WO2018088344A1 - 無線通信システム及び無線通信方法 - Google Patents

無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2018088344A1
WO2018088344A1 PCT/JP2017/039881 JP2017039881W WO2018088344A1 WO 2018088344 A1 WO2018088344 A1 WO 2018088344A1 JP 2017039881 W JP2017039881 W JP 2017039881W WO 2018088344 A1 WO2018088344 A1 WO 2018088344A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wireless
terminal device
unit
path
Prior art date
Application number
PCT/JP2017/039881
Other languages
English (en)
French (fr)
Inventor
宮本 健司
寺田 純
清水 達也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP17869432.9A priority Critical patent/EP3515026B1/en
Priority to US16/343,994 priority patent/US10659261B2/en
Priority to JP2018550183A priority patent/JP6571885B2/ja
Priority to CN201780069392.9A priority patent/CN109906589A/zh
Publication of WO2018088344A1 publication Critical patent/WO2018088344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to a wireless communication system and a wireless communication method.
  • This application claims priority based on Japanese Patent Application No. 2016-220513 for which it applied to Japan on November 11, 2016, and uses the content here.
  • BBU Base Band Unit
  • RRH Remote Radio Head
  • BBU and RRH are considered to be physically separated.
  • the BBU performs a function of MAC (Media Access Control) layer or higher and a coding function which is a part of the physical layer function.
  • a function division method in which the RRH performs functions of the physical layer other than the encoding function has been studied (for example, see Non-Patent Document 1). This function division method is called an SPP (Split-PHY Processing) method.
  • the method of demodulating a radio signal received at a base station or terminal device does not output the signal bit obtained by demodulation as a bit value of 0 or 1, but the probability that the signal bit is 0 or 1.
  • a soft decision demodulation method that outputs a ratio of real values called Likelihood (see Non-Patent Document 2, for example).
  • the output obtained by demodulation is called a log likelihood ratio or LLR (Log Likelihood Ratio).
  • LLR Log Likelihood Ratio
  • an area covered by one RRH is called a cell, and generally, the cover area overlaps between a plurality of adjacent cells. Therefore, when the terminal device is located near the cell edge (cell edge), a radio signal transmitted / received between the terminal device and a desired RRH and a radio signal transmitted / received between the RRH of the adjacent cell and the terminal device The phenomenon that the radio transmission speed is significantly reduced due to interference with signals becomes a problem.
  • CoMP Coordinatd Multi-Point transmission / reception
  • adjacent RRHs communicate with each other to terminal devices located near the cell edge.
  • the number of linked RRHs is two, but the number of RRHs may be two or more.
  • RRHs will be installed with high density, and a plurality of RRHs will always perform CoMP on a plurality of terminal devices regardless of whether or not the terminal devices are located at the cell edge. Improvements are also being considered.
  • an LPP obtained by each RRH is transmitted to the BBU after applying the SPP function division method, and obtained by each RRH in the BBU.
  • Techniques for synthesizing LLR are being studied. In this method, whether or not a terminal device that communicates with the RRH is a target of CoMP is notified to the RRH in advance by the MAC layer function of the BBU (see, for example, Non-Patent Document 4).
  • FIG. 5 is a diagram illustrating a system configuration example of a wireless communication system 1000 that performs uplink LLR combining signal transmission in a conventional SPP.
  • the wireless communication system 1000 includes a terminal device 91, a plurality of RRHs 92-1 to 92-2, and a BBU 93. Since the RRHs 92-1 and 92-2 have the same configuration, the RRH 92-1 will be described as an example.
  • the RRH 92-1 includes an RF (Radio Frequency) receiving unit 921-1, a channel estimation unit 922-1, and a demodulation unit 923-1.
  • the BBU 93 includes a signal separation unit 931-1, a signal separation unit 931-2, an LLR synthesis unit 932, a decoding unit 933, a decoding unit 934, a decoding unit 935, and a MAC layer function unit 936.
  • the RF receiving unit 921-1 receives a signal transmitted from the terminal device 91. Of the received signals, RF receiving section 921-1 outputs a reference signal to channel estimation section 922-1 and outputs a data signal to demodulation section 923-1.
  • the reference signal is a signal for extracting channel information of the wireless transmission path, and is a signal including a known signal between the terminal device and the RRH.
  • the data signal is a signal to be sent to the BBU and includes a signal bit sequence.
  • the channel estimation unit 922-1 estimates channel information of the wireless transmission path and measures reception quality based on the reference signal output from the RF reception unit 921-1.
  • Channel estimation section 922-1 outputs channel information estimation results and reception quality measurement results to demodulation section 923-1.
  • Demodulation section 923-1 performs equalization processing and soft decision demodulation on the received data signal using the channel information estimation result and reception quality measurement result output from channel estimation section 922-1 To obtain the LLR value (soft decision value).
  • Demodulation section 923-1 transmits the acquired LLR value (soft decision value) to BBU 93.
  • the signal demultiplexing units 931-1 and 931-2 of the BBU 93 change the LLR value of the signal transmitted from the terminal device 91 that is the target of CoMP to the LLR.
  • the data is output to the combining unit 932.
  • the signal separation unit 931-1 outputs the LLR value of the signal transmitted from the terminal device 91 that is not the target of CoMP to the decoding unit 933, and the signal separation unit 931-2 is the terminal device 91 that is not the target of CoMP.
  • the LLR value of the signal transmitted from is output to the decoding unit 934.
  • the CoMP presence / absence information is a flag for notifying whether or not the terminal device 91 belonging to each RRH 92 is a target of CoMP.
  • the flag value is represented by 0 or 1. If the flag value is 0, the terminal device 91 is not subject to CoMP. If the flag value is 1, the terminal device 91 is subject to CoMP. Represents that.
  • the LLR combining unit 932 combines the LLR values output from the signal separating units 931-1 and 931-2, and outputs the combined LLR value to the decoding unit 935.
  • the decoding unit 933 restores signal bit data (hard decision value) by performing decoding processing on the LLR value output from the signal separation unit 931-1.
  • the decoding unit 933 outputs the restored signal bit data to the MAC layer function unit 936.
  • the decoding unit 934 restores the signal bit data (hard decision value) by performing a decoding process on the LLR value output from the signal separation unit 931-2.
  • the decoding unit 934 outputs the restored signal bit data to the MAC layer function unit 936.
  • the decoding unit 935 restores the signal bit data (hard decision value) by performing decoding processing on the combined LLR value output from the LLR combining unit 932.
