WO2017175758A1 - 無線通信システム及び通信方法 - Google Patents

無線通信システム及び通信方法 Download PDF

Info

Publication number
WO2017175758A1
WO2017175758A1 PCT/JP2017/014075 JP2017014075W WO2017175758A1 WO 2017175758 A1 WO2017175758 A1 WO 2017175758A1 JP 2017014075 W JP2017014075 W JP 2017014075W WO 2017175758 A1 WO2017175758 A1 WO 2017175758A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
encoded data
unit
signal processing
encoding
Prior art date
Application number
PCT/JP2017/014075
Other languages
English (en)
French (fr)
Inventor
宮本 健司
寺田 純
桑野 茂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/085,444 priority Critical patent/US10721724B2/en
Priority to EP17779136.5A priority patent/EP3425996B1/en
Priority to JP2018510614A priority patent/JP6483920B2/ja
Priority to CN201780020969.7A priority patent/CN108886834B/zh
Publication of WO2017175758A1 publication Critical patent/WO2017175758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a wireless communication system and a communication method.
  • C-RAN Centralized / Cloud Radio access network
  • BBU Base Band Unit
  • RRH Remote Radio Head
  • BBU and RRH are communicably connected by an optical fiber.
  • the BBU that aggregates the functions of the physical layer (Physical Layer: PHY) including the baseband signal processing function into the BBU and transmits the IQ data of the radio signal to the RRH
  • the BBU called MFH (Mobile Fronthaul)
  • MFH Mobile Fronthaul
  • FIG. 5 is a diagram showing a function division method called MAC-PHY Split.
  • MAC-PHY ⁇ Split method functions higher than the MAC (Media Access) Control) layer are assigned to the BBU, and the functions of the physical layer are assigned to the RRH (Non-Patent Document 1).
  • FIG. 6 is a diagram showing a function division method called SPP (Split-PHY Processing).
  • SPP Split-PHY Processing
  • a scheduler that is one of the functions of the MAC layer generates control information for the functions of the physical layer.
  • 7 and 8 show downlink signal transmission and its flow in the MAC-PHY-Split system.
  • FIG. 7 is a diagram illustrating downlink signal transmission in the MAC-PHY-Split method.
  • the BBU 91 includes a scheduler 911 and a transmission unit 912.
  • the RRH 92 includes a receiving unit 921, an encoding unit 922, and a signal processing unit 923.
  • FIG. 8 is a diagram illustrating a flow of downlink signal transmission in the MAC-PHY-Split method.
  • the transmission unit 912 transmits the data to be transmitted to the terminal and the control information generated by the scheduler 911 to the RRH 92 through the MFH.
  • the receiving unit 921 receives data and control information.
  • the encoding unit 922 and the signal processing unit 923 included in the function of the physical layer read the control information received from the receiving unit 921 and perform signal processing on the data according to the control information instruction.
  • FIG. 9 and 10 show downlink signal transmission and its float in the SPP method.
  • FIG. 9 is a diagram illustrating downlink signal transmission in the SPP scheme.
  • the BBU 93 includes a scheduler 931, an encoding unit 932, and a transmission unit 933.
  • the RRH 94 includes a receiving unit 941 and a signal processing unit 942.
  • FIG. 10 is a diagram illustrating a flow of downlink signal transmission in the SPP scheme.
  • the BBU 93 outputs the control information generated by the scheduler 931 to the encoding unit 932, and the transmission unit 933 transmits the control information output from the scheduler 931 to the RRH 94 through MFH.
  • the encoding unit 932 reads the control information output from the scheduler 931 and encodes the data in accordance with an instruction by the control information.
  • the encoding unit 932 outputs the encoded data obtained by the encoding to the transmission unit 933.
  • the transmission unit 933 transmits the encoded data output from the encoding unit 932 to the RRH 94 through MFH.
  • the reception unit 941 receives control information and encoded data
  • the signal processing unit 942 performs signal processing on the encoded data based on the control information.
  • the present invention provides a wireless communication system and a communication method capable of reducing the delay time of downlink signal transmission in a configuration in which the function of a base station is divided into a control device and a communication device. It is aimed.
  • the wireless communication system is a wireless communication system including a control device and at least one communication device, and the control device performs physical layer processing in wireless communication between the communication device and a terminal.
  • a scheduler that generates control information for the terminal, an encoding unit that generates encoded data by performing encoding on data to be transmitted to the terminal based on the control information, and the communication apparatus when the control information is generated
  • a transmission unit that transmits the control information to the communication device when the encoded data is generated, and the communication device transmits the control information and the code from the control device.
  • a receiving unit that receives the encoded data, and the encoded data received by the receiving unit based on the control information received by the receiving unit Comprising a signal processing unit for performing signal processing for transmission to the terminal.
  • the scheduler outputs the control information to the encoding unit and the transmission unit, and the encoding is performed.
  • the unit starts encoding the data as soon as the control information output from the scheduler is read, and the signal processing unit reads the control information received by the receiver as soon as it reads the control information. Start signal processing.
  • the transmission unit when there are a plurality of the communication devices connected to the control device, the transmission unit includes: The control information and the encoded data are transmitted to the communication apparatus using the control information and the encoded data among the plurality of communication apparatuses.
  • the transmission unit when there are a plurality of the communication devices connected to the control device, the transmission unit includes: The control information and the encoded data are broadcast to a plurality of the communication devices, and the receiving unit includes the control information for the own device among the control information and the encoded data received from the control device. And the encoded data are selected and output to the signal processing unit, and the control information and the encoded data for the other communication devices are discarded.
  • a communication method is a communication method in a wireless communication system including a control device and at least one communication device, wherein the control device is in wireless communication between the communication device and a terminal.
  • a second transmission step of transmitting data and the communication device receives the control information and the encoded data from the control device And a signal processing step in which the communication apparatus performs signal processing for transmitting the encoded data received in the reception step to the terminal based on the control information received in the reception step.
