WO2017175908A1 - 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법 - Google Patents

반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법 Download PDF

Info

Publication number
WO2017175908A1
WO2017175908A1 PCT/KR2016/004340 KR2016004340W WO2017175908A1 WO 2017175908 A1 WO2017175908 A1 WO 2017175908A1 KR 2016004340 W KR2016004340 W KR 2016004340W WO 2017175908 A1 WO2017175908 A1 WO 2017175908A1
Authority
WO
WIPO (PCT)
Prior art keywords
validation
normality
correlation
dnbr
limit
Prior art date
Application number
PCT/KR2016/004340
Other languages
English (en)
French (fr)
Inventor
김강훈
김병석
남기일
Original Assignee
한전원자력연료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전원자력연료 주식회사 filed Critical 한전원자력연료 주식회사
Priority to RU2018138509A priority Critical patent/RU2720586C9/ru
Priority to JP2018552159A priority patent/JP6626586B2/ja
Priority to CN201680084392.1A priority patent/CN108885912B/zh
Priority to EP16898012.6A priority patent/EP3293737B1/en
Priority to US15/563,267 priority patent/US20180190399A1/en
Priority to CA2985993A priority patent/CA2985993C/en
Publication of WO2017175908A1 publication Critical patent/WO2017175908A1/ko
Priority to US16/183,606 priority patent/US11031147B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a correlation tolerance setting system and method using iterative cross-validation, and more particularly, to prevent distortion of data characteristics due to accidental or human intervention and risks in correlation optimization and tolerance setting.
  • the present invention relates to a correlation tolerance setting system and method using repeated cross-validation to quantify the effects.
  • correlation optimization is performed based on data partitioning (Training set vs. Validation set) once or in limited cases in response to overfitting risk, or independent of the same design or similar design characteristics.
  • data partitioning Training set vs. Validation set
  • An object of the present invention has been made in view of the above-described points, and it is possible to perform correlation optimization and tolerance limit setting within the limit of complying with the technical / regulatory requirements, or correlation tolerance limit using iterative cross-validation verifying the validity.
  • the present invention provides a setting system and a method thereof.
  • the present invention also provides a system and method for setting a correlation tolerance limit using repeated cross-validation to quantify the effects or to prevent distortion of data characteristics caused by accident or human intervention.
  • Correlation tolerance limit setting system using iterative cross-validation includes a variable extraction unit 100 for classifying the training set and validation set and optimize the correlation coefficient to extract the variable; A normality test unit 200 for testing normality according to the variable extraction result; A DNBR limit unit 300 for determining a nuclear boiling deviation rate tolerance value according to normality; And a controller 400 for controlling the variable extraction unit, the normality verification unit, and the DNBR limit unit.
  • the variable extracting unit 100 classifies a training set and a validation set, and initializes a module to extract a Run ID such as Initial DB from a full DB;
  • a correlation coefficient optimization module 120 for performing fitting of training initial set correlation coefficients;
  • An extraction module 130 for extracting a maximum M / P for each Run ID by applying the correlation coefficient optimization result to a training set;
  • a position and statistics change determination module 140 for determining whether the extracted maximum M / P position is changed or whether a statistical change of the M / P average is changed;
  • a variable extraction module 150 applied to the validation set as a result of the correlation coefficient optimization to extract the corresponding variable at the maximum M / P.
  • the normality test unit 200 determines the normality of the M / P extracted by the parameter method or the nonparametric method according to the normality test for the data group in which the training set and the validation set are combined. You can make a judgment.
  • the normality test unit 200 calculates the normality test of the M / P extracted by the parameter method or the non-parametric method according to the result of the normal distribution test performed based on only the validation set. You can try to judge normality.
  • the DNBR limit unit 300 performs the same population test according to the parameter method and the non-parametric method for each case, and 95/95 DNBR for the individual case according to the normality of the poolable set M / P and the normality of the validation set M / P.
  • An output module 310 for outputting a value distribution; And calculate 95/95 DNBR Value by parameter method or 95/95 DNBR Value by nonparametric method for individual cases according to normality of the output module, and parameter method for 95/95 DNBR Value Distribution for N Case.
  • Limit determination module 320 to determine the 95/95 DNBR Limit by or to determine the 95/95 DNBR Limit by a non-parametric method.
  • the control unit classifies a training set and a validation set, and the correlation equation Optimizing the coefficients to extract the variables; (b) allowing the controller to test normality according to the variable extraction result; And (c) allowing the control unit to determine a nuclear boiling deviation rate tolerance based on the normality.
  • Step (a) comprises: (a-1) an initialization step of classifying a training set and a validation set and extracting a Run ID such as Initial DB from a full DB; (a-2) a correlation coefficient optimization step of performing fitting of training initial set correlation coefficients; (a-3) extracting a maximum M / P by applying the correlation coefficient optimization result to a training set; (a-4) determining the position and statistics change to determine whether the extracted maximum M / P positions and statistics are changed; and (a-5) extracting the variable to extract the corresponding variable at the maximum M / P by applying it to the validation set as a result of the correlation coefficient optimization.
  • Step (b) determines the normality of the M / P extracted from the parameter method or the nonparametric method according to the normality test for the data group in which the training set and the validation set are combined when the training set and the validation set are the same population. You can do that.
  • step (b) if the training set and the validation set are not the same population, the normality of the M / P extracted by the parameter method or the nonparametric method according to the result of the normal distribution test performed based on the validation set only. You can make a judgment.
  • step (c) the control unit performs the same population test according to the parameter method and the non-parametric method for each case, and according to the normality of the poolable set M / P and the normality of the validation set M / P.
  • the control unit calculates a 95/95 DNBR value by a parameter method or a 95/95 DNBR value by a nonparametric method for individual cases according to the normality, and a 95/95 DNBR value for N cases. Determining a 95/95 DNBR Limit by a parametric method or a 95/95 DNBR Limit by a nonparametric method with respect to the distribution; may include.
  • FIG. 1 is a block diagram showing a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention
  • FIG. 2 is an exemplary view showing the operation of the variable extraction unit of the correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention
  • 3 is an exemplary view showing the operation of the normality test unit and the DNBR limit unit of the correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention
  • FIG. 4 is a flowchart illustrating a method using a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • FIG. 5 is an exemplary view showing a conceptual result of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a correlation M / P probability distribution and a tolerance limit concept of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the distribution of averages of variables extracted through a variable extraction unit of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a correlation tolerance limit setting system using an iterative cross-validation according to an embodiment of the present invention
  • Figure 2 is a correlation tolerance setting system using an iterative cross-validation according to an embodiment of the present invention
  • Figure 3 is an exemplary view showing a variable extraction process of
  • Figure 3 is an exemplary view showing the operation of the normality test unit and the DNBR limit unit of the correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • the correlation tolerance setting system using repeated cross-validation includes a variable extractor 100, a normality test unit 200, a DNBR limit unit 300, and a control unit. 400.
  • variable extractor 100 classifies a training set and a validation set to optimize a correlation coefficient and repeats a process of extracting a variable N times.
  • Variable extraction unit 100 for performing this function is the initialization module 110, correlation coefficient optimization module 120, extraction module 130, position and statistics change determination module 140, variable extraction module 150 It includes.
  • the initialization module 110 classifies the training set and the validation set, and the validation set extracts a Run ID, such as Initial DB, from the Full DB in the Validation Initial set, and the training data set, such as Initial DB, from the Full DB in the Training Initial set. Extract Run ID.
  • a Run ID such as Initial DB
  • the training data set such as Initial DB
  • the correlation coefficient optimization module 120 performs the fitting of the Training Initial Set correlation coefficients.
  • the extraction module 130 extracts the maximum M / P for each run ID by applying correlation coefficient optimization results to a training set.
  • the correlation according to this embodiment is a critical heat flux (CHF) correlation, and extracts the maximum statistics (M / P average) for each Run ID.
  • CHF critical heat flux