  • the decoding unit 935 outputs the restored signal bit data to the MAC layer function unit 936.
  • the MAC layer function unit 936 outputs the signal bit data output from the decoding unit 933, the decoding unit 934, and the decoding unit 935 to the upper layer. Further, the MAC layer function unit 936 determines whether or not the terminal device 91 that is a signal transmission source is a target of CoMP, based on the signal transmitted from the terminal device 91. Specifically, the MAC layer function unit 936 monitors the communication of each of the RRHs 92-1 to 92-2, and the received radio wave strength of the terminal device 91 belonging to the cells of the RRHs 92-1 and 92-2 is less than the threshold value. In this case, it is determined that the terminal device 91 is a target of CoMP. The MAC layer function unit 936 notifies the RRHs 92-1 and 92-2 and the signal demultiplexing units 931-1 and 931-2 of information indicating the presence / absence of a CoMP target.
  • a bit error of a radio signal is performed by inputting a more reliable LLR value to the decoding unit 935 and performing decoding using CoMP using LLR combining. And the wireless transmission characteristics can be improved.
  • LLR values soft decision values
  • the LLR value is a real value calculated for each information bit (1 bit), and it is necessary to perform quantization with several bits for each LLR value. Therefore, between RRH 92 and BBU 93, a transmission capacity that is the number of information bits that is the number of quantization bits is required.
  • the transmission capacity between the RRH 92 and the BBU 93 is 5 Gbps.
  • signals that are not subject to CoMP need not be transmitted as LLR values.
  • the signal transmission in the conventional SPP has a problem that the transmission capacity between the RRH 92 and the BBU 93 is unnecessarily increased because a signal that is not subject to CoMP is transmitted as an LLR value.
  • an object of the present invention is to provide a technique capable of reducing the transmission capacity between the RRH and the BBU.
  • One aspect of the present invention is a wireless communication system including a wireless device functioning as a base station and a signal processing device, wherein the wireless device is based on a wireless signal transmitted from a terminal device.
  • a channel estimation unit that estimates channel information of a wireless transmission path with a terminal device, a demodulation unit that performs soft decision demodulation on the radio signal based on the channel information estimated by the channel estimation unit,
  • a terminal device that is a transmission source of the radio signal, an output destination of the log likelihood ratio obtained by the soft decision demodulation, a first path through a decoding unit that decodes the log likelihood ratio
  • a wireless communication system comprising: a signal switching unit that switches to any one of the second paths not via the decoding unit; and a transmission unit that transmits the signal output from the first path or the second path to the signal processing device. Is Temu.
  • the signal switching unit is configured to obtain a logarithm obtained from the wireless signal transmitted from the terminal device when the terminal device that is the transmission source of the wireless signal is not a target for cooperation between base stations.
  • the output device of the likelihood ratio is switched to the first route, and the terminal device that is the transmission source of the wireless signal is a target for cooperation between base stations, it is obtained from the wireless signal transmitted from the terminal device.
  • the output destination of the log likelihood ratio may be switched to the second route.
  • the signal processing device includes a notification unit that determines whether a terminal device belonging to the wireless device is a target for inter-base station cooperation, and notifies the wireless device of a determination result
  • the signal switching unit may determine whether or not a terminal device that is a transmission source of the radio signal is a target for inter-base station cooperation based on the determination result notified from the notification unit.
  • One aspect of the present invention is a wireless communication method in a wireless communication system including a wireless device functioning as a base station and a signal processing device, wherein the wireless device is based on a wireless signal transmitted from a terminal device.
  • the transmission capacity between the RRH and the BBU can be reduced.
  • FIG. 1 is a configuration diagram illustrating a system configuration of a wireless communication system 100 according to a first embodiment. It is a block diagram showing the system configuration
  • FIG. 1 is a configuration diagram illustrating a system configuration of a wireless communication system 100 according to the first embodiment.
  • the wireless communication system 100 includes a terminal device 10, a plurality of RRHs (wireless devices) 20-1 to 20-2, and a BBU (signal processing device) 30.
  • RRH20-1 and 20-2 are described as RRH20 unless otherwise distinguished.
  • the RRH 20 and the BBU 30 function as a base station.
  • Each of the RRHs 20-1 to 20-2 and the BBU 30 are communicably connected by a wire (for example, an optical fiber or a coaxial line). Since the RRHs 20-1 and 20-2 have the same configuration, the RRH 20-1 will be described as an example.
  • the RRH 20 includes an RF reception unit 201-1, a channel estimation unit 202-1, a demodulation unit 203-1, a signal switching unit 204-1, a decoding unit 205-1 and a signal multiplexing unit (transmission unit) 206-.
  • the RF receiver 201-1 receives a signal (radio signal) transmitted from the terminal device 10.
  • the RF receiving unit 201-1 outputs a reference signal among the received signals to the channel estimation unit 202-1, and outputs a data signal to the demodulation unit 203-1.
  • the channel estimation unit 202-1 receives the reference signal output from the RF reception unit 201-1.
  • the channel estimation unit 202-1 performs estimation of channel information of the wireless transmission path and measurement of reception quality based on the input reference signal.
  • Channel estimation section 202-1 outputs channel information estimation results and reception quality measurement results to demodulation section 203-1.
  • the demodulator 203-1 receives the data signal output from the RF receiver 201-1 and the channel information estimation result and reception quality measurement result output from the channel estimation unit 202-1.
  • the demodulator 203-1 performs an equalization process and soft decision demodulation on the input data signal using the input channel information estimation result and the reception quality measurement result, thereby obtaining an LLR value (soft decision value). get.
  • Demodulation section 203-1 outputs the acquired LLR value (soft decision value) to signal switching section 204-1.
  • the signal switching unit 204-1 receives the CoMP presence / absence information notified from the BBU 30 and the LLR value output from the demodulation unit 203-1.
