WO2017175724A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2017175724A1
WO2017175724A1 PCT/JP2017/013975 JP2017013975W WO2017175724A1 WO 2017175724 A1 WO2017175724 A1 WO 2017175724A1 JP 2017013975 W JP2017013975 W JP 2017013975W WO 2017175724 A1 WO2017175724 A1 WO 2017175724A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat exchanger
reservoir
refrigerant
phase refrigerant
Prior art date
Application number
PCT/JP2017/013975
Other languages
English (en)
French (fr)
Inventor
遼平 杉村
川久保 昌章
加藤 大輝
三枝 弘
伊藤 哲也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016234961A external-priority patent/JP6631489B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/091,138 priority Critical patent/US20190128577A1/en
Publication of WO2017175724A1 publication Critical patent/WO2017175724A1/ja
Priority to US17/098,487 priority patent/US11656014B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • This disclosure relates to a heat exchanger.
  • Patent Document 1 Conventionally, as a refrigeration cycle apparatus using such a heat exchanger, for example, there is one described in Patent Document 1 below.
  • the refrigeration cycle apparatus described in Patent Document 1 includes a gas-liquid separator that separates a refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, a refrigerant circuit in which the refrigerant circulates, a first-mode refrigerant circuit, and a second-mode refrigerant circuit. And switching means for switching to one of the refrigerant circuit.
  • the gas-liquid separator separates the refrigerant flowing out of the outdoor heat exchanger into a gas-phase refrigerant and a liquid-phase refrigerant, causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet, and causes the liquid-phase refrigerant to be liquefied. It becomes the structure which can be made to flow out from a phase refrigerant exit.
  • the refrigerant circuit in the first mode is a refrigerant circuit that causes the liquid-phase refrigerant to flow out from the liquid-phase refrigerant outlet of the gas-liquid separator, flow into the second decompression means and the evaporator, and further sucked into the compressor.
  • the refrigerant circuit in the second mode is a refrigerant circuit that causes the gas-phase refrigerant to flow out from the gas-phase refrigerant outlet of the gas-liquid separator and to be sucked into the compressor.
  • the refrigerant is introduced from below.
  • This disclosure is intended to supply a heat exchanger that can function as a liquid reservoir by suppressing liquid level disturbance of the liquid reservoir.
  • the present disclosure is a heat exchanger that constitutes a refrigeration cycle, in which a heat exchange part (34) that exchanges heat between refrigerant passing through the inside and air, and a gas-liquid two-phase refrigerant that has flowed out of the heat exchange part are gasified.
  • a liquid reservoir (36, 36A, 36B, 36C, 36D, 36E, 36F, 36G) that separates gas-liquid into a phase-phase refrigerant and a liquid-phase refrigerant and stores the liquid-phase refrigerant, and a gas-liquid two that flows out from the heat exchange unit.
  • the inflow channel is connected so as to communicate with an inflow port (81a) provided above the liquid level of the liquid-phase refrigerant stored in the reservoir, and the gas-phase outflow channel is
  • the liquid phase outflow passage is connected to a gas phase outlet (81b) provided above the liquid level of the liquid phase refrigerant stored in the liquid reservoir, and the liquid phase outflow channel is stored in the liquid reservoir. It connects so that it may communicate with the liquid phase outflow port (81c) provided below the liquid level of the obtained liquid phase refrigerant
  • the gas phase refrigerant since the refrigerant flows from above the liquid level, the gas phase refrigerant does not flow into the liquid phase refrigerant stored in the reservoir, and the liquid level can be prevented from being disturbed. it can.
  • the present disclosure has a gas phase outflow channel and a liquid phase outflow channel, and can function as a receiver and an accumulator.
  • the inflow port is provided above when functioning as a receiver, the gas-liquid two-phase refrigerant flows in from above, and it is necessary to solve further problems caused by this.
  • the liquid reservoir has a partition (82, 82B, 82C) between the inlet and the gas phase outlet.
  • the refrigerant flowing in from the inlet hits the partition part and flows downward before flowing out from the gas phase outlet. Therefore, it can suppress that a liquid phase refrigerant flows out from a gaseous-phase outflow port.
  • a buffer unit (83, 83B, 83C) is provided between the inlet and the liquid level of the liquid refrigerant.
  • the inflowing refrigerant is a substantially liquid phase refrigerant, it goes to the liquid surface after hitting the buffer. Therefore, the liquid level can be prevented from being disturbed without the refrigerant directly hitting the liquid level of the liquid-phase refrigerant stored inside.
  • the inflow channel does not pass through the center (815, 812Ga) of the reservoir (36D, 36E, 36F, 36G). It is also preferable to be provided so as to reach the inner wall surface (816) of the liquid reservoir.
  • the inflowing refrigerant is a substantially liquid phase refrigerant
  • the refrigerant reaches the liquid level after hitting the inner wall surface of the reservoir. Therefore, the liquid level can be prevented from being disturbed without the refrigerant directly hitting the liquid level of the liquid-phase refrigerant stored inside.
  • FIG. 1 is a figure for explaining an example of the refrigerating cycle to which the heat exchanger concerning each embodiment is applied.
  • FIG. 2 is a diagram for explaining a case where the refrigeration cycle shown in FIG. 1 is air-cooled.
  • FIG. 3 is a diagram for explaining a case where the refrigeration cycle shown in FIG. 1 is operated for heating.
  • FIG. 4 is a diagram for explaining the heat exchanger shown in FIG. 1.
  • FIG. 5 is a diagram schematically showing the heat exchanger according to the first embodiment of the present invention.
  • FIG. 6 is a view for explaining the liquid level inside the liquid reservoir.
  • FIG. 7 is a view for explaining the inside of the liquid reservoir.
  • FIG. 8 is a view for explaining the inside of the liquid reservoir.
  • FIG. 9 is a view for explaining a liquid reservoir according to the second embodiment.
  • FIG. 10 is a view showing a cross section taken along the line XX of FIG.
  • FIG. 11 is a view for explaining a liquid reservoir according to the third embodiment.
  • FIG. 12 is a view for explaining a liquid reservoir according to the third embodiment.
  • FIG. 13 is a view for explaining a liquid reservoir according to a modification of the third embodiment.
  • FIG. 14 is a view for explaining a liquid reservoir according to the fourth embodiment.
  • FIG. 15 is a view for explaining a liquid reservoir according to the fifth embodiment.
  • FIG. 16 is a view for explaining a liquid reservoir according to a modification of the fifth embodiment.
  • FIG. 17 is a view for explaining a liquid reservoir according to a modification of the fifth embodiment.
  • FIG. 18 is a view for explaining a liquid reservoir according to a modification of the second embodiment.
  • the integrated valve device 6 is used in a vehicle air conditioner 2 that is mounted on a vehicle and performs air conditioning in the vehicle interior.
  • the vehicle air conditioner 2 includes a refrigeration cycle device 3, a water cycle device 4, and an air conditioning unit 5.
  • the air conditioning unit 5 is a unit for blowing hot air into the passenger compartment or blowing cold air.
  • the refrigeration cycle apparatus 3 and the water cycle apparatus 4 are configured as a heat pump unit for adjusting the temperature of the air blown out from the air conditioning unit 5.
  • the refrigeration cycle device 3 and the integrated valve device 6 will be described.
  • the refrigeration cycle apparatus 3 includes a refrigerant flow path 30, a compressor 31, a condenser 32, a first heat exchanger 34, a second heat exchanger 35, a liquid reservoir 36, an expansion valve 37, and an evaporator 38. And an integrated valve device 6.
  • the first heat exchanger 34, the second heat exchanger 35, and the liquid reservoir 36 correspond to the heat exchanger of the present invention.
  • the integrated valve device 6 includes a fixed throttle 61, a first valve 62, a second valve 64, and a third valve 63.
  • the water cycle device 4 includes a water flow path 40, a water pump 41, a water side heat exchanger 42, and a heater core 43.
  • the air conditioning unit 5 includes a casing 51, an air mix door 52, a blower fan 53, and an inside / outside air switching door 54.
  • the refrigerant flow path 30 connects the compressor 31, the condenser 32, the first heat exchanger 34, the second heat exchanger 35, the liquid reservoir 36, the expansion valve 37, and the evaporator 38. It is a flow path which lets a refrigerant pass.
  • the refrigerant for example, an HFC refrigerant or an HFO refrigerant can be used. Oil for lubricating the compressor 31 is mixed in the refrigerant.
  • the compressor 31 is an electric compressor and has a suction port 311 and a discharge port 312.
  • the compressor 31 sucks and compresses the refrigerant from the suction port 311.
  • the compressor 31 discharges the refrigerant that has been overheated by being compressed from the discharge port 312.
  • the refrigerant discharged from the discharge port 312 flows to the capacitor 32.
  • the condenser 32 is a well-known heat exchanger and has an inflow port 321 and an outflow port 322.
  • the condenser 32 is configured to exchange heat with the water-side heat exchanger 42. Since the condenser 32 and the water-side heat exchanger 42 are configured to exchange heat with each other, they constitute a water-refrigerant heat exchanger.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 31 flows into the condenser 32 from the inflow port 321.
  • the refrigerant flowing in exchanges heat with water flowing through the water-side heat exchanger 42 and flows out from the outlet 322 in a state where the temperature is lowered.
  • the refrigerant flowing out from the outflow port 322 flows into the fixed throttle 61 and the first valve 62 constituting the integrated valve device 6.
  • the refrigerant When the first valve 62 is closed, the refrigerant is depressurized through the fixed throttle 61 and flows into the first heat exchanger 34 as a low-pressure refrigerant. On the other hand, when the first valve 62 is opened, the refrigerant flows into the first heat exchanger 34 as a high-pressure refrigerant without being decompressed.
  • the first heat exchanger 34 is an outdoor heat exchanger disposed outside the passenger compartment, and is configured to exchange heat with the outside air.
  • the refrigerant that has flowed into the first heat exchanger 34 exchanges heat with the outside air and flows into the liquid reservoir 36.
  • the liquid reservoir 36 separates the gas-phase refrigerant and the liquid-phase refrigerant and stores the liquid-phase refrigerant.
  • the separated gas phase refrigerant flows into the third valve 63.
  • the gas-phase refrigerant flowing into the third valve 63 flows toward the compressor 31 when the third valve 63 is opened.
  • the separated liquid-phase refrigerant is stored in the liquid reservoir 36 and flows out to the second heat exchanger 35.