  • the position and statistics change determination module 140 determines whether the extracted maximum M / P position is changed or whether there is a change in statistics such as an average of M / P, and if there is no position change of the extracted maximum M / P, if there is no position change. In the case of statistics change, the correlation coefficient fitting step is repeated in the Training Initial Set until there is no change in the extracted maximum M / P.
  • variable extraction module 150 applies the validation set as a result of the correlation coefficient optimization to extract the corresponding variable at the maximum M / P, and repeats the operation from the initialization module to the variable extraction module N times. Can be stored.
  • the setting of 'N' may be performed in 5, 10, 20, 100, 200, 500, 1000, 5000 or more, and about 1000 times in a representative embodiment is also appropriate.
  • FIG. 5 is an exemplary view showing a conceptual result of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • Normality test unit 200 is the result of the extraction module passing the position and statistics change determination module 140 (maximum M / P for each training set individual run ID) and the result of the variable extraction unit 150 (validation set individual Run ID It performs normality verification for maximum M / P) or poolable set and normality verification for 95/95 DNBR Distribution produced by DNBR limit.
  • the DNBR limit unit 300 performs the same population test according to the parameter method and the non-parametric method for each case, and according to whether the normality of the poolable set M / P and the normality of the validation set M / P are normal, Produces DNBR Value, and based on this, outputs 95/95 DNBR Value Distribution for N Case and decides 95/95 DNBR Limit by parameter method or 95/95 DNBR Limit by nonparametric method according to normality. You can decide.
  • the DNBR limit unit 300 may determine the ultimate tolerance limit based on the 95/95 criterion (95% confidence and 95% probability) using the distribution, thereby quantifying the distortion of the data characteristic and the risk thereof and quantifying the effect.
  • DNBR limit unit 300 for performing this function includes an output module 310 and the limit determination module 320.
  • the output module 310 performs the same population test according to the parameter method and the nonparametric method for each case, and uses the limit determination module 320 according to the normality of the poolable set M / P and the normality of the validation set M / P.
  • 95/95 DNBR Value by the parameter method or 95/95 DNBR Value by the nonparametric method can be output, and based on this, 95/95 DNBR Value Distribution for N Case can be output, and the limit determination module ( 320) calculates 95/95 DNBR value by parameter method or 95/95 DNBR value by nonparametric method for individual cases according to the normality of output module 310, and 95/95 DNBR Value Distribution for N case. It is configured to determine 95/95 DNBR Limit by parameter method or 95/95 DNBR Limit by nonparametric method.
  • DNBR is the CHF correlation limit DNBR, which is a quantitative criterion for evaluating the occurrence of CHF on the fuel rod surface, which is determined by statistically evaluating the uncertainty of the CHF correlation.
  • the limit DNBR of the CHF correlation should be set so that the probability of CHF not occurring at 95% or more is 95% or more.
  • CHF (P) which is predicted as a correlation under constant local thermal hydraulic conditions, is always calculated as a constant value, but the CHF (M) actually measured under this condition may have any value due to the randomness of the physical phenomenon.
  • a random variable for the statistical evaluation of DNBR was selected as M / P.
  • the actual local heat flux at any operating condition must be less than the critical heat flux measured at that condition. In other words, considering the uncertainty of A ⁇ M, where M, the above condition is expressed as follows according to the 95/95 design standard.
  • Is defined as The lower limit of 95/95 of the M / P is determined as shown in FIG. 6 from a tolerance limit for estimating and evaluating a population statistic from an M / P sample.
  • FIG. 6 is a graph illustrating a correlation M / P probability distribution and a tolerance limit concept of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • the control unit 400 controls the variable extraction unit 100, the normality verification unit 200, and the DNBR limit unit 300.
  • FIG. 4 is a flowchart illustrating a method using a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • control unit classifies a training set and a validation set and optimizes correlation coefficients to extract variables.
  • control unit tests the normality according to the variable extraction result (b).
  • control unit determines the allowable nuclear boiling deviation rate threshold according to the normality of step (b) (c).
  • step (a) correlation optimization and variable extraction process (1), first, data partitioning into a training set (T) and a validation set (V). 2 Next, the correlation (coefficient) is optimized. The optimization is performed until there is no change in the position or statistics of the maximum M / P for each individual RunID of T. 3 Next, calculate and extract the maximum M / P for each individual Run ID of V. 4 Store M / P for each individual Run ID of T and V. 5 Next, repeat steps 1 to 4 N times.
  • step (a) the training set and the validation set are classified, and after the initialization step (a-1) to extract the Run ID such as Initial DB from the Full DB, Perform fitting (a-2).
  • the correlation coefficient optimization result is applied to the training set to extract the maximum M / P (a-3).
  • the variable extraction extracts the corresponding variable at the maximum M / P by applying it to the validation set as a result of correlation coefficient optimization (a-5).
  • step (b) 6 the normality of the M / P distribution of T and V of each case is tested.
  • step (b) 6 next, the normality of the M / P distribution of T and V of each case is tested.
  • the test is performed by the parameter method when T and V are normal distributions, and by the nonparametric method when T or V is not normal distribution.
  • 8 In calculating 95/95 DNBR value for each case, if T and V are the same population, decide them based on the combined data group of T and V.
  • the parameter or nonparametric method can be applied depending on the result. If T and V are not the same population, only V is determined. At this time, the parameter or nonparametric method can be applied according to the normal distribution test result.
  • 9 Produce 95/95 DNBR Value Distribution for T, V, Poolable, Non-Poolable, Combined (poolabe + non-poolable) based on the result of '8'. ⁇ Test the normality of '9'.
  • step (b) the normality test of the training set and the validation set of each case is performed, and the normality of M / P extracted by the parameter method or the nonparametric method is determined.
  • step (c) 11 95/95 DNBR Limit is calculated. If it is normal distribution in '10', it is the parameter method, and if it is not normal distribution in '10', it is calculated by nonparametric method.
  • the 95/95 DNBR Limit is determined. In one embodiment, the 95/95 tolerance of the 'Combined' distribution is determined to be 1.1234 ⁇ 1.124. In another embodiment, the average of the 'Validation' distribution is determined to be 1.1337 ⁇ 1.134.
  • step 95/95 for N cases based on 95/95 DNBR values for individual cases depending on the normality of the poolable set M / P and the normalization of the validation set M / P according to the parametric and nonparametric methods.
  • DNBR Value Distribution can be output (c-1) and 95/95 DNBR Limit by parameter method or 95/95 DNBR Limit by nonparametric method can be determined according to normality.
  • data partitioning in the setting of N is based on random, but k-folds (data partitioning is performed in k small groups so as not to overlap each other, and k-1 small groups are trained.
  • Set can also contain one small group as a validation set, k internal repetitions).
  • the variable to be executed can be set and verified with tolerance limits using M / P as well as M / P-1, M-P or P / M, P / M-1, P-M to P-.
  • N cases it is also possible to repeat the N cases until the '95 / 95 DNBR Value Distribution production for N cases 'up to the extension of the representative embodiment provided, and to '95 / 95 DNBR Value Distribution'. It is also possible to construct and analyze the two data groups, Training Data Set and Vailidation Data Set, for a combination of the same group and the case of the same group for each case or individual cases.
  • the effect of the correlation tolerance setting system using the iterative cross-validation according to the present invention is to reduce the tolerance limit up to 2.5% compared to the previous, the reduction of the tolerance limit can be utilized to increase the safety margin or to improve the actual performance. It is possible. Up to 5% improvement compared to domestic technology level.
  • FIG. 7 is a graph illustrating averages of variables extracted through a variable extracting unit of a correlation tolerance limit setting system using iterative cross-validation according to an embodiment of the present invention.
  • Correlation tolerance setting system using iterative cross-validation can perform the same population test (parametric method or nonparametric method) between M / P of the Training and Validation Dataset of N case based on FIG. have.
  • Correlation Tolerance Limit Setting System using iterative cross-validation first, data partitioning into a training set (T) and a validation data set (V). do.
  • test is performed by the parameter method when T and V are normal distributions, and by the nonparametric method when T or V is not normal distribution.
  • T and V are not the same population, only V is determined. At this time, the parameter or nonparametric method can be applied according to the normal distribution test result.
  • the 95/95 DNBR Limit is determined.
  • the 95/95 tolerance of the 'Combined' distribution is determined to be 1.1234 ⁇ 1.124.
  • the average of the 'Validation' distribution is determined to be 1.1337 ⁇ 1.134.
  • variable extraction unit 110 initialization module