  • the signal switching unit 204-1 switches the output destination of the LLR value based on the input CoMP presence / absence information. Specifically, the signal switching unit 204-1 sends the output destination of the LLR value obtained from the signal transmitted from the terminal apparatus 10 that is not the target of CoMP to the decoding unit 205-1 (that is, decodes the log likelihood ratio).
  • the decoding unit 205-1 receives the LLR value output from the signal switching unit 204-1.
  • the decoding unit 205-1 restores the signal bit data (hard decision value) by performing a decoding process on the input LLR value.
  • Decoding section 205-1 outputs the restored signal bit data to signal multiplexing section 206-1.
  • the signal multiplexing unit 206-1 receives the LLR value output from the signal switching unit 204-1 and the signal bit data (hard decision value) output from the decoding unit 205-1.
  • the signal multiplexing unit 206-1 generates a multiplexed signal by multiplexing the input LLR value (soft decision value) and the signal bit data (hard decision value), and transmits the generated multiplexed signal to the BBU 30 To do.
  • the signal multiplexing unit 206-1 performs multiplexing including either an LLR value (soft decision value) or signal bit data (hard decision value).
  • the digitized signal is transmitted to the BBU 30.
  • the BBU 30 includes a hard / soft separation unit 301-1, a hard / soft separation unit 301-2, an LLR synthesis unit 302, a decoding unit 303, and a MAC layer function unit (notification unit) 304.
  • the hard / soft separation unit 301-1 and the hard / soft separation unit 301-2 receive the multiplexed signal transmitted from the RRH 20.
  • the hard / soft separation unit 301-1 and the hard / soft separation unit 301-2 separate the received multiplexed signal into signal bit data and an LLR value based on CoMP presence / absence information notified from the MAC layer function unit 304.
  • the hard / soft separation unit 301-1 and the hard / soft separation unit 301-2 output the signal bit data to the MAC layer function unit 304, and output the LLR value to the LLR synthesis unit 302.
  • the LLR synthesis unit 302 receives the LLR values output from the hard / soft separation unit 301-1 and the hard / soft separation unit 301-2.
  • the LLR synthesis unit 302 synthesizes the input LLR values and outputs the synthesized LLR value to the decoding unit 303.
  • the decoding unit 303 receives the combined LLR value output from the LLR combining unit 302 as an input.
  • the decoding unit 303 restores the signal bit data (hard decision value) by performing a decoding process on the input combined LLR value.
  • the decoding unit 303 outputs the restored signal bit data to the MAC layer function unit 304.
  • the MAC layer function unit 304 determines whether or not the terminal device 10 that is the signal transmission source is the target of CoMP, based on the signal transmitted in advance from the terminal device 10. An existing technique (for example, see Non-Patent Document 4 above) is used to determine whether the terminal device 10 is a target of CoMP.
  • the MAC layer function unit 304 obtains information indicating whether or not the terminal device 10 that is the signal transmission source is the target of CoMP, the RRH 20 to which the terminal device 10 that is the signal transmission source belongs, and the hard and soft separation unit 301- 1 and the hard / soft separation part 301-2 are notified in advance.
  • the RRH 20 acquires a notification indicating whether or not the terminal device 10 belonging to its cell is a target of CoMP from the BBU 30, and based on the acquired notification.
  • a signal transmitted from the terminal device 10 that is not the target of CoMP is transmitted to the BBU 30 as signal bit data instead of the LLR value. Therefore, LLR quantization is not necessary for a signal transmitted from a terminal apparatus 10 that is not the target of CoMP, and the transmission capacity between the RRH 20 and the BBU 30 can be reduced.
  • the number of terminal devices 10 may be plural.
  • the number of RRHs 20 may be three or more.
  • An existing interface may be used for signal conversion used for signal transmission between the RRH 20 and the BBU 30, or an original interface may be used.
  • processing for receiving a multicarrier signal such as OFDM (Orthogonal Frequency Division Multiplexing) may be performed on the received signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is a configuration diagram illustrating a system configuration of the wireless communication system 100a according to the second embodiment.
  • the wireless communication system 100a includes a terminal device 10a, a plurality of RRHs 20a-1 to 20a-2, and a BBU 30.
  • the terminal device 10a and the RRH 20a include a plurality of antennas, and perform MIMO (Multiple-Input Multiple-Output) transmission between the terminal device 10a and the RRH 20a.
  • MIMO Multiple-Input Multiple-Output
  • each RRH 20a includes a plurality of RF receiving units 201-1-1 to 201-1-n (n is an integer of 2 or more), and the demodulating unit 203-1 includes
  • the processing to be performed includes signal reception processing using a plurality of antennas. Note that the processes of the channel estimation unit 202-1, the signal switching unit 204-1, the decoding unit 205-1 and the signal multiplexing unit 206-1 are the same as those in the first embodiment.
  • the same effects as those of the first embodiment can be obtained. Further, according to the radio communication system 100a, it is possible to reduce the transmission capacity between the RRH 20a and the BBU 30 even in MIMO transmission.
  • the second embodiment may be modified in the same manner as the first embodiment.
  • All or part of the RRH 20, RRH 20a, and BBU 30 in the above-described embodiment may be realized by a computer.
  • a computer for example, by recording a program for realizing each component included in RRH and BBU on a computer-readable recording medium, and causing the computer system to read and execute the program recorded on the recording medium, RRH, BBU may be realized.
  • the “computer system” includes hardware such as an OS (Operating System) and peripheral devices.
  • “Computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD (Compact Disk) -ROM, or a hard disk built in a computer system. Refers to the device.
  • the “computer-readable recording medium” is a program that dynamically holds a program for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time.
  • this program may be for realizing some of the above-described components, and further, the above-described components can be realized in combination with a program already recorded in the computer system. Alternatively, it may be realized by using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
  • the present invention can be used for wireless communication, for example. According to the present invention, it is possible to reduce the transmission capacity between RRH and BBU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、基地局として機能する無線装置と信号処理装置とを備え、無線装置は、端末装置から送信された無線信号に基づいて、無線装置と端末装置との間における無線伝送路のチャネル情報を推定するチャネル推定部と、チャネル推定部により推定されたチャネル情報に基づいて、無線信号に対して軟判定復調を行う復調部と、無線信号の送信元である端末装置に応じて、軟判定復調により得られた対数尤度比の出力先を、対数尤度比を復号する復号部を介す第1経路と、復号部を介さない第2経路とのいずれかに切り替える信号切替部と、第1経路又は第2経路から出力される信号を信号処理装置に送信する送信部と、を備える。