  • the present invention it is possible to reduce the delay time of downlink transmission in a configuration in which the function of the base station is divided into a control device and a communication device.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to a first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system 1 in the first embodiment.
  • the wireless communication system 1 includes a BBU 10 and an RRH 20 that function as a base station that performs wireless communication with a terminal (not shown).
  • the BBU 10 and the RRH 20 are communicably connected through the MFH.
  • the BBU 10 as a control device includes a scheduler 11, an encoding unit 12, and a transmission unit 13.
  • the RRH 20 as a communication device includes a receiving unit 21 and a signal processing unit 22.
  • the SPP method is applied to the BBU 10 and the RRH 20 as a function division method.
  • the scheduler 11 in the BBU 10 generates control information for physical layer processing.
  • the control information includes information indicating the modulation scheme, coding rate, radio resource (frequency, frame, slot in frame), transmission power, and the like used by the RRH 20 in radio communication with the terminal.
  • the scheduler 11 outputs control information to the encoding unit 12 and the transmission unit 13 at the same time.
  • the encoding unit 12 reads the control information, determines the parameters necessary for encoding, and encodes data to be transmitted to the terminal based on the control information.
  • the encoding unit 12 outputs encoded data obtained by encoding to the transmission unit 13.
  • the transmission unit 13 transmits the control information output from the scheduler 11 and the encoded data output from the encoding unit 12 to the RRH 20 through the MFH.
  • the transmission unit 13 When acquiring the control information output from the scheduler 11, the transmission unit 13 transmits the control information to the RRH 20 regardless of the start or completion of encoding by the encoding unit 12. That is, the transmission unit 13 may transmit the control information to the RRH 20 before the encoding unit 12 finishes generating the encoded data.
  • the reception unit 21 in the RRH 20 receives control information and encoded data from the BBU 10 through MFH.
  • the receiving unit 21 outputs the received control information and encoded data to the signal processing unit 22.
  • the signal processing unit 22 reads the control information and determines parameters necessary for the signal processing, the signal processing unit 22 performs signal processing for transmitting the encoded data to the terminal based on the control information.
  • the signal processing unit 22 transmits a radio signal obtained by signal processing to the terminal.
  • the signal processing performed by the signal processing unit 22 includes, for example, digital-analog conversion, frequency conversion, removal of unnecessary frequency components, amplification, and the like.
  • FIG. 2 is a diagram showing a flow of downlink signal transmission in the first embodiment.
  • the encoding unit 12 reads the control information output from the scheduler 11, and performs encoding on the data based on the control information.
  • the scheduler 11 outputs the control information to the transmission unit 13 and causes the transmission unit 13 to transmit the control information to the RRH 20 through the MFH.
  • the transmission unit 13 transmits the encoded data encoded by the encoding unit 12 to the RRH through the MFH.
  • the receiving unit 21 receives control information transmitted through the MFH, and outputs the received control information to the signal processing unit 22.
  • the signal processing unit 22 reads control information output from the receiving unit 21.
  • the receiving unit 21 receives the encoded data transmitted through the MFH and outputs the received encoded data to the signal processing unit 22.
  • the signal processing unit 22 performs signal processing on the encoded data output from the receiving unit 21 as soon as the control information has been read.
  • the transmission unit 13 transmits control information to the RRH 20 while the encoding unit 12 is encoding data.
  • the signal processing unit 22 can start reading the control information before the encoded data arrives at the RRH 20.
  • FIGS the time from when the encoded data shown in FIG. 2 arrives at the RRH 20 until the completion of reading the control information is shown in FIGS. It can be seen that it is shorter than the flow time shown in. Further, since the data is encoded in the BBU 10, the signal processing unit 22 in the RRH 20 does not need to perform the encoding.
  • the processing time in the RRH 20 of the flow shown in FIG. 2 is shorter than the processing time in the RRH of the flow shown in FIG. As a result, the time from when the encoded data arrives at the RRH 20 until the completion of reading of the control information is shortened, and the delay time of downlink signal transmission can be reduced. It can also be seen that the total delay time, which is the time required for downlink signal transmission, is shorter in the flow of the first embodiment than in the flow shown in FIGS.
  • one BBU 10 and one RRH 20 are connected by MFH in the wireless communication system 1 in the first embodiment, whereas one BBU and two RRHs are connected. Are connected by MFH.
  • MFH a configuration example in which two RRHs are connected to the BBU will be described.
  • three or more RRHs may be connected to the BBU via the MFH.
  • FIG. 3 is a block diagram illustrating a configuration example of the wireless communication system 2 according to the second embodiment.
  • the wireless communication system 2 includes a BBU 30 and two RRHs 40 (40-1, 40-2) that function as a base station that performs wireless communication with a terminal (not shown).
  • the BBU 30 includes a scheduler 11, an encoding unit 12, and a transmission unit 33.
  • the RRH 40 includes a receiving unit 41 and a signal processing unit 22.
  • the SPP method is applied to the BBU 30 and the RRH 40 as the function division method.
  • the scheduler 11 generates control information # 1 and # 2 for the RRHs 40-1 and 40-2, and outputs the control information # 1 and # 2 to the encoding unit 12 and the transmission unit 33, respectively.
  • the encoding unit 12 encodes the data # 1 transmitted from the RRH 40-1 to the terminal based on the control information # 1 for the RRH 40-1.
  • the encoding unit 12 outputs the encoded data # 1 obtained by encoding the data # 1 to the transmission unit 33.
  • the encoding unit 12 performs encoding on the data # 2 transmitted from the RRH 40-2 to the terminal based on the control information # 2 for the RRH 40-2.
  • the encoding unit 12 outputs encoded data # 2 obtained by encoding the data # 2 to the transmission unit 33.
  • the transmission unit 33 transmits the control information # 1 output from the scheduler 11 and the encoded data # 1 output from the encoding unit 12 to the RRH 40-1 through the MFH. Similar to the transmission unit 13 in the first embodiment, when the control information # 1 is output from the scheduler 11, the transmission unit 33 transmits the control information # 1 to the RRH 40-1 through the MFH. The transmitter 33 transmits the encoded data # 1 to the RRH 40-1 through the MFH as soon as encoding by the encoder 12 is completed. That is, the transmission unit 33 may transmit the control information # 1 to the RRH 40-1 before the encoding unit 12 finishes generating the encoded data # 1. The transmission unit 33 transmits the control information # 1 and the encoded data # 1 to the RRH 40-1 that uses the control information # 1 and the encoded data # 1 among the RRHs 40 connected to the BBU 30.
