WO2017177599A1 - 无源电子标签、无源电子标签控制方法、装置及系统 - Google Patents

无源电子标签、无源电子标签控制方法、装置及系统 Download PDF

Info

Publication number
WO2017177599A1
WO2017177599A1 PCT/CN2016/096255 CN2016096255W WO2017177599A1 WO 2017177599 A1 WO2017177599 A1 WO 2017177599A1 CN 2016096255 W CN2016096255 W CN 2016096255W WO 2017177599 A1 WO2017177599 A1 WO 2017177599A1
Authority
WO
WIPO (PCT)
Prior art keywords
passive electronic
tag
electronic tag
control
writer
Prior art date
Application number
PCT/CN2016/096255
Other languages
English (en)
French (fr)
Inventor
张灏文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017177599A1 publication Critical patent/WO2017177599A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07701Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction
    • G06K19/07703Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual
    • G06K19/07705Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual the visual interface being a single light or small number of lights capable of being switched on or off, e.g. a series of LEDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field

Definitions

  • This application relates to, but is not limited to, the field of communication technology.
  • Radio Frequency Identification technology is considered as a combination of wireless communication and automatic identification technology. It is one of the most promising Internet technologies (IT Technology) in the 21st century and has been widely used in many fields.
  • the RFID tag reader usually reads information such as an RFID tag (Identification, abbreviated as ID) number in the radio field in the air interface protocol in the related art. Since passive electronic tags do not need to be replaced and are easy to install and use, the application scenario is more extensive than active electronic tags.
  • UHF RFID passive electronic tags receive energy in two ways:
  • One method is to make the UHF RFID passive electronic tag close to the tag reader antenna to form a near-field coupling of the magnetic field.
  • the distance between the UHF RFID passive electronic tag and the tag reader cannot be infinitely reduced, the amount of energy that can be received is limited.
  • Another method is to increase the area of the antenna on the passive electronic tag card of the UHF RFID passive electronic tag to increase the energy received by the UHF RFID passive electronic tag.
  • the area of the card of the UHF RFID passive electronic tag is constant, the area of the antenna of the UHF RFID passive electronic tag can be increased, which is extremely high.
  • the energy that can be received by a frequency RFID passive electronic tag is also limited.
  • the receiving time is relatively long, which will greatly affect the receiving efficiency when the passive electronic tag receives energy.
  • This paper provides a passive electronic tag, passive electronic tag control method, device and system to solve the problem of low efficiency when the passive electronic tag receives energy in the related art.
  • a passive electronic tag comprising: a tag card board and a wire;
  • the label card board includes: a label circuit, an antenna, and a light emitting element, wherein the label circuit is configured to: control the passive electronic label to execute a control instruction, where the control instruction comprises: passing the label circuit a query instruction, a selection instruction, or an instruction for controlling brightness and darkness of the light-emitting element, wherein the antenna and the light-emitting element are respectively connected to the label circuit;
  • the wire is coupled to the tag circuit, the wire being configured to receive energy transmitted by the tag reader.
  • the antenna includes: a first port and a second port, the first port is connected to the label circuit, and the second port is suspended;
  • the wire includes: a third port and a fourth port, the third port is connected to the tag circuit, and the fourth port is suspended, wherein a distance between the second port and the fourth port is The threshold is predetermined.
  • an effective distance between the second port and the fourth port is one quarter of a wavelength corresponding to an operating frequency of the passive electronic tag, where the effective distance is the second The distance between the first projection of the port on the label card and the second projection of the fourth port on the label card.
  • the wires are disposed on the same plane as the antenna.
  • the label card further includes: a power supply capacitor, wherein the power supply capacitor is respectively connected to the light emitting element and the label circuit, and the power supply capacitor is configured to: supply power to the light emitting element.
  • the label card further includes: a diode, wherein a positive pole of the diode is connected to the label circuit, and a cathode of the diode is respectively connected to the power supply capacitor and the light emitting element, and the diode is set And is: isolating a voltage between the power supply capacitor and the load circuit formed by the light emitting element and the tag circuit.
  • the tag circuit comprises: a tag chip and a control circuit
  • the tag chip is configured to: generate the control instruction according to a result obtained by interaction with the tag reader/writer;
  • the control circuit is respectively connected to the tag chip and the light emitting element, and the control circuit is configured to control the light emitting element to emit light according to the control instruction generated by the tag chip.
  • the tag circuit is further configured to: provide the tag reader/writer with the identity of the passive electronic tag and/or location information of the passive electronic tag, where the identity identifier is used The unique identification of the passive electronic tag.
  • a passive electronic tag control method includes:
  • the light emitting element is controlled to emit light according to the control command.
  • the method further includes:
  • the energy of the control signal is converted and stored by a supply capacitor.
  • controlling the light emitting element to emit light according to the control instruction comprises:
  • the method before the receiving, by the antenna and the wire, the control signal transmitted by the tag reader/writer, the method further includes:
  • a passive electronic tag control method includes:
  • control signal Transmitting a control signal to the target passive electronic tag, wherein the control signal carries a control command for controlling a light emitting element on the passive electronic tag.
  • the method further includes:
  • the determining whether the energy transmitted by the tag reader/writer to the target passive electronic tag is less than an energy threshold for controlling the illumination of the light-emitting component of the target passive electronic tag includes:
  • Obtaining location information of the target passive electronic tag obtaining a location where the target passive electronic tag is located; calculating a distance between a location where the target passive electronic tag is located and a location where the tag reader is located; Determining whether the distance is greater than a preset distance, wherein the preset distance is when the energy transmitted by the tag reader/writer to the target passive electronic tag is equal to the energy threshold, the tag reader/writer The distance between the target passive electronic tags;
  • moving the tag reader to the first area includes:
  • a passive electronic tag control device comprising:
  • the receiving module is configured to: receive, by the antenna and the wire, a control signal transmitted by the tag reader/writer, wherein the control signal carries a control instruction for controlling the light-emitting component on the passive electronic tag;
  • the parsing module is configured to: parse the control signal received by the receiving module to obtain the control instruction;
  • the control module is configured to: control the light emitting element to emit light according to the control instruction obtained by the analysis module.
  • a passive electronic tag control device comprising:
  • the first obtaining module is configured to: obtain an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer, where the identity identifier is used to uniquely identify the passive electronic tag;
  • a selection module configured to: select a target passive electronic tag of the preset identity from the identity identifiers of the one or more passive electronic tags acquired by the first acquiring module;
  • a sending module configured to: send a control signal to the target passive electronic tag selected by the selecting module, wherein the control signal carries a control instruction for controlling a light emitting component on the passive electronic tag.
  • a passive electronic tag control system comprising: a tag reader and a passive electronic tag
  • the tag reader/writer is configured to: acquire an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer, where the identity identifier is used to uniquely identify a passive electronic device. a tag; selecting the passive electronic tag of the preset identity from the identity of the one or more passive electronic tags; transmitting a control signal to the passive electronic tag, wherein the control signal is carried Controlling a control command of the light emitting element on the passive electronic tag;
  • the passive electronic tag is configured to receive the control signal transmitted by the tag reader/writer through an antenna and a wire, wherein the control signal carries the light-emitting component for controlling the passive electronic tag The control command; parsing the control signal to obtain the control command; and controlling the light-emitting element to emit light according to the control command.
  • the passive electronic tag includes a tag card board and a wire
  • the tag card board includes: a tag circuit, an antenna, and a light emitting component
  • the tag circuit is configured to: control the passive electronic tag to execute a control command, and the control command is passed by the tag circuit
  • the antenna is interacted with the tag reader, the antenna and the light emitting component are respectively connected to the tag circuit
  • the wire is connected to the tag circuit, and the wire is arranged to: receive the energy transmitted by the tag reader/writer; that is, the embodiment of the invention passes the tag card
  • Adding wires outside the board is equivalent to increasing the area of the antenna of the passive electronic tag, so that the same size of the passive electronic tag can receive more energy transmitted by the tag reader; solving the related art passive electronic
  • the problem of low efficiency when the tag receives energy increases the efficiency of receiving energy from the passive electronic tag.
  • the energy transmitted by the received tag reader/writer can be used to supply power to the light-emitting element, so that the light-emitting element emits light, so that the passive electronic tag can be accurately positioned.
  • FIG. 1 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another passive electronic tag according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another passive electronic tag according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another passive electronic tag according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for controlling a passive electronic tag according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another method for controlling a passive electronic tag according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for controlling a UHF LED passive electronic tag according to an embodiment of the present invention
  • FIG. 11 is a flowchart of another method for controlling a UHF illuminating RFID passive electronic tag according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a passive electronic tag control apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another passive electronic tag control apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a passive electronic tag control system according to an embodiment of the present invention.
  • 15 is a schematic structural diagram of another passive electronic tag control system according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an operational flow of a passive electronic tag control system according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present invention. As shown in FIG. 1 , the passive electronic tag provided in this embodiment includes: Label card 10 and wire 20.
  • the tag card board 10 includes: a tag circuit 11, an antenna 12, and a light-emitting element 13, wherein the tag circuit 11 is configured to: control the passive electronic tag to execute a control command, the control command comprising: the tag circuit 11 passing the antenna 12 and the tag
  • the query command, the selection command, or the command for controlling the light and dark of the light-emitting element 13 are obtained by the reader/writer interaction, and the antenna 12 and the light-emitting element 13 are respectively connected to the tag circuit 11.
  • the wire 20 is connected to the tag circuit 11, and the wire 20 is arranged to receive the energy transmitted by the tag reader.
  • the foregoing passive electronic tag may be, but is not limited to, applied to radio frequency identification.
  • the foregoing passive electronic tag may be, but is not limited to, applied to radio frequency identification.
  • using a tag reader to control a passive electronic tag in a scene For example: using a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag provided in this embodiment increases the area of the antenna of the passive electronic tag by adding a wire outside the tag card board, so that the same size passive electronic tag can receive more tag reading.
  • the energy transmitted by the writer solves the problem of low efficiency when the passive electronic tag receives energy in the related art, and improves the efficiency of receiving energy of the passive electronic tag.
  • the control instruction is executed by the tag circuit controlling the passive electronic tag, the energy transmitted by the received tag reader/writer can be used to supply power to the light-emitting element, so that the light-emitting element emits light, so that the passive electronic tag can be accurately positioned.
  • the area of the passive electronic tag antenna is increased by the wire, the energy received by the passive electronic tag is improved, and the passive electronic tag with a certain area of the tag card is more easily received.
  • the reader energy is increased, the distance that the tag reader can scan the passive electronic tag is increased, which makes the tag reader easier to scan the passive electronic tag.
  • the label card 10 can be, but is not limited to, a Printed Circuit Board (PCB).
  • the PCB can be, but is not limited to, an inexpensive FR4 printed circuit board to reduce the cost of UHF illuminating RFID passive electronic tags.
  • the tag circuit 11, the antenna 12, and the light emitting element 13 are mounted on a PCB.
  • the antenna 12 may be a PCB antenna on the PCB, or may be a ceramic antenna or an antenna of other materials, which is not limited in the embodiment of the present invention.
  • the antenna 12 operates in an ultra high frequency (UHF) frequency band, and one end is suspended, and the other end is connected to the tag circuit 11.
  • UHF ultra high frequency
  • the light emitting element 13 can be, but is not limited to, a Light Emitting Diode (LED).