Description

無線通信システム及び無線通信方法
 本発明は、無線通信システム及び無線通信方法に関する。
 本願は、2016年11月11日に日本へ出願された特願2016-220513号に基づき優先権を主張し、その内容をここに援用する。
 従来、無線通信システム、特に移動体通信システムにおいて、基地局設置の柔軟性を高めるため、基地局が有する機能をBBU(Base Band Unit)とRRH(Remote Radio Head)との2つの装置に分担させ、BBUとRRHとを物理的に離れた構成とすることが検討されている。BBUとRRHとにおける機能分割方式の一形態として、図3に示すように、MAC(Media Access Control)層以上の機能と物理層の機能の一部である符号化の機能とをBBUが行い、符号化機能以外の物理層の機能をRRHが行う機能分割方式が検討されている(例えば、非特許文献1参照)。この機能分割方式は、SPP(Split-PHY Processing)方式と呼ばれる。
 基地局や端末装置において受信した無線信号を復調する方式には、復調して得られた信号ビットを0又は1のビット値として出力するのではなく、信号ビットが0又は1である確からしさを示す尤度(Likelihood)と呼ばれる実数値の比として出力する軟判定復調方式がある(例えば、非特許文献2参照)。軟判定復調方式では、復調によって得られる出力は対数尤度比あるいはLLR(Log Likelihood Ratio)と呼ばれる。LLRの値は、一般に、正の大きい値であるほど信号ビットが1である可能性が高いことを示し、負の小さい値(絶対値が大きい値)であるほど信号ビットが0である可能性が高いことを示す。
 また、移動通信システムにおいて、1つのRRHがカバーするエリアをセルと呼び、一般的に、隣接する複数のセル間においてそのカバーエリアはオーバラップしている。そのため、端末装置がセル端(セルエッジ)付近に位置している場合、端末装置と所望のRRHとの間で送受信される無線信号と、隣接セルのRRHと端末装置との間で送受信される無線信号とが干渉して無線伝送速度が著しく低下する現象が問題となる。このような問題を解決する手段として、例えば図4に示すように隣接するRRH同士がセル端近傍に位置する端末装置に対して互いに連携して通信を行うCoMP(Coordinated Multi-Point transmission/reception)(基地局間連携)技術が検討されている(例えば、非特許文献3参照)。
 図4では、連携するRRHの数が2台であるが、RRHの数は2台以上であればよい。将来の移動通信システムにおいては、RRHを高密度に設置し、端末装置がセル端に位置するか否かに関わらず複数の端末装置に対して複数のRRHが常にCoMPを行うことでシステム容量を向上させることも検討されている。上りリンク(RRHからBBUへ向かう方向)におけるCoMP手法の1つとして、SPPの機能分割方式を適用した上で、各RRHで得られたLLRをBBUに送信し、BBUにおいて各RRHで得られたLLRを合成する手法が検討されている。この手法では、BBUのMAC層機能によって、RRHと通信を行う端末装置がCoMPの対象であるか否かがRRHに事前に通知される(例えば、非特許文献4参照)。
 図5は、従来のSPPにおける上りリンクLLR合成の信号伝送を行う無線通信システム1000のシステム構成例を示す図である。無線通信システム1000は、端末装置91、複数のRRH92-1~92-2及びBBU93を備える。RRH92-1及び92-2は同様の構成を備えるため、RRH92-1を例に説明する。
 RRH92-1は、RF(Radio Frequency)受信部921-1と、チャネル推定部922-1と、復調部923-1とを備える。BBU93は、信号分離部931-1と、信号分離部931-2と、LLR合成部932と、復号部933と、復号部934と、復号部935と、MAC層機能部936とを備える。
 RF受信部921-1は、端末装置91から送信された信号を受信する。RF受信部921-1は、受信した信号のうち、参照信号をチャネル推定部922-1へ出力し、データ信号を復調部923-1へ出力する。参照信号は、無線伝送路のチャネル情報を抽出するための信号であり、端末装置とRRHとの間において既知の信号を含む信号である。データ信号は、BBUへ送るべき信号であって信号ビットの系列を含む信号である。
 チャネル推定部922-1は、RF受信部921-1から出力された参照信号に基づいて、無線伝送路のチャネル情報の推定及び受信品質の測定を行う。チャネル推定部922-1は、チャネル情報の推定結果及び受信品質の測定結果を復調部923-1へ出力する。復調部923-1は、チャネル推定部922-1から出力されたチャネル情報の推定結果と受信品質の測定結果を用いて、受信されたデータ信号に対して等化処理及び軟判定復調を行うことによってLLR値(軟判定値)を取得する。復調部923-1は、取得したLLR値(軟判定値)をBBU93に送信する。
 BBU93の信号分離部931-1及び931-2は、MAC層機能部936から通知されたCoMPの有無の情報に基づいて、CoMPの対象である端末装置91から送信された信号のLLR値をLLR合成部932に出力する。一方、信号分離部931-1は、CoMPの対象ではない端末装置91から送信された信号のLLR値を復号部933に出力し、信号分離部931-2は、CoMPの対象ではない端末装置91から送信された信号のLLR値を復号部934に出力する。ここで、CoMPの有無の情報とは、各RRH92に属している端末装置91がCoMPの対象か否かを通知するフラグである。フラグの値は例えば0か1で表され、フラグの値が0であれば端末装置91がCoMPの対象ではないことを表し、フラグの値が1であれば端末装置91がCoMPの対象であることを表す。
 LLR合成部932は、信号分離部931-1及び931-2から出力されたLLR値を合成し、合成したLLR値を復号部935に出力する。
 復号部933は、信号分離部931-1から出力されたLLR値に対して復号処理を行うことで信号ビットデータ(硬判定値)を復元する。復号部933は、復元した信号ビットデータをMAC層機能部936に出力する。
 復号部934は、信号分離部931-2から出力されたLLR値に対して復号処理を行うことで信号ビットデータ(硬判定値)を復元する。復号部934は、復元した信号ビットデータをMAC層機能部936に出力する。
 復号部935は、LLR合成部932から出力された合成後のLLR値に対して復号処理を行うことで信号ビットデータ(硬判定値)を復元する。復号部935は、復元した信号ビットデータをMAC層機能部936に出力する。
 MAC層機能部936は、復号部933、復号部934及び復号部935から出力された信号ビットデータを上位層に出力する。また、MAC層機能部936は、端末装置91から送信された信号に基づいて、信号の送信元である端末装置91がCoMPの対象であるか否か判定する。具体的には、MAC層機能部936は、各RRH92-1~92-2の通信を監視し、RRH92-1及び92-2のセル内に属する端末装置91の受信電波強度が閾値未満である場合に、端末装置91をCoMPの対象であると判定する。MAC層機能部936は、CoMPの対象の有無を示す情報をRRH92-1及び92-2と、信号分離部931-1及び931-2とに通知する。
