WO2017175398A1 - 表面被覆切削工具およびその製造方法 - Google Patents

表面被覆切削工具およびその製造方法 Download PDF

Info

Publication number
WO2017175398A1
WO2017175398A1 PCT/JP2016/066857 JP2016066857W WO2017175398A1 WO 2017175398 A1 WO2017175398 A1 WO 2017175398A1 JP 2016066857 W JP2016066857 W JP 2016066857W WO 2017175398 A1 WO2017175398 A1 WO 2017175398A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating layer
hard coating
crystal grains
gas
Prior art date
Application number
PCT/JP2016/066857
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
今村 晋也
聡 小野
秀明 金岡
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to KR1020167031890A priority Critical patent/KR102216094B1/ko
Priority to EP16791515.6A priority patent/EP3441167B1/en
Priority to US15/311,429 priority patent/US10100403B2/en
Priority to CN201680001348.XA priority patent/CN107530784B/zh
Publication of WO2017175398A1 publication Critical patent/WO2017175398A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the present invention relates to a surface-coated cutting tool and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2016-078296 filed on Apr. 8, 2016, and incorporates all the content described in the above Japanese application.
  • Non-Patent Document 1 Ikeda et al. (Non-Patent Document 1) described that when a film of “AlTiN” or “AlTiCN” having an atomic ratio of Al exceeding 0.7 is produced by a physical vapor deposition (PVD) method, the layer structure of the film is It points out that the hardness decreases due to the phase transition to the wurtzite crystal structure.
  • Setoyama et al. Non-Patent Document 2 produced a TiN / AlN super-multilayer film by the PVD method in order to increase the Al content in the coating of “AlTiN” or “AlTiCN”.
  • Patent Document 1 AlCl 3 gas, TiCl 4 gas, NH 3 gas, H 2 gas and N 2 gas are placed in a reaction vessel having a pressure of 1.3 kPa and a temperature of 800 ° C.
  • a method of introducing the reaction vessel and then cooling the reaction vessel at a cooling rate of 10 ° C./min until the temperature of the substrate reaches 200 ° C. is disclosed.
  • a hard film having a structure in which TiN having a face-centered cubic lattice (fcc) structure having a thickness of 2 nm and AlN having a fcc structure having a thickness of 6 nm are alternately laminated can be formed by the CVD method. Yes.
  • Patent Document 2 JP-A-2015-193071 includes a composite nitride layer or a composite carbonitride layer represented by (Ti 1-x Al x N) (C y N 1-y ).
  • a hard coating layer is disclosed in which this layer contains crystal grains having a cubic structure, and the composition of Ti and Al changes periodically along the normal direction of the surface of the tool substrate.
  • JP 2014-129562 A Japanese Patent Laying-Open No. 2015-193071
  • a surface-coated cutting tool is a surface-coated cutting tool including a base material and a coating film formed on the surface of the base material, wherein the coating film has a sodium chloride type crystal structure.
  • Each of the second layers is alternately stacked, and the atomic ratio x of Al of the first layer varies within a range of 0.76 or more and less than 1, respectively.
  • the atomic ratio y of Al fluctuates in the range of 0.45 or more and less than 0.76.
  • the maximum difference between the atomic ratio x and the atomic ratio y is 0.05 ⁇ xy ⁇ 0.
  • the total thickness of the first layer and the second layer adjacent to each other is 3 to 30 nm, and the crystal grains are By analyzing the crystal orientation of each of the crystal grains using an electron beam backscattering diffractometer in a cross section parallel to the normal direction of the surface of the substrate, the normal to the (200) plane that is the crystal plane of the crystal grains And the normal to the surface of the base material are measured, and the crystal grains having the crossing angle of 0 to 45 degrees are divided into units of 0 to 5 degrees, and nine groups are constructed.
  • the sum of the frequencies of the four groups including the crystal grains having the crossing angle of 0 to 20 degrees is the frequency of all the groups. It becomes 50% or more and 100% or less of the total.
  • the manufacturing method of the surface-coated cutting tool which concerns on 1 aspect of this invention WHEREIN The 1st process which prepares the said base material, The 2nd process of forming the said coating film containing the said 1st hard coating layer using a chemical vapor deposition method, including.
  • FIG. 1A is a drawing-substituting photograph that captures a microscopic image of a film in a surface-coated cutting tool.
  • FIG. 1B is a drawing-substituting photograph showing an enlargement of the broken-line enclosure in FIG. 1A.
  • FIG. 2 is a graph for explaining the variation in the composition ratio of AlTiN in the direction of the arrow in FIG. 1B.
  • FIG. 3A is an enlarged drawing of FIG. 1A.
  • FIG. 3B is a drawing-substituting photograph that further enlarges FIG. 3A.
  • FIG. 4 is a graph showing an example of the distribution of the number of crossing angles of crystal grains included in the first hard coating layer analyzed using an electron beam backscattering diffraction apparatus.
  • FIG. 5 is a schematic view schematically showing a chemical vapor deposition (CVD) apparatus used in the method for manufacturing the surface-coated cutting tool according to the present embodiment.
  • CVD chemical vapor deposition
  • Patent Document 1 since the hard coating is composed only of a structure in which TiN having an fcc structure and AlN having an fcc structure are alternately laminated, the hardness of the hard coating is very high and the wear resistance is good. However, when the hard coating described in Patent Document 1 is used for a cutting tool, chipping may occur during high-speed cutting, or the chipping may occur suddenly depending on the work material, and the life of the cutting tool cannot be extended. was there.
  • the composite nitride layer or the composite carbonitride layer has a cubic structure, and the composition of Ti and Al periodically changes along the normal direction of the substrate, thereby achieving high hardness and toughness. It is said that an excellent hard coating layer was realized. However, this hard coating layer has room for improvement, particularly in obtaining chipping resistance. Therefore, it has not yet achieved the desired long life, and its development is eagerly desired.
  • an object is to provide a surface-coated cutting tool that is excellent in high hardness and toughness and that can exhibit particularly high chipping resistance, and a method for producing the same.
  • a surface-coated cutting tool is a surface-coated cutting tool including a base material and a coating formed on the surface of the base material, wherein the coating is a sodium chloride crystal
  • the second layer made of carbonitride has a laminated structure in which one or more layers are alternately laminated, and the atomic ratio x of Al in the first layer varies within a range of 0.76 or more and less than 1, respectively,
  • the atomic ratio y of Al in the second layer varies in the range of 0.45 or more and less than 0.76, and the maximum difference between the atomic ratio x and the atomic ratio y is 0.05 ⁇ x ⁇ .
  • the total thickness of the first layer and the second layer adjacent to each other is 3 to 30 nm.
  • the crossing angle between the normal and the normal to the surface of the base material is measured, and the crystal grains having the crossing angle of 0 to 45 degrees are divided in units of 0 to 5 degrees to construct nine groups, When the frequencies that are the sum of the areas of the crystal grains included in each group are calculated, the total of the frequencies of the four groups including the crystal grains having the crossing angle of 0 to 20 degrees is the sum of all the groups. It becomes 50% or more and 100% or less of the total of the above frequencies.
  • the surface-coated cutting tool having such a configuration can achieve a long life with high hardness and toughness, high wear resistance based on high hardness, and high chipping resistance based on excellent toughness. .
  • the total of the frequencies of the two groups including the crystal grains having the crossing angle of 10 to 20 degrees is 30% or more and 100% of the total of the frequencies of the all groups. It becomes as follows. Thereby, more excellent chipping resistance can be exhibited.
  • the coating includes a second hard coating layer between the substrate and the first hard coating layer, and the second hard coating layer has a thickness of 0.01 to 0.5 ⁇ m. Thereby, the 1st hard film layer with high hardness and high adhesiveness is realizable.
  • the first hard coating layer has a thickness of 1 to 15 ⁇ m. Thereby, more excellent performance can be exhibited in wear resistance and oxidation resistance.
  • the indentation hardness by the nanoindentation method of the first hard coating layer is 28 GPa or more and 38 GPa or less. Thereby, when it applies to a cutting tool etc., the abrasion resistance of a blade edge
  • the first hard coating layer has an absolute value of compressive residual stress of 0.5 GPa or more and 5.0 GPa or less. Thereby, when it applies to a cutting tool etc., the toughness of a blade edge
  • a method of manufacturing a surface-coated cutting tool according to an aspect of the present invention includes a first step of preparing the base material, and a method of forming the coating film including the first hard coating layer using a chemical vapor deposition method. 2 steps. Thereby, it is possible to manufacture a surface-coated cutting tool having high hardness and excellent toughness and exhibiting particularly high chipping resistance.
  • the second step includes the step of growing the crystal grains while modulating the flow rate of either or both of AlCl 3 gas and TiCl 4 gas.
  • the notation in the form of “A to B” in the present specification means the upper and lower limits of the range (that is, not less than A and not more than B), and no unit is described in A, and only a unit is described in B. In this case, the unit of A and the unit of B are the same.
  • the atomic ratio is not particularly limited, any conventionally known atomic ratio is included, and is not necessarily limited to a stoichiometric range.
  • metal elements such as titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), chromium (Cr), nitrogen (N), oxygen (O), carbon (C), etc.
  • the nonmetallic element does not necessarily have to have a stoichiometric composition.
  • the surface-coated cutting tool includes a base material and a coating formed on the surface of the base material.
  • the coating preferably covers the entire surface of the substrate. However, even if a part of the substrate is not coated with this coating or the configuration of the coating is partially different, it does not depart from the scope of the present invention.
  • the surface-coated cutting tool according to the present embodiment has high hardness and toughness, and has high wear resistance based on high hardness and high chipping performance based on excellent toughness, and can achieve a long life. . Therefore, drills, end mills, drill tip replacement cutting tips, end mill tip replacement cutting tips, milling tip replacement cutting tips, turning tip replacement cutting tips, metal saws, gear cutting tools, reamers, taps, etc. It can be suitably used as a cutting tool.
  • any substrate can be used as long as it is conventionally known as this type of substrate.
  • cemented carbide for example, WC-based cemented carbide, including WC, including Co or containing carbonitride such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.) Main component
  • high-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body Is preferred.
  • a cemented carbide particularly a WC-based cemented carbide, or a cermet (particularly a TiCN-based cermet).
  • These base materials are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent characteristics as base materials for surface-coated cutting tools for the above applications.
  • a WC-based cemented carbide is used as the base material, the structure may contain either or either of free carbon and an abnormal layer called ⁇ phase.
  • the base material includes those having a chip breaker and those having no chip breaker.
  • the shape of the edge of the cutting edge is sharp edge (the ridge where the rake face and flank face intersect), honing (the sharp edge is given a radius), negative land (the chamfered), honing and negative land combined. Any thing is included.
  • the coating includes a first hard coating layer including crystal grains having a sodium chloride type crystal structure.
  • the fact that the crystal grains contained in the first hard coating layer have a sodium chloride type crystal structure is analyzed using an X-ray diffractometer (for example, trade name: “SmartLab”, manufactured by Rigaku Corporation). Can be confirmed.
  • FIG. 1A and FIG. 1B show an example of a film (STEM image) in this embodiment.
  • the crystal grains contained in the first hard coating layer include a first layer made of nitride or carbonitride of Al x Ti 1-x and a second layer made of nitride or carbonitride of Al y Ti 1-y. Have a laminated structure in which one or more layers are alternately laminated. Further, the atomic ratio x of Al in the first layer varies within the range of 0.76 or more and less than 1 in each first layer, and the atomic ratio y of Al in the second layer is 0. 0 in each second layer. It fluctuates in the range of 45 or more and less than 0.76.
  • the crystal grains contained in the first hard coating layer are a first layer that fluctuates while maintaining a high proportion of the atomic ratio of Al, and a proportion in which the atomic ratio of Al is relatively low compared to the first layer.
  • the second layer that varies while maintaining the above has a stacked structure in which the second layers are alternately arranged.
  • the crystal grains contained in the first hard coating layer are each of the same crystal phase of AlTi nitride or carbonitride (Homo-Structure), and the atomic ratio of Al However, it fluctuates within this same crystal phase. This variation is periodic and preferably continuous or stepwise.
  • the crystal grains included in the first hard coating layer have a minute strain at a predetermined interface, and the first layer and the second layer that can be distinguished as different layers based on the strain.
  • a laminated structure composed of layers is formed. An example of the change in the atomic ratio of Al will be described later with reference to FIG.
  • the composition of the first layer and the second layer may be either nitride or carbonitride. However, when the composition of the first layer is nitride, the composition of the second layer is also nitride. When the composition of the first layer is carbonitride, the composition of the second layer is also carbonitride. When the composition of the first layer is nitride, the composition of the second layer is not carbonitride, and when the composition of the first layer is carbonitride, the composition of the second layer is nitride. It will never be.
  • the crystal grains contained in the first hard coating layer need only be contained in at least two in the first hard coating layer, and are preferably contained in three or more. Further, the crystal grains contained in the first hard coating layer preferably have a twin crystal structure, and the corresponding grain boundary indicated by the symbol ⁇ 3 in the crystal structure in the twin crystal is an axis of line symmetry, and both sides of this axis. It is more preferable that the above laminated structure exists.
  • the crystal grains have a sodium chloride type crystal structure, and have distortion based on the laminated structure composed of the first layer and the second layer in the grains. This strain improves the hardness of the crystal grains. For this reason, the film (1st hard film layer) in this embodiment can improve abrasion resistance. As a result, the surface-coated cutting tool provided with the base material coated with such a coating has excellent wear resistance and a long life.
  • the first hard coating layer includes a first layer made of nitride or carbonitride of Al x Ti 1-x and a first layer of nitride or carbonitride of Al y Ti 1-y in crystal grains. It has a laminated structure in which two or more layers are alternately laminated. In this laminated structure, the atomic ratio x of Al in the first layer varies in the range of 0.76 or more and less than 1. The atomic ratio y of Al in the second layer varies in the range of 0.45 or more and less than 0.76. Further, the maximum difference between the atomic ratio x and the atomic ratio y is 0.05 ⁇ xy ⁇ 0.5.
  • the maximum value of the difference between the atomic ratio x and the atomic ratio y is calculated from the values of all the calculated atomic ratios x when the atomic ratio x and the atomic ratio y are calculated based on the cross-sectional sample by the method described later. And the value obtained when the difference between the calculated maximum value of all the atomic ratios y and the minimum value is obtained. That is, it is synonymous with the value obtained when the difference between the maximum value of the atomic ratio x selected from the entire first hard coating layer and the minimum value of the atomic ratio y is obtained.
  • the maximum value of the difference between the atomic ratio x and the atomic ratio y is less than 0.05, the strain in the crystal grains becomes small, and the hardness tends to decrease.
  • the maximum value of the difference exceeds 0.5, the strain in the crystal grains increases and the tensile residual stress increases, so that the toughness tends to decrease.
  • FIG. 2 a graph showing an example in which the atomic ratio of Al in the crystal grains periodically and continuously fluctuates in the stacking direction of the first layer and the second layer (the arrow direction in FIG. 1B) is shown in FIG. .
  • the horizontal axis represents the normal to the surface of the substrate and represents the measurement position (distance from the measurement start position) on the normal passing through the crystal grains
  • the vertical axis represents Al and Ti at each measurement position.
  • the atomic ratio (ratio) of Al in the total amount of the atomic ratio of Al and Ti is used as a general term including both the atomic ratio x and the atomic ratio y.
  • the value of the atomic ratio of Al for example, reaches a local maximum point through a continuous increase and then decreases continuously toward the local minimum point. After passing through this minimum point, it starts to increase continuously again toward the next maximum point, and then such fluctuation is repeated a plurality of times.
  • the atomic ratio of Al in the first layer and the second layer varies periodically and continuously in the stacking direction.
  • distortion occurs when the atomic ratio of Al is reduced, that is, the atomic ratio of Ti is increased, and the first layer and the second layer are confirmed as a striped laminated state as shown in FIG. 1B.
  • the shape of the variation in the atomic ratio of Al is a shape similar to a sine wave.
  • the width of one cycle composed of adjacent increases and decreases adjacent to each other represents the total thickness of the adjacent first and second layers.
  • the atomic ratio x and the atomic ratio y are obtained by obtaining a cross-sectional sample parallel to the normal direction of the surface of the substrate in the first hard coating layer, and energy dispersion accompanying the SEM or TEM with respect to the crystal grains appearing in the cross-sectional sample.
  • EDX Energy Dispersive X-ray spectroscopy
  • the atomic ratio at the analysis position can be calculated.
  • the object for calculating the atomic ratio x and the atomic ratio y can be expanded over the entire surface of the cross-sectional sample. Therefore, the atomic ratio x and the atomic ratio y at any location of the first hard coating layer can be specified by obtaining a cross-sectional sample at any location of the first hard coating layer.
  • the atomic ratio x of Al in the first layer is never less than 0.76. This is because if the atomic ratio x is less than 0.76, it should be the Al atomic ratio y of the second layer. It is based on the same reason that atomic ratio y does not become 0.76 or more. The atomic ratio x does not become 1 because the first layer contains Ti. On the other hand, from the viewpoint of improving toughness while maintaining high wear resistance, the atomic ratio y is 0.45 or more. When the atomic ratio y is less than 0.45, the oxidation resistance becomes inferior due to the decrease in the amount of Al, and the toughness associated with the oxidation of the film tends to occur.
  • the upper limit of the atomic ratio of Al in the crystal grains that is, the preferable upper limit of the atomic ratio x is 0.95.
  • the lower limit of the atomic ratio of Al in the crystal grains that is, the preferable lower limit of the atomic ratio y is 0.5.