  • the second heat exchanger 35 is an outdoor heat exchanger disposed outside the passenger compartment, and is configured to exchange heat with the outside air.
  • the second heat exchanger 35 further enhances the heat exchange efficiency of the refrigerant by cooperating with the first heat exchanger 34 by exchanging heat between the inflowing liquid-phase refrigerant and the outside air.
  • the refrigerant that has flowed out of the second heat exchanger 35 flows into the second valve 64.
  • the second valve 64 is configured as a three-way valve that selectively allows the inflowing refrigerant to flow toward the compressor 31 side or the expansion valve 37 side.
  • the expansion valve 37 decompresses and discharges the inflowing refrigerant.
  • the refrigerant discharged from the expansion valve 37 flows toward the evaporator 38.
  • the expansion valve 37 is a temperature-sensitive mechanical expansion valve that decompresses and expands the refrigerant flowing into the evaporator 38 so that the degree of superheat of the refrigerant discharged from the evaporator 38 falls within a predetermined range.
  • the evaporator 38 has an inflow port 381 and an outflow port 382.
  • the refrigerant flowing toward the evaporator 38 flows into the evaporator 38 from the inlet 381. Since the evaporator 38 is disposed in the casing 51, it exchanges heat with the air flowing in the casing 51.
  • the refrigerant flowing in the evaporator 38 exchanges heat with the air flowing in the casing 51 and flows out from the outlet 382 toward the compressor 31.
  • the water flow path 40 is a flow path that connects the water pump 41, the water-side heat exchanger 42, and the heater core 43 and allows water to pass therethrough.
  • the water pump 41 has a suction port 411 and a discharge port 412. The water pump 41 sucks water from the suction port 411 and discharges it from the discharge port 412. By driving the water pump 41, a water flow can be formed in the water flow path 40.
  • the water-side heat exchanger 42 and the condenser 32 constitute a water-refrigerant heat exchanger.
  • the water side heat exchanger 42 has an inflow port 421 and an outflow port 422.
  • the water that flows into the water-side heat exchanger 42 from the inlet 421 exchanges heat with the refrigerant flowing through the condenser 32 and flows out from the outlet 422. Since the refrigerant flowing through the condenser 32 is a high-temperature and high-pressure refrigerant, the water flowing through the water-side heat exchanger 42 is heated and flows toward the heater core 43.
  • the heater core 43 is disposed in the casing 51 of the air conditioning unit 5.
  • the heater core 43 is for exchanging heat with the air flowing in the casing 51.
  • the heater core 43 has an inflow port 431 and an outflow port 432. Water heated through the water-side heat exchanger 42 flows into the inflow port 431. The water flowing into the heater core 43 exchanges heat with the air flowing through the casing 51. The water that has flowed through the heater core 43 decreases in temperature and flows out from the outlet 432 toward the water pump 41.
  • the casing 51 forms a flow path for the conditioned air flowing into the passenger compartment, and the inside / outside air switching door 54, the blower fan 53, the evaporator 38, the air mix door 52, and the heater core 43 are formed in the interior from the upstream side. , Is arranged.
  • the inside / outside air switching door 54 is a door for switching whether the air flowing in the casing 51 is taken from outside the vehicle compartment or circulated in the vehicle interior.
  • the blower fan 53 is for forming an air flow in the casing 51 and sending conditioned air into the passenger compartment.
  • the air mix door 52 is a door for switching whether or not the air flowing in the casing 51 passes through the heater core 43.
  • the vehicle air conditioner 2 opens and closes each valve of the integrated valve device 6 to adjust the refrigerant flowing through the refrigeration cycle device 3, drives the water pump 41 to adjust the water flowing through the water cycle device 4, and the blower fan 53. Is a device that cools and heats the passenger compartment by adjusting the air flowing through the air conditioning unit 5.
  • FIG. 2 the operation when the vehicle air conditioner 2 performs a cooling operation will be described.
  • the flow of the refrigerant is indicated by FLc.
  • the water pump 41 is not driven, so that no water flows in the water cycle device 4. Therefore, the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 31 flows toward the integrated valve device 6 as it is.
  • the first valve 62 is in an open state. Therefore, the refrigerant flowing from the condenser 32 flows toward the first heat exchanger 34 without being reduced in pressure.
  • the high-temperature and high-pressure gas-phase refrigerant flowing into the first heat exchanger 34 is heat-exchanged with the outside air to lower the temperature, cooled, and flows out into the liquid storage 36 as a gas-liquid two-phase refrigerant.
  • the liquid reservoir 36 mainly functions as a receiver that causes the liquid phase refrigerant to flow out. Since the third valve 63 is closed, the liquid refrigerant flows out from the liquid reservoir 36 to the second heat exchanger 35.
  • the second heat exchanger 35 functions as a supercooler.
  • the refrigerant flowing into the second heat exchanger 35 is further cooled by heat exchange with the outside air.
  • the function of the refrigeration cycle apparatus 3 as a condenser is performed by the first heat exchanger 34 and the second heat exchanger 35.
  • the liquid refrigerant that has flowed out of the second heat exchanger 35 flows into the second valve 64.
  • the second valve 64 is switched so that the flowing refrigerant flows only toward the expansion valve 37.
  • the refrigerant decompressed by the expansion valve 37 flows into the evaporator 38.
  • the blower fan 53 is driven, and the air mix door 52 is positioned so as to close the heater core 43 side. Therefore, the air flowing in the casing 51 is cooled by exchanging heat with a low-temperature refrigerant in the evaporator 38. The cooled air flows through the casing 51 and is supplied into the passenger compartment.
  • the flow of the refrigerant is indicated by FLh.
  • the water pump 41 is driven, so that a water flow is generated in the water cycle device 4. Therefore, the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 31 is cooled by exchanging heat with water flowing in the water-side heat exchanger 42 in the condenser 32 and flows toward the integrated valve device 6.
  • the first valve 62 is in a closed state. Therefore, the refrigerant flowing from the condenser 32 is depressurized and flows toward the first heat exchanger 34.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the first heat exchanger 34 evaporates by exchanging heat with the outside air and flows out to the liquid storage 36.
  • the liquid reservoir 36 functions mainly as an accumulator that causes the gas-phase refrigerant to flow out during heating operation. Since the third valve 63 is open, the gas-phase refrigerant flows out toward the compressor 31.
  • the refrigerant flowing in is separated into gas and liquid, and the liquid phase refrigerant is stored.
  • the liquid phase refrigerant flows out to the second heat exchanger 35 side. Since the second valve 64 opens a flow path toward the suction port 311, the liquid refrigerant and oil gradually return to the compressor 31.
  • the blower fan 53 is driven, and the air mix door 52 is positioned so as to open the heater core 43 side. Therefore, the air flowing in the casing 51 is heated by exchanging heat with high-temperature water in the heater core 43. The heated air flows through the casing 51 and is supplied into the passenger compartment.
  • the integrated valve device 6 forms the fixed throttle 61, the first valve 62, the second valve 64, and the third valve 63 as one body, and can be accommodated in the liquid reservoir 36. It is configured as follows.
  • the insertion end 90 is inserted as far as possible.
  • a fourth outlet 74 is provided so as to extend downward from the insertion end 90. Since the first heat exchanger 34 and the second heat exchanger 35 are arranged on one side of the integrated valve device 6, an outlet that exchanges refrigerant with the first heat exchanger 34 and the second heat exchanger 35, and The inflow port is preferably arranged on the first heat exchanger 34 and the second heat exchanger 35 side. From this point of view, the first outlet 76 that allows the refrigerant to flow out to the first heat exchanger 34 is disposed above the first heat exchanger 34 side.
  • the second inlet 75 into which the refrigerant flows from the second heat exchanger 35 is disposed on the second heat exchanger 35 side and below the first outlet 76.
  • the first inflow port 71, the second outflow port 72, and the third outflow port 73 are provided on the side opposite to the side surface facing the first heat exchanger 34 and the second heat exchanger 35.
  • the inflow channel 12, the gas phase outflow channel 13, and the liquid phase outflow channel 14 will be described subsequently.
  • the heat exchanger 300 according to the first embodiment of the present invention will be described with reference to FIG.
  • the heat exchanger 300 described with reference to FIG. 5 is a simplified description of the first heat exchanger 34, the second heat exchanger 35, and the liquid reservoir 36 described with reference to FIGS. Therefore, the portions other than those necessary for convenience of explanation are omitted.
  • the heat exchanger 300 includes a first heat exchanger 34 that is an upstream heat exchanger, a second heat exchanger 35 that is a downstream heat exchanger, and a liquid reservoir 36.
  • the first heat exchanger 34 has an upstream core 342 and header tanks 341 and 343. In the present embodiment, an example having one upstream core 342 is shown, but two or more cores may be used.
  • the upstream core 342 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes.
  • a header tank 341 is attached to the upstream end of the upstream core 342.
  • a header tank 343 is attached to the downstream end of the upstream core 342.
  • the inflow channel 11 is provided in the header tank 341.
  • the header tank 343 is provided with the inflow channel 12.
  • the refrigerant flowing in from the inflow channel 11 flows into the upstream core 342 from the header tank 341.
  • the refrigerant that has flowed through the upstream core 342 flows into the header tank 343.
  • the refrigerant flowing into the header tank 343 flows out to the inflow channel 12.
  • the inflow channel 12 is connected to the liquid reservoir 36.
  • the refrigerant that has flowed out into the inflow channel 12 flows into the main body 81 of the liquid reservoir 36.
  • the liquid reservoir 36 has a main body 81, an inflow channel 12, a liquid phase outflow channel 14, and a gas phase outflow channel 13.
  • the main body 81 is a part that separates the gas-liquid two-phase refrigerant flowing from the inflow channel 12 into a liquid-phase refrigerant and a gas-phase refrigerant and accumulates the liquid-phase refrigerant.
  • the inflow channel 12, the liquid phase outflow channel 14, and the gas phase outflow channel 13 are connected to the main body 81.
  • the inflow channel 12 is a channel that connects the first heat exchanger 34 and the liquid reservoir 36.
  • the inflow channel 12 is connected to an inflow port 81 a provided in the main body 81.
  • the liquid phase outflow channel 14 is a channel that connects the liquid reservoir 36 and the second heat exchanger 35.
  • the liquid phase outflow channel 14 is connected to a liquid phase outflow port 81 c provided in the main body portion 81.
  • the liquid phase refrigerant flowing out from the liquid phase outflow channel 14 flows into the second heat exchanger 35.
  • the gas-phase outflow passage 13 is a passage through which the gas-phase refrigerant flows out from the liquid reservoir 36.