 上記のように、SPPの基地局機能分割方式では、LLR合成を用いたCoMPを用いて、より信頼性の高いLLR値を復号部935に入力して復号を行うことで、無線信号のビット誤りを低減し、無線伝送特性を改善することができる。
宮本健司、外3名、「将来無線アクセスに向けた基地局機能分割方式の提案」、信学技報、CS2015-15、pp. 33-38、2015年7月 大槻知明、「情報通信の基礎と動向[III] -誤り訂正符号-」、電子情報通信学会誌、Vol. 90、No. 7、pp. 549-555、2007年7月 田岡秀和、外5名、「LTE-AdvancedにおけるMIMOおよびセル間協調送受信技術」、NTT DOCOMOテクニカル・ジャーナル,Vol. 18, No. 2, pp. 22-30 齋藤昭裕、外5名、「基地局協調伝送システムの開発」、Panasonic Technical Journal, Vol. 58, No. 4, pp. 20-25, 2013年1月
 従来のSPPにおける信号伝送では、RRH92からBBU93に伝送される信号がCoMPの対象であるか否かに関わらず、RRH92からBBU93に伝送される信号は全てLLR値(軟判定値)となる。LLR値は、情報ビットのそれぞれ(1ビット)につき算出される実数値であり、LLR値1つにつき数ビットで量子化を行う必要がある。そのため、RRH92とBBU93との間では、情報ビットのビット数の量子化ビット数倍の伝送容量が必要となる。例えば、RRH92で1Gbps(Giga bits per second)の無線信号を受信し、LLR値の量子化ビット数が5ビットの場合、RRH92とBBU93との間の伝送容量は5Gbpsとなる。しかしながら、CoMPの対象ではない信号はLLR値として伝送する必要はない。このように、従来のSPPにおける信号伝送では、CoMPの対象でない信号をLLR値で伝送するために、RRH92とBBU93との間の伝送容量が不必要に増加してしまうという問題があった。
 上記事情に鑑み、本発明は、RRHとBBUとの間の伝送容量を削減することができる技術の提供を目的としている。
 本発明の一態様は、基地局として機能する無線装置と信号処理装置とを備える無線通信システムであって、前記無線装置は、端末装置から送信された無線信号に基づいて、前記無線装置と前記端末装置との間における無線伝送路のチャネル情報を推定するチャネル推定部と、前記チャネル推定部により推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調部と、前記無線信号の送信元である端末装置に応じて、前記軟判定復調により得られた対数尤度比の出力先を、前記対数尤度比を復号する復号部を介す第1経路と、前記復号部を介さない第2経路とのいずれかに切り替える信号切替部と、前記第1経路又は前記第2経路から出力される信号を前記信号処理装置に送信する送信部と、を備える無線通信システムである。
 上記の無線通信システムにおいて、前記信号切替部は、前記無線信号の送信元である端末装置が基地局間連携の対象ではない場合には、前記端末装置から送信された無線信号から得られた対数尤度比の出力先を前記第1経路に切り替え、前記無線信号の送信元である端末装置が基地局間連携の対象である場合には、前記端末装置から送信された無線信号から得られた対数尤度比の出力先を前記第2経路に切り替えてもよい。
 上記の無線通信システムにおいて、前記信号処理装置は、前記無線装置に帰属する端末装置が基地局間連携の対象であるか否か判定し、判定結果を前記無線装置に通知する通知部を備え、前記信号切替部は、前記通知部から通知された前記判定結果に基づいて、前記無線信号の送信元である端末装置が基地局間連携の対象であるか否か判定してもよい。
 本発明の一態様は、基地局として機能する無線装置と信号処理装置とを備える無線通信システムにおける無線通信方法であって、前記無線装置が、端末装置から送信された無線信号に基づいて、前記無線装置と前記端末装置との間における無線伝送路のチャネル情報を推定するチャネル推定ステップと、前記無線装置が、前記チャネル推定ステップにおいて推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調ステップと、前記無線装置が、前記無線信号の送信元である端末装置に応じて、前記軟判定復調により得られた対数尤度比の出力先を、前記対数尤度比を復号する復号部を介す第1経路と、前記復号部を介さない第2経路とのいずれかに切り替える信号切替ステップと、前記無線装置が、前記第1経路又は前記第2経路から出力される信号を前記信号処理装置に送信する送信ステップと、を有する無線通信方法である。
 本発明により、RRHとBBUとの間の伝送容量を削減することが可能となる。
第1の実施形態における無線通信システム100のシステム構成を表す構成図である。 第2の実施形態における無線通信システム100aのシステム構成を表す構成図である。 SPPの機能分割方式の一例を示す図である。 CoMP技術を用いたシステム構成を示す図である。 従来のSPPにおける上りリンクLLR合成の信号伝送を行う無線通信システムのシステム構成例を示す図である。
 以下、本発明の実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態における無線通信システム100のシステム構成を表す構成図である。無線通信システム100は、端末装置10、複数のRRH(無線装置)20-1~20-2及びBBU(信号処理装置)30を備える。なお、以下の説明では、RRH20-1~20-2を特に区別しない場合にはRRH20と記載する。RRH20及びBBU30は、基地局として機能する。各RRH20-1~20-2とBBU30とは、有線(例えば光ファイバ又は同軸線)にて通信可能に接続されている。RRH20-1及び20-2は同様の構成を備えるため、RRH20-1を例に説明する。
 RRH20は、RF受信部201-1と、チャネル推定部202-1と、復調部203-1と、信号切替部204-1と、復号部205-1と、信号多重部(送信部)206-1とを備える。
 RF受信部201-1は、端末装置10から送信された信号(無線信号)を受信する。RF受信部201-1は、受信した信号のうち、参照信号をチャネル推定部202-1へ出力し、データ信号を復調部203-1へ出力する。
 チャネル推定部202-1は、RF受信部201-1から出力された参照信号を入力とする。チャネル推定部202-1は、入力した参照信号に基づいて、無線伝送路のチャネル情報の推定及び受信品質の測定を行う。チャネル推定部202-1は、チャネル情報の推定結果及び受信品質の測定結果を復調部203-1へ出力する。
 復調部203-1は、RF受信部201-1から出力されたデータ信号と、チャネル推定部202-1から出力されたチャネル情報の推定結果及び受信品質の測定結果とを入力とする。復調部203-1は、入力したチャネル情報の推定結果及び受信品質の測定結果を用いて、入力したデータ信号に対して等化処理及び軟判定復調を行うことによってLLR値(軟判定値)を取得する。復調部203-1は、取得したLLR値(軟判定値)を信号切替部204-1に出力する。