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

본 발명은 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법에 관한 것으로, 상관식 최적화 및 공차한계 설정에 있어서 우연 또는 인적 개입에 의한 자료 특성의 왜곡 및 그로 인한 위험성을 방지 내지 영향을 정량화하기 위하여 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법에 관한 것이다. 본 발명에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템은 트레이닝 세트(Set)와 밸리데이션 세트(Set)를 분류하고 상관식 계수를 최적화하여 변수를 추출하는 변수 추출부, 변수 추출결과에 따른 정규성을 검정하도록 하는 정규성 검정부, 정규성 여부에 따라 동일 모집단 여부를 검증하고 핵비등 이탈을 허용치 분포로부터 핵비등이탈률 허용한계치를 결정하도록 하는 DNBR 리미트부 및 제어부를 포함한다.

Description

반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법
본 발명은 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법에 관한 것으로, 더욱 상세하게는 상관식 최적화 및 공차한계 설정에 있어서 우연 또는 인적 개입에 의한 자료 특성의 왜곡 및 그로 인한 위험성을 방지 내지 영향을 정량화하기 위하여 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법에 관한 것이다.
종래, 한국공개특허 제2011-0052340호에 의하면, 노심상태의 정지설정치를 평가하기 위한 방법으로서, 600여 노심상태 각각에 대해 미리 계산된 중성자속 분포 정보, 국부과출력보호용 계측기 정보와 열수력 정보를 이용하여 정지설정치를 계산한 뒤 국부과출력보호용 계측기의 신호 분포 정보와 정지설정치 간의 최적 상관식을 도출함으로써 각 원자로 상태에 대응하는 정지설정치를 계측기 신호분포만으로 결정할 수 있게 하는 방법이 제공된다.
기존에는 과적합 위험성에 대한 대응으로 일(1)회 또는 제한된 경우의 자료 분리(Data Partitioning : Training set vs Validation set)를 기준으로 상관식 최적화를 수행하거나, 동일 설계 또는 유사 설계 특성을 가지는 독립적인 시험자료군을 별도로 운영하는 수준에서 관련 업무를 완료하고 분리된 자료군을 대상으로 개별적으로 단순 수준의 통계량 분석을 거쳐 상관식의 공차한계 및 적용범위를 설정한다.
제한된 경우에 대하여 분리된 자료를 바탕으로 한 상관식 최적화 및 공차한계 설정은 우연 또는 인적 개입에 의한 자료 특성의 왜곡 및 그로 인한 위험성을 방지하거나 그 영향을 정량화하지 못하는 문제점이 있다.
또한 동일 설계 내지 유사설계 특성을 가지는 독립 자료군을 별도로 운영하는 경우 시험자료의 재현성 범위와 더불어 세부 설계특성의 차이에 의한 영향이 잠재적으로 포함되어 있어 과적합 위험도 내지 그 영향을 분리하는데 한계가 있으며, 시험자료의 추가 생산에 소요되는 비용의 증가는 필연적이다.
본 발명의 목적은 전술한 점들을 감안하여 안출된 것으로, 기술/규제 요건을 준수하는 한도 내에서 상관식 최적화 및 공차한계 설정을 수행하거나, 그 유효성을 검증하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법을 제공함에 있다.
그리고 우연 또는 인적 개입에 의한 자료 특성의 왜곡 및 그로 인한 위험성을 방지 내지 영향을 정량화하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법을 제공함에도 있다.
본 발명에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템은 트레이닝 세트와 밸리데이션 세트를 분류하고 상관식 계수를 최적화하여 변수를 추출하는 변수 추출부(100); 상기 변수 추출결과에 따른 정규성을 검정하도록 하는 정규성 검정부(200); 상기 정규성 여부에 따라 핵비등이탈률 허용한계치를 결정하도록 하는 DNBR 리미트부(300); 및 상기 변수 추출부, 정규성 검정부, DNBR 리미트부를 제어하는 제어부(400);를 포함한다.
변수 추출부(100)는 트레이닝 세트와 밸리데이션 세트를 분류하고, Full DB로부터 Initial DB와 같은 Run ID를 추출하도록 하는 초기화모듈(110); 트레이닝 초기 세트 상관식 계수의 최적화(Fitting)를 수행하도록 하는 상관식 계수 최적화모듈(120); 상기 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 개별 Run ID별 최대 M/P를 추출하는 추출모듈(130); 추출된 최대 M/P 위치 변화 여부 또는 M/P 평균의 통계량 변화여부를 판단하는 위치 및 통계량 변화판단모듈(140); 및 상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하도록 하는 변수 추출모듈(150);을 포함할 수 있다.
정규성 검정부(200)는 정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단인 경우, 상기 트레이닝 세트와 밸리데이션 세트가 합쳐진 자료군에 대한 정규성 검정에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 할 수 있다.
또한, 정규성 검정부(200)는 정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단이 아닌 경우, 상기 밸리데이션 세트만을 기준으로 기수행된 정규분포 검정 결과에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 할 수 있다.
DNBR 리미트부(300)는 개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고 Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value Distribution을 출력하는 출력모듈(310); 및 상기 출력모듈의 정규성 여부에 따라 개별 Cases에 대하여 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 계산하며, N Case에 대한 95/95 DNBR Value Distribution에 대하여 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 하는 리미트 결정모듈(320);을 포함할 수 있다.
한편, 제 1 항의 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 제어부에 의한 반복 교차검증을 이용한 상관식 공차한계 설정방법에 있어서, (a) 상기 제어부가 트레이닝 세트와 밸리데이션 세트를 분류하고 상관식 계수를 최적화하여 변수를 추출하도록 하는 단계; (b) 상기 제어부가 상기 변수 추출결과에 따른 정규성을 검정하도록 하는 단계; 및 (c) 상기 제어부가 상기 정규성 여부에 따라 핵비등이탈률 허용한계치를 결정하도록 하는 단계;를 포함할 수 있다.