  • the LED can be, but is not limited to, a light-emitting diode with low power consumption, low voltage, high brightness, and large viewing angle.
  • the tag circuit, the supply capacitor and the LED can be connected together to the same reference ground plane.
  • control command is an instruction for controlling the passive electronic tag obtained by the tag circuit 11 interacting with the tag reader/writer through the antenna 12.
  • the control command may be, but is not limited to, for querying the passive electronic tag.
  • the control instruction may be, but is not limited to, a selection instruction for instructing the tag reader to select the passive electronic tag; the control instruction may also be, but is not limited to, an instruction for controlling the brightness of the light-emitting element.
  • FIG. 2 is a schematic structural diagram of another passive electronic tag according to an embodiment of the present invention.
  • the antenna 12 may include a first port 121 and a second port 122, and the first port 121. Connected to the tag circuit 11, the second port 122 is suspended;
  • the wire 20 may include a third port 21 and a fourth port 22, the third port 21 being connected to the tag circuit 11, and the fourth port 22 being suspended, wherein the distance between the second port 122 and the fourth port 22 is a predetermined threshold.
  • the effective distance between the second port 122 and the fourth port 22 may be, but is not limited to, one quarter of a wavelength corresponding to an operating frequency of the passive electronic tag, where the effective distance is The distance between the first projection of the second port 122 on the label card 10 and the second projection of the fourth port 22 on the label card 10.
  • the passive electronic tag provided in this embodiment increases the antenna area of the passive electronic tag by connecting the antenna 12 and the wire 20 to the tag circuit 11, respectively, thereby improving the energy transmitted by the tag reader/writer received by the passive electronic tag. .
  • Setting the distance between the antenna 12 and the suspended port of the wire 20 to a preset distance effectively improves the efficiency of receiving energy of the passive electronic tag.
  • the efficiency of receiving energy of the passive electronic tag can be maximized.
  • the wire 20 and the antenna 12 may be, but are not limited to, disposed on the same plane.
  • the angle between the wire 20 and the antenna 12 can be, but is not limited to, 180 degrees.
  • the center line of the wire 20 and the center line of the antenna 12 may be disposed on the same straight line.
  • the passive electronic tag provided in this embodiment can reduce the length of the wire 20 required under the same energy receiving efficiency by arranging the wire 20 and the antenna 12 on the same plane. Moreover, the center line of the wire 20 and the center line of the antenna 12 can be disposed on the same straight line to reduce the length of the wire 20 required under the same energy receiving efficiency to a greater extent, and the efficiency of energy reception is improved. This also achieves the effect of saving resources.
  • FIG. 3 is a schematic structural diagram of still another passive electronic tag according to an embodiment of the present invention.
  • the tag card 10 may further include: a power supply capacitor 14; wherein the power supply capacitor 14 is respectively connected to the light-emitting element 13 and the tag circuit 11, and the power supply capacitor 14 is configured to supply power to the light-emitting element 13.
  • the power supply capacitor 14 can be, but is not limited to, converting and storing the energy received by the passive electronic tag and powering the light-emitting element 13.
  • the supply capacitor 14 can be, but is not limited to, a non-polar ceramic capacitor or a polar electrolytic capacitor that functions to store and supply power.
  • UHF passive electronic tags collect energy from RFID readers from airborne electromagnetic fields. Because of the Amplitude Shift Keying (ASK) modulation signal envelope and the dynamic power consumption of the tag component, the UHF air interface can maintain a stable supply voltage by using a bypass capacitor. Greater than the minimum operating voltage of the tag component.
  • Passive electronic tag chips require only a few nanofarads (nF) of capacitance due to their low power consumption, and are typically integrated into the chip of a passive electronic tag.
  • an additional large-capacitance capacitor can be used to collect and maintain the energy collected by the tag component. Assume that the load operating voltage on the passive electronic tag is Von, such as 2V, and the non-operating voltage is Voff, such as 1.5V. Maintaining the load energy on the passive electronic tag requires power supply capacitance, but is not limited to:
  • the load energy requirement of the LED is related to the load power and load duration, as in the formula:
  • the capacitance value cannot be infinitely large, and generally, but not limited to, a power supply capacitor with a capacitance value of several tens of microfarads ( ⁇ F).
  • FIG. 4 is a schematic structural diagram of still another passive electronic tag according to an embodiment of the present invention.
  • the tag card 10 may further include a diode 15 in which the positive electrode of the diode 15 is The tag circuit 11 is connected, and the negative electrode of the diode 15 is connected to the power supply capacitor 14 and the light-emitting element 13, respectively.
  • the diode 15 is provided with a load circuit formed by the power supply capacitor 14 and the light-emitting element 13, and is isolated from the tag circuit 11.
  • the present embodiment provides a passive electronic tag.
  • the diode 15 between the power supply capacitor 14 and the light-emitting element 13 and the tag circuit 11, the voltage between the load circuit and the tag circuit 11 can be effectively isolated.
  • the voltage of each component in the passive electronic tag is more stable.
  • FIG. 5 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present invention.
  • a connection between the tag circuit 11 and the power supply capacitor 14 is connected.
  • Diode 15. The positive terminal of the diode 15 is connected to the power supply output of the tag circuit 11, and the negative terminal of the diode 15 is connected to the positive terminal of the power supply capacitor 14 (if it is a polar electrolytic capacitor or a tantalum capacitor).
  • the Schottky Barrier Diode of the low forward voltage can be selected, which is characterized by low power consumption and ultra high speed, and the forward voltage of the diode 15 Generally it is about 0.3V.
  • the function of the diode 15 is to isolate the supply voltage of the tag circuit 11 and the voltage of the load such as the LED so that the power supply capacitor 14 of the subsequent stage does not affect the pre-stage tag circuit 11.
  • FIG. 6 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present invention.
  • the tag circuit 11 may include a tag chip 111 and a control circuit 112.
  • the tag chip 111 is configured to: generate a control instruction according to a result obtained by interaction with the tag reader/writer;
  • the control circuit 112 is connected to the tag chip 111 and the light-emitting element 13, respectively, and the control circuit 112 is configured to control the light-emitting element 13 to emit light according to a control command generated by the tag chip 111.
  • the tag chip 111 can control the light-emitting element 13 to emit light through the control circuit 112.
  • the tag circuit 11 may include a UHF RFID tag chip 111 and a control circuit 112.
  • the UHF RFID tag chip 111 usually has two pins, one The pins are connected to the antenna 12 on the board, and the other pin is connected to the wires 20 outside the label card 10.
  • the antenna 12 and the wires 20 can be, but are not limited to, respectively on the left and right sides of the UHF RFID tag chip 111, and are in the same plane. .
  • the distance between the dangling end of the antenna 12 and the dangling end of the wire 20 is about one quarter of the operating wavelength corresponding to the operating frequency of the UHF RFID passive electronic tag.
  • the tag chip 111 is mostly referenced to:
  • Vant_p and Vant_n are two terminal voltages of the tag chip 111.
  • the antenna 12 is connected to the Vant_p terminal of the tag chip 111, and the ground on the tag card 10 is connected to the Vant_n terminal of the tag chip 111.
  • Impedance matching is typically achieved by antenna simulation or by adding a passive matching network between the antenna and the tag. The design of the passive matching network is not described in this embodiment.
  • the working frequency band of the passive electronic tag and the maximum transmitting power of the tag reader/writer can be selected according to local regulations of each country and region.
  • the corresponding control circuit 112 is also different depending on the UHF RFID tag chip 111 selected.
  • Some UHF RFID tag chips 111 have output power and control pins, and the control circuit 112 controls the output signals of the pins and the power supply control LEDs according to the UHF RFID tag chip 111.
  • Some UHF RFID tag chip 111 has only a control pin and no output power pin.
  • the control circuit 112 can rectify and recover the DC power from the wireless carrier signal received on the antenna, and then control the tube according to the UHF RFID tag chip 111.
  • the signal output from the foot controls the LED's on and off.
  • FIG. 7 is a schematic structural diagram of a passive electronic tag according to an embodiment of the present invention.
  • the UHF LED passive electronic tag is selected.
  • the UHF LED passive electronic tag includes, for example, a printed circuit board (PCB).
  • the member 30 and the wire 40 are connected at one end to the PCB member 30 and at the other end.
  • the PCB component 30 includes a PCB 31, a tag component 32, an antenna 33, a capacitor 34, and a light emitting diode (LED) 35.
  • the PCB 31 can use an inexpensive FR4 printed circuit board.
  • the tag member 32, the antenna 33, the capacitor 34, and the LED 35 are mounted on the PCB 31.
  • the antenna 33 may be a PCB antenna designed on the PCB 31, or a ceramic antenna or other material antenna soldered on the PCB 31.
  • the antenna 33 operates in the ultra high frequency (UHF) frequency band, one end is suspended, and the other end is connected to the tag component.
  • Capacitor 34 is a non-polar ceramic capacitor or a polar electrolytic capacitor.
  • LED 35 can be, but is not limited to, optional Light-emitting diodes with low power consumption, low voltage, high brightness and large viewing angle.
  • the tag component 32 can include a tag chip 321 and a control circuit 322.
  • the tag chip 321 can be, but is not limited to, having two antenna pins, one antenna pin is connected to the antenna 33, the other antenna pin is connected to the wire 40 outside the PCB component 30, and the antenna 33 and the wire 40 are respectively on opposite sides of the tag chip 321 And in the same plane.
  • the distance between the dangling end of the antenna 33 and the dangling end of the wire 40 outside the PCB is about a quarter of the wavelength of the UHF operating frequency.
  • the corresponding control circuit 322 is also different depending on the selected tag chip 321 .
  • the control circuit 322 controls the signal output from the pin and the power control LED 35 to be turned on and off according to the tag chip 321 . If the tag chip 321 has only the control pin and no output power pin, the control circuit 322 can rectify and recover the DC power from the wireless carrier signal received on the antenna, and then control the LED 35 to be bright according to the signal outputted by the tag chip 321 control pin. Off.
  • the label component 32 can also be, but is not limited to, configured to provide a passive electronic tag for the tag reader/writer to uniquely identify the passive electronic tag identity and/or the passive electronic tag. location information. Providing a tag for the passive reader of the tag reader allows the tag reader to identify the passive tag, and providing the tag reader with the location information of the passive tag allows the tag reader to access the passive tag Positioning allows the tag reader to capture the location of the passive electronic tag.
  • the air interface distance between the RFID reader and the reader is required to be close, or the antenna aperture area on the passive electronic tag PCB is required to be large, resulting in a passive electronic tag.
  • the overall area is large, and it is not suitable for applications requiring a small space for installation of passive electronic tags.
  • the ultra-high frequency illuminating RFID passive electronic tag has a method of combining the PCB component 30 and the wire 40 compared with the related technical method, so that the passive electronic tag has a small hard PCB portion and the soft wire portion. It can be combined with the attached objects, entangled, easy to install, and expands the application scenario of UHF illuminating RFID passive electronic tags.
  • the method for controlling the UHF illuminating RFID passive electronic tag provided by the embodiment of the present invention conforms to the RFID industry standard, and does not need to define and develop an RFID private protocol, which facilitates the promotion of the technology of the present invention and forms a standard.
  • the RFID reader usually can only determine all the passive RFID electronic tag ID numbers in the radio frequency field, but cannot determine the bit where the single passive RFID electronic tag is located.
  • Set. Known Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), Direction of Arrival, Abbreviated as: DoA), Received Signal Strength Indicator (RSSI), Phase of Arrival (PoA), Phase Difference of Arrival (PDoA)
  • the measurement method assists in determining the rough location of a single passive RFID electronic tag, and the related technology can only achieve the centimeter-level positioning accuracy.
  • the embodiment of the invention adds a light-emitting device such as an LED and a control circuit to the ultra-high frequency passive electronic tag.
  • a light-emitting device such as an LED and a control circuit to the ultra-high frequency passive electronic tag.
  • the position of the illuminated UHF passive electronic tag can be conveniently identified by the human eye.
  • the UHF passive electronic tag is illuminated by a camera with a normal resolution, and the image of the illuminating LED in the image and the corresponding pixel are analyzed by image comparison, and the positioning accuracy of the millimeter level can be achieved.
  • FIG. 8 is a flowchart of a passive electronic tag control method according to an embodiment of the present invention. As shown in FIG. 8 , the method provided in this embodiment is provided. The method may include the following steps, that is, steps 110 to 130:
  • Step 110 Receive, by an antenna and a wire, a control signal transmitted by a tag reader/writer, wherein the control signal carries a control instruction for controlling a light-emitting component on the passive electronic tag;
  • Step 120 parsing the control signal to obtain a control instruction
  • Step 130 controlling the light emitting element to emit light according to the control instruction.
  • the foregoing passive electronic tag control method may be, but is not limited to, applied to a scenario of radio frequency identification. For example: using a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag control method may be, but is not limited to, applied to a passive electronic tag.