  • a preferable value of the maximum value of the difference between the atomic ratio x and the atomic ratio y is 0.1 or more and 0.45 or less.
  • a more preferable value of the maximum value of the difference between the atomic ratio x and the atomic ratio y is 0.26 or more and 0.45 or less.
  • the total thickness (hereinafter also referred to as “stacking period”) of the adjacent first layer and second layer is 3 to 30 nm.
  • FIG. 2 shows that the stacking period is approximately 10 nm.
  • the total thickness of the adjacent first layer and second layer is preferably 5 to 25 nm.
  • At least one pair of the adjacent first layer and second layer has a thickness of 3 to 30 nm.
  • the thicknesses of the first layer and the second layer are obtained by obtaining a cross-sectional sample parallel to the normal direction of the surface of the substrate in the first hard coating layer.
  • the sample can be accurately measured by observing with a STEM.
  • STEM high angle scattering dark field method HAADF-STEM: High-Angle Angular Dark-field Scanning Transmission Electron Microscopy
  • the term “thickness” means an average thickness.
  • the sum of the thicknesses of the adjacent first layer and the second layer is obtained, for example, by obtaining cross sections at 10 locations of the first hard coating layer, and 10 sets of adjacent first grains in the 10 crystal grains appearing in the cross section.
  • the total thickness of the first layer and the second layer can be measured, and the average value can be expressed as the total thickness.
  • the observation magnification is set to 500,000 and the observation area is set to about 0.1 ⁇ m 2 so that one crystal grain appears in one visual field. By repeating this 10 times or more, a sufficient number of “total thicknesses of the adjacent first layer and second layer” for calculating the average value can be measured.
  • the crystal grains are analyzed by analyzing the crystal orientation of the crystal grains using an electron backscatter diffraction (EBSD) device in a cross section parallel to the normal direction of the surface of the substrate. Measure the crossing angle between the normal to the (200) plane which is the crystal plane of the grain and the normal to the surface of the substrate, and classify the crystal grains where the crossing angle is 0 to 45 degrees in units of 0 to 5 degrees.
  • EBSD electron backscatter diffraction
  • measuring the crossing angle of individual crystal grains constituting the first hard coating layer and obtaining the distribution is referred to as “measuring the crossing angle number distribution”.
  • a field emission scanning electron microscope (FE-SEM) equipped with an EBSD device is used for the measurement of the distribution of the number of crossing angles. Measuring the crossing angle of the (200) planes of the individual crystal grains contained in the first hard coating layer, targeting the surface to be measured by polishing the cross section parallel to the normal direction of the surface of the substrate. To do.
  • the cross-section polished surface which is the surface to be measured, can be obtained by polishing the cross section with water-resistant abrasive paper and further performing ion milling using argon ions.
  • the polishing method for preparing the surface to be measured (cross-sectional polished surface) necessary for the measurement of the crossing angle number distribution is as follows.
  • the first hard coating layer is formed based on the manufacturing method described later. It cut
  • the surface of the first hard coating layer (if the other layer is formed on the first hard coating layer, the coating surface is used), and wax or the like is placed on a sufficiently large holding plate.
  • vertical direction with respect to the flat plate with the cutting machine of a rotary blade it cut
  • the surface of the substrate and the surface of the first hard coating layer (coating surface) are considered to be parallel.
  • the cutting can be performed at an arbitrary portion of the first hard coating layer, and by polishing and smoothing the obtained cross section as follows, A surface to be measured can be prepared.
  • Polishing is performed using the above water-resistant abrasive papers # 400, # 800, and # 1500 in order (the number (#) of the water-resistant abrasive paper means the difference in particle size of the abrasive, and the larger the number, the particle size of the abrasive Becomes smaller).
  • the cross section polished with the water-resistant abrasive paper is further smoothed by ion milling with Ar ions.
  • the conditions for the ion milling process are, for example, as follows. Accelerating voltage: 6kV Irradiation angle: 0 ° from the normal direction of the substrate surface Irradiation time: 6 hours.
  • the cross-sectional polished surface of the smoothed first hard coating layer may be observed with an FE-SEM equipped with an EBSD device.
  • This observation can be done by placing a focused electron beam individually on each pixel and collecting EBSD data in turn.
  • an FE-SEM (trade name: “Zeiss Supra 35 VP”, manufactured by CARL ZEISS) equipped with an HKL NL02 EBSD detector can be used.
  • the observation of the surface to be measured by the FE-SEM equipped with the EBSD device is as follows.
  • the EBSD device is based on an automatic analysis of the Kikuchi diffraction pattern generated by backscattered electrons, and the crystal orientation in which the crystal grains are oriented, and at what angle the crystal orientation intersects the normal to the surface of the substrate. (Crossing angle) can be measured.
  • the crossing angle number distribution is obtained by photographing the surface to be measured using an FE-SEM equipped with an EBSD device, the normal direction of the (200) plane of each pixel of each photographed image, and the normal of the surface of the substrate. It can be obtained by calculating the angle of intersection with the direction and applying statistical processing.
  • a pixel whose crossing angle is calculated to be within 0 to 5 degrees is a crystal grain whose crossing angle between the normal to the surface of the substrate and the normal of the (200) plane is 0 to 5 degrees.
  • the sum of the numbers of pixels calculated when the crossing angle is within 0 to 5 degrees corresponds to the sum of the crystal grain areas where the crossing angle is within 0 to 5 degrees.
  • nine pixels are constructed by selecting the pixels whose crossing angle is calculated to be 0 to 45 degrees and classifying the pixels by color coding in units of 0 to 5 degrees. Then, the sum of the number of pixels, that is, the frequency which is the sum of the area of the crystal grains is calculated to measure the crossing angle number distribution.
  • “frequency” is calculated for each group as the sum of the areas of the crystal grains appearing on the surface to be measured included in each group.
  • the observation magnification of the FE-SEM is appropriately selected from the range of 2000 to 20000 times, and the observation area is also appropriately selected from the range of 50 to 1000 ⁇ m 2 . It is preferable that 10 to 100 crystal grains appear in one field of view.
  • crystal grains having a crossing angle of 0 to 5 degrees are divided. Therefore, crystal grains whose crossing angles are 0 degree and 5 degrees are divided into groups of 0 to 5 degrees. Crystal grains having an intersection angle of 10 degrees are not divided into groups of 10 to 15 degrees, but are divided into groups of 5 to 10 degrees. That is, 10 to 15 degrees means exceeding 10 degrees and not more than 15 degrees.
  • the sum of the frequencies of the four groups including crystal grains having an intersection angle of 0 to 20 degrees is It is 50% or more and 100% or less of the total frequency of the group.
  • the total frequency of two groups including crystal grains having an intersection angle of 10 to 20 degrees is 30% to 100% of the total frequency of all groups.
  • the first hard coating layer containing crystal grains as described above has high hardness because the crystal grains maintain a sodium chloride type crystal structure. Furthermore, in the present embodiment, the total of the frequencies of the four groups including crystal grains having an intersection angle of 0 to 20 degrees is 50% or more of the total frequency of all groups, and occupies a large proportion. That is, in the first hard coating layer, there is a high frequency of crystal grains having a (200) plane in a direction slightly inclined (inclined 0 to 20 degrees) from the normal direction of the surface of the substrate. Show. Such a first hard coating layer can impart compressive residual stress while having high hardness, so that toughness can be improved.
  • the toughness can be drastically improved.
  • the total frequency of the four groups including crystal grains having an intersection angle of 0 to 20 degrees is preferably 55% or more of the total frequency of all groups. Further, it is more preferable that the sum of the frequencies of the two groups including crystal grains having an intersecting angle of 10 to 20 degrees is 35% or more of the sum of the frequencies of all the groups.
  • the toughness cannot be sufficiently improved. What is the upper limit of the sum of the frequencies of the four groups including crystal grains having an intersecting angle of 0 to 20 degrees and the sum of the frequencies of two groups including crystal grains having an intersecting angle of 10 to 20 degrees? Is also 100%.
  • FIG. 4 An example of a graph showing the crossing angle number distribution is shown in FIG.
  • the horizontal axis of this graph represents the crossing angle in units of 0 to 5 degrees corresponding to the nine groups into which the crystal grains are divided, and the vertical axis is the cumulative frequency.
  • the sum of the frequencies of the four groups including crystal grains having an intersection angle of 0 to 20 degrees is 57% of the sum of the frequencies of all the groups.
  • the sum of the frequencies of the two groups including crystal grains having an intersection angle of 10 to 20 degrees is 40% of the sum of the frequencies of all the groups.
  • the first hard coating layer preferably has an indentation hardness of 28 GPa or more and 38 GPa or less by a nanoindentation method. More preferably, it is 30 GPa or more and 36 GPa or less.
  • the surface-coated cutting tool according to this embodiment has improved wear resistance. In particular, excellent performance can be achieved when cutting difficult-to-cut materials such as heat-resistant alloys.
  • the indentation hardness of the first hard coating layer by the nanoindentation method can be measured using an ultra-fine indentation hardness tester that can use the nanoindentation method.
  • the indentation hardness can be calculated based on the indentation depth in which the indenter is indented with a predetermined load (for example, 30 mN) perpendicular to the thickness direction of the first hard coating layer.
  • a predetermined load for example, 30 mN
  • the first hard coating layer is exposed except for the surface coating layer by carrying out a calotest, oblique wrapping, etc.
  • the indentation hardness can be measured by using the above method for the hard coating layer.
  • the first hard coating layer preferably has an absolute value of compressive residual stress of 0.5 GPa or more and 5.0 GPa or less. More preferably, it is 1.0 GPa or more and 4.0 GPa or less.
  • the absolute value of the compressive residual stress of the first hard coating layer is within the above range, the toughness of the first hard coating layer can be dramatically improved. If the absolute value of compressive residual stress is less than 0.5 GPa, it is not sufficient to improve toughness. If the absolute value of the compressive residual stress exceeds 5.0 GPa, the internal stress becomes too large and chipping tends to occur.
  • the compressive residual stress of the first hard coating layer is 0 by adjusting the lamination period of the first layer and the second layer in the crystal grains contained in the first hard coating layer and performing an additional surface treatment. It can be controlled to 5 GPa or more and 5.0 GPa or less. Unless otherwise specified, the value of the compressive residual stress of the first hard coating layer is a point that is actually subjected to cutting. Therefore, the average compressive residual stress of one or both of the rake face and the flank face within a radius of 500 ⁇ m from the blade edge Mean value.
  • Compressive residual stress is a kind of internal stress (intrinsic strain) existing in the first hard coating layer, and is represented by a numerical value “ ⁇ ” (minus) (unit: “GPa” is used in the embodiment). Stress. For this reason, the concept that the compressive residual stress is large indicates that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small indicates that the absolute value of the numerical value is small.
  • the compressive residual stress of the first hard coating layer can be applied, for example, by a blast method, a brush method, a barrel method, an ion implantation method, or the like. Furthermore, the compressive residual stress of the first hard coating layer can be measured by, for example, the sin 2 ⁇ method using an X-ray stress measuring device.
  • the sin 2 ⁇ method using X-rays is widely used as a method for measuring the compressive residual stress of a polycrystalline material. For example, “X-ray stress measurement method” (Japan Society for Materials Science, published by Yokendo Co., Ltd. in 1981). ), Pages 54-67, can be used.
  • the compressive residual stress of the first hard coating layer is measured by applying the sin 2 ⁇ method, if there is another layer such as a surface coating layer on the first hard coating layer, electropolishing, flat as necessary What is necessary is just to measure a compressive residual stress with respect to this exposed 1st hard coating layer by carrying out milling etc., exposing a 1st hard coating layer except a surface coating layer.
  • the physical property coefficient used when measuring stress can be used by citing known literature. For example, N.I. The values reported by Norrby et al. In “Surface & Coatings Technology 257 (2014) 102-107)” can be used. At this time, it is preferable to measure the stress by selecting the diffraction peak on the high angle side so that the peaks of the first hard coating layer and the substrate do not overlap as much as possible in consideration of the type of the substrate used.
  • the first hard coating layer does not affect the function and effect of the present embodiment of providing high hardness and toughness and imparting high chipping resistance, chlorine (Cl), oxygen (O), boron (B), It may contain at least one impurity selected from the group consisting of cobalt (Co), tungsten (W), chromium (Cr), tantalum (Ta), niobium (Nb) and carbon (C). It does not have to be. That is, the first hard coating layer is allowed to be formed including impurities such as inevitable impurities.
  • the first hard coating layer preferably has a thickness of 1 to 15 ⁇ m.
  • the thickness of the first hard coating layer is in the above range, the effect of improving the chipping resistance while maintaining the wear resistance can be remarkably shown.
  • the thickness of the first hard coating layer is less than 1 ⁇ m, the toughness is not sufficient, and when it exceeds 15 ⁇ m, compressive residual stress is difficult to enter and the chipping resistance tends to be insufficient.
  • the thickness of the first hard coating layer is more preferably 3 ⁇ m or more and 7.5 ⁇ m or less from the viewpoint of improving the characteristics.
  • the surface-coated cutting tool according to this embodiment preferably includes a second hard coating layer 12 between the base material 10 and the first hard coating layer 11 as shown in FIGS. 3A and 3B. Further, the second hard coating layer 12 preferably has a thickness of 0.01 to 0.5 ⁇ m.
  • the second hard coating layer is a layer in which nuclei for growing crystal grains contained in the first hard coating layer 11 having the above-described structure are gathered. Therefore, the composition is in the range where the atomic ratio h of Al h Ti 1-h is 0 to 1, that is, the average value Al / (Al + Ti). The thickness is 0.01 to 0.5 ⁇ m, which provides an effect that the first hard coating layer having high hardness and high adhesion can be formed over a wide range in the furnace.
  • the coating may include a layer other than the first hard coating layer and the second hard coating layer.
  • the base layer which can make the joining strength of a base material and a film high can be included.
  • examples of such a layer include a titanium nitride (TiN) layer, a titanium carbonitride (TiCN) layer, and a composite layer composed of a TiN layer and a TiCN layer.
  • TiN titanium nitride
  • TiCN titanium carbonitride
  • the underlayer can be produced by using a conventionally known production method.
  • At least one element selected from the group consisting of Ti, Zr and Hf, and at least one selected from the group consisting of N, O, C and B A compound layer made of an element may be included. This compound layer can also increase the bonding strength between the substrate and the coating.
  • As the surface coating layer at least one of an ⁇ -Al 2 O 3 layer and a ⁇ -Al 2 O 3 layer may be included. With the ⁇ -Al 2 O 3 layer and the ⁇ -Al 2 O 3 layer, the oxidation resistance of the coating can be improved.
  • the total thickness of the coating is preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the total thickness of the coating is within the above range, it is possible to suitably exhibit the characteristics of the coating including the effect of improving the chipping resistance while maintaining the wear resistance of the first hard coating layer.
  • the total thickness of the coating is less than 3 ⁇ m, the wear resistance decreases, and when it exceeds 20 ⁇ m, for example, the coating frequently peels off from the base material during cutting.
  • the total thickness of the coating is more preferably 4 ⁇ m or more and 15 ⁇ m or less from the viewpoint of improving the characteristics.
  • the thickness of the first hard coating layer, the thickness of the second hard coating layer, and the total thickness of the coating are the methods for measuring the total thickness of the adjacent first and second layers in the crystal grains contained in the first hard coating layer. It can be measured by the same method. That is, measurement can be performed by obtaining these cross-sectional samples and observing them with a STEM using these samples. Furthermore, the thickness of the first hard coating layer, the thickness of the second hard coating layer, and the total thickness of the coating are obtained, for example, by obtaining 10 cross-sectional samples, measuring the thickness of each, and calculating the average value of the thickness or the total thickness. It can be expressed as thickness.
  • the observation magnification is set to 50000 times and the observation area is adjusted to be about 10 ⁇ m 2 in one visual field.
  • the observation magnification is set to 5000 times, and the observation area is adjusted to be about 100 ⁇ m 2 in one visual field.
  • the surface-coated cutting tool according to the present embodiment is used for, for example, high-speed intermittent cutting of stainless steel, the occurrence of chipping, chipping, peeling, and the like can be suppressed. Because of its high hardness, it also exhibits wear resistance. Therefore, the surface-coated cutting tool according to the present embodiment has high hardness and toughness, maintains excellent wear resistance based on high hardness, and has high chipping performance based on excellent toughness and long life. Can be realized.
  • the manufacturing method of the surface coating cutting tool which concerns on this embodiment includes the 1st process of preparing a base material, and the 2nd process of forming the film containing a 1st hard film layer using a chemical vapor deposition (CVD) method.
  • the second step preferably includes a step of growing crystal grains while modulating the flow rate of either or both of AlCl 3 gas and TiCl 4 gas.
  • FIG. 5 shows a schematic cross-sectional view of an example of a CVD apparatus used in the method for manufacturing a surface-coated cutting tool according to this embodiment.
  • the CVD apparatus 100 includes a plurality of base material holding jigs 21 for installing the base material 10 and a heat-resistant alloy steel reaction vessel 22 that surrounds the base material holding jig 21. ing.
  • a temperature control device 23 for controlling the temperature in the reaction vessel 22 is provided around the reaction vessel 22.
  • the gas introduced into the first gas introduction pipe 24 and the gas introduced into the second gas introduction pipe 25 are not mixed.