  • the transmission unit 33 transmits the control information # 2 output from the scheduler 11 and the encoded data # 2 output from the encoding unit 12 to the RRH 40-2 through the MFH.
  • the transmission unit 33 transmits the control information # 2 to the RRH 40-2 through the MFH.
  • the transmitter 33 transmits the encoded data # 2 to the RRH 40-2 through the MFH as soon as encoding by the encoder 12 is completed. That is, the transmission unit 33 may transmit the control information # 2 to the RRH 40-2 before the encoding unit 12 finishes generating the encoded data # 2.
  • the transmission unit 33 transmits the control information # 2 and the encoded data # 2 to the RRH 40-2 using the control information # 2 and the encoded data # 2 among the RRHs 40 connected to the BBU 30.
  • receiving section 41 receives control information # 1 and encoded data # 1 transmitted from BBU 30 to RRH 40-1.
  • the receiving unit 41 outputs the received control information # 1 and encoded data # 1 to the signal processing unit 22.
  • the signal processing unit 22 starts reading the control information # 1 when the receiving unit 41 receives the control information # 1 from the BBU 30, similarly to the signal processing unit 22 of the RRH 20 of the first embodiment.
  • the signal processing unit 22 starts signal processing on the encoded data # 1 output from the receiving unit 41 as soon as the control information # 1 is read.
  • the receiving unit 41 and the signal processing unit 22 operate in the same manner.
  • the transmitter 33 transmits the control information # 1 and # 2 to the RRHs 40-1 and 40-2 while the encoder 12 encodes the data # 1 and # 2.
  • Send By transmitting the control information # 1 and # 2 before the encoded data # 1 and # 2, the signal processing unit 22 reads the control information before the encoded data arrives at the RRHs 40-1 and 40-2. Can start.
  • the encoded data # 1 and # 2 arrive at the RRHs 40-1 and 40-2.
  • To the completion of reading of control information # 1 and # 2 is shortened.
  • the time from when the encoded data # 1 and # 2 arrives at the RRHs 40-1 and 40-2 to the completion of reading the control information # 1 and # 2 is shortened, and the delay time of downlink signal transmission is reduced. can do.
  • FIG. 4 is a block diagram illustrating a configuration example of the wireless communication system 3 according to the third embodiment.
  • the wireless communication system 3 includes a BBU 50 and two RRHs 60 (60-1, 60-2) that function as a base station that performs wireless communication with a terminal (not shown).
  • the BBU 50 includes a scheduler 11, an encoding unit 12, and a transmission unit 53.
  • the RRH 60 includes a receiving unit 61 and a signal processing unit 22.
  • the SPP method is applied to the BBU 50 and the RRH 60 as the function division method.
  • a configuration example in which two RRHs 60 are connected to the BBU 50 will be described. However, three or more RRHs 60 may be connected to the BBU 50 via the MFH.
  • the scheduler 11 generates control information # 1 and # 2 for the RRHs 60-1 and 60-2, respectively, and outputs the control information # 1 and # 2 to the encoding unit 12 and the transmission unit 53.
  • the encoding unit 12 encodes the data # 1 transmitted from the RRH 60-1 to the terminal based on the control information # 1 for the RRH 60-1.
  • the encoding unit 12 outputs the encoded data # 1 obtained by encoding the data # 1 to the transmission unit 53.
  • the encoding unit 12 performs encoding on the data # 2 transmitted from the RRH 60-2 to the terminal based on the control information # 2 for the RRH 60-2.
  • the encoding unit 12 outputs the encoded data # 2 obtained by encoding the data # 2 to the transmission unit 53.
  • Transmitter 53 multicasts control information # 1 and # 2 output from scheduler 11 and encoded data # 1 and # 2 output from encoder 12 to RRHs 60-1 and 60-2 via MFH. (Broadcast transmission).
  • the transmission unit 53 transmits the control information # 1 and # 2 to the RRHs 60-1 and 60-2 through the MFH.
  • the transmitter 53 transmits the encoded data # 1 and # 2 to the RRHs 60-1 and 60-2 through the MFH as soon as the encoding by the encoder 12 is completed.
  • the transmission unit 53 may transmit control information and encoded data by broadcast transmission instead of multicast transmission.
  • the transmission unit 53 may transmit the control information # 1 to the RRH 60-1 before the encoding unit 12 finishes generating the encoded data # 1. Further, the transmission unit 53 may transmit the control information # 2 to the RRH 60-2 before the encoding unit 12 finishes generating the encoded data # 2.
  • the receiving unit 61 receives control information # 1, # 2 and encoded data # 1, # 2 transmitted from the BBU 30.
  • the receiving unit 61 selects control information # 1 and encoded data # 1 for itself (RRH 60-1) among the received control information # 1 and # 2 and encoded data # 1 and # 2, and the like. The control information and the encoded data are discarded.
  • the receiving unit 61 outputs the selected control information # 1 and encoded data # 1 to the signal processing unit 22.
  • the signal processing unit 22 starts reading the control information # 1 when the receiving unit 61 receives the control information # 1 from the BBU 50.
  • the signal processing unit 22 starts signal processing on the encoded data # 1 output from the receiving unit 61 as soon as the control information # 1 is read.
  • the reception unit 41 and the signal processing unit 22 operate in the same manner.
  • the transmitter 53 transmits the control information # 1 and # 2 to the RRHs 60-1 and 60-2 while the encoder 12 encodes the data # 1 and # 2.
  • Send By transmitting the control information # 1 and # 2 before the encoded data # 1 and # 2, the signal processing unit 22 reads the control information before the encoded data arrives at the RRHs 60-1 and 60-2. Can start.
  • the encoded data # 1 and # 2 arrive at the RRHs 60-1 and 60-2.
  • To the completion of reading of control information # 1 and # 2 is shortened.
  • the time from when the encoded data # 1 and # 2 arrive at the RRHs 60-1 and 60-2 to the completion of reading the control information # 1 and # 2 is shortened, and the delay time of downlink signal transmission is reduced. can do.
  • the BBU performs transmission of control information to the RRH and data encoding in parallel, and starts reading when the RRH receives the control information.
  • the waiting time from when the encoded data arrives until the reading of the control information is completed can be shortened, and the delay time of downlink signal transmission can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、制御装置及び少なくとも一つの通信装置を備える。制御装置は、通信装置と端末との無線通信における物理層の処理に対する制御情報を生成するスケジューラと、端末へ送信するデータに対する符号化を制御情報に基づいて行うことで符号化データを生成する符号化部と、制御情報が生成されると通信装置へ制御情報を送信し、符号化データが生成されると符号化データを通信装置へ送信する送信部と、を備る。通信装置は、制御装置から制御情報と符号化データとを受信する受信部と、受信部により受信された制御情報に基づいて、受信部により受信された符号化データを端末へ送信するための信号処理を行う信号処理部と、を備える。