  • the gas phase outflow channel 13 is connected to a gas phase outlet 81 b provided in the main body 81.
  • the second heat exchanger 35 includes a header tank 351, a downstream core 352, and a header tank 353.
  • a liquid phase outflow passage 14 is connected to the header tank 351.
  • the header tank 351 is provided at the upstream end of the downstream core 352.
  • a header tank 353 is provided at the downstream end of the downstream core 352.
  • the outflow passage 15 is connected to the header tank 353.
  • Liquid phase refrigerant flows from the header tank 351 into the downstream core 352.
  • the downstream core 352 is a part that exchanges heat between the refrigerant flowing inside and the air flowing outside, and includes a tube through which the refrigerant passes and fins provided between the tubes. Therefore, the liquid-phase refrigerant that has flowed into the downstream core 352 goes to the header tank 353 while being supercooled.
  • the outflow passage 15 is connected to an expansion valve that constitutes the refrigeration cycle apparatus, and an evaporator is connected ahead of the expansion valve.
  • the header tank 341 and the header tank 353 are formed by partitioning an integrally formed tank by a partition portion 356.
  • the header tank 343 and the header tank 351 are formed by partitioning an integrally formed tank by a partition portion 356.
  • the liquid phase outflow channel 14 is connected to the lower side with respect to the liquid reservoir 36, and the inflow channel 12 is connected to the upper side of the liquid phase outflow channel 14.
  • the inflow channel 12 is connected to a position higher than half in the longitudinal direction of the liquid reservoir 36.
  • the height of the liquid reservoir 36 is the height up to the lower end 90 of the fourth outlet 74 in FIG.
  • the height of the liquid reservoir 36 is defined as the maximum height at which the liquid refrigerant can be substantially stored.
  • the height of the liquid storage 36 is set by accumulating “aging leakage”, “load fluctuation absorption”, “margin” and the like.
  • “Aging leakage” is the amount of refrigerant that leaks from each part according to the number of years of use when the heat exchanger 2 is used in a refrigeration cycle, and anticipates that amount.
  • “Load fluctuation absorption” is intended to allow for fluctuations in the amount of liquid-phase refrigerant that flows in when operating the refrigeration cycle. Since “aging leak” and “load fluctuation absorption” are the liquid level height required for the design of the liquid reservoir 36, the inflow channel 12 is preferably provided above this height.
  • a partition part 82 and a buffer part 83 are provided in the main body part 81 of the liquid reservoir 36.
  • the partition portion 82 is a cylindrical portion that extends downward from the gas phase outflow passage 13.
  • the buffer portion 83 is connected to the lower end of the partition portion 82 and is provided so as to gradually increase in diameter from the lower end of the partition portion 82.
  • the refrigerant flowing from the inflow channel 12 is a substantially liquid phase refrigerant
  • the refrigerant reaches the liquid level after hitting the buffer 83. Therefore, the liquid level can be prevented from being disturbed without the refrigerant directly hitting the liquid level of the liquid-phase refrigerant stored inside.
  • a main liquid reservoir space 811A and a sub liquid reservoir space 812A are formed in the main body 81A of the liquid reservoir 36A.
  • a partition wall 814A that partitions the main liquid reservoir space 811A and the secondary liquid reservoir space 812A is provided up to a height facing the inflow channel 12, and a communication path 813A is provided above the partition wall 814A.
  • the partition wall 814A does not necessarily have to be provided up to a height facing the inflow channel 12, and may be provided to a lower position.
  • a liquid reservoir 36B according to the third embodiment shown in FIG. 11 is provided with a partition part 82B and a buffer part 83B in the main body part 81.
  • the partition portion 82B is a cylindrical portion that extends downward from the gas-phase outflow passage 13.
  • the buffer part 83B is connected to the lower end of the partition part 82B, and is configured as a disk-shaped member.
  • the disc-shaped buffer portion 83 ⁇ / b> B is configured by a disc member 831.
  • the disc member 831 is provided with an outflow hole 84B connected to the gas phase outflow channel 13.
  • four cutout portions 832 are provided.
  • the buffer part 83Ba may be configured by a disk member 831a.
  • the disk member 831a has four drop holes 833 around the outflow hole 84B. By doing so, it is possible to stop the swirling flow of the gas-liquid two-phase refrigerant flowing in from the inflow channel 12 while suppressing the liquid-phase separated gas-liquid separated from directly hitting the liquid surface. A gas-phase refrigerant can be sent out to the outflow channel 13.
  • a liquid reservoir 36C according to the fourth embodiment shown in FIG. 14 is provided with a partition part 82C and a buffer part 83C in the main body part 81.
  • the partition portion 82C is a cylindrical portion extending downward from the gas phase outflow passage 13.
  • the buffer portion 83 ⁇ / b> C is a plate-like member that is provided below the partition portion 82 ⁇ / b> C and extends from the inner wall of the main body portion 81.
  • FIG. 15 is a cross-sectional view in a cross section orthogonal to an axis passing through the center 815, which is the central axis in the longitudinal direction of the liquid reservoir 36D according to the fifth embodiment.
  • the liquid reservoir 36D devise the mounting position and mounting angle of the inflow channel 12D with respect to the main body 81, and the liquid level is disturbed by vigorously hitting the liquid phase refrigerant flowing into the stored liquid phase refrigerant. It is for suppressing this.
  • the center line 121D of the inflow channel 12D is a line that substantially divides the width of the inflow channel 12D in the flow direction of the refrigerant in the cross section shown in FIG.
  • the inflow channel 12D is a liquid-phase refrigerant that has been stored in the reservoir 36D after the gas-liquid two-phase refrigerant flowing from the inlet 81aD through the inflow channel 12D collides with the inner wall surface 816 of the reservoir 36D. It is provided to fall.
  • the distance Ld from the inlet 81aD to the inner wall surface portion 816aD of the reservoir 36D facing the inlet 81aD is larger than the distance d between the farthest portions of the inner wall surface 816 of the reservoir 36D. It is provided to be shorter.
  • the center 815 is the center of the circular cross section.
  • the distance d between the farthest portions on the inner wall surface 816 of the liquid reservoir 36D is the diameter of the inner wall surface 816. Therefore, the inner wall surface 816 of the reservoir 36D has a substantially circular cross section, and the distance Ld from the inlet 81aD to the inner wall 816aD of the reservoir 36D that faces the inlet 81aD is equal to the distance Ld of the reservoir 36D.
  • the inner wall surface 816 is provided to be shorter than the diameter d.
  • FIG. 16 shows a liquid reservoir 36E according to a modification of the fifth embodiment.
  • the inflow port 81aE moves upward in the drawing from the inflow port 81aD shown in FIG. 15, and the position facing the center 815 of the main body 81 when viewed only from the position of the inflow port 81aE. Is provided.
  • the center line 121E of the inflow channel 12E is extended by changing the angle of the inflow channel 12E, the inflow channel 12E is provided to the main body portion 81 so as not to pass through the center 815 of the liquid reservoir 36E. ing.
  • the inflow channel 12E is a liquid-phase refrigerant that has been stored in the reservoir 36E after the gas-liquid two-phase refrigerant flowing from the inlet 81aE through the inflow channel 12E collides with the inner wall surface 816 of the reservoir 36E. It is provided to fall.
  • the distance Le from the inflow port 81aE to the inner wall surface portion 816aE of the liquid reservoir 36E facing the inflow port 81aE is larger than the distance d between the farthest portions of the inner wall surface 816 of the liquid reservoir 36E. It is provided to be shorter.
  • the center 815 is the center of the circular cross section.
  • the distance d between the farthest portions on the inner wall surface 816 of the liquid reservoir 36E is the diameter of the inner wall surface 816.
  • the inner wall surface 816 of the reservoir 36E has a substantially circular cross section, and the distance Le from the inlet 81aE to the inner wall 816aE of the reservoir 36E that faces the inlet 81aE is the same as that of the reservoir 36E.
  • the inner wall surface 816 is provided to be shorter than the diameter d.
  • FIG. 17 shows a liquid reservoir 36F according to a modification of the fifth embodiment.
  • the inflow port 81aF is moved downward in the drawing from the inflow port 81aD shown in FIG.
  • the inflow channel 12F moves downward in the figure.
  • the center line 121F of the inflow passage 12F is extended so that it does not pass through the center 815 of the liquid reservoir 36F.
  • An inflow channel 12F is provided.
  • the inflow passage 12F is a liquid-phase refrigerant that has been stored in the reservoir 36F after the gas-liquid two-phase refrigerant flowing from the inlet 81aF through the inflow passage 12F collides with the inner wall surface 816 of the reservoir 36F. It is provided to fall.
  • the distance Lf from the inlet 81aF to the inner wall surface portion 816aF of the reservoir 36F facing the inlet 81aF is greater than the distance d between the farthest portions of the inner wall surface 816 of the reservoir 36F. It is provided to be shorter.
  • the inner wall surface 816 of the reservoir 36F has a substantially circular cross section, and the distance Lf from the inlet 81aF to the inner wall 816aF of the reservoir 36F facing the inlet 81aF is the inner wall surface of the reservoir 36F. It is provided to be shorter than the diameter d of 816.
  • a part of the inner wall surface 122F of the inflow channel 12F is provided along the tangent line of the inner wall surface 816 of the liquid reservoir 36F.
  • FIG. 18 shows a liquid reservoir 36G as a modification of the liquid reservoir 36A, and shows a cross section corresponding to the cross section shown in FIG.
  • the inflow channel 12G When the center line 121G of the inflow channel 12G is extended, the inflow channel 12G is provided to the main body 81G so as not to pass through the center 812Ga of the sub liquid reservoir space 812G.
  • the center line 121G of the inflow channel 12G is a line that substantially divides the width of the inflow channel 12G in the flow direction of the refrigerant in the cross section shown in FIG.
  • the inflow channel 12G is a liquid stored in the auxiliary liquid reservoir space 812G after the gas-liquid two-phase refrigerant flowing from the inlet 81aG through the inflow channel 12G collides with the inner wall surface 812Gb of the auxiliary liquid reservoir space 812G. It is provided to fall into the phase refrigerant.
  • the distance Lg2 from the inlet 81aG to the inner wall surface portion 812Gc facing the inlet 81aG is shorter than the distance d2 between the farthest portions of the inner wall surface 812Gb of the secondary liquid reservoir space 812G. Is provided.
