WO2017179133A1 - 移動局、基地局、無線通信システム及び無線通信方法 - Google Patents

移動局、基地局、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2017179133A1
WO2017179133A1 PCT/JP2016/061845 JP2016061845W WO2017179133A1 WO 2017179133 A1 WO2017179133 A1 WO 2017179133A1 JP 2016061845 W JP2016061845 W JP 2016061845W WO 2017179133 A1 WO2017179133 A1 WO 2017179133A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
mobile station
communication
resource pool
resource
Prior art date
Application number
PCT/JP2016/061845
Other languages
English (en)
French (fr)
Inventor
紅陽 陳
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201680084470.8A priority Critical patent/CN108886764B/zh
Priority to JP2018511804A priority patent/JP6801709B2/ja
Priority to EP16898593.5A priority patent/EP3445105B1/en
Priority to PCT/JP2016/061845 priority patent/WO2017179133A1/ja
Publication of WO2017179133A1 publication Critical patent/WO2017179133A1/ja
Priority to US16/137,764 priority patent/US10735977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention provides, for example, a wireless communication system in which a mobile station relays communication between other mobile stations, or communication between another mobile station and a base station, and wireless communication used in such a wireless communication system.
  • the present invention relates to a method, a mobile station, and a base station.
  • the mobile station transmits data and control information using the resource selected from the resource pool.
  • the resource represents time and frequency that can be allocated when a mobile station transmits a control signal or data within a channel having a predetermined period and frequency band defined in D2D communication.
  • the resource pool includes a plurality of such resources.
  • the resource pool listed at the top of the list representing the set of resource pools is used for both data transmission and reception, while the other resource pools are used only for data reception. Is done.
  • the resource pool described at the top of the list representing the set of resource pools is used for both transmission and reception of SidelinkSControl.
  • other resource pools are used only for reception of Sidelink Control (see, for example, Non-Patent Document 1).
  • a transmitting mobile station hereinafter referred to as a remote mobile station
  • a receiving mobile station hereinafter referred to as a destination mobile station
  • the two mobile stations communicate directly. Can not do it. Therefore, in such a case, it is considered that one or more mobile stations (hereinafter referred to as relay mobile stations) located between the remote mobile station and the destination mobile station relay D2D communication.
  • relay mobile stations one or more mobile stations located between the remote mobile station and the destination mobile station relay D2D communication.
  • each relay mobile station When one or more relay mobile stations relay D2D communication, resource allocation in each relay mobile station is performed according to the resource allocation in the case where each mobile station is out of the cell range as defined in Release IV12. To do. In this case, each relay mobile station individually selects a resource to be used at random. Therefore, when two relay mobile stations select the same resource, collision or interference may occur. In particular, in Release 12, as described above, only one resource pool can be used for both transmission and reception of data, so each relay mobile station selects a resource to be used from the same resource pool. Become. Therefore, as the number of D2D communication links increases, that is, as the number of relay mobile stations increases, the possibility of collision or interference increases.
  • an object of the present invention is to provide a wireless communication system capable of reducing the occurrence of collision and interference when one or more mobile stations relay D2D communication.
  • a wireless communication system having a plurality of communication devices having a plurality of communication devices.
  • each of a plurality of communication devices has a common set of resource pools including a plurality of resources that define frequencies and times that can be used for wireless communication with other communication devices of the plurality of communication devices.
  • the first communication device among the plurality of communication devices selects any resource pool from the set of resource pools, and uses any resource included in the selected resource pool to A signal addressed to the second communication device of the devices is transmitted.
  • each of at least one third communication device that relays wireless communication between the first communication device and the second communication device includes the first communication device and the second communication device.
  • a mobile station that relays wireless communication between a first other mobile station and a second other mobile station.
  • the mobile station includes a storage unit that stores a set of resource pools including a plurality of resources that define a frequency and time that the mobile station can use for wireless communication with the second other mobile station, and a first other A predetermined number defined based on a hop count at the mobile station in wireless communication between the mobile station and the second other mobile station and a resource pool selected from the set of resource pools by the first other mobile station.
  • a resource pool is selected from the set of resource pools, and a first other mobile station and a second other mobile station are selected using any resource included in the selected resource pool.
  • a control unit that relays wireless communication with the station.
  • a base station that performs radio communication with each of a plurality of mobile stations by relaying at least one other mobile station.
  • the base station includes a storage unit that stores a set of resource pools including a plurality of resources that define a frequency and a time that each of the plurality of mobile stations can use for wireless communication with at least one other mobile station, Based on the parameter indicating the state of the mobile station notified from each of the mobile stations, a resource pool used by the mobile station is set for each of a plurality of mobile stations from the set of resource pools, and at least one And a control unit that notifies the set resource pool to each of the plurality of mobile stations via the other mobile stations.
  • a wireless communication method in a wireless communication system having a plurality of communication devices is provided.
  • the first communication device of the plurality of communication devices stores frequencies stored in each of the plurality of communication devices and can be used for wireless communication with other communication devices of the plurality of communication devices.
  • selecting one of the resource pools from the set of resource pools including a plurality of resources defining the time, and using one of the resources included in the selected resource pool, the second of the plurality of communication devices Send a signal addressed to Among the plurality of communication devices, each of at least one third communication device that relays wireless communication between the first communication device and the second communication device has a hop count at the third communication device in the wireless communication.
  • any resource pool included in the selected resource pool is selected from a set of resource pools according to a predetermined rule defined based on the resource pool selected by the first communication device , Including forwarding the signal addressed to the second communication device to the next communication device or the second communication device in the relay order of at least one third communication device.
  • the wireless communication system disclosed in this specification can reduce the occurrence of collision and interference when one or more mobile stations relay D2D communication.
  • FIG. 1 is a schematic configuration diagram of a radio communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a relationship between a hop count and a selected resource pool.
  • FIG. 3A is a diagram illustrating an example of a resource pool selected by each mobile station according to a conventional method in a tree-like D2D link.
  • FIG. 3B is a diagram showing an example of a resource pool selected by each mobile station according to the present embodiment in the same D2D link as the tree-like D2D link shown in FIG. 3A.
  • FIG. 4A is a diagram illustrating an example of a resource pool selected by each mobile station according to a conventional method in a linear D2D link.
  • FIG. 4B is a diagram illustrating an example of a resource pool selected by each mobile station according to the present embodiment in a linear D2D link.
  • FIG. 5 is a sequence diagram of D2D communication in the wireless communication system 1 according to the present embodiment.
  • FIG. 6 is a schematic configuration diagram of the mobile station apparatus.
  • FIG. 7 is a functional block diagram of a control unit related to D2D communication.
  • FIG. 8 is a schematic configuration diagram of a radio communication system according to the second embodiment.
  • FIG. 9 is a schematic configuration diagram of a base station.
  • a remote mobile station and a destination mobile station located outside a cell provided by a base station execute D2D communication via one or more relay mobile stations.
  • a plurality of resource pools common to each mobile station are made available for both transmission and reception of data and call control.
  • the remote mobile station performs carrier sensing, detects a resource pool in an idle state, and executes data and call control transmission using any resource in the resource pool.
  • each relay mobile station determines whether its own device is based on a predetermined rule representing the relationship between the resource pool number used by the remote mobile station, the hop count in the relay mobile station, and the selected resource pool. Select the resource pool to be used. Thereby, the possibility that the same resource is selected in the remote mobile station and each relay mobile station is reduced, and as a result, the occurrence of collision and interference is reduced.
  • the wireless communication system according to the present embodiment is, for example, a mobile communication system compliant with LTE-Advanced.
  • the mobile stations located outside the cell provided by the base station can perform various other mobile units that can perform D2D communication via one or more relay mobile stations. It may be a communication system.
  • FIG. 1 is a schematic configuration diagram of a radio communication system according to the first embodiment.
  • the wireless communication system 1 includes a plurality of mobile stations 11-1 to 11-n (n is an integer of 3 or more). Each mobile station is an example of a communication device.
  • the wireless communication system 1 may further include a base station (not shown) connected to the core network via an upper node (not shown).
  • any of the plurality of mobile stations 11-1 to 11-n supports D2D communication and can operate as any of a remote mobile station, a destination mobile station, and a relay mobile station.
  • Each mobile station is preinstalled with the same set of resource pools. Any resource pool included in the set of resource pools can be used for both transmission and reception of data or call control signals.
  • the mobile station 11-1 is a remote mobile station
  • the mobile station 11-5 is a destination mobile station
  • the mobile stations 11-2 to 11-4 are relay mobile stations.
  • any of the mobile stations 11-1 to 11-5 may be located outside the range of a cell provided by a base station (not shown), or may be a mobile station 11-1 that is a remote mobile station and Any one of the mobile stations 11-5 as the destination mobile station may be included in the cell range.
  • the mobile station 11-1 which is a remote mobile station, finds another mobile station capable of D2D communication, for example, according to a predetermined Discovery procedure. Then, the mobile station 11-1 specifies a communication path by D2D communication to the mobile station 11-5 that is the destination mobile station, based on the other mobile stations that are found.
  • the mobile station 11-1 selects a resource to be used for communication to the next relay mobile station on the communication path from a plurality of preinstalled resource pools.
  • any of the plurality of preinstalled resource pools can be used for both transmission and reception of data or call control signals. Therefore, for each resource pool, the mobile station 11-1 performs carrier sensing for each resource included in the resource pool, and detects an unused resource pool, that is, an idle resource pool. For example, the mobile station 11-1 performs carrier sensing based on energy detection. That is, the mobile station 11-1 calculates the average value of the power detected in a predetermined period for each resource. Then, the mobile station 11-1 compares the detected average power value with a predetermined threshold value for each resource.
  • the resource pool containing the resource is occupied by D2D communication by other mobile stations.
  • the resource pool is assumed to be in an idle state, that is, usable. Therefore, the mobile station 11-1 selects a resource to be used from the resource pool in the idle state.
  • the mobile station 11-1 performs carrier sensing only for some resources included in the resource pool for each resource pool, instead of performing carrier sensing for all resources. May be.
  • the mobile station 11-1 performs carrier sensing for resources corresponding to the median, upper limit frequency, and lower limit frequency of the frequencies defined by each resource included in the resource pool. May be.
  • the mobile station 11-1 can reduce the amount of computation required for carrier sensing.
  • the mobile station 11-1 transmits data or a call control signal to the next relay mobile station 11-2 using the selected resource. At that time, the mobile station 11-1 transmits a synchronization signal such as PSSS / SSSS (Primary / Secandary Sidelink synchronization Signal) to synchronize the relay mobile station 11-2. The mobile station 11-1 then sends scheduling information such as resources used for data transmission to the next relay mobile station 11-2 via, for example, a Physical Sidelink Control Channel (PSCCH) defined based on a predetermined period. To notify. In addition, the mobile station 11-1 includes its own hop count (0 in the case of the mobile station 11-1) in predetermined control information and transmits the control information to the next relay mobile station 11-2. To do.
  • PSSS / SSSS Primary / Secandary Sidelink synchronization Signal
  • the predetermined control information may be, for example, information obtained by adding a hop count to SCI format0 defined in Release IV12. Then, the mobile station 11-1 uses the selected resource to transmit data to the relay mobile station 11-2 via Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • Each of relay mobile stations 11-2 to 11-4 receives data from the previous relay mobile station or remote mobile station and transfers the data to the next relay mobile station or destination mobile station.
  • Each of the relay mobile stations 11-2 to 11-4 receives data using the resource selected by the immediately preceding relay mobile station or remote mobile station. Then, each of the relay mobile stations 11-2 to 11-4 follows the predetermined rule based on the hop count of its own device and the resource pool number selected by the remote mobile station according to a predetermined rule. Select the resource pool to be used for data transfer to.
  • FIG. 2 is a diagram showing an example of the relationship between the hop count and the selected resource pool.
  • the arrows represent the order of mobile stations to which data is transferred. That is, in this example, data is transferred in the order of mobile station 11-1, mobile station 11-2, mobile station 11-3, mobile station 11-4, and mobile station 11-5. Therefore, the hop counts of the mobile stations 11-2 to 11-4 are 1, 2, and 3, respectively.
  • the relay mobile station selects a resource pool having a number corresponding to a total value obtained by adding the hop count in the relay mobile station to the resource pool number selected by the remote mobile station 11-1. It is specified to be a resource pool. However, when the total value exceeds the maximum value of the resource pool number, the relay mobile station selects a resource pool having a number obtained by subtracting the maximum value of the resource pool number from the total value. In the example shown in FIG. 2, since the remote mobile station 11-1 has selected the nth resource pool, the mobile station 11-2 with a hop count of '1' has the (n + 1) th resource Select a pool.
  • the mobile station 11-3 whose hop count is “2” selects the (n + 2) th resource pool
  • the predetermined rule is not limited to the above example.
  • a predetermined rule a resource pool whose relay mobile station selects a resource pool having a number corresponding to a value obtained by subtracting the hop count in the relay mobile station from the resource pool number selected by the remote mobile station 11-1. It may be prescribed to do.
  • the resource pool numbers selected by the relay mobile stations 11-2 to 11-4 are (n ⁇ 1), (n-2), (n-3), respectively. ).