Description

無線通信システム及び通信方法
 本発明は、無線通信システム及び通信方法に関する。
 無線通信システム、特に移動体通信システムにおいて、基地局設置の柔軟性を高めるため、C-RAN(Centralized/Cloud Radio access network)という構成を用いることが検討されている。C-RANでは、基地局が有する機能が2つに分割され、BBU(Base Band Unit)とRRH(Remote Radio Head)と呼ばれる2つの装置に機能が割り当てられる。BBUとRRHとは、通信可能に光ファイバで接続される。しかし、ベースバンド信号処理の機能を含む物理層(Physical Layer : PHY)の機能をBBUに集約して無線信号のIQデータをRRHへ伝送するC-RANでは、MFH(Mobile Fronthaul)と呼ばれるBBUとRRHとの間の光リンクに非常に広い帯域が必要になる。そのため、C-RANのBBUとRRHとに対して割り当てる機能を再定義してMFHに必要とされる帯域の削減が検討されている。
 図5は、MAC-PHY Splitと呼ばれる機能分割方式を示す図である。MAC-PHY Split方式では、MAC(Media Access Control)層以上の機能をBBUに割り当て、物理層の機能をRRHに割り当てる(非特許文献1)。図6は、SPP(Split-PHY Processing)と呼ばれる機能分割方式を示す図である。SPP方式では、MAC層以上の機能と物理層の機能の一部である符号化の機能とをBBUに割り当て、符号化以外の物理層の機能をRRHに割り当てる(非特許文献2)。
 移動体通信システムでは、MAC層の機能の一つであるスケジューラが物理層の機能に対する制御情報を生成する。図7及び図8に、MAC-PHY Split方式におけるダウンリンクの信号伝送とそのフローとを示す。図7は、MAC-PHY Split方式におけるダウンリンクの信号伝送を示す図である。BBU91は、スケジューラ911と送信部912とを備える。RRH92は、受信部921と符号化部922と信号処理部923とを備える。図8は、MAC-PHY Split方式におけるダウンリンクの信号伝送のフローを示す図である。ダウンリンクの信号伝送では、BBU91において、端末へ送信するデータとスケジューラ911が生成した制御情報とを送信部912がMFHを通してRRH92へ送信する。RRH92では、受信部921がデータと制御情報とを受信する。物理層の機能に含まれる符号化部922及び信号処理部923が、受信部921から受け取った制御情報を読み込み、制御情報の指示に応じてデータに対する信号処理を行う。
 図9及び図10は、SPP方式におけるダウンリンクの信号伝送とそのフロートを示す。図9は、SPP方式におけるダウンリンクの信号伝送を示す図である。BBU93は、スケジューラ931と符号化部932と送信部933とを備える。RRH94は、受信部941と信号処理部942とを備える。図10は、SPP方式におけるダウンリンクの信号伝送のフローを示す図である。ダウンリンクの信号伝送では、BBU93において、スケジューラ931が生成した制御情報を符号化部932へ出力するとともに、送信部933がスケジューラ931から出力される制御情報をRRH94へMFHを通して送信する。符号化部932は、スケジューラ931から出力される制御情報を読み込み、制御情報による指示に応じてデータに対して符号化を行う。符号化部932は、符号化により得られた符号化データを送信部933へ出力する。送信部933は、符号化部932から出力される符号化データをRRH94へMFHを通して送信する。RRH94では、受信部941が制御情報と符号化データとを受信し、信号処理部942が制御情報に基づいて符号化データに対して信号処理を行う。
 図8と図10とにおいて示したように、RRHにおいて行われる処理はBBUから受信した制御情報に基づいて行われるため、符号化部や信号処理部が制御情報の読み込みを完了するまで開始されずに待機時間が生じる。前述した機能分割方式におけるダウンリンク信号伝送では、MFHを通してデータと制御情報とがRRHに伝送されたとしても、RRHにおいて制御情報の読み込みが完了するまで物理層における処理が開始できず、制御情報の読み込みに起因する待機時間による遅延が発生するという問題がある。
松永泰彦、「5Gに向けた無線アクセスネットワークアーキテクチャの進化」、信学技報、vol.114、no.254、RCS2014-172、pp.89-94、2014年10月 宮本健司、外3名、「将来無線アクセスに向けた基地局機能分割方式の提案」、信学技報、vol.115、no.123、CS2015-15、pp.33-38、2015年7月
 前述の事情に鑑み、本発明は、制御装置と通信装置とに基地局の機能を分割した構成におけるダウンリンク信号伝送の遅延時間を削減することができる無線通信システム及び通信方法を提供することを目的としている。
 本発明の第1の実施態様における無線通信システムは、制御装置及び少なくとも一つの通信装置を備える無線通信システムであって、前記制御装置は、前記通信装置と端末との無線通信における物理層の処理に対する制御情報を生成するスケジューラと、前記端末へ送信するデータに対する符号化を前記制御情報に基づいて行うことで符号化データを生成する符号化部と、前記制御情報が生成されると前記通信装置へ前記制御情報を送信し、前記符号化データが生成されると前記通信装置へ前記符号化データを送信する送信部と、を備え、前記通信装置は、前記制御装置から前記制御情報と前記符号化データとを受信する受信部と、前記受信部により受信された前記制御情報に基づいて、前記受信部により受信された前記符号化データを前記端末へ送信するための信号処理を行う信号処理部と、を備える。
 また、本発明の第2の実施態様によれば、上記第1の実施態様の無線通信システムにおいて、前記スケジューラは、前記符号化部と前記送信部とへ前記制御情報を出力し、前記符号化部は、前記スケジューラから出力された前記制御情報を読み込み次第、前記データに対する符号化を開始し、前記信号処理部は、前記受信部により受信された前記制御情報を読み込み次第、前記符号化データに対する信号処理を開始する。
 また、本発明の第3の実施態様によれば、上記第1又は第2の実施態様の無線通信システムにおいて、前記制御装置に接続される前記通信装置は複数である場合、前記送信部は、複数の前記通信装置のうち、前記制御情報と前記符号化データとを用いる前記通信装置へ前記制御情報と前記符号化データとを送信する。
 また、本発明の第4の実施態様によれば、上記第1又は第2の実施態様の無線通信システムにおいて、前記制御装置に接続される前記通信装置は複数である場合、前記送信部は、前記制御情報と前記符号化データとを複数の前記通信装置へ同報送信し、前記受信部は、前記制御装置から受信する前記制御情報と前記符号化データとのうち、自装置に対する前記制御情報と前記符号化データとを選択して前記信号処理部へ出力し、他の前記通信装置に対する前記制御情報と前記符号化データとを破棄する。
 また、本発明の第5の実施態様における通信方法は、制御装置及び少なくとも一つの通信装置を備える無線通信システムにおける通信方法であって、前記制御装置が、前記通信装置と端末との無線通信における物理層の処理に対する制御情報を生成するスケジューリングステップと、前記制御装置が、前記端末へ送信するデータに対する符号化を前記制御情報に基づいて行うことで符号化データを生成する符号化ステップと、前記制御装置が、前記制御情報が生成されると前記通信装置へ前記制御情報を送信する第1の送信ステップと、前記制御装置が、前記符号化データが生成されると前記通信装置へ前記符号化データを送信する第2の送信ステップと、前記通信装置が、前記制御装置から前記制御情報と前記符号化データとを受信する受信ステップと、前記通信装置が、前記受信ステップにて受信した前記制御情報に基づいて、前記受信ステップにて受信した前記符号化データを前記端末へ送信するための信号処理を行う信号処理ステップと、を有する。