  • a part of the first gas introduction pipe 24 and the second gas introduction pipe 25 is a base installed in the base material holding jig 21 with a gas flowing inside the first gas introduction pipe 24 and the second gas introduction pipe 25, respectively.
  • a plurality of through holes for jetting on the material 10 are provided.
  • reaction vessel 22 is provided with a gas exhaust pipe 27 for exhausting the gas inside the reaction vessel 22 to the outside.
  • the gas inside the reaction vessel 22 passes through the gas exhaust pipe 27 and is discharged from the gas exhaust port 28 to the outside of the reaction vessel 22.
  • the manufacturing method of the surface coating cutting tool which concerns on this embodiment includes the 1st process of preparing a base material, and the 2nd process of forming the film containing a 1st hard film layer, and is the 1st process and the 2nd process. It is done in order.
  • the second step preferably includes a step of forming the second hard coating layer. Furthermore, in this embodiment, steps other than the first step and the second step may be included.
  • the first hard coating layer and the second hard coating layer are directly formed on the base material will be described.
  • another layer such as a base layer is formed on the base material.
  • the first hard coating layer and the second hard coating layer may be formed.
  • a surface coating layer can be formed to improve oxidation resistance. Conventionally known methods can be used for forming the underlayer and the surface coating layer.
  • a substrate is prepared.
  • a commercially available substrate may be used as the substrate, or it may be produced by a general powder metallurgy method.
  • a mixed powder can be obtained by mixing WC powder and Co powder with a ball mill or the like. The mixed powder is dried and then molded into a predetermined shape to obtain a molded body. Further, the WC—Co cemented carbide (sintered body) is obtained by sintering the compact.
  • a base material made of a WC—Co based cemented carbide can be manufactured by subjecting the sintered body to a predetermined cutting edge processing such as a honing process.
  • a predetermined cutting edge processing such as a honing process.
  • any conventionally known substrate can be prepared as this type of substrate, even if it is a substrate other than those described above.
  • a film including the first hard film layer (the first hard film layer and the second hard film layer) is formed using a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the first gas containing Ti halide gas such as TiCl 4 gas and Al halide gas such as AlCl 3 gas is first formed as the step of forming the second hard coating layer.
  • the group and a second gas group containing ammonia (NH 3 ) gas are chemically reacted in the reaction vessel. Thereby, the nucleus of the crystal grain containing Al, Ti, and N is formed on the base material. Thereafter, the nucleus is grown to form a first hard coating layer.
  • the gas component contained in the first gas group and the gas component contained in the second gas group are uniformly chemically reacted in the reaction vessel, and the reaction product is ejected onto the second hard coating layer.
  • crystal grains containing the nitride of AlTi can be grown to form the first hard coating layer.
  • a plurality of methods can be used as a method of ejecting the first gas group when forming the first hard coating layer.
  • One method is a first crystal growth method in which crystal grains are grown by modulating the flow rate of TiCl 4 gas while maintaining the flow rate (volume%) of AlCl 3 gas in all reaction gases constant.
  • the other method is a second crystal growth method in which crystal grains are grown by modulating the flow rate of the AlCl 3 gas while keeping the flow rate of the TiCl 4 gas in the entire reaction gas constant.
  • the atomic ratio of Ti can be controlled by adjusting the flow rate of the TiCl 4 gas (that is, the atomic ratio of Al can be controlled).
  • the high flow rate (High Flow) time for ejecting the TiCl 4 gas, the low flow rate (Low Flow) time for ejecting the TiCl 4 gas with a high flow rate the flow rate of TiCl 4 gas from the low flow rate to or low flow from the high flow By adjusting the number of times to switch to, the thickness of the first layer and the second layer, the total thickness of the adjacent first layer and the second layer, and the thickness of the first hard coating layer are controlled to the desired thickness, respectively. can do.
  • the atomic ratio of Al can be controlled by adjusting the flow rate of the AlCl 3 gas. Time for jetting AlCl 3 gas at a high flow rate, by adjusting the frequency etc. of switching time for ejecting AlCl 3 gas at a low flow rate, low flow rate to or low flow flow rate of AlCl 3 gas from a high flow rate to high flow,
  • the thicknesses of the first layer and the second layer, the sum of the thicknesses of the adjacent first layer and second layer, and the thickness of the first hard coating layer can be controlled to desired thicknesses, respectively.
  • compression residual stress application process it is preferable to apply a compressive residual stress to the coating including the first hard coating layer by performing a blasting process on the coating including the first hard coating layer formed from the surface side (compression residual stress applying step). ).
  • this step can apply compressive residual stress to the surface side of the coating including the first hard coating layer, and thus the above-mentioned A film including the first hard film layer having compressive residual stress can be produced.
  • the compressive residual stress to be applied can be controlled by controlling the projection pressure, projection time, and projection distance of the media.
  • wet blasting can be performed under the conditions of spherical alumina having an average particle diameter of 50 ⁇ m, a concentration of 10% by volume, a projection pressure of 0.2 MPa, a projection distance of 10 mm, and a projection time of 10 seconds.
  • the first crystal growth method is used as a method for ejecting the first gas group. Further, in this example, crystal grains containing AlTi nitride are grown by CVD.
  • a chip having an arbitrary shape as the substrate 10 is mounted on the substrate holding jig 21 in the reaction vessel 22 of the CVD apparatus 100. Subsequently, since a temperature control device 23 for controlling the temperature in the reaction container 22 is provided around the reaction container 22, the temperature of the base material 10 installed on the base material holding jig 21 is adjusted using the temperature control device 23. The temperature is raised to 700-750 ° C. Further, the pressure inside the reaction vessel 22 is set to 2 to 3 kPa.
  • a first gas group containing TiCl 4 gas and AlCl 3 gas is introduced into the first gas introduction pipe 24 while rotating the gas first gas introduction pipe 24 and the second gas introduction pipe 25 around the shaft 26.
  • the second gas group containing NH 3 gas is introduced into the second gas introduction pipe 25.
  • the gas component contained in the first gas group and the gas component contained in the second gas group chemically react in the mixed gas, so For example, crystal grain nuclei containing Al, Ti, and N are formed.
  • the pressure inside the reaction vessel 22 when forming crystal grain nuclei is 2 to 2.5 kPa, and the temperature of the substrate 10 is 700 to 730 ° C.
  • the second hard coating layer can be formed with a thickness of 0.01 to 0.5 ⁇ m.
  • the pressure inside the reaction vessel 22 is set to 2 to 3 kPa, and the temperature of the substrate 10 is set to 700 to 750 ° C.
  • the first gas group and the second gas group are ejected to grow the above nuclei, and crystal grains composed of Al, Ti, and N are grown.
  • the first crystal growth method is used. That is, the first gas group under the condition that the flow rate of the TiCl 4 gas is maintained at 1 to 3% by volume (High Flow) while maintaining the flow rate of the AlCl 3 gas constant at 3 to 6% by volume. Is introduced into the first gas introduction pipe 24. Immediately thereafter, switches the flow rate level of the TiCl 4 gas continued while maintaining the flow rate of AlCl 3 gas above concentrations, 0.2-0.8 vol% for the TiCl 4 gas (low flow: Low Flow) as 3 The first gas group is introduced into the first gas introduction pipe 24 under the condition of maintaining for ⁇ 15 seconds. Thereafter, the flow rate of TiCl 4 gas is further switched. By repeating this operation a plurality of times, it is possible to form a first hard coating layer containing crystal grains having a laminated structure in which the first layer and the second layer are alternately laminated.
  • the second crystal growth method is applied at the above timing in place of the first crystal growth method described above, that is, crystal grains are grown under conditions where the flow rate of the AlCl 3 gas is modulated. By doing so, it is possible to form the first hard coating layer including crystal grains having a laminated structure in which the first layers and the second layers are alternately laminated as in the first crystal growth method.
  • the first gas group preferably contains hydrogen chloride (HCl) gas and hydrogen (H 2 ) gas as a carrier gas, together with TiCl 4 and AlCl 3 gas.
  • the second gas group preferably contains argon gas together with NH 3 gas.
  • nitrogen (N 2 ) gas may be included.
  • nitrogen (N 2 ) gas is not included, and only ammonia (NH 3 ) gas and argon gas are used.
  • the second gas group is preferably configured.
  • the first layer made of the Al x Ti 1-x nitride or carbonitride and the Al y Ti 1-y nitride or carbonitride in the crystal grains having the sodium chloride type crystal structure.
  • the surface-coated cutting tool according to the present embodiment can be manufactured by forming the first hard coating layer on which the structure in which the second layers made of materials are alternately stacked is formed on the substrate 10.
  • the total thickness of the coating, the thickness of the first hard coating layer, and the thickness of the second hard coating layer were determined using the STEM high-angle scattering dark field method using STEM, and the normal direction of the surface of the substrate It was measured by observing the cross section of the coating parallel to.
  • the presence of the first layer and the second layer in the crystal grains and the average value (lamination cycle) of the thicknesses of the adjacent first layer and second layer were determined by observation using the STEM of the coating cross section.
  • the atomic ratio x of Al in the first layer and the atomic ratio y of Al in the second layer were calculated using an EDX apparatus (trade name: “JEM-2100F”, manufactured by JEOL Ltd.) attached to the SEM or TEM.
  • the maximum value of xy was obtained.
  • the measurement of the distribution of the number of crossing angles for the (200) plane of the crystal grains contained in the first hard coating layer is performed by FE-SEM (trade name: “Zeiss Supra 35 VP” equipped with an EBSD device, manufactured by CARL ZEISS. ) was used to photograph and analyze a cross section (surface to be measured) parallel to the normal direction of the surface of the substrate.
  • the surface to be measured was prepared by polishing a cross section parallel to the normal direction of the surface of the substrate with water-resistant abrasive paper as described above, and then further smoothing the surface by ion milling with Ar ions.
  • the ion milling apparatus and its processing conditions in this example are as follows. Ion milling device (trade name: “SM-09010”, manufactured by JEOL Ltd.) Accelerating voltage: 6kV Irradiation angle: 0 ° from the normal direction of the substrate surface Irradiation time: 6 hours.
  • the indentation hardness (GPa) of the first hard coating by the nanoindentation method was measured using an ultra-fine indentation hardness tester (trade name: “ENT-1100a”, manufactured by Elionix).
  • the absolute value of the compressive residual stress (GPa) of the first hard coating was calculated by the sin 2 ⁇ method using an X-ray stress measuring device (trade name: “SmartLab”, manufactured by Rigaku Corporation).
  • a base material A and a base material B to be coated with a film were prepared. Specifically, raw material powders having the composition (% by mass) shown in Table 1 were uniformly mixed. Next, the mixed powder is pressed into a predetermined shape and then sintered at 1300 to 1500 ° C. for 1 to 2 hours, whereby a base material A (shape: CNMG120408NUX) and a base material B (made of cemented carbide) Shape: SEET13T3AGSN-G) was obtained.
  • the base layer (TiN and TiN and TiCN depending on a sample) of the composition shown in Table 2 was formed on the surface of the base material A and the base material B with the thickness as shown in Table 6.
  • a second hard coating layer was formed on the underlayer, and a first hard coating layer described later was formed with a thickness as shown in Table 6.
  • a surface coating layer Al 2 O 3 ) was also formed.
  • the underlayer is a layer that is in direct contact with the surface of the substrate.
  • the second hard coating layer is formed on the base layer, and the first hard coating layer is formed on the second hard coating layer.
  • a surface coating layer is a layer formed on a 1st hard film, and comprises the surface of a cutting tool.
  • the TiN layer has a base placed in a reaction vessel of a known CVD apparatus including the CVD apparatus 100 shown in FIG. 5, and 2 vol% TiCl 4 gas, 39.7 vol. % N 2 gas and the remaining H 2 gas can be formed by jetting at a total gas flow rate of 44.7 L / min in an atmosphere having a pressure of 6.7 kPa and a temperature of 915 ° C.
  • the surface coating layer Al 2 O 3
  • the thicknesses of the underlayer and the surface coating layer can be controlled by the time during which the reaction gas is ejected, respectively.
  • first hard coating layer and the second hard coating layer were formed using a CVD apparatus 100 as shown in FIG.
  • the pressure inside the reaction vessel 22 is set to 2 kPa
  • the film forming temperature (base material temperature) is set to 730 ° C.
  • the first gas group and the second gas The total gas flow rate for the group was 55.5 L / min.
  • the composition of the first gas group is 0.2 volume% TiCl 4 gas, 0.7 volume% AlCl 3 gas, 0 volume% C 2 H 4 gas, and the remaining (remainder) H 2 gas.
  • the composition of the second gas group was 1 volume% NH 3 gas and 37 volume% Ar gas, which were introduced into the first gas introduction pipe 24 and the second gas introduction pipe 25, respectively, and jetted onto the substrate 10.
  • the said composition shall satisfy
  • the formation of the first hard coating layer that is, the growth of crystal grains
  • the first crystal growth method in which the crystal grains are grown by modulating the flow rate of the TiCl 4 gas while maintaining the flow rate of the AlCl 3 gas constant is used.
  • the second crystal growth method was used in which the crystal grains were grown by modulating the flow rate of the AlCl 3 gas while maintaining the flow rate of the TiCl 4 gas constant.
  • crystal grains were grown by intermittently supplying the first gas group and the second gas group while keeping the flow rates of the AlCl 3 gas and the TiCl 4 gas constant without changing them. Specifically, the first gas group and the second gas group were supplied at a cycle of stopping 0.8 seconds per second and ejecting 0.2 seconds. Under the formation condition Y, the flow rate of the AlCl 3 gas and the TiCl 4 gas was kept constant, and the crystal grains were grown by performing continuous gas ejection.
  • the formation condition “1A” indicates that the first hard coating layer is formed under the following conditions. That is, the film forming temperature (base material temperature) is set to 750 ° C., the pressure in the reaction vessel is set to 3.0 kPa, and the total gas flow rate that is the sum of the flow rates of the first gas group and the second gas group is set to 60.5 L / min. To do. Under this condition, the first gas group is maintained under the condition that the flow rate of the AlCl 3 gas is kept constant at 5% by volume, and the TiCl 4 gas is maintained at 0.5% by volume (Low Flow) for 3 seconds (Time). Is introduced into the first gas introduction pipe 24.
  • TiCl 4 flow rate of gas 1.5% by volume (high flow: High Flow) as 3 seconds (Time) maintained
  • the first gas group is introduced into the first gas introduction pipe 24 under the conditions to be satisfied. Thereafter, the flow rate of the TiCl 4 gas is further switched, and such an operation is performed a plurality of times as desired. Therefore, TiCl 4 gas is introduced into the first gas introduction pipe 24 at intervals of 3 seconds per minute, 10 times (Interval) at a high flow rate and a low flow rate, respectively.
  • the first gas group includes TiCl 4 gas and AlCl 3 gas, and H 2 gas as the balance.
  • the second gas group includes NH 3 gas and Ar gas.
  • the flow rate of TiCl 4 or AlCl 3 was modulated in the same manner as “1A”, and the first hard coating layer was formed under the conditions shown in Table 3 or Table 4.
  • the first hard coating layer was formed under the conditions shown in Table 5.
  • crystal grains having a laminated structure of the first layer and the second layer made of AlTi nitride grow.
  • ethylene gas is contained in the first gas group in the volume% as shown in Tables 3 and 4, so that the carbonitride of AlTi The crystal grain which has the laminated structure of the 1st layer and 2nd layer which consist of grows.
  • the first coating layer formed under each of the above conditions is formed by growing crystal grains having a stacked structure in which the first layer and the second layer are alternately stacked in the stacking cycle as shown in Tables 3 to 5 Is done.
  • Tables 3 to 5 the thickness of the first layer, the thickness of the second layer, the atomic ratio x (maximum value) of Al in the first layer, and the atomic ratio y (minimum value) of Al in the second layer formed according to each condition. ), The difference (xy) between the atomic ratio x (maximum value) and the atomic ratio y (minimum value), and the crossing angles (0 to 20 degrees and 10 to 20 degrees) of the crystal grains contained in the first coating layer The frequency is also shown.
  • spherical alumina having an average particle diameter of 50 ⁇ m, a concentration of 10% by volume, a projection pressure of 0.2 MPa, a projection distance of 10 mm, and a projection time of 10 seconds were used as the wet blast treatment.
  • Table 6 shows the compressive residual stress value of the first hard coating layer obtained by the total thickness of the coating and the structure of the coating.
  • ⁇ Making cutting tools The base material A or base material B prepared as described above was covered with the coating film formed as described above, and sample Nos. As shown in Table 6 were used. 1 to 36 cutting tools were produced. As described above, in this example, the sample No. Cutting tools 1 to 7, 9 to 15, 17 to 22, and 25 to 30 are examples. The cutting tools 8, 16, 23, 24, and 31 to 36 are comparative examples.
  • any of the base material, the base layer, and the first hard coating layer is different for each sample.
  • Table 6 when two compounds (for example, “TiN (0.5) -TiCN (2.5)”) are listed in one column, the left side (“TiN (0.5)”) It means that the compound is a layer located on the side close to the surface of the substrate, and the right side (“TiCN (2.5)”) compound is a layer located on the side far from the surface of the substrate.
  • the numerical value in the parenthesis means the thickness of each layer.
  • the column indicated by “-” in Table 6 means that no layer is present.
  • Sample No. The values of indentation hardness and compressive residual stress of the first hard coating layer in the cutting tools 1 to 36 are also shown.
  • the surface coating layer Al 2 O 3 layer
  • the thickness of the entire coating film of 1 cutting tool is 9.0 ⁇ m.
  • Sample No. The indentation hardness (GPa) exhibited by the first hard coating layer in the cutting tool 1 is 34.3, and the compressive residual stress (GPa) is 3.3.
  • the cutting tools 1 to 7 and 17 to 22 have a cutting time of 16 minutes or more. Compared to the cutting tools of 8, 23, 24, 33 and 34, it was confirmed to have a long life. In particular, sample no. It was confirmed that the cutting tools 33 and 34 were inferior in performance to high-speed cutting because chipping was confirmed.
  • Sample No. The cutting tools 9 to 15 and 25 to 30 have a cutting distance of 7.6 km or more. It was confirmed that it has a long life compared with the cutting tools of 16, 31, 32, 35 and 36. In particular, sample no. Chipping of the cutting tool No. 35 was confirmed, and sample No. It was confirmed that the cutting tool 36 was inferior in chipping resistance (chip resistance).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