  • the arrangement of the communication path 813G that connects the sub liquid reservoir space 812G and the main liquid reservoir space 811G is devised in the same manner as the arrangement of the inflow channel 12G.
  • the center line 813Ga of the communication path 813G is extended, the communication path 813G is provided so as not to pass through the center 811Ga of the main liquid reservoir space 811G.
  • the center line 813Ga of the communication path 813G is a line that substantially divides the width of the communication path 813G in the flow direction of the refrigerant in the cross section shown in FIG.
  • the center 811Ga is the center of the circular cross section.
  • the distance d1 between the farthest parts of the inner wall surface 811Gb of the main liquid reservoir space 811G is the diameter of the inner wall surface 811Gb.
  • the inner wall surface 811Gb has a substantially circular cross section, and the distance Lg1 from the inlet 811Gc to the main liquid reservoir space 811G to the inner wall surface portion 811Gd facing it is shorter than the diameter d1 of the inner wall surface 811Gb. It is provided as follows.
  • the heat exchanger 300 includes the first heat exchanger 34, which is an upstream heat exchange unit that exchanges heat between the refrigerant passing through the interior and the air, and the first heat exchanger 34.
  • Gas-liquid two-phase refrigerant that has flowed out is separated into gas-phase refrigerant and liquid-phase refrigerant, and reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F, and 36G that store the liquid-phase refrigerant, and first heat Inflow passages 12, 12D, 12E, 12F, 12G for allowing the gas-liquid two-phase refrigerant flowing out of the exchanger 34 to flow into the reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F, 36G, and the reservoir 36, 36A, 36B, 36C, 36D, 36E, 36F, 36G, and liquid from the gas-phase outflow passage 13 for allowing the gas-phase refrigerant to flow out and the reservoirs 36, 36, 36A, 36B
  • the inflow passages 12, 12D, 12E, 12F, and 12G are provided above the liquid level of the liquid refrigerant stored in the liquid reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F, and 36G.
  • the gas phase outflow passage 13 is connected to the inflow ports 81a, 81aD, 81aE, 81aF, 81aG, and the gas phase outflow passage 13 is a liquid stored in the reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F, 36G.
  • the liquid phase outflow passage 14 is connected to a gas phase outlet 81b provided above the liquid surface of the phase refrigerant, and the liquid phase outflow passage 14 is connected to the liquid reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F. , 36G are connected so as to communicate with a liquid-phase outlet 81c provided below the liquid level of the liquid-phase refrigerant stored in 36G.
  • the gas phase refrigerant since the refrigerant flows from above the liquid level, the gas phase refrigerant does not flow into the liquid phase refrigerant stored in the liquid reservoir, and the liquid level is prevented from being disturbed. Can do.
  • liquid reservoirs 36, 36A, 36B, 36C, 36D, 36E, 36F, and 36G have partition portions 82, 82B, and 82C between the inflow port 81a and the gas phase outflow port 81b.
  • the refrigerant flowing in from the inflow port 81a is separated from the partition portions 82, 82B, and 82C before flowing out from the gas phase outflow port 81b. I will head downward. Accordingly, it is possible to suppress the liquid phase refrigerant from flowing out of the gas phase outlet 81b.
  • the partition portions 82, 82B, and 82C are arranged so that at least a part thereof faces the inflow port 81a.
  • coolant which flowed in from the inflow port 81a can be reliably applied to the partition parts 82, 82B, and 82C by arrange
  • buffer parts 83, 83B, 83C are provided between the inlet 81a and the liquid level of the liquid refrigerant.
  • buffer parts 83, 83B, 83C it is possible to suppress the refrigerant flowing from the inlet 81a from dropping directly to the liquid level, and to reduce the disturbance of the liquid level.
  • the buffer portions 83, 83B, 83C is located between the inflow port 81a and the liquid phase outflow port 81c, and is disposed closer to the liquid surface than the inflow port 81a.
  • the liquid reservoirs 36, 36B, 36C have a substantially cylindrical main body 81 capable of storing liquid phase refrigerant therein, and the buffer units 83, 83B, 83C are connected to the main body.
  • the average distance to the inner wall of 81 is preferably not more than one third of the radius of the main body 81.
  • the liquid reservoir 3A has a substantially cylindrical main body 81A capable of storing a liquid phase refrigerant therein, and the main body 81A includes a main liquid reservoir space 811A and a main liquid reservoir space 811A.
  • a sub liquid reservoir space 812A having a liquid surface area smaller than that of the liquid reservoir space 811A is formed.
  • the inflow channels 12D, 12E, 12F, and 12G do not pass through the centers 815 and 812Ga of the liquid reservoirs 36D, 36E, 36F, and 36G when the center lines 121D, 121E, 121F, and 121G are extended.
  • the gas-liquid two-phase refrigerant flowing from the inflow channels 12D, 12E, 12F, and 12G is dropped after being applied to the inner wall surfaces 816 and 812Gb of the liquid reservoirs 36D, 36E, 36F, and 36G. be able to. Therefore, since it can suppress falling directly to the liquid phase refrigerant
  • coolant can be suppressed.
  • the inflow channels 12D, 12E, 12F, and 12G store the gas-liquid two-phase refrigerant that flows through the inflow channels 12D, 12E, 12F, and 12G and flows in from the inflow ports 81aD, 81aE, 81aF, and 81aG.