  • the resource pool number calculated based on this rule is 0 or less, the number obtained by adding the maximum value of the resource pool number to the number becomes the number of the selected resource pool. Also good.
  • a predetermined rule may be defined so that a resource pool having a different number is selected for each relay mobile station having at least a continuous hop count.
  • Each relay mobile station transfers data received from the previous relay mobile station or remote mobile station to the next relay mobile station or destination mobile station using any of the resources belonging to the resource pool selected by the own device. To do. At that time, each relay mobile station may transfer data by the same procedure as that of the remote mobile station 11-1. Each relay mobile station may transfer data in accordance with any of the layer 1 to layer 3 relay methods. Also, each relay mobile station includes its own hop count in predetermined control information and transmits the control information to the next relay mobile station, as with mobile station 11-1.
  • remote mobile station and each relay mobile station may select the resource pool to be used in accordance with the same procedure as described above for the D2D communication call control signal communicated via the PSCCH.
  • the probability that collision or interference occurs when a resource pool is selected according to the conventional method and the collision or interference when resource pool is selected according to this embodiment are as follows. The probability of occurrence will be described.
  • FIG. 3A is a diagram showing an example of a resource pool selected by each mobile station according to a conventional method in a tree-like D2D link.
  • FIG. 3B is a diagram showing an example of a resource pool selected by each mobile station according to the present embodiment in the same D2D link as the tree-like D2D link shown in FIG. 3A.
  • D1 to D11 each represent a mobile station.
  • Each arrow represents a link between mobile stations.
  • a mobile station on the base side of the arrow transmits data, and a mobile station on the tip side of the arrow receives data.
  • a numerical value attached in the vicinity of each arrow represents a resource pool number used in the D2D communication indicated by the corresponding arrow.
  • each mobile station has four resource pools.
  • the first resource pool is used in each D2D communication.
  • interference that may occur with a radio wave used for data communication from the mobile station D7 is expressed by the following equation.
  • is a propagation loss index.
  • each relay mobile station uses a resource different from the resource used for data reception from the previous mobile station.
  • interference that may occur with radio waves used for data communication from mobile station D3 is expressed by the following equation.
  • the remote mobile station selects a resource pool determined to be in an idle state from among a plurality of resource pools as a result of carrier sensing, and enters the resource pool.
  • Each relay mobile station selects a resource pool according to the resource pool number selected by the remote mobile station and the hop count of the own device. Therefore, as shown in FIG. 3B, the resource pools used are different between adjacent links.
  • attention is paid to data communication received from the mobile station D11 via the mobile station D7 in the mobile station D3, as described above.
  • the resource pool '1' used for this data communication is different from any of the resource pools used by the mobile stations D4, D5, and D6 that have transmitted radio waves that may cause interference in the prior art. . Therefore, no interference occurs in this data communication.
  • FIG. 4A is a diagram illustrating an example of a resource pool selected by each mobile station according to a conventional method in a linear D2D link.
  • FIG. 4B is a diagram illustrating an example of a resource pool selected by each mobile station according to the present embodiment in a linear D2D link.
  • D1 to D12 each represent a mobile station.
  • Each arrow represents a link between mobile stations.
  • a mobile station on the base side of the arrow transmits data, and a mobile station on the tip side of the arrow receives data.
  • a numerical value attached in the vicinity of each arrow represents a resource pool number used in the D2D communication indicated by the corresponding arrow.
  • each mobile station has four resource pools.
  • the only resource pool that can be used for both data transmission and reception is the first resource pool. Therefore, as shown in FIG. 4A, the first resource pool is used in each D2D communication. Therefore, for example, in the mobile station D9, interference that may occur for radio waves used for data communication from the mobile station D10 is expressed by the following equation. However, it is assumed that the mobile stations D3, D7, and D11 are only receiving data while the mobile stations D4, D8, and D9 are transmitting data.
  • the remote mobile station selects a resource pool determined to be in an idle state from among a plurality of resource pools as a result of carrier sensing, and enters the resource pool.
  • Each relay mobile station selects a resource pool according to the resource pool number selected by the remote mobile station and the hop count of the own device. Therefore, as shown in FIG. 4B, the resource pools used are different between adjacent links. Therefore, for example, as in the above, attention is paid to data communication from the mobile station D10 in the mobile station D9.
  • the mobile station D4 among the mobile stations D4, D8, D8, D12, D2, and D6 that transmitted radio waves that may cause interference in the prior art is a resource pool used for this data communication.
  • N rp is the number of resources included in one resource pool.
  • no collision occurs.
  • FIG. 5 is a sequence diagram of D2D communication in the wireless communication system 1 according to the present embodiment.
  • the remote mobile station 11-1 performs carrier sensing on each resource pool to detect an idle resource pool, and selects a resource pool to be used from the detected idle resource pool (step S1). S101). Then, the remote mobile station 11-1 transmits the resource allocation information and the hop count “0” of the remote mobile station 11-1 to the first relay mobile station 11-2. Thereafter, the remote mobile station 11-1 transmits data using the resource indicated by the resource allocation information.
  • the relay mobile station 11-2 refers to the resource allocation information and receives data transmitted using the designated resource. Further, the relay mobile station 11-2 calculates the hop count “1” of the own device from the notified hop count. Then, the relay mobile station 11-2 selects a resource pool to be used for data transfer according to a predetermined rule based on the resource pool number selected by the remote mobile station 11-1 and the hop count “1” of its own device ( Step S102). Then, the relay mobile station 11-2 transmits the resource allocation information and the hop count “1” of the relay mobile station 11-2 to the next relay mobile station 11-3. Thereafter, the relay mobile station 11-2 transmits data using the resource indicated by the resource allocation information.
  • the relay mobile station 11-3 refers to the resource allocation information and receives the data transferred using the designated resource. Also, the relay mobile station 11-3 calculates its own hop count “2” from the notified hop count. Then, the relay mobile station 11-3 selects a resource pool to be used for data transfer according to a predetermined rule based on the resource pool number selected by the remote mobile station 11-1 and the hop count “2” of its own device ( Step S103). Then, the relay mobile station 11-3 transmits the resource allocation information and the hop count “2” of the relay mobile station 11-3 to the next relay mobile station 11-4. Thereafter, the relay mobile station 11-3 transfers data using the resource indicated by the resource allocation information.
  • the relay mobile station 11-4 refers to the resource allocation information and receives data transferred using the specified resource. Further, the relay mobile station 11-4 calculates its own hop count “3” from the notified hop count. Then, the relay mobile station 11-4 selects a resource pool to be used for data transfer according to a predetermined rule based on the resource pool number selected by the remote mobile station 11-1 and the hop count '3' of its own device ( Step S104). The relay mobile station 11-4 transmits the resource allocation information to the destination mobile station 11-5. Thereafter, the relay mobile station 11-4 transfers the data using the resource indicated by the resource allocation information. As described above, data is transmitted from the remote mobile station 11-1 to the destination mobile station 11-5.
  • each mobile station included in the wireless communication system 1 may have the same configuration. Therefore, the mobile station 11-1 will be described below.
  • FIG. 6 is a schematic configuration diagram of the mobile station 11-1.
  • the mobile station 11-1 includes a transmission antenna 21, a reception antenna 22, a transmission wireless processing unit 23, a reception wireless processing unit 24, a storage unit 25, and a control unit 26.
  • the transmission wireless processing unit 23, the reception wireless processing unit 24, the storage unit 25, and the control unit 26 are formed as separate circuits. Alternatively, each of these units may be mounted on the mobile station 11-1 as one or a plurality of integrated circuits in which circuits corresponding to the respective units are integrated.
  • the transmission antenna 21 transmits an uplink signal transmitted via the transmission radio processing unit 23 or various transmission signals in D2D communication as a radio signal.
  • the receiving antenna 22 receives a downlink signal, which is a radio signal from the base station, converts it into an electric signal, and transmits the downlink signal converted into the electric signal to the receiving radio processing unit 24.
  • the reception antenna 22 receives various radio signals in D2D communication from other mobile stations, converts them into electrical signals, and transmits the converted signals to the reception radio processing unit 24.
  • the transmission radio processing unit 23 converts the multiplexed transmission signal (for example, uplink signal or various signals in D2D communication) received from the control unit 26 into an analog signal, and then is designated by the control unit 26. Superimposed on a carrier wave with a different radio frequency. Then, the transmission radio processing unit 23 amplifies the uplink signal superimposed on the carrier wave to a desired level by a high power amplifier (not shown), and transmits the signal to the transmission antenna 21.
  • a high power amplifier not shown
  • the reception wireless processing unit 24 amplifies a signal (for example, a downlink signal or various signals in D2D communication) received from the reception antenna 22 by a low noise amplifier (not shown).
  • the reception radio processing unit 24 multiplies the amplified signal by a periodic signal having an intermediate frequency to convert the frequency of the signal from a radio frequency to a baseband frequency.
  • the reception radio processing unit 24 performs analog / digital conversion on the signal having the baseband frequency, and then passes the signal to the control unit 26.
  • the storage unit 25 includes, for example, a rewritable nonvolatile semiconductor memory or volatile semiconductor memory.
  • the storage unit 25 stores various types of information for communicating with the base station, various types of information transmitted or received by the mobile station 11-1, and various programs that operate on the mobile station 11-1. Furthermore, the storage unit 25 stores various information used in D2D communication, such as a resource pool set.
  • the control unit 26 includes, for example, one or a plurality of processors and their peripheral circuits. Then, the control unit 26 performs processing such as error correction coding on the uplink signal. Further, the control unit 26 modulates and multiplexes the uplink signal according to a predetermined modulation scheme.
  • the multiplexing scheme may be, for example, a single carrier frequency division multiplexing scheme (Single-Carrier-Frequency-Division-Multiplexing, SC-FDMA). Then, the control unit 26 passes the modulated and multiplexed downlink signal to the transmission radio processing unit 23.
  • control unit 26 separates the downlink signal received from the reception radio processing unit 24 according to a predetermined multiplexing method, demodulates the separated downlink signal, and performs error correction decoding.
  • the multiplexing method for the downlink signal can be, for example, an orthogonal frequency division multiplexing (OFDM).
  • OFDM orthogonal frequency division multiplexing
  • the control part 26 takes out an audio
  • the control unit 26 reproduces the extracted audio signal through a speaker (not shown) or displays a moving image signal and data on a display (not shown).
  • control unit 26 executes various processes for executing wireless communication such as transmission power control and call control.
  • FIG. 7 is a functional block diagram of the control unit 26 related to D2D communication.
  • the control unit 26 includes a PDSCH decoding unit 31, a communication path setting unit 32, a D2D control signal decoding unit 33, a D2D data signal decoding unit 34, a carrier sensing unit 35, a hop count calculation unit 36, and a scheduling unit 37. And a transmission data generation unit 38.
  • Each of these units included in the control unit 26 is realized by a computer program that operates on a processor included in the control unit 26.
  • each of these units included in the control unit 26 may be implemented in the mobile station 11-1 as one or a plurality of integrated circuits in which circuits for realizing the functions of the respective units are integrated.
  • the PDSCH decoding unit 31 When the mobile station 11-1 is located in a cell provided by the base station, the PDSCH decoding unit 31 includes a downlink shared channel (Physical Downlink Shared Channe, PDSCH) included in the downlink signal from the base station. Decode the signal. The PDSCH decoding unit 31 extracts a set of resource pools used when the mobile station 11-1 is located in a cell provided by the base station from the decoded signal, and stores it in the storage unit 25.
  • PDSCH Physical Downlink Shared Channe
  • the communication path setting unit 32 specifies, for example, a communication path to the destination mobile station and a relay mobile station existing on the communication path.
  • the communication path setting unit 32 performs a Discovery process to detect other mobile stations around the mobile station 11-1.
  • the Discover process itself may be compliant with LTE Release 12.
  • the communication path setting unit 32 generates various transmission signals used in the discovery process, for example, a discovery message such as a discovery request message or a discovery response message. Then, the communication path setting unit 32 outputs the transmission signal to the transmission wireless processing unit 23. Further, the communication path setting unit 32 decodes a signal related to the discovery process from another mobile station, which is included in the signal received from the reception wireless processing unit 24.
  • the communication path setting unit 32 When the mobile station 11-1 is a remote mobile station, the communication path setting unit 32 generates a Discovery message including the identification information of the destination mobile station, and transmits the Discovery message to the transmission radio processing unit 23 and the transmission antenna 21. Send through. Then, the communication path setting unit 32 refers to the information regarding the measurement value of the received power included in the Discovery Response message from one or more mobile stations responding to the Discovery message, and selects the mobile station with the highest received power as the first. Relay mobile station. Then, the communication path setting unit 32 generates a control signal including information indicating that the first relay mobile station is designated as the relay mobile station, and transmits the control signal to the transmission wireless processing unit 23 and the transmission mobile station. Transmit via antenna 21.
  • the communication path setting unit 32 identifies them. A communication path to the destination mobile station is specified based on the information. Then, the communication path setting unit 32 stores the identification information of each mobile station on the communication path and the order of passing through in the storage unit 25.
  • the communication path setting unit 32 measures the received power of the radio wave from the mobile station. Then, the communication path setting unit 32 generates a Discovery Response message including information related to the measured value of the received power and the identification information of the mobile station 11-1, and sends the Discovery Response message to the transmission radio processing unit 23 and the transmission antenna 21. Reply via