 表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備え、被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含み、結晶粒は、AlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有し、第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動し、第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動し、原子比xと原子比yとは、その差の最大値が0.05≦x-y≦0.5となり、隣り合う第1層と第2層との厚みの合計は、3~30nmである。

Description

表面被覆切削工具およびその製造方法
 本発明は、表面被覆切削工具およびその製造方法に関する。
 本出願は、2016年4月8日出願の日本出願第2016-078296号に基づく優先権を主張し、前記日本出願に記載されたすべての記載内容を援用するものである。
 池田ら(非特許文献1)は、物理蒸着(PVD:physical vapor deposition)法によりAlの原子比が0.7を超える「AlTiN」または「AlTiCN」の被膜を作製すると、上記被膜の層構造がウルツ鉱型結晶構造に相転移するため、硬度が低下すると指摘している。瀬戸山ら(非特許文献2)は、「AlTiN」または「AlTiCN」の被膜中のAlの含有割合を高めるため、PVD法によりTiN/AlNの超多層膜を作製した。しかしAlN一層当たり、3nmを超える厚みで「AlTiN」または「AlTiCN」の被膜を作製すると、その層構造がウルツ鉱型結晶構造に相転移するため、硬度が低下することを報告している。したがって、化学蒸着(CVD:chemical vapor deposition)法を用い、Alの原子比を高めるなどの技術により、より一段と切削性能を向上させることが検討されている。
 たとえば、特開2014-129562号公報(特許文献1)には、AlCl3ガス、TiCl4ガス、NH3ガス、H2ガスおよびN2ガスを圧力1.3kPa、温度800℃の反応容器内に導入し、その後、基材の温度が200℃になるまで10℃/minの冷却速度で反応容器を冷却する方法が開示されている。これにより、厚さ2nmの面心立方格子(fcc)構造のTiNと厚さ6nmのfcc構造のAlNとが交互に積層された構造を有する硬質被膜をCVD法で形成することができるとされている。
 さらに、特開2015-193071号公報(特許文献2)には、(Ti1-xAlxN)(Cy1-y)で表される複合窒化物層または複合炭窒化物層を含み、この層が立方晶構造を有する結晶粒を含み、TiとAlとの組成が工具基体の表面の法線方向に沿って周期的に変化する硬質被膜層について開示されている。
特開2014-129562号公報 特開2015-193071号公報
T. Ikeda et al., "Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method", Thin Solid Films 195 (1991) 99-110 M. Setoyama et al., "Formation of cubic-AlN in TiN/AlN superlattice", Surface & Coatings Technology 86-87 (1996) 225-230
 本発明の一態様に係る表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、前記被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含み、前記結晶粒は、AlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有し、前記第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動し、前記第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動し、前記原子比xと前記原子比yとは、その差の最大値が0.05≦x-y≦0.5となり、隣り合う前記第1層と前記第2層との厚みの合計は、3~30nmであり、前記結晶粒は、前記基材の表面の法線方向に平行な断面において電子線後方散乱回折装置を用いて前記結晶粒の結晶方位をそれぞれ解析することにより、前記結晶粒の結晶面である(200)面に対する法線と前記基材の表面に対する法線との交差角を測定し、前記交差角が0~45度となる前記結晶粒を0度から5度単位で区分けして9つのグループを構築し、各グループに含まれる前記結晶粒の面積の和である度数をそれぞれ算出したとき、前記交差角が0~20度となる前記結晶粒が含まれる4つのグループの前記度数の合計が、全グループの前記度数の合計の50%以上100%以下となる。
 本発明の一態様に係る表面被覆切削工具の製造方法は、前記基材を準備する第1工程と、前記第1硬質被膜層を含む前記被膜を化学蒸着法を用いて形成する第2工程とを含む。
図1Aは、表面被覆切削工具における被膜の顕微鏡像を捕えた図面代用写真である。 図1Bは、図1Aの破線囲い部を拡大して示す図面代用写真である。 図2は、図1Bにおける矢印方向のAlTiNの組成比の変動を説明するグラフである。 図3Aは、図1Aを拡大して示す図面代用写真である。 図3Bは、図3Aをさらに拡大して示す図面代用写真である。 図4は、電子線後方散乱回折装置を用いて解析した第1硬質被膜層に含まれる結晶粒の交差角度数分布の一例を示すグラフである。 図5は、本実施形態に係る表面被覆切削工具の製造方法に用いる化学蒸着(CVD)装置を模式的に示す模式図である。
 [本開示が解決しようとする課題]
 特許文献1では、硬質被膜がfcc構造のTiNとfcc構造のAlNとが交互に積層された構造のみから構成されているため、硬質被膜の硬度は非常に高く、耐摩耗性が良好である。しかしながら、特許文献1に記載の硬質被膜を切削工具に用いた場合、高速切削でチッピングが生じたり被削材によっては突発的に欠損が生じ、切削工具の長寿命化を実現することができないケースがあった。その理由は明らかではないが、過度な急冷操作によりfcc構造のTiNとfcc構造のAlNとの界面の格子不整合に起因し、fcc構造のAlNに強い引張残留応力が生じていることによるものと推測される。
 特許文献2では、複合窒化物層または複合炭窒化物層が立方晶構造を有し、TiとAlの組成が基体の法線方向に沿って周期的に変化することにより、高硬度かつ靱性にも優れる硬質被覆層を実現したとされている。しかしながら、この硬質被覆層は特に耐チッピング性の獲得において改善の余地があった。したがって、未だ望んだ長寿命を実現することには至っておらず、その開発が切望されている。
 そこで、高硬度かつ靱性に優れ、特に高い耐チッピング性能を示すことができる表面被覆切削工具およびその製造方法を提供することを目的とする。
 [本開示の効果]
 本開示によれば、高硬度かつ靱性に優れ、特に高い耐チッピング性能を示すことができる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 [1]本発明の一態様に係る表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、上記被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含み、上記結晶粒は、AlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有し、上記第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動し、上記第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動し、上記原子比xと上記原子比yとは、その差の最大値が0.05≦x-y≦0.5となり、隣り合う上記第1層と上記第2層との厚みの合計は、3~30nmであり、上記結晶粒は、上記基材の表面の法線方向に平行な断面において電子線後方散乱回折装置を用いて上記結晶粒の結晶方位をそれぞれ解析することにより、上記結晶粒の結晶面である(200)面に対する法線と前記基材の表面に対する法線との交差角を測定し、上記交差角が0~45度となる上記結晶粒を0度から5度単位で区分けして9つのグループを構築し、各グループに含まれる上記結晶粒の面積の和である度数をそれぞれ算出したとき、上記交差角が0~20度となる上記結晶粒が含まれる4つのグループの上記度数の合計が、全グループの上記度数の合計の50%以上100%以下となる。このような構成の表面被覆切削工具は、高硬度かつ靱性に優れ、高硬度に基づいた高い耐摩耗性とともに、優れた靱性に基づいた高い耐チッピング性能を備えて長寿命を実現することができる。
 [2]上記表面被覆切削工具は、上記交差角が10~20度となる上記結晶粒が含まれる2つのグループの上記度数の合計が、上記全グループの上記度数の合計の30%以上100%以下となる。これにより、より優れた耐チッピング性能を示すことができる。
 [3]上記被膜は、上記基材と上記第1硬質被膜層との間に第2硬質被膜層を含み、上記第2硬質被膜層は、その厚みが0.01~0.5μmである。これにより、高硬度かつ高い密着性をもった第1硬質被膜層を実現することができる。
 [4]上記第1硬質被膜層は、その厚みが1~15μmである。これにより、耐摩耗性および耐酸化性においてもより優れた性能を示すことができる。
 [5]上記第1硬質被膜層は、ナノインデンテーション法による押し込み硬さが28GPa以上38GPa以下である。これにより、切削工具などに適用した場合に刃先の耐摩耗性を向上させることができる。
 [6]上記第1硬質被膜層は、圧縮残留応力の絶対値が0.5GPa以上5.0GPa以下である。これにより、切削工具などに適用した場合に刃先の靱性を向上させて、より優れた耐チッピング性を示すことができる。
 [7]本発明の一態様に係る表面被覆切削工具の製造方法は、上記基材を準備する第1工程と、上記第1硬質被膜層を含む上記被膜を化学蒸着法を用いて形成する第2工程とを含む。これにより、高硬度かつ靱性に優れ、特に高い耐チッピング性能を示す表面被覆切削工具を製造することができる。
 [8]上記第2工程は、AlCl3ガスおよびTiCl4ガスの両方またはいずれか一方の流量を変調させながら前記結晶粒を成長させる工程を含む。これにより、高硬度かつ靱性に優れ、特に高い耐チッピング性能を示す表面被覆切削工具を歩留まりよく製造することができる。
 [本発明の実施形態の詳細]
 以下、実施形態について説明する。以下の実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わす。
 ここで、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。また、本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば「TiAlN」と記載されている場合、TiAlNを構成する原子数の比はTi:Al:N=0.5:0.5:1に限られず、従来公知のあらゆる原子比が含まれる。このことは、「TiAlN」以外の化合物の記載についても同様である。本実施形態において、チタン(Ti)、アルミニウム(Al)、ケイ素(Si)、タンタル(Ta)、クロム(Cr)などの金属元素と、窒素(N)、酸素(O)または炭素(C)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。
 ≪表面被覆切削工具≫
 本実施形態に係る表面被覆切削工具は、基材と、該基材の表面に形成された被膜とを備える。被膜は、基材の全面を被覆することが好ましい。しかしながら、基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても、本発明の範囲を逸脱するものではない。
 本実施形態に係る表面被覆切削工具は、高硬度かつ靱性に優れ、高硬度に基づいた高い耐摩耗性とともに、優れた靱性に基づいた高い耐チッピング性能を備えて長寿命を実現することができる。したがって、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。
 ≪基材≫
 基材は、この種の基材として従来公知のものであればいずれも使用することができる。たとえば、超硬合金(たとえば、WC基超硬合金、WCのほか、Coを含み、あるいはTi、Ta、Nbなどの炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
 これらの各種基材の中でも超硬合金、特にWC基超硬合金、またはサーメット(特にTiCN基サーメット)を選択することが好ましい。これらの基材は、特に高温における硬度と強度のバランスに優れ、上記用途の表面被覆切削工具の基材として優れた特性を有している。基材としてWC基超硬合金を用いる場合、その組織中に遊離炭素およびη相と呼ばれる異常層の両方またはいずれか一方を含んでいてもよい。
 表面被覆切削工具が刃先交換型切削チップなどである場合、基材は、チップブレーカーを有するものも、有さないものも含まれる。刃先稜線部の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドを組み合わせたものの中で、いずれのものも含まれる。
 ≪被膜≫
 本実施形態において、被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含む。第1硬質被膜層に含まれる結晶粒が塩化ナトリウム型の結晶構造を有していることは、X線回折装置(たとえば、商品名:「SmartLab」、株式会社リガク製)を用いて分析することにより確認することができる。図1Aおよび図1Bに本実施形態における被膜(STEM像)の一例を示す。
 <第1硬質被膜層>
 (結晶粒の積層構造)
 第1硬質被膜層に含まれる結晶粒は、AlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有している。さらに、第1層のAlの原子比xは、各第1層中で0.76以上1未満の範囲で変動し、第2層のAlの原子比yは、各第2層中で0.45以上0.76未満の範囲で変動する。換言すれば、第1硬質被膜層に含まれる結晶粒は、Alの原子比が高い割合を維持して変動する第1層と、この第1層に比べAlの原子比が相対的に低い割合を維持して変動する第2層とが、交互に配置される積層構造を有している。
 より詳細には、図1Aに示すように、第1硬質被膜層に含まれる結晶粒は、それぞれAlTiの窒化物または炭窒化物の同一結晶相(Homo-Structure)であって、Alの原子比が、この同一結晶相の内部で変動している。この変動は周期的であって、連続的または段階的であることが好ましい。これにより、第1硬質被膜層に含まれる結晶粒は、図1Bに示すように、所定の界面に微小な歪が生じ、この歪に基づいて異なった層として区別され得る第1層および第2層からなる積層構造が形成されることとなる。なお、Alの原子比の変動については、その一例を図2を用いて後述する。
 第1層および第2層の組成は、窒化物または炭窒化物のいずれでもよい。ただし、第1層の組成が窒化物となる場合、第2層の組成も窒化物となる。第1層の組成が炭窒化物となる場合、第2層の組成も炭窒化物となる。第1層の組成が窒化物となる場合に、第2層の組成が炭窒化物となることはなく、第1層の組成が炭窒化物となる場合に、第2層の組成が窒化物となることはない。
 第1硬質被膜層に含まれる結晶粒は、第1硬質被膜層に少なくとも2つ含まれていればよく、3つ以上含まれていることが好ましい。さらに第1硬質被膜層に含まれる結晶粒は、双晶の結晶構造を有することが好ましく、この双晶中の結晶構造において記号Σ3で示される対応粒界を線対称軸とし、この軸の両側に上述の積層構造が存在していることがより好ましい。
 上述したように結晶粒は、塩化ナトリウム型の結晶構造を有し、その粒内に第1層と第2層とからなる積層構造に基づく歪みを有している。この歪によって結晶粒は硬度が向上する。このため本実施形態における被膜(第1硬質被膜層)は、耐摩耗性を向上させることができる。その結果、このような被膜で被覆された基材を備えた表面被覆切削工具は、優れた耐摩耗性を有して長寿命化が達成される。
 (Alの原子比)