 信号切替部204-1は、BBU30から通知されたCoMPの有無の情報と、復調部203-1から出力されたLLR値とを入力とする。信号切替部204-1は、入力したCoMPの有無の情報に基づいて、LLR値の出力先を切り替える。具体的には、信号切替部204-1は、CoMPの対象ではない端末装置10が送信した信号から得られたLLR値の出力先を復号部205-1に(すなわち、対数尤度比を復号する復号部を介す第1経路に)切り替え、CoMPの対象である端末装置10が送信した信号から得られたLLR値の出力先を信号多重部206-1に(すなわち、復号部を介さない第2経路に)切り替える。
 復号部205-1は、信号切替部204-1から出力されたLLR値を入力とする。復号部205-1は、入力したLLR値に対して復号処理を行うことで信号ビットデータ(硬判定値)を復元する。復号部205-1は、復元した信号ビットデータを信号多重部206-1に出力する。
 信号多重部206-1は、信号切替部204-1から出力されたLLR値と、復号部205-1から出力された信号ビットデータ(硬判定値)とを入力とする。信号多重部206-1は、入力したLLR値(軟判定値)と、信号ビットデータ(硬判定値)とを多重化することによって多重化信号を生成し、生成した多重化信号をBBU30に送信する。なお、図1に示すように、端末装置10の数が1台である場合、信号多重部206-1はLLR値(軟判定値)又は信号ビットデータ(硬判定値)のいずれかを含む多重化信号をBBU30に送信する。
 BBU30は、硬軟分離部301-1と、硬軟分離部301-2と、LLR合成部302と、復号部303と、MAC層機能部(通知部)304とを備える。
 硬軟分離部301-1及び硬軟分離部301-2は、RRH20から送信された多重化信号を受信する。硬軟分離部301-1及び硬軟分離部301-2は、MAC層機能部304から通知されたCoMPの有無の情報に基づいて、受信した多重化信号を信号ビットデータとLLR値とに分離する。硬軟分離部301-1及び硬軟分離部301-2は、信号ビットデータをMAC層機能部304に出力し、LLR値をLLR合成部302に出力する。
 LLR合成部302は、硬軟分離部301-1及び硬軟分離部301-2から出力されたLLR値を入力とする。LLR合成部302は、入力したLLR値を合成し、合成したLLR値を復号部303に出力する。
 復号部303は、LLR合成部302から出力された合成後のLLR値を入力とする。復号部303は、入力した合成後のLLR値に対して復号処理を行うことで信号ビットデータ(硬判定値)を復元する。復号部303は、復元した信号ビットデータをMAC層機能部304に出力する。
 MAC層機能部304は、端末装置10から事前に送信された信号に基づいて、信号の送信元の端末装置10がCoMPの対象であるか否かを判定する。端末装置10がCoMPの対象であるか否かの判定は、既存の技術(例えば、上記非特許文献4を参照)が用いられる。MAC層機能部304は、信号の送信元である端末装置10がCoMPの対象であるか否かを示す情報を、信号の送信元である端末装置10が帰属するRRH20と、硬軟分離部301-1及び硬軟分離部301-2とに事前に通知する。
 以上のように構成された無線通信システム100によれば、RRH20が、自身のセルに属する端末装置10がCoMPの対象であるか否かを示す通知をBBU30から取得し、取得した通知に基づいてCoMPの対象ではない端末装置10から送信された信号をLLR値ではなく信号ビットデータとしてBBU30に伝送する。そのため、CoMPの対象ではない端末装置10から送信された信号についてはLLRの量子化が必要なくなり、RRH20とBBU30との間の伝送容量を削減することが可能になる。
 <変形例>
 本実施形態において、端末装置10の数は複数台であってもよい。また、本実施形態において、RRH20の数は3台以上であってもよい。
 RRH20とBBU30との間の信号伝送に用いる信号変換には既存のインタフェースが用いられてもよいし、独自のインタフェースが用いられてもよい。また、各RRH20におけるRF受信の後に、受信信号に対してOFDM(Orthogonal Frequency Division Multiplexing)などのようなマルチキャリア信号の受信を行うための処理が行われてもよい。
 (第2の実施形態)
 図2は、第2の実施形態における無線通信システム100aのシステム構成を表す構成図である。無線通信システム100aは、端末装置10a、複数のRRH20a-1~20a-2及びBBU30を備える。
 第2の実施形態では、端末装置10a及びRRH20aが複数のアンテナを備え、端末装置10aとRRH20aとの間でMIMO(Multiple-Input Multiple-Output)伝送を行う。このように無線通信システム100aが構成される場合、各RRH20aは、複数のRF受信部201-1-1~201-1-n(nは2以上の整数)を備え、復調部203-1が行う処理には複数アンテナによる信号受信処理も含まれる。なお、チャネル推定部202-1、信号切替部204-1、復号部205-1及び信号多重部206-1の処理は、第1の実施形態と同様である。
 以上のように構成された無線通信システム100aによれば、第1の実施形態と同様の効果を得ることができる。
 また、無線通信システム100aによれば、MIMO伝送においても、RRH20aとBBU30との間の伝送容量を削減することが可能になる。
 <変形例>
 第2の実施形態は、第1の実施形態と同様に変形されてもよい。
 前述した実施形態におけるRRH20、RRH20a、BBU30の全て又は一部をコンピュータで実現するようにしてもよい。例えば、RRH、BBUが有する構成要素それぞれを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって、RRH、BBUを実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD(Compact Disc)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また、このプログラムは、前述した構成要素の一部を実現するためのものであってもよく、更に前述した構成要素をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、例えば、無線通信に利用可能である。本発明によれば、RRHとBBUとの間の伝送容量を削減することが可能となる。
10、10a、91…端末装置
20、20-1、20-2、20a、20a-1、20a-2、92-1、92-2…RRH
30、30a、93…BBU
201-1、201-2、201-1-1~201-1-n、201-2-1~201-2-n、921-1、921-2…RF受信部
202-1、202-2、922-1、922-2…チャネル推定部
203-1、203-2、923-1、923-2…復調部
204-1、204-2…信号切替部
205-1、205-2…復号部
206-1、206-2…信号多重部
301-1、301-2…硬軟分離部
302…LLR合成部
303…復号部
304…MAC層機能部
931-1、931-2…信号分離部
932…LLR合成部
933、934、935…復号部
936…MAC層機能部