  • the communication path setting unit 32 When the communication path setting unit 32 receives control information indicating that it has been designated as a relay mobile station, the communication path setting unit 32 includes Discover information including remote mobile station identification information, own apparatus identification information, and destination mobile station identification information. Generate a message. Then, the communication path setting unit 32 transmits the message to the neighboring mobile station via the transmission radio processing unit 23 and the transmission antenna 21.
  • the communication path setting unit 32 refers to the information related to the measurement value of the received power included in the Discovery ⁇ ⁇ ⁇ ⁇ ⁇ Response message from one or more mobile stations responding to the Discovery message, and the mobile station with the highest received power is relayed to the next relay station. A mobile station. Then, the communication path setting unit 32 generates a control signal including information indicating that the next relay mobile station is designated as the relay mobile station, and transmits the control signal to the transmission radio processing unit 23 and the transmission antenna. 21 to transmit. In addition, the communication path setting unit 32 sends a control signal including identification information of the own device and the relay mobile stations subsequent to the own device via the transmission wireless processing unit 23 and the transmission antenna 21 to the previous relay mobile station or remote Send to the mobile station.
  • the D2D control signal decoding unit 33 is received from another mobile station (for example, a remote mobile station or the previous relay mobile station) by D2D communication, and is included in the signal received via the reception radio processing unit 24.
  • a control signal transmitted via PSCCH or the like is decoded.
  • This control signal also includes, for example, a signal conforming to SCI Format 0 that has been modified to include a hop count, and schedule allocation information.
  • the D2D control signal decoding unit 33 extracts the hop count from the SCI Format0 and notifies the hop count calculation unit 36 of it. Further, the D2D control signal decoding unit 33 extracts schedule allocation information from the control signal and passes the information to the D2D data signal decoding unit 34.
  • the D2D data signal decoding unit 34 decodes the D2D communication signal received via the reception wireless processing unit 24. At that time, the D2D data signal decoding unit 34 uses a signal corresponding to the resource specified by the schedule assignment information as a signal to the own device or a signal to be relayed by the own device.
  • the carrier sensing unit 35 When the mobile station 11-1 is a remote mobile station, the carrier sensing unit 35 performs carrier sensing for each resource included in a pre-configured resource pool set in order to determine a resource to be used. To do. As described above, the carrier sensing unit 35 calculates an average value of power detected in a predetermined period for each resource. And the carrier sensing part 35 compares the average value of the detected electric power with a predetermined threshold value for every resource.
  • the carrier sensing unit 35 detects a resource pool in which the average value of detected power for all the included resources is equal to or less than a predetermined threshold, that is, an idle resource pool, and sets the number of the detected resource pool to the scheduling unit 37. To notify.
  • the hop count calculation unit 36 increments the hop count of the previous relay mobile station or remote mobile station received from the D2D control signal decoding unit 33 by one. Then, the hop count calculation unit 36 sets the incremented hop count as the hop count of the own device. Then, the hop count calculation unit 36 notifies the scheduling unit 37 of the hop count of the own device.
  • the scheduling unit 37 uses any of the resources included in the resource pool identified by the resource pool number notified from the carrier sensing unit 35 for D2D communication. Select as a resource. Note that the resource selected in the identified resource pool is arbitrary.
  • the scheduling unit 37 uses the own device according to a predetermined rule based on the hop count of the own device and the resource pool number selected by the remote mobile station. Select the resource pool to be used. Then, the scheduling unit 37 selects any of the resources included in the selected resource pool as a resource used for D2D communication. Also in this case, the resource selected in the specified resource pool is arbitrary.
  • the scheduling unit 37 generates a control signal for D2D communication including the hop count of the own device and scheduling allocation information indicating the selected resource. Then, the scheduling unit 37 transmits the control signal to the next relay mobile station or destination mobile station via the transmission radio processing unit 23 and the transmission antenna 21.
  • the transmission data generation unit 38 generates a transmission signal including data for transmission so that the selected resource is used. Then, the transmission data generation unit 38 transmits the transmission signal to the next relay mobile station or destination mobile station via the transmission radio processing unit 23 and the transmission antenna 21. When the mobile station 11-1 is a relay mobile station, the transmission data generation unit 38 transmits data received from the remote mobile station or the previous relay mobile station from the D2D data signal decoding unit 34 as a transmission signal. The data to be included in the transmission.
  • each of a plurality of pre-built resource pools can be used for data transmission / reception. And Then, the remote mobile station performs carrier sensing to detect an idle resource pool, and uses any resource included in the detected resource pool for data transmission.
  • the relay mobile station that relays D2D communication selects a resource pool according to a predetermined rule based on the resource pool number selected by the remote mobile station and the hop count of the own device.
  • the hop count of each relay mobile station may be included in the control signal of the discovery process that is notified from the remote mobile station during the discovery process. Then, the hop count may be notified to each relay mobile station by transferring the control signal via each relay mobile station.
  • one relay mobile station relays communication between a plurality of remote mobile stations and a base station.
  • FIG. 8 is a schematic configuration diagram of a wireless communication system according to the second embodiment.
  • the wireless communication system 2 according to the second embodiment includes a plurality of mobile stations 11-1 to 11-4 and a base station 12.
  • the base station 12 is another example of a communication device.
  • any of the plurality of mobile stations 11-1 to 11-4 supports D2D communication, and can operate as any of a remote mobile station, a destination mobile station, and a relay mobile station.
  • Each mobile station is preinstalled with the same set of resource pools. Any resource pool included in the set of resource pools can be used for both transmission and reception of data or call control signals.
  • the mobile station 11-1 is a relay mobile station and the mobile stations 11-2 to 11-4 are remote mobile stations.
  • the mobile station 11-1 is located within the range of the cell 12a provided by the base station 12, while any of the mobile stations 11-2 to 11-4 is located outside the range of the cell 12a. Assume that
  • the hop count of the mobile station 11-1 is “1”. Therefore, if the resource pools selected by the mobile stations 11-2 to 11-4 are the same, when the resource pool is selected as in the above embodiment, each relay mobile station 11-1 also performs each D2D communication.
  • the resource pool selected for is the same.
  • the base station 12 selects a resource pool to be used in each remote mobile station so that the resource pools assigned to the remote mobile stations 11-2 to 11-4 are different from each other.
  • each of the remote mobile stations 11-2 to 11-4 sets the status of the mobile station used for selection of the resource pool in one of the control signals in the discovery process transmitted to the relay mobile station 11-1.
  • the parameter includes, for example, at least one of a parameter representing the environment of the own device, a parameter representing the communication state, and a parameter representing the urgency of communication.
  • the parameter representing the environment of the own device is, for example, a parameter representing the position of the own device and the speed of the own device.
  • the parameter representing the communication state is a parameter representing the wireless measurement result, for example.
  • Relay mobile station 11-1 then transfers the parameters received from each of remote mobile stations 11-2 to 11-4 to base station 12.
  • the base station 12 sets a resource pool to be assigned to each of the remote mobile stations 11-2 to 11-4 based on parameters representing the states of the remote mobile stations 11-2 to 11-4. For example, the base station 12 sets different resource pools for a plurality of remote mobile stations within a predetermined distance. Further, a plurality of remote mobile stations that are located within a predetermined distance and have the same speed may belong to the same group. Therefore, the base station 12 allocates the same resource pool to a plurality of remote mobile stations that are located within a predetermined distance and have the same speed. Different resource pools may be set for a plurality of remote mobile stations. Further, the base station 12 may assign different resource pools in order from the remote mobile station having the larger received power or the smaller received power indicated by the wireless measurement result. Furthermore, the base station 12 may assign the resource pool in order from the remote mobile station with the highest urgency when the parameter representing the state of the mobile station includes a parameter representing the urgency of communication.
  • the base station 12 can assign resource pools that are orthogonal to each other to different remote mobile stations.
  • the resource pools that are orthogonal to each other include, for example, resources that are orthogonal to the resources included in the other resource pool with respect to the frequency.
  • One schedule allocation information can indicate a plurality of resource pools that are orthogonal together with resources at the same position in each resource pool. Therefore, the base station 12 can notify the resource pool used in each remote mobile station only by transmitting a single schedule allocation information. Therefore, the overhead of call control from the relay mobile station 11-1 to each of the remote mobile stations 11-2 to 11-4 is reduced.
  • the relay mobile station 11-1 can transfer data from the base station 12 to each of the remote mobile stations within one schedule allocation period. At that time, during the connection establishment period, the relay mobile station 11-1 may assign destination identification information in the data link layer (layer 2) to each of the remote mobile stations. In addition, each of the remote mobile stations can identify the reception data in the data link layer and the reception data in the network layer (layer 3). Therefore, when each remote mobile station has common data link layer destination identification information, each remote mobile station uses an address in the network layer, for example, an IP address to receive data. It may be determined which remote mobile station is addressed.
  • each of the remote mobile stations and the base station may be relayed by a plurality of relay mobile stations arranged in series in the same manner as each relay mobile station in FIG. And each relay mobile station should just select the resource pool which an own apparatus uses based on the hop count of an own apparatus, and the number of the resource pool which the remote mobile station selected similarly to 1st Embodiment.
  • FIG. 9 is a schematic configuration diagram of the base station 12.
  • the base station 12 includes a transmission antenna 41, a reception antenna 42, a transmission radio processing unit 43, a reception radio processing unit 44, a wired interface unit 45, a storage unit 46, and a control unit 47.
  • the transmission wireless processing unit 43, the reception wireless processing unit 44, the wired interface unit 45, the storage unit 46, and the control unit 47 are formed as separate circuits. Alternatively, each of these units may be mounted on the base station 12 as one or a plurality of integrated circuits in which circuits corresponding to the respective units are integrated.
  • the transmission antenna 41 transmits the downlink signal transmitted via the transmission radio processing unit 43 as a radio signal.
  • the reception antenna 42 receives an uplink signal, which is a radio signal from the mobile station, converts it into an electrical signal, and transmits the uplink signal converted into the electrical signal to the reception radio processing unit 44.
  • the reception antenna 22 receives various radio signals in D2D communication from other mobile stations, converts them into electrical signals, and transmits the converted signals to the reception radio processing unit 44.
  • the transmission radio processing unit 43 analogizes the multiplexed downlink signal received from the control unit 47 and then superimposes it on a carrier wave having a radio frequency designated by the control unit 47.
  • the transmission radio processing unit 43 amplifies the downlink signal superimposed on the carrier wave to a desired level by a high power amplifier (not shown), and transmits the signal to the transmission antenna 41.
  • the reception radio processing unit 44 amplifies the uplink signal received from the reception antenna 42 by a low noise amplifier (not shown).
  • the reception radio processing unit 44 converts the frequency of the uplink signal from a radio frequency to a baseband frequency by multiplying the amplified uplink signal by a periodic signal having an intermediate frequency. Then, the reception radio processing unit 44 performs analog / digital conversion on the uplink signal having the baseband frequency, and then passes the uplink signal to the control unit 47.
  • This uplink signal includes a signal from any of the remote mobile stations 11-2 to 11-4 relayed by the relay mobile station 11-1.
  • the wired interface unit 45 has a communication interface circuit for connecting the base station 12 to an upper node device (not shown) and other base stations. Then, the wired interface unit 45 analyzes the signal received from the higher order node device according to the S1 interface, and extracts the downlink signal and the control signal included in the signal. Further, the wired interface unit 45 analyzes a signal received from another base station according to the X2 interface, and extracts a control signal included in the signal. Then, the wired interface unit 45 passes the extracted downlink signal and control signal to the control unit 47.
  • the wired interface unit 45 converts the uplink signal received from the control unit 47 into a signal in a format according to the S1 interface and then outputs the signal to the upper node device.
  • the wired interface unit 45 converts a control signal to be transmitted to another base station into a format according to the X2 interface. Then, the wired interface unit 45 outputs the control signal to another base station.
  • the storage unit 46 includes, for example, a rewritable nonvolatile semiconductor memory or volatile semiconductor memory. And the memory
  • the control unit 47 includes, for example, one or a plurality of processors and their peripheral circuits. Then, the control unit 47 performs processing such as error correction coding on the downlink signal. Furthermore, the control unit 47 modulates and multiplexes the downlink signal according to a predetermined modulation scheme. Note that the multiplexing method can be, for example, OFDM. Then, the control unit 47 passes the modulated and multiplexed downlink signal to the transmission radio processing unit 43.
  • control unit 47 separates the uplink signal received from the reception radio processing unit 44 according to a predetermined multiplexing method, demodulates the separated uplink signal, and performs error correction decoding.
  • the multiplexing scheme for uplink signals can be, for example, SC-FDMA.
  • the control unit 47 outputs the decoded uplink signal to the wired interface unit 45.
  • the control unit 47 extracts various signals referred to by the base station 12 from the decoded uplink signal, for example, control information related to call control or parameters representing a state from a remote mobile station.
  • control unit 47 executes various processes for executing wireless communication with the mobile station such as transmission power control and call control. Further, the control unit 47 selects a resource pool to be used by each remote mobile station based on the parameter representing the state of the mobile station received from each remote mobile station via the relay mobile station. At that time, as described above, the control unit 47 selects resource pools so that the allocated resource pools are different from each other for a plurality of remote mobile stations that use the same relay mobile station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