 上述のとおり第1硬質被膜層は、結晶粒内にAlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有している。この積層構造において第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動する。第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動する。さらに、原子比xと原子比yとは、その差の最大値が0.05≦x-y≦0.5となる。
 原子比xと原子比yとの差の最大値は、後述する方法で原子比xおよび原子比yの値を断面サンプルに基づいて算出したとき、算出されたすべての原子比xの値のうちの最大値と、算出されたすべての原子比yの値のうちの最小値との差を求めたときに得られる値をいう。すなわち第1硬質被膜層の全体を対象にし、その中から選んだ原子比xの最大値と、原子比yの最小値との差を求めたときに得られる値と同義となる。
 原子比xと原子比yとの差の最大値は、0.05未満となると、結晶粒内の歪みが小さくなるため、硬度が低下する傾向がある。一方でその差の最大値は、0.5を超えると、結晶粒内の歪みが増大し、引張残留応力が大きくなるので、靱性が低下する傾向がある。
 ここで結晶粒内のAlの原子比が、第1層および第2層の積層方向(図1Bの矢印方向)に周期的かつ連続的に変動している例を示したグラフを図2に示す。図2において、横軸は、基材の表面に対する法線であって結晶粒を貫いている法線上の測定位置(測定開始位置からの距離)を表し、縦軸が各測定位置におけるAlおよびTiの原子比、ならびにAlおよびTiの原子比の合量に占めるAlの原子比(割合)を表す。図2中の原子比zは、原子比xおよび原子比yの両者を包含して表す総称として用いている。
 図2においてAlの原子比の値は、測定開始位置からの距離が大きくなるにつれ、たとえば連続的な増加を経て極大点を迎えた後、極小点に向けて連続的に減少している。この極小点を通過した後は、次の極大点に向けて再び、連続的な増加に転じ、その後このような変動が複数回繰り返される。このことから第1層と第2層とは、その積層方向にAlの原子比が周期的かつ連続的に変動していることがわかる。さらにAlの原子比が小さくなる、すなわちTiの原子比が多くなることによって歪が生じ、第1層と第2層とは図1Bに示すような縞状の積層状態として確認される。図2においてAlの原子比の変動の形状は、正弦波に似た形状である。さらに、隣り合う連続的な増加と連続的な減少とからなる1周期の幅は、隣り合う第1層と第2層との厚みの合計を表している。
 原子比xおよび原子比yは、第1硬質被膜層において基材の表面の法線方向に平行な断面サンプルを得て、この断面サンプルに現われた結晶粒に対してSEMまたはTEM付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置を用いて分析することにより、その分析位置での原子比を算出することができる。さらに、上記EDXを用いた分析を繰り返し行なうことにより、原子比xおよび原子比yを算出する対象を該断面サンプルの全面に拡大することができる。したがって、第1硬質被膜層の任意の箇所においてその断面サンプルを得ることにより、第1硬質被膜層の任意の箇所における原子比xおよび原子比yを特定することができる。
 第1層のAlの原子比xは、0.76未満となることはない。原子比xが0.76未満であれば、もはや第2層のAlの原子比yであるというべきだからである。原子比yが0.76以上となることがないことも同じ理由に基づく。原子比xは、第1層がTiを含むため1となることもない。一方で、高い耐摩耗性を保ちつつ靭性を向上させる観点から、原子比yは0.45以上となる。原子比yが0.45未満となると、Al量の低下で耐酸化性が劣るようになり、被膜の酸化に伴う靱性の低下が起こりやすくなる。
 結晶粒内のAlの原子比の上限値、すなわち原子比xの好ましい上限値は、0.95である。結晶粒内のAlの原子比の下限値、すなわち原子比yの好ましい下限値は、0.5である。原子比xと原子比yとの差の最大値の好ましい値は、0.1以上0.45以下である。原子比xと原子比yとの差の最大値のさらに好ましい値は、0.26以上0.45以下である。
 (隣り合う第1層および第2層の厚み)
 本実施形態において、隣り合う第1層と第2層との厚みの合計(以下、「積層周期」とも称する)は、3~30nmである。たとえば、図2では、積層周期は、およそ10nmであることを示している。このような厚みで第1層と第2層とからなる積層構造を有することにより、結晶粒は高硬度となり、かつ靱性が向上する。特に、結晶粒が後述するような結晶方位に配向することにより、結晶粒の靱性に基づいた表面被覆切削工具の耐チッピング性への寄与がより効果的となる。
 隣り合う第1層と第2層との厚みの合計は、3nm未満であると靱性が低下する。一方で、30nmを超えると、結晶粒がウルツ鉱型結晶構造へ相転移することにより硬度が低下する傾向があり、耐摩耗性に悪影響が及ぶ。隣り合う第1層と第2層との厚みの合計は、好ましくは、5~25nmである。
 隣り合う第1層と第2層とは、少なくとも1組が3~30nmの厚みを有していればよい。しかしながら、隣り合う第1層と第2層とのすべての組が3~30nmの厚みを有することより、耐チッピング性に優れた被膜を安定して作製することができるので好ましい。
 第1層および第2層の厚みは、原子比xおよび原子比yを測定するときと同様に、第1硬質被膜層において基材の表面の法線方向に平行な断面サンプルを得て、このサンプルをSTEMで観察することにより正確に測定することができる。このようなSTEMを用いた測定方法としては、STEM高角度散乱暗視野法(HAADF-STEM:High-Angle Annular Dark-field Scanning Transmission Electron Microscopy)を挙げることができる。本明細書において「厚み」といった場合、その厚みは平均厚みを意味する。隣り合う第1層と第2層との厚みの合計は、たとえば、第1硬質被膜層の10箇所において断面を得て、その断面に現われた10の結晶粒において、それぞれ10組の隣り合う第1層と第2層の厚みの合計を測定し、その平均値を該厚みの合計として表すことができる。このとき、観察倍率を500000倍とし、観察面積を0.1μm2程度として1視野に1個の結晶粒が現れるように調節する。これを10回以上繰り返して行なうことより、平均値を算出するのに十分な数の「隣り合う第1層と第2層との厚みの合計」を測定することができる。
 (結晶粒の(200)面を対象とした交差角度数分布の測定)
 本実施形態において結晶粒は、基材の表面の法線方向に平行な断面において電子線後方散乱回折(EBSD:Electron BackScatter Diffraction)装置を用いて結晶粒の結晶方位をそれぞれ解析することにより、結晶粒の結晶面である(200)面に対する法線と基材の表面に対する法線との交差角を測定し、交差角が0~45度となる結晶粒を0度から5度単位で区分けして9つのグループを構築し、各グループに含まれる結晶粒の面積の和である度数をそれぞれ算出したとき、交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計が、全グループの度数の合計の50%以上100%以下となる。交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計が、このような範囲となることにより、結晶粒は特に靱性が向上し、表面被覆切削工具の優れた耐チッピング性に寄与することができる。
 以下、第1硬質被膜層を構成する個々の結晶粒の交差角を測定し、その分布を求めることを「交差角度数分布を測定する」というものとする。
 本実施形態では、この交差角度数分布の測定にEBSD装置を備えた電界放出型走査型電子顕微鏡(FE-SEM)を用いる。基材の表面の法線方向に平行な断面を研磨して断面研磨面とした被測定面を対象とし、第1硬質被膜層に含まれる個々の結晶粒の(200)面の交差角を測定する。被測定面である断面研磨面は、上記断面を耐水研磨紙で研磨し、さらにアルゴンイオンを用いたイオンミーリング処理を行なうことにより得ることができる。
 ここで、交差角度数分布の測定に必要な被測定面(断面研磨面)を準備するための研磨加工方法は、次のとおりである。
 まず、第1硬質被膜層を後述の製造方法に基づき形成する。この第1硬質被膜層に対し、基材の表面の法線方向に平行な断面が得られるように切断する。その後、その切断面を耐水研磨紙(研磨剤としてSiC砥粒研磨剤を含むもの)で研磨する。
 上記の切断は、たとえば第1硬質被膜層の表面(第1硬質被膜層上に他の層が形成されている場合は被膜表面とする)を、十分に大きな保持用の平板上にワックスなどを用いて密着固定した後、回転刃の切断機でその平板に対して垂直方向に切断する(該回転刃と該平板とが可能な限り垂直となるように切断する)。基材の表面と第1硬質被膜層の表面(被膜表面)とは平行であると考えられるからである。この切断は、このような垂直方向に対して行なわれる限り、第1硬質被膜層の任意の部位で行なうことができ、これにより得られた断面を以下のように研磨および平滑化することにより、被測定面を準備することができる。
 研磨は、上記耐水研磨紙#400、#800、#1500を順に用いて行なう(耐水研磨紙の番号(#)は研磨剤の粒径の違いを意味し、数字が大きくなるほど研磨剤の粒径は小さくなる)。
 引続き、上記耐水研磨紙により研磨した断面をArイオンによるイオンミーリング処理によりさらに平滑化する。イオンミーリング処理の条件は、たとえば以下のとおりである。
加速電圧: 6kV
照射角度: 基材表面の法線方向から0°
照射時間: 6時間。
 その後、上記の平滑化された第1硬質被膜層の断面研磨面を、EBSD装置を備えたFE-SEMによって観察すればよい。この観察は、集束電子ビームを各ピクセル上へ個別に配置し、順にEBSDデータを収集することによって行なうことができる。たとえば、HKL NL02 EBSD検出器を備えたFE-SEM(商品名:「Zeiss Supra 35 VP」、CARL ZEISS社製)を用いることができる。
 EBSD装置を備えたFE-SEMによる被測定面の観察は、次のとおりである。EBSD装置は、後方散乱電子によって発生する菊池回折パターンの自動分析に基づき、結晶粒が配向する結晶方位、およびこの結晶方位が基材の表面に対する法線に対してどの程度の角度で交差しているのか(交差角)を測定することができる。このため交差角度数分布は、EBSD装置を備えたFE-SEMを用いて被測定面を撮影し、各撮影画像の各ピクセルの(200)面の法線方向と、基材の表面の法線方向との交差角を算出し、統計処理を施すことにより求めることができる。その結果、たとえば交差角が0~5度以内であると算出されたピクセルは、基材の表面に対する法線と(200)面の法線との交差角が0~5度となる結晶粒に対応する。したがって、たとえば交差角が0~5度以内であると算出されたピクセルの数の和が、交差角が0~5度以内となる結晶粒の面積の和と対応する。
 本実施形態では、上記交差角が0~45度と算出されたピクセルを選択し、0度から5度単位で色分けするなどして区分けして9つのグループを構築し、この9つのグループのそれぞれにおいてピクセルの数の和、すなわち結晶粒の面積の和である度数を算出して交差角度数分布を測定する。このように、本明細書において「度数」は、各グループに含まれる被測定面に現われた結晶粒の面積の和として、グループごとにそれぞれ算出される。
 交差角度数分布の測定にあたり、その正確性を担保する観点から、FE-SEMの観察倍率を2000~20000倍の範囲から適宜選択し、かつ観察面積も50~1000μm2の範囲ら適宜選択し、1視野に10~100個の結晶粒が現れるような状態にすることが好ましい。
 上記交差角の算出、該交差角が0~45度となるピクセルの選択、および上記度数の算出は、市販のソフトウェア(商品名:「Orientation Imaging Microscopy Ver 6.2」、EDAX社製)を用いて行なうことができる。
 本実施形態において、交差角が0~5度となる結晶粒が区分けされるグループを除き、各グループにおいて最小となる交差角は、該グループに含まれないものとする。したがって、交差角が0度および5度となる結晶粒は、0~5度のグループに区分けされる。交差角が10度となる結晶粒は、10~15度のグループに区分けされずに、5~10度のグループに区分けされる。すなわち、10~15度は、10度を超え15度以下であることを意味する。
 このとき、本実施形態における第1硬質被膜層は、交差角が0~20度となる結晶粒(すなわち交差角が20度以下の結晶粒)が含まれる4つのグループの度数の合計が、全グループの度数の合計の50%以上100%以下となる。特に、本実施形態では、交差角が10~20度となる結晶粒が含まれる2つのグループの度数の合計が、全グループの度数の合計の30%以上100%以下であることが好ましい。
 上記のような結晶粒を含む第1硬質被膜層は、その結晶粒が塩化ナトリウム型の結晶構造を維持しているため、高硬度である。さらに、本実施形態では、交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計が、全グループの度数の合計の50%以上であり、多くの割合を占める。すなわち、第1硬質被膜層では、基材の表面の法線方向から少し傾斜した(0~20度傾斜した)方向が、(200)面である結晶粒が高頻度で存在していることを示している。このような第1硬質被膜層は、高硬度でありながら圧縮残留応力を付与することができるため、靱性を向上させることができる。この理由は明確ではないが、結晶粒の(200)面に対する法線方向が、基材の表面の法線方向から10度程度ずれることにより、最も負荷が高い切削開始点において、硬質被膜に加わる衝撃をミクロ的に緩和できるためと考えられる。
 特に、交差角が10~20度となる結晶粒が含まれる2つのグループの度数の合計が、全グループの度数の合計の30%以上である場合、靱性を飛躍的に向上させることができる。これにより、高硬度を維持しつつ靱性の向上を図ることができるため、耐チッピング性に優れた第1硬質被膜層を形成することが可能となり、以って表面被覆切削工具の長寿命化を達成することができる。
 本実施形態において、交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計は、全グループの度数の合計の55%以上であることが好ましい。さらに、交差角が10~20度となる結晶粒が含まれる2つのグループの度数の合計が、全グループの度数の合計の35%以上となることがより好ましい。交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計が、全グループの度数の合計の50%未満である場合、靱性の向上を十分に図ることができなくなる。交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計、および交差角が10~20度となる結晶粒が含まれる2つのグループの度数の合計の上限値は、いずれも100%である。
 交差角度数分布を表したグラフの一例を図4に示す。このグラフの横軸は、結晶粒を区分けした9つのグループに対応する0度から5度単位の交差角を表し、縦軸は累計度数である。図4に示す例では、交差角が0~20度となる結晶粒が含まれる4つのグループの度数の合計は、全グループの度数の合計の57%となる。交差角が10~20度となる結晶粒が含まれる2つのグループの度数の合計が、全グループの度数の合計の40%となる。
 (押し込み硬さ)
 第1硬質被膜層は、ナノインデンテーション法による押し込み硬さが28GPa以上38GPa以下であることが好ましい。より好ましくは、30GPa以上36GPa以下である。第1硬質被膜層のナノインデンテーション法による押し込み硬さが上記範囲であることにより、本実施形態に係る表面被覆切削工具は、耐摩耗性が向上する。特に、耐熱合金などの難削材の切削加工を行う際に優れた性能を発揮することができる。
 第1硬質被膜層のナノインデンテーション法による押し込み硬さは、ナノインデンテーション法が利用可能な超微小押し込み硬さ試験機を用いて測定することができる。押し込み硬さは、第1硬質被膜層の厚さ方向に垂直に所定荷重(たとえば30mN)で圧子を押し込み、圧子が押し込んだ押し込み深さに基づいて算出することができる。第1硬質被膜層上に表面被覆層などの他の層が存在する場合、カロテスト、斜めラッピングなどをすることにより、表面被覆層を除いて第1硬質被膜層を露出させ、この露出した第1硬質被膜層に対して上記方法を用いることにより、押し込み硬さを測定することができる。
 (圧縮残留応力)