 本発明によれば、制御装置と通信装置とに基地局の機能を分割した構成におけるダウンリンク伝送の遅延時間を削減することが可能となる。
第1の実施形態における無線通信システムの構成例を示すブロック図。 第1の実施形態におけるダウンリンク信号伝送のフローを示す図。 第2の実施形態における無線通信システムの構成例を示すブロック図。 第3の実施形態における無線通信システムの構成例を示すブロック図。 従来のMAC-PHY Splitと呼ばれる機能分割方式を示す図。 従来のSPPと呼ばれる機能分割方式を示す図。 従来のMAC-PHY Split方式におけるダウンリンクの信号伝送を示す図。 従来のMAC-PHY Split方式におけるダウンリンクの信号伝送のフローを示す図。 従来のSPP方式におけるダウンリンクの信号伝送を示す図。 従来のSPP方式におけるダウンリンクの信号伝送のフローを示す図。
 以下、図面を参照して、本発明の実施形態における無線通信システム及び通信方法を説明する。なお、以下の実施形態では、同一の符号を付した構成要素は同様の動作を行うものとして、重複する説明を適宜省略する。
[第1の実施形態]
 図1は、第1の実施形態における無線通信システム1の構成例を示すブロック図である。無線通信システム1は、不図示の端末との無線通信を行う基地局として機能する、BBU10とRRH20とを備える。BBU10とRRH20とは、MFHを通して通信可能に接続されている。制御装置としてのBBU10は、スケジューラ11と符号化部12と送信部13とを備える。通信装置としてのRRH20は、受信部21と信号処理部22とを備える。BBU10とRRH20とには、機能分割方式としてSPP方式が適用されている。
 BBU10における、スケジューラ11は、物理層の処理に対する制御情報を生成する。制御情報には、RRH20が端末との無線通信において使用する、変調方式、符号化率、無線リソース(周波数、フレーム、フレームにおけるスロット)、送信電力などを示す情報が含まれる。スケジューラ11は、符号化部12と送信部13とへ制御情報を同時に出力する。符号化部12は、制御情報を読み込み符号化に必要なパラメータを定め次第、端末へ送信するデータを制御情報に基づいて符号化する。符号化部12は、符号化により得られる符号化データを送信部13へ出力する。送信部13は、スケジューラ11から出力される制御情報と、符号化部12から出力される符号化データとをMFHを通してRRH20へ送信する。送信部13は、スケジューラ11から出力される制御情報を取得すると、符号化部12による符号化の開始又は完了にかかわらず、制御情報をRRH20へ送信する。すなわち、送信部13は、符号化部12が符号化データの生成をし終える前に、制御情報をRRH20へ送信してもよい。
 RRH20における、受信部21は、MFHを通してBBU10から制御情報と符号化データとを受信する。受信部21は、受信した制御情報と符号化データとを信号処理部22へ出力する。信号処理部22は、制御情報を読み込み信号処理に必要なパラメータを定め次第、符号化データを端末へ送信するための信号処理を制御情報に基づいて行う。信号処理部22は、信号処理により得られる無線信号を端末へ送信する。信号処理部22が行う信号処理には、例えばデジタル-アナログ変換、周波数変換、不要周波数成分の除去、増幅などが含まれる。
 図2は、第1の実施形態におけるダウンリンク信号伝送のフローを示す図である。BBU10において、符号化部12は、スケジューラ11から出力される制御情報を読み込み、制御情報に基づいた符号化をデータに対して行う。このとき、スケジューラ11は、制御情報を送信部13へ出力し、送信部13にMFHを通して制御情報をRRH20へ送信させる。また、送信部13は、符号化部12により符号化された符号化データを、MFHを通してRRHへ送信する。
 RRH20において、受信部21は、MFHを通して伝送された制御情報を受信し、受信した制御情報を信号処理部22へ出力する。信号処理部22は、受信部21から出力される制御情報を読み込む。また、受信部21は、MFHを通した伝送された符号化データを受信し、受信した符号化データを信号処理部22へ出力する。信号処理部22は、制御情報の読み込みが完了次第、受信部21から出力される符号化データに対して信号処理を行う。
 第1の実施形態における無線通信システム1では、図2に示すように、符号化部12がデータを符号化している間に、送信部13が制御情報をRRH20へ送信する。制御情報が符号化データより先に送信されることにより、RRH20に符号化データが到着する前に信号処理部22が制御情報の読み込みを開始することができる。BBU10において制御情報の送信とデータの符号化とを並行して行うことにより、図2に示した符号化データがRRH20に到着してから制御情報の読み込み完了までの時間が、図8及び図10に示したフローの時間に比べて短くなっていることがわかる。また、データに対する符号化はBBU10において行われているため、RRH20における信号処理部22が符号化を行う必要はない。図2に示したフローのRRH20における処理時間が図8に示したフローのRRHにおける処理時間に比べ短くなっている。これにより、符号化データがRRH20に到着してから制御情報の読み込み完了までの時間が短くなり、ダウンリンク信号伝送の遅延時間を削減することができる。また、ダウンリンク信号伝送に要する時間である合計遅延時間も、図8及び図10に示したフローに比べ、第1の実施形態のフローの方が短くなっていることがわかる。
[第2の実施形態]
 第2の実施形態における無線通信システムは、第1の実施形態における無線通信システム1では1つのBBU10と1つのRRH20とがMFHで接続されていたのに対して、1つのBBUと2つのRRHとがMFHで接続されている。なお、第2の実施形態では、2つのRRHがBBUに接続される構成例を示して説明するが、3つ以上の複数のRRHがMFHを介してBBUに接続されていてもよい。
 図3は、第2の実施形態における無線通信システム2の構成例を示すブロック図である。無線通信システム2は、不図示の端末との無線通信を行う基地局として機能する、BBU30と2つのRRH40(40-1,40-2)とを備える。BBU30は、スケジューラ11と符号化部12と送信部33とを備える。RRH40は、受信部41と信号処理部22とを備える。BBU30とRRH40とには、第1の実施形態の無線通信システム1と同様に、機能分割方式としてSPP方式が適用されている。
 スケジューラ11は、RRH40-1、40-2に対する制御情報#1、#2をそれぞれ生成し、制御情報#1、#2を符号化部12と送信部33とへ出力する。符号化部12は、RRH40-1に対する制御情報#1に基づいて、RRH40-1から端末へ送信するデータ#1に対する符号化を行う。符号化部12は、データ#1に対する符号化により得られる符号化データ#1を送信部33へ出力する。また、符号化部12は、RRH40-2に対する制御情報#2に基づいて、RRH40-2から端末へ送信するデータ#2に対する符号化を行う。符号化部12は、データ#2に対する符号化により得られる符号化データ#2を送信部33へ出力する。