제 (a) 단계는 (a-1) 트레이닝 세트와 밸리데이션 세트를 분류하고, Full DB로부터 Initial DB와 같은 Run ID를 추출하도록 하는 초기화 단계; (a-2) 트레이닝 초기 세트 상관식 계수의 최적화(Fitting)를 수행하도록 하는 상관식 계수 최적화 단계; (a-3) 상기 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 최대 M/P를 추출하는 추출단계; (a-4) 추출된 최대 M/P 위치 및 통계량 변화 여부를 판단하는 위치 및 통계량 변화 판단단계; (a-5) 상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하도록 하는 변수 추출단계;를 포함할 수 있다.
제 (b) 단계는 정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단인 경우, 상기 트레이닝 세트와 밸리데이션 세트가 합쳐진 자료군에 대한 정규성 검정에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 할 수 있다.
또한 제 (b) 단계는 정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단이 아닌 경우, 상기 밸리데이션 세트만을 기준으로 기수행된 정규분포 검정 결과에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 할 수 있다.
그리고 제 (c) 단계는 (c-1) 상기 제어부가 개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고 Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value Distribution을 출력하도록 하는 출력단계; 및 (c-2) 상기 제어부가 상기 정규성 여부에 따라 개별 Cases에 대하여 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 계산하며, N Case에 대한 95/95 DNBR Value Distribution에 대하여 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 하는 단계;를 포함할 수 있다.
상술한 바에 의하면, 상관식 최적화 및 공차한계 설정에 있어서, 우연 또는 인적 개입에 의한 자료 특성의 왜곡 및 그로 인한 위험성을 방지 내지 영향을 정량화하는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템을 나타낸 구성도이고,
도 2는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 변수 추출부의 동작을 나타낸 예시도이며,
도 3은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 정규성 검정부 및 DNBR 리미트부의 동작을 나타낸 예시도이고,
도 4는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템을 이용한 방법을 나타낸 전체 흐름도이며,
도 5는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 개념적 결과를 나타낸 예시도이다.
도 6은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 상관식 M/P 확률분포 및 공차 한계 개념을 나타낸 그래프이다.
도 7은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 변수 추출부를 통해 추출된 변수의 평균들의 분포를 나타낸 그래프이다.
본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템을 나타낸 구성도이고, 도 2는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 변수 추출과정을 나타낸 예시도이며, 도 3은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 정규성 검정부 및 DNBR 리미트부의 동작을 나타낸 예시도이다.
도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템은 변수 추출부(100), 정규성 검정부(200), DNBR 리미트부(300), 제어부(400)를 포함한다.
우선, 변수 추출부(100)는 트레이닝 세트(Training set)와 밸리데이션 세트(Validation set)를 분류하여 상관식 계수를 최적화하고, 변수를 추출하는 과정을 N번 반복하는 기능을 수행한다.
이러한 기능을 수행하기 위한 변수 추출부(100)는 초기화 모듈(110), 상관식 계수 최적화모듈(120), 추출모듈(130), 위치 및 통계량 변화판단모듈(140), 변수추출모듈(150)을 포함한다.
초기화 모듈(110)은 트레이닝 세트와 밸리데이션 세트를 분류하고, 밸리데이션 세트는 Validation Initial set에서 Full DB로부터 Initial DB와 같은 Run ID를 추출하며, 트레이닝 데이터 세트는 Training Initial set에서 Full DB로부터 Initial DB와 같은 Run ID를 추출한다.
상관식 계수 최적화모듈(120)은 Training Initial Set 상관식 계수의 최적화(Fitting)를 수행한다.
추출모듈(130)은 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 개별 Run ID별 최대 M/P를 추출한다. 여기서, 본 실시예에 따른 상관식은 임계열속(Critical Heat Flux, CHF) 상관식이며, 개별 Run ID별 최대 통계량(M/P 평균)을 추출한다.
위치 및 통계량 변화판단모듈(140)은 추출된 최대 M/P 위치변화 여부 또는 M/P 평균 등의 통계량 변화여부를 판단하여, 위치변화일 경우 추출된 최대 M/P의 위치변화가 없을 때까지, 통계량 변화일 경우 추출된 최대 M/P의 통계량 변화가 없을 때까지, Training Initial Set에서 상관식 계수 최적화(Fitting)단계를 반복수행하도록 한다.
변수 추출모듈(150)은 상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하고, 초기화모듈에서 변수 추출모듈에 이르기까지의 동작을 N번(N Case) 반복하여 결과를 저장할 수 있다.
여기서, 'N'의 설정은 5, 10, 20, 100, 200, 500, 1000, 5000 또는 그 이상으로의 수행이 가능하며 대표적 실시예에서의 1000회 정도도 적절하다.
도 5는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 개념적 결과를 나타낸 예시도이다.
대표적 실시예에서의 개념적 결과는 아래의 표 1 및 도 5와 같다.
표 1
개별공차 분포 자료군 분류 No. of Case Average S.D. Remark
Poolability Poolable(T+V) 941 1.1161 0.0017
Non-Poolable(V) 59 1.1375 0.0220
Combined (T+V) and (V) 1000 1.1173 0.0075 1.1234(39th Value*)
위의 표에서 *는 비모수 분위수이다.