Claims (4)

  1.  基地局として機能する無線装置と信号処理装置とを備える無線通信システムであって、
     前記無線装置は、
     端末装置から送信された無線信号に基づいて、前記無線装置と前記端末装置との間における無線伝送路のチャネル情報を推定するチャネル推定部と、
     前記チャネル推定部により推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調部と、
     前記無線信号の送信元である端末装置に応じて、前記軟判定復調により得られた対数尤度比の出力先を、前記対数尤度比を復号する復号部を介す第1経路と、前記復号部を介さない第2経路とのいずれかに切り替える信号切替部と、
     前記第1経路又は前記第2経路から出力される信号を前記信号処理装置に送信する送信部と、
     を備える無線通信システム。
  2.  前記信号切替部は、前記無線信号の送信元である端末装置が基地局間連携の対象ではない場合には、前記端末装置から送信された無線信号から得られた対数尤度比の出力先を前記第1経路に切り替え、前記無線信号の送信元である端末装置が基地局間連携の対象である場合には、前記端末装置から送信された無線信号から得られた対数尤度比の出力先を前記第2経路に切り替える、請求項1に記載の無線通信システム。
  3.  前記信号処理装置は、前記無線装置に帰属する端末装置が基地局間連携の対象であるか否か判定し、判定結果を前記無線装置に通知する通知部を備え、
     前記信号切替部は、前記通知部から通知された前記判定結果に基づいて、前記無線信号の送信元である端末装置が基地局間連携の対象であるか否か判定する、請求項2に記載の無線通信システム。
  4.  基地局として機能する無線装置と信号処理装置とを備える無線通信システムにおける無線通信方法であって、
     前記無線装置が、端末装置から送信された無線信号に基づいて、前記無線装置と前記端末装置との間における無線伝送路のチャネル情報を推定するチャネル推定ステップと、
     前記無線装置が、前記チャネル推定ステップにおいて推定された前記チャネル情報に基づいて、前記無線信号に対して軟判定復調を行う復調ステップと、
     前記無線装置が、前記無線信号の送信元である端末装置に応じて、前記軟判定復調により得られた対数尤度比の出力先を、前記対数尤度比を復号する復号部を介す第1経路と、前記復号部を介さない第2経路とのいずれかに切り替える信号切替ステップと、
     前記無線装置が、前記第1経路又は前記第2経路から出力される信号を前記信号処理装置に送信する送信ステップと、
     を有する無線通信方法。
PCT/JP2017/039881 2016-11-11 2017-11-06 無線通信システム及び無線通信方法 WO2018088344A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17869432.9A EP3515026B1 (en) 2016-11-11 2017-11-06 Remote radio head comprising hard-decision decoder
US16/343,994 US10659261B2 (en) 2016-11-11 2017-11-06 Radio communication system and radio communication method
JP2018550183A JP6571885B2 (ja) 2016-11-11 2017-11-06 無線通信システム及び無線通信方法
CN201780069392.9A CN109906589A (zh) 2016-11-11 2017-11-06 无线通信系统和无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220513 2016-11-11
JP2016-220513 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088344A1 true WO2018088344A1 (ja) 2018-05-17