  • the passive electronic tag may be, but not limited to, an ultra-high frequency illuminating RFID passive electronic tag.
  • the electronic tag control method provided in this embodiment receives the control signal transmitted by the tag reader/writer by using an antenna and a wire, wherein the wire can increase the antenna area of the passive electronic tag, so that the passive electronic tag of the same size can be received. More tag readers transmit energy; solved In the related art, the problem that the passive electronic tag receives less energy is less efficient, and the efficiency of receiving energy of the passive electronic tag is improved. Moreover, when the control instruction is executed by the tag circuit controlling the passive electronic tag, the energy transmitted by the received tag reader/writer can be used to supply power to the light-emitting element, so that the light-emitting element emits light, so that the passive electronic tag can be accurately positioned.
  • the area of the passive electronic tag antenna is increased by the wire, the energy received by the passive electronic tag is improved, and the passive electronic tag with a certain area of the tag card is more easily received by the tag.
  • the tag reader can scan the distance to the passive electronic tag, which makes the tag reader easier to scan the passive electronic tag.
  • control command can be obtained by, but not limited to, analyzing the control signal by the tag chip in the tag circuit of the passive electronic tag, and then the control circuit in the tag circuit controls the light-emitting component to emit light according to the control command.
  • the light emitting element may be, but not limited to, an LED.
  • LEDs can be, but are not limited to, light-emitting diodes with low power consumption, low voltage, high brightness, and large viewing angle.
  • the tag circuit, the supply capacitor and the LED can be connected together to the same reference ground plane.
  • the method provided in this embodiment may further include: acquiring energy of the control signal through the antenna and the wire, and converting and storing the energy of the control signal through the power supply capacitor.
  • the energy stored in the supply capacitor can be, but is not limited to, used to power the light-emitting elements.
  • the implementation of the foregoing step 130 may include: controlling the power supply capacitor to supply power to the light emitting element according to a preset rule indicated by the control instruction, so that the light emitting element emits light under power supply.
  • the preset rule can be, but is not limited to, always on, blinking, off, timing on, and the like.
  • the method provided in this embodiment, before the step 110, may further include: sending an identifier of the passive electronic tag to the tag reader/writer according to the received query instruction of the tag reader/writer and/or passive. Location information of the electronic tag, wherein the identity is used to uniquely identify the passive electronic tag.
  • the tag reader/writer can select the passive electronic tag according to the identity of the passive electronic tag, or the tag reader/writer can locate the passive electronic tag according to the position information of the passive electronic tag.
  • the UHF illuminating RFID passive electronic tag is implemented, and the air interface distance between the RFID reader and the reader is close, or the antenna aperture area on the passive electronic tag PCB is required to be large, resulting in the overall area of the passive electronic tag. Large, not suitable for applications requiring a small space for passive electronic tag installation.
  • the ultra-high frequency illuminating RFID passive electronic tag has a combination of a PCB component and a wire, and the passive electronic tag has a small hard PCB portion area, and the flexible wire portion can be combined with the related technical method.
  • the attached objects are combined and entangled to facilitate installation, and the application scenario of the ultra-high frequency illuminating RFID passive electronic tag is expanded.
  • the control method of the UHF illuminating RFID passive electronic tag of the present invention conforms to the RFID industry standard, and does not need to define and develop an RFID private protocol, which facilitates the technical promotion of the embodiment of the present invention and forms a standard.
  • an RFID reader generally can only determine all passive RFID electronic tag ID numbers in a radio frequency field, but cannot determine the location of a single passive RFID electronic tag therein. It is known that the measurement methods such as the arrival time ToA, TDoA, AoA, DoA, RSSI, PoA, PDoA and the like can be used to determine the rough position where a single passive RFID electronic tag is located, and the related art can only achieve the positioning accuracy of the centimeter level.
  • the present embodiment adds a light-emitting device such as an LED and a control circuit to the ultra-high frequency passive electronic tag.
  • the position of the illuminated UHF passive electronic tag can be conveniently identified by the human eye.
  • the UHF passive electronic tag is illuminated by a camera with a normal resolution, and the image of the illuminating LED in the image and the corresponding pixel are analyzed by image comparison, and the positioning accuracy of the millimeter level can be achieved.
  • FIG. 9 is a flowchart of another passive electronic tag control method according to an embodiment of the present invention.
  • the passive electronic tag control method may include the following steps, step 210 to step 230:
  • Step 210 Acquire an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer, where the identity identifier is used to uniquely identify the passive electronic tag;
  • Step 220 Select a target passive electronic tag of the preset identity from the identity identifiers of the one or more passive electronic tags.
  • Step 230 Send a control signal to the target passive electronic tag, where the control signal carries A control command for controlling a light-emitting element on a passive electronic tag.
  • the above passive electronic tag control method may be, but is not limited to, applied to a scene of radio frequency identification. For example: using a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag control method described above may be, but is not limited to, applied to a tag reader/writer, for example, a tag reader/writer for controlling the illumination of the UHF LED passive electronic tag.
  • the passive electronic tag control method selects a target passive electronic tag of a preset identity by selecting an identity of the obtained passive electronic tag, and sends the target passive electronic tag to control the target passive.
  • the control signal of the electronic tag illumination after receiving the control signal, the target passive electronic tag can emit light according to the control instruction in the control signal; solving the problem that the positioning accuracy of the passive electronic tag position is low in the related art, and improving the pair Positioning accuracy of passive electronic tag positions.
  • a method for controlling a UHF illuminating RFID passive electronic tag is provided.
  • the tag reader/writer uses an RFID reader as an example
  • the passive electronic tag Taking the ultra-high-frequency illuminating RFID passive electronic tag as an example, the illuminating element takes an LED as an example.
  • FIG. 10 is a flowchart of a method for controlling a UHF LED passive electronic tag according to an embodiment of the present invention. As shown in FIG. 10, the method provided in this embodiment may include the following steps, that is, Step 310 to Step 330 :
  • Step 310 The RFID reader/writer scans the inventory to at least one UHF LED RFID tag within the electromagnetic field generated by the reader, and records the ID number of each UHF LED RFID tag.
  • the ID numbers of the plurality of UHF LED electronic tags that are counted are unique and different.
  • step 320 the RFID reader selects one of the UHF LED tags according to the ID number in the UHF LED tag to be operated.
  • step 330 the RFID reader/writer issues a (Write) control LED command, and the selected UHF-emitting RFID electronic tag parses the command to realize the operation of lighting, blinking, or extinguishing the LED.
  • a (Write) control LED command the selected UHF-emitting RFID electronic tag parses the command to realize the operation of lighting, blinking, or extinguishing the LED.
  • a method for controlling a UHF illuminating RFID passive electronic tag is provided.
  • the tag reader/writer is exemplified by an RFID reader/writer
  • the passive electronic tag is
  • an ultra-high frequency illuminating RFID passive electronic tag is used as an example of an LED.
  • FIG. 11 is a flowchart of another method for controlling a UHF illuminating RFID passive electronic tag according to an embodiment of the present invention.
  • the method provided in the embodiment can be applied to the application scenario of finding a fiber jumper port.
  • the fiber jumper also referred to as a fiber connector
  • the method provided in this embodiment may include the following steps, that is, step 410 to step 430:
  • step 410 the UHF LED passive electronic tag is mounted on the fiber connector plugs at both ends of the fiber.
  • Step 420 The UHF RFID reader controls the RFID passive electronic tag on the plug of the fiber connector at one end through the air interface, finds the fiber port, and then inserts the fiber adapter.
  • Step 430 The UHF RFID reader controls the RFID passive electronic tag on the plug of the other end of the fiber optic connector through the air interface, finds another fiber port, and then inserts the fiber optic adapter.
  • the passive electronic tag control method provided in this embodiment can accurately locate the ultra-high frequency illuminating RFID passive electronic tag, thereby quickly finding two ports of the optical fiber.
  • the method further includes: determining that the tag reader/writer transmits Whether the energy of the target passive electronic tag is smaller than an energy threshold for controlling the illumination of the light-emitting element of the target passive electronic tag, the energy threshold is the minimum energy required to control the illumination of the light-emitting element of the target passive electronic tag, and the tag is determined When the energy transmitted by the reader to the target passive electronic tag is less than the threshold, moving the tag reader to the first area, wherein the first area is greater than or equal to the energy transmitted by the tag reader to the target passive electronic tag The area of the energy threshold.
  • the tag can be read and written by determining whether the distance between the tag reader/writer and the target passive electronic tag satisfies the condition that the light-emitting component of the target passive electronic tag emits light. Whether the energy transmitted by the device is sufficient to control the illumination of the light-emitting elements of the target passive electronic tag.
  • the location information of the target passive electronic tag can be obtained, the location of the target passive electronic tag is obtained, and the distance between the location of the target passive electronic tag and the location of the tag reader/writer is obtained by calculation, and then the calculation is performed.
  • the obtained distance is greater than a preset distance, wherein the preset distance is a distance between the tag reader and the passive electronic tag when the energy transmitted by the tag reader/writer to the target passive electronic tag is equal to the above energy threshold, and Determine that the calculated distance is greater than the preset
  • the distance between the mobile tag reader and the passive electronic tag is less than or equal to the preset distance.
  • the following is an example of determining whether the energy transmitted by the tag reader is sufficient to control the target by judging whether the distance between the tag reader/writer and the target passive electronic tag satisfies the condition of the light-emitting component of the control target passive electronic tag.
  • the process of illuminating a light-emitting element of a passive electronic tag is described and illustrated.
  • the target passive electronic tag P is selected from these identity tags by obtaining the identity of one or more passive electronic tags within the coverage of the tag reader/writer Q signal.
  • the position information of the target passive electronic tag P can be obtained, and the target is not located.
  • the preset distance between the tag reader/writer Q and the passive electronic tag P is set to D2. If D1 is greater than D2, it means that E1 is smaller than E2, and the tag reader/writer can be moved to a region satisfying D1 less than or equal to D2, and then a control signal is sent to the target passive electronic tag. If D1 is less than or equal to D2, it means that E1 is greater than or equal to E2, then the control signal can be sent directly to the target passive electronic tag.
  • the embodiment of the present invention further provides a passive electronic tag control device, which is used to implement the foregoing embodiments and optional implementation manners, and has not been described again.
  • a passive electronic tag control device which is used to implement the foregoing embodiments and optional implementation manners, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 12 is a schematic structural diagram of a passive electronic tag control apparatus according to an embodiment of the present invention. As shown in FIG. 12, the apparatus provided in this embodiment includes: a receiving module 51, a parsing module 52, and a control module 53.
  • the receiving module 51 is configured to: receive, by the antenna and the wire, a control signal transmitted by the tag reader/writer, wherein the control signal carries a control instruction for controlling the light-emitting component on the passive electronic tag;
  • the parsing module 52 is coupled to the receiving module 51, and the parsing module 52 is configured to: parse the control signal received by the receiving module 51 to obtain a control command;
  • the control module 53 is coupled to the analysis module 52, and the control module 53 is configured to control the light-emitting elements to emit light according to the control commands obtained by the analysis module 52.
  • the passive electronic tag control device may be, but is not limited to, applied to a scene of radio frequency identification.
  • a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag control device may be, but is not limited to, applied to a passive electronic tag.
  • the passive electronic tag may be, but not limited to, an ultra-high frequency illuminating RFID passive electronic tag.
  • the passive electronic tag control device receives the control signal transmitted by the tag reader/writer by using the antenna and the wire through the receiving module 51, wherein the wire can increase the antenna area of the passive electronic tag, thereby making the same size passive.
  • the electronic tag can receive more energy transmitted by the tag reader/writer; solves the problem that the passive electronic tag receives less energy in the related art, and improves the efficiency of receiving energy of the passive electronic tag.