 送信部33は、スケジューラ11から出力される制御情報#1と符号化部12から出力される符号化データ#1とを、MFHを通してRRH40-1へ送信する。送信部33は、第1の実施形態における送信部13と同様に、スケジューラ11から制御情報#1が出力されると、MFHを通してRRH40-1へ制御情報#1を送信する。送信部33は、符号化部12による符号化が終わり次第、MFHを通してRRH40-1へ符号化データ#1を送信する。すなわち、送信部33は、符号化部12が符号化データ#1の生成をし終える前に、制御情報#1をRRH40-1へ送信してもよい。送信部33は、BBU30に接続されたRRH40のうち制御情報#1及び符号化データ#1を用いるRRH40-1へ、制御情報#1及び符号化データ#1を送信する。
 送信部33は、スケジューラ11から出力される制御情報#2と符号化部12から出力される符号化データ#2とを、MFHを通してRRH40-2へ送信する。送信部33は、スケジューラ11から制御情報#2が出力されると、MFHを通してRRH40-2へ制御情報#2を送信する。送信部33は、符号化部12による符号化が終わり次第、MFHを通してRRH40-2へ符号化データ#2を送信する。すなわち、送信部33は、符号化部12が符号化データ#2の生成をし終える前に、制御情報#2をRRH40-2へ送信してもよい。送信部33は、BBU30に接続されたRRH40のうち制御情報#2及び符号化データ#2を用いるRRH40-2へ、制御情報#2及び符号化データ#2を送信する。
 RRH40-1において、受信部41は、BBU30からRRH40-1宛に送信される制御情報#1と符号化データ#1とを受信する。受信部41は、受信した制御情報#1と符号化データ#1とを信号処理部22へ出力する。RRH40-1では、第1の実施形態のRRH20の信号処理部22と同様に、信号処理部22は、受信部41が制御情報#1をBBU30から受信すると制御情報#1の読み込みを開始する。信号処理部22は、制御情報#1を読み込み次第、受信部41から出力される符号化データ#1に対する信号処理を開始する。RRH40-2においても、受信部41と信号処理部22とは同様に動作する。
 第2の実施形態における無線通信システム2でも、符号化部12がデータ#1、#2を符号化している間に送信部33が制御情報#1、#2をRRH40-1、40-2へ送信する。制御情報#1、#2が符号化データ#1、#2より先に送信されることにより、RRH40-1、40-2に符号化データが到着する前に信号処理部22が制御情報の読み込みを開始することができる。BBU30において制御情報#1、#2の送信とデータ#1、#2の符号化とを並行して行うことにより、符号化データ#1、#2がRRH40-1、40-2に到着してから制御情報#1、#2の読み込み完了までの時間が短縮される。これにより、符号化データ#1、#2がRRH40-1、40-2に到着してから制御情報#1、#2の読み込み完了までの時間が短くなり、ダウンリンク信号伝送の遅延時間を削減することができる。
[第3の実施形態]
 図4は、第3の実施形態における無線通信システム3の構成例を示すブロック図である。無線通信システム3は、不図示の端末との無線通信を行う基地局として機能する、BBU50と2つのRRH60(60-1、60-2)とを備える。BBU50は、スケジューラ11と符号化部12と送信部53とを備える。RRH60は、受信部61と信号処理部22とを備える。BBU50とRRH60とには、第1の実施形態の無線通信システム1と同様に、機能分割方式としてSPP方式が適用されている。なお、第3の実施形態では、2つのRRH60がBBU50に接続される構成例を示して説明するが、3つ以上のRRH60がMFHを介してBBU50に接続されていてもよい。
 スケジューラ11は、RRH60-1、60-2に対する制御情報#1、#2をそれぞれ生成し、制御情報#1、#2を符号化部12と送信部53とへ出力する。符号化部12は、RRH60-1に対する制御情報#1に基づいて、RRH60-1から端末へ送信するデータ#1に対する符号化を行う。符号化部12は、データ#1に対する符号化により得られる符号化データ#1を送信部53へ出力する。また、符号化部12は、RRH60-2に対する制御情報#2に基づいて、RRH60-2から端末へ送信するデータ#2に対する符号化を行う。符号化部12は、データ#2に対する符号化により得られる符号化データ#2を送信部53へ出力する。
 送信部53は、スケジューラ11から出力される制御情報#1、#2と符号化部12から出力される符号化データ#1、#2とを、MFHを通してRRH60-1、60-2へマルチキャスト送信(同報送信)する。送信部53は、スケジューラ11から制御情報#1、#2が出力されると、MFHを通してRRH60-1、60-2へ制御情報#1、#2を送信する。送信部53は、符号化部12による符号化が終わり次第、MFHを通してRRH60-1、60-2へ符号化データ#1、#2を送信する。なお、送信部53は、マルチキャスト送信に代えてブロードキャスト送信で、制御情報と符号化データとを送信してもよい。すなわち、送信部53は、符号化部12が符号化データ#1の生成をし終える前に、制御情報#1をRRH60-1へ送信してもよい。また、送信部53は、符号化部12が符号化データ#2の生成をし終える前に、制御情報#2をRRH60-2へ送信してもよい。
 RRH60-1において、受信部61は、BBU30から送信される制御情報#1、#2と符号化データ#1、#2とを受信する。受信部61は、受信した制御情報#1、#2と符号化データ#1、#2とのうち、自身(RRH60-1)に対する制御情報#1と符号化データ#1とを選択し、他の制御情報と符号化データとを破棄する。受信部61は、選択した制御情報#1と符号化データ#1とを信号処理部22へ出力する。RRH60-1では、第1の実施形態のRRH20の信号処理部22と同様に、信号処理部22は、受信部61が制御情報#1をBBU50から受信すると制御情報#1の読み込みを開始する。信号処理部22は、制御情報#1を読み込み次第、受信部61から出力される符号化データ#1に対する信号処理を開始する。RRH60-2においても、受信部41と信号処理部22とは同様に動作する。
 第3の実施形態における無線通信システム3でも、符号化部12がデータ#1、#2を符号化している間に送信部53が制御情報#1、#2をRRH60-1、60-2へ送信する。制御情報#1、#2が符号化データ#1、#2より先に送信されることにより、RRH60-1、60-2に符号化データが到着する前に信号処理部22が制御情報の読み込みを開始することができる。BBU50において制御情報#1、#2の送信とデータ#1、#2の符号化とを並行して行うことにより、符号化データ#1、#2がRRH60-1、60-2に到着してから制御情報#1、#2の読み込み完了までの時間が短縮される。これにより、符号化データ#1、#2がRRH60-1、60-2に到着してから制御情報#1、#2の読み込み完了までの時間が短くなり、ダウンリンク信号伝送の遅延時間を削減することができる。
 上述の各実施形態における無線通信システムによれば、BBUが制御情報のRRHへの送信とデータの符号化とを並行して行い、RRHが制御情報を受信すると読み込みを開始することにより、RRHに符号化されたデータが到着してから制御情報の読み込みが完了するまでの待ち時間を短くすることができ、ダウンリンク信号伝送の遅延時間を削減することができる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 基地局の機能をSPP方式にて分割した構成におけるダウンリンク信号伝送の遅延時間を削減することが不可欠な用途にも適用できる。
 1,2,3…無線通信システム
 10,30,50,91,93…BBU
 11,911,931…スケジューラ
 12,932…符号化部
 13,33,53,912,933…送信部
 20,40,60,92,94…RRH
 21,41,61,921,941…受信部
 22,923,942…信号処理部

