tb of the lower layer is 0.2 or more and 0.75 or less.
  5.  前記二層構造層は、周期表の4族元素、5族元素、6族元素、AlおよびSiからなる群より選ばれる1種以上の第1元素と、B、C、NおよびOからなる群より選ばれる1種以上の第2元素とからなる組成を有する、請求項1から請求項4のいずれか1項に記載の硬質被膜。 The two-layer structure layer includes one or more first elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements, Al and Si in the periodic table, and a group consisting of B, C, N, and O The hard film according to any one of claims 1 to 4, having a composition comprising one or more second elements selected from the above.
  6.  前記二層構造層はその組成中に2種以上の第1元素を有し、前記上部層の厚み方向において、2種以上の前記第1元素の濃度がそれぞれ周期的に変化する、請求項5に記載の硬質被膜。 The two-layer structure layer has two or more kinds of first elements in its composition, and the concentration of the two or more kinds of first elements changes periodically in the thickness direction of the upper layer. Hard coating as described in 4.
  7.  前記上部層の上面は、0.07μm以下の算術平均粗さRaと、0.50μm以下の最大高さRzとを有する、請求項1から請求項6のいずれか1項に記載の硬質被膜。 The hard film according to any one of claims 1 to 6, wherein an upper surface of the upper layer has an arithmetic average roughness Ra of 0.07 µm or less and a maximum height Rz of 0.50 µm or less.
  8.  前記二層構造層の前記上部層の上面の100μm×100μmの範囲において、1μm以上の高低差を有する凹凸の数が10個未満である、請求項1から請求項7のいずれか1項に記載の硬質被膜。 The number of unevenness | corrugations which have a height difference of 1 micrometer or more is less than ten in the range of 100 micrometers x 100 micrometers of the upper surface of the upper layer of the two-layer structure layer. Hard coating.
  9.  基材と、前記基材の表面を被覆する、請求項1から請求項8のいずれか1項に記載の硬質被膜とを備える、切削工具。 A cutting tool comprising: a base material; and the hard coating film according to any one of claims 1 to 8, which covers a surface of the base material.
  10.  前記切削工具は溝部と、マージンとを有し、
     前記溝部を被覆する前記硬質被膜の厚みTfと前記マージンを被覆する前記硬質被膜の厚みTmの比Tf/Tmが、0.8以上1.5以下である、請求項9に記載の切削工具。
    The cutting tool has a groove and a margin,
    10. The cutting tool according to claim 9, wherein a ratio Tf / Tm of a thickness Tf of the hard coating covering the groove and a thickness Tm of the hard coating covering the margin is 0.8 or more and 1.5 or less.
PCT/JP2016/083385 2016-04-14 2016-11-10 Hard coating and cutting tool WO2017179233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511878A JP6666431B2 (en) 2016-04-14 2016-11-10 Hard coatings and cutting tools

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081127 2016-04-14
JP2016081127 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179233A1 true WO2017179233A1 (en) 2017-10-19

Family

ID=60041619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083385 WO2017179233A1 (en) 2016-04-14 2016-11-10 Hard coating and cutting tool

Country Status (2)

Country Link
JP (1) JP6666431B2 (en)
WO (1) WO2017179233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365472B2 (en) * 2016-04-08 2022-06-21 Seco Tools Ab Coated cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140163B2 (en) * 2020-08-07 2022-09-21 株式会社タンガロイ coated cutting tools

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109206A (en) * 1996-10-03 1998-04-28 Hitachi Tool Eng Ltd Surface coated cutting tool
JP2005022071A (en) * 2003-07-04 2005-01-27 Tungaloy Corp Hard film coated drill
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool
JP2009079266A (en) * 2007-09-26 2009-04-16 Hitachi Tool Engineering Ltd Coating film
WO2010050374A1 (en) * 2008-10-28 2010-05-06 京セラ株式会社 Surface covered tool
JP2011067883A (en) * 2009-09-24 2011-04-07 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2012092433A (en) * 2010-09-27 2012-05-17 Hitachi Tool Engineering Ltd Durable coating tool and method of manufacturing the same
JP2013527807A (en) * 2010-04-23 2013-07-04 スルザー メタプラス ゲーエムベーハー PVD coating for metal machining
JP2013223894A (en) * 2012-04-20 2013-10-31 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP2015160259A (en) * 2014-02-26 2015-09-07 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abrasion resistance
WO2016042072A1 (en) * 2014-09-17 2016-03-24 Oerlikon Surface Solutions Ag, Trübbach Method for producing a double-layer coated cutting tool with improved wear resistance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109206A (en) * 1996-10-03 1998-04-28 Hitachi Tool Eng Ltd Surface coated cutting tool
JP2005022071A (en) * 2003-07-04 2005-01-27 Tungaloy Corp Hard film coated drill
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool
JP2007015106A (en) * 2006-10-11 2007-01-25 Hitachi Tool Engineering Ltd Multilayered film coated tool and its coating method
JP2009079266A (en) * 2007-09-26 2009-04-16 Hitachi Tool Engineering Ltd Coating film
WO2010050374A1 (en) * 2008-10-28 2010-05-06 京セラ株式会社 Surface covered tool
JP2011067883A (en) * 2009-09-24 2011-04-07 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2013527807A (en) * 2010-04-23 2013-07-04 スルザー メタプラス ゲーエムベーハー PVD coating for metal machining
JP2012092433A (en) * 2010-09-27 2012-05-17 Hitachi Tool Engineering Ltd Durable coating tool and method of manufacturing the same
JP2013223894A (en) * 2012-04-20 2013-10-31 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP2015160259A (en) * 2014-02-26 2015-09-07 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abrasion resistance
WO2016042072A1 (en) * 2014-09-17 2016-03-24 Oerlikon Surface Solutions Ag, Trübbach Method for producing a double-layer coated cutting tool with improved wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365472B2 (en) * 2016-04-08 2022-06-21 Seco Tools Ab Coated cutting tool

Also Published As

Publication number Publication date
JP6666431B2 (en) 2020-03-13
JPWO2017179233A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
EP3440232A1 (en) Coated cutting tool
JP6722410B2 (en) Drill
KR102198744B1 (en) Surface covering cutting tool
JP6958614B2 (en) Coating and cutting tools
JP5640242B2 (en) Surface coated cutting tool
JP5742042B2 (en) Surface coated boron nitride sintered body tool
JP6331003B2 (en) Surface coated cutting tool
WO2018037623A1 (en) Surface coated cutting tool and manufacturing method thereof
WO2017179233A1 (en) Hard coating and cutting tool
WO2013150603A1 (en) Hard coating film for cutting tool and cutting tool coated with hard coating film
JP5668262B2 (en) Surface coated cutting tool
WO2016136520A1 (en) Rotating tool
WO2018037648A1 (en) Surface coated cutting tool and manufacturing method thereof
JP6198002B2 (en) A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
JP5640243B2 (en) Surface coated cutting tool
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5267985B2 (en) Surface coated cutting tool
JP7338827B1 (en) Cutting tools
WO2018037647A1 (en) Cutting tool and manufacturing method thereof
JP6253112B2 (en) Surface coated boron nitride sintered body tool
JP6168540B2 (en) Hard lubricant coating and hard lubricant coating tool
JP6099225B2 (en) Hard lubricant coating and hard lubricant coating tool
JP5239062B2 (en) Surface-coated cutting tool and manufacturing method thereof
WO2023243008A1 (en) Cutting tool
US11524339B2 (en) Cutting tool

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898691

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898691

Country of ref document: EP

Kind code of ref document: A1