  • the liquid containers 36D, 36E, 36F, and 36G are provided so as to fall into the liquid phase refrigerant stored in the liquid reservoirs 36D, 36E, 36F, and 36G after colliding with the inner wall surfaces 816 and 812Gb of the liquid containers 36D, 36E, 36F, and 36G.
  • the gas-liquid two-phase refrigerant flowing in from the inflow channels 12D, 12E, 12F, and 12G is reliably applied to the inner wall surfaces 816 and 812Gb of the reservoirs 36D, 36E, 36F, and 36G. Can be dropped.
  • the distances Ld, Le, Lf, Lg1, and Lg2 up to 812Gc are set to be shorter than the distances d, d1, and d between the farthest portions on the inner wall surfaces of the liquid reservoirs 36D, 36E, 36F, and 36G. Yes.
  • the gas-liquid two-phase refrigerant flowing in from the inflow channels 12D, 12E, 12F, and 12G is reliably applied to the inner wall surfaces 816 and 812Gb of the reservoirs 36D, 36E, 36F, and 36G. Can be dropped.
  • the inner wall surfaces 816, 811Gb of the liquid reservoirs 36D, 36E, 36F, 36G have a substantially circular cross section, and the inflow ports 81aD, 81aE, 81aF are formed from the inflow ports 81aD, 81aE, 81aF, 81aG. , 81aG, the distances Ld, Le, Lf, Lg1 to the inner wall surface portions 816aD, 816aE, 816aG, 811Gd of the liquid reservoirs 36D, 36E, 36F, 36G are within the liquid reservoirs 36D, 36E, 36F, 36G.
  • the wall surfaces 816, 812Gb are provided to be shorter than the diameters d, d1.
  • the inflowing gas-liquid two-phase refrigerant can be dropped after being reliably applied to the inner wall surfaces 816, 811Gb of the liquid reservoirs 36D, 36E, 36F, 36G.
  • a part of the inner wall surface 122F of the inflow channel 12F is provided along the tangent line of the inner wall surface 816 of the liquid reservoir 36F.

Abstract

熱交換器(300)は、熱交換部(34)と、熱交換部(34)から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器(36)と、熱交換部(34)から流出する気液二相冷媒を貯液器(36)に流入させる流入流路(12)と、貯液器(36)から気相冷媒を流出させる気相流出流路(13)と液相冷媒を流出させる液相流出流路(14)と、を備えている。流入流路(12)は、貯液器(36)の液相冷媒の液面よりも上方に設けられた流入口(81a)に連通し、気相流出流路(13)は、貯液器(36)の液相冷媒の液面よりも上方に設けられた気相流出口(81b)に連通し、液相流出流路(14)は、貯液器の液相冷媒の液面よりも下方に設けられた液相流出口(81c)に連通するように繋がれている。

Description

熱交換器 関連出願の相互参照
 本出願は、2016年4月8日に出願された日本国特許出願2016-078224号と、2016年12月2日に出願された日本国特許出願2016-234961号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、熱交換器に関する。
 従来、この種の熱交換器が用いられた冷凍サイクル装置として、例えば下記特許文献1に記載されたものがある。この特許文献1に記載れた冷凍サイクル装置は、冷媒を気相冷媒と液相冷媒とに分離する気液分離器と、冷媒が循環する冷媒回路を第1モードの冷媒回路と第2モードの冷媒回路との一方に切り替える切替手段とを有している。具体的には、その気液分離器は、室外熱交換器から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を気相冷媒出口から流出させ、液相冷媒を液相冷媒出口から流出させることが可能な構成となっている。また、第1モードの冷媒回路は、気液分離器の液相冷媒出口から液相冷媒を流出させて第2減圧手段及び蒸発器に流入させ、更に圧縮機に吸入させる冷媒回路である。第2モードの冷媒回路は、気液分離器の気相冷媒出口から気相冷媒を流出させて圧縮機に吸入させる冷媒回路である。特許文献1に開示されている気液分離器では、冷媒を下方から導入している。
特開2014-149123号公報
 特許文献1に記載されている様に気液分離器の下方から冷媒を導入すると、暖房運転時には液相冷媒中に気相冷媒が吹き出されることになり、液相冷媒と気相冷媒とが入り乱れてしまい、液相冷媒の液面が安定しないことになり、貯液器としての機能を果たすことができない。
 本開示は、貯液器の液面乱れを抑えることで、貯液器としての機能を果たすことができる熱交換器を供給することを目的とする。
 本開示は、冷凍サイクルを構成する熱交換器であって、内部を通過する冷媒と空気とを熱交換させる熱交換部(34)と、前記熱交換部から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器(36,36A,36B,36C,36D,36E,36F,36G)と、前記熱交換部から流出する気液二相冷媒を前記貯液器に流入させる流入流路(12)と、前記貯液器から気相冷媒を流出させる気相流出流路(13)と、前記貯液器から液相冷媒を流出させる液相流出流路(14)と、を備えている。前記流入流路は、前記貯液器に溜められた液相冷媒の液面よりも上方に設けられてなる流入口(81a)に連通するように繋がれ、前記気相流出流路は、記貯液器に溜められた液相冷媒の液面よりも上方に設けられてなる気相流出口(81b)に連通するように繋がれ、前記液相流出流路は、記貯液器に溜められた液相冷媒の液面よりも下方に設けられてなる液相流出口(81c)に連通するように繋がれている。
 本開示によれば、冷媒は液面よりも上方から流入するので、貯液器内部に溜められた液相冷媒内に気相冷媒が流入することがなく、液面の乱れを抑制することができる。
 更に本開示では、気相流出流路及び液相流出流路を有しており、レシーバとしてもアキュムレータとしても機能させることができる。特にレシーバとして機能させた場合に流入口を上方に設けることによって、気液二相冷媒が上方から流入することになり、これによって生じる更なる課題を解決することが必要となる。
 そこで本開示では、前記貯液器が、前記流入口と前記気相流出口の間に仕切部(82,82B,82C)を有することも好ましい。
 流入口と気相流出口の間に仕切部を設けることで、流入口から流入した冷媒は、気相流出口から流出する前に仕切部に当たって下方に向かうことになる。従って、液相冷媒が気相流出口から流出してしまうことを抑制できる。
 本開示では更に、流入口と液相冷媒の液面との間に緩衝部(83,83B,83C)が設けられていることも好ましい。
 流入する冷媒が略液相冷媒である場合、緩衝部に当たってから液面に向かうことになる。そのため、内部に溜められた液相冷媒の液面に直接冷媒が当たることなく、液面の乱れを抑制することができる。
 この液面乱れ抑制の観点から本開示では、前記流入流路は、その中心線を延伸すると、前記貯液器(36D,36E,36F,36G)の中央(815,812Ga)を通らずに前記貯液器の内壁面(816)に至るように設けられていることも好ましい。
 流入する冷媒が略液相冷媒である場合、貯液器の内壁面に当たってから液面に向かうことになる。そのため、内部に溜められた液相冷媒の液面に直接冷媒が当たることなく、液面の乱れを抑制することができる。
 尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。
図1は、各実施形態に係る熱交換器が適用される冷凍サイクルの一例を説明するための図である。 図2は、図1に示される冷凍サイクルを冷房運転した場合について説明するための図である。 図3は、図1に示される冷凍サイクルを暖房運転した場合について説明するための図である。 図4は、図1に示される熱交換器について説明を加えるための図である。 図5は、本発明の第1実施形態に係る熱交換器を模式的に示す図である。 図6は、貯液器内部の液面高さを説明するための図である。 図7は、貯液器内部を説明するための図である。 図8は、貯液器内部を説明するための図である。 図9は、第2実施形態に係る貯液器を説明するための図である。 図10は、図9のX-X断面を示す図である。 図11は、第3実施形態に係る貯液器を説明するための図である。 図12は、第3実施形態に係る貯液器を説明するための図である。 図13は、第3実施形態の変形例に係る貯液器を説明するための図である。 図14は、第4実施形態に係る貯液器を説明するための図である。 図15は、第5実施形態に係る貯液器を説明するための図である。 図16は、第5実施形態の変形例に係る貯液器を説明するための図である。 図17は、第5実施形態の変形例に係る貯液器を説明するための図である。 図18は、第2実施形態の変形例に係る貯液器を説明するための図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 図1に示されるように、統合弁装置6は、車両に搭載され車室内の空調を行う車両用空調装置2に用いられる。車両用空調装置2は、冷凍サイクル装置3と、水サイクル装置4と、空調ユニット5と、を備えている。空調ユニット5は、車室内に温風を吹き出したり、冷風を吹き出したりするためのユニットである。冷凍サイクル装置3及び水サイクル装置4は、空調ユニット5から吹き出される空気の温度を調整するためのヒートポンプユニットとして構成されている。
 冷凍サイクル装置3及び統合弁装置6について説明する。冷凍サイクル装置3は、冷媒流路30と、コンプレッサ31と、コンデンサ32と、第1熱交換器34と、第2熱交換器35と、貯液器36と、膨張弁37と、エバポレータ38と、統合弁装置6と、を備えている。第1熱交換器34と、第2熱交換器35と、貯液器36とは、本発明の熱交換器に相当する。
 統合弁装置6は、固定絞り61と、第1弁62と、第2弁64と、第3弁63と、を備えている。水サイクル装置4は、水流路40と、ウォータポンプ41と、水側熱交換器42と、ヒータコア43と、を備えている。空調ユニット5は、ケーシング51と、エアミックスドア52と、送風ファン53と、内外気切替ドア54と、を備えている。
 冷媒流路30は、コンプレッサ31と、コンデンサ32と、第1熱交換器34と、第2熱交換器35と、貯液器36と、膨張弁37と、エバポレータ38と、を繋ぎ、内部に冷媒を通す流路である。冷媒としては、例えばHFC系冷媒やHFO系冷媒を用いることができる。冷媒には、コンプレッサ31を潤滑するためのオイルが混入されている。
 コンプレッサ31は、電動式圧縮機であって、吸入口311と吐出口312とを有する。コンプレッサ31は、吸入口311から冷媒を吸入して圧縮する。コンプレッサ31は、圧縮されることにより過熱状態となった冷媒を吐出口312から吐出する。吐出口312から吐出された冷媒は、コンデンサ32に流れる。
 コンデンサ32は、周知の熱交換器であって、流入口321と流出口322とを有する。コンデンサ32は、水側熱交換器42と熱交換するように構成されている。コンデンサ32と水側熱交換器42とは、互いに熱交換可能なように構成されているので、水-冷媒熱交換器を構成している。コンプレッサ31から吐出された高温高圧の冷媒は、流入口321からコンデンサ32内に流入する。流入した冷媒は、水側熱交換器42を流れる水との間で熱交換し、温度が下がった状態で流出口322から流出する。流出口322から流出した冷媒は、統合弁装置6を構成する固定絞り61及び第1弁62に流れ込む。