Claims (5)

  1.  制御装置及び少なくとも一つの通信装置を備える無線通信システムであって、
     前記制御装置は、
     前記通信装置と端末との無線通信における物理層の処理に対する制御情報を生成するスケジューラと、
     前記端末へ送信するデータに対する符号化を前記制御情報に基づいて行うことで符号化データを生成する符号化部と、
     前記制御情報が生成されると前記通信装置へ前記制御情報を送信し、前記符号化データが生成されると前記通信装置へ前記符号化データを送信する送信部と、
     を備え、
     前記通信装置は、
     前記制御装置から前記制御情報と前記符号化データとを受信する受信部と、
     前記受信部により受信された前記制御情報に基づいて、前記受信部により受信された前記符号化データを前記端末へ送信するための信号処理を行う信号処理部と、
     を備える、
     無線通信システム。
  2.  前記スケジューラは、
     前記符号化部と前記送信部とへ前記制御情報を出力し、
     前記符号化部は、
     前記スケジューラから出力された前記制御情報を読み込み次第、前記データに対する符号化を開始し、
     前記信号処理部は、
     前記受信部により受信された前記制御情報を読み込み次第、前記符号化データに対する信号処理を開始する、
     請求項1に記載の無線通信システム。
  3.  前記制御装置に接続される前記通信装置は複数である場合、
     前記送信部は、
     複数の前記通信装置のうち、前記制御情報と前記符号化データとを用いる前記通信装置へ前記制御情報と前記符号化データとを送信する、
     請求項1又は請求項2に記載の無線通信システム。
  4.  前記制御装置に接続される前記通信装置は複数である場合、
     前記送信部は、
     前記制御情報と前記符号化データとを複数の前記通信装置へ同報送信し、
     前記受信部は、
     前記制御装置から受信する前記制御情報と前記符号化データとのうち、自装置に対する前記制御情報と前記符号化データとを選択して前記信号処理部へ出力し、他の前記通信装置に対する前記制御情報と前記符号化データとを破棄する、
     請求項1又は請求項2に記載の無線通信システム。
  5.  制御装置及び少なくとも一つの通信装置を備える無線通信システムにおける通信方法であって、
     前記制御装置が、前記通信装置と端末との無線通信における物理層の処理に対する制御情報を生成するスケジューリングステップと、
     前記制御装置が、前記端末へ送信するデータに対する符号化を前記制御情報に基づいて行うことで符号化データを生成する符号化ステップと、
     前記制御装置が、前記制御情報が生成されると前記通信装置へ前記制御情報を送信する第1の送信ステップと、
     前記制御装置が、前記符号化データが生成されると前記通信装置へ前記符号化データを送信する第2の送信ステップと、
     前記通信装置が、前記制御装置から前記制御情報と前記符号化データとを受信する受信ステップと、
     前記通信装置が、前記受信ステップにて受信した前記制御情報に基づいて、前記受信ステップにて受信した前記符号化データを前記端末へ送信するための信号処理を行う信号処理ステップと、
     を有する、通信方法。
PCT/JP2017/014075 2016-04-06 2017-04-04 無線通信システム及び通信方法 WO2017175758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/085,444 US10721724B2 (en) 2016-04-06 2017-04-04 Wireless communication system and communication method
EP17779136.5A EP3425996B1 (en) 2016-04-06 2017-04-04 Wireless communication system and communication method
JP2018510614A JP6483920B2 (ja) 2016-04-06 2017-04-04 無線通信システム及び通信方法
CN201780020969.7A CN108886834B (zh) 2016-04-06 2017-04-04 无线通信系统以及通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076553 2016-04-06
JP2016-076553 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175758A1 true WO2017175758A1 (ja) 2017-10-12