Family

ID=62109905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039881 WO2018088344A1 (ja) 2016-11-11 2017-11-06 無線通信システム及び無線通信方法

Country Status (5)

Country Link
US (1) US10659261B2 (ja)
EP (1) EP3515026B1 (ja)
JP (1) JP6571885B2 (ja)
CN (1) CN109906589A (ja)
WO (1) WO2018088344A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213407A1 (ja) * 2019-04-16 2020-10-22 日本電信電話株式会社 通信システム、通信装置、及び端末装置
WO2021192692A1 (ja) * 2020-03-27 2021-09-30 株式会社Nttドコモ 通信装置および通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420234A (zh) * 2008-12-09 2009-04-29 山东大学 酉空时符号级Turbo码的加窗MAP译码方法及系统
KR20130129973A (ko) * 2010-11-10 2013-11-29 인터디지탈 패튼 홀딩스, 인크 이종 네트워크에서 연속적인 제거를 통해 간섭을 완화하는 방법 및 장치
US9414438B2 (en) * 2013-09-03 2016-08-09 Cellos Software Ltd System for converting between higher-layer packets and lower-layer packets, a method and a base station server thereof
US10244507B2 (en) * 2013-09-24 2019-03-26 Andrew Wireless Systems Gmbh Distributed processing in a centralized radio access network
CN105940700B (zh) * 2014-02-06 2019-07-09 日本电信电话株式会社 基站装置、无线通信系统、以及通信方法
WO2015119009A1 (ja) 2014-02-06 2015-08-13 日本電信電話株式会社 基地局装置、無線通信システム、および通信方法
CN104092519B (zh) * 2014-07-29 2017-07-18 重庆邮电大学 一种基于加权和速率最大化的多用户mimo协作传输方法
EP3192324B1 (en) * 2014-09-10 2020-04-22 Intel IP Corporation Modified architecture for cloud radio access networks and approach for compression of front-haul data
JP6228108B2 (ja) * 2014-12-18 2017-11-08 株式会社日立製作所 無線通信システム
JP6283450B2 (ja) * 2015-03-05 2018-02-21 日本電信電話株式会社 無線通信システム及び無線通信方法
EP3832973B1 (en) * 2015-03-11 2024-07-17 CommScope Technologies LLC Distributed radio access network with adaptive fronthaul
EP3425807B1 (en) * 2016-04-06 2020-10-21 Nippon Telegraph and Telephone Corporation Wireless communication system and communication method
CN108886834B (zh) * 2016-04-06 2022-05-17 日本电信电话株式会社 无线通信系统以及通信方法
US10873373B2 (en) * 2018-03-16 2020-12-22 Huawei Technologies Co., Ltd. Simplified detection for spatial modulation and space-time block coding with antenna selection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIYAMOTO, KENJI ET AL.: "Experimental evaluation of mobile fronthaul optical bandwidth and wireless transmission performance for base station architecture splitting LTE PHY layer functions in uplink), non-official translation", PROCEEDINGS OF THE 2016 IEICE GENERAL CONFERENCE, COMMUNICATION (2), 1 March 2016 (2016-03-01), pages 230, XP009514213 *
MIYAMOTO, KENJI ET AL.: "Uplink joint reception with LLR forwarding for optical transmission bandwidth reduction in mobile fronthaul", VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2015 IEEE 81ST, 14 May 2015 (2015-05-14), pages 1 - 5, XP033167607 *
SHIBATA, NAOTAKA ET AL.: "A study of uplink throughput in base station architecture splitting LTE physical layer functions", PROCEEDINGS OF THE 2015 SOCIETY CONFERENCE OF IEICE (1, 25 August 2015 (2015-08-25), pages 291, XP009514201 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213407A1 (ja) * 2019-04-16 2020-10-22 日本電信電話株式会社 通信システム、通信装置、及び端末装置
JP2020178176A (ja) * 2019-04-16 2020-10-29 日本電信電話株式会社 通信システム、通信装置、及び端末装置
JP7088121B2 (ja) 2019-04-16 2022-06-21 日本電信電話株式会社 通信システム、通信装置、及び端末装置
WO2021192692A1 (ja) * 2020-03-27 2021-09-30 株式会社Nttドコモ 通信装置および通信方法
JP2021158599A (ja) * 2020-03-27 2021-10-07 株式会社Nttドコモ 通信装置および通信方法
JP7434022B2 (ja) 2020-03-27 2024-02-20 株式会社Nttドコモ 通信装置および通信方法

Also Published As

Publication number Publication date
JPWO2018088344A1 (ja) 2019-03-22
US20190238372A1 (en) 2019-08-01
JP6571885B2 (ja) 2019-09-04
US10659261B2 (en) 2020-05-19
EP3515026B1 (en) 2021-03-03
CN109906589A (zh) 2019-06-18
EP3515026A4 (en) 2020-04-29
EP3515026A1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
KR100955446B1 (ko) 셀룰러 시스템에서의 적응 섹터화
JP5136557B2 (ja) 適応マルチアンテナを用いる移動体通信システム
Miyamoto et al. Split-PHY processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul
US20110228728A1 (en) Method and system for space code transmit diversity of pucch
JP6283450B2 (ja) 無線通信システム及び無線通信方法
US9948483B2 (en) Base station apparatus, wireless communication system, and communication method for uplink coordinated multi-point transmission and reception with intra-phy split base station architecture
JP6571885B2 (ja) 無線通信システム及び無線通信方法
EP3518429B1 (en) Radio device and radio communication method
US9860019B2 (en) Base station apparatus, wireless communication system, and communication method
KR20100099902A (ko) 다중 셀 전송 다이버시티 방법 및 이를 위한 장치
WO2018088348A1 (ja) 無線通信システム及び無線通信方法
JP2017092611A (ja) 無線通信システム、通信方法、無線受信装置、及び、プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017869432

Country of ref document: EP

Effective date: 20190418

NENP Non-entry into the national phase

Ref country code: DE