 第1硬質被膜層は、圧縮残留応力の絶対値は0.5GPa以上5.0GPa以下であることが好ましい。より好ましくは、1.0GPa以上4.0GPa以下である。第1硬質被膜層の圧縮残留応力の絶対値が上記範囲であることにより、第1硬質被膜層の靱性を飛躍的に向上させることができる。圧縮残留応力の絶対値が0.5GPa未満であれば、靱性を向上させるのに十分ではない。圧縮残留応力の絶対値が5.0GPaを超えると、内部応力が大きくなりすぎ、チッピングが起きやすくなる傾向がある。第1硬質被膜層の圧縮残留応力は、第1硬質被膜層に含まれる結晶粒内における第1層と第2層との積層周期を調節することおよび付加的な表面処理をすることによって、0.5GPa以上5.0GPa以下に制御することができる。第1硬質被膜層の圧縮残留応力の値は特に記載のない限り、実際に切削加工に供する点であるため刃先から半径500μm以内のすくい面、逃げ面のいずれかまたは両方の平均圧縮残留応力の値を意味する。
 「圧縮残留応力」とは、第1硬質被膜層に存する内部応力(固有ひずみ)の一種であって、「-」(マイナス)の数値(単位:実施形態では「GPa」を使う)で表される応力をいう。このため、圧縮残留応力が大きいという概念は、上記数値の絶対値が大きくなることを示し、圧縮残留応力が小さいという概念は、上記数値の絶対値が小さくなることを示す。
 第1硬質被膜層の圧縮残留応力は、たとえばブラスト法、ブラシ法、バレル法、イオン注入法などによって付与することができる。さらに第1硬質被膜層の圧縮残留応力は、たとえば、X線応力測定装置を用いたsin2ψ法により測定することができる。このようなX線を用いたsin2ψ法は、多結晶材料の圧縮残留応力の測定方法として広く用いられ、たとえば「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54~67頁に詳細に説明されている方法を用いることができる。sin2ψ法を適用して第1硬質被膜層の圧縮残留応力を測定する場合、第1硬質被膜層上に表面被覆層などの他の層が存在するときには、必要に応じて電解研磨、フラットミーリングなどをすることにより、表面被覆層を除いて第1硬質被膜層を露出させ、この露出した第1硬質被膜層に対して圧縮残留応力を測定すればよい。さらに、応力測定をする際に使用する物性係数は、公知の文献を引用して使用することができる。たとえば、N.Norrbyらが『Surface & Coatings Technology 257 (2014) 102-107)』で報告した値を使用することができる。このとき、使用基材の種類などを考慮し、可能な限り第1硬質被膜層と基材のピークの重なりがなく、かつ高角度側の回折ピークを選択し、応力を測定することが好ましい。
 (不純物)
 第1硬質被膜層は、高硬度かつ靱性に優れ、高い耐チッピング性能を付与するという本実施形態の作用効果に影響を及ぼさない限り、塩素(Cl)、酸素(O)、硼素(B)、コバルト(Co)、タングステン(W)、クロム(Cr)、タンタル(Ta)、ニオブ(Nb)および炭素(C)からなる群より選択される少なくとも1種の不純物を含んでいてもよく、含んでいなくてもよい。すなわち第1硬質被膜層は、不可避不純物などの不純物を含んで形成されることが許容される。
 (第1硬質被膜層の厚み)
 第1硬質被膜層は、その厚みが1~15μmであることが好ましい。第1硬質被膜層の厚みが上記範囲であることにより、耐摩耗性を維持しつつ耐チッピング性を向上させる効果を顕著に示すことができる。第1硬質被膜層の厚みが1μm未満であると靱性が十分ではなく、15μmを超えると圧縮残留応力が入りにくく耐チッピング性が不十分となる傾向がある。第1硬質被膜層の厚みは、その特性を向上させる観点から3μm以上7.5μm以下であることがさらに好ましい。
 <第2硬質被膜層>
 本実施形態に係る表面被覆切削工具は、図3Aおよび図3Bに示すように、基材10と第1硬質被膜層11との間に、第2硬質被膜層12を含むことが好ましい。さらに、この第2硬質被膜層12は、その厚みが0.01~0.5μmであることが好ましい。
 第2硬質被膜層は、上記構成の第1硬質被膜層11に含まれる結晶粒を成長させるための核が集合する層である。したがって、その組成は、AlhTi1-hの原子比hが0~1の範囲、すなわち平均値であるAl/(Al+Ti)となる。厚みは0.01~0.5μmであり、これにより、高硬度かつ高い密着性をもった第1硬質被膜層が炉内で広範囲にわたり形成することができるという効果が得られる。
 <その他の層>
 本実施形態において被膜は、第1硬質被膜層および第2硬質被膜層以外の層を含んでいてもよい。たとえば、基材と被膜との接合強度を高くすることが可能な下地層を含むことができる。そのような層として、たとえば、窒化チタン(TiN)層、炭窒化チタン(TiCN)層、TiN層とTiCN層とからなる複合層などを挙げることができる。下地層は、従来公知の製造方法を使用することにより製造することができる。
 その他の層としては、上述した下地層のほか、たとえば、Ti、ZrおよびHfからなる群より選択される少なくとも1つの元素と、N、O、C、Bからなる群より選択される少なくとも1つの元素とからなる化合物層を含んでいてもよい。この化合物層によっても基材と被膜との接合強度を高くすることが可能となる。表面被覆層として、α-Al23層およびκ-Al23層の少なくとも一方を含んでいてもよい。α-Al23層およびκ-Al23層により、被膜の耐酸化性を向上させることができる。
 <被膜の総厚>
 本実施形態において被膜の総厚は、3μm以上20μm以下であることが好ましい。被膜の総厚が上記範囲であることにより、第1硬質被膜層の耐摩耗性を維持しつつ耐チッピング性を向上させる効果をはじめとする被膜の特性を好適に発揮することができる。被膜の総厚が3μm未満であると耐摩耗性が低下し、20μmを超えると、たとえば切削加工時に被膜が基材から剥離するケースが頻発する。被膜の総厚は、その特性を向上させる観点から4μm以上15μm以下であることがより好ましい。
 第1硬質被膜層の厚み、第2硬質被膜層の厚みおよび被膜の総厚は、第1硬質被膜層に含まれる結晶粒内の隣り合う第1層と第2層との合計厚みの測定法と同様な方法により測定することができる。すなわち、これらの断面サンプルを得て、このサンプルを用いてSTEMで観察することにより測定することができる。さらに、第1硬質被膜層の厚み、第2硬質被膜層の厚み、被膜の総厚は、たとえば10個の断面サンプルを得て、それぞれで厚みを測定し、その平均値を該厚みまたは該総厚として表すことができる。第1硬質被膜層の厚みまたは第2硬質被膜層の厚みを観察するときは、観察倍率を50000倍とし、観察面積が1視野で10μm2程度となるように調節する。被膜の総厚を観察するときは、観察倍率を5000倍とし、観察面積が1視野で100μm2程度となるように調節する。これにより、平均値を算出するのに十分な数の該厚みまたは該総厚を測定することができる。
 <作用>
 以上から、本実施形態に係る表面被覆切削工具は、たとえば、ステンレス鋼の高速断続切削などに用いた場合であっても、チッピング、欠損、剥離などの発生が抑えられる。高硬度であるので耐摩耗性も発揮する。したがって、本実施形態に係る表面被覆切削工具は、高硬度かつ靱性に優れ、高硬度に基づく優れた耐摩耗性を維持しつつ、優れた靱性に基づいて高い耐チッピング性能を備えて長寿命を実現することができる。
 ≪表面被覆切削工具の製造方法≫
 本実施形態に係る表面被覆切削工具の製造方法は、基材を準備する第1工程と、第1硬質被膜層を含む被膜を化学蒸着(CVD)法を用いて形成する第2工程とを含む。特に、上記第2工程は、AlCl3ガスおよびTiCl4ガスの両方またはいずれか一方の流量を変調させながら結晶粒を成長させる工程を含むことが好ましい。これにより、上記の構成および効果を有する表面被覆切削工具を歩留まりよく製造することができる。
 図5に、本実施形態に係る表面被覆切削工具の製造方法に用いられるCVD装置の一例の模式的な断面図を示す。図5に示すように、CVD装置100は、基材10を設置するための複数の基材保持治具21と、基材保持治具21を包囲する耐熱合金鋼製の反応容器22とを備えている。反応容器22の周囲には、反応容器22内の温度を制御するための調温装置23が設けられている。
 反応容器22には、隣接して接合された第1ガス導入管24と第2ガス導入管25とを有するガス導入管が反応容器22の内部の空間を鉛直方向に延在し、その軸26で回転可能となるように設けられている。ガス導入管においては、その内部で第1ガス導入管24に導入されたガスと、第2ガス導入管25に導入されたガスとが混合しない構成とされている。第1ガス導入管24および第2ガス導入管25の一部にはそれぞれ、第1ガス導入管24および第2ガス導入管25の内部を流れるガスを基材保持治具21に設置された基材10上に噴出させるための複数の貫通孔が設けられている。
 さらに、反応容器22には、反応容器22の内部のガスを外部に排気するためのガス排気管27が設けられている。反応容器22の内部のガスは、ガス排気管27を通過して、ガス排気口28から反応容器22の外部に排出される。
 本実施形態に係る表面被覆切削工具の製造方法は、基材を準備する第1工程と、第1硬質被膜層を含む被膜を形成する第2工程とを含み、第1工程、第2工程の順に行われる。第2工程には、第2硬質被膜層を形成する工程を含むことが好ましい。さらに本実施形態では、第1工程および第2工程以外の工程が含まれていてもよい。以下、説明の便宜のため、基材上に第1硬質被膜層および第2硬質被膜層を直接形成する場合について説明するが、第2工程では、基材上に下地層などの他の層を形成してから第1硬質被膜層および第2硬質被膜層を形成してもよい。さらに、第1硬質被膜層および第2硬質被膜層を形成した後、耐酸化性の向上のために表面被覆層を形成することもできる。下地層および表面被覆層を形成する方法は、いずれも従来公知の方法を用いることができる。
 <第1工程>
 第1工程では基材を準備する。基材は、市販のものを用いてもよく、一般的な粉末冶金法で製造してもよい。たとえば、基材として超硬合金基材を一般的な粉末冶金法で製造する場合、ボールミルなどによってWC粉末とCo粉末などとを混合して混合粉末を得ることができる。該混合粉末を乾燥した後、所定の形状に成形して成形体を得る。さらに該成形体を焼結することにより、WC-Co系超硬合金(焼結体)を得る。次いで該焼結体に対して、ホーニング処理などの所定の刃先加工を施すことにより、WC-Co系超硬合金からなる基材を製造することができる。第1工程では、上記以外の基材であっても、この種の基材として従来公知のものをいずれも準備可能である。
 <第2工程>
 第2工程では、第1硬質被膜層を含む被膜(第1硬質被膜層および第2硬質被膜層)を化学蒸着(CVD)法を用いて形成する。たとえば成長させる結晶粒が窒化物である場合、まず第2硬質被膜層を形成する工程として、TiCl4ガスなどのTiのハロゲン化物ガスおよびAlCl3ガスなどのAlのハロゲン化物ガスを含む第1ガス群と、アンモニア(NH3)ガスを含む第2ガス群とを反応容器内で化学反応させる。これにより、基材上にAlとTiとNとを含む結晶粒の核を形成する。その後、その核を成長させて第1硬質被膜層を形成する。具体的には、上記の第1ガス群に含まれるガス成分および第2ガス群に含まれるガス成分を反応容器内で均一に化学反応させ、反応生成物を第2硬質被膜層上に噴出することにより、AlTiの窒化物を含む結晶粒を成長させ、もって第1硬質被膜層を形成することができる。
 特に、本実施形態に係る表面被覆切削工具の製造方法では、第1硬質被膜層を形成するのに際し、第1ガス群を噴出する方法として複数の方法を用いることができる。一の方法は、全反応ガス中のAlCl3ガスの流量(体積%)を一定に維持しながら、TiCl4ガスの流量を変調させて結晶粒を成長させる第1結晶成長方法である。他の方法は、全反応ガス中のTiCl4ガスの流量を一定に維持しながら、AlCl3ガスの流量を変調させて結晶粒を成長させる第2結晶成長方法である。
 第1結晶成長方法では、TiCl4ガスの流量の調節によってTiの原子比を制御することができる(すなわちAlの原子比を制御することができる)。また、高流量(High Flow)でTiCl4ガスを噴出する時間、低流量(Low Flow)でTiCl4ガスを噴出する時間、TiCl4ガスの流量を高流量から低流量へまたは低流量から高流量へ切り替える回数などを調節することにより、第1層および第2層の厚み、隣り合う第1層と第2層との厚みの合計、ならびに第1硬質被膜層の厚みをそれぞれ所望の厚みに制御することができる。第2結晶成長方法であっても、AlCl3ガスの流量の調節によってAlの原子比を制御することができる。高流量でAlCl3ガスを噴出する時間、低流量でAlCl3ガスを噴出する時間、AlCl3ガスの流量を高流量から低流量へまたは低流量から高流量へ切り替える回数などを調節することにより、第1層および第2層の厚み、隣り合う第1層と第2層との厚みの合計、ならびに第1硬質被膜層の厚みをそれぞれ所望の厚みに制御することができる。
 <その他の工程(圧縮残留応力付与工程)>
 さらに、成膜された第1硬質被膜層を含む被膜に対し、表面側からブラスト処理を行なって、第1硬質被膜層を含む被膜に圧縮残留応力を付与することが好ましい(圧縮残留応力付与工程)。CVD法によって形成された層は、全体に引張残留応力を有する傾向があるが、本工程により、第1硬質被膜層を含む被膜の表面側に圧縮残留応力を付与することができ、もって上述の圧縮残留応力を有する第1硬質被膜層を含む被膜を作製することができる。ブラスト処理において、メディアの投射圧、投射時間、投射距離を制御することにより、付与する圧縮残留応力を制御することができる。たとえば湿式ブラスト処理として平均粒径50μmの球形アルミナ、濃度10体積%、投射圧0.2MPa、投射距離10mm、投射時間10秒の条件で行なうことができる。
 以下、本実施形態に係る表面被覆切削工具の製造方法の一例を、図5に示したCVD装置を参照しながら説明する。ここでは第2工程において第1硬質被膜層を形成することに際して、第1結晶成長方法を第1ガス群を噴出させる方法として用いている。さらに、この一例ではAlTiの窒化物を含む結晶粒をCVD法により成長させるものとする。
 まず、CVD装置100の反応容器22内に、基材10として任意の形状のチップを基材保持治具21に装着する。続いて反応容器22の周囲には反応容器22内の温度を制御する調温装置23が設けられているので、この調温装置23を使って基材保持治具21に設置した基材10の温度を700~750℃に上昇させる。さらに反応容器22の内部の圧力を2~3kPaとする。
 次に、軸26を中心にガス第1ガス導入管24と第2ガス導入管25を回転させながら、TiCl4ガスおよびAlCl3ガスを含む第1ガス群を第1ガス導入管24に導入し、NH3ガスを含む第2ガス群を第2ガス導入管25に導入する。これにより、反応容器22内では第1ガス導入管24の貫通孔から第1ガス群が、第2ガス導入管25の貫通孔から第2ガス群がそれぞれ噴出するので、反応容器22内で第1ガス群と第2ガス群とが回転操作によって均一に混合し、この混合ガスが基材10上へ向かうこととなる。その結果、まず第2硬質被膜層を形成する工程として、第1ガス群に含まれるガス成分および第2ガス群に含まれるガス成分が混合ガス中で化学反応することによって、基材10上にたとえばAlとTiとNとを含む結晶粒の核が形成される。
 結晶粒の核を形成するときの反応容器22の内部の圧力は2~2.5kPaとし、基材10の温度は700~730℃とすることが好ましい。これにより、その厚みを0.01~0.5μmとして第2硬質被膜層を形成することができる。
 次に、AlとTiとNとからなる結晶粒の核が基材10上に形成された後、反応容器22の内部の圧力を2~3kPaとし、基材10の温度を700~750℃とし、第1ガス群および第2ガス群を噴出して上記の核を成長させ、AlとTiとNとからなる結晶粒を結晶成長させる。
 このタイミングで、上記第1結晶成長方法を用いる。すなわちAlCl3ガスの流量を3~6体積%で一定に維持しながら、TiCl4ガスの流量を1~3体積%(高流量:High Flow)として3~15秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、直ちにTiCl4ガスの流量の高低を切り替え、続けてAlCl3ガスの流量を上記濃度で維持したまま、TiCl4ガスについて0.2~0.8体積%(低流量:Low Flow)として3~15秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、さらにTiCl4ガスの流量の高低を切り替える。この操作を複数回繰り返すことにより、第1層および第2層が交互に積層された積層構造を有する結晶粒を含む第1硬質被膜層を形成することができる。