정규성 검정부(200)는 위치 및 통계량 변화판단모듈(140)을 통과한 추출모듈의 결과(트레이닝 세트 개별 Run ID별 최대 M/P)와 변수 추출부(150)의 결과(밸리데이션 세트 개별 Run ID별 최대 M/P) 또는 Poolable set 등에 대한 정규성을 검정과 DNBR 리미트부에서 생산한 95/95 DNBR Distribution에 대한 정규성 검증을 수행하는 기능을 수행한다.
DNBR 리미트부(300)는 개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고, Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value를 생산하며, 이를 바탕으로 N Case에 대한 95/95 DNBR Value Distribution을 출력하여 이에 대한 정규성 여부에 따라 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 할 수 있다.
이러한 DNBR 리미트부(300)로 분포를 이용한 95/95 기준(95% 신뢰도 및 95% 확률)에 의한 궁극적 공차한계를 결정하여 자료 특성의 왜곡 및 그로 인한 위험성을 방지 내지 영향을 정량화할 수 있다.
이러한 기능을 수행하기 위한 DNBR 리미트부(300)는 출력모듈(310)과 리미트 결정모듈(320)을 포함한다.
출력모듈(310)은 개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고, Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 리미트 결정모듈(320)을 이용하여 계산된 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 출력하며, 이를 바탕으로 하여 N Case에 대한 95/95 DNBR Value Distribution을 출력할 수 있고, 리미트 결정모듈(320)은 출력모듈(310)의 정규성 여부에 따라 개별 Cases에 대하여 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 계산하며, N Case에 대한 95/95 DNBR Value Distribution에 대하여 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 하는 구성이다.
참고로, DNBR은 CHF 상관식 한계 DNBR로, 핵연료봉 표면에서의 CHF 발생 여부를 평가하는 정량적인 기준치로서, 이는 CHF상관식의 예측 불확실도를 통계적으로 평가하여 결정한다. 원자로심에 대한 열적 설계기준에 의하면 CHF 상관식의 한계 DNBR은 95% 이상의 신뢰도 수준에서 CHF가 발생하지 않을 확률이 95%이상이 되도록 설정하여야 한다. DNBR은 CHF예측치(=P)와 실제 국부 열유속(=A)의 비로 정의된다. 즉, DNBR=P/A이다. CHF 실험조건에서는 실제 국부 열유속이 CHF측정치(=M)와 동일하므로 DNBR은 P/M과 같은 의미를 갖는다. 일정한 국부 열수력 조건에서 상관식으로 예측되는 CHF(P)는 항상 일정한 값으로 계산되지만, 이 조건에서 실제 측정되는 CHF(M)은 물리적 현상의 무작위성으로 인하여 임의의 값을 가질 수 있다. 이러한 관점에서 DNBR에 대한 통계쩍 평가를 위한 난변수(random variable)를 M/P로 선정하였다. CHF에 대한 설계기준을 만족시키려면 임의의 운전 조건에서 실제 국부 열유속이 그 조건에서 측정된 임계열 유속보다 작아야 한다. 즉, A<M, 여기서, M의 불확실도를 고려하면 95/95설계기준에 따라 위 조건은 아래와 같이 표현된다.
A < M(95/95 lower limit)
위 식의 양변을 P로 나누고 DNBR=P/A를 적용하면,
Figure PCTKR2016004340-appb-I000001
이 된다. 이로부터 상관식 한계 DNBR(DNBRCL)은
Figure PCTKR2016004340-appb-I000002
로 정의된다. M/P의 95/95 하한치는 M/P표본으로부터 모집단의 통계량을 추정하여 평가하는 공차한계(tolerance limit)로부터 도 6과 같이 결정된다.
도 6은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 상관식 M/P 확률분포 및 공차 한계 개념을 나타낸 그래프이다.
제어부(400)는 변수 추출부(100), 정규성 검정부(200), DNBR 리미트부(300)를 제어하는 구성이다.
이러한 제어부의 제어신호에 따라 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템을 이용한 방법을 설명하면 다음과 같다.
도 4는 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템을 이용한 방법을 나타낸 흐름도이다.
우선, 제어부는 트레이닝 세트(Set)와 밸리데이션 세트(Set)를 분류하고 상관식 계수를 최적화하여 변수를 추출하도록 한다(a).
다음으로 제어부는 변수 추출결과에 따른 정규성을 검정하도록 한다(b).
그리고 제어부는 (b)단계의 정규성 여부에 따라 핵비등이탈률 허용한계치를 결정하도록 한다(c).
(a) 단계에서, 상관식 최적화 및 변수 추출과정은 ① 먼저, 트레이닝 세트(T: Training data set)와 밸리데이션 세트(V: Validation data set)로 데이터를 분리(Data Partitioning)한다. ② 다음으로 상관식(계수)을 최적화를 수행하는데, T의 개별 RunID별 최대 M/P의 위치 또는 통계량 변화가 없을 때까지 최적화를 수행한다. ③ 다음으로 V의 개별 Run ID별 최대 M/P를 계산 및 추출하고, ④ T 및 V의 개별 Run ID별 M/P를 저장한다. ⑤ 다음으로 1~4과정을 N번 반복(N case)한다.
(a) 단계의 변수 추출과정을 살펴보면, 트레이닝 세트와 밸리데이션 세트를 분류하고, Full DB로부터 Initial DB와 같은 Run ID를 추출하도록 하는 초기화단계(a-1)를 거쳐, 트레이닝 초기 세트 상관식 계수의 최적화(Fitting)를 수행하도록 한다(a-2). 다음으로 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 최대 M/P를 추출하도록 한다(a-3). 다음으로 추출된 최대 M/P 위치 및 통계량 변화 여부를 판단(a-4)하되, 위치 또는 통계량 변화가 없을 때까지 상관식 계수 최적화 수행을 반복하도록 할 수 있다. 그리고 다음으로 추출된 최대 M/P 위치 또는 통계량 변화가 없을 경우, 상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하도록 하는 변수 추출한다(a-5).
(b) 단계에서, ⑥ 다음으로 개별 Case의 T 및 V의 M/P분포에 대한 정규성을 검정한다. ⑦ 다음으로 개별 Case별 동일 모집단을 검정하는데 있어서, T 및 V가 정규분포인 경우 모수방법으로 검정을 수행하고, T 또는 V가 정규분포가 아닌 경우에는 비모수방법으로 검정을 수행한다. ⑧ 개별 Case별 95/95 DNBR Value를 계산하는데 있어서, T와 V가 동일모집단인 경우 T와 V를 합친 자료군을 기준으로 결정한다. 여기서 합쳐진 자료군에 대한 정규성 검정 수행 후 결과에 따라 모수 또는 비모수 방법을 적용할 수 있다. T와 V가 동일 모집단이 아닌 경우, V만을 기준으로 결정한다. 이때 기 수행된 정규분포 검정결과에 따라 모수 또는 비모수 방법을 적용할 수 있다. ⑨ '⑧'의 결과를 바탕으로 95/95 DNBR Value Distribution을 T, V, Poolable, Non-Poolable, Combined(poolabe+non-poolable)에 대해 생산한다. ⑩ '⑨'에 대하여 정규성을 검정한다.