  • the control module 53 can control the illumination of the light-emitting element by the control command obtained by the analysis module 52 analyzing the control signal, so that the passive electronic tag can be accurately positioned.
  • the area of the passive electronic tag antenna is increased by the wire, the energy received by the passive electronic tag is increased, and the passive electronic tag with a certain area of the tag card is more easily received when the tag reader energy is received.
  • the tag reader can scan the distance to the passive electronic tag, which also makes it easier for the tag reader to scan the passive electronic tag.
  • control command can be obtained by, but not limited to, analyzing the control signal by the tag chip in the tag circuit of the passive electronic tag, and then the control circuit in the tag circuit controls the light-emitting component to emit light according to the control command.
  • the light emitting element may be, but not limited to, an LED.
  • LEDs can be, but are not limited to, light-emitting diodes with low power consumption, low voltage, high brightness, and large viewing angle.
  • the tag circuit, the supply capacitor and the LED can be connected together to the same reference ground plane.
  • the apparatus provided in this embodiment further includes:
  • the second obtaining module is coupled to the receiving module 51, and the second acquiring module is configured to: receive The antenna and the wire acquire the energy of the control signal;
  • the processing module is coupled between the second acquisition module and the control module 53.
  • the processing module is configured to convert and store the energy of the control signal through the power supply capacitor.
  • control module 53 is configured to: control the power supply capacitor to supply power to the light emitting element according to a preset rule indicated by the control instruction, so that the light emitting element emits light under power supply.
  • the UHF illuminating RFID passive electronic tag is implemented, and the air interface distance between the RFID reader and the reader is close, or the antenna aperture area on the passive electronic tag PCB is required to be large, resulting in the overall area of the passive electronic tag. Large, not suitable for applications requiring a small space for passive electronic tag installation.
  • the ultra-high frequency illuminating RFID passive electronic tag has a combination of a PCB component and a wire, and the passive electronic tag has a small hard PCB portion area, and the flexible wire portion can be combined with the related technical method.
  • the attached objects are combined and entangled to facilitate installation, and the application scenario of the ultra-high frequency illuminating RFID passive electronic tag is expanded.
  • the method for controlling the UHF illuminating RFID passive electronic tag according to the embodiment of the present invention conforms to the RFID industry standard, and does not need to define and develop an RFID private protocol, which facilitates the promotion of the technology of the present invention and forms a standard.
  • an RFID reader generally can only determine all passive RFID electronic tag ID numbers in a radio frequency field, but cannot determine the location of a single passive RFID electronic tag therein. It is known that the measurement methods such as the arrival time ToA, TDoA, AoA, DoA, RSSI, PoA, PDoA and the like can be used to determine the rough position where a single passive RFID electronic tag is located, and the related art can only achieve the positioning accuracy of the centimeter level.
  • the present embodiment adds a light-emitting device such as an LED and a control circuit to the ultra-high frequency passive electronic tag.
  • the position of the illuminated UHF passive electronic tag can be conveniently identified by the human eye.
  • the UHF passive electronic tag is illuminated by a camera with a normal resolution, and the image of the illuminating LED in the image and the corresponding pixel are analyzed by image comparison, and the positioning accuracy of the millimeter level can be achieved.
  • each of the foregoing devices may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the above modules are all located in the same processor; or, the above modules Located in multiple processors.
  • the embodiment of the present invention further provides a passive electronic tag control device, which is used to implement the foregoing embodiments and optional implementation manners, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 13 is a schematic structural diagram of another passive electronic tag control apparatus according to an embodiment of the present invention.
  • the apparatus provided in this embodiment includes: a first acquiring module 61, a selecting module 62, and a sending module 63.
  • the first obtaining module 61 is configured to: obtain an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer, where the identity identifier is used to uniquely identify the passive electronic tag;
  • the selection module 62 is coupled to the first acquisition module 61, and the selection module 62 is configured to: select the target passive electronic of the preset identity from the identity identifiers of the one or more passive electronic tags acquired by the first acquisition module 61. label;
  • the sending module 63 is coupled to the selecting module 62, and the sending module 63 is configured to: send a control signal to the target passive electronic tag selected by the selecting module 62, wherein the control signal carries a light for controlling the passive electronic tag Control instructions for components.
  • the passive electronic tag control device may be, but is not limited to, applied to a scene of radio frequency identification.
  • a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag control device may be, but is not limited to, applied to a tag reader/writer, for example, a tag reader/writer for controlling the illumination of the UHF LED passive electronic tag.
  • the passive electronic tag control device selects the target passive electronic tag of the preset identity identifier from the identity identifier of the passive electronic tag acquired by the first acquiring module 61 by the selecting module 62, and is sent by the sending module 63.
  • the target passive electronic tag transmits a control signal for controlling the illumination of the target passive electronic tag. After receiving the control signal, the target passive electronic tag can emit light according to the control command in the control signal; and solve the related technology for the passive electronic tag The problem of low positioning accuracy of the position improves the positioning accuracy of the position of the passive electronic tag.
  • each of the foregoing devices may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the above modules are all located in the same processor; or, the above modules Located in multiple processors.
  • FIG. 14 is a schematic structural diagram of a passive electronic label control system according to an embodiment of the present invention. As shown in FIG. 14 , the system provided in this embodiment is provided. The tag reader/writer 71 and the passive electronic tag 72 are included.
  • the tag reader/writer 71 is configured to: obtain an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer 71, wherein the identity identifier is used to uniquely identify a passive electronic tag; Selecting a passive electronic tag of the preset identity from the identity of the one or more passive electronic tags; transmitting a control signal to the passive electronic tag, wherein the control signal carries a light-emitting component for controlling the passive electronic tag Control instruction.
  • the passive electronic tag 72 is connected to the tag reader/writer 71.
  • the passive electronic tag 72 is configured to receive a control signal of the tag reader/writer 71 through an antenna and a wire, wherein the control signal carries a passive electronic tag for controlling A control command of the light-emitting element on 72; a control command is obtained by analyzing the control signal; and the light-emitting element is controlled to emit light in accordance with the control command.
  • the passive electronic tag control system may be, but is not limited to, applied to a scene of radio frequency identification.
  • a tag reader to control a passive electronic tag in a scene.
  • the passive electronic tag may be, but not limited to, an ultra-high frequency illuminating RFID passive electronic tag
  • the tag reader/writer may be, but is not limited to, used to control UHF illuminating RFID passive Electronic tag illuminated tag reader.
  • the passive electronic tag may be a high frequency light emitting RFID passive electronic tag
  • the tag reader/writer may be a tag reader for controlling the illumination of the high frequency light emitting RFID passive electronic tag.
  • the transmission frequency of a high frequency luminescent RFID passive electronic tag can be, but is not limited to, 13.56 megahertz (MHz).
  • the passive electronic tag control system selects a target passive electronic tag of a preset identity from the acquired identity of the passive electronic tag through the tag reader, and transmits the target passive electronic tag to the target passive electronic tag. Controlling the control signal of the target passive electronic tag, after the target passive electronic tag receives the control signal, it can emit light according to the control command in the control signal; The problem of low accuracy in positioning the position of the passive electronic tag in the technology improves the positioning accuracy of the position of the passive electronic tag.
  • the passive electronic tag control system in this embodiment will be described and described below with an application example.
  • FIG. 15 is a structural block diagram of another passive electronic tag control system according to an embodiment of the present invention.
  • the passive electronic tag 72 comprising a plurality of passive electronic tags: a passive electronic tag 72-1 to a passive electronic tag 72-N, N Is a positive integer.
  • the tag reader/writer 71 is configured to: obtain an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer 71, wherein the identity identifier is used to uniquely identify a passive electronic tag; Selecting a passive electronic tag of the preset identity from the identity of the one or more passive electronic tags; transmitting a control signal to the passive electronic tag, wherein the control signal carries a light-emitting component for controlling the passive electronic tag Control instructions. Since the power consumption of the light-emitting elements on the passive electronic tag 72 is much greater than the power consumption of the electronic tag chip on the passive electronic tag 72, the distance between the tag reader/writer 71 reading and writing the passive electronic tag 72 is greater than that of the tag reader/writer 71. The distance of the light-emitting elements on the source electronic tag 72.
  • the tag reader/writer 71 can query one or more passive electronic tags 72.
  • the tag reader/writer 71 can acquire the identity (e.g., ID number) and location information of the passive electronic tag 72. All of the passive electronic tags 72 read form a collection of tag spaces.
  • the set of tag spaces includes, for example, N passive electronic tags: a passive electronic tag 72-1 to a passive electronic tag 72-N.
  • the tag reader/writer 71 is to control lighting one of the passive electronic tags, such as the passive electronic tag 72-M. Assuming that the distance between the position where the tag reader/writer 71 is located and the position where the passive electronic tag 72-M is located is L1, the tag reader/writer 71 selects the passive electronic tag 72-M, at this time, due to the distance at the position 1.
  • the distance L1 of the passive electronic tag 72-M may be relatively long. For example, L1 is greater than the preset distance L, and the passive electronic tag 72-M cannot obtain sufficient energy to illuminate or cannot be illuminated immediately.
  • the tag reader/writer 71 can move to the vicinity of the approximate position of the passive electronic tag 72-M according to the acquired position information of the passive electronic tag 72-M, for example, the distance to the passive electronic tag 72-M is The position of L2, at this time, L2 is less than or equal to the preset distance L, and sends a query, selection, and lighting instruction to one or more passive electronic tags within the signal coverage range of the tag reader/writer 71 again.
  • the sequence illuminates the passive electronic tag 72-M.
  • FIG. 16 is a schematic diagram of an operational flow of a passive electronic tag control system according to an embodiment of the present invention.
  • the tag reader/writer 71 takes an RFID reader/writer as an example, and the identity of the passive electronic tag 72 is exemplified by the ID number of the passive electronic tag, as shown in FIG. 16, the operation in this embodiment.
  • the process may include the following steps, that is, steps 501 to 506:
  • step 501 the RFID reader scans the passive electronic tag within its signal coverage at position 1.
  • Step 502 The RFID reader/writer sends a query instruction to obtain an ID number and location information of one or more passive electronic tags.
  • step 503 the RFID reader/writer sends a selection command to select a passive electronic tag to be illuminated.
  • step 504 the RFID reader determines whether the selected passive electronic tag can emit light according to the instruction. If the result of the determination is no, step 505 is performed, and if the result of the determination is yes, step 506 is performed.
  • Step 505 the RFID reader moves to position 2 to scan the passive electronic tag within its signal coverage, and returns to step 502.
  • Step 506 The RFID reader/writer sends a control lighting command to a selected passive electronic tag to be illuminated, and controls the selected passive electronic tag to emit light according to the instruction.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 Obtain an identity of one or more passive electronic tags in a signal coverage area of the tag reader/writer, where the identity identifier is used to uniquely identify the passive electronic tag;
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), and a random access memory (Random Access Memory, RAM for short). ), removable hard disk, disk or optical disk, and other media that can store program code.
  • implementations in this embodiment may refer to the examples described in the foregoing embodiments and the optional implementation manners, and details are not described herein again.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the area of the antenna of the passive electronic tag is increased, so that the passive electronic tag of the same size can receive more energy transmitted by the tag reader/writer; Solving the problem that the passive electronic tag receives less energy in the related art The problem is to improve the efficiency of receiving energy from passive electronic tags.
  • the energy transmitted by the received tag reader/writer can be used to supply power to the light-emitting element, so that the light-emitting element emits light, so that the passive electronic tag can be accurately positioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种无源电子标签、无源电子标签控制方法、装置及系统,其中,该无源电子标签包括:标签卡板(10)和导线(20),该标签卡板(10)包括:标签电路(11)、天线(12)和发光元件(13),其中,标签电路(11)设置为:控制无源电子标签执行控制指令,控制指令包括:由标签电路(11)通过天线(12)与标签读写器交互得到的查询指令、选择指令、或者用于控制发光元件(13)亮暗的指令,天线(12)和发光元件(13)分别与标签电路(11)连接;导线(20)与标签电路(11)连接,导线(20)设置为:接收标签读写器传输的能量。