 第2結晶成長方法を用いる場合には、上記タイミングにおいて上述した第1結晶成長方法に代えて第2結晶成長方法を適用すること、すなわちAlCl3ガスの流量が変調する条件下で結晶粒を成長させることにより、第1結晶成長方法と同様に第1層および第2層が交互に積層された積層構造を有する結晶粒を含む第1硬質被膜層を形成することができる。
 ここで、第1ガス群には、TiCl4およびAlCl3ガスとともに、塩化水素(HCl)ガスおよびキャリアガスとしての水素(H2)ガスを含むことが好ましい。第2ガス群としてはNH3ガスとともに、アルゴンガスを含むことが好ましい。さらに、窒素(N2)ガスを含んでいてもよい。しかしながら、本実施形態のように塩化ナトリウム型の結晶構造を有する結晶粒を効果的に成長させるには、窒素(N2)ガスを含ませることなく、アンモニア(NH3)ガスおよびアルゴンガスのみから第2ガス群を構成することが好ましい。さらに、AlTiの炭窒化物を含む結晶粒を成長させる場合、エチレン(C24)ガスを第1ガス群に含ませることが好ましい。
 以上のようにして、塩化ナトリウム型の結晶構造を有する結晶粒内にAlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層が交互に積層された構造が形成された第1硬質被膜層を基材10上に形成し、本実施形態に係る表面被覆切削工具を製造することができる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 本実施例において、被膜の総厚、第1硬質被膜層の厚みおよび第2硬質被膜層の厚みは、STEMを用いたSTEM高角度散乱暗視野法を用いて、基材の表面の法線方向に平行な被膜断面を観察することにより測定した。結晶粒内における第1層および第2層の存在、ならびに隣り合う第1層および第2層の厚みの合計の平均値(積層周期)は、上記被膜断面のSTEMを用いた観察により求めた。第1層におけるAlの原子比xおよび第2層におけるAlの原子比yは、SEMまたはTEMに付帯のEDX装置(商品名:「JEM-2100F」、日本電子株式会社製)により算出し、この算出した原子比x、yの値に基づいてx-yの最大値を求めた。第1硬質被膜層に含まれる結晶粒の(200)面を対象とした交差角度数分布の測定は、EBSD装置を備えたFE-SEM(商品名:「Zeiss Supra 35 VP」、CARL ZEISS社製)を用い、基材の表面の法線方向に平行な断面(被測定面)を撮影して分析することにより行なった。
 被測定面は、基材の表面の法線方向に平行な断面を上述のとおり耐水研磨紙で研磨し、引続き、Arイオンによるイオンミーリング処理によりさらに平滑化して準備した。本実施例におけるイオンミーリング装置とその処理の条件は以下のとおりである。
イオンミーリング装置(商品名:「SM-09010」、日本電子株式会社製)
加速電圧: 6kV
照射角度: 基材表面の法線方向から0°
照射時間: 6時間。
 さらに、第1硬質被膜のナノインデンテーション法による押し込み硬さ(GPa)は、超微小押し込み硬さ試験機(商品名:「ENT-1100a」、Elionix社製)を用いて測定した。第1硬質被膜の圧縮残留応力(GPa)の絶対値は、X線応力測定装置(商品名:「SmartLab」、株式会社リガク製)を用いたsin2ψ法により算出した。
 ≪基材の準備≫
 まず、第1工程として、被膜で被覆する基材Aおよび基材Bを準備した。具体的には、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合した。次に、この混合粉末を所定の形状に加圧成形した後に、1300~1500℃で1~2時間焼結することにより、超硬合金からなる基材A(形状:CNMG120408NUX)および基材B(形状:SEET13T3AGSN-G)を得た。これらは、いずれも住友電工ハードメタル株式会社製のものであり、基材AであるCNMG120408NUXは、旋削用の刃先交換型切削チップの形状であり、基材であるSEET13T3AGSN-Gは、転削(フライス)用の刃先交換型切削チップの形状である。ここで、表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示す。本実施例では、表6に示すとおり試料No.1~36の切削工具を作製する。試料No.1~7、9~15、17~22、25~30の切削工具が実施例であり、試料No.8、16、23、24、31~36の切削工具が比較例である。
Figure JPOXMLDOC01-appb-T000001
 ≪被膜の形成≫
 第2工程として、基材Aおよび基材Bの表面上に表2に示す組成の下地層(TiN、試料によってはTiNおよびTiCN)を、表6に示すとおりの厚みで形成した。下地層上に第2硬質被膜層を形成し、さらに後述する第1硬質被膜層を表6に示すとおりの厚みで形成した。そのほか表6に示すとおり、試料によっては表面被覆層(Al23)も形成した。
Figure JPOXMLDOC01-appb-T000002
 下地層は基材の表面と直接接する層である。第2硬質被膜層は下地層上に形成され、第1硬質被膜層が第2硬質被膜層上に形成される。表面被覆層は、第1硬質被膜上に形成される層であって切削工具の表面を構成する。ここで表2の「成膜条件」の欄には、下地層および表面被覆層を形成するための「反応ガス組成(体積%)」と、「反応雰囲気」として圧力(kPa)、温度(℃)、全ガス流量(L/min)の条件とを示した。表2中「反応ガス組成(体積%)」の欄において、H2ガスが「残り」であるとは、H2ガスが反応ガス組成(体積%)の残部を占めることを示す。
 たとえば表2の「TiN」の欄には、下地層としてのTiN層の形成条件が示されている。表2によれば、TiN層は、図5に示すCVD装置100を含む公知のCVD装置の反応容器内に基材を配置し、反応容器内に2体積%のTiCl4ガス、39.7体積%のN2ガスおよび残部としてのH2ガスからなる混合ガスを、圧力6.7kPaおよび温度915℃の雰囲気において44.7L/分の全ガス流量で噴出することにより形成することができる。また、表面被覆層(Al23)も同様に表2に示す条件で形成することができる。下地層および表面被覆層の厚みは、それぞれ反応ガスを噴出する時間によって制御することができる。
 <第1硬質被膜層および第2硬質被膜層の形成>
 第1硬質被膜層および第2硬質被膜層は、図5に示すようなCVD装置100を用いて形成した。まず、結晶粒の核(第2硬質被膜層)を形成するため、反応容器22の内部の圧力を2kPaとし、成膜温度(基材温度)を730℃とし、第1ガス群および第2ガス群の合計である全ガス流量を55.5L/分とした。この条件下において第1ガス群の組成を0.2体積%のTiCl4ガス、0.7体積%のAlCl3ガス、0体積%のC24ガス、残り(残部)のH2ガスとし、第2ガス群の組成を1体積%のNH3ガス、37体積%のArガスとし、それぞれ第1ガス導入管24、第2ガス導入管25に導入し、基材10上に噴出した。なお上記組成は、第1ガス群および第2ガス群の合計で100体積%を満たすものとする。これにより図3Bに示すような第2硬質被膜層を得る。
 続いて、第1硬質被膜層の形成、すなわち結晶粒の成長は、表3~表5に示す形成条件1A~1H、2A~2H、XおよびYのいずれかの条件で行なった。概説すれば、形成条件1A~1Hでは、AlCl3ガスの流量を一定に維持しながら、TiCl4ガスの流量を変調させて結晶粒を成長させる上記第1結晶成長方法を用い、形成条件2A~2Hは、TiCl4ガスの流量を一定に維持しながら、AlCl3ガスの流量を変調させて結晶粒を成長させる上記第2結晶成長方法を用いた。形成条件Xでは、AlCl3ガスおよびTiCl4ガスの流量を変動させずに一定としつつ、第1ガス群および第2ガス群を間欠的に供給することにより結晶粒を成長させた。具体的には、1秒当たり0.8秒止めて0.2秒噴出する周期で第1ガス群および第2ガス群を供給した。形成条件Yでは、AlCl3ガスおよびTiCl4ガスの流量を一定とし、かつ連続したガス噴出を行なって結晶粒を成長させた。
 たとえば、表3~表5において形成条件「1A」は、以下のような条件により、第1硬質被膜層を形成することを示す。すなわち、成膜温度(基材温度)を750℃とし、反応容器内圧力を3.0kPaとし、第1ガス群および第2ガス群の流量の合計である全ガス流量を60.5L/分とする。この条件下でAlCl3ガスの流量を5体積%として一定に維持しながら、TiCl4ガスについて0.5体積%(低流量:Low Flow)として3秒間(Time)維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、直ちにTiCl4ガス流量の高低を切り替え、AlCl3ガスの流量を上記濃度に維持したまま、TiCl4ガスの流量を1.5体積%(高流量:High Flow)として3秒間(Time)維持する条件で第1ガス群を第1ガス導入管24に導入する。その後さらにTiCl4ガス流量の高低を切り替え、以下、このような操作を所望により複数回行なう。したがってTiCl4ガスは、1分当たり3秒間のインターバルにより、高流量および低流量でそれぞれ10回(Interval)、第1ガス導入管24に導入されることとなる。これにより第2硬質被膜層上に、第1層と第2層が交互に積層された積層構造を有する結晶粒を成長させ、第1硬質被膜層を形成する。なお形成条件「1A」において、第1ガス群は表3に示すように、TiCl4ガスおよびAlCl3ガスとともに、残部としてH2ガスを含んで構成される。第2ガス群は、表3に示すように、NH3ガスおよびArガスを含んで構成される。
 形成条件1B~1H、2A~2Hでは、上記「1A」と同じ要領でTiCl4またはAlCl3の流量を変調させ、表3または表4に示す条件で第1硬質被膜層を形成した。形成条件XおよびYについても、表5に示す条件で第1硬質被膜層を形成した。
 なお、形成条件1A、1F、1Gおよび形成条件2A、2E、2Gでは、AlTiの窒化物からなる第1層および第2層の積層構造を有する結晶粒が成長する。形成条件1B~1E、1Hおよび形成条件2B~2D、2F、2Hでは、第1ガス群にエチレンガスが表3、表4に示すとおりの体積%で含まれているので、AlTiの炭窒化物からなる第1層および第2層の積層構造を有する結晶粒が成長する。
 上記の各条件により形成された第1被膜層は、表3~表5に示すとおりの積層周期で第1層および第2層が交互に積層された積層構造を有する結晶粒が成長して構成される。表3~表5では、各条件により形成した第1層の厚み、第2層の厚み、第1層におけるAlの原子比x(最大値)、第2層におけるAlの原子比y(最小値)、原子比x(最大値)と原子比y(最小値)との差(x-y)、ならびに第1被膜層に含まれる結晶粒の交差角(0~20度および10~20度)の度数も示している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <ブラスト処理>
 さらに、成膜された第1硬質被膜層を含む被膜に対し、表面側からブラスト処理を行なって、第1硬質被膜層を含む被膜に圧縮残留応力を付与した。ここでは湿式ブラスト処理として平均粒径50μmの球形アルミナ、濃度10体積%、投射圧0.2MPa、投射距離10mm、投射時間10秒とした。被膜総厚およびこの被膜の構造により得られた第1硬質被膜層の圧縮残留応力値を表6に示す。
 ≪切削工具の作製≫
 上述のように準備された基材Aまたは基材Bを、上記のようにして形成した被膜により被覆し、表6に示すとおりの試料No.1~36の切削工具を作製した。上述のとおり、本実施例において試料No.1~7、9~15、17~22、25~30の切削工具が実施例であり、試料No.8、16、23、24、31~36の切削工具が比較例である。
Figure JPOXMLDOC01-appb-T000006
 試料No.1~36の切削工具は、試料ごとに基材、下地層および第1硬質被層のいずれかが異なる。表6において、1つの欄内に2つの化合物(たとえば、「TiN(0.5)-TiCN(2.5)」)が記載されている場合、左側(「TiN(0.5)」)の化合物が基材の表面に近い側に位置する層であり、右側(「TiCN(2.5)」)の化合物が基材の表面から遠い側に位置する層であることを意味している。括弧の中の数値はそれぞれの層の厚みを意味している。表6の「-」で示される欄は、層が存在しないことを意味する。表6では、試料No.1~36の切削工具における第1硬質被膜層が有する押し込み硬さおよび圧縮残留応力の値もそれぞれ示した。
 たとえば、表6によれば試料No.1の切削工具は、基材Aの表面に0.5μmの厚みのTiN層および2.5μmの厚みのTiCN層がこの順序に積層されて下地層が形成される。下地層上には第2硬質被膜層が形成された上で、形成条件1Aで形成された6.0μmの厚さの第1硬質被膜層が形成される。ただし、試料No.1の切削工具では、第1硬質被膜層上に表面被覆層(Al23層)が形成されない。試料No.1の切削工具の被膜全体の厚さは、9.0μmである。試料No.1の切削工具における第1硬質被膜層が示す押し込み硬さ(GPa)は34.3であり、圧縮残留応力(GPa)は3.3である。
 ≪切削試験≫
 上記のようにして作製した試料No.1~36の切削工具を用いて、以下の2種の切削試験を行った。
 <丸棒外周高速切削試験>
 試料No.1~8、17~24、33および34の切削工具について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察し、工具寿命を評価した。その結果を表7に示す。切削時間が長いほど耐摩耗性に優れる切削工具として、高速切削であっても長寿命化を実現することができる可能性が高いと評価することができる。
 (丸棒外周高速切削試験の切削条件)
 被削材 : FCD450丸棒
 周速  : 500m/min
 送り速度: 0.15mm/rev
 切込み量: 1.0mm
 切削液 : 有り。
 <ブロック材耐欠損性試験>
 試料No.9~16、25~32、35および36の切削工具について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに刃先の最終損傷形態を観察し、工具寿命を評価した。その結果を表8に示す。切削距離が長いほど耐チッピング性に優れる切削工具として、被削材の種類に関わらず長寿命化を実現することができる可能性が高いと評価することができる。
 (ブロック材耐欠損性試験の切削条件)
 被削材 : SUS304ブロック材
 周速  : 250m/min
 送り速度: 0.3mm/s
 切込み量: 2.0mm
 切削液 : なし
 カッタ : WGC4160R(住友電工ハードメタル株式会社製)。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 ここで上記表7、表8において「最終損傷形態」の欄の記載は、摩耗、チッピングおよび欠損の順に被膜の耐摩耗性が劣ることを示している。「摩耗」は、チッピングおよび欠けを生じずに摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味する。「チッピング」は、切削工具の仕上げ面を生成する切れ刃部に生じた微小な欠けを意味する。「欠損」は、切れ刃部に生じた大きな欠けを意味している。
 <評価>
 表7によれば、試料No.1~7、17~22の切削工具は、切削時間が16分以上であり、試料No.8、23、24、33および34の切削工具と比べて長寿命であることが確認された。特に、試料No.33および34の切削工具は、チッピングが確認されて高速切削に対して性能が劣ることが確認された。
 表8によれば、試料No.9~15、25~30の切削工具は、切削距離が7.6km以上であり、試料No.16、31、32、35および36の切削工具と比べて長寿命であることが確認された。特に、試料No.35の切削工具はチッピングが確認され、試料No.36の切削工具は欠損が確認されて、耐チッピング性能(耐欠損性能)において劣ることが確認された。
 以上のように本発明の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 10 基材、11 第1硬質被膜層、12 第2硬質被膜層、21 基材保持治具、22 反応容器、23 調温装置、24 第1ガス導入管、25 第2ガス導入管、26 軸、27 ガス排気管、28 ガス排気口、100 CVD装置。