第1の通信装置は、リソースプールのセットの中から選択したリソースプールに含まれる何れかのリソースを利用して、第2の通信装置宛ての信号を送信する。一方、第1の通信装置と第2の通信装置間の無線通信を中継する少なくとも一つの第3の通信装置のそれぞれは、第1の通信装置と第2の通信装置間の無線通信におけるその第3の通信装置でのホップカウントと、第1の通信装置が選択したリソースプールとに基づいて規定される所定の規則に従ってリソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、第2の通信装置宛ての信号を中継順序が次の通信装置または第2の通信装置へ転送する。

Description

移動局、基地局、無線通信システム及び無線通信方法
 本発明は、例えば、移動局が他の移動局同士の通信、あるいは、他の移動局と基地局間の通信を中継する無線通信システム、及び、そのような無線通信システムで利用される無線通信方法、移動局及び基地局に関する。
 移動体通信システムにおいて、基地局を介さずに移動局同士で直接通信するための通信方式(Device to Device, D2D)が検討されている。このような通信方式は、第3世代パートナーシッププロジェクト(Third Generation Partnership Project、3GPP)により標準化された通信規格であるロング・ターム・エボリューション(Long Term Evolution)のRelease 12において規定されている。
 D2D通信では、移動局は、リソースプールから選択したリソースを用いて、データ及び制御情報を送信する。リソースは、D2D通信において規定される、所定の期間及び周波数帯域を持つチャネル内で、移動局が制御信号またはデータを伝送する際に割り当て可能な時間と周波数を表す。そしてリソースプールは、そのようなリソースを複数含む。
 特に、基地局が提供するセルの外に位置する移動局(Out-of-coverage UE)について、データ伝送用のリソースプールのセット、及び、呼制御(Sidelink Control)用のリソースプールのセットとも、移動局にて予め構築される。なお、これらの予め構築される(pre-configured)リソースプールのセットは、例えば、工場出荷時に移動局にインストールされる。
 データ伝送用のリソースプールのセットでは、リソースプールのセットが表されたリストの先頭に記載されたリソースプールがデータ送信と受信の両方に使用され、一方、他のリソースプールはデータ受信のみに使用される。同様に、呼制御用のリソースプールのセットについても、リソースプールのセットが表されたリストの先頭に記載されたリソースプールがSidelink Controlの送信と受信の両方に使用される。一方、他のリソースプールはSidelink Controlの受信のみに使用される(例えば、非特許文献1を参照)。
J. Schlienz他、"Device to Device communication in LTE Whitepaper"、ROHDE&SCHWARZ
 D2D通信では、送信側の移動局(以下、リモート移動局と呼ぶ)と受信側の移動局(以下、宛先移動局と呼ぶ)間の距離が長い場合には、その二つの移動局は直接通信することができない。そこでこのような場合、リモート移動局と宛先移動局の間に位置する、1以上の移動局(以下、中継移動局と呼ぶ)が、D2D通信を中継することが検討されている。
 1以上の中継移動局がD2D通信を中継する場合において、各中継移動局におけるリソース割り当てが、Release 12に規定される、各移動局がセルの範囲外にいる場合のリソース割り当てに従って実行されるとする。この場合、各中継移動局が、それぞれ個別に、使用するリソースをランダムに選択する。そのため、二つの中継移動局が同じリソースを選択した場合、コリジョンまたは干渉が生じることがある。特に、Release 12では、上記のように、データの送信と受信の両方に利用可能なリソースプールは一つのリソースプールだけなので、各中継移動局は、同じリソースプールから使用するリソースを選択することになる。したがって、D2D通信のリンクの数が増えるほど、すなわち、中継移動局の数が増えるほど、コリジョンまたは干渉が生じる可能性が高くなる。
 一つの側面では、本発明は、1以上の移動局がD2D通信を中継する場合において、コリジョン及び干渉の発生を低減可能な無線通信システムを提供することを目的とする。
 一つの実施形態によれば、複数の通信装置を有する無線通信システムが提供される。この無線通信システムにおいて、複数の通信装置のそれぞれは、それら複数の通信装置のうちの他の通信装置との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールの共通するセットを記憶する。そして複数の通信装置のうちの第1の通信装置は、リソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、複数の通信装置のうちの第2の通信装置宛ての信号を送信する。一方、複数の通信装置のうち、第1の通信装置と第2の通信装置間の無線通信を中継する少なくとも一つの第3の通信装置のそれぞれは、第1の通信装置と第2の通信装置間の無線通信におけるその第3の通信装置でのホップカウントと、第1の通信装置が選択したリソースプールとに基づいて規定される所定の規則に従ってリソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、第2の通信装置宛ての信号を少なくとも一つの第3の通信装置のうちの中継順序が次の通信装置または第2の通信装置へ転送する。
 他の実施形態によれば、第1の他の移動局と第2の他の移動局との無線通信を中継する移動局が提供される。この移動局は、この移動局が第2の他の移動局との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットを記憶する記憶部と、第1の他の移動局と第2の他の移動局との無線通信における移動局でのホップカウントと、第1の他の移動局がリソースプールのセットの中から選択したリソースプールとに基づいて規定される所定の規則に従って、リソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、第1の他の移動局と第2の他の移動局との無線通信を中継する制御部とを有する。
 また他の実施形態によれば、複数の移動局のそれぞれと、少なくとも一つの他の移動局の中継により無線通信する基地局が提供される。この基地局は、複数の移動局のそれぞれが少なくとも一つの他の移動局との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットを記憶する記憶部と、複数の移動局のそれぞれから通知された、移動局の状態を表すパラメータに基づいて、リソースプールのセットの中から複数の移動局のそれぞれごとに、その移動局が使用するリソースプールを設定し、少なくとも一つの他の移動局を介して、複数の移動局のそれぞれに対して設定したリソースプールを通知する制御部とを有する。
 さらに他の実施形態によれば、複数の通信装置を有する無線通信システムにおける無線通信方法が提供される。この無線通信方法において、複数の通信装置のうちの第1の通信装置は、複数の通信装置のそれぞれが記憶する、複数の通信装置のうちの他の通信装置との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、複数の通信装置のうちの第2の通信装置宛ての信号を送信し、
 複数の通信装置のうち、第1の通信装置と第2の通信装置間の無線通信を中継する少なくとも一つの第3の通信装置のそれぞれは、その無線通信における第3の通信装置でのホップカウントと、第1の通信装置が選択したリソースプールとに基づいて規定される所定の規則に従ってリソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、第2の通信装置宛ての信号を少なくとも一つの第3の通信装置のうちの中継順序が次の通信装置または第2の通信装置へ転送することを含む。
 本明細書に開示された無線通信システムは、1以上の移動局がD2D通信を中継する場合において、コリジョン及び干渉の発生を低減させることができる。
図1は、第1の実施形態による無線通信システムの概略構成図である。 図2は、ホップカウントと選択されるリソースプールの関係の一例を示す図である。 図3Aは、ツリー状のD2Dリンクにおいて、各移動局により従来方式に従って選択されるリソースプールの一例を示す図である。 図3Bは、図3Aに示されたツリー状のD2Dリンクと同じD2Dリンクにおいて、各移動局により本実施形態に従って選択されるリソースプールの一例を示す図である。 図4Aは、直線状のD2Dリンクにおいて、各移動局により従来方式に従って選択されるリソースプールの一例を示す図である。 図4Bは、直線状のD2Dリンクにおいて、各移動局により本実施形態に従って選択されるリソースプールの一例を示す図である。 図5は、本実施形態による無線通信システム1における、D2D通信のシーケンス図である。 図6は、移動局装置の概略構成図である。 図7は、D2D通信に関連する、制御部の機能ブロック図である。 図8は、第2の実施形態による無線通信システムの概略構成図である。 図9は、基地局の概略構成図である。
 以下、図を参照しつつ、無線通信システムについて説明する。
 この無線通信システムでは、基地局が提供するセルの外に位置するリモート移動局と宛先移動局とが1以上の中継移動局を介してD2D通信を実行する。その際、各移動局について共通する複数のリソースプールがデータ及び呼制御の送信と受信の両方について使用可能とされる。そしてリモート移動局は、キャリアセンシングを行って、アイドル状態にあるリソースプールを検出し、そのリソースプール内の何れかのリソースを使用して、データ及び呼制御の送信を実行する。一方、各中継移動局は、リモート移動局が使用したリソースプールの番号、及び、その中継移動局におけるホップカウントと、選択されるリソースプールとの関係を表す所定の規則に基づいて、自装置が使用するリソースプールを選択する。これにより、リモート移動局及び各中継移動局にて同じリソースが選択される可能性が低減し、その結果として、コリジョン及び干渉の発生が低減される。
 本実施形態による無線通信システムは、例えば、LTE-Advancedに準拠した移動体通信システムとする。しかし、本実施形態による無線通信システムは、基地局が提供するセルの外に位置する移動局同士が1以上の中継移動局を介してD2D通信を実行することが可能な他の様々な移動体通信システムであってもよい。
 図1は、第1の実施形態による無線通信システムの概略構成図である。無線通信システム1は、複数の移動局11-1~11-n(nは3以上の整数)を有する。各移動局は、通信装置の一例である。無線通信システム1は、さらに、上位ノード(図示せず)を介してコアネットワークと接続される基地局(図示せず)を有していてもよい。
 本実施形態では、複数の移動局11-1~11-nの何れも、D2D通信に対応しており、かつ、リモート移動局、宛先移動局、及び中継移動局の何れとしても動作可能である。また、各移動局には、予め、同じリソースプールのセットがインストールされている。そしてリソースプールのセットに含まれる何れのリソースプールも、データまたは呼制御信号の送信及び受信の何れにも利用可能となっている。以下では、移動局11-1がリモート移動局であり、移動局11-5が宛先移動局であり、移動局11-2~11-4が、それぞれ、中継移動局であると仮定する。また、移動局11-1~11-5の何れも、基地局(図示せず)が提供するセルの範囲外に位置していてもよく、あるいは、リモート移動局である移動局11-1及び宛先移動局である移動局11-5の何れか一方が、セルの範囲内に含まれていてもよい。
 リモート移動局である移動局11-1は、例えば、所定のDiscovery手順に従って、D2D通信可能な他の移動局を発見する。そして移動局11-1は、発見した他の移動局に基づいて、宛先移動局である移動局11-5までのD2D通信による通信経路を特定する。
 移動局11-1は、通信経路が特定されると、その通信経路上で次の中継移動局までの通信に使用するリソースを、プリインストールされた複数のリソースプールの中から選択する。上記のように、プリインストールされた複数のリソースプールの何れも、データまたは呼制御信号の送信及び受信の何れにも利用可能となっている。そこで、移動局11-1は、リソースプールごとに、そのリソースプールに含まれる各リソースについてキャリアセンシングを行って、未使用、すなわち、アイドル状態となっているリソースプールを検出する。例えば、移動局11-1は、エネルギー検出に基づくキャリアセンシングを実行する。すなわち、移動局11-1は、リソースごとに、所定期間において検知した電力の平均値を算出する。そして移動局11-1は、リソースごとに、検知した電力の平均値を所定の閾値と比較する。
 何れかのリソースについて検知した電力の平均値が所定の閾値を超えている場合、そのリソースが含まれるリソースプールは、他の移動局によるD2D通信などで占有されていると想定される。一方、着目するリソースプールに含まれる各リソースについて検知した電力の平均値が所定の閾値以下である場合、そのリソースプールはアイドル状態、すなわち、利用可能であると想定される。そこで移動局11-1は、アイドル状態であるリソースプールの中から、使用するリソースを選択する。
 なお、変形例によれば、移動局11-1は、全てのリソースについてキャリアセンシングを実行する代わりに、リソースプールごとに、そのリソースプールに含まれる幾つかのリソースについてのみ、キャリアセンシングを実行してもよい。例えば、移動局11-1は、リソースプールごとに、そのリソースプールに含まれる各リソースで規定される周波数のうちの中央値、上限周波数及び下限周波数のそれぞれに対応するリソースについてキャリアセンシングを実行してもよい。これにより、移動局11-1は、キャリアセンシングに要する演算量などを削減できる。
 移動局11-1は、選択したリソースを利用して、データまたは呼制御信号を次の中継移動局11-2へ送信する。その際、移動局11-1は、PSSS/SSSS(Primary/Secandary Sidelink synchronization Signal)といった同期信号を送信して、中継移動局11-2を同期させる。そして移動局11-1は、例えば、所定の周期に基づいて定義されるPhysical Sidelink Control Channel(PSCCH)を介して、データ送信に利用されるリソースなどのスケジューリング情報を次の中継移動局11-2へ通知する。また、移動局11-1は、自装置のホップカウント(移動局11-1の場合は、0)を、所定の制御情報に含めて、その制御情報を次の中継移動局11-2へ送信する。なお、所定の制御情報は、例えば、Release 12で規定されているSCI format0にホップカウントを追加したものとすることができる。そして移動局11-1は、選択したリソースを利用して、Physical Sidelink Shared Channel(PSSCH)を介して中継移動局11-2へデータを送信する。
 中継移動局11-2~11-4のそれぞれは、一つ前の中継移動局あるいはリモート移動局からのデータを受信して、そのデータを、次の中継移動局または宛先移動局へ転送する。
 中継移動局11-2~11-4のそれぞれは、一つ前の中継移動局あるいはリモート移動局が選択したリソースを用いて、データを受信する。そして中継移動局11-2~11-4のそれぞれは、自装置のホップカウントと、リモート移動局が選択したリソースプールの番号に基づき、所定の規則にしたがって、次の中継移動局または宛先移動局へのデータ転送に利用するリソースプールを選択する。
 図2は、ホップカウントと選択されるリソースプールの関係の一例を示す図である。図2において、矢印は、データが転送される移動局の順序を表す。すなわち、この例では、データは、移動局11-1→移動局11-2→移動局11-3→移動局11-4→移動局11-5の順序で転送される。したがって、移動局11-2~11-4のホップカウントは、それぞれ、1、2、3となる。
 この例では、所定の規則として、リモート移動局11-1が選択したリソースプールの番号に、中継移動局におけるホップカウントを加算した合計値に相当する番号のリソースプールをその中継移動局が選択するリソースプールとすることが規定される。ただし、その合計値がリソースプールの番号の最大値を超える場合には、その合計値からリソースプールの番号の最大値を減じた番号のリソースプールを、その中継移動局が選択するものとする。図2に示される例では、リモート移動局11-1がn番目のリソースプールを選択しているので、ホップカウントが'1'である移動局11-2は、(n+1)番目のリソースプールを選択する。同様に、ホップカウントが'2'である移動局11-3は、(n+2)番目のリソースプールを選択し、ホップカウントが'3'である移動局11-4は、(n+3)番目のリソースプールを選択する。すなわち、各中継移動局で選択されるリソースプールは、直前の中継移動局またはリモート移動局が利用したリソースが属するリソースプールの番号に1加算した番号を持つリソースプールとなる。したがって、各中継移動局は、リモート移動局が選択したリソースプールの番号そのものを通知されなくても、上記の規則に従ってリソースプールを選択できる。
 なお、所定の規則は、上記の例に限られない。例えば、所定の規則として、リモート移動局11-1が選択したリソースプールの番号から、中継移動局におけるホップカウントを減じた値に相当する番号のリソースプールをその中継移動局が選択するリソースプールとすることが規定されてもよい。この場合、図2に示される例では、各中継移動局11-2~11-4において選択されるリソースプールの番号は、それぞれ、(n-1)、(n-2)、(n-3)となる。ただし、この規則に基づいて算出されるリソースプールの番号が0以下となる場合には、その番号に、リソースプールの番号の最大値を加算した番号が、選択されるリソースプールの番号となってもよい。このように、少なくとも連続するホップカウントを持つ中継移動局のそれぞれに対して異なる番号のリソースプールが選択されるように、所定の規則が規定されればよい。
 各中継移動局は、一つ前の中継移動局またはリモート移動局から受信したデータを、自装置が選択したリソースプールに属するリソースの何れかを用いて次の中継移動局または宛先移動局へ転送する。その際、各中継移動局は、リモート移動局11-1と同様の手順により、データを転送すればよい。なお、各中継移動局は、レイヤ1~レイヤ3の何れのリレー方式に従ってデータを転送してもよい。また、各中継移動局は、移動局11-1と同様に、自装置のホップカウントを、所定の制御情報に含めて、その制御情報を次の中継移動局へ送信する。
 なお、リモート移動局及び各中継移動局は、PSCCHを介して通信される、D2D通信の呼制御信号についても、上記と同様の手順に従って、使用するリソースプールを選択してもよい。
 以下、代表的なD2Dリンクの例を挙げて、従来方式によるリソースプールの選択を行った場合のコリジョンまたは干渉が生じる確率と、本実施形態によるリソースプールの選択を行った場合のコリジョンまたは干渉が生じる確率について説明する。
 図3Aは、ツリー状のD2Dリンクにおいて、各移動局により従来方式に従って選択されるリソースプールの一例を示す図である。図3Bは、図3Aに示されたツリー状のD2Dリンクと同じD2Dリンクにおいて、各移動局により本実施形態に従って選択されるリソースプールの一例を示す図である。
 図3A及び図3Bにおいて、D1~D11は、それぞれ、移動局を表す。また各矢印は、移動局間のリンクを表し、矢印の根元側の移動局がデータを送信し、矢印の先端側の移動局がデータを受信する。そして各矢印に近接して付された数値は、対応する矢印で示されるD2D通信において利用されるリソースプールの番号を表す。なお、この例では、各移動局が有するリソースプールの数は4個であるとする。
 従来方式では、データの送信と受信の両方に利用可能なリソースプールは1番目のリソースプールだけなので、図3Aに示されるように、各D2D通信において、1番目のリソースプールが使用される。この場合、例えば、移動局D3において、移動局D7からのデータ通信に利用される無線電波に対して生じる可能性の有る干渉は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
ここで、Ptx,iは、移動局Di(i=1,2,...,11)の送信電力を表す。またdi,jは、移動局Diと移動局Dj(j=1,2,...,11、ただし、i≠j)間の距離を表す。αは、伝搬損失指数である。ただし、移動局D3からのリンク数が3を超える移動局(D8,D9)は遠いため、それらの移動局からの無線電波は、移動局D3において干渉を生じないとした。また、各中継移動局は、一つ前の移動局からのデータ受信に用いられたリソースとは異なるリソースを使用するものとした。
 同様に、移動局D1において、移動局D3からのデータ通信に利用される無線電波に対して生じる可能性の有る干渉は、次式で表される。
 一方、図3Bに示されるように、本実施形態によれば、リモート移動局は、キャリアセンシングの結果、複数のリソースプールの中から、アイドル状態と判定したリソースプールを選択し、そのリソースプールに含まれる何れかのリソースをD2D通信に利用する。また、各中継移動局は、リモート移動局が選択したリソースプールの番号と、自装置のホップカウントとに応じてリソースプールを選択する。そのため、図3Bに示されるように、隣接するリンク間で、使用されるリソースプールが異なっている。そこで、例えば、上記と同様に、移動局D3において、移動局D11から移動局D7を介して受信するデータ通信に着目する。この場合、このデータ通信に利用されるリソースプール'1'は、従来技術において干渉が生じる可能性が有る無線電波を送信した移動局D4、D5、D6が利用するリソースプールの何れとも異なっている。したがって、このデータ通信では、干渉は生じない。
 また、移動局D1において、移動局D11から移動局D7及び移動局D3を介して受信するデータ通信に着目する。この場合、従来技術において干渉が生じる可能性が有る無線電波を送信した移動局D2、D8、D9、D10、D11のうち、移動局D2のみが、このデータ通信に利用されるリソースプール'2'と同じリソースプールを利用する。したがって、このデータ通信に利用される無線電波に対して生じる可能性の有る干渉はI9,1となる。
 図4Aは、直線状のD2Dリンクにおいて、各移動局により従来方式に従って選択されるリソースプールの一例を示す図である。また図4Bは、直線状のD2Dリンクにおいて、各移動局により本実施形態に従って選択されるリソースプールの一例を示す図である。
 図4A及び図4Bにおいて、D1~D12は、それぞれ、移動局を表す。また各矢印は、移動局間のリンクを表し、矢印の根元側の移動局がデータを送信し、矢印の先端側の移動局がデータを受信する。そして各矢印に近接して付された数値は、対応する矢印で示されるD2D通信において利用されるリソースプールの番号を表す。なお、この例では、各移動局が有するリソースプールの数は4個であるとする。
 従来方式では、データの送信と受信の両方に利用可能なリソースプールは1番目のリソースプールだけなので、図4Aに示されるように、各D2D通信において、1番目のリソースプールが使用される。そのため、例えば、移動局D9において、移動局D10からのデータ通信に利用される無線電波に対して生じる可能性の有る干渉は、次式で表される。
Figure JPOXMLDOC01-appb-M000003
ただし、移動局D4、D8、D9がデータを送信している間、移動局D3、D7、D11は、データ受信のみを行っているものとする。
 一方、図4Bに示されるように、本実施形態によれば、リモート移動局は、キャリアセンシングの結果、複数のリソースプールの中から、アイドル状態と判定したリソースプールを選択し、そのリソースプールに含まれるリソースの何れかをD2D通信に利用する。また、各中継移動局は、リモート移動局が選択したリソースプールの番号と、自装置のホップカウントとに応じてリソースプールを選択する。そのため、図4Bに示されるように、隣接するリンク間で、使用されるリソースプールが異なっている。そこで、例えば、上記と同様に、移動局D9において、移動局D10からのデータ通信に着目する。この場合、従来技術において干渉が生じる可能性が有る無線電波を送信した移動局D4、D8、D8、D12、D2、D6のうち、移動局D4のみが、このデータ通信に利用されるリソースプール'1'と同じリソースプールを利用する。したがって、このデータ通信に利用される無線電波に対して生じる可能性の有る干渉はI4,9となる。
 また、図4Aに示される例では、各移動局が1番目のリソースプールからリソースを選択するため、直線状の各D2Dリンクにおいてコリジョンが生じる確率は次式で表される。
Figure JPOXMLDOC01-appb-M000004
ここで、Nrpは、一つのリソースプールに含まれるリソースの数である。一方、本実施形態では、直線状の各D2Dリンクにおいて、移動局ごとに異なるリソースプールが選択されているので、コリジョンは生じない。
 上記のように、何れのD2Dリンクについても、従来技術と比較して、本実施形態により、干渉またはコリジョンが生じる可能性が低減されることが分かる。
 図5は、本実施形態による無線通信システム1における、D2D通信のシーケンス図である。
 先ず、リモート移動局11-1は、各リソースプールに対してキャリアセンシングを実行してアイドル状態のリソースプールを検出し、検出したアイドル状態のリソースプールの中から使用するリソースプールを選択する(ステップS101)。そしてリモート移動局11-1は、最初の中継移動局11-2へ、リソース割り当て情報及びリモート移動局11-1のホップカウント'0'を送信する。その後、リモート移動局11-1は、リソース割り当て情報で示されるリソースを用いて、データを送信する。
 中継移動局11-2は、リソース割り当て情報を参照して、指定されたリソースを用いて送信されたデータを受信する。また中継移動局11-2は、通知されたホップカウントから自装置のホップカウント'1'を算出する。そして中継移動局11-2は、リモート移動局11-1が選択したリソースプールの番号及び自装置のホップカウント'1'に基づいて、所定の規則に従ってデータ転送に利用するリソースプールを選択する(ステップS102)。そして中継移動局11-2は、次の中継移動局11-3へ、リソース割り当て情報及び中継移動局11-2のホップカウント'1'を送信する。その後、中継移動局11-2は、リソース割り当て情報で示されるリソースを用いて、データを送信する。
 中継移動局11-3は、リソース割り当て情報を参照して、指定されたリソースを用いて転送されたデータを受信する。また中継移動局11-3は、通知されたホップカウントから自装置のホップカウント'2'を算出する。そして中継移動局11-3は、リモート移動局11-1が選択したリソースプールの番号及び自装置のホップカウント'2'に基づいて、所定の規則に従ってデータ転送に利用するリソースプールを選択する(ステップS103)。そして中継移動局11-3は、次の中継移動局11-4へ、リソース割り当て情報及び中継移動局11-3のホップカウント'2'を送信する。その後、中継移動局11-3は、リソース割り当て情報で示されるリソースを用いて、データを転送する。
 同様に、中継移動局11-4は、リソース割り当て情報を参照して、指定されたリソースを用いて転送されたデータを受信する。また中継移動局11-4は、通知されたホップカウントから自装置のホップカウント'3'を算出する。そして中継移動局11-4は、リモート移動局11-1が選択したリソースプールの番号及び自装置のホップカウント'3'に基づいて、所定の規則に従ってデータ転送に利用するリソースプールを選択する(ステップS104)。そして中継移動局11-4は、宛先移動局11-5へ、リソース割り当て情報を送信する。その後、中継移動局11-4は、リソース割り当て情報で示されるリソースを用いて、データを転送する。
 以上により、リモート移動局11-1から宛先移動局11-5へデータが送信される。
 以下、本実施形態による無線通信システム1に含まれる移動局の詳細について説明する。本実施形態では、無線通信システム1に含まれる各移動局は、同一の構成を有してもよい。そこで以下では、移動局11-1について説明する。
 図6は、移動局11-1の概略構成図である。移動局11-1は、送信用アンテナ21と、受信用アンテナ22と、送信用無線処理部23と、受信用無線処理部24と、記憶部25と、制御部26とを有する。送信用無線処理部23、受信用無線処理部24、記憶部25及び制御部26は、それぞれ別個の回路として形成される。あるいはこれらの各部は、その各部に対応する回路が集積された一つまたは複数の集積回路として移動局11-1に実装されてもよい。
 送信用アンテナ21は、送信用無線処理部23を介して伝達されたアップリンク信号あるいは、D2D通信における各種の送信信号を無線信号として送信する。
 受信用アンテナ22は、基地局からの無線信号であるダウンリンク信号を受信して電気信号に変換し、電気信号に変換されたダウンリンク信号を受信用無線処理部24に伝達する。また受信用アンテナ22は、他の移動局からのD2D通信における各種の無線信号を受信して電気信号に変換し、その変換された信号を受信用無線処理部24に伝達する。
 送信用無線処理部23は、制御部26から受け取った、多重化された送信用の信号(例えば、アップリンク信号、あるいは、D2D通信における各種信号)をアナログ化した後、制御部26により指定された無線周波数を持つ搬送波に重畳する。そして送信用無線処理部23は、搬送波に重畳されたアップリンク信号をハイパワーアンプ(図示せず)により所望のレベルに増幅し、その信号を送信用アンテナ21へ伝達する。
 受信用無線処理部24は、受信用アンテナ22から受信した信号(例えば、ダウンリンク信号、あるいは、D2D通信における各種信号)を、低ノイズアンプ(図示せず)により増幅する。受信用無線処理部24は、増幅された信号に、中間周波数を持つ周期信号を乗じることにより、その信号の周波数を無線周波数からベースバンド周波数に変換する。そして受信用無線処理部24は、ベースバンド周波数を持つその信号をアナログ/デジタル変換した後、制御部26へ渡す。
 記憶部25は、例えば、書き換え可能な不揮発性半導体メモリまたは揮発性半導体メモリを有する。そして記憶部25は、基地局と通信するための各種の情報、移動局11-1が送信または受信する各種の情報、及び、移動局11-1で動作する各種のプログラムなどを記憶する。さらに、記憶部25は、リソースプールのセットといった、D2D通信において利用される各種の情報を記憶する。
 制御部26は、例えば、1個あるいは複数個のプロセッサ及びその周辺回路を有する。そして制御部26は、アップリンク信号に対して、誤り訂正符号化などの処理を行う。さらに制御部26は、アップリンク信号を所定の変調方式に従って変調し、かつ多重化する。なお、多重化方式は、例えば、シングルキャリア周波数分割多重方式(Single Carrier Frequency Division Multiplexing、SC-FDMA)とすることができる。そして制御部26は、変調及び多重化されたダウンリンク信号を送信用無線処理部23へ渡す。
 一方、制御部26は、受信用無線処理部24から受け取ったダウンリンク信号を所定の多重化方式に従って分離し、分離したダウンリンク信号をそれぞれ復調し、誤り訂正復号する。なお、ダウンリンク信号に対する多重化方式は、例えば、直交周波数分割多重方式(Orthogonal Frequency-Division Multiplexing、OFDM)とすることができる。そして制御部26は、復号されたダウンリンク信号から、音声信号、動画像信号またはデータを取り出す。制御部26は、取り出された音声信号を、スピーカ(図示せず)により再生し、あるいは動画像信号及びデータをディスプレイ(図示せず)に表示させる。
 さらに制御部26は、送信電力制御及び呼制御など、無線通信を実行するための各種の処理を実行する。
 また制御部26は、D2D通信を実行するための各種の処理を実行する。
 図7は、D2D通信に関連する、制御部26の機能ブロック図である。制御部26は、PDSCH復号部31と、通信経路設定部32と、D2D制御信号復号部33と、D2Dデータ信号復号部34と、キャリアセンシング部35と、ホップカウント算出部36と、スケジューリング部37と、送信データ生成部38とを有する。制御部26が有するこれらの各部は、制御部26が有するプロセッサ上で動作するコンピュータプログラムにより実現される。あるいは、制御部26が有するこれらの各部は、その各部の機能を実現する回路が集積された一つまたは複数の集積回路として移動局11-1に実装されてもよい。
 PDSCH復号部31は、移動局11-1が基地局が提供するセル内に位置している場合に、基地局からのダウンリンク信号に含まれる、下り共有チャネル(Physical Downlink Shared Channe, PDSCH)の信号を復号する。そしてPDSCH復号部31は、移動局11-1が基地局が提供するセル内に位置している場合に利用される、リソースプールのセットを復号した信号から取り出して、記憶部25に保存する。
 通信経路設定部32は、例えば、宛先移動局までの通信経路、及び、その通信経路上に存在する中継移動局を特定する。そのために、通信経路設定部32は、Discovery処理を実行して、移動局11-1の周囲にいる他の移動局を検出する。なお、このDiscover処理自体は、LTE Release 12に準拠するものであってもよい。例えば、通信経路設定部32は、Discovery処理で使用される各種の送信信号、例えば、Discovery RequestメッセージまたはDiscovery ResponseメッセージといったDiscoveryメッセージを生成する。そして通信経路設定部32は、その送信信号を送信用無線処理部23へ出力する。また通信経路設定部32は、受信用無線処理部24から受け取った信号に含まれる、他の移動局からのDiscovery処理に関する信号を復号する。
 移動局11-1がリモート移動局である場合、通信経路設定部32は、宛先移動局の識別情報を含むDiscoveryメッセージを生成し、そのDiscoveryメッセージを送信用無線処理部23及び送信用アンテナ21を介して送信する。そして通信経路設定部32は、そのDiscoveryメッセージに応答した1以上の移動局からのDiscovery Responseメッセージに含まれる、受信電力の測定値に関する情報を参照し、受信電力が最も高い移動局を1番目の中継移動局とする。そして通信経路設定部32は、1番目の中継移動局に対して、中継移動局として指定されたことを示す情報を含む制御信号を生成し、その制御信号を送信用無線処理部23及び送信用アンテナ21を介して送信する。
 また、受信したDiscovery Responseメッセージに、宛先移動局に達するまでの経路上に位置する各中継移動局の識別情報及び宛先移動局の識別情報が含まれる場合、通信経路設定部32は、それらの識別情報に基づいて宛先移動局までの通信経路を特定する。そして通信経路設定部32は、通信経路上の各移動局の識別情報及び経由する順序を記憶部25に保存する。
 一方、移動局11-1がリモート移動局でない場合、近隣に位置する移動局からのDiscovery Requestメッセージを受信すると、通信経路設定部32は、その移動局からの電波の受信電力を測定する。そして通信経路設定部32は、その受信電力の測定値に関する情報及び移動局11-1の識別情報を含むDiscovery Responseメッセージを生成し、そのDiscovery Responseメッセージを送信用無線処理部23及び送信用アンテナ21を介して返信する。
 また、通信経路設定部32は、中継移動局に指定されたことを示す制御情報を受信した場合、リモート移動局の識別情報、自装置の識別情報、及び、宛先移動局の識別情報を含むDiscoverメッセージを生成する。そして通信経路設定部32は、そのメッセージを、送信用無線処理部23及び送信用アンテナ21を介して近隣の移動局へ送信する。
 そして通信経路設定部32は、そのDiscoveryメッセージに応答した1以上の移動局からのDiscovery Responseメッセージに含まれる、受信電力の測定値に関する情報を参照し、受信電力が最も高い移動局を次の中継移動局とする。そして通信経路設定部32は、次の中継移動局に対して、中継移動局として指定されたことを示す情報を含む制御信号を生成し、その制御信号を送信用無線処理部23及び送信用アンテナ21を介して送信する。また通信経路設定部32は、自装置及び自装置以降の中継移動局の識別情報を含む制御信号を、送信用無線処理部23及び送信用アンテナ21を介して一つ前の中継移動局またはリモート移動局へ送信する。
 以下、リモート移動局から宛先移動局までの通信経路が確立されるまで、同様の処理が実行される。
 D2D制御信号復号部33は、D2D通信により他の移動局(例えば、リモート移動局または一つ前の中継移動局)から受信し、受信用無線処理部24を介して受け取った信号に含まれる、PSCCHなどを介して伝達される制御信号を復号する。この制御信号には、例えば、ホップカウントを含むように修正された、SCI Format0に準拠した信号、及び、スケジュール割り当て情報も含まれる。そしてD2D制御信号復号部33は、そのSCI Format0からホップカウントを取り出して、ホップカウント算出部36へ通知する。またD2D制御信号復号部33は、制御信号から、スケジュール割り当て情報を取出し、その情報をD2Dデータ信号復号部34へわたす。
 D2Dデータ信号復号部34は、受信用無線処理部24を介して受け取った、D2D通信の信号を復号する。その際、D2Dデータ信号復号部34は、スケジュール割り当て情報で指定されたリソースに相当する信号を、自装置への信号、または、自装置が中継する信号とする。
 キャリアセンシング部35は、移動局11-1がリモート移動局である場合において、利用するリソースを決定するために、事前構築されたリソースプールのセットに含まれる、各リソースに対してキャリアセンシングを実行する。上記のように、キャリアセンシング部35は、リソースごとに、所定期間において検知した電力の平均値を算出する。そしてキャリアセンシング部35は、リソースごとに、検知した電力の平均値を所定の閾値と比較する。
 そしてキャリアセンシング部35は、含まれる全てのリソースについて検知した電力の平均値が所定の閾値以下となるリソースプール、すなわち、アイドル状態のリソースプールを検出し、検出したリソースプールの番号をスケジューリング部37へ通知する。
 ホップカウント算出部36は、D2D制御信号復号部33から受け取った、一つ前の中継移動局またはリモート移動局のホップカウントを1インクリメントする。そしてホップカウント算出部36は、インクリメントされたホップカウントを自装置のホップカウントとする。そしてホップカウント算出部36は、自装置のホップカウントをスケジューリング部37へ通知する。
 スケジューリング部37は、移動局11-1がリモート移動局である場合、キャリアセンシング部35から通知されたリソースプールの番号で特定されるリソースプールに含まれるリソースの何れかを、D2D通信に利用するリソースとして選択する。なお、特定されたリソースプール内で選択されるリソースは任意である。
 一方、スケジューリング部37は、移動局11-1が中継移動局である場合、自装置のホップカウントと、リモート移動局が選択したリソースプールの番号とに基づいて、所定の規則に従って自装置が使用するリソースプールを選択する。そしてスケジューリング部37は、選択したリソースプールに含まれるリソースの何れかを、D2D通信に利用するリソースとして選択する。この場合も、特定されたリソースプール内で選択されるリソースは任意である。
 さらに、スケジューリング部37は、自装置のホップカウント及び選択したリソースを示すスケジューリング割り当て情報を含むD2D通信用の制御信号を生成する。そしてスケジューリング部37は、その制御信号を、送信用無線処理部23及び送信用アンテナ21を介して次の中継移動局または宛先移動局へ送信する。
 送信データ生成部38は、選択したリソースが利用されるように、送信用のデータを含む送信信号を生成する。そして送信データ生成部38は、その送信信号を、送信用無線処理部23及び送信用アンテナ21を介して次の中継移動局または宛先移動局へ送信する。なお、移動局11-1が中継移動局である場合には、送信データ生成部38は、D2Dデータ信号復号部34から、リモート移動局または一つ前の中継移動局から受信したデータを送信信号に含める送信用のデータとする。
 以上に説明してきたように、この無線通信システムでは、基地局を介さずに移動局同士がD2D通信を実行する際に、事前構築された複数のリソースプールのそれぞれを、データの送受信に利用可能とする。そしてリモート移動局は、キャリアセンシングを行ってアイドル状態のリソースプールを検出し、検出したリソースプールに含まれる何れかのリソースをデータ送信に利用する。一方、D2D通信を中継する中継移動局は、リモート移動局が選択したリソースプールの番号と、自装置のホップカウントとに基づいて、所定の規則に従ってリソースプールを選択する。これにより、この無線通信システムは、1以上の中継移動局が中継する移動局同士のD2D通信について、リモート移動局及び各中継移動局が同じリソースプールを利用する可能性を低減できるので、干渉及びコリジョンの発生を抑制できる。
 なお、変形例によれば、各中継移動局のホップカウントは、Discovery処理の際にリモート移動局から通知される、discovery処理の制御信号に含まれてもよい。そしてその制御信号が各中継移動局を介して転送されることにより、各中継移動局にホップカウントが通知されてもよい。
 次に、第2の実施形態による無線通信システムについて説明する。この無線通信システムでは、一つの中継移動局が、複数のリモート移動局と基地局との通信を中継する。
 図8は、第2の実施形態による無線通信システムの概略構成図である。第2の実施形態による無線通信システム2は、複数の移動局11-1~11-4と、基地局12とを有する。なお、基地局12は、通信装置の他の一例である。
 本実施形態でも、複数の移動局11-1~11-4の何れも、D2D通信に対応しており、リモート移動局、宛先移動局、及び中継移動局の何れとしても動作可能である。また各移動局には、予め、同じリソースプールのセットがインストールされている。そしてリソースプールのセットに含まれる何れのリソースプールも、データまたは呼制御信号の送信及び受信の何れにも利用可能となっている。以下では、移動局11-1が中継移動局であり、移動局11-2~11-4が、それぞれ、リモート移動局であると仮定する。そして移動局11-1は、基地局12が提供するセル12aの範囲内に位置しており、一方、移動局11-2~11-4の何れも、セル12aの範囲外に位置していると仮定する。
 この実施形態では、基地局12と移動局11-2~11-4のそれぞれとのD2D通信において、移動局11-1のホップカウントは何れも'1'となる。したがって、各移動局11-2~11-4が選択するリソースプールが同一であると、上記の実施形態と同様にリソースプールが選択される場合、中継移動局11-1においても、各D2D通信について選択されるリソースプールは同一となる。
 そこで、本実施形態では、基地局12が、リモート移動局11-2~11-4に割り当てられるリソースプールが互いに異なるように、各リモート移動局において使用されるリソースプールを選択する。
 例えば、リモート移動局11-2~11-4のそれぞれは、中継移動局11-1へ送信されるDiscovery処理における制御信号の何れかに、リソースプールの選択に利用される、移動局の状態を表すパラメータを含める。なお、そのパラメータは、例えば、自装置の環境を表すパラメータ、通信状態を表すパラメータ、及び、通信の緊急度を表すパラメータのうちの少なくとも一つを含む。また、自装置の環境を表すパラメータは、例えば、自装置の位置及び自装置の速度を表すパラメータである。通信状態を表すパラメータは、例えば、無線測定結果を表すパラメータである。そして中継移動局11-1は、リモート移動局11-2~11-4のそれぞれから受信したパラメータを基地局12へ転送する。
 基地局12は、リモート移動局11-2~11-4のそれぞれの状態を表すパラメータに基づいて、リモート移動局11-2~11-4のそれぞれに割り当てるリソースプールを設定する。基地局12は、例えば、所定距離内にいる複数のリモート移動局に対して互いに異なるリソースプールを設定する。また、所定距離内に位置し、かつ、速度が同じ複数のリモート移動局は、同じグループに属している可能性が有る。そこで、基地局12は、所定距離内に位置し、かつ、速度が同じ複数のリモート移動局に対して同じリソースプールを割り当て、一方、速度差が所定値以上あるか、所定距離以上離れている複数のリモート移動局に対して、異なるリソースプールを設定してもよい。さらに、基地局12は、無線測定結果で示される、受信電力が大きい方、あるいは、小さい方のリモート移動局から順に、異なるリソースプールを割り当ててもよい。さらにまた、基地局12は、移動局の状態を表すパラメータに、通信の緊急度を表すパラメータが含まれている場合、緊急度が高いリモート移動局から順にリソースプールを割り当ててもよい。
 また、基地局12は、互いに直交関係にあるリソースプールを異なるリモート移動局に割り当てることができる。なお、互いに直交関係にあるリソースプールは、例えば、周波数に関して、他方のリソースプールに含まれるリソースと直交関係にあるリソースを含む。一つのスケジュール割り当て情報は、各リソースプール内での同じ位置のリソースとともに直交する複数のリソースプールを示すことができる。そこで基地局12は、単一のスケジュール割り当て情報を送信するだけで、各リモート移動局で使用されるリソースプールを通知できる。そのため、中継移動局11-1からリモート移動局11-2~11-4のそれぞれへの呼制御のオーバーヘッドが削減される。
 また、中継移動局11-1は、一つのスケジュール割り当て期間内で、基地局12からリモート移動局のそれぞれへのデータを転送することができる。その際、接続確立期間中、中継移動局11-1により、リモート移動局のそれぞれに、データリンク層(layer 2)での目的地識別情報が割り当てられてもよい。また、リモート移動局のそれぞれは、データリンク層における受信データとネットワーク層(layer 3)における受信データとを識別できる。そのため、各リモート移動局が共通するデータリンク層の目的地識別情報を有している場合には、各リモート移動局は、ネットワーク層におけるアドレス、例えば、IPアドレスを利用して、受信するデータがどのリモート移動局宛のものかを判定してもよい。
 また、第2の実施形態においても、リモート移動局のそれぞれと、基地局間の通信を、図1における各中継移動局と同様に、直列に並ぶ複数の中継移動局で中継してもよい。そして各中継移動局は、第1の実施形態と同様に、自装置のホップカウントとリモート移動局が選択したリソースプールの番号に基づいて、自装置が使用するリソースプールを選択すればよい。
 図9は、基地局12の概略構成図である。基地局12は、送信用アンテナ41と、受信用アンテナ42と、送信用無線処理部43と、受信用無線処理部44と、有線インターフェース部45と、記憶部46と、制御部47とを有する。送信用無線処理部43、受信用無線処理部44、有線インターフェース部45、記憶部46及び制御部47は、それぞれ別個の回路として形成される。あるいはこれらの各部は、その各部に対応する回路が集積された一つまたは複数の集積回路として基地局12に実装されてもよい。
 送信用アンテナ41は、送信用無線処理部43を介して伝達されたダウンリンク信号を無線信号として送信する。
 受信用アンテナ42は、移動局からの無線信号であるアップリンク信号を受信して電気信号に変換し、電気信号に変換されたアップリンク信号を受信用無線処理部44に伝達する。また受信用アンテナ22は、他の移動局からのD2D通信における各種の無線信号を受信して電気信号に変換し、その変換された信号を受信用無線処理部44に伝達する。
 送信用無線処理部43は、制御部47から受け取った、多重化されたダウンリンク信号をアナログ化した後、制御部47により指定された無線周波数を持つ搬送波に重畳する。そして送信用無線処理部43は、搬送波に重畳されたダウンリンク信号をハイパワーアンプ(図示せず)により所望のレベルに増幅し、その信号を送信用アンテナ41へ伝達する。
 受信用無線処理部44は、受信用アンテナ42から受信したアップリンク信号を、低ノイズアンプ(図示せず)により増幅する。受信用無線処理部44は、増幅されたアップリンク信号に、中間周波数を持つ周期信号を乗じることにより、アップリンク信号の周波数を無線周波数からベースバンド周波数に変換する。そして受信用無線処理部44は、ベースバンド周波数を持つアップリンク信号をアナログ/デジタル変換した後、そのアップリンク信号を制御部47へ渡す。なお、このアップリンク信号には、中継移動局11-1で中継された、リモート移動局11-2~11-4の何れかからの信号も含まれる。
 有線インターフェース部45は、基地局12を、上位ノード装置(図示せず)及び他の基地局と接続するための通信インターフェース回路を有する。そして有線インターフェース部45は、上位ノード装置から受信した信号を、S1インターフェースに従って解析し、その信号に含まれるダウンリンク信号及び制御信号を抽出する。さらに有線インターフェース部45は、他の基地局から受信した信号を、X2インターフェースに従って解析し、その信号に含まれる制御信号を抽出する。そして有線インターフェース部45は、抽出したダウンリンク信号及び制御信号を制御部47に渡す。
 一方、有線インターフェース部45は、制御部47から受け取ったアップリンク信号をS1インターフェースに従った形式の信号に変換した上で上位ノード装置へ出力する。また有線インターフェース部45は、他の基地局へ送信する制御信号を、X2インターフェースに従った形式に変換する。そして有線インターフェース部45は、その制御信号を他の基地局へ出力する。
 記憶部46は、例えば、書き換え可能な不揮発性半導体メモリまたは揮発性半導体メモリを有する。そして記憶部46は、移動局と通信するための各種の情報を記憶する。本実施形態では、各移動局が記憶しているのと同じリソースプールのセットを記憶する。
 制御部47は、例えば、1個あるいは複数個のプロセッサ及びその周辺回路を有する。そして制御部47は、ダウンリンク信号に対して、誤り訂正符号化などの処理を行う。さらに制御部47は、ダウンリンク信号を所定の変調方式に従って変調し、かつ多重化する。なお、多重化方式は、例えば、OFDMとすることができる。そして制御部47は、変調及び多重化されたダウンリンク信号を送信用無線処理部43へ渡す。
 一方、制御部47は、受信用無線処理部44から受け取ったアップリンク信号を所定の多重化方式に従って分離し、分離したアップリンク信号をそれぞれ復調し、誤り訂正復号する。なお、アップリンク信号に対する多重化方式は、例えば、SC-FDMAとすることができる。そして制御部47は、復号されたアップリンク信号を有線インターフェース部45に出力する。さらに制御部47は、復号されたアップリンク信号から、基地局12が参照する各種の信号、例えば、呼制御に関する制御情報、あるいは、リモート移動局からの状態を表すパラメータなどを取り出す。
 さらに、制御部47は、送信電力制御及び呼制御など、移動局との間で無線通信を実行するための各種の処理を実行する。
 さらに、制御部47は、各リモート移動局から中継移動局を介して受信した、移動局の状態を表すパラメータに基づいて、各リモート移動局が利用するリソースプールを選択する。その際、制御部47は、上記のように、同一の中継移動局を利用する、複数のリモート移動局について、割り当てられるリソースプールが互いに異なるようにリソースプールを選択する。
 ここに挙げられた全ての例及び特定の用語は、読者が、本発明及び当該技術の促進に対する本発明者により寄与された概念を理解することを助ける、教示的な目的において意図されたものであり、本発明の優位性及び劣等性を示すことに関する、本明細書の如何なる例の構成、そのような特定の挙げられた例及び条件に限定しないように解釈されるべきものである。本発明の実施形態は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であることを理解されたい。
 1、2  無線通信システム
 11-1~11-n  移動局
 12  基地局
 21、41  送信用アンテナ
 22、42  受信用アンテナ
 23、43  送信用無線処理部
 24、44  受信用無線処理部
 45  有線インターフェース部
 25、46  記憶部
 26、47  制御部
 31  PDSCH復号部
 32  通信経路設定部
 33  D2D制御信号復号部
 34  D2Dデータ信号復号部
 35  キャリアセンシング部
 36  ホップカウント算出部
 37  スケジューリング部
 38  送信データ生成部

Claims (14)

  1.  複数の通信装置を有する無線通信システムであって、
     前記複数の通信装置のそれぞれは、前記複数の通信装置のうちの他の通信装置との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールの共通するセットを記憶し、
     前記複数の通信装置のうちの第1の通信装置は、前記リソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、前記複数の通信装置のうちの第2の通信装置宛ての信号を送信し、
     前記複数の通信装置のうち、前記第1の通信装置と前記第2の通信装置間の無線通信を中継する少なくとも一つの第3の通信装置のそれぞれは、前記無線通信における当該第3の通信装置でのホップカウントと、前記第1の通信装置が選択したリソースプールとに基づいて規定される所定の規則に従って前記リソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、前記第2の通信装置宛ての信号を前記少なくとも一つの第3の通信装置のうちの中継順序が次の通信装置または前記第2の通信装置へ転送する、
    無線通信システム。
  2.  前記所定の規則は、前記少なくとも一つの第3の通信装置のうち、連続する前記ホップカウントを有する第3の通信装置のそれぞれに対して、前記リソースプールのセットの中から互いに異なるリソースプールが選択されるように規定される、請求項1に記載の無線通信システム。
  3.  前記複数のリソースプールのそれぞれは互いに異なる番号を有し、
     前記所定の規則は、前記第1の通信装置が選択したリソースプールの番号に前記ホップカウントが加算された番号を有するリソースプールが選択されるように規定される、請求項2に記載の無線通信システム。
  4.  前記第1の通信装置は、前記リソースプールのセットに含まれるリソースプールのそれぞれについてキャリアセンシングを実行して1以上のアイドル状態のリソースプールを検出し、前記検出した1以上のアイドル状態のリソースプールの中から何れかのリソースプールを選択する、請求項1~3の何れか一項に記載の無線通信システム。
  5.  前記第1の通信装置、前記第2の通信装置及び前記少なくとも一つの第3の通信装置のそれぞれは移動局である、請求項1~4の何れか一項に記載の無線通信システム。
  6.  前記複数の通信装置のうちの第4の通信装置は、前記少なくとも一つの第3の通信装置を中継して前記第2の通信装置と無線通信し、かつ、前記少なくとも一つの第3の通信装置のそれぞれについて、前記第1の通信装置と前記第2の通信装置間の無線通信におけるホップカウントと、前記第4の通信装置と前記第2の通信装置間の無線通信におけるホップカウントは同一であり、
     前記第1の通信装置は、前記少なくとも一つの第3の通信装置を介して前記第2の通信装置へ前記第1の通信装置の状態を表すパラメータを通知し、かつ、前記第4の通信装置は、前記少なくとも一つの第3の通信装置を介して前記第2の通信装置へ前記第4の通信装置の状態を表すパラメータを通知し、
     前記第2の通信装置は、前記第1の通信装置から通知された前記パラメータ及び前記第4の通信装置から通知された前記パラメータに基づいて、前記第1の通信装置が使用するリソースプールと前記第4の通信装置が使用するリソースプールとを設定し、前記少なくとも一つの第3の通信装置を中継して、設定したリソースプールを前記第1の通信装置及び前記第4の通信装置へ通知する、請求項1~3の何れか一項に記載の無線通信システム。
  7.  前記第1の通信装置の状態を表すパラメータは、前記第1の通信装置の環境を表すパラメータ、前記第1の通信装置の通信状態を表すパラメータ、及び、通信の緊急度を表すパラメータのうちの少なくとも一つを含む、請求項6に記載の無線通信システム。
  8.  前記第2の通信装置は、前記第1の通信装置が使用するリソースプールと前記第4の通信装置が使用するリソースプールとが互いに異なるように、前記リソースプールのセットの中から前記第1の通信装置が使用するリソースプールと前記第4の通信装置が使用するリソースプールとを設定する、請求項6に記載の無線通信システム。
  9.  前記第2の通信装置は、前記第1の通信装置が使用するリソースプールと前記第4の通信装置が使用するリソースプールとが互いに直交関係となるように、前記第1の通信装置が使用するリソースプールと前記第4の通信装置が使用するリソースプールとを設定する、請求項6に記載の無線通信システム。
  10.  前記第2の通信装置は、前記第1の通信装置が使用するリソースプールを表す情報と前記第4の通信装置が使用するリソースプールを表す情報とを含む一つのスケジュール割り当て情報を生成し、当該一つのスケジュール割り当て情報を前記少なくとも一つの第3の通信装置を介して前記第1の通信装置及び前記第4の通信装置へ送信する、請求項9に記載の無線通信システム。
  11.  前記第2の通信装置は基地局であり、前記第1の通信装置、前記第4の通信装置及び前記少なくとも一つの第3の通信装置のそれぞれは移動局である、請求項6~10の何れか一項に記載の無線通信システム。
  12.  第1の他の移動局と第2の他の移動局との無線通信を中継する移動局であって、
     前記移動局が前記第2の他の移動局との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットを記憶する記憶部と、
     前記無線通信における前記移動局でのホップカウントと、前記第1の他の移動局が前記リソースプールのセットの中から選択したリソースプールとに基づいて規定される所定の規則に従って前記リソースプールのセットの中から何れかのリソースプールを選択し、前記選択したリソースプールに含まれる何れかのリソースを利用して、前記無線通信を中継する制御部と、
    を有する移動局。
  13.  複数の移動局のそれぞれと、少なくとも一つの他の移動局の中継により無線通信する基地局であって、
     前記複数の移動局のそれぞれが前記少なくとも一つの他の移動局との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットを記憶する記憶部と、
     前記複数の移動局のそれぞれから通知された、当該移動局の状態を表すパラメータに基づいて、前記リソースプールのセットの中から前記複数の移動局のそれぞれごとに、当該移動局が使用するリソースプールを設定し、前記少なくとも一つの他の移動局を介して、前記複数の移動局のそれぞれに対して設定したリソースプールを通知する制御部と、
    を有する基地局。
  14.  複数の通信装置を有する無線通信システムにおける無線通信方法であって、
     前記複数の通信装置のうちの第1の通信装置は、前記複数の通信装置のそれぞれが記憶する、前記複数の通信装置のうちの他の通信装置との無線通信に利用可能な周波数及び時間を規定するリソースを複数含むリソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、前記複数の通信装置のうちの第2の通信装置宛ての信号を送信し、
     前記複数の通信装置のうち、前記第1の通信装置と前記第2の通信装置間の無線通信を中継する少なくとも一つの第3の通信装置のそれぞれは、前記無線通信における当該第3の通信装置でのホップカウントと、前記第1の通信装置が選択したリソースプールとに基づいて規定される所定の規則に従って前記リソースプールのセットの中から何れかのリソースプールを選択し、選択したリソースプールに含まれる何れかのリソースを利用して、前記第2の通信装置宛ての信号を前記少なくとも一つの第3の通信装置のうちの中継順序が次の通信装置または前記第2の通信装置へ転送する、
    ことを含む無線通信方法。
PCT/JP2016/061845 2016-04-12 2016-04-12 移動局、基地局、無線通信システム及び無線通信方法 WO2017179133A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084470.8A CN108886764B (zh) 2016-04-12 2016-04-12 移动站、基站、无线通信系统及无线通信方法
JP2018511804A JP6801709B2 (ja) 2016-04-12 2016-04-12 無線通信システム、移動局及び無線通信方法
EP16898593.5A EP3445105B1 (en) 2016-04-12 2016-04-12 Mobile station, base station, wireless communication system, and wireless communication method
PCT/JP2016/061845 WO2017179133A1 (ja) 2016-04-12 2016-04-12 移動局、基地局、無線通信システム及び無線通信方法
US16/137,764 US10735977B2 (en) 2016-04-12 2018-09-21 User equipment, base station, radio communication system, and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061845 WO2017179133A1 (ja) 2016-04-12 2016-04-12 移動局、基地局、無線通信システム及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/137,764 Continuation US10735977B2 (en) 2016-04-12 2018-09-21 User equipment, base station, radio communication system, and radio communication method

Publications (1)

Publication Number Publication Date
WO2017179133A1 true WO2017179133A1 (ja) 2017-10-19

Family

ID=60042497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061845 WO2017179133A1 (ja) 2016-04-12 2016-04-12 移動局、基地局、無線通信システム及び無線通信方法

Country Status (5)

Country Link
US (1) US10735977B2 (ja)
EP (1) EP3445105B1 (ja)
JP (1) JP6801709B2 (ja)
CN (1) CN108886764B (ja)
WO (1) WO2017179133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636615A (zh) * 2018-06-21 2019-12-31 维沃移动通信有限公司 一种资源确定方法、指示方法、中继站及节点

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191130A (ja) * 2017-05-02 2018-11-29 ソニー株式会社 通信装置及び通信方法
CN109495924B (zh) * 2017-09-11 2023-06-02 维沃移动通信有限公司 一种测量、测量配置方法、终端及基站
RU2755210C1 (ru) * 2018-05-22 2021-09-14 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ доступа и точка передачи
WO2023164317A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Avoiding resource conflict for sidelink positioning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043435A (ja) * 2005-08-03 2007-02-15 Nec Corp 無線マルチホップネットワーク、通信端末装置及びそれらに用いるチャネル予約方法並びにそのプログラム
WO2012131925A1 (ja) * 2011-03-29 2012-10-04 富士通株式会社 通信ノード及び通信方法
JP2016032252A (ja) * 2014-07-30 2016-03-07 ソニー株式会社 装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333936B1 (en) * 1998-04-29 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for allocating processing resources
US20080108355A1 (en) 2006-11-03 2008-05-08 Fujitsu Limited Centralized-scheduler relay station for mmr extended 802.16e system
JP2008147925A (ja) 2006-12-08 2008-06-26 Kddi Corp ネットワークの帯域予約方法、該方法のための通信装置
US20140038653A1 (en) 2011-04-19 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Radio base stations and methods therein for handling interference and scheduling radio resources accordingly
US9603127B2 (en) * 2013-11-08 2017-03-21 Lg Electronics Inc. Method and apparatus for allocating resources for performing device-to-device communication in wireless communication system
TWI571153B (zh) * 2014-01-31 2017-02-11 財團法人資訊工業策進會 用於一無線通訊系統之基地台及裝置對裝置使用者裝置
CN106233803B (zh) * 2014-02-16 2019-09-13 Lg电子株式会社 用于无线通信系统中的装置到装置通信的控制信号的资源分配方法及其装置
WO2015130074A2 (ko) * 2014-02-27 2015-09-03 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기 신호의 송신 방법 및 이를 위한 장치
WO2016006859A1 (ko) * 2014-07-07 2016-01-14 엘지전자 주식회사 기기간 통신을 지원하는 무선 접속 시스템에서 릴레이 단말의 d2d 신호 송수신 방법 및 장치
US10397850B2 (en) * 2015-04-30 2019-08-27 Lg Electronics Inc. Method and device for transmitting/receiving data in mesh network using bluetooth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043435A (ja) * 2005-08-03 2007-02-15 Nec Corp 無線マルチホップネットワーク、通信端末装置及びそれらに用いるチャネル予約方法並びにそのプログラム
WO2012131925A1 (ja) * 2011-03-29 2012-10-04 富士通株式会社 通信ノード及び通信方法
JP2016032252A (ja) * 2014-07-30 2016-03-07 ソニー株式会社 装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Beijing Xinwei Telecom Techn. , V2X resource allocation with cooperative diversity", 3GPP TSG-RAN WG1#82B R1-155954, 25 September 2015 (2015-09-25), XP051041738, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/Rl-155954.zip> *
ERICSSON: "Discussion on V2X Resource Allocation", 3GPP TSG-RAN WG1#83 R1-157372, 7 November 2015 (2015-11-07), XP051022765, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/Rl-157372.zip> *
FUJITSU: "Discussion of Resource Allocation for PC5 based V2V", 3GPP TSG-RAN WG1#83 R1- 156618, 6 November 2015 (2015-11-06), XP051022123, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/R1-156618.zip> *
See also references of EP3445105A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636615A (zh) * 2018-06-21 2019-12-31 维沃移动通信有限公司 一种资源确定方法、指示方法、中继站及节点
CN110636615B (zh) * 2018-06-21 2024-04-23 维沃移动通信有限公司 一种资源确定方法、指示方法、中继站及节点

Also Published As

Publication number Publication date
JP6801709B2 (ja) 2020-12-16
CN108886764B (zh) 2023-04-18
EP3445105A1 (en) 2019-02-20
CN108886764A (zh) 2018-11-23
US10735977B2 (en) 2020-08-04
EP3445105B1 (en) 2020-05-20
US20190028906A1 (en) 2019-01-24
EP3445105A4 (en) 2019-03-27
JPWO2017179133A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
TWI751277B (zh) 多子訊框探索參考信號傳遞(drs)量測時序配置(dmtc)訊窗
JP5939299B2 (ja) 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法
US10057076B2 (en) System and method for device-to-device communication
US10735977B2 (en) User equipment, base station, radio communication system, and radio communication method
JP6726679B2 (ja) 通信装置および無線通信方法
CN105338589A (zh) 随机接入响应消息的传输方法及装置
JP2012521105A (ja) ダウンリンクパワーを配分する方法、装置およびシステム
EP3157298B1 (en) Carrier aggregation using different frame structures
CN114073163A (zh) 用于随机接入过程的方法和装置
KR20140116899A (ko) 매크로 셀에 대한 최소 간섭을 갖는 단문 메시지 송신
JP2020523919A (ja) 信号伝送方法、関連装置、およびシステム
JP2017539135A (ja) D2d同期信号のための電力制御モード
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
JP2018007171A (ja) 通信装置、及び無線リソース割当方法
WO2015166792A1 (ja) 基地局装置、端末装置、および通信方法
US9544879B2 (en) Wireless communication system, method for wireless communication, relay station, and wireless base station
CN111345105A (zh) 网格网络中的网络节点和方法
JP2020526056A (ja) 無線通信方法及び無線通信装置
JP6409166B2 (ja) 無線通信システム、端末、基地局および処理方法
JP5726649B2 (ja) 異種システム間交換機及び異種システム間交換方法
JP2018019376A (ja) 無線通信システム、基地局及び閾値制御方法
JP2013005339A5 (ja)
JP2012257091A (ja) 移動体通信システム、基地局装置及びベースバンド処理割当方法
CN116097787A (zh) 信息发送和接收方法、装置及系统
JP2018006905A (ja) 無線通信システム、基地局、移動局及び識別番号設定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511804

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016898593

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016898593

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898593

Country of ref document: EP

Kind code of ref document: A1