Description

无源电子标签、无源电子标签控制方法、装置及系统 技术领域
本申请涉及但不限于通信技术领域。
背景技术
在工业化和信息化融合的背景下,随着电子信息技术的迅猛发展和制造水平的不断提高,射频识别(Radio Frequency Identification,简称为:RFID)技术作为无线通信和自动识别技术的结合,被认为是21世纪最有前途的互联网技术(Internet Technology,简称为:IT)之一,在诸多领域中得到了广泛的应用。RFID标签读写器(Interrogator)通常为相关技术中的空中接口协议读取射频场中的RFID电子标签(Tag)标识(Identification,简称为:ID)号码等信息。由于无源电子标签不需要更换电池,便于安装使用,因此应用场景比有源电子标签更加广泛。
超高频RFID无源电子标签的读写功率一般为几十微瓦,在相关技术中,基于近场电感耦合的原理,超高频RFID无源电子标签接收能量有以下两种方法:
一种方法是使超高频RFID无源电子标签贴近标签读写器天线,形成磁场近场耦合。但是,在这种情况下由于超高频RFID无源电子标签和标签读写器的距离无法无限减小,因而将导致可以接收到的能量有限。
另一种方法是增加超高频RFID无源电子标签的无源电子标签卡板上天线的面积,以提高超高频RFID无源电子标签接收到的能量。但是,在该方法中,当超高频RFID无源电子标签的卡板的面积一定时,该超高频RFID无源电子标签的卡板上天线可增大的面积是有限的,这样超高频RFID无源电子标签可接收的能量也是有限的。
也就是说,无源电子标签通过相关技术提供的方法接收能量时,接收的时间比较长,这将大大影响无源电子标签接收能量时的接收效率。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对相关技术中无源电子标签接收能量时效率较低的问题,尚未提出有效的解决方案。
本文提供了一种无源电子标签、无源电子标签控制方法、装置及系统,以解决相关技术中的无源电子标签接收能量时效率较低的问题。
一种无源电子标签,包括:标签卡板和导线;
其中,所述标签卡板包括:标签电路、天线和发光元件,其中,所述标签电路设置为:控制所述无源电子标签执行控制指令,所述控制指令包括:由所述标签电路通过所述天线与标签读写器交互得到的查询指令、选择指令、或者用于控制所述发光元件亮暗的指令,所述天线和所述发光元件分别与所述标签电路连接;
所述导线与所述标签电路连接,所述导线设置为:接收所述标签读写器传输的能量。
可选地,所述天线包括:第一端口和第二端口,所述第一端口与所述标签电路连接,所述第二端口悬空;
所述导线包括:第三端口和第四端口,所述第三端口与所述标签电路连接,所述第四端口悬空,其中,所述第二端口与所述第四端口之间的距离为预定阈值。
可选地,所述第二端口与所述第四端口之间的有效距离为所述无源电子标签的工作频率对应的波长的四分之一,其中,所述有效距离为所述第二端口在所述标签卡板上的第一投影与所述第四端口在所述标签卡板上的第二投影之间的距离。
可选地,所述导线与所述天线设置在同一平面上。
可选地,所述标签卡板还包括:供电电容,其中,所述供电电容分别与所述发光元件和所述标签电路连接,所述供电电容设置为:为所述发光元件供电。
可选地,所述标签卡板还包括:二极管,其中,所述二极管的正极与所述标签电路连接,所述二极管的负极分别与所述供电电容和所述发光元件连接,所述二极管设置为:隔离所述供电电容和所述发光元件形成的负载电路,与所述标签电路之间电压。
可选地,所述标签电路包括:标签芯片和控制电路;
其中,所述标签芯片,设置为:根据与所述标签读写器交互得到的结果生成所述控制指令;
所述控制电路分别与所述标签芯片和所述发光元件连接,所述控制电路设置为:根据所述标签芯片生成的所述控制指令控制所述发光元件发光。
可选地,所述标签电路,还设置为:为所述标签读写器提供所述无源电子标签的身份标识和/或所述无源电子标签的位置信息,其中,所述身份标识用于唯一标识所述无源电子标签。
一种无源电子标签控制方法,包括:
通过天线和导线接收标签读写器发射的控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
解析所述控制信号得到所述控制指令;
控制所述发光元件根据所述控制指令发光。
可选地,所述通过天线和导线接收标签读写器发射的控制信号之后,所述方法还包括:
通过所述天线和所述导线获取所述控制信号的能量;
通过供电电容转化并存储所述控制信号的能量。
可选地,所述控制所述发光元件根据所述控制指令发光,包括:
根据所述控制指令所指示的预设规则控制所述供电电容为所述发光元件供电,以使所述发光元件在所述供电的情况下发光。
可选地,所述通过天线和导线接收标签读写器发射的控制信号之前,所述方法还包括:
根据接收到的所述标签读写器的查询指令向所述标签读写器发送所述无 源电子标签的身份标识和/或所述无源电子标签的位置信息,其中,所述身份标识用于唯一标识所述无源电子标签。
一种无源电子标签控制方法,包括:
获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识所述无源电子标签;
从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
向所述目标无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令。
可选地,所述从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签之后,所述方法还包括:
判断所述标签读写器传输给所述目标无源电子标签的能量是否小于用于控制所述目标无源电子标签的发光元件发光的能量阈值;
在判断出所述标签读写器传输给所述目标无源电子标签的能量小于所述能量阈值时,移动所述标签读写器至第一区域,其中,所述第一区域为所述标签读写器传输给所述目标无源电子标签的能量大于或者等于所述能量阈值的区域。
可选地,所述判断所述标签读写器传输给所述目标无源电子标签的能量是否小于用于控制所述目标无源电子标签的发光元件发光的能量阈值,包括:
获取所述目标无源电子标签的位置信息,得到所述目标无源电子标签所在的位置;计算所述目标无源电子标签所在的位置与所述标签读写器所在的位置之间的距离;判断所述距离是否大于预设距离,其中,所述预设距离为所述标签读写器传输给所述目标无源电子标签的能量等于所述能量阈值时,所述标签读写器与所述目标无源电子标签之间的距离;
所述在判断出所述标签读写器传输给所述目标无源电子标签的能量小于所述能量阈值时,移动所述标签读写器至所述第一区域,包括:
在判断出所述距离大于所述预设距离时,移动所述标签读写器至与所述无源电子标签之间的距离小于或者等于所述预设距离的位置。
一种无源电子标签控制装置,包括:
接收模块,设置为:通过天线和导线接收标签读写器发射的控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
解析模块,设置为:解析所述接收模块接收的所述控制信号得到所述控制指令;
控制模块,设置为:控制所述发光元件根据所述解析模块得到的所述控制指令发光。
一种无源电子标签控制装置,包括:
第一获取模块,设置为:获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识所述无源电子标签;
选择模块,设置为:从所述第一获取模块获取的所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
发送模块,设置为:向所述选择模块选择的所述目标无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令。
一种无源电子标签控制系统,包括:标签读写器和无源电子标签;
其中,所述标签读写器,设置为:获取所述标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识无源电子标签;从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的所述无源电子标签;向所述无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
所述无源电子标签,设置为:通过天线和导线接收所述标签读写器发射的所述控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的所述发光元件的所述控制指令;解析所述控制信号得到所述控制指令;控制所述发光元件根据所述控制指令发光。
本发明实施例提供的无源电子标签、无源电子标签控制方法、装置及系 统,无源电子标签包括标签卡板和导线的,该标签卡板包括:标签电路、天线及发光元件,该标签电路设置为:控制无源电子标签执行控制指令,该控制指令由标签电路通过天线与标签读写器交互得到,天线及发光元件分别与标签电路连接;导线与标签电路连接,导线设置为:接收标签读写器传输的能量;也就是说,本发明实施例通过在标签卡板之外增加导线,相当于增加了无源电子标签的天线的面积,从而使相同大小的无源电子标签可以接收到更多的标签读写器传输的能量;解决了相关技术中无源电子标签接收能量时效率较低的问题,提高了无源电子标签接收能量的效率。并且,在通过标签电路控制无源电子标签执行指令时,可以利用接收到的标签读写器传输的能量为发光元件供电,使发光元件发光,从而可以精确地对无源电子标签进行定位。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种无源电子标签的结构示意图;
图2为本发明实施例提供的另一种无源电子标签的结构示意图;
图3为本发明实施例提供的又一种无源电子标签的结构示意图;
图4为本发明实施例提供的再一种无源电子标签的结构示意图;
图5为本发明实施例提供的还一种无源电子标签的结构示意图;
图6为本发明实施例提供的还一种无源电子标签的结构示意图;
图7为本发明实施例提供的还一种无源电子标签的结构示意图;
图8为本发明实施例提供的一种无源电子标签控制方法的流程图;
图9为本发明实施例提供的另一种无源电子标签控制方法的流程图;
图10为本发明实施例提供的一种超高频发光RFID无源电子标签的控制方法的流程图;
图11为本发明实施例提供的另一种超高频发光RFID无源电子标签的控制方法的流程图;
图12为本发明实施例提供的一种无源电子标签控制装置的结构示意图;
图13为本发明实施例提供的另一种无源电子标签控制装置的结构示意图;
图14为本发明实施例提供的一种无源电子标签控制系统的结构示意图;
图15为本发明实施例提供的另一种无源电子标签控制系统的结构示意图;
图16为本发明实施例提供的无源电子标签控制系统的一种操作流程的示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸根据一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本文的说明书和权利要求书及说明书附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明实施例中提供了一种无源电子标签,图1为本发明实施例提供的一种无源电子标签的结构示意图,如图1所示,本实施例提供的无源电子标签包括:标签卡板10和导线20。
其中,标签卡板10包括:标签电路11、天线12和发光元件13,其中,标签电路11设置为:控制无源电子标签执行控制指令,该控制指令包括:由标签电路11通过天线12与标签读写器交互得到的查询指令、选择指令、或者用于控制发光元件13亮暗的指令,天线12和发光元件13分别与标签电路11连接。
导线20与标签电路11连接,导线20设置为:接收标签读写器传输的能量。
可选地,在本实施例中,上述无源电子标签可以但不限于应用于射频识 别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
本实施例提供的无源电子标签,通过在标签卡板之外增加导线,相当于增加了无源电子标签的天线的面积,从而使相同大小的无源电子标签可以接收到更多的标签读写器传输的能量;解决了相关技术中无源电子标签接收能量时效率较低的问题,提高了无源电子标签接收能量的效率。并且,在通过标签电路控制无源电子标签执行控制指令时,可以利用接收到的标签读写器传输的能量为发光元件供电,使发光元件发光,从而可以精确地对无源电子标签进行定位。
此外,在本发明实施例中,通过导线增加了无源电子标签天线的面积,提高了无源电子标签接收到的能量,同时也使标签卡板面积一定的无源电子标签更容易接收到标签读写器能量时,增加了标签读写器可以扫描到无源电子标签的距离,从而也使标签读写器更容易扫描到无源电子标签。
在本实施例中,标签卡板10可以但不限于是印制电路板(Printed Circuit Board,简称为:PCB)。该PCB可以但不限于采用廉价的FR4材质的印制电路板,以降低超高频发光RFID无源电子标签的成本。标签电路11、天线12和发光元件13安装在PCB上。
在本实施例中,天线12可以是在PCB上的PCB天线,也可以是陶瓷天线或者其他材质的天线,在本发明实施例中不做限定。天线12工作在超高频(Ultra High Frequency,简称为:UHF)频段,一端悬空,另一端连接标签电路11。
在本实施例中,发光元件13可以但不限于是发光二极管(Light Emitting Diode,简称为:LED)。该LED可以但不限于选用低功耗、低电压、高亮度、可视角大的发光二极管。标签电路、供电电容和LED可以共同连接同一个参考地平面。
在本实施例中,控制指令是由标签电路11通过天线12与标签读写器交互得到的用于控制无源电子标签的指令,例如:控制指令可以但不限于是用于查询无源电子标签的身份标识的查询指令;控制指令也可以但不限于是用于指示标签读写器选中该无源电子标签的选择指令;控制指令还可以但不限于是用于控制发光元件亮暗的指令。
可选地,图2为本发明实施例提供的另一种无源电子标签的结构示意图。如图2所示,在图1所示无源电子标签的结构基础上,本实施例提供的无源电子标签中,天线12可以包括:第一端口121和第二端口122,第一端口121与标签电路11连接,第二端口122悬空;
导线20可以包括:第三端口21和第四端口22,第三端口21与标签电路11连接,第四端口22悬空,其中,第二端口122与第四端口22之间的距离为预定阈值。
可选地,在本实施例中,第二端口122与第四端口22之间的有效距离可以但不限于为无源电子标签的工作频率对应的波长的四分之一,其中,有效距离为第二端口122在标签卡板10上的第一投影与第四端口22在标签卡板10上的第二投影之间的距离。
本实施例提供的无源电子标签,通过将天线12和导线20分别和标签电路11连接,增加了无源电子标签的天线面积,从而提高了无源电子标签接收的标签读写器传输的能量。将天线12和导线20的悬空端口的距离设置为预设距离,有效地提高了无源电子标签接收能量的效率。并且,将悬空端口之间的有效距离设置为无源电子标签的工作频率对应的波长的四分之一,可以使无源电子标签接收能量的效率达到最高。
可选地,在本实施例中,导线20与天线12可以但不限于设置在同一平面上。可选地,导线20与天线12之间的夹角可以但不限于是180度。
可选地,在本实施例中,可以但不限于将导线20的中心线与天线12的中心线设置在同一直线上。
本实施例提供的无源电子标签,通过将导线20与天线12设置在同一平面上,可以减小相同能量接收效率下所需的导线20的长度。并且,可以将导线20的中心线与天线12的中心线设置在同一直线上,以更大程度上减小相同能量接收效率下所需的导线20的长度,提高能量接收的效率。从而也达到了节省资源的效果。
可选地,图3为本发明实施例提供的又一种无源电子标签的结构示意图。如图3所示,在图1所示无源电子标签的结构基础上,本实例提供的无源电子 标签中,标签卡板10还可以包括:供电电容14;其中,供电电容14分别与发光元件13和标签电路11连接,供电电容14设置为:为发光元件13供电。
可选地,在本实施例中,供电电容14可以但不限于转化并储存无源电子标签接收到的能量,并为发光元件13供电。