Claims (8)

  1.  基材と、該基材の表面に形成された被膜とを備える表面被覆切削工具であって、
     前記被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含み、
     前記結晶粒は、AlxTi1-xの窒化物または炭窒化物からなる第1層と、AlyTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有し、
     前記第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動し、
     前記第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動し、
     前記原子比xと前記原子比yとは、その差の最大値が0.05≦x-y≦0.5となり、
     隣り合う前記第1層と前記第2層との厚みの合計は、3~30nmであり、
     前記結晶粒は、前記基材の表面の法線方向に平行な断面において電子線後方散乱回折装置を用いて前記結晶粒の結晶方位をそれぞれ解析することにより、前記結晶粒の結晶面である(200)面に対する法線と前記基材の表面に対する法線との交差角を測定し、前記交差角が0~45度となる前記結晶粒を0度から5度単位で区分けして9つのグループを構築し、各グループに含まれる前記結晶粒の面積の和である度数をそれぞれ算出したとき、前記交差角が0~20度となる前記結晶粒が含まれる4つのグループの前記度数の合計が、全グループの前記度数の合計の50%以上100%以下となる、表面被覆切削工具。
  2.  前記表面被覆切削工具は、前記交差角が10~20度となる前記結晶粒が含まれる2つのグループの前記度数の合計が、前記全グループの前記度数の合計の30%以上100%以下となる、請求項1に記載の表面被覆切削工具。
  3.  前記被膜は、前記基材と前記第1硬質被膜層との間に第2硬質被膜層を含み、
     前記第2硬質被膜層は、その厚みが0.01~0.5μmである、請求項1または請求項2に記載の表面被覆切削工具。
  4.  前記第1硬質被膜層は、その厚みが1~15μmである、請求項1~請求項3のいずれか1項に記載の表面被覆切削工具。
  5.  前記第1硬質被膜層は、ナノインデンテーション法による押し込み硬さが28GPa以上38GPa以下である、請求項1~請求項4のいずれか1項に記載の表面被覆切削工具。
  6.  前記第1硬質被膜層は、圧縮残留応力の絶対値が0.5GPa以上5.0GPa以下である、請求項1~請求項5のいずれか1項に記載の表面被覆切削工具。
  7.  請求項1~請求項6のいずれか1項に記載の表面被覆切削工具の製造方法であって、
     前記基材を準備する第1工程と、
     前記第1硬質被膜層を含む前記被膜を化学蒸着法を用いて形成する第2工程とを含む、表面被覆切削工具の製造方法。
  8.  前記第2工程は、AlCl3ガスおよびTiCl4ガスの両方またはいずれか一方の流量を変調させながら前記結晶粒を成長させる工程を含む、請求項7に記載の表面被覆切削工具の製造方法。
PCT/JP2016/066857 2016-04-08 2016-06-07 表面被覆切削工具およびその製造方法 WO2017175398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167031890A KR102216094B1 (ko) 2016-04-08 2016-06-07 표면 피복 절삭 공구 및 그 제조 방법
EP16791515.6A EP3441167B1 (en) 2016-04-08 2016-06-07 Surface-coated cutting tool and method for producing same
US15/311,429 US10100403B2 (en) 2016-04-08 2016-06-07 Surface-coated cutting tool and method of producing the same
CN201680001348.XA CN107530784B (zh) 2016-04-08 2016-06-07 表面被覆切削工具及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-078296 2016-04-08
JP2016078296A JP6037255B1 (ja) 2016-04-08 2016-04-08 表面被覆切削工具およびその製造方法

Publications (1)

Publication Number Publication Date
WO2017175398A1 true WO2017175398A1 (ja) 2017-10-12

Family

ID=57483139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066857 WO2017175398A1 (ja) 2016-04-08 2016-06-07 表面被覆切削工具およびその製造方法

Country Status (6)

Country Link
US (1) US10100403B2 (ja)
EP (1) EP3441167B1 (ja)
JP (1) JP6037255B1 (ja)
KR (1) KR102216094B1 (ja)
CN (1) CN107530784B (ja)
WO (1) WO2017175398A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086216A1 (de) * 2017-11-06 2019-05-09 Siemens Aktiengesellschaft Schichtsystem mit harten und weichen schichten und schaufel
CN111902229A (zh) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
CN111902228A (zh) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
EP3769872A4 (en) * 2018-03-22 2021-12-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method therefor
US11274366B2 (en) 2018-03-22 2022-03-15 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
US11311945B2 (en) 2018-03-22 2022-04-26 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618429B2 (ja) * 2012-12-28 2014-11-05 住友電工ハードメタル株式会社 表面被覆部材およびその製造方法
JP6858346B2 (ja) * 2017-06-26 2021-04-14 三菱マテリアル株式会社 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具
JP6756987B2 (ja) 2017-08-24 2020-09-16 株式会社タンガロイ 被覆切削工具
KR102350219B1 (ko) * 2018-03-22 2022-01-17 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구 및 그 제조 방법
US11203068B2 (en) 2019-04-17 2021-12-21 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021070421A1 (ja) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 切削工具
JP6855672B1 (ja) * 2019-10-10 2021-04-07 住友電工ハードメタル株式会社 切削工具
EP3991887A4 (en) * 2019-10-10 2022-07-27 Sumitomo Electric Hardmetal Corp. CUTTING TOOL
CN114173972B (zh) 2019-10-10 2024-05-14 住友电工硬质合金株式会社 切削工具
EP3991889B1 (en) * 2019-10-10 2023-09-20 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021070423A1 (ja) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 切削工具
JP6825777B1 (ja) * 2019-10-10 2021-02-03 住友電工ハードメタル株式会社 切削工具
WO2021070422A1 (ja) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 切削工具
WO2021070419A1 (ja) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 切削工具
US20240051033A1 (en) 2022-08-10 2024-02-15 Iscar, Ltd. CUTTING TOOL WITH A TiAlN COATING HAVING RAKE AND RELIEF SURFACES WITH DIFFERENT RESIDUAL STRESSES

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
JP2015163424A (ja) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015147160A1 (ja) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 表面被覆切削工具及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9903089D0 (sv) * 1999-09-01 1999-09-01 Sandvik Ab Coated grooving or parting insert
ATE343659T1 (de) * 2000-12-28 2006-11-15 Kobe Steel Ltd Hartstoffschicht für schneidwerkzeuge
DE60210399T2 (de) * 2001-11-28 2006-08-24 Metaplas Ionon Oberflächenveredelungstechnik GmbH Mit einer Hartbeschichtung beschichtete Teile
KR100594333B1 (ko) * 2002-01-31 2006-06-30 미쓰비시 마테리알 가부시키가이샤 경질 피복층을 가진 표면 피복 절삭 공구 부재 및 이 경질피복층을 절삭 공구 표면에 형성하는 방법
JP2009039838A (ja) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp 表面被覆切削工具
SE531971C2 (sv) * 2007-08-24 2009-09-15 Seco Tools Ab Belagt skärverktyg för allmän svarvning i varmhållfast superlegeringar (HRSA)
US8277958B2 (en) * 2009-10-02 2012-10-02 Kennametal Inc. Aluminum titanium nitride coating and method of making same
JP6171800B2 (ja) * 2013-09-30 2017-08-02 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
CN104801941A (zh) * 2014-01-29 2015-07-29 三菱综合材料株式会社 表面包覆切削工具
CN104816141B (zh) * 2014-01-31 2018-06-19 三菱综合材料株式会社 表面包覆切削工具
JP6390706B2 (ja) * 2014-08-01 2018-09-19 株式会社タンガロイ 被覆切削工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
JP2015163424A (ja) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015147160A1 (ja) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 表面被覆切削工具及びその製造方法
JP2015193071A (ja) 2014-03-26 2015-11-05 三菱マテリアル株式会社 表面被覆切削工具及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. SETOYAMA ET AL.: "Formation of cubic-AIN in TiN/AIN superlattice", SURFACE & COATINGS TECHNOLOGY, vol. 86-87, 1996, pages 225 - 230
N. NORRBY ET AL., SURFACE& COATINGS TECHNOLOGY, vol. 257, 2014, pages 102 - 107
T. IKEDA ET AL.: "Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method", THIN SOLID FILMS, vol. 195, 1991, pages 99 - 110, XP025852122, DOI: doi:10.1016/0040-6090(91)90262-V
THE SOCIETY OF MATERIALS SCIENCE,: "X-sen oryoku sokuteihou", 1981, YOKENDO CO., LTD., pages: 54 - 67

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086216A1 (de) * 2017-11-06 2019-05-09 Siemens Aktiengesellschaft Schichtsystem mit harten und weichen schichten und schaufel
CN111902229A (zh) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
CN111902228A (zh) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
EP3769871A4 (en) * 2018-03-22 2021-12-22 Sumitomo Electric Hardmetal Corp. COATED SURFACE CUTTING TOOL AND ITS MANUFACTURING PROCESS
EP3769869A4 (en) * 2018-03-22 2021-12-29 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing same
EP3769872A4 (en) * 2018-03-22 2021-12-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method therefor
US11274366B2 (en) 2018-03-22 2022-03-15 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
US11311945B2 (en) 2018-03-22 2022-04-26 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
US11326252B2 (en) 2018-03-22 2022-05-10 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
CN111902228B (zh) * 2018-03-22 2023-01-31 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
CN111902229B (zh) * 2018-03-22 2023-02-21 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法

Also Published As

Publication number Publication date
CN107530784B (zh) 2020-02-07
CN107530784A (zh) 2018-01-02
US10100403B2 (en) 2018-10-16
KR102216094B1 (ko) 2021-02-15
US20180135168A1 (en) 2018-05-17
EP3441167A1 (en) 2019-02-13
JP6037255B1 (ja) 2016-12-07
EP3441167A4 (en) 2019-11-20
EP3441167B1 (en) 2021-07-21
JP2017185609A (ja) 2017-10-12
KR20180128531A (ko) 2018-12-04

Similar Documents

Publication Publication Date Title
JP6037255B1 (ja) 表面被覆切削工具およびその製造方法
JP6037256B1 (ja) 表面被覆切削工具およびその製造方法
KR102198745B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
JP6045010B1 (ja) 表面被覆切削工具およびその製造方法
JP6044861B1 (ja) 表面被覆切削工具およびその製造方法
US11220760B2 (en) Surface-coated cutting tool and method of producing the same
WO2022230363A1 (ja) 切削工具及びその製造方法
WO2020158426A1 (ja) 切削工具及びその製造方法
JP6565093B1 (ja) 表面被覆切削工具およびその製造方法
WO2020158427A1 (ja) 切削工具及びその製造方法
WO2022264196A1 (ja) 切削工具
JP2022171412A (ja) 切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167031890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311429

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016791515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016791515

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791515

Country of ref document: EP

Kind code of ref document: A1