Family

ID=60001172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014075 WO2017175758A1 (ja) 2016-04-06 2017-04-04 無線通信システム及び通信方法

Country Status (5)

Country Link
US (1) US10721724B2 (ja)
EP (1) EP3425996B1 (ja)
JP (1) JP6483920B2 (ja)
CN (1) CN108886834B (ja)
WO (1) WO2017175758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021519563A (ja) * 2018-04-28 2021-08-10 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016003210B4 (de) * 2015-07-16 2021-05-27 Communication Systems LLC Einrichtungen, verfahren und computerlesbares medium zur kommunikation in einem drahtlosen lokalen netzwerk
WO2018088344A1 (ja) * 2016-11-11 2018-05-17 日本電信電話株式会社 無線通信システム及び無線通信方法
US11671840B2 (en) 2019-05-14 2023-06-06 Commscope Technologies Llc Fronthaul interface for a centralized radio access network
US11477820B2 (en) * 2019-07-10 2022-10-18 Ofinno, Llc Cell resource status information
US11870527B2 (en) * 2022-01-21 2024-01-09 ISRD Sp. z o.o. Wireless communication network with master distributed unit and methods for use therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086994A (ja) * 2012-10-26 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
JP2015142189A (ja) * 2014-01-28 2015-08-03 日本電信電話株式会社 分散型無線通信基地局システム及び通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI950916A (fi) * 1995-02-28 1996-08-29 Nokia Telecommunications Oy Radiojärjestelmän tukiasema
JP3475809B2 (ja) * 1998-10-14 2003-12-10 株式会社デンソー 携帯型テレビ無線電話
JP2004064142A (ja) * 2002-07-24 2004-02-26 Ntt Docomo Inc 送信電力制御方法、これに用いて好適な無線通信システム、無線基地局及び移動局
JP4371830B2 (ja) * 2004-01-27 2009-11-25 富士通株式会社 歪補償増幅装置および基地局
CN102546080B (zh) * 2010-12-21 2014-06-25 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
US8989088B2 (en) * 2011-01-07 2015-03-24 Integrated Device Technology Inc. OFDM signal processing in a base transceiver system
WO2013076899A1 (ja) * 2011-11-25 2013-05-30 日本電気株式会社 無線局、及び無線局によるユーザーデータの処理方法
US20180234875A1 (en) * 2012-05-04 2018-08-16 Eblink Bvba High Efficiency Small Cell Fronthaul Systems and Methods
US9866327B2 (en) * 2012-10-19 2018-01-09 Nippon Telegraph And Telephone Corporation Distributed radio communication base station system, base band unit, remote radio unit, and method for operating distributed radio communication base station system
JP5905813B2 (ja) * 2012-11-19 2016-04-20 日本電信電話株式会社 分散型無線通信基地局システム、信号処理装置及び信号処理方法
EP3050397B1 (en) * 2013-09-24 2019-04-17 Andrew Wireless Systems GmbH Distributed processing in a centralized radio access network
CN104868982B (zh) * 2014-02-20 2019-06-07 中国移动通信集团公司 基带主处理单元、数字前端、基带单元及数据传输方法
KR102296164B1 (ko) * 2014-11-07 2021-08-31 삼성전자주식회사 무선 통신 시스템에서 안테나 파라미터를 최적화하기 위한 장치 및 방법
EP3384609A1 (en) * 2015-12-02 2018-10-10 Telefonaktiebolaget LM Ericsson (publ) Efficient techniques to signal codebook subset restriction bit map in wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086994A (ja) * 2012-10-26 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
JP2015142189A (ja) * 2014-01-28 2015-08-03 日本電信電話株式会社 分散型無線通信基地局システム及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425996A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021519563A (ja) * 2018-04-28 2021-08-10 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru
JP7127699B2 (ja) 2018-04-28 2022-08-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 信号伝送方法、中央アクセススポイントap、及び遠隔無線ユニットrru

Also Published As

Publication number Publication date
JPWO2017175758A1 (ja) 2018-09-20
EP3425996A1 (en) 2019-01-09
JP6483920B2 (ja) 2019-03-13
EP3425996A4 (en) 2019-08-07
EP3425996B1 (en) 2021-01-27
US20190069278A1 (en) 2019-02-28
CN108886834A (zh) 2018-11-23
US10721724B2 (en) 2020-07-21
CN108886834B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6483920B2 (ja) 無線通信システム及び通信方法
US20210351960A1 (en) Uplink transmission instruction method, terminal, base station and computer storage medium
Kaltenberger et al. The OpenAirInterface 5G new radio implementation: Current status and roadmap
EP2830345B1 (en) Data transmission method, base station, and user equipment
JP2022517750A (ja) 下りデータ受信方法、送信方法、装置及び記憶媒体
EP4199599A1 (en) Methods, devices, and systems for initial grant-free transmission determination
JP2020074648A5 (ja)
JP2010068514A5 (ja)
US11240786B2 (en) Communication method, network device and terminal
US10164731B2 (en) Method for base station backhaul, related device and system for base station backhaul
WO2009069262A1 (ja) 無線送信装置および無線送信方法
JP6283450B2 (ja) 無線通信システム及び無線通信方法
WO2020092945A3 (en) Methods for transmission to achieve robust control and feedback performance in a network
JP7253625B2 (ja) ダウンリンクデータ送信方法、受信方法、装置及び記憶媒体
US20220070904A1 (en) Downlink data receiving method and device, downlink data transmitting method and device, and storage medium
CN112205045B (zh) 非地面网络中的混合自动重传请求
WO2014101808A1 (zh) 通道校正装置、方法及系统
US9769839B2 (en) Wireless communication with multiple access points
CN105812963B (zh) 一种对讲机的中继系统和信号转换方法
JPWO2021192302A5 (ja) 端末、無線通信方法、基地局及びシステム
JP2016515773A (ja) マシン・タイプ通信のための周波数ダイバーシティ送信方法
KR101314564B1 (ko) 중계국의 연관된 프로세싱 및 기지국의 대응하는 프로세싱을 위한 방법 및 장치
US11044733B2 (en) Device-to-device D2D communication method and related device
JPWO2020230243A5 (ja) 端末、無線通信方法及びシステム
KR20150038823A (ko) 무선 통신 시스템에서 밀집한 수신기들을 위한 데이터 전송 방법 및 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510614

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017779136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017779136

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779136

Country of ref document: EP

Kind code of ref document: A1