또한, (b) 단계의 정규성 검정에서는 개별 Case의 트레이닝 세트와 밸리데이션 세트에 대한 정규성 검정을 수행하며, 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 한다.
(c) 단계에서, ⑪ 95/95 DNBR Limit를 계산하는데, '⑩'에서 정규분포인 경우, 모수방법으로 하고, '⑩'에서 정규분포가 아닌 경우 비모수 방법으로 계산한다. ⑫ 95/95 DNBR Limit를 결정하는데, 일실시예로 'Combined'분포의 95/95 공차 1.1234 → 1.124로 결정하고, 다른 실시예로는 'Validation' 분포의 평균 1.1337 → 1.134로 결정한다.
그리고 (c) 단계는 모수방법과 비모수방법에 따른 Poolable Set M/P의 정규성과 Validation Set M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value를 기반으로 N Case에 대한 95/95 DNBR Value Distribution을 출력(c-1)하고, 정규성 여부에 따라 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정(c-2)하도록 할 수 있다.
본 발명의 일실시예에서, N의 설정에서의 Data Partitioning은 무작위(random)를 기반으로 하되, k-folds(data partitioning을 k개 소그룹으로 서로 중복되지 않게 시행하고, k-1 개의 소그룹을 트레이닝 세트로 한 개의 소그룹을 밸리데이션 세트로 하여 k번 내부 반복)도 포함할 수 있다. 그리고 본 실시예에서의 시행대상 변수는 M/P 뿐만아니라 M/P-1, M-P 또는 P/M, P/M-1, P-M 내지 P- 등을 이용하여 공차한계 설정 및 검증이 가능하다.
다른 실시예에서는, 제공된 대표적 실시예의 확장으로 N Case에 대한 반복을 'N case에 대한 95/95 DNBR Value Distribution 생산' 직전까지 수행하는 형태로도 실시가 가능하며, '95/95 DNBR Value Distribution'을 Training Data Set과 Vailidation Data Set의 두 가지 자료군에 대해 각각 또는 개별 Case별로 동일모집단인 경우와 그렇지 않은 경우의 조합에 대해서도 구성하여 분석하는 것도 가능하다.
표 2
개별공차 분포 Group No. of Case Average S.D. Remark
ALL Training 1000 1.1168 0.0027
Validation 1000 1.1337 0.0151 1.134
본 발명에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 작용에 따른 효과는 기존 대비 공차한계를 최대 2.5% 감소시키며, 공차한계의 감소는 안전 여유도의 증가 또는 실제 성능의 향상에 활용이 가능하다. 국내 기술수준 대비 최대 5% 개선 효과가 있다.
표 3
경우 제지 공차한계 Risk/Effect 예상 공차한계
기존/유사 기술 미적용(국내수준) 1.113 Max. 1.18
기존/유사 기술 적용(해외수준) 1.08~1.18 Case-by-Case 1.15
발명기술 대표적 실시예(Combined date에 대한 95/95 DNBR Value Distribution 기준) - ~1% 1.124
다른 실시예(Validation date에 대한 95/95 DNBR Value Distribution 기준) - ~2% 1.134
*국내 기술수준 대비
도 7은 본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 변수 추출부를 통해 추출된 변수의 평균들을 나타낸 그래프이다.
이러한 도 7은 도 2의 결과물로부터 도 3 및 도 4의 과정에 의해 생산된 N case의 두 Data set(training 및 validation)으로부터 추출된 변수(M/P)들의 평균을 도 5의 분류에 대응되도록 나타낸 것이다.
본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템은 도 3을 기준으로 N case의 Training 및 Validation Dataset의 M/P간 동일모집단 검정(모수방법 또는 비모수 방법)을 할 수 있다.
또한, 동일모집단인 경우와 그렇지 않은 경우에 대한 95/95 DNBR Values를 생산하는 과정으로 모수방법 또는 비모수방법에 특징이 있고, 95/95 DNBR Values의 분포로부터 95/95 DNBR limit를 결정할 수 있는데 특징이 있다.
본 발명의 일실시예에 따른 반복 교차검증을 이용한 상관식 공차한계 설정시스템은 ① 먼저, 트레이닝 세트(T: Training data set)와 밸리데이션 세트(V: Validation data set)로 데이터를 분리(Data Partitioning)한다.
② 다음으로 상관식(계수)을 최적화를 수행하는데, T의 개별 RunID별 최대 M/P의 위치 또는 통계량 변화가 없을 때까지 최적화를 수행한다.
③ 다음으로 V의 개별 Run ID별 최대 M/P를 계산 및 추출하고, ④ T 및 V의 개별 Run ID별 M/P를 저장한다.
⑤ 다음으로 1~4과정을 N번 반복(N case)한다.
⑥ 다음으로 개별 Case의 T 및 V의 M/P분포에 대한 정규성을 검정한다.
⑦ 다음으로 개별 Case별 동일 모집단을 검정하는데 있어서, T 및 V가 정규분포인 경우 모수방법으로 검정을 수행하고, T 또는 V가 정규분포가 아닌 경우에는 비모수방법으로 검정을 수행한다.
⑧ 개별 Case별 95/95 DNBR Value를 계산하는데 있어서, T와 V가 동일모집단인 경우 T와 V를 합친 자료군을 기준으로 결정한다. 여기서 합쳐진 자료군에 대한 정규성 검정 수행 후 결과에 따라 모수 또는 비모수 방법을 적용할 수 있다.
T와 V가 동일 모집단이 아닌 경우, V만을 기준으로 결정한다. 이때 기 수행된 정규분포 검정결과에 따라 모수 또는 비모수 방법을 적용할 수 있다.
⑨ '⑧'의 결과를 바탕으로 95/95 DNBR Value Distribution을 T, V, Poolable, Non-Poolable, Combined(poolabe+non-poolable)에 대해 생산한다.
⑩ '⑨'에 대하여 정규성을 검정한다.
⑪ 95/95 DNBR Limit를 계산하는데, '⑩'에서 정규분포인 경우, 모수방법으로 하고, '⑩'에서 정규분포가 아닌 경우 비모수 방법으로 계산한다.
⑫ 95/95 DNBR Limit를 결정하는데, 일실시예로 'Combined'분포의 95/95 공차 1.1234 → 1.124로 결정하고, 다른 실시예로는 'Validation' 분포의 평균 1.1337 → 1.134로 결정한다.
[부호의 설명]
100 : 변수 추출부 110 : 초기화모듈
120 : 상관식 계수 최적화모듈 130 : 추출모듈
140 : 위치 및 통계량 변화판단모듈 150 : 변수 추출모듈
200 : 정규성 검정부 300 : DNBR 리미트부
310 : 출력모듈 320 : 리미트 결정모듈