 第1弁62が閉じられていると、冷媒は固定絞り61を通って減圧され、低圧の冷媒となって第1熱交換器34に流れ込む。一方、第1弁62が開かれていると、冷媒は減圧されずに高圧の冷媒として第1熱交換器34に流れ込む。
 第1熱交換器34は、車室外に配置される室外熱交換器であって、外気との間で熱交換するように構成されている。第1熱交換器34に流れ込んだ冷媒は、外気との間で熱交換して貯液器36に流れ込む。
 貯液器36は、気相冷媒と液相冷媒とを分離し、液相冷媒を貯めるものである。分離された気相冷媒は、第3弁63に流れ込む。第3弁63に流れ込んだ気相冷媒は、第3弁63が開かれているとコンプレッサ31に向かって流れる。一方、分離された液相冷媒は、貯液器36内に溜められると共に、第2熱交換器35に流出する。
 第2熱交換器35は、車室外に配置される室外熱交換器であって、外気との間で熱交換するように構成されている。第2熱交換器35は、流入する液相冷媒と外気との間で熱交換することにより、第1熱交換器34との協働によって冷媒の熱交換効率を更に高めるものである。第2熱交換器35から流出した冷媒は、第2弁64に流れ込む。
 第2弁64は、流入した冷媒をコンプレッサ31側か膨張弁37側かに向けて選択的に流す三方弁として構成されている。膨張弁37は、流入した冷媒を減圧して吐出する。膨張弁37から吐出された冷媒は、エバポレータ38に向かって流れる。膨張弁37は、エバポレータ38から吐出される冷媒の過熱度が所定範囲内となるように、エバポレータ38に流入する冷媒を減圧膨張させる温度感応型の機械式膨張弁である。
 エバポレータ38は、流入口381と流出口382とを有する。エバポレータ38に向かって流れる冷媒は、流入口381からエバポレータ38内に流入する。エバポレータ38は、ケーシング51内に配置されているので、ケーシング51内を流れる空気と熱交換する。エバポレータ38内を流れる冷媒は、ケーシング51内を流れる空気と熱交換して流出口382からコンプレッサ31に向けて流出する。
 続いて、水サイクル装置4について説明する。水流路40は、ウォータポンプ41と、水側熱交換器42と、ヒータコア43と、を繋ぎ、内部に水を通す流路である。ウォータポンプ41は、吸入口411と吐出口412とを有する。ウォータポンプ41は、吸入口411から水を吸入し、吐出口412から吐出する。ウォータポンプ41を駆動することで、水流路40に水の流れを形成することができる。
 ウォータポンプ41の駆動により吐出口412から吐出された水は、水側熱交換器42に向かって流れる。水側熱交換器42は、上記したようにコンデンサ32ととともに水-冷媒熱交換器を構成している。水側熱交換器42は、流入口421と流出口422とを有している。流入口421から水側熱交換器42の内部に流れこんだ水は、コンデンサ32を流れる冷媒と熱交換し、流出口422から流出する。コンデンサ32を流れる冷媒は、高温高圧の冷媒なので、水側熱交換器42を流れる水は加温されてヒータコア43に向かって流れる。
 ヒータコア43は、空調ユニット5のケーシング51内に配置されている。ヒータコア43は、ケーシング51内を流れる空気と熱交換するためのものである。ヒータコア43は、流入口431と流出口432とを有している。流入口431には、水側熱交換器42を通って加温された水が流入する。ヒータコア43に流入した水は、ケーシング51内を流れる空気と熱交換する。ヒータコア43内を流れた水は、温度が降下して流出口432からウォータポンプ41に向かって流れ出る。
 続いて、空調ユニット5について説明する。ケーシング51は、車室内に流れる空調風を流す流路を形成し、その内部に上流側から、内外気切替ドア54と、送風ファン53と、エバポレータ38と、エアミックスドア52と、ヒータコア43と、が配置されている。
 内外気切替ドア54は、ケーシング51内を流れる空気を車室外から取り入れるか、車室内を循環させるかを切り替えるドアである。送風ファン53は、ケーシング51内に空気流を形成し、車室内に空調風を送り出すためのものである。エアミックスドア52は、ケーシング51内を流れる空気が、ヒータコア43を通るか否かを切り替えるためのドアである。
 車両用空調装置2は、統合弁装置6の各弁を開閉して冷凍サイクル装置3を流れる冷媒を調整し、ウォータポンプ41を駆動して水サイクル装置4を流れる水を調整し、送風ファン53を駆動して空調ユニット5を流れる空気を調整することで、車室内を冷暖房する装置である。
 図2を参照しながら、車両用空調装置2が冷房運転する場合の動作について説明する。図2においては、冷媒の流れをFLcで示している。冷房運転時においては、ウォータポンプ41は駆動されないので、水サイクル装置4内には水の流れが発生しない。従って、コンプレッサ31から吐出される高温高圧の気相冷媒は、そのまま統合弁装置6に向かって流れる。冷房運転時において、第1弁62は、開かれた状態となっている。従って、コンデンサ32から流れ込む冷媒は、減圧されずにそのまま第1熱交換器34に向かって流れる。
 第1熱交換器34に流れ込む高温高圧の気相冷媒は、外気との間で熱交換して温度が低下し、冷却されて気液二相の冷媒となって貯液器36に流出する。貯液器36は、冷房運転の場合には主として液相冷媒を流出させるレシーバとして機能している。第3弁63は閉じられているので、貯液器36からは液相冷媒が第2熱交換器35に流出する。
 冷房運転時において、第2熱交換器35は過冷却器として機能する。第2熱交換器35に流入した冷媒は、外気との熱交換により更に冷却される。冷房運転時においては、冷凍サイクル装置3の凝縮器としての機能は第1熱交換器34及び第2熱交換器35が果たしている。
 第2熱交換器35から流出した液相冷媒は、第2弁64に流れ込む。冷房運転時において第2弁64は、流入する冷媒を膨張弁37に向かってのみ流すように切り替えられている。膨張弁37によって減圧された冷媒は、エバポレータ38に流れ込む。
 冷房運転時においては、送風ファン53が駆動され、エアミックスドア52はヒータコア43側を塞ぐように位置している。従って、ケーシング51内を流れる空気は、エバポレータ38において低温の冷媒と熱交換し冷却される。冷却された空気は、ケーシング51内を流れて車室内に供給される。
 図3を参照しながら、車両用空調装置2が暖房運転する場合の動作について説明する。図3においては、冷媒の流れをFLhで示している。暖房運転時においては、ウォータポンプ41が駆動されるので、水サイクル装置4内には水の流れが発生する。従って、コンプレッサ31から吐出される高温高圧の気相冷媒は、コンデンサ32において水側熱交換器42内を流れる水と熱交換し冷却され、統合弁装置6に向かって流れる。暖房運転時において、第1弁62は、閉じられた状態となっている。従って、コンデンサ32から流れ込む冷媒は、減圧されて第1熱交換器34に向かって流れる。
 第1熱交換器34に流れ込む低圧の気液二相冷媒は、外気との間で熱交換して蒸発し、貯液器36に流出する。貯液器36は、暖房運転の場合は主として気相冷媒を流出させるアキュムレータとして機能している。第3弁63は開かれているので、気相冷媒がコンプレッサ31に向けて流出する。
 貯液器36においては、流入した冷媒を気液分離し、液相冷媒を貯めている。液相冷媒は第2熱交換器35側に流出する。第2弁64は、吸入口311に向かう流路を開いているので、液相冷媒とオイルは徐々にコンプレッサ31に戻る。
 暖房運転時においては、送風ファン53が駆動され、エアミックスドア52はヒータコア43側を開くように位置している。従って、ケーシング51内を流れる空気は、ヒータコア43において高温の水と熱交換し加温される。加温された空気は、ケーシング51内を流れて車室内に供給される。
 本実施形態の統合弁装置6は、固定絞り61、第1弁62、第2弁64、及び第3弁63を一体のものとして形成すると共に、貯液器36の内部に収容することができるように構成されている。
 図4に示されるように、貯液器36内に統合弁装置6を挿入配置する場合、挿入端部90が最も奥まで挿入される。挿入端部90から下方に延出するように、第4流出口74が設けられている。統合弁装置6の一側方に第1熱交換器34及び第2熱交換器35が配置されるので、第1熱交換器34及び第2熱交換器35と冷媒の授受を行う流出口及び流入口は第1熱交換器34及び第2熱交換器35側に配置することが好ましい。この観点から、第1熱交換器34に冷媒を流出させる第1流出口76は、第1熱交換器34側の上方に配置されている。第2熱交換器35から冷媒が流れ込む第2流入口75は、第2熱交換器35側であって、第1流出口76よりも下方に配置されている。第1流入口71、第2流出口72、及び第3流出口73は、第1熱交換器34及び第2熱交換器35に対向する側面とは反対側に設けられている。流入流路12、気相流出流路13、及び液相流出流路14については引き続いて説明する。
 図5を参照しながら本発明の第1実施形態に係る熱交換器300について説明する。図5を参照しながら説明する熱交換器300は、図1から図4を参照しながら説明した第1熱交換器34、第2熱交換器35、及び貯液器36を簡略化して記述するためのものであって、説明の便宜上必要な部分以外は省略する。
 熱交換器300は、上流側熱交換部である第1熱交換器34と、下流側熱交換部である第2熱交換器35と、貯液器36と、を備えている。第1熱交換器34は、上流側コア342と、ヘッダタンク341,343と、を有している。本実施形態では一例として1つの上流側コア342を有するものを示したが、コアは2つ以上でも構わない。上流側コア342は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。
 上流側コア342の上流側端には、ヘッダタンク341が取り付けられている。上流側コア342の下流側端には、ヘッダタンク343が取り付けられている。
 ヘッダタンク341には流入流路11が設けられている。ヘッダタンク343には流入流路12が設けられている。流入流路11から流入した冷媒は、ヘッダタンク341から上流側コア342に流入する。上流側コア342を流れた冷媒は、ヘッダタンク343に流入する。ヘッダタンク343に流入した冷媒は、流入流路12に流出する。流入流路12は貯液器36に繋がれている。流入流路12に流出した冷媒は、貯液器36の本体部81内部に流入する。
 貯液器36は、本体部81と、流入流路12と、液相流出流路14と、気相流出流路13と、を有している。本体部81は、流入流路12から流入する気液二相冷媒を液相冷媒と気相冷媒とに分離し、液相冷媒を溜める部分である。
 本体部81には、流入流路12と、液相流出流路14と、気相流出流路13と、が繋がれている。流入流路12は、第1熱交換器34と貯液器36とを繋ぐ流路である。流入流路12は、本体部81に設けられた流入口81aに繋がっている。液相流出流路14は、貯液器36と第2熱交換器35とを繋ぐ流路である。液相流出流路14は、本体部81に設けられた液相流出口81cに繋がっている。液相流出流路14から流出した液相冷媒は、第2熱交換器35に流入する。気相流出流路13は、貯液器36から気相冷媒を流出させる流路である。気相流出流路13は、本体部81に設けられた気相流出口81bに繋がっている。
 第2熱交換器35は、ヘッダタンク351と、下流側コア352と、ヘッダタンク353と、を有している。ヘッダタンク351には、液相流出流路14が繋がれている。ヘッダタンク351は、下流側コア352の上流側端に設けられている。下流側コア352の下流側端には、ヘッダタンク353が設けられている。ヘッダタンク353には、流出流路15が繋がれている。
 ヘッダタンク351から下流側コア352に液相冷媒が流入する。下流側コア352は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。従って、下流側コア352に流れこんだ液相冷媒は、過冷却されながらヘッダタンク353に向かう。
 下流側コア352からヘッダタンク353に流れ込んだ液相冷媒は、流出流路15に流出する。流出流路15は、冷凍サイクル装置を構成する膨張弁に繋がっており、膨張弁より先にはエバポレータが繋がれている。
 尚、本実施形態では、ヘッダタンク341とヘッダタンク353とは、一体的に形成されたタンクを仕切部356によって仕切ることで形成している。同様に、ヘッダタンク343とヘッダタンク351とは、一体的に形成されたタンクを仕切部356によって仕切ることで形成している。
 貯液器36に対して、液相流出流路14は下方側に繋がれ、流入流路12は液相流出流路14よりも上方側に繋がれている。流入流路12は、貯液器36の長手方向において、半分よりも上方に繋がれている。貯液器36の高さは、図4においては第4流出口74下端90までの高さとなる。貯液器36の高さは、実質的に液冷媒を貯液できる限界の高さとして定義される。
 図6に示されるように、貯液器36の高さは、「経年漏れ」「負荷変動吸収」「余裕等」を積み上げることで設定されている。「経年漏れ」とは、熱交換器2が冷凍サイクルに用いられた場合に、使用年数によって各部から漏れ出す冷媒量を想定し、その分を見込んでいるものである。「負荷変動吸収」とは、冷凍サイクルを運転するにあたって、流入する液相冷媒の量の変動量を見込んだものである。「経年漏れ」及び「負荷変動吸収」分は、貯液器36の設計上必要となる液面高さであるので、流入流路12は、この高さよりも上方に設けられることが好ましい。
 図7に示されるように、貯液器36の本体部81内には、仕切部82及び緩衝部83が設けられている。仕切部82は、気相流出流路13から下方に延びる円筒状の部分となっている。緩衝部83は、仕切部82の下端に繋がっており、仕切部82の下端から徐々に拡径するように設けられている。
 冷房運転時、流入流路12から流入する冷媒が略液相冷媒である場合、緩衝部83に当たってから液面に向かうことになる。そのため、内部に溜められた液相冷媒の液面に直接冷媒が当たることなく、液面の乱れを抑制することができる。
 図8に示されるように、暖房運転時、流入流路12から流入する冷媒が略気相冷媒である場合、仕切部82の周囲を旋回しながら、気液分離される。気液分離された液相冷媒は、緩衝部83に当たりながら落下する。従って、内部に溜められた液相冷媒の液面に直接冷媒が当たることなく、液面の乱れを抑制することができる。このように液相冷媒を分離することができるので、気相冷媒が緩衝部83の下端から仕切部82内に入り、気相流出流路13から流出する。
 液面の乱れを抑制するという観点からは、図9及び図10に示されるように、第2実施形態である貯液器36Aの内部を複数の空間に区分することが好ましい。貯液器36Aの本体部81Aには、主液溜め空間811Aと、副液溜め空間812Aとが形成されている。
 図10に示されるように、流入流路12から冷媒が流入すると、主液溜め空間811Aと、副液溜め空間812Aとに分配されて液相冷媒が溜められる。本実施形態では、主液溜め空間811Aと、副液溜め空間812Aとを仕切る仕切壁814Aを、流入流路12に対向する高さまで設け、その上部に連通路813Aを設けている。仕切壁814Aは、必ずしも流入流路12に対向する高さまで設ける必要はなく、もっと低い位置まで設けてもよい。
 図11に示される第3実施形態に係る貯液器36Bは、本体部81内に仕切部82B及び緩衝部83Bが設けられている。仕切部82Bは、気相流出流路13から下方に延びる円筒状の部分となっている。緩衝部83Bは、仕切部82Bの下端に繋がっており、円板状の部材として構成されている。
 図11のA矢視図として図12に示されるように、円板状の緩衝部83Bは、円板部材831によって構成されている。円板部材831には、気相流出流路13に繋がる流出穴84Bが設けられている。円板部材831の周囲には、4つの切り欠き部832が設けられている。
 変形例である緩衝部83Baとして図13に示されるように、緩衝部83Baは、円板部材831aによって構成されてもよい。円板部材831aは、流出穴84Bの周囲に落下穴833が4つ設けられている。このようにすることで、気液分離された液相冷媒が直接液面に当たることを抑制しつつ、流入流路12より流入した気液二相冷媒の旋回流れを止めることができるため、気相流出流路13に気相冷媒を送り出すことができる。
 図14に示される第4実施形態に係る貯液器36Cは、本体部81内に仕切部82C及び緩衝部83Cが設けられている。仕切部82Cは、気相流出流路13から下方に延びる円筒状の部分となっている。緩衝部83Cは、仕切部82Cの下方に設けられ、本体部81の内壁から延びる板状部材である。
 図15は、第5実施形態に係る貯液器36Dの長手方向の中心軸であって、中央815を通る軸に直交する断面における断面図である。貯液器36Dは、本体部81に対する流入流路12Dの取付位置や取付角度を工夫し、溜められている液相冷媒に対し流入する液相冷媒が勢い良く当たってしまうことで液面が乱れることを抑制するためのものである。
 流入流路12Dの中心線121Dを延伸すると貯液器36Dの中央815を通らないように、本体部81に対して流入流路12Dが設けられている。流入流路12Dの中心線121Dは、図15に示される断面において、流入流路12Dにおける冷媒の流れ方向の幅を略等分する線である。
 流入流路12Dは、流入流路12Dを通り流入口81aDから流入する気液二相冷媒が、貯液器36Dの内壁面816に衝突してから貯液器36D内部に溜められた液相冷媒に落ちるように設けられている。
 貯液器36Dは、流入口81aDから流入口81aDに対向する貯液器36Dの内壁面部分816aDまでの距離Ldが、貯液器36Dの内壁面816において最も離れた部分間の距離dよりも短くなるように設けられている。
 本体部81は略円筒形なので、中央815は円断面の中心になっている。貯液器36Dの内壁面816において最も離れた部分間の距離dは、内壁面816の直径である。従って、貯液器36Dの内壁面816は断面が略円形を成しており、流入口81aDから流入口81aDに対向する貯液器36Dの内壁面816aDまでの距離Ldが、貯液器36Dの内壁面816の直径dよりも短くなるように設けられている。
 図16は、第5実施形態の変形例に係る貯液器36Eを示している。貯液器36Eでは、流入口81aEが、図15に示した流入口81aDよりも図中上方に移動し、流入口81aEの位置のみでみれば、本体部81の中央815に正対するような位置に設けられている。しかしながら、流入流路12Eの角度を変えることで、流入流路12Eの中心線121Eを延伸すると貯液器36Eの中央815を通らないように、本体部81に対して流入流路12Eが設けられている。
 流入流路12Eは、流入流路12Eを通り流入口81aEから流入する気液二相冷媒が、貯液器36Eの内壁面816に衝突してから貯液器36E内部に溜められた液相冷媒に落ちるように設けられている。
 貯液器36Eは、流入口81aEから流入口81aEに対向する貯液器36Eの内壁面部分816aEまでの距離Leが、貯液器36Eの内壁面816において最も離れた部分間の距離dよりも短くなるように設けられている。
 本体部81は略円筒形なので、中央815は円断面の中心になっている。貯液器36Eの内壁面816において最も離れた部分間の距離dは、内壁面816の直径である。従って、貯液器36Eの内壁面816は断面が略円形を成しており、流入口81aEから流入口81aEに対向する貯液器36Eの内壁面816aEまでの距離Leが、貯液器36Eの内壁面816の直径dよりも短くなるように設けられている。
 図17は、第5実施形態の変形例に係る貯液器36Fを示している。貯液器36Fでは、流入口81aFが、図15に示した流入口81aDよりも図中下方に移動している。流入流路12Fも同様に図中下方に移動している。更に、流入流路12Fの角度を変えずに図中下方に移動させることで、流入流路12Fの中心線121Fを延伸すると貯液器36Fの中央815を通らないように、本体部81に対して流入流路12Fが設けられている。
 流入流路12Fは、流入流路12Fを通り流入口81aFから流入する気液二相冷媒が、貯液器36Fの内壁面816に衝突してから貯液器36F内部に溜められた液相冷媒に落ちるように設けられている。
 貯液器36Fは、流入口81aFから流入口81aFに対向する貯液器36Fの内壁面部分816aFまでの距離Lfが、貯液器36Fの内壁面816において最も離れた部分間の距離dよりも短くなるように設けられている。
 貯液器36Fの内壁面816は断面が略円形を成しており、流入口81aFから流入口81aFに対向する貯液器36Fの内壁面816aFまでの距離Lfが、貯液器36Fの内壁面816の直径dよりも短くなるように設けられている。
 更に、流入流路12Fの内壁面122Fの一部が貯液器36Fの内壁面816の接線に沿うように設けられている。
 図9及び図10を参照しながら説明した貯液器36Aにおいても、流入流路12の配置を工夫することで同様の効果を得ることができる。図18は、貯液器36Aの変形例としての貯液器36Gを示すものであり、図9に示した断面に相当する断面を示すものである。
 流入流路12Gの中心線121Gを延伸すると、副液溜め空間812Gの中央812Gaを通らないように、本体部81Gに対して流入流路12Gが設けられている。流入流路12Gの中心線121Gは、図18に示される断面において、流入流路12Gにおける冷媒の流れ方向の幅を略等分する線である。
 流入流路12Gは、流入流路12Gを通り流入口81aGから流入する気液二相冷媒が、副液溜め空間812Gの内壁面812Gbに衝突してから副液溜め空間812G内部に溜められた液相冷媒に落ちるように設けられている。
 副液溜め空間812Gは、流入口81aGから流入口81aGに対向する内壁面部分812Gcまでの距離Lg2が、副液溜め空間812Gの内壁面812Gbにおいて最も離れた部分間の距離d2よりも短くなるように設けられている。
 副液溜め空間812Gと主液溜め空間811Gとを繋ぐ連通路813Gの配置も、流入流路12Gの配置と同様に工夫している。連通路813Gの中心線813Gaを延伸すると、主液溜め空間811Gの中央811Gaを通らないように、連通路813Gが設けられている。連通路813Gの中心線813Gaは、図18に示される断面において、連通路813Gにおける冷媒の流れ方向の幅を略等分する線である。
 主液溜め空間811Gは略円筒形なので、中央811Gaは円断面の中心になっている。主液溜め空間811Gの内壁面811Gbにおいて最も離れた部分間の距離d1は、内壁面811Gbの直径である。従って、内壁面811Gbは断面が略円形を成しており、主液溜め空間811Gへの流入口811Gcからそれに対向する内壁面部分811Gdまでの距離Lg1が、内壁面811Gbの直径d1よりも短くなるように設けられている。
 上記したように、本実施形態に係る熱交換器300は、内部を通過する冷媒と空気とを熱交換させる上流側熱交換部である第1熱交換器34と、第1熱交換器34から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器36,36A,36B,36C,36D,36E,36F,36Gと、第1熱交換器34から流出する気液二相冷媒を貯液器36,36A,36B,36C,36D,36E,36F,36Gに流入させる流入流路12,12D,12E,12F,12Gと、貯液器36,36A,36B,36C,36D,36E,36F,36Gから気相冷媒を流出させる気相流出流路13と、貯液器36,36A,36B,36C,36D,36E,36F,36Gから液相冷媒を流出させる液相流出流路14と、を備えている。流入流路12,12D,12E,12F,12Gは、貯液器36,36A,36B,36C,36D,36E,36F,36Gに溜められた液相冷媒の液面よりも上方に設けられてなる流入口81a,81aD,81aE,81aF,81aGに連通するように繋がれ、気相流出流路13は、貯液器36,36A,36B,36C,36D,36E,36F,36Gに溜められた液相冷媒の液面よりも上方に設けられてなる気相流出口81bに連通するように繋がれ、液相流出流路14は、貯液器36,36A,36B,36C,36D,36E,36F,36Gに溜められた液相冷媒の液面よりも下方に設けられてなる液相流出口81cに連通するように繋がれている。
 本実施形態によれば、冷媒は液面よりも上方から流入するので、貯液器内部に溜められた液相冷媒内に気相冷媒が流入することがなく、液面の乱れを抑制することができる。
 また本実施形態では、貯液器36,36A,36B,36C,36D,36E,36F,36Gは、流入口81aと気相流出口81bの間に仕切部82,82B,82Cを有する。
 流入口81aと気相流出口81bの間に仕切部82,82B,82Cを設けることで、流入口81aから流入した冷媒は、気相流出口81bから流出する前に仕切部82,82B,82Cに当たって下方に向かうことになる。従って、液相冷媒が気相流出口81bから流出してしまうことを抑制できる。
 また本実施形態では、仕切部82,82B,82Cは、その少なくとも一部が流入口81aに対向するように配置されている。このように対向配置することで、流入口81aから流入した冷媒を確実に仕切部82,82B,82Cに当てることができる。
 また本実施形態では、流入口81aと液相冷媒の液面との間に緩衝部83,83B,83Cが設けられている。緩衝部83,83B,83Cを設けることで、流入口81aら流入した冷媒が直接液面に落下することを抑制することができ、液面の乱れを低減することができる。
 また本実施形態では、緩衝部83,83B,83Cは、その少なくとも一部が流入口81aから液相流出口81cの間であって、流入口81aよりも液面側に配置されている。このような位置に設けることで、流入口81aから流入した液相冷媒をより確実に緩衝部83,83B,83Cに当てて、液面の乱れを抑制することができる。
 また本実施形態では、貯液器36,36B,36Cは、その内部に液相冷媒を貯液可能な略円筒状の本体部81を有しており、緩衝部83,83B,83Cから本体部81の内壁までの平均距離が、本体部81の半径の3分の1以下であることが好ましい。
 また本実施形態では、貯液器3Aは、その内部に液相冷媒を貯液可能な略円筒状の本体部81Aを有しており、本体部81Aには、主液溜め空間811Aと、主液溜め空間811Aよりも液面面積が小さくなる副液溜め空間812Aと、が形成されている。このように構成することで、液面の乱れを抑制することができる。
 また本実施形態では、流入流路12D,12E,12F,12Gは、その中心線121D,121E,121F,121Gを延伸すると、貯液器36D,36E,36F,36Gの中央815,812Gaを通らずに貯液器36D,36E,36F,36Gの内壁面816,812Gbに至るように設けられている。