在本实施例的一个可选地实现方式中,供电电容14可以但不限于为无极性的陶瓷电容或者有极性的电解电容,作用为储能和供电。超高频无源电子标签从空中电磁场中采集RFID读写器发出的能量。因为超高频空中接口变化的幅移键控(Amplitude shift keying,简称为:ASK)调制信号包络,和标签部件的动态功率消耗,可以采用一个旁路电容保持稳定的供电电压,该供电电压大于标签部件最小工作电压。无源电子标签的芯片因为功耗低,只需要几个纳法(nF)的电容,一般集成在无源电子标签的芯片内部。然而,当在无源电子标签芯片外部增加控制电路和驱动发光元件(例如:LED)时,可以采用外加的较大容值的电容收集并保持标签部件采集的能量。假设无源电子标签上的负载工作电压为Von,比如2V,不工作电压为Voff,比如1.5V。保持无源电子标签上的负载能量对供电电容要求可以但不限于为:
Figure PCTCN2016096255-appb-000001
Figure PCTCN2016096255-appb-000002
两者差值为:
Figure PCTCN2016096255-appb-000003
LED的负载工作能量要求与负载功率和负载持续时间有关,如公式:
Eload=Pload×Tload;
为了要达到稳定的负载工作电压,要求:
Ediff≥Eload;
从上述公式可以推导出供电电容14的电容值需要满足:
Figure PCTCN2016096255-appb-000004
考虑到无源电子标签芯片唤醒的时间常数τ=RC,电容值不能无限大,一般可以但不限于选取电容值为几十微法(μF)的供电电容。
可选地,图4为本发明实施例提供的再一种无源电子标签的结构示意图。如图4所示,在图3所示无源电子标签的结构基础上,本实施例提供的无源电子标签中,标签卡板10还可以包括:二极管15,其中,该二极管15的正极与标签电路11连接,二极管15的负极分别与供电电容14和发光元件13连接,二极管15设置为:供电电容14和发光元件13形成的负载电路,与标签电路11之间隔离电压。
本实施例提供无源电子标签,通过在供电电容14和发光元件13组成的负载电路,与标签电路11之间连接二极管15,可以有效地隔离负载电路和标签电路11之间的电压,从而使无源电子标签中每个元件的电压更加稳定。
可选地,图5为本发明实施例提供的还一种无源电子标签的结构示意图,如图5所示,为了避免电子标签系统混乱,在标签电路11和供电电容14之间连接了一个二极管15。二极管15正端连接标签电路11的电源输出,二极管15负端连接供电电容14的正端(如果是有极性的电解电容或者钽电容)。在本实施例中,可以但不限于选用低正向导通电压的肖特基势垒二极管(Schottky Barrier Diode),该二极管15具有低功耗、超高速的特征,该二极管15的正向导通电压一般为0.3V左右。二极管15的作用是隔离标签电路11的供给电压和LED等负载的电压,使得后级的供电电容14不会影响到前级标签电路11。
可选地,图6为本发明实施例提供的还一种无源电子标签的结构示意图。如图6所示,在图1所示无源电子标签的结构基础上,本实施例提供的无源电子标签中,标签电路11可以包括:标签芯片111和控制电路112。
其中,标签芯片111,设置为:根据与标签读写器交互得到的结果生成控制指令;
控制电路112分别与标签芯片111和发光元件13连接,该控制电路112,设置为:根据标签芯片111生成的控制指令控制发光元件13发光。
通过本实施例中的无源电子标签,标签芯片111可以通过控制电路112控制发光元件13发光。
在本实施例的一个可选地实现方式中,标签电路11可以包括超高频RFID标签芯片111和控制电路112。超高频RFID标签芯片111通常有两个管脚,一 个管脚连接板上天线12,另一个管脚连接标签卡板10外面的导线20,天线12和导线20可以但不限于分别在超高频RFID标签芯片111的左右两边,并处于同一个平面。天线12的悬空端点和导线20的悬空端点之间的距离约为超高频RFID无源电子标签的工作频率对应的工作波长的四分之一。考虑标签芯片111内部实现原理不同,标签芯片111参考地大多数为:
Figure PCTCN2016096255-appb-000005
其中,Vant_p和Vant_n为标签芯片111两个端子电压。如果是单端口天线设计,把天线12接到标签芯片111的Vant_p端子,标签卡板10上的地接到标签芯片111的Vant_n端子。根据超高频工作频率的不同,需要设计合适的天线阻抗匹配来达到最大的功率传输。一般是通过天线仿真或者在天线和标签之间加无源匹配网络实现阻抗匹配。无源匹配网络的设计在本实施例中不再赘述。本实施例中,可以但不限于根据各个国家和地区当地的规定选择无源电子标签的工作频段和标签读写器的最大发射功率。
根据所选用的超高频RFID标签芯片111的不同,对应的控制电路112也不同。有的超高频RFID标签芯片111有输出电源和控制管脚,控制电路112根据超高频RFID标签芯片111控制管脚输出的信号和电源控制LED的亮灭。有的超高频RFID标签芯片111只有控制管脚,没有输出电源管脚,控制电路112可以从天线上收到的无线载波信号整流恢复出直流电源,然后根据超高频RFID标签芯片111控制管脚输出的信号控制LED的亮灭。
可选地,图7为本发明实施例提供的还一种无源电子标签的结构示意图。本实施例中选用超高频发光RFID无源电子标签,如图7所示,在本实施例中,超高频发光RFID无源电子标签例如包括印制电路板(Printed Circuit Board,简称为PCB)部件30和导线40,导线40一端与PCB部件30连接,另一端悬空。
PCB部件30包括:PCB 31、标签部件32、天线33、电容34和发光二极管(LED)35。其中,PCB 31可以采用廉价的FR4材质的印制电路板。标签部件32、天线33、电容34和LED 35安装在PCB 31上。天线33可以是设计在PCB 31上的PCB天线,也可以是焊接在PCB 31上的陶瓷天线或者其他材质的天线,天线33工作在超高频(UHF)频段,一端悬空,另一端连接标签部件32。电容34为无极性的陶瓷电容或者有极性的电解电容。LED 35可以但不限于选用 低功耗、低电压、高亮度、可视角大的发光二极管。
标签部件32可以包括标签芯片321和控制电路322。标签芯片321可以但不限于有两个天线管脚,一个天线管脚连接天线33,另一个天线管脚连接PCB部件30外面的导线40,天线33和导线40分别在标签芯片321的相对的两边,并处于同一个平面。天线33的悬空端点和PCB板外的导线40的悬空端点之间的距离约为超高频工作频率的四分之一波长。根据所选用标签芯片321不同,对应的控制电路322也不同。例如,如果标签芯片321有输出电源和控制管脚,控制电路322根据标签芯片321控制管脚输出的信号和电源控制LED 35的亮灭。如果标签芯片321只有控制管脚,没有输出电源管脚,控制电路322可以从天线上收到的无线载波信号整流恢复出直流电源,然后根据标签芯片321控制管脚输出的信号控制LED 35的亮灭。
可选地,在本实施例中,标签部件32还可以但不限于设置为:为标签读写器提供无源电子标签的用于唯一标识无源电子标签身份标识和/或无源电子标签的位置信息。为标签读写器提供无源电子标签的身份标识可以使标签读写器识别出无源电子标签,为标签读写器提供无源电子标签的位置信息可以使标签读写器对无源电子标签进行定位,从而使标签读写器获取到无源电子标签所在的位置。
在相关技术中的超高频发光RFID无源电子标签的实施中,与RFID读写器之间的空中接口距离要求近,或者要求无源电子标签PCB上天线孔径面积大,导致无源电子标签整体面积大,不适合要求无源电子标签安装空间小的应用场景。
在本实施例中,超高频发光RFID无源电子标签,与相关的技术方法相比,采用PCB部件30与导线40结合的方法,使得无源电子标签硬PCB部分面积小,而软导线部分可与所附着的物体结合、缠绕,方便安装,扩大了超高频发光RFID无源电子标签的应用场景。本发明实施例提供的超高频发光RFID无源电子标签的控制方法遵循RFID行业标准,不需要定义开发RFID私有协议,方便本发明技术推广,形成标准。
此外,在相关技术中,RFID读写器通常只能判断出在射频场中的所有无源RFID电子标签ID号码,但是无法确定其中单个无源RFID电子标签所在的位 置。已知可用到达时间(Time of Arrival,简称为:ToA)、到达时间差(Time Difference of Arrival,简称为:TDoA)、到达角度(Angle of Arrival,简称为:AoA)、到达方向(Direction of Arrival,简称为:DoA)、接收信号强度指示器(Received Signal Strength Indicator,简称为:RSSI)、到达相位(Phase of Arrival,简称为:PoA)、到达相位差(Phase Difference of Arrival,简称为:PDoA)等测量方法辅助确定其中单个无源RFID电子标签所在的粗略的位置,相关技术只能达到厘米级别的定位精度。为了增加超高频无源电子标签的视觉导引和更精确的位置定位功能,本发明实施例在超高频无源电子标签上增加了LED等发光器件和控制电路。通过人眼可方便的识别出发光的超高频无源电子标签位置。利用通常分辨率的摄像头拍摄发光的超高频无源电子标签,通过图像对比,分析图像中的发光LED影象和对应象素,可以达到毫米级别的定位精度。
本发明实施例中还提供了一种无源电子标签控制方法,图8为本发明实施例提供的一种无源电子标签控制方法的流程图,如图8所示,本实施例提供的方法可以包括如下步骤,即步骤110~步骤130:
步骤110,通过天线和导线接收标签读写器发射的控制信号,其中,控制信号携带有用于控制无源电子标签上的发光元件的控制指令;
步骤120,解析控制信号得到控制指令;
步骤130,控制发光元件根据控制指令发光。
可选地,在本实施例中,上述无源电子标签控制方法可以但不限于应用于射频识别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
可选地,在本实施例中,上述无源电子标签控制方法可以但不限于应用于无源电子标签,例如:无源电子标签可以但不限于是超高频发光RFID无源电子标签。
本实施例提供的电子标签控制方法,通过利用天线和导线接收标签读写器发射的控制信号,其中,导线可以增加无源电子标签的天线面积,从而使相同大小的无源电子标签可以接收到更多的标签读写器传输的能量;解决了 相关技术中无源电子标签接收能量时效率较低的问题,提高了无源电子标签接收能量的效率。并且,在通过标签电路控制无源电子标签执行控制指令时,可以利用接收到的标签读写器传输的能量为发光元件供电,使发光元件发光,从而可以精确地对无源电子标签进行定位。
此外,在本实施例中,通过导线增加了无源电子标签天线的面积,提高了无源电子标签接收到的能量,同时也使标签卡板面积一定的无源电子标签更容易接收到标签读写器能量时,增加了标签读写器可以扫描到无源电子标签的距离,从而也使标签读写器更容易扫描到无源电子标签。
在本实施例中,可以但不限于通过无源电子标签的标签电路中的标签芯片解析控制信号得到控制指令,再由标签电路中的控制电路控制发光元件按照控制指令发光。
在本实施例中,发光元件可以但不限于是LED。LED可以但不限于选用低功耗、低电压、高亮度、可视角大的发光二极管。标签电路、供电电容和LED可以共同连接同一个参考地平面。
可选地,为了给发光元件提供稳定的电压,本实施例提供的方法,在上述步骤110之后,还可以包括:通过天线和导线获取控制信号的能量,通过供电电容转化并存储控制信号的能量。供电电容中存储的能量可以但不限于用于为发光元件供电。
可选地,本实施例提供的方法,上述步骤130的实现方式可以包括:根据控制指令所指示的预设规则控制供电电容为发光元件供电,以使发光元件在供电的情况下发光。该预设规则可以但不限于是常亮、闪烁、关闭、定时点亮等。
可选地,本实施例提供的方法,在上述步骤110之前,还可以包括:根据接收到的标签读写器的查询指令向标签读写器发送无源电子标签的身份标识和/或无源电子标签的位置信息,其中,该身份标识用于唯一标识无源电子标签。通过上述步骤,可以使标签读写器可以根据无源电子标签的身份标识选择无源电子标签,也可以使标签读写器可以根据无源电子标签的位置信息定位无源电子标签。
在相关技术中的超高频发光RFID无源电子标签实施,与RFID读写器之间的空中接口距离要求近,或者要求无源电子标签PCB上天线孔径面积大,导致无源电子标签整体面积大,不适合要求无源电子标签安装空间小的应用场景。
在本实施例中,超高频发光RFID无源电子标签,与相关的技术方法相比,采用PCB部件与导线结合的方法,使得无源电子标签硬PCB部分面积小,而软导线部分可与所附着的物体结合、缠绕,方便安装,扩大了超高频发光RFID无源电子标签的应用场景。本发明超高频发光RFID无源电子标签的控制方法遵循RFID行业标准,不需要定义开发RFID私有协议,方便本发明实施例的技术推广,形成标准。
此外,在相关技术中,RFID读写器通常只能判断出在射频场中的所有无源RFID电子标签ID号码,但是无法确定其中单个无源RFID电子标签所在的位置。已知可用到达时间ToA、TDoA、AoA、DoA、RSSI、PoA、PDoA等测量方法辅助确定其中单个无源RFID电子标签所在的粗略的位置,相关技术只能达到厘米级别的定位精度。为了增加超高频无源电子标签的视觉导引和更精确的位置定位功能,本实施例在超高频无源电子标签上增加了LED等发光器件和控制电路。通过人眼可方便的识别出发光的超高频无源电子标签位置。利用通常分辨率的摄像头拍摄发光的超高频无源电子标签,通过图像对比,分析图像中的发光LED影象和对应象素,可以达到毫米级别的定位精度。
本发明实施例中还提供了一种无源电子标签控制方法,图9为本发明实施例提供的另一种无源电子标签控制方法的流程图,如图9所示,本实施例提供的无源电子标签控制方法可以包括如下步骤,步骤210~步骤230:
步骤210,获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,该身份标识用于唯一标识无源电子标签;
步骤220,从一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
步骤230,向目标无源电子标签发送控制信号,其中,该控制信号携带有 用于控制无源电子标签上的发光元件的控制指令。
可选地,上述无源电子标签控制方法可以但不限于应用于射频识别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
可选地,上述无源电子标签控制方法可以但不限于应用于标签读写器,例如:用于控制超高频发光RFID无源电子标签发光的标签读写器。
本实施例提供的无源电子标签控制方法,通过从获取的无源电子标签的身份标识中选择预设身份标识的目标无源电子标签,并向目标无源电子标签发送用于控制目标无源电子标签发光的控制信号,目标无源电子标签接收到控制信号后,可以根据控制信号中的控制指令发光;解决了相关技术中对无源电子标签位置时定位精度较低的问题,提高了对无源电子标签位置的定位精度。
在本实施例的一个可选地示例中,提供了一种超高频发光RFID无源电子标签的控制方法,在本示例中,标签读写器以RFID读写器为例,无源电子标签以超高频发光RFID无源电子标签为例,发光元件以LED为例。图10为本发明实施例提供的一种超高频发光RFID无源电子标签的控制方法的流程图,如图10所示,本实施例提供的方法可以包括如下步骤,即步骤310~步骤330:
步骤310,RFID读写器在读写器产生的电磁场范围内扫描盘点(Inventory)到至少一个超高频发光RFID电子标签,并记录下各个超高频发光RFID电子标签的ID号码。其中,盘点到的多个超高频发光RFID电子标签的ID号码是唯一、各不相同的。
步骤320,RFID读写器根据需要操作的超高频发光RFID电子标签中的ID号码选中(Select)其中的一个超高频发光RFID电子标签。
步骤330,RFID读写器发出(Write)控制LED指令,被选中的这个超高频发光RFID电子标签解析该指令,实现点亮、闪烁,或者熄灭LED的操作。
在本实施例的另一个可选地示例中,提供了超高频发光RFID无源电子标签的控制方法,在本示例中,标签读写器以RFID读写器为例,无源电子标签以超高频发光RFID无源电子标签为例,发光元件以LED为例。图11为本发明实施例提供的另一种超高频发光RFID无源电子标签的控制方法的流程图,本 实施例提供的该方法可以应用于查找光纤跳线端口的应用场景中,光纤跳线(又称光纤连接器)是指光纤两端都装上光纤连接器插头,用来实现光路活动连接光纤适配器。如图11所示,本实施例提供的方法可以包括如下步骤,即步骤410~步骤430:
步骤410,超高频发光RFID无源电子标签安装在光纤两端的光纤连接器插头上面。
步骤420,超高频RFID读写器通过空中接口,控制点亮其中一端光纤连接器插头上的RFID无源电子标签,找到这个光纤端口,然后插入光纤适配器。
步骤430。超高频RFID读写器通过空中接口,控制点亮另一端光纤连接器插头上的RFID无源电子标签,找到另一个光纤端口,然后插入光纤适配器。
本实施例提供的无源电子标签控制方法,可以实现超高频发光RFID无源电子标签的精确定位,从而快速找到光纤两个端口。
可选地,在图9所示实施例中,上述步骤220之后,为了确保标签读写器传输的能量足以控制目标无源电子标签的发光元件发光,还可包括:判断标签读写器传输给目标无源电子标签的能量是否小于用于控制目标无源电子标签的发光元件发光的能量阈值,该能量阈值为控制目标无源电子标签的发光元件发光所需的最小能量,并在判断出标签读写器传输给目标无源电子标签的能量小于该阈值时,移动标签读写器至第一区域,其中,该第一区域为标签读写器传输给目标无源电子标签的能量大于或者等于该能量阈值的区域。
可选地,在图9所示实施例中,可以通过判断标签读写器与目标无源电子标签之间的距离是否满足控制目标无源电子标签的发光元件发光的条件,来判断标签读写器传输的能量是否足以控制目标无源电子标签的发光元件发光。
例如,可以获取目标无源电子标签的位置信息,得到目标无源电子标签所在的位置,通过计算得到目标无源电子标签所在的位置与标签读写器所在的位置之间的距离,再判断计算得到的距离是否大于预设距离,其中,预设距离为标签读写器传输给目标无源电子标签的能量等于上述能量阈值时,标签读写器与无源电子标签之间的距离,并在判断出计算得到的距离大于预设 距离的情况下,移动标签读写器至与无源电子标签之间的距离小于或者等于预设距离的位置。
下面举出一个示例对上述通过判断标签读写器与目标无源电子标签之间的距离是否满足控制目标无源电子标签的发光元件发光的条件来判断标签读写器传输的能量是否足以控制目标无源电子标签的发光元件发光的过程进行描述和说明。
在本示例中,通过获取标签读写器Q信号覆盖范围内的一个或者多个无源电子标签的身份标识,从这些身份标识中选出了目标无源电子标签P。为了确保标签读写器Q传输给目标无源电子标签P的能量E1足以用来控制目标无源电子标签P的发光元件发光,可以获取目标无源电子标签P的位置信息,并定位出目标无源电子标签P所在的位置坐标A。通过计算得到标签读写器Q所在的位置坐标B与目标无源电子标签之间的距离为B-A=D1,标签读写器Q传输给目标无源电子标签P的能量E1等于用于控制目标无源电子标签P的发光元件发光的能量阈值E2时,标签读写器Q与无源电子标签P之间的预设距离设置为D2。如果D1大于D2,则表示E1小于E2,可以将标签读写器移动至满足D1小于或者等于D2的区域后,向目标无源电子标签发送控制信号。如果D1小于或者等于D2,则表示E1大于或者等于E2,则可以直接向目标无源电子标签发送控制信号。
本发明实施例中还提供了一种无源电子标签控制装置,该装置用于实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。
图12为本发明实施例提供的一种无源电子标签控制装置的结构示意图,如图12所示,本实施例提供的装置包括:接收模块51、解析模块52和控制模块53。
其中,接收模块51,设置为:通过天线和导线接收标签读写器发射的控制信号,其中,该控制信号携带有用于控制无源电子标签上的发光元件的控制指令;
解析模块52,耦合至接收模块51,该解析模块52设置为:解析接收模块51接收到的控制信号得到控制指令;
控制模块53,耦合至解析模块52,该控制模块53设置为:控制发光元件根据解析模块52得到的控制指令发光。
可选地,在本实施例中,上述无源电子标签控制装置可以但不限于应用于射频识别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
可选地,在本实施例中,上述无源电子标签控制装置可以但不限于应用于无源电子标签,例如:无源电子标签可以但不限于是超高频发光RFID无源电子标签。
本实施例提供的无源电子标签控制装置,通过接收模块51利用天线和导线接收标签读写器发射的控制信号,其中,导线可以增加无源电子标签的天线面积,从而使相同大小的无源电子标签可以接收到更多的标签读写器传输的能量;解决了相关技术中无源电子标签接收能量时效率较低的问题,提高了无源电子标签接收能量的效率。并且,控制模块53通过解析模块52解析控制信号得到的控制指令可以控制发光元件发光,从而可以精确地对无源电子标签进行定位。
此外,通过导线增加了无源电子标签天线的面积,提高了无源电子标签接收到的能量,同时也使标签卡板面积一定的无源电子标签更容易接收到标签读写器能量时,增加了标签读写器可以扫描到无源电子标签的距离,从而也使标签读写器更容易扫描到无源电子标签。
在本实施例中,可以但不限于通过无源电子标签的标签电路中的标签芯片解析控制信号得到控制指令,再由标签电路中的控制电路控制发光元件按照控制指令发光。
在本实施例中,发光元件可以但不限于是LED。LED可以但不限于选用低功耗、低电压、高亮度、可视角大的发光二极管。标签电路、供电电容和LED可以共同连接同一个参考地平面。
可选地,本实施例提供的装置还还包括:
第二获取模块,耦合至接收模块51,该第二获取模块设置为:接收通过 天线和导线获取控制信号的能量;
处理模块,耦合至第二获取模块和控制模块53之间,该处理模块设置为:通过供电电容转化并存储控制信号的能量。
可选地,控制模块53,是设置为:根据控制指令所指示的预设规则控制供电电容为发光元件供电,以使发光元件在供电的情况下发光。
在相关技术中的超高频发光RFID无源电子标签实施,与RFID读写器之间的空中接口距离要求近,或者要求无源电子标签PCB上天线孔径面积大,导致无源电子标签整体面积大,不适合要求无源电子标签安装空间小的应用场景。
在本实施例中,超高频发光RFID无源电子标签,与相关的技术方法相比,采用PCB部件与导线结合的方法,使得无源电子标签硬PCB部分面积小,而软导线部分可与所附着的物体结合、缠绕,方便安装,扩大了超高频发光RFID无源电子标签的应用场景。本发明实施例的超高频发光RFID无源电子标签的控制方法遵循RFID行业标准,不需要定义开发RFID私有协议,方便本发明技术推广,形成标准。
此外,在相关技术中,RFID读写器通常只能判断出在射频场中的所有无源RFID电子标签ID号码,但是无法确定其中单个无源RFID电子标签所在的位置。已知可用到达时间ToA、TDoA、AoA、DoA、RSSI、PoA、PDoA等测量方法辅助确定其中单个无源RFID电子标签所在的粗略的位置,相关技术只能达到厘米级别的定位精度。为了增加超高频无源电子标签的视觉导引和更精确的位置定位功能,本实施例在超高频无源电子标签上增加了LED等发光器件和控制电路。通过人眼可方便的识别出发光的超高频无源电子标签位置。利用通常分辨率的摄像头拍摄发光的超高频无源电子标签,通过图像对比,分析图像中的发光LED影象和对应象素,可以达到毫米级别的定位精度。
在实际应用中,上述装置中的每个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明实施例中还提供了一种无源电子标签控制装置,该装置用于实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图13为本发明实施例提供的另一种无源电子标签控制装置的结构示意图,如图13所示,本实施例提供的装置包括:第一获取模块61、选择模块62和发送模块63。
其中,第一获取模块61,设置为:获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,该身份标识用于唯一标识该无源电子标签;
选择模块62,耦合至第一获取模块61,该选择模块62,设置为:从第一获取模块61获取的一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
发送模块63,耦合至选择模块62,该发送模块63设置为:向选择模块62选择的目标无源电子标签发送控制信号,其中,该控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令。
可选地,在本实施例中,上述无源电子标签控制装置可以但不限于应用于射频识别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
可选地,在本实施例中,上述无源电子标签控制装置可以但不限于应用于标签读写器,例如:用于控制超高频发光RFID无源电子标签发光的标签读写器。
本实施例提供的无源电子标签控制装置,通过选择模块62从第一获取模块61获取的无源电子标签的身份标识中选择预设身份标识的目标无源电子标签,并由发送模块63向目标无源电子标签发送用于控制目标无源电子标签发光的控制信号,目标无源电子标签接收到控制信号后,可以根据控制信号中的控制指令发光;解决了相关技术中对无源电子标签位置的定位精度低的问题,提高了对无源电子标签位置的定位精度。
在实际应用中,上述装置中的每个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明实施例中还提供了一种无源电子标签控制系统,图14为本发明实施例提供的一种无源电子标签控制系统的结构示意图,如图14所示,本实施例提供的系统包括:标签读写器71和无源电子标签72。
其中,标签读写器71,设置为:获取该标签读写器71的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,该身份标识用于唯一标识无源电子标签;从一个或者多个无源电子标签的身份标识中选择预设身份标识的无源电子标签;向无源电子标签发送控制信号,其中,控制信号携带有用于控制无源电子标签上的发光元件的控制指令。
无源电子标签72,与标签读写器71连接,该无源电子标签72设置为:通过天线和导线接收标签读写器71的控制信号,其中,该控制信号携带有用于控制无源电子标签72上的发光元件的控制指令;解析控制信号得到控制指令;控制发光元件按照控制指令发光。
可选地,在本实施例中,上述无源电子标签控制系统可以但不限于应用于射频识别的场景中。例如:利用标签读写器控制无源电子标签的场景中。
可选地,在本实施例中,上述无源电子标签可以但不限于是超高频发光RFID无源电子标签,上述标签读写器可以但不限于是用于控制超高频发光RFID无源电子标签发光的标签读写器。上述无源电子标签可以是高频发光RFID无源电子标签,上述标签读写器可以是用于控制高频发光RFID无源电子标签发光的标签读写器。例如:高频发光RFID无源电子标签的发射频率可以但不限于为13.56兆赫兹(MHz)。
本实施例提供的无源电子标签控制系统,通过标签读写器从获取的无源电子标签的身份标识中选择预设身份标识的目标无源电子标签,并向目标无源电子标签发送用于控制目标无源电子标签发光的控制信号,目标无源电子标签接收到控制信号后,可以根据控制信号中的控制指令发光;解决了相关 技术中对无源电子标签位置的定位时精度较低的问题,提高了对无源电子标签位置的定位精度。下面以一个应用实例说明和描述本实施例中的无源电子标签控制系统。
在本应用实例中提供了一种可选的无源电子标签控制系统,图15为本发明实施例提供的另一种无源电子标签控制系统的结构框图,如图15所示,该系统包括:标签读写器71和无源电子标签72的集合,该无源电子标签72的集合中包括的多个无源电子标签:无源电子标签72-1~无源电子标签72-N,N为正整数。
其中,标签读写器71,设置为:获取该标签读写器71的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,该身份标识用于唯一标识无源电子标签;从一个或者多个无源电子标签的身份标识中选择预设身份标识的无源电子标签;向无源电子标签发送控制信号,其中,该控制信号携带有用于控制无源电子标签上的发光元件的控制指令。由于无源电子标签72上的发光元件功耗远大于无源电子标签72上的电子标签芯片功耗,所以标签读写器71读写无源电子标签72的距离大于标签读写器71控制无源电子标签72上的发光元件的距离。
首先,在位置1,标签读写器71可以查询到一个或者多个无源电子标签72。标签读写器71可以获取无源电子标签72的身份标识(例如:ID号)和位置信息。读到的所有无源电子标签72组成一个标签空间集合。该标签空间集合例如包括N个无源电子标签:无源电子标签72-1到无源电子标签72-N。
然后,如果标签读写器71要控制点亮其中的一个无源电子标签,例如无源电子标签72-M。假定标签读写器71所在的位置与无源电子标签72-M所在的位置之间的距离为L1,标签读写器71选中无源电子标签72-M,此时,由于在位置1处距离无源电子标签72-M的距离L1可能较远,例如,L1大于预设距离L,无源电子标签72-M不能获得足够的能量点亮,或者不能被立刻点亮。
标签读写器71可以根据获取的无源电子标签72-M的位置信息移动到无源电子标签72-M的大概位置附近,例如,移动到与无源电子标签72-M之间的距离为L2的位置,此时,L2小于或者等于预设距离L,再次向标签读写器71的信号覆盖范围内的一个或者多个无源电子标签发送查询、选择、点亮指令 序列,点亮无源电子标签72-M。
在本实施例中还提供了一种无源电子标签控制系统的操作流程,图16为本发明实施例提供的无源电子标签控制系统的一种操作流程的示意图。在本操作流程中,标签读写器71以RFID读写器为例,无源电子标签72的身份标识以无源电子标签的ID号为例,如图16所示,本实施例中的操作流程可以包括以下步骤,即步骤501~步骤506:
步骤501,RFID读写器在位置1处扫描其信号覆盖范围内的无源电子标签。
步骤502,RFID读写器发送查询指令,获得一个或者多个无源电子标签的ID号和位置信息。
步骤503,RFID读写器发送选择指令,选中待发光的一个无源电子标签。
步骤504,RFID读写器判断被选中的无源电子标签是否能够根据指令发光。如果判断结果为否,则执行步骤505,如果判断结果为是,则执行步骤506。
步骤505,RFID读写器移动到位置2处扫描其信号覆盖范围内的无源电子标签,返回执行步骤502。
步骤506,RFID读写器向选中的待发光的一个无源电子标签发送控制发光指令,控制被选中的无源电子标签根据指令发光。
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通过天线和导线接收标签读写器发射的控制信号,其中,该控制信号携带有用于控制无源电子标签上的发光元件的控制指令;
S2,解析控制信号得到控制指令;
S3,控制发光元件根据控制指令发光。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,该身份标识用于唯一标识无源电子标签;
S2,从一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
S3,向目标无源电子标签发送控制信号,其中,该控制信号携带有用于控制无源电子标签上的发光元件的控制指令。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为:ROM)、随机存取存储器(Random Access Memory,简称为:RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的实现方式可以参考上述实施例及可选地实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(根据系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过在标签卡板之外增加导线,相当于增加了无源电子标签的天线的面积,从而使相同大小的无源电子标签可以接收到更多的标签读写器传输的能量;解决了相关技术中无源电子标签接收能量时效率较低的问 题,提高了无源电子标签接收能量的效率。并且,在通过标签电路控制无源电子标签执行指令时,可以利用接收到的标签读写器传输的能量为发光元件供电,使发光元件发光,从而可以精确地对无源电子标签进行定位。

Claims (18)

  1. 一种无源电子标签,包括:标签卡板和导线;
    其中,所述标签卡板包括:标签电路、天线和发光元件,其中,所述标签电路设置为:控制所述无源电子标签执行控制指令,所述控制指令包括:由所述标签电路通过所述天线与标签读写器交互得到的查询指令、选择指令、或者用于控制所述发光元件亮暗的指令,所述天线和所述发光元件分别与所述标签电路连接;
    所述导线与所述标签电路连接,所述导线设置为:接收所述标签读写器传输的能量。
  2. 根据权利要求1所述的无源电子标签,其中,
    所述天线包括:第一端口和第二端口,所述第一端口与所述标签电路连接,所述第二端口悬空;
    所述导线包括:第三端口和第四端口,所述第三端口与所述标签电路连接,所述第四端口悬空,其中,所述第二端口与所述第四端口之间的距离为预定阈值。
  3. 根据权利要求2所述的无源电子标签,其中,所述第二端口与所述第四端口之间的有效距离为所述无源电子标签的工作频率对应的波长的四分之一,其中,所述有效距离为所述第二端口在所述标签卡板上的第一投影与所述第四端口在所述标签卡板上的第二投影之间的距离。
  4. 根据权利要求3所述的无源电子标签,其中,所述导线与所述天线设置在同一平面上。
  5. 根据权利要求1所述的无源电子标签,其中,所述标签卡板还包括:供电电容,其中,所述供电电容分别与所述发光元件和所述标签电路连接,所述供电电容设置为:为所述发光元件供电。
  6. 根据权利要求5所述的无源电子标签,其中,所述标签卡板还包括:二极管,其中,所述二极管的正极与所述标签电路连接,所述二极管的负极分别与所述供电电容和所述发光元件连接,所述二极管设置为:隔离所述供电电容和所述发光元件形成的负载电路,与所述标签电路之间电压。
  7. 根据权利要求1所述的无源电子标签,其中,所述标签电路包括:标签芯片和控制电路;
    其中,所述标签芯片,设置为:根据与所述标签读写器交互得到的结果生成所述控制指令;
    所述控制电路分别与所述标签芯片和所述发光元件连接,所述控制电路设置为:根据所述标签芯片生成的所述控制指令控制所述发光元件发光。
  8. 根据权利要求1所述的无源电子标签,其中,所述标签电路,还设置为:为所述标签读写器提供所述无源电子标签的身份标识和/或所述无源电子标签的位置信息,其中,所述身份标识用于唯一标识所述无源电子标签。
  9. 一种无源电子标签控制方法,包括:
    通过天线和导线接收标签读写器发射的控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
    解析所述控制信号得到所述控制指令;
    控制所述发光元件根据所述控制指令发光。
  10. 根据权利要求9所述的方法,其中,所述通过天线和导线接收标签读写器发射的控制信号之后,所述方法还包括:
    通过所述天线和所述导线获取所述控制信号的能量;
    通过供电电容转化并存储所述控制信号的能量。
  11. 根据权利要求10所述的方法,其中,所述控制所述发光元件根据所述控制指令发光,包括:
    根据所述控制指令所指示的预设规则控制所述供电电容为所述发光元件供电,以使所述发光元件在所述供电的情况下发光。
  12. 根据权利要求9所述的方法,其中,所述通过天线和导线接收标签读写器发射的控制信号之前,所述方法还包括:
    根据接收到的所述标签读写器的查询指令向所述标签读写器发送所述无源电子标签的身份标识和/或所述无源电子标签的位置信息,其中,所述身份标识用于唯一标识所述无源电子标签。
  13. 一种无源电子标签控制方法,包括:
    获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识所述无源电子标签;
    从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
    向所述目标无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令。
  14. 根据权利要求13所述的方法,其中,所述从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签之后,所述方法还包括:
    判断所述标签读写器传输给所述目标无源电子标签的能量是否小于用于控制所述目标无源电子标签的发光元件发光的能量阈值;
    在判断出所述标签读写器传输给所述目标无源电子标签的能量小于所述能量阈值时,移动所述标签读写器至第一区域,其中,所述第一区域为所述标签读写器传输给所述目标无源电子标签的能量大于或者等于所述能量阈值的区域。
  15. 根据权利要求14所述的方法,其中,所述判断所述标签读写器传输给所述目标无源电子标签的能量是否小于用于控制所述目标无源电子标签的发光元件发光的能量阈值,包括:
    获取所述目标无源电子标签的位置信息,得到所述目标无源电子标签所在的位置;计算所述目标无源电子标签所在的位置与所述标签读写器所在的位置之间的距离;判断所述距离是否大于预设距离,其中,所述预设距离为所述标签读写器传输给所述目标无源电子标签的能量等于所述能量阈值时,所述标签读写器与所述目标无源电子标签之间的距离;
    所述在判断出所述标签读写器传输给所述目标无源电子标签的能量小于所述能量阈值时,移动所述标签读写器至所述第一区域,包括:
    在判断出所述距离大于所述预设距离时,移动所述标签读写器至与所述无源电子标签之间的距离小于或者等于所述预设距离的位置。
  16. 一种无源电子标签控制装置,包括:
    接收模块,设置为:通过天线和导线接收标签读写器发射的控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
    解析模块,设置为:解析所述接收模块接收的所述控制信号得到所述控制指令;
    控制模块,设置为:控制所述发光元件根据所述解析模块得到的所述控制指令发光。
  17. 一种无源电子标签控制装置,包括:
    第一获取模块,设置为:获取标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识所述无源电子标签;
    选择模块,设置为:从所述第一获取模块获取的所述一个或者多个无源电子标签的身份标识中选择预设身份标识的目标无源电子标签;
    发送模块,设置为:向所述选择模块选择的所述目标无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令。
  18. 一种无源电子标签控制系统,包括:标签读写器和无源电子标签;
    其中,所述标签读写器,设置为:获取所述标签读写器的信号覆盖范围内的一个或者多个无源电子标签的身份标识,其中,所述身份标识用于唯一标识无源电子标签;从所述一个或者多个无源电子标签的身份标识中选择预设身份标识的所述无源电子标签;向所述无源电子标签发送控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的发光元件的控制指令;
    所述无源电子标签,设置为:通过天线和导线接收所述标签读写器发射的所述控制信号,其中,所述控制信号携带有用于控制所述无源电子标签上的所述发光元件的所述控制指令;解析所述控制信号得到所述控制指令;控制所述发光元件根据所述控制指令发光。
PCT/CN2016/096255 2016-04-14 2016-08-22 无源电子标签、无源电子标签控制方法、装置及系统 WO2017177599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610232178.8 2016-04-14
CN201610232178.8A CN107301358B (zh) 2016-04-14 2016-04-14 无源电子标签、无源电子标签控制方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017177599A1 true WO2017177599A1 (zh) 2017-10-19

Family

ID=60041338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096255 WO2017177599A1 (zh) 2016-04-14 2016-08-22 无源电子标签、无源电子标签控制方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107301358B (zh)
WO (1) WO2017177599A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111079874A (zh) * 2019-12-16 2020-04-28 北京计算机技术及应用研究所 一种基于rfid技术的模块化标签定位系统及方法
CN111310486A (zh) * 2018-12-12 2020-06-19 航天信息股份有限公司 一种车辆识别方法及监管设备
CN111950677A (zh) * 2019-05-15 2020-11-17 深圳市物联锁科技有限公司 电子标签芯片及电子标签
US11631346B2 (en) * 2016-09-08 2023-04-18 Mariella Labels Oy Arrangement and method for managing an electronic price label, and an electronic price label system
CN116828595A (zh) * 2023-08-24 2023-09-29 汉朔科技股份有限公司 一种电子价签的定位方法、计算机设备和存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334913A (zh) * 2017-12-27 2018-07-27 厦门致联科技有限公司 一种通信线管理系统及其使用方法及通信线管理方法
CN108320014B (zh) * 2018-04-11 2024-01-05 上海诚意电气有限公司 无源型射频识别标签、跌落式熔断器装置及其监测系统
CN109635607B (zh) * 2018-11-12 2019-11-08 晓函安全(北京)科技有限公司 一种面向单芯片实现的毫米波整流装置
CN110868777B (zh) * 2019-10-29 2022-04-05 上海一芯智能科技有限公司 智能卡的时序发光控制方法及智能卡
CN111009050A (zh) * 2019-11-08 2020-04-14 上海一芯智能科技有限公司 基于发光智能卡的巡更方法及系统
CN113222094A (zh) * 2021-05-26 2021-08-06 上海一芯智能科技有限公司 闪烁发光智能卡
CN114218974B (zh) * 2022-02-14 2022-06-07 山东华翼微电子技术股份有限公司 一种无源rfid标签的精确定位装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046432A1 (en) * 2005-08-31 2007-03-01 Impinj, Inc. Local processing of received RFID tag responses
US20080122401A1 (en) * 2006-11-28 2008-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, communication system, and method of charging the semiconductor device
JP2011135307A (ja) * 2009-12-24 2011-07-07 Mitsubishi Electric Corp 無線通信装置
US20110298051A1 (en) * 2007-03-26 2011-12-08 Synopsys, Inc. Electrostatic Discharge Management Apparatus, Systems, and Methods
CN202093550U (zh) * 2011-06-23 2011-12-28 四川新源现代智能科技有限公司 便于司机携带的远距离无源电子标签
CN104504431A (zh) * 2014-12-30 2015-04-08 桂林理工大学 单向可见光识别无源电子标签及阅读器装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519491A (ja) * 2002-01-09 2005-06-30 ミードウエストベココーポレーション 複数のrfアンテナを使用するインテリジェントステーションならびにこれを組み込んだ在庫制御システムおよび在庫制御方法
CN101039624A (zh) * 2004-08-16 2007-09-19 Abr有限责任公司 Rfid换能器对准系统
CN2800376Y (zh) * 2005-06-15 2006-07-26 沈阳先达条码技术发展有限公司 一种带有多方位天线的高频远距离射频标签读写设备
US8159350B2 (en) * 2006-05-15 2012-04-17 International Business Machines Corporation Method and system for localizing objects using passive RFID tags which identifies the RFID with an LED
CN101419655B (zh) * 2007-10-22 2011-09-07 深圳市科陆电子科技股份有限公司 一种计量封印读写方法、装置及计量封印
TWI379456B (en) * 2008-08-12 2012-12-11 Ind Tech Res Inst Radio-frequency identification (rfid) antenna, tags and communication system
CN202092550U (zh) * 2011-04-21 2011-12-28 浙江豪情汽车制造有限公司 机械转向管柱径向跳动检验装置
ITPD20110339A1 (it) * 2011-10-28 2013-04-29 Rotas Italia SRL Sistema per la visualizzazione da parte di un utente di contenuti multimediali
CN102436597B (zh) * 2011-12-14 2016-01-20 深圳日海通讯技术股份有限公司 可视化无源rfid电子标签及其身份识别方法
CN103218583A (zh) * 2012-01-18 2013-07-24 北京慧感嘉联科技有限公司 一种无线系统和环境监控方法
CN105095947A (zh) * 2014-05-19 2015-11-25 中兴通讯股份有限公司 无源光学标签、光读写装置及智能光分配网络
CN104318286B (zh) * 2014-10-31 2017-11-17 东莞宇龙通信科技有限公司 Nfc标签数据的管理方法、管理系统和终端
CN204480259U (zh) * 2015-02-01 2015-07-15 齐齐哈尔工程学院 物联网运营中物品物流管理分类采集器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046432A1 (en) * 2005-08-31 2007-03-01 Impinj, Inc. Local processing of received RFID tag responses
US20080122401A1 (en) * 2006-11-28 2008-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, communication system, and method of charging the semiconductor device
US20110298051A1 (en) * 2007-03-26 2011-12-08 Synopsys, Inc. Electrostatic Discharge Management Apparatus, Systems, and Methods
JP2011135307A (ja) * 2009-12-24 2011-07-07 Mitsubishi Electric Corp 無線通信装置
CN202093550U (zh) * 2011-06-23 2011-12-28 四川新源现代智能科技有限公司 便于司机携带的远距离无源电子标签
CN104504431A (zh) * 2014-12-30 2015-04-08 桂林理工大学 单向可见光识别无源电子标签及阅读器装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631346B2 (en) * 2016-09-08 2023-04-18 Mariella Labels Oy Arrangement and method for managing an electronic price label, and an electronic price label system
CN111310486A (zh) * 2018-12-12 2020-06-19 航天信息股份有限公司 一种车辆识别方法及监管设备
CN111310486B (zh) * 2018-12-12 2023-07-14 航天信息股份有限公司 一种车辆识别方法及监管设备
CN111950677A (zh) * 2019-05-15 2020-11-17 深圳市物联锁科技有限公司 电子标签芯片及电子标签
CN111079874A (zh) * 2019-12-16 2020-04-28 北京计算机技术及应用研究所 一种基于rfid技术的模块化标签定位系统及方法
CN116828595A (zh) * 2023-08-24 2023-09-29 汉朔科技股份有限公司 一种电子价签的定位方法、计算机设备和存储介质
CN116828595B (zh) * 2023-08-24 2024-01-02 汉朔科技股份有限公司 一种电子价签的定位方法、计算机设备和存储介质

Also Published As

Publication number Publication date
CN107301358A (zh) 2017-10-27
CN107301358B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2017177599A1 (zh) 无源电子标签、无源电子标签控制方法、装置及系统
WO2017045467A1 (zh) 位置确定的方法、装置、系统及处理中心
WO2017041586A1 (zh) 超高频的射频识别标签及系统,管理射频识别标签的方法
US20130088331A1 (en) Apparatus and method for recognizing location of object in location recognition system
EP1760013A1 (en) Article position management system, article position management method, terminal device, server, and article position management program
CN109511095B (zh) 一种基于支持向量机回归的可见光定位方法及系统
CN110443099B (zh) 物体身份识别系统及其自动识别物体身份的方法
CN109919266A (zh) 一种电子标签、电子拣货系统、方法和计算机可读介质
CN103279780A (zh) 基于rssi加权算法的rfid物品定位装置
CN104036316A (zh) 超低功耗光激活电子标签与读卡器系统及其信号处理方法
Menon et al. Wireless identification and sensing platform version 6.0
US11663437B2 (en) Light emitting apparatus recognition system and light emitting apparatus
CN110710468B (zh) 一种应用于牧场的快速寻找牛只的方法
US9189666B2 (en) Reader for fiber router
EP3981225A1 (en) Rfid integrated light infrastructure
KR102028806B1 (ko) 객체 추적을 이용하여 조명을 제어하는 장치 및 방법
KR101343138B1 (ko) 무선 태그 리더의 신뢰성 시험 장치
CN103955734B (zh) 一种半有源发光定位电子标签
TWI704503B (zh) 物體身分辨識系統及其自動辨識物體身分的方法
CN112436893B (zh) 信息传输方法、装置和电子设备
KR20140100776A (ko) 복합 리더기
KR102579216B1 (ko) Rfid 판독기 및 이를 포함하는 rfid 시스템
US20220272822A1 (en) Luminaire and lighting trunking system with rfid antenna
CN110185980B (zh) 一种基于rfid身份识别的摄像头监控智能吸顶灯
KR20120109673A (ko) 반수동형 rfid를 이용한 센싱방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898414

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898414

Country of ref document: EP

Kind code of ref document: A1