Claims (10)

  1. 반복 교차검증을 이용한 상관식 공차한계 설정시스템에 있어서,
    트레이닝 세트와 밸리데이션 세트를 분류하고 상관식 계수를 최적화하여 변수를 추출하는 변수 추출부(100);
    상기 변수 추출결과에 따른 정규성을 검정하도록 하는 정규성 검정부(200); 및
    상기 정규성 여부에 따라 핵비등 이탈률 허용한계치를 결정하도록 하는 DNBR 리미트부(300);를 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템.
  2. 제 1 항에 있어서,
    상기 변수 추출부(100)는,
    트레이닝 세트와 밸리데이션 세트를 분류하고, Full DB로부터 Initial DB와 같은 Run ID를 추출하도록 하는 초기화모듈(110);
    트레이닝 초기 세트 상관식 계수의 최적화(Fitting)를 수행하도록 하는 상관식 계수 최적화모듈(120);
    상기 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 개별 Run ID별 최대 M/P를 추출하는 추출모듈(130);
    추출된 최대 M/P 위치 변화 여부 또는 M/P 평균의 통계량 변화여부를 판단하는 위치 및 통계량 변화판단모듈(140); 및
    상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하도록 하는 변수 추출모듈(150);을 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템.
  3. 제 1 항에 있어서,
    상기 정규성 검정부(200)는,
    정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단인 경우, 상기 트레이닝 세트와 밸리데이션 세트가 합쳐진 자료군에 대한 정규성 검정에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템.
  4. 제 1 항에 있어서,
    상기 정규성 검정부(200)는,
    정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단이 아닌 경우, 상기 밸리데이션 세트만을 기준으로 기수행된 정규분포 검정 결과에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템.
  5. 제 1 항에 있어서,
    상기 DNBR 리미트부(300)는,
    개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고 Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value Distribution을 출력하는 출력모듈(310); 및
    상기 출력모듈의 정규성 여부에 따라 개별 Cases에 대하여 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 계산하며, N Case에 대한 95/95 DNBR Value Distribution에 대하여 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 하는 리미트 결정모듈(320);을 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정시스템.
  6. 제 1 항의 반복 교차검증을 이용한 상관식 공차한계 설정시스템의 제어부에 의한 반복 교차검증을 이용한 상관식 공차한계 설정방법에 있어서,
    (a) 상기 제어부가 트레이닝 세트와 밸리데이션 세트를 분류하고 상관식 계수를 최적화하여 변수를 추출하도록 하는 단계;
    (b) 상기 제어부가 상기 변수 추출결과에 따른 정규성을 검정하도록 하는 단계; 및
    (c) 상기 제어부가 상기 정규성 여부에 따라 핵비등이탈률 허용한계치를 결정하도록 하는 단계;를 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정방법.
  7. 제 6 항에 있어서,
    상기 제 (a) 단계는,
    (a-1) 상기 제어부가 트레이닝 세트와 밸리데이션 세트를 분류하고, Full DB로부터 Initial DB와 같은 Run ID를 추출하도록 하는 초기화 단계;
    (a-2) 상기 제어부가 트레이닝 초기 세트 상관식 계수의 최적화(Fitting)를 수행하도록 하는 상관식 계수 최적화 단계;
    (a-3) 상기 제어부가 상기 상관식 계수 최적화 결과를 트레이닝 세트에 적용하여 최대 M/P를 추출하도록 하는 추출단계;
    (a-4) 상기 제어부가 추출된 최대 M/P 위치 및 통계량 변화 여부를 판단하도록 하는 위치 및 통계량 변화 판단단계;
    (a-5) 상기 제어부가 상관식 계수 최적화 결과로 밸리데이션 세트에 적용하여 최대 M/P에 해당 변수를 추출하도록 하는 변수 추출단계;를 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정방법.
  8. 제 6 항에 있어서,
    상기 제 (b) 단계는,
    정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단인 경우, 상기 제어부가 상기 트레이닝 세트와 밸리데이션 세트가 합쳐진 자료군에 대한 정규성 검정에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정방법.
  9. 제 6 항에 있어서,
    상기 제 (b) 단계는,
    정규성 검정을 트레이닝 세트와 밸리데이션 세트가 동일 모집단이 아닌 경우, 상기 제어부가 상기 밸리데이션 세트만을 기준으로 기수행된 정규분포 검정 결과에 따라 모수방법 또는 비모수방법으로 추출한 M/P의 정규성을 판단하도록 하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정방법.
  10. 제 6 항에 있어서,
    상기 제 (c) 단계는,
    (c-1) 상기 제어부가 개별 Case에 대하여 모수방법과 비모수방법에 따른 동일모집단 검정을 수행하고 Poolable Set M/P의 정규성과 밸리데이션 세트 M/P의 정규성 여부에 따라 개별 Case에 대한 95/95 DNBR Value Distribution을 출력하도록 하는 단계; 및
    (c-2) 상기 제어부가 상기 정규성 여부에 따라 개별 Cases에 대하여 모수방법에 의한 95/95 DNBR Value 또는 비모수방법에 의한 95/95 DNBR Value를 계산하며, N Case에 대한 95/95 DNBR Value Distribution에 대하여 모수방법에 의한 95/95 DNBR Limit를 결정하거나 비모수방법에 의한 95/95 DNBR Limit를 결정하도록 하는 단계;를 포함하는 것을 특징으로 하는 반복 교차검증을 이용한 상관식 공차한계 설정방법.
PCT/KR2016/004340 2016-04-06 2016-04-26 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법 WO2017175908A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2018138509A RU2720586C9 (ru) 2016-04-06 2016-04-26 Система определения допустимого предела корреляции с использованием итеративной перекрестной валидации и способ ее выполнения
JP2018552159A JP6626586B2 (ja) 2016-04-06 2016-04-26 繰り返し交差検証を用いた相関式公差限界設定システム及びその方法
CN201680084392.1A CN108885912B (zh) 2016-04-06 2016-04-26 通过使用重复交叉验证来设置相关公差极限的系统及其方法
EP16898012.6A EP3293737B1 (en) 2016-04-06 2016-04-26 Correlation tolerance limit setting system using repetitive cross-validation and method therefor
US15/563,267 US20180190399A1 (en) 2016-04-06 2016-04-26 System for setting tolerance limit of correlation by using repetitive cross-validation and method thereof
CA2985993A CA2985993C (en) 2016-04-06 2016-04-26 Correlation tolerance limit setting system using repetitive cross-validation and method therefor
US16/183,606 US11031147B2 (en) 2016-04-06 2018-11-07 System for setting tolerance limit of correlation by using repetitive cross-validation and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160042413A KR101687169B1 (ko) 2016-04-06 2016-04-06 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법
KR10-2016-0042413 2016-04-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/563,267 A-371-Of-International US20180190399A1 (en) 2016-04-06 2016-04-26 System for setting tolerance limit of correlation by using repetitive cross-validation and method thereof
US16/183,606 Continuation-In-Part US11031147B2 (en) 2016-04-06 2018-11-07 System for setting tolerance limit of correlation by using repetitive cross-validation and method thereof

Publications (1)

Publication Number Publication Date
WO2017175908A1 true WO2017175908A1 (ko) 2017-10-12

Family

ID=57735657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004340 WO2017175908A1 (ko) 2016-04-06 2016-04-26 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법

Country Status (8)

Country Link
US (1) US20180190399A1 (ko)
EP (1) EP3293737B1 (ko)
JP (1) JP6626586B2 (ko)
KR (1) KR101687169B1 (ko)
CN (1) CN108885912B (ko)
CA (1) CA2985993C (ko)
RU (1) RU2720586C9 (ko)
WO (1) WO2017175908A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028220B2 (en) 2015-01-27 2018-07-17 Locix, Inc. Systems and methods for providing wireless asymmetric network architectures of wireless devices with power management features
US10504364B2 (en) 2016-01-05 2019-12-10 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US10455350B2 (en) 2016-07-10 2019-10-22 ZaiNar, Inc. Method and system for radiolocation asset tracking via a mesh network
US11170073B2 (en) 2017-08-24 2021-11-09 Westinghouse Electric Company Llc Sequential embedding statistical analysis for multidimensional tolerance limits
CN110633454B (zh) * 2019-09-19 2022-10-21 中国核动力研究设计院 一种基于修正法的chf关系式dnbr限值统计学确定方法
CN110727920B (zh) * 2019-09-19 2022-08-19 中国核动力研究设计院 一种基于分组法的chf关系式dnbr限值统计学确定方法
KR102148777B1 (ko) * 2019-11-13 2020-08-27 한전원자력연료 주식회사 통계적 방법을 이용한 기준 열적여유도 분석모형 과출력 벌점 산출 시스템
KR102296871B1 (ko) * 2020-06-09 2021-08-31 서울대학교산학협력단 하이브리드 피로 균열 성장 예측 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061412A (en) * 1995-10-05 2000-05-09 Westinghouse Electric Company Llc Nuclear reaction protection system
KR20010039442A (ko) * 1999-10-30 2001-05-15 이종훈 노심감시계통에서 가상 핵계측기를 이용한 축방향 출력분포 계산 방법
KR20040099884A (ko) * 2003-05-20 2004-12-02 한국원자력연구소 통합형 실시간 원자로 열적 보호시스템
KR20060076466A (ko) * 2004-12-29 2006-07-04 두산중공업 주식회사 노심보호연산기계통