 このように構成することで、流入流路12D,12E,12F,12Gから流入する気液二相冷媒を、貯液器36D,36E,36F,36Gの内壁面816,812Gbに当ててから落下させることができる。従って、貯液器36D,36E,36F,36G内部に溜められた液相冷媒に直接落下することを抑制できるので、液相冷媒の液面乱れを抑制することができる。
 また本実施形態では、流入流路12D,12E,12F,12Gは、流入流路12D,12E,12F,12Gを通り流入口81aD,81aE,81aF,81aGから流入する気液二相冷媒が、貯液器36D,36E,36F,36Gの内壁面816,812Gbに衝突してから貯液器36D,36E,36F,36Gに溜められた液相冷媒に落ちるように設けられている。
 このように構成することで、流入流路12D,12E,12F,12Gから流入する気液二相冷媒を、貯液器36D,36E,36F,36Gの内壁面816,812Gbに確実に当ててから落下させることができる。
 また本実施形態では、流入口81aD,81aE,81aF,81aGから流入口81aD,81aE,81aF,81aGに対向する貯液器36D,36E,36F,36Gの内壁面部分816aD,816aE,816aG,811Gd,812Gcまでの距離Ld,Le,Lf,Lg1,Lg2が、貯液器36D,36E,36F,36Gの内壁面において最も離れた部分間の距離d,d1,dよりも短くなるように設けられている。
 このように構成することで、流入流路12D,12E,12F,12Gから流入する気液二相冷媒を、貯液器36D,36E,36F,36Gの内壁面816,812Gbに確実に当ててから落下させることができる。
 また本実施形態では、貯液器36D,36E,36F,36Gの内壁面816,811Gbは断面が略円形を成しており、流入口81aD,81aE,81aF,81aGから流入口81aD,81aE,81aF,81aGに対向する貯液器36D,36E,36F,36Gの内壁面部分816aD,816aE,816aG,811Gdまでの距離Ld,Le,Lf,Lg1が、貯液器36D,36E,36F,36Gの内壁面816,812Gbの直径d,d1よりも短くなるように設けられている。
 このように構成することで、流入する気液二相冷媒を、貯液器36D,36E,36F,36Gの内壁面816,811Gbに確実に当ててから落下させることができる。
 また本実施形態では、流入流路12Fの内壁面122Fの一部が貯液器36Fの内壁面816の接線に沿うように設けられている。
このように構成することで、流入する気液二相冷媒を、貯液器36Fの内壁面816に確実に当ててから落下させることができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (12)

  1.  冷凍サイクルを構成する熱交換器であって、
     内部を通過する冷媒と空気とを熱交換させる熱交換部(34)と、
     前記熱交換部から流出した気液二相冷媒を気相冷媒と液相冷媒とに気液分離し、液相冷媒を溜める貯液器(36,36A,36B,36C,36D,36E,36F,36G)と、
     前記熱交換部から流出する気液二相冷媒を前記貯液器に流入させる流入流路(12,12D,12E,12F,12G)と、
     前記貯液器から気相冷媒を流出させる気相流出流路(13)と、
     前記貯液器から液相冷媒を流出させる液相流出流路(14)と、
    を備え、
     前記流入流路は、前記貯液器に溜められた液相冷媒の液面よりも上方に設けられてなる流入口(81a)に連通するように繋がれ、前記気相流出流路は、前記貯液器に溜められた液相冷媒の液面よりも上方に設けられてなる気相流出口(81b)に連通するように繋がれ、前記液相流出流路は、前記貯液器に溜められた液相冷媒の液面よりも下方に設けられてなる液相流出口(81c)に連通するように繋がれている、熱交換器。
  2.  請求項1記載の熱交換器であって、
      前記貯液器は、前記流入口と前記気相流出口の間に仕切部(82,82B,82C)を有する、熱交換器。
  3.  請求項2記載の熱交換器であって、
     前記仕切部は、その少なくとも一部が前記流入口に対向するように配置されている、熱交換器。
  4.  請求項1又は2記載の熱交換器であって、
     前記流入口と液相冷媒の液面との間に緩衝部(83,83B,83C)を有する、熱交換器。
  5.  請求項4記載の熱交換器であって、
     前記緩衝部は、その少なくとも一部が前記流入口から前記液相流出口の間であって、前記流入口よりも液面側に配置されている、熱交換器。
  6.  請求項5記載の熱交換器であって、
     前記貯液器は、その内部に液相冷媒を貯液可能な略円筒状の本体部(81)を有しており、
     前記緩衝部から前記本体部の内壁までの平均距離が、前記本体部の半径の3分の1以下である、熱交換器。
  7.  請求項1記載の熱交換器であって、
     前記貯液器(36A)は、その内部に液相冷媒を貯液可能な略円筒状の本体部(81A)を有しており、
     前記本体部は、主液溜め空間(811A)と、前記主液溜め空間よりも液面面積が小さくなる副液溜め空間(812A)と、が形成されている、熱交換器。
  8.  請求項1記載の熱交換器であって、
     前記流入流路(12D,12E,12F,12G)は、その中心線を延伸すると、前記貯液器(36D,36E,36F,36G)の中央(815,812Ga)を通らずに前記貯液器の内壁面(816,812Gb)に至るように設けられている、熱交換器。
  9.  請求項8記載の熱交換器であって、
     前記流入流路は、前記流入流路を通り前記流入口から流入する気液二相冷媒が、前記貯液器の内壁面に衝突してから前記貯液器に溜められた液相冷媒に落ちるように設けられている、熱交換器。
  10.  請求項8又は9に記載の熱交換器であって、
     前記流入口から前記流入口に対向する前記貯液器の内壁面部分(816aD,816aE,816aG,811Gd,812Gc)までの距離(Ld,Le,Lf,Lg1,Lg2)が、前記貯液器の内壁面において最も離れた部分間の距離(d,d1,d2)よりも短くなるように設けられている、熱交換器。
  11.  請求項10記載の熱交換器であって、
     前記貯液器の内壁面は断面が略円形を成しており、
     前記流入口から前記流入口に対向する前記貯液器の内壁面部分までの距離(Ld,Le,Lf,Lg1)が、前記貯液器の内壁面の直径(d,d1)よりも短くなるように設けられている、熱交換器。
  12.  請求項11記載の熱交換器であって、
     前記流入流路の内壁面の一部が前記貯液器の内壁面の接線に沿うように設けられている、熱交換器。
PCT/JP2017/013975 2016-04-08 2017-04-03 熱交換器 WO2017175724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/091,138 US20190128577A1 (en) 2016-04-08 2017-04-03 Heat exchanger
US17/098,487 US11656014B2 (en) 2016-04-08 2020-11-16 Heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-078224 2016-04-08
JP2016078224 2016-04-08
JP2016-234961 2016-12-02
JP2016234961A JP6631489B2 (ja) 2016-04-08 2016-12-02 熱交換器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/091,138 A-371-Of-International US20190128577A1 (en) 2016-04-08 2017-04-03 Heat exchanger
US17/098,487 Division US11656014B2 (en) 2016-04-08 2020-11-16 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2017175724A1 true WO2017175724A1 (ja) 2017-10-12

Family

ID=60001267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013975 WO2017175724A1 (ja) 2016-04-08 2017-04-03 熱交換器

Country Status (1)

Country Link
WO (1) WO2017175724A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367874U (ja) * 1989-10-26 1991-07-03
JP2004069272A (ja) * 2002-08-09 2004-03-04 Denso Corp 冷凍サイクル装置
JP2009174836A (ja) * 2008-01-23 2009-08-06 Nichirei Kogyo Kk 気液分離装置および気液分離装置を備えた冷凍装置。
KR101409114B1 (ko) * 2008-01-24 2014-06-17 한라비스테온공조 주식회사 수액기 일체형 응축기
JP2015108489A (ja) * 2013-12-05 2015-06-11 新晃工業株式会社 空調機の熱交換器
WO2015128807A2 (en) * 2014-02-26 2015-09-03 Denso Thermal Systems S.P.A. Horizontal condenser with coolant accumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367874U (ja) * 1989-10-26 1991-07-03
JP2004069272A (ja) * 2002-08-09 2004-03-04 Denso Corp 冷凍サイクル装置
JP2009174836A (ja) * 2008-01-23 2009-08-06 Nichirei Kogyo Kk 気液分離装置および気液分離装置を備えた冷凍装置。
KR101409114B1 (ko) * 2008-01-24 2014-06-17 한라비스테온공조 주식회사 수액기 일체형 응축기
JP2015108489A (ja) * 2013-12-05 2015-06-11 新晃工業株式会社 空調機の熱交換器
WO2015128807A2 (en) * 2014-02-26 2015-09-03 Denso Thermal Systems S.P.A. Horizontal condenser with coolant accumulator

Similar Documents

Publication Publication Date Title
JP5772764B2 (ja) 統合弁およびヒートポンプサイクル
CN101545690B (zh) 制冷剂循环装置
CN101737990B (zh) 用于喷射器型制冷循环的单元
JP5493769B2 (ja) 蒸発器ユニット
US8789389B2 (en) Intermediate heat exchanger
WO2013051237A1 (ja) 統合弁
EP1860390A2 (en) Vapor compression refrigerating cycle
US11143443B2 (en) Heat exchanger
CN104364598B (zh) 制冷剂回路用热交换器
US11512903B2 (en) Heat exchanger
US11656014B2 (en) Heat exchanger
KR101756213B1 (ko) 축냉 열교환기
JP2014055765A (ja) 蒸発器ユニット
WO2017175724A1 (ja) 熱交換器
JP2001174103A (ja) 冷媒凝縮器
WO2017175726A1 (ja) 熱交換器
JP6780516B2 (ja) 貯液器
JP2008089213A (ja) 冷媒蒸発器
JP2008157588A (ja) 空調装置
JP2017072352A (ja) 冷凍装置
KR101510121B1 (ko) 차량용 공조시스템
US20200232726A1 (en) Heat exchanger
CN117308415A (zh) 用于冷媒循环系统的换热装置、冷媒循环系统
JP2008045777A (ja) アキュームレータ
JP2016125767A (ja) アキュームレータ及び空気調和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779102

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779102

Country of ref document: EP

Kind code of ref document: A1