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318778A (en) * 1973-05-22 1982-03-09 Combustion Engineering, Inc. Method and apparatus for controlling a nuclear reactor
US5745538A (en) * 1995-10-05 1998-04-28 Westinghouse Electric Corporation Self-powered fixed incore detector
US5912933A (en) * 1997-12-04 1999-06-15 General Electric Company Method and system for direct evaluation of operating limit minimum critical power ratios for boiling water reactors
US9330127B2 (en) * 2007-01-04 2016-05-03 Health Care Productivity, Inc. Methods and systems for automatic selection of classification and regression trees
FR2914103B1 (fr) * 2007-03-19 2009-12-18 Areva Np Procede de determination de la distribution de puissance volumique du coeur d'un reacteur nucleaire
CN101267362B (zh) * 2008-05-16 2010-11-17 亿阳信通股份有限公司 一种性能指标值正常波动范围的动态确定方法及其装置
CN101419291A (zh) * 2008-11-03 2009-04-29 重庆大学 一种基于超高速数据采集卡的多适性核信号处理系统
US20110112995A1 (en) * 2009-10-28 2011-05-12 Industrial Technology Research Institute Systems and methods for organizing collective social intelligence information using an organic object data model
CN102054538B (zh) * 2009-10-30 2013-07-17 中国广东核电集团有限公司 压水堆核电站百万千瓦机组完全低中子泄漏先进四分之一换料方法及其安全分析系统
KR101083155B1 (ko) * 2009-11-12 2011-11-11 한국전력공사 노심상태에 대응하는 국부과출력 정지설정치를 결정하는 방법
JP5642460B2 (ja) * 2010-09-03 2014-12-17 三菱重工業株式会社 限界熱流束予測装置、限界熱流束予測方法、安全評価システム及び炉心燃料評価監視システム
KR101626722B1 (ko) * 2015-07-13 2016-06-01 한국수력원자력 주식회사 원자력 발전소의 노심손상 방지를 위해 사용되는 기기들의 공간적 배치 적정성 평가 시스템 및 그 방법
CN105203869A (zh) * 2015-09-06 2015-12-30 国网山东省电力公司烟台供电公司 一种基于极限学习机的微电网孤岛检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061412A (en) * 1995-10-05 2000-05-09 Westinghouse Electric Company Llc Nuclear reaction protection system
KR20010039442A (ko) * 1999-10-30 2001-05-15 이종훈 노심감시계통에서 가상 핵계측기를 이용한 축방향 출력분포 계산 방법
KR20040099884A (ko) * 2003-05-20 2004-12-02 한국원자력연구소 통합형 실시간 원자로 열적 보호시스템
KR20060076466A (ko) * 2004-12-29 2006-07-04 두산중공업 주식회사 노심보호연산기계통

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, KWANG BONG: "A Study on the Validation of Nuclear Criticality Analysis Codes for Spent Fuel", MASTER'S THESIS OF GRADUATE SCHOOL OF CHOSUN UNIVERSITY, 25 February 2016 (2016-02-25), XP009507626 *
See also references of EP3293737A4 *

Also Published As

Publication number Publication date
RU2018138509A (ru) 2020-04-30
JP6626586B2 (ja) 2019-12-25
CA2985993C (en) 2021-05-18
US20180190399A1 (en) 2018-07-05
EP3293737B1 (en) 2020-05-06
CN108885912B (zh) 2022-05-06
RU2720586C2 (ru) 2020-05-12
JP2019510980A (ja) 2019-04-18
CA2985993A1 (en) 2017-10-12
EP3293737A4 (en) 2019-01-23
EP3293737A1 (en) 2018-03-14
CN108885912A (zh) 2018-11-23
RU2018138509A3 (ko) 2020-04-30
RU2720586C9 (ru) 2020-09-18
KR101687169B1 (ko) 2016-12-16

Similar Documents

Publication Publication Date Title
WO2017175908A1 (ko) 반복 교차검증을 이용한 상관식 공차한계 설정시스템 및 그 방법
CN110633454B (zh) 一种基于修正法的chf关系式dnbr限值统计学确定方法
CN117310353B (zh) 一种变电站一、二次回路通流加压故障测试方法及系统
WO2022225117A1 (ko) 실시간 이상 탐지를 위한 gnn 기반의 마스터 상태 생성 방법
CN117007883B (zh) 一种用于光电耦合器多点温度测试系统
CN112651849A (zh) 基于不平衡数据集的电压监测异常数据识别方法及系统
CN111030815A (zh) 一种商用密码应用加密有效性的在线检测方法及装置
WO2018030733A1 (ko) 계측-수율 상관성 분석 방법 및 시스템
WO2015030397A1 (ko) 고분자의 팽윤 현상 평가 지수를 계산하는 방법 및 이를 이용한 시스템
WO2022080610A1 (ko) 열화상 및 실화상을 이용한 건물 외벽의 열적 이상 부위 판단 시스템과 그 방법
Boyerinas Determining the statistical power of the kolmogorov-smirnov and anderson-darling goodness-of-fit tests via monte carlo simulation
CN108548970B (zh) 一种基于d-s证据理论的继电保护装置自动化测试模板
CN114563444A (zh) 一种vpx设备散热性能测试方法及系统
CN105629192A (zh) 一种零磁通电流互感器的校验装置及其方法
CN116344378B (zh) 一种光伏板生产用智能检测系统及其检测方法
CN109948374B (zh) 一种硬件木马的检测方法及装置
WO2023128320A1 (ko) 인공지능 검증 시스템 및 방법
WO2018056509A1 (ko) 전력계통 고장 해석 장치 및 방법
CN114334194B (zh) 高温气冷堆氦气泄漏预警方法、装置、设备及存储介质
WO2021261901A1 (ko) 함수 호출 패턴 분석을 통한 이상 검출 장치 및 방법
CN115344868A (zh) 一种自动化运维脚本安全保障方法
WO2017217701A1 (ko) 전장용 소프트웨어 안전성 분석 방법 및 장치
CN113672658A (zh) 基于复相关系数的电力设备在线监测错误数据识别方法
CN112116014A (zh) 一种配电自动化设备测试数据离群值检测方法
CN111950853A (zh) 一种基于信息物理双侧数据的电力运行状态白名单生成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2985993

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2016898012

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018552159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE