WO2017173994A1 - 一种多视点三维显示系统和方法 - Google Patents

一种多视点三维显示系统和方法 Download PDF

Info

Publication number
WO2017173994A1
WO2017173994A1 PCT/CN2017/079521 CN2017079521W WO2017173994A1 WO 2017173994 A1 WO2017173994 A1 WO 2017173994A1 CN 2017079521 W CN2017079521 W CN 2017079521W WO 2017173994 A1 WO2017173994 A1 WO 2017173994A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
time division
division multiplexing
aperture
lens
Prior art date
Application number
PCT/CN2017/079521
Other languages
English (en)
French (fr)
Inventor
滕东东
刘立林
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2017173994A1 publication Critical patent/WO2017173994A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/20Stereoscopic photography by simultaneous viewing using two or more projectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters

Definitions

  • the present invention relates to the field of three-dimensional image display technology, and more particularly to a multi-view three-dimensional display system and method.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a multi-view three-dimensional display system and method. Based on the combination of spatial multiplexing and time multiplexing, based on the visual retention effect in the case of using the same resolution display screen, More viewpoints can be rendered.
  • a multi-view 3D display system including:
  • control unit and a plurality of time division multiplexed projection units of the same type, all of the time division multiplexed projection units are arranged adjacent to each other in a plane or a curved surface;
  • Each time division multiplexing projection unit comprises a display screen, a projection lens and a clear aperture array; a display screen for displaying optical image information; a projection lens for projecting an image of the display screen onto the projection surface; and a plurality of aperture aperture arrays
  • the clear aperture is composed and placed at the aperture of the projection lens;
  • the control unit is electrically connected to the display screen and the clear aperture array. At one time, the control unit strobes a clear aperture of the aperture aperture array and controls the display to refresh and display corresponding information;
  • the time division multiplexing projection unit is an I type time division multiplexing projection unit, a type II time division multiplexing projection unit or a type III time division multiplexing projection unit:
  • the distance between the display screen and the projection lens is smaller than the focal length of the projection lens, and the display screen is projected by the projection lens into an enlarged virtual image on the projection surface;
  • the type II time division multiplexing projection unit has a distance between the display screen and the projection lens equal to a focal length of the projection lens; the type II time division multiplexing projection unit further includes an auxiliary lens and a field lens; and the auxiliary lens images the display screen on the projection surface The center of the field lens is disposed on the projection surface and is used for imaging the projection lens on the image plane of the projection lens;
  • the distance between the display screen and the projection lens is larger than the focal length of the projection lens, and the display screen is projected into the real image by the projection lens;
  • the III time division multiplexing projection unit further includes a field lens and a field The center of the mirror is disposed on the projection surface and is used to image the projection lens to the image plane of the projection lens.
  • the control unit controls the timing strobe of different spatial portions of each projection lens and the synchronous refresh of the corresponding display screen information by the control unit.
  • the presentation of the viewpoint In the case of using the same resolution display screen, the multi-view three-dimensional display system of the present invention can realize more viewpoint presentation based on the visual retention effect through the combination of spatial multiplexing and time multiplexing.
  • the time division multiplexing projection unit further includes a light blocking plate; the light blocking plate surrounds the display screen and the projection lens in a one-dimensional direction or a two-dimensional direction, and is configured to filter out light that exceeds the aperture portion of the projection lens in the emitted light of the display screen. To prevent the light from affecting the observer.
  • the Type II time division multiplexing projection unit or the Type III time division multiplexing projection unit further includes a diffusion sheet attached to the field lens, and the diffusion sheet is for scattering incident light.
  • the time division multiplexing projection unit further includes a guiding device matched with the projection lens, and the guiding device is configured to convert the planarly arranged time division multiplexing projection unit into an equivalent curved surface array time division multiplexing projection unit.
  • the projection lens is a curved projection lens. This setup makes it easy to arrange all time-division multiplexed projection units on a curved surface.
  • the projection lens is a lens group or a diffractive optical element having a phase modulation function.
  • the pixels on the display screen are actively illuminated pixels; or the display screen is provided with a corresponding light source, and the pixels on the display screen are passively illuminated pixels.
  • Another object of the present invention is to provide a multi-view three-dimensional display method comprising the following steps:
  • I-type time division multiplexing projection units are arranged adjacent to each other along a plane projection lens or a curved projection lens, and a specific offset is set between the display screen of the I-type time division multiplexing projection unit and the projection lens to ensure that each type I time division is repeated. Projecting a virtual image of the display screen in the three-dimensional image display area by using the projection unit;
  • the apertures of the projection lenses of the I-type time division multiplexing projection unit are divided into m sub-gate regions, and each sub-gate region is correspondingly disposed with a clear aperture in the aperture aperture array;
  • the two sides of any sub-projection area and the intersection of the two sides of any of the aperture apertures and the plane of the aperture aperture form a closed triangular area behind the surface.
  • the triangular area is subtracted from the overlap of the other similar areas to obtain an effective view area, and a point in the effective view area is taken as a view point corresponding to the clear aperture and the sub-projection area;
  • step S7 At a plurality of adjacent time points, the m clear apertures of the I-type time division multiplexing projection units are sequentially turned on, and the content image refresh loading is performed according to step S6;
  • a second alternative method of the multi-view three-dimensional display method of the present invention comprises the following steps:
  • Multiple Type II time division multiplexing projection units are arranged adjacent to each other along a plane curved projection lens or a curved projection lens, and the common auxiliary lens is used to form the image of each type II time division multiplexing projection unit display in the three-dimensional image display area, and then placed. Forming a lens of each type II time division multiplexing projection unit to a corresponding projection lens image surface in a field mirror of the three-dimensional image display area or a field lens with a scattering sheet;
  • the aperture of the projection lens of each type II time division multiplexing projection unit or the image of the projection lens aperture is divided into m sub-gate regions, and each sub-gate region is correspondingly disposed with a clear aperture in the aperture aperture array.
  • both sides of any sub-projection area and any of the clear apertures (or images of any aperture aperture) are connected to both sides of the line and the aperture of the aperture (or image of the aperture aperture) a face is formed behind the face to form a closed triangle region, the triangle region minus its overlapping portion with other similar regions to obtain a valid view region, taking a point in the effective view region as a view point corresponding to the pass aperture and the sub-projection region;
  • the display content on each sub-projection area of the type II time division multiplexing projection unit of the clear aperture is the content of the view corresponding to the viewpoint determined in step SS4;
  • each type II time division multiplexing projection unit is gated by the control unit, and the loading display content of the corresponding display screen is determined by the control unit according to step SS5;
  • each type II time division multiplexing projection unit is sequentially turned on, and the content image refresh loading is performed according to step SS6;
  • a third alternative of the multi-view three-dimensional display method of the present invention comprises the following steps:
  • Type III time division multiplexing projection units are arranged adjacent to each other along a plane curved projection lens or a curved projection lens. A specific offset is set between each type III time division multiplexing projection unit display screen and the projection lens to ensure that each type III time division is repeated.
  • Projection unit is used to project the real image of the display screen in the three-dimensional image display area, and then the field lens placed in the three-dimensional image display area or the field lens with the scattering sheet is used to image the projection lens of each type III time division multiplexing projection unit to the corresponding projection lens image.
  • the aperture of the projection lens of each type III time division multiplexing projection unit or the image of the projection lens aperture is divided into m a sub-gate region, each sub-gate region corresponding to a clear aperture in the aperture aperture array;
  • each type III time division multiplexing projection unit is divided into n sub-projection areas along the above arrangement direction;
  • both sides of any sub-projection area and any of the clear apertures are connected to both sides of the line and the aperture of the aperture (or the aperture of the aperture) a face is formed behind the face to form a closed triangle region, the triangle region minus its overlapping portion with other similar regions to obtain a valid view region, taking a point in the effective view region as the view point corresponding to the clear aperture and the sub-projection region ;
  • the display content on each sub-projection area of the type III time division multiplexing projection unit of the clear aperture is the content of the view corresponding to the viewpoint determined by step SSS4;
  • step SSS7 At a plurality of adjacent time points, m light-passing apertures of each type III time division multiplexing projection unit are sequentially turned on, and content image refresh loading is performed according to step SSS6;
  • the invention combines spatial multiplexing and time multiplexing, and controls the timing strobe of different spatial parts of each projection lens and the synchronous refresh of the corresponding display screen information through the control unit, and presents more viewpoints to smooth the moving parallax, even in A multi-view display is achieved when the viewpoints are small.
  • Figure 1 is a first optical path diagram of a first embodiment of the present invention, wherein the I-type time division multiplexed projection units are arranged in a plane.
  • FIG. 2 is a schematic diagram showing the relationship between the loading content and the viewpoint of the corresponding projection surface when the single clear aperture is gated in the first embodiment.
  • FIG. 3 is a schematic diagram showing the relationship between the loading content and the viewpoint of the corresponding projection surface when the adjacent single aperture aperture is gated in the first embodiment.
  • FIG. 4 is a schematic diagram showing the principle of displaying two views of an object point when two adjacent clear aperture loops are strobed in the first embodiment.
  • Fig. 5 is a second optical path diagram of the first embodiment of the present invention, wherein the I-type time division multiplexing projection unit is arranged in a circumferential curved surface.
  • FIG. 6 is a schematic structural view of the I-type time division multiplexing projection unit arranged in a plane in FIG. 1 converted into an equivalent curved surface by a guiding device.
  • Figure 7 is a first optical path diagram of a second embodiment of the present invention, wherein the Type II time division multiplexed projection units are arranged in a plane.
  • Figure 8 is a second optical path diagram of a second embodiment of the present invention, wherein the Type II time division multiplexing projection unit is arranged in a circumferential curved surface.
  • Figure 9 is a first optical path diagram of a third embodiment of the present invention, wherein the Type III time division multiplexed projection units are arranged in a plane.
  • Figure 10 is a second optical path diagram of a third embodiment of the present invention, wherein the Type III time division multiplexed projection unit is arranged in a circumferential curved surface.
  • FIG. 1 An optical path diagram of a first scheme of a multi-view three-dimensional display system constructed based on a type I time division multiplexing projection unit of the present invention is shown in FIG. 1.
  • the type I time division multiplexing projection unit is arranged in a plane, including a control unit.
  • each of the I-type time division multiplexing projection units 10 includes a display screen 11, a projection lens 12, and a clear aperture array 13
  • the display screen 11 is for displaying optical image information
  • the projection lens 12 is for projecting the image of the display screen 11 onto the projection surface
  • the clear aperture array 13 is composed of a plurality of clear apertures and placed at the aperture of the projection lens 12
  • the unit is electrically connected to the display screen 11 and the clear aperture array 13 .
  • the control unit gates a clear aperture of the aperture aperture array 13 and controls the display screen 11 to refresh and display corresponding information; the I-type time division multiplexing
  • the projection unit 10 has a smaller distance between the display screen 11 and the projection lens 12 than the focal length of the projection lens 12, and the display screen 11 is projected by the projection lens 12 into an enlarged virtual image on the projection surface.
  • the three-dimensional display method of the three-dimensional system comprises the following steps:
  • a plurality of I-type time division multiplexing projection units 10 are arranged adjacent to each other along the plane projection lens 12. A specific offset is set between the display screen 11 of each type I time division multiplexing projection unit 10 and the projection lens 12 to ensure each type I time division.
  • the multiplexing projection unit 10 projects the virtual image of the display screen in the three-dimensional image display area;
  • the apertures of the projection lens 12 of each type I time division multiplexing projection unit 10 are divided into m sub-gate regions along the arrangement direction, and each sub-gate region is correspondingly disposed with a clear aperture in the aperture aperture array 13;
  • the two sides of any sub-projection area and the line connecting the two sides of any clear aperture and the surface of the clear aperture form a closed triangular area behind the surface.
  • the triangular area is subtracted from the overlap of the other similar areas to obtain an effective view area, and a point in the effective view area is taken as the clear aperture and the sub-area a viewpoint corresponding to the projection area;
  • the display content on each sub-projection area of the I-type time division multiplexing projection unit 10 is set to the content of the view corresponding to the view determined in step S4;
  • step S7 At a plurality of adjacent time points, the m clear apertures of each type I time division multiplexing projection unit 10 are sequentially turned on, and the content image refresh loading is performed according to step S6;
  • two I-type time division multiplexing projection units 10 are taken as an example.
  • the projection lens 12 of the I-type time division multiplexing projection unit 10 and the projection lens 12' of the I-type time division multiplexing projection unit 10' are adjacent to each other.
  • M k M k-1 and M k+1 are the other two side points.
  • the optical axis of the projection lens 12 in the I-type time division multiplexing projection unit 10 is offset from the center of the display screen 11, and the optical axis of the projection lens 12' in the I-type time division multiplexing projection unit 10' is opposite to the center of the display screen 11'.
  • the three-dimensional image display area surrounds the EF area.
  • the function of the clear aperture can be realized by an electronically controlled liquid crystal panel or the like, and the size of the clear aperture can be less than, equal to, or greater than 1/m of the aperture of the projection lens.
  • n 2 effective viewpoint regions are formed, as shown in FIG.
  • a clear aperture having a size equal to 1/m of the projection lens aperture is taken as an example.
  • the display screen 11 is refreshed so that the ED portion loads the view contents with respect to VP (k) 2 , and the DF portion loads the view contents with respect to VP (k) 1 .
  • the spatial light spot P is displayed by the light of VP (k) 2 emitted from the corresponding pixel of the point Pix1 in the figure.
  • the above two clear aperture loops are gated to realize the presentation of two views of point P, as shown in FIG.
  • the m clear apertures are sequentially opened in the above manner, and the time-division multiplexing projection unit 10 can realize the temporal presentation of m views of the spatial light spot P.
  • the adjacent time division multiplexing projection unit 10 performs the same time division multiplexing in time division multiplexing projection unit 10'.
  • the control unit strobes the time division multiplexing projection unit 10 to divide and multiplex the projection unit 10' in time.
  • Light aperture, and the control unit synchronously refreshes the loading contents of the respective display screen 11 and the display screen 11' in the above manner, when the time cycle period ⁇ t Sufficiently small, based on visual stagnation, can achieve a more view of the display spot.
  • the angle of the corresponding adjacent display ray is small enough to be monocularly collected by the observer, and the multi-view three-dimensional display of the single spot can be realized.
  • the target three-dimensional image is composed of a plurality of display spots, and the above principle is the same for each display object point, thereby realizing super multi-view display of the target three-dimensional image.
  • the time division multiplexing projection unit 10 further includes a light blocking plate 14; the light blocking plate 14 surrounds the display screen 11 and the projection lens 12 in a one-dimensional direction or a two-dimensional direction for filtering out the projection light of the display screen 11 and exceeding the projection
  • the light in the aperture portion of the lens 12 prevents the light from affecting the viewer.
  • the projection lens 12 is a lens group or a diffractive optical element having a phase modulation function.
  • the pixels on the display screen 11 are pixels that are actively illuminated; or the display screen 11 is provided with a corresponding light source, and the pixels on the display screen 11 are passively illuminated pixels.
  • FIG. 5 An optical path diagram of a second scheme of a multi-view three-dimensional display system constructed based on a type I time division multiplexing projection unit of the present invention is shown in FIG. 5, which is different from the first scheme of the first embodiment in that
  • the I-type time division multiplexing projection unit is arranged in a circumferential curved surface, wherein the projection lens 12 is a curved projection lens 12, and two I-type time division multiplexing projection units 10 are taken as an example for description.
  • the projection lens 12 of the I-type time division multiplexing projection unit 10 and the projection lens 12' of the I-type time division multiplexing projection unit 10' are adjacent to each other at M k , and M k-1 and M k+1 are the other two side points.
  • the projection lens 12 virtual image distribution area EF of the I-type time division multiplexing projection unit 10 and the projection lens 12' virtual image distribution area E'F' of the I type time division multiplexing projection unit 10' are centered at the O point at an angle ⁇ distributed.
  • the three-dimensional image display area is determined around the EF and E'F' fields.
  • the function of the clear aperture can be realized by an electronically controlled liquid crystal panel or the like, and the size of the clear aperture can be less than, equal to, or greater than 1/m of the aperture of the projection lens.
  • the multi-viewpoint display of the target three-dimensional image can be realized by the time division multiplexing projection unit 10 multiplexing the time division multiplexing of the projection unit 10' in time.
  • the second scheme differs from the first scheme in that the virtual image of the display screen from different time division multiplexing projection units is projected on two projection surfaces deflected at an angle, that is, the projection surface 10 and the projection surface 10'.
  • the planarly arranged time division multiplexing projection unit 10 can be converted into an equivalent circumferential curved surface by the guiding device 50, such as an optical device such as an optical prism, as shown in FIG. 6.
  • FIG. 7 An optical path diagram of a first scheme of a multi-view three-dimensional display system constructed based on a type II time division multiplexing projection unit of the present invention is shown in FIG. 7.
  • the type II time division multiplexing projection unit is arranged in a plane, and is implemented.
  • the first scheme of example 1 The difference is that the time division multiplexing projection unit 10 is a type II time division multiplexing projection unit, and the distance between the display screen 11 and the projection lens 12 is equal to the focal length of the projection lens 12; the type II time division multiplexing projection unit 10 is further The auxiliary lens 20, the field lens 30 and the diffusion sheet 40 attached to the field lens 30 are disposed, the diffusion sheet 40 is used for scattering incident light, the auxiliary lens 20 is used to image the display screen 11 on the projection surface, and the center of the field lens 30 is set on the projection. The surface is used to image the projection lens 12 onto the projection lens image plane.
  • the three-dimensional display method of the three-dimensional system comprises the following steps:
  • a plurality of Type II time division multiplexing projection units 10 are arranged adjacent to each other along the plane curved projection lens 12, and the common auxiliary lens 10 is used to form the image of the display screen 11 of each Type II time division multiplexing projection unit 10 in the three-dimensional image display area.
  • the field lens 30 placed in the three-dimensional image display area or the field lens 30 with the diffusing film 40 is attached to form the projection lens 12 of each type II time division multiplexing projection unit 10 to the corresponding projection lens image plane;
  • the aperture of the projection lens 12 or the aperture of the projection lens 12 of each type II time division multiplexing projection unit 10 is divided into m sub-gate regions, and each sub-gate region is correspondingly disposed in the aperture aperture array 13 a clear aperture;
  • the boundary between the two sides of any sub-projection area and either of the two apertures of the aperture aperture and the plane of the aperture aperture or the image of the aperture aperture form a closure behind the surface.
  • a triangular area the triangular area minus its overlapping portion with other similar areas to obtain a valid view area, taking a point in the effective view area as a view point corresponding to the clear aperture and the sub-projection area;
  • the display content on each sub-projection area of the type II time division multiplexing projection unit 10 of the clear aperture is the content of the view corresponding to the viewpoint determined in step SS4;
  • each type II time division multiplexing projection unit 10 is sequentially turned on, and the content image refresh loading is performed according to step SS6;
  • two Type II time division multiplexing projection units 10 are taken as an example.
  • the projection lens 12 of the I-type time division multiplexing projection unit 10 and the projection lens 12' of the I-type time division multiplexing projection unit 10' are adjacent to each other.
  • M k M k-1 and M k+1 are the other two side points.
  • M k M k-1 and M k+1 are the other two side points.
  • the real image of the display screen 11 and the display screen 11' coincides with the EF area of the back focal plane of the auxiliary lens 20.
  • the clear aperture array 13 and the clear aperture array 13' are adjacent to the image plane of the projection lens.
  • the EF region is equivalent to the EF region in FIG. 2, FIG. 3, and FIG.
  • the multi-view display of the target three-dimensional image can be realized by the time division multiplexing projection unit 10 multiplexing the synchronous time division multiplexing of the projection unit 10' in time.
  • the diffusion sheet 40 can be attached to the field lens 30, and spatial multiplexing of the two or more rows of the time division multiplexing projection unit 10 can be realized. At this time, by accommodating more time division multiplexing projection units 10, the time division multiplexing projection unit 10 in the same direction Under the premise that the number of light-passing apertures in the clear aperture array 13 is constant, a smaller sub-light-passing area can be realized, and the viewpoint density can be improved.
  • the clear aperture array 13 and the clear aperture array 13' can also be placed directly on the image plane of the projection lens.
  • the optical path diagram of the second scheme of the multi-view three-dimensional display system constructed based on the type II time division multiplexing projection unit of the present invention is as shown in FIG. 8 , which is different from the first scheme of the second embodiment in that
  • the type II time division multiplexing projection unit is arranged in a circumferential curved surface, wherein the projection lens 12 is a curved projection lens 12, and two Type II time division multiplexing projection units 10 are taken as an example here.
  • the projection lens 12 of the I-type time division multiplexing projection unit 10 and the projection lens 12' of the I-type time division multiplexing projection unit 10' are adjacent to each other at M k , and M k-1 and M k+1 are the other two side points.
  • the real image of the display screen 11 and the display screen 11' are respectively presented in the EF area and the E'F' area of the back focal plane of the auxiliary lens 20.
  • the clear aperture array 13 and the clear aperture array 13' are adjacent and imaged at two angles to the two projection lens image planes.
  • the EF region and the E'F' region are respectively equivalent to the EF regions in FIG. 2, FIG. 3, and FIG. 4; the images of the clear aperture array 13 and the clear aperture array 13' are equivalent to FIG. 2, respectively.
  • the multi-view display of the target three-dimensional image can be realized by the time division multiplexing projection unit 10 multiplexing the time division multiplexing of the projection unit 10′ in time.
  • FIG. 9 An optical path diagram of a first scheme of a multi-view three-dimensional display system constructed based on a type III time division multiplexing projection unit of the present invention is shown in FIG. 9.
  • the type III time division multiplexing projection unit is arranged in a plane, and is implemented.
  • the first scheme of the first embodiment is different in that the time division multiplexing projection unit 10 is a type III time division multiplexing projection unit, and the distance between the display screen 11 and the projection lens 12 is greater than the focal length of the projection lens 12, and the display is performed.
  • the screen 11 is projected onto the projection surface by the projection lens 12;
  • the III time division multiplexing projection unit 10 further includes a field lens 30 and a diffusion sheet 40 attached to the field lens 30 for scattering incident light, the field lens 30
  • the center is disposed on the projection surface and is used to form the projection lens 12 on the projection lens image plane.
  • the three-dimensional display method of the three-dimensional system comprises the following steps:
  • a plurality of Type III time division multiplexing projection units 10 are arranged adjacent to each other along the plane curved projection lens 12. A specific offset is set between the display screen 11 of each type III time division multiplexing projection unit 10 and the projection lens 12 to ensure each type III time division.
  • the multiplexing projection unit 10 projects the display screen 11 to the three-dimensional image display area, and then passes through the field lens 30 placed in the three-dimensional image display area or the field lens 30 attached with the diffusion sheet 40 to image each type III time division multiplexing projection unit 10.
  • the projection lens 12 is corresponding to the image plane of the projection lens;
  • the image of the aperture of the projection lens 12 or the aperture of the projection lens of each type III time division multiplexing projection unit 10 is divided into m sub-gate regions, and each sub-gate region is correspondingly arranged with one pass in the aperture aperture array.
  • each type III time division multiplexing projection unit (10) is divided into n sub-projections. region;
  • the two sides of any sub-projection area and the line connecting the two sides of the pass aperture and the surface of the aperture aperture or the image of the aperture aperture form a closed surface behind the surface.
  • a triangular area the triangular area minus its overlapping portion with other similar areas to obtain an effective view area, taking a point in the effective view area as a view point corresponding to the clear aperture and the sub-projection area;
  • the display content on each sub-projection area of the type III time division multiplexing projection unit of the clear aperture is the content of the view corresponding to the viewpoint determined by step SSS4;
  • step SSS6 At the same time point, at most one of the light-emitting apertures of each type III time division multiplexing projection unit 10 is gated by the control unit, and the loading display content of the corresponding display screen is determined by the control unit according to step SSS5;
  • step SSS7 At a plurality of adjacent time points, the m clear apertures of each type III time division multiplexing projection unit 10 are sequentially turned on, and the content image refresh loading is performed according to step SSS6;
  • two Type III time division multiplexing projection units 10 are taken as an example.
  • the projection lens 12 of the Type III time division multiplexing projection unit 10 and the projection lens 12' of the Type III time division multiplexing projection unit 10' are adjacent to each other.
  • M k M k-1 and M k+1 are the other two side points.
  • the optical axis of the projection lens 12 in the type III time division multiplexing projection unit 10 is offset from the center of the display screen 11, and the optical axis of the projection lens 12' in the type III time division multiplexing projection unit 10' is opposite to the center of the display screen 11'.
  • the offset ⁇ ' is used to achieve overlap of the real image of the display screen 11 and the display screen 11' on the projection surface EF area.
  • the clear aperture array 13 and the clear aperture array 13' are adjacent to the image plane of the projection lens.
  • the EF region is equivalent to the EF region in FIG. 2, FIG. 3, and FIG. 4;
  • the image of the clear aperture array 13 and the clear aperture array 13' is equivalent to the one in FIG. 2, FIG. 3, and FIG. Optical aperture array 13.
  • the multi-view display of the target three-dimensional image can be realized by the time division multiplexing projection unit 10 multiplexing the time division multiplexing of the projection unit 10′ in time.
  • the diffusion sheet 40 can be attached to the field lens 30, and spatial multiplexing of the two or more rows of the time division multiplexing projection unit 10 can be realized. At this time, by accommodating more time division multiplexing projection units 10, the time division multiplexing projection unit 10 in the same direction Under the premise that the number of light-passing apertures in the clear aperture array 13 is constant, a smaller sub-light-passing area can be realized, and the viewpoint density can be improved.
  • the clear aperture array 13 and the clear aperture array 13' can also be placed directly on the image plane of the projection lens.
  • FIG. 10 An optical path diagram of a second scheme of a multi-view three-dimensional display system constructed based on a type III time division multiplexing projection unit of the present invention is shown in FIG. 10, which is different from the first scheme of the third embodiment in that
  • the type III time division multiplexing projection unit is arranged in a circumferential curved surface, wherein the projection lens 12 is a curved projection lens 12, and two Type II time division multiplexing projection units 10 are taken as an example here.
  • the projection lens 12 of the I-type time division multiplexing projection unit 10 and the projection lens 12' of the I-type time division multiplexing projection unit 10' are adjacent to each other at M k , and M k-1 and M k+1 are the other two side points.
  • Type III Time Division Multiplex Projection Unit 10 Projection lens 12 image distribution area EF and type III time division multiplexing projection unit 10' projection lens 12' image distribution area E'F', centered at point O, is distributed at an angle ⁇ .
  • the common field lens 30 passing through the O point, the clear aperture array 13 and the clear aperture array 13' are adjacently imaged on the respective image planes.
  • the EF or E'F' region is equivalent to the EF region in FIGS. 2, 3, and 4;
  • the image of the clear aperture array 13 and the clear aperture array 13' is equivalent to FIG. 2, FIG.
  • the multi-view display of the target three-dimensional image can be realized by the time division multiplexing projection unit 10 multiplexing the time division multiplexing of the projection unit 10′ in time.
  • the clear aperture array 13 and the clear aperture array 13' can also be placed directly on the image plane of the projection lens 12.
  • a super multi-view display can be realized to overcome the convergence of the traditional raster type three-dimensional display technology. Visual discomfort, showing a natural three-dimensional visual effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种多视点三维显示系统和方法,该系统包括控制单元及若干个相同类型的时分复用投影单元(10),所有时分复用投影单元(10)呈平面或曲面毗邻排列;时分复用投影单元(10)包括显示屏(11)、投影透镜(12)及通光孔径阵列(13);通光孔径阵列(13)由多个通光孔径组成并置于投影透镜(12)孔径或其像面处;各通光孔径阵列(13)空间错位排列;控制单元与显示屏(11)及通光孔径阵列(13)电连接,在一个时间点,控制单元选通通光孔径阵列(13)的一个通光孔径,并控制显示屏(11)刷新显示相应信息。通过控制单元控制各通光孔径阵列(13)的通光孔径时序选通,基于视觉滞留,以实现多个视点的呈现。该多视点三维显示系统及方法,通过空间-时间联合复用,可以实现大量密集视点的呈现。

Description

一种多视点三维显示系统和方法 技术领域
本发明涉及三维图像显示技术领域,更具体地,涉及一种多视点三维显示系统和方法。
背景技术
由于二维显示难以清楚准确地表达第三维的深度信息,人们一直在致力于研究可显示立体场景的显示技术——三维图像显示技术。通过给观察者双目提供对应的视图,传统体视技术可以基于双目视差技术实现三维效果呈现,但传统体视技术受制于显示器件的空间分辨率,因此,传统体视技术所能提供的视点非常有限。为了获得更好的三维视觉体验,传统体视三维显示系统需要引入空间复用、时间复用等技术,以实现更多的视点呈现。
发明内容
本发明的目的在于克服现有技术的不足,提供一种多视点三维显示系统和方法,通过空间复用和时间复用的结合,在采用相同分辨率显示屏的情况下,基于视觉滞留效应,可以实现更多视点的呈现。
为达到上述目的,本发明采用的技术方案是:
提供一种多视点三维显示系统,包括:
控制单元及若干个相同类型的时分复用投影单元,所有时分复用投影单元呈平面或曲面毗邻排列;
每个时分复用投影单元包括显示屏、投影透镜及通光孔径阵列;显示屏用于显示光学图像信息;投影透镜用于将显示屏的像投射到投影面上;通光孔径阵列由多个通光孔径组成并置于投影透镜孔径处;
控制单元与显示屏及通光孔径阵列电连接,在一个时间点,控制单元选通通光孔径阵列的一个通光孔径,并控制显示屏刷新显示相应信息;
所述时分复用投影单元为I型时分复用投影单元、II型时分复用投影单元或III型时分复用投影单元:
所述I型时分复用投影单元,其显示屏和投影透镜之间的距离小于投影透镜的焦距,显示屏经投影透镜投射成放大的虚像于投影面;
所述II型时分复用投影单元,其显示屏和投影透镜之间的距离等于投影透镜的焦距;II型时分复用投影单元还包括辅助透镜及场镜;辅助透镜将显示屏成像于投影面上;场镜的中心设于投影面上,并用于将投影透镜成像于投影透镜像面;
所述III型时分复用投影单元,其显示屏和投影透镜之间的距离大于投影透镜的焦距,显示屏经投影透镜投射成实像于投影面;III时分复用投影单元还包括场镜,场镜的中心设于投影面上,并用于将投影透镜成像于投影透镜像面。
上述方案中,通过将多个相同类型的时分复用投影单元呈平面或曲面毗邻排列,并通过控制单元控制各投影透镜不同空间部分的时序选通及对应显示屏显示信息的同步刷新,实现密集视点的呈现。在采用相同分辨率显示屏的情况下,本发明一种多视点三维显示系统,通过空间复用和时间复用的结合,基于视觉滞留效应,可以实现更多视点的呈现。
进一步地,所述时分复用投影单元还包括挡光板;所述挡光板沿一维方向或二维方向包围显示屏和投影透镜,用于滤除显示屏出射光线中超过投影透镜孔径部分的光线,防止该光线对观察者的影响。
进一步地,所述II型时分复用投影单元或III型时分复用投影单元还包括附着于场镜放置的散射片,散射片用于散射入射光线。
进一步地,所述时分复用投影单元还包括与投影透镜相配合的导向器件,所述导向器件用于将平面排列的时分复用投影单元转换为等效的曲面排列的时分复用投影单元。
进一步地,所述投影透镜为曲面投影透镜。这样设置便于将所有时分复用投影单元呈曲面排列。
进一步地,所述投影透镜为透镜组或具有位相调制功能的衍射光学元件。
进一步地,所述显示屏上的像素为主动发光的像素;或所述显示屏设有对应光源,所述显示屏上的像素为被动发光的像素。
本发明的另一个目的是提供一种多视点三维显示方法,包括以下步骤:
S1.多个I型时分复用投影单元沿平面投影透镜或曲面投影透镜毗邻排列,各I型时分复用投影单元的显示屏和投影透镜间设置特定偏移量,以保证各I型时分复用投影单元都投影显示屏虚像于三维图像显示区;
S2.沿排列方向,将各I型时分复用投影单元投影透镜的孔径分为m个子选通区域,各子选通区域对应设置通光孔径阵列中的一个通光孔径;
S3.沿上述排列方向,将各I型时分复用投影单元投射的显示屏虚像分为n个子投影区域;
S4.对于各I型时分复用投影单元,沿光线传输方向,任一子投影区域两边点和任一通光孔径两边点连线和通光孔径所在面在该面后形成一个封闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点作为该通光孔径和子投影区域共同对应的视点;
S5.任一通光孔径打开时,该通光孔径所在I型时分复用投影单元各子投影区域上的显示内容 设置为按步骤S4所确定视点对应视图的内容;
S6.在同一时间点,各I型时分复用投影单元最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤S5确定;
S7.在相邻多个时间点,各I型时分复用投影单元的m个通光孔径依次打开,并根据步骤S6进行内容图像刷新加载;
S8.循环重复步骤S7。
本发明一种多视点三维显示方法的第二种替代方式,包括以下步骤:
SS1.多个II型时分复用投影单元沿平面曲面投影透镜或曲面投影透镜毗邻排列,经共用的辅助透镜成各II型时分复用投影单元显示屏的像于三维图像显示区,再经置于三维图像显示区的场镜或附有散射片的场镜,成像各II型时分复用投影单元投影透镜到对应投影透镜像面;
SS2.沿排列方向,将各II型时分复用投影单元投影透镜的孔径或投影透镜孔径的像分为m个子选通区域,各子选通区域对应设置通光孔径阵列中的一个通光孔径;
SS3.沿上述排列方向,将各II型时分复用投影单元投射的显示屏像分为n个子投影区域;
SS4.对于各II型时分复用投影单元,任一子投影区域两边点和任一通光孔径(或任一通光孔径的像)两边点连线和通光孔径所在面(或通光孔径的像所在面)在该面后形成一封闭三角形区域,该三角形区域减去其和其它同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
SS5.任一通光孔径打开时,该通光孔径所在II型时分复用投影单元各子投影区域上的显示内容为按步骤SS4所确定视点对应视图的内容;
SS6.在同一时间点,各II型时分复用投影单元最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤SS5确定;
SS7.在相邻多个时间点,各II型时分复用投影单元的m个通光孔径依次打开,并根据步骤SS6进行内容图像刷新加载;
SS8.循环重复步骤SS7。
本发明一种多视点三维显示方法的第三种替代方式,包括以下步骤:
SSS1.多个III型时分复用投影单元沿平面曲面投影透镜或曲面投影透镜毗邻排列,各III型时分复用投影单元显示屏和投影透镜间设置特定偏移量,以保证各III型时分复用投影单元都投影显示屏实像于三维图像显示区,再经置于三维图像显示区的场镜或附有散射片的场镜,成像各III型时分复用投影单元投影透镜于对应投影透镜像面;
SSS2.沿排列方向,将各III型时分复用投影单元投影透镜的孔径或投影透镜孔径的像分为m 个子选通区域,各子选通区域对应设置通光孔径阵列中的一个通光孔径;
SSS3.沿上述排列方向,将各III型时分复用投影单元投射的显示屏像分为n个子投影区域;
SSS4.对于各III型时分复用投影单元,任一子投影区域两边点和任一通光孔径(或任一通光孔径的像)两边点连线和通光孔径所在面(或通光孔径的像所在面)在该面后形成一封闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
SSS5.任一通光孔径打开时,该通光孔径所在III型时分复用投影单元各子投影区域上的显示内容为按步骤SSS4所确定视点对应视图的内容;
SSS6.在同一时间点,各III型时分复用投影单元最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤SSS5确定;
SSS7.在相邻多个时间点,各III型时分复用投影单元的m个通光孔径依次打开,并根据步骤SSS6进行内容图像刷新加载;
SSS8.循环重复步骤SSS7。
与现有技术相比,本发明的有益效果是:
本发明将空间复用和时间复用相结合,通过控制单元控制各投影透镜不同空间部分的时序选通及对应显示屏显示信息的同步刷新,呈现更多的视点,以平滑移动视差,甚至在视点间较小时实现超多视图显示。
附图说明
图1是本发明第一种实施例的第一种光路图,其中I型时分复用投影单元呈平面排列。
图2是第一种实施例中单个通光孔径选通时,对应投影面加载内容和视点关系示意图。
图3是第一种实施例中相邻的单个通光孔径选通时,对应投影面加载内容和视点关系示意图。
图4是第一种实施例中相邻两个通光孔径循环选通时,显示物点两个视图呈现原理示意图。
图5是本发明第一种实施例的第二种光路图,其中I型时分复用投影单元呈圆周曲面排列。
图6是图1中平面排列的I型时分复用投影单元经导向器件转换为等效曲面排列的结构示意图。
图7是本发明第二种实施例的第一种光路图,其中II型时分复用投影单元呈平面排列。
图8是本发明第二种实施例的第二种光路图,其中II型时分复用投影单元呈圆周曲面排列。
图9是本发明第三种实施例的第一种光路图,其中III型时分复用投影单元呈平面排列。
图10是本发明第三种实施例的第二种光路图,其中III型时分复用投影单元呈圆周曲面排列。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。本发明通过时间复用的引入,提高光栅式三维显示技术所能呈现的视图数目,以获得更好的三维视觉体验。
实施例1
本发明一种基于I型时分复用投影单元进行构建的多视点三维显示系统的第一种方案的光路图如图1所示,所述I型时分复用投影单元呈平面排列,包括控制单元及若干个I型时分复用投影单元10,所有I型时分复用投影单元10呈平面毗邻排列;每个I型时分复用投影单元10包括显示屏11、投影透镜12及通光孔径阵列13;显示屏11用于显示光学图像信息;投影透镜12用于将显示屏11的像投射到投影面上;通光孔径阵列13由多个通光孔径组成并置于投影透镜12孔径处;控制单元与显示屏11及通光孔径阵列13电连接,在一个时间点,控制单元选通通光孔径阵列13的一个通光孔径,并控制显示屏11刷新显示相应信息;所述I型时分复用投影单元10,其显示屏11和投影透镜12之间的距离小于投影透镜12的焦距,显示屏11经投影透镜12投射成放大的虚像于投影面。
该三维系统的三维显示方法,包括以下步骤:
S1.多个I型时分复用投影单元10沿平面投影透镜12毗邻排列,各I型时分复用投影单元10的显示屏11和投影透镜12间设置特定偏移量,以保证各I型时分复用投影单元10都投影显示屏虚像于三维图像显示区;
S2.沿排列方向,将各I型时分复用投影单元10投影透镜12的孔径分为m个子选通区域,各子选通区域对应设置通光孔径阵列13中的一个通光孔径;
S3.沿上述排列方向,将各I型时分复用投影单元10投射的显示屏虚像分为n个子投影区域;
S4.对于各I型时分复用投影单元10,沿光线传输方向,任一子投影区域两边点和任一通光孔径两边点连线和通光孔径所在面在该面后形成一个封闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点作为该通光孔径和子 投影区域共同对应的视点;
S5.任一通光孔径打开时,该通光孔径所在I型时分复用投影单元10各子投影区域上的显示内容设置为按步骤S4所确定视点对应视图的内容;
S6.在同一时间点,各I型时分复用投影单元10最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤S5确定;
S7.在相邻多个时间点,各I型时分复用投影单元10的m个通光孔径依次打开,并根据步骤S6进行内容图像刷新加载;
S8.循环重复步骤S7。
本实施例中以两个I型时分复用投影单元10为例进行说明,I型时分复用投影单元10的投影透镜12与I型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。I型时分复用投影单元10中投影透镜12的光轴相对于显示屏11中心偏移量δ,I型时分复用投影单元10′中投影透镜12′的光轴相对于显示屏11′中心偏移量δ′,使显示屏11及显示屏11′放大虚像在投影面EF区域重叠,并将其分为n个子投影区域,这里以n=2为例,D为n=2子投影区域的连接点。三维图像显示区围绕EF区域。将毗邻排列的投影透镜12及投影透镜12′的孔径各自分为m个子选通区域,各子选通区域置一通光孔径,这里以m=3为例。该通光孔径的功能可以通过电控液晶片等实现,其通光孔径的尺寸可以小于、等于、或大于投影透镜孔径的1/m。
对于时分复用投影单元10,在时刻t,当一个通光孔径打开时,形成n=2个有效视点区域,如图2。此处以尺寸等于投影透镜孔径1/m的通光孔径为例。在该n=2有效视点区域取两点作为视点,如图2中VP(k)1和VP(k)2。此时,刷新显示屏11,使ED部分加载相对于VP(k)2的视图内容,DF部分加载相对于VP(k)1的视图内容。此时,空间光点P由图中点Pix1对应像素发出的、过VP(k)2的光线进行显示。
在时刻t+Δt/m,时分复用投影单元10的另一个相邻通光孔径打开,基于相同原理,可以得到视点VP(k)3和VP(k)4,如图3。此时,空间光点P由图中点Pix2对应像素发出的、过VP(k)4的光线进行显示。
上述两个通光孔径循环选通,则可实现P点两个视图的呈现,如图4。m个通光孔径按上述方式,依次重复打开,通过一个时分复用投影单元10,可以实现空间光点P的m个视图的时序呈现。
相邻时分复用投影单元10及时分复用投影单元10′进行同样的时分复用,在一个时间点,由控制单元选通时分复用投影单元10及时分复用投影单元10′各一个通光孔径,并由控制单元按上述方式同步刷新各自显示屏11及显示屏11′加载内容,当时间循环周期Δt 足够小时,基于视觉滞留,可以实现显示光点更多视图的呈现。尤其当一个光点在相邻两个或更多通光孔径选通时,对应相邻显示光线夹角小至可以被观察者单目收集时,即可实现单个光点的超多视图三维显示。目标三维图像是由很多显示光点组成,上述原理对各个显示物点都是同样的,由此实现目标三维图像的超多视图显示。
其中,所述时分复用投影单元10还包括挡光板14;所述挡光板14沿一维方向或二维方向包围显示屏11和投影透镜12,用于滤除显示屏11出射光线中超过投影透镜12孔径部分的光线,防止该光线对观察者的影响。
另外,所述投影透镜12为透镜组或具有位相调制功能的衍射光学元件。
其中,所述显示屏11上的像素为主动发光的像素;或所述显示屏11设有对应光源,所述显示屏11上的像素为被动发光的像素。
本发明一种基于I型时分复用投影单元进行构建的多视点三维显示系统的第二种方案的光路图如图5所示,其与实施例1的第一种方案的不同之处在于,所述I型时分复用投影单元呈圆周曲面排列,其中投影透镜12为曲面投影透镜12,此处以两个I型时分复用投影单元10为例进行说明。I型时分复用投影单元10的投影透镜12与I型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。I型时分复用投影单元10的投影透镜12虚像分布区域EF和I型时分复用投影单元10′的投影透镜12′虚像分布区域E′F′,以O点为中心,以夹角⊿θ分布。将显示屏11的虚像投影面EF及显示屏11′的虚像投影面E′F′各自分为n个子投影区域,这里以n=2为例,O点为n=2子投影区域的连接点。三维图像显示区围绕EF和E′F′域确定。将毗邻排列的投影透镜12及投影透镜12′孔径各自分为m个子选通区域,各子选通区域置一通光孔径,这里以m=3为例。该通光孔径的功能可以通过电控液晶片等实现,其通光孔径的尺寸可以小于、等于、或大于投影透镜孔径的1/m。
同理第一种方案中图2到图4所遵循技术路线,通过时分复用投影单元10及时分复用投影单元10′的同步时分复用,可以实现目标三维图像的多视点显示。第二种方案与第一种方案的不同之处在于:来自不同时分复用投影单元的显示屏虚像投影在以一定角度偏转的两个投影面上,即投影面10和投影面10′。本方案中,也可以通过导向器件50,如光学棱镜等光学器件,将平面排列的时分复用投影单元10及时分复用投影单元10′转换为等效圆周曲面排列,如图6所示。
实施例2
本发明一种基于II型时分复用投影单元进行构建的多视点三维显示系统的第一种方案的光路图如图7所示,所述II型时分复用投影单元呈平面排列,其与实施例1的第一种方案的 不同之处在于:所述时分复用投影单元10为II型时分复用投影单元,其显示屏11和投影透镜12之间的距离等于投影透镜12的焦距;II型时分复用投影单元10还包括辅助透镜20、场镜30及附着于场镜30放置的散射片40,散射片40用于散射入射光线;辅助透镜20将显示屏11成像于投影面上;场镜30的中心设于投影面上,并用于将投影透镜12成像于投影透镜像面。
该三维系统的三维显示方法,包括以下步骤:
SS1.多个II型时分复用投影单元10沿平面曲面投影透镜12毗邻排列,经共用的辅助透镜10成各II型时分复用投影单元10显示屏11的像于三维图像显示区,再经置于三维图像显示区的场镜30或附有散射片40的场镜30,成像各II型时分复用投影单元10投影透镜12到对应投影透镜像面;
SS2.沿排列方向,将各II型时分复用投影单元10投影透镜12的孔径或投影透镜12孔径的像分为m个子选通区域,各子选通区域对应设置通光孔径阵列13中的一个通光孔径;
SS3.沿上述排列方向,将各II型时分复用投影单元10投射的显示屏像分为n个子投影区域;
SS4.对于各II型时分复用投影单元10,任一子投影区域两边点和任一通光孔径两边点连线和通光孔径所在面或通光孔径的像所在面在该面后形成一封闭三角形区域,该三角形区域减去其和其它同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
SS5.任一通光孔径打开时,该通光孔径所在II型时分复用投影单元10各子投影区域上的显示内容为按步骤SS4所确定视点对应视图的内容;
SS6.在同一时间点,各II型时分复用投影单元10最多一个通光孔径由控制单元选通,对应显示屏11的加载显示内容由控制单元根据步骤SS5确定;
SS7.在相邻多个时间点,各II型时分复用投影单元10的m个通光孔径依次打开,并根据步骤SS6进行内容图像刷新加载;
SS8.循环重复步骤SS7。
本实施例中以两个II型时分复用投影单元10为例进行说明,I型时分复用投影单元10的投影透镜12与I型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。经公用的辅助透镜20,显示屏11及显示屏11′实像重合于辅助透镜20后焦面的EF区域。再经处于EF的场镜30,通光孔径阵列13及通光孔径阵列13′毗邻成像于投影透镜像面。此处EF区域等效于图2、图3、图4中的EF区域;此处通光孔径阵列13及通光孔径阵列13′的像等效于图2、图3、图4中的通光孔径阵列13。同理实施例1中图2到图4所遵循技术路线,通过时分复用投影单元10及时分复用投影单元10′的同 步时分复用,可以实现目标三维图像的多视点显示。
散射片40可以附着于场镜30,可以实现两行甚至多行时分复用投影单元10的空间复用,此时,通过容纳更多时分复用投影单元10,同行中时分复用投影单元10的通光孔径阵列13中通光孔径数量不变的前提下,可以实现更小的子通光区域,提高视点密度。
本实例中,通光孔径阵列13及通光孔径阵列13′也可直接置于投影透镜的像面上。
本发明一种基于II型时分复用投影单元进行构建的多视点三维显示系统的第二种方案的光路图如图8所示,其与实施例2的第一种方案的不同之处在于,所述II型时分复用投影单元呈圆周曲面排列,其中投影透镜12为曲面投影透镜12,此处以两个II型时分复用投影单元10为例进行说明。I型时分复用投影单元10的投影透镜12与I型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。经公用的辅助透镜20,显示屏11及显示屏11′实像分别呈现于辅助透镜20后焦面的EF区域和E′F′区域。再经处于EF的场镜30,通光孔径阵列13及通光孔径阵列13′毗邻并以一定角度成像于两个投影透镜像面。此处EF区域和E′F′区域分别等效于图2、图3、图4中的EF区域;此处通光孔径阵列13及通光孔径阵列13′的像分别等效于图2、图3、图4中的通光孔径阵列13。同理实施例1中图2到图4所遵循技术路线,通过时分复用投影单元10及时分复用投影单元10′的同步时分复用,可以实现目标三维图像的多视点显示。
实施例3
本发明一种基于III型时分复用投影单元进行构建的多视点三维显示系统的第一种方案的光路图如图9所示,所述III型时分复用投影单元呈平面排列,其与实施例1的第一种方案的不同之处在于:所述时分复用投影单元10为III型时分复用投影单元,其显示屏11和投影透镜12之间的距离大于投影透镜12的焦距,显示屏11经投影透镜12投射成实像于投影面;III时分复用投影单元10还包括场镜30及附着于场镜30放置的散射片40,散射片40用于散射入射光线,场镜30的中心设于投影面上,并用于将投影透镜12成像于投影透镜像面。
该三维系统的三维显示方法,包括以下步骤:
SSS1.多个III型时分复用投影单元10沿平面曲面投影透镜12毗邻排列,各III型时分复用投影单元10显示屏11和投影透镜12间设置特定偏移量,以保证各III型时分复用投影单元10都投影显示屏11实像于三维图像显示区,再经置于三维图像显示区的场镜30或附有散射片40的场镜30,成像各III型时分复用投影单元10投影透镜12于对应投影透镜像面;
SSS2.沿排列方向,将各III型时分复用投影单元10投影透镜12的孔径或投影透镜孔径的像分为m个子选通区域,各子选通区域对应设置通光孔径阵列中的一个通光孔径;
SSS3.沿上述排列方向,将各III型时分复用投影单元(10)投射的显示屏像分为n个子投影 区域;
SSS4.对于各III型时分复用投影单元10,任一子投影区域两边点和任一通光孔径两边点连线和通光孔径所在面或通光孔径的像所在面在该面后形成一封闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
SSS5.任一通光孔径打开时,该通光孔径所在III型时分复用投影单元各子投影区域上的显示内容为按步骤SSS4所确定视点对应视图的内容;
SSS6.在同一时间点,各III型时分复用投影单元10最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤SSS5确定;
SSS7.在相邻多个时间点,各III型时分复用投影单元10的m个通光孔径依次打开,并根据步骤SSS6进行内容图像刷新加载;
SSS8.循环重复步骤SSS7。
本实施例中以两个III型时分复用投影单元10为例进行说明,III型时分复用投影单元10的投影透镜12与III型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。III型时分复用投影单元10中投影透镜12的光轴相对于显示屏11中心偏移量δ,III型时分复用投影单元10′中投影透镜12′的光轴相对于显示屏11′中心偏移量δ′,以实现显示屏11及显示屏11′实像在投影面EF区域的重叠。经置于投影面的公用场镜30,通光孔径阵列13及通光孔径阵列13′毗邻成像于投影透镜像面。此处EF区域等效于图2、图3、图4中的EF区域;此处通光孔径阵列13及通光孔径阵列13′的像等效于图2、图3、图4中的通光孔径阵列13。同理实施例1中图2到图4所遵循技术路线,通过时分复用投影单元10及时分复用投影单元10′的同步时分复用,可以实现目标三维图像的多视点显示。
散射片40可以附着于场镜30,可以实现两行甚至多行时分复用投影单元10的空间复用,此时,通过容纳更多时分复用投影单元10,同行中时分复用投影单元10的通光孔径阵列13中通光孔径数量不变的前提下,可以实现更小的子通光区域,提高视点密度。
本实例中,通光孔径阵列13及通光孔径阵列13′也可直接置于投影透镜的像面上。
本发明一种基于III型时分复用投影单元进行构建的多视点三维显示系统的第二种方案的光路图如图10所示,其与实施例3的第一种方案的不同之处在于,所述III型时分复用投影单元呈圆周曲面排列,其中投影透镜12为曲面投影透镜12,此处以两个II型时分复用投影单元10为例进行说明。I型时分复用投影单元10的投影透镜12与I型时分复用投影单元10′的投影透镜12′的毗邻点为Mk,Mk-1和Mk+1为另外两个边点。III型时分复用投影 单元10投影透镜12像分布区域EF和III型时分复用投影单元10′投影透镜12′像分布区域E′F′,以O点为中心,以夹角⊿θ分布。经过O点的公用场镜30,通光孔径阵列13及通光孔径阵列13′毗邻成像于各自像面。此处EF或E′F′区域等效于图2、图3、图4中的EF区域;此处通光孔径阵列13及通光孔径阵列13′的像等效于图2、图3、图4中的通光孔径阵列13。同理实施例1中图2到图4所遵循技术路线,通过时分复用投影单元10及时分复用投影单元10′的同步时分复用,可以实现目标三维图像的多视点显示。
本实例中,通光孔径阵列13及通光孔径阵列13′也可直接置于投影透镜12的像面上。
上述实例中,当各显示物点相邻两条或更多条呈现光线可以被观察者单个瞳孔接收时,可以实现超多视图显示,以克服传统光栅式三维显示技术辐辏-聚焦冲突带来的视觉不适,呈现自然的三维视觉效果。

Claims (10)

  1. 一种多视点三维显示系统,其特征在于,包括控制单元及若干个相同类型的时分复用投影单元(10),所有时分复用投影单元(10)呈平面或曲面毗邻排列;
    每个时分复用投影单元(10)包括显示屏(11)、投影透镜(12)及通光孔径阵列(13);显示屏(11)用于显示光学图像信息;投影透镜(12)用于将显示屏(11)的像投射到投影面上;通光孔径阵列(13)由多个通光孔径组成并置于投影透镜(12)孔径处;
    控制单元与显示屏(11)及通光孔径阵列(13)电连接,在一个时间点,控制单元选通通光孔径阵列(13)的一个通光孔径,并控制显示屏(11)刷新显示相应信息;
    所述时分复用投影单元(10)为I型时分复用投影单元(10)、II型时分复用投影单元(10)或III型时分复用投影单元(10):
    所述I型时分复用投影单元(10),其显示屏(11)和投影透镜(12)之间的距离小于投影透镜(12)的焦距,显示屏(11)经投影透镜(12)投射成放大的虚像于投影面;
    所述II型时分复用投影单元(10),其显示屏(11)和投影透镜(12)之间的距离等于投影透镜(12)的焦距;II型时分复用投影单元(10)还包括辅助透镜(20)及场镜(30);辅助透镜(20)将显示屏(11)成像于投影面上;场镜(30)的中心设于投影面上,并用于将投影透镜(12)成像于投影透镜像面;
    所述III型时分复用投影单元(10),其显示屏(11)和投影透镜(12)之间的距离大于投影透镜(12)的焦距,显示屏(11)经投影透镜(12)投射成实像于投影面;III时分复用投影单元(10)还包括场镜(30),场镜(30)的中心设于投影面上,并用于将投影透镜(12)成像于投影透镜像面。
  2. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述时分复用投影单元(10)还包括挡光板(14);所述挡光板(14)沿一维方向或二维方向包围显示屏(11)和投影透镜(12),用于滤除显示屏(11)出射光线中超过投影透镜(12)孔径部分的光线。
  3. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述II型时分复用投影单元(10)或III型时分复用投影单元(10)还包括附着于场镜(30)放置的散射片(40),散射片(40)用于散射入射光线。
  4. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述时分复用投影单元(10)还包括与投影透镜(12)相配合的导向器件(50),所述导向器件(50)用于将平面排列的时分复用投影单元(10)转换为等效的曲面排列的时分复用投影单元(10)。
  5. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述投影透镜(12)为曲面投影透镜(12)。
  6. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述投影透镜(12)为透镜组或具有位相调制功能的衍射光学元件。
  7. 根据权利要求1所述的一种多视点三维显示系统,其特征在于,所述显示屏(11)上的像素为主动发光的像素;或所述显示屏(11)设有对应光源,所述显示屏(11)上的像素为被动发光的像素。
  8. 一种多视点三维显示方法,其特征在于,包括权利要求1至7任一项所述的多视点三维显示系统,包括以下步骤:
    S1.多个I型时分复用投影单元(10)沿平面投影透镜(12)或曲面投影透镜(12)毗邻排列,各I型时分复用投影单元(10)的显示屏(11)和投影透镜(12)间设置特定偏移量,以保证各I型时分复用投影单元(10)都投影显示屏虚像于三维图像显示区;
    S2.沿上述排列方向,将各I型时分复用投影单元(10)投影透镜(12)的孔径分为m个子选通区域,各子选通区域对应设置通光孔径阵列(13)中的一个通光孔径;
    S3.沿上述排列方向,将各I型时分复用投影单元(10)投射的显示屏虚像分为n个子投影区域;
    S4.对于各I型时分复用投影单元(10),沿光线传输方向,任一子投影区域两边点和任一通光孔径两边点连线和通光孔径所在面在该面后形成一个封闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点作为该通光孔径和子投影区域共同对应的视点;
    S5.任一通光孔径打开时,该通光孔径所在I型时分复用投影单元(10)各子投影区域上的显示内容设置为按步骤S4所确定视点对应视图的内容;
    S6.在同一时间点,各I型时分复用投影单元(10)最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤S5确定;
    S7.在相邻多个时间点,各I型时分复用投影单元(10)的m个通光孔径依次打开,并根据步骤S6进行内容图像刷新加载;
    S8.循环重复步骤S7。
  9. 一种多视点三维显示方法,其特征在于,包括权利要求1至7任一项所述的多视点三维显示系统,包括以下步骤:
    SS1.多个II型时分复用投影单元(10)沿平面曲面投影透镜(12)或曲面投影透镜(12)毗邻排列,经共用的辅助透镜(20)成各II型时分复用投影单元(10)显示屏(11)的像于三维图像显示区,再经置于三维图像显示区的场镜(30)或附有散射片(40)的场镜(30),成像 各II型时分复用投影单元(10)投影透镜(12)到对应投影透镜像面;
    SS2.沿排列方向,将各II型时分复用投影单元(10)投影透镜(12)的孔径或投影透镜(12)孔径的像分为m个子选通区域,各子选通区域对应设置通光孔径阵列(13)中的一个通光孔径;
    SS3.沿上述排列方向,将各II型时分复用投影单元(10)投射的显示屏像分为n个子投影区域;
    SS4.对于各II型时分复用投影单元(10),任一子投影区域两边点和任一通光孔径(或任一通光孔径的像)两边点连线和通光孔径所在面(或通光孔径的像所在面)在该面后形成一封闭三角形区域,该三角形区域减去其和其它同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
    SS5.任一通光孔径打开时,该通光孔径所在II型时分复用投影单元(10)各子投影区域上的显示内容为按步骤SS4所确定视点对应视图的内容;
    SS6.在同一时间点,各II型时分复用投影单元(10)最多一个通光孔径由控制单元选通,对应显示屏(11)的加载显示内容由控制单元根据步骤SS5确定;
    SS7.在相邻多个时间点,各II型时分复用投影单元(10)的m个通光孔径依次打开,并根据步骤SS6进行内容图像刷新加载;
    SS8.循环重复步骤SS7。
  10. 一种多视点三维显示方法,其特征在于,包括权利要求1至7任一项所述的多视点三维显示系统,包括以下步骤:
    SSS1.多个III型时分复用投影单元(10)沿平面曲面投影透镜(12)或曲面投影透镜(12)毗邻排列,各III型时分复用投影单元(10)显示屏(11)和投影透镜(12)间设置特定偏移量,以保证各III型时分复用投影单元(10)都投影显示屏(11)实像于三维图像显示区,再经置于三维图像显示区的场镜(30)或附有散射片(40)的场镜(30),成像各III型时分复用投影单元(10)投影透镜(12)于对应投影透镜像面;
    SSS2.沿排列方向,将各III型时分复用投影单元(10)投影透镜(12)的孔径或投影透镜孔径的像分为m个子选通区域,各子选通区域对应设置通光孔径阵列中的一个通光孔径;
    SSS3.沿上述排列方向,将各III型时分复用投影单元(10)投射的显示屏像分为n个子投影区域;
    SSS4.对于各III型时分复用投影单元(10),任一子投影区域两边点和任一通光孔径(或任一通光孔径的像)两边点连线和通光孔径所在面(或通光孔径的像所在面)在该面后形成一封 闭三角形区域,该三角形区域减去其和其它各同类区域重叠部分得到有效视点区域,取有效视点区域内一点,作为该通光孔径和子投影区域共同对应的视点;
    SSS5.任一通光孔径打开时,该通光孔径所在III型时分复用投影单元各子投影区域上的显示内容为按步骤SSS4所确定视点对应视图的内容;
    SSS6.在同一时间点,各III型时分复用投影单元(10)最多一个通光孔径由控制单元选通,对应显示屏的加载显示内容由控制单元根据步骤SSS5确定;
    SSS7.在相邻多个时间点,各III型时分复用投影单元(10)的m个通光孔径依次打开,并根据步骤SSS6进行内容图像刷新加载;
    SSS8.循环重复步骤SSS7。
PCT/CN2017/079521 2016-04-07 2017-04-06 一种多视点三维显示系统和方法 WO2017173994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610212222.9 2016-04-07
CN201610212222.9A CN105759557B (zh) 2016-04-07 2016-04-07 一种多视点三维显示系统和方法

Publications (1)

Publication Number Publication Date
WO2017173994A1 true WO2017173994A1 (zh) 2017-10-12

Family

ID=56333513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079521 WO2017173994A1 (zh) 2016-04-07 2017-04-06 一种多视点三维显示系统和方法

Country Status (2)

Country Link
CN (1) CN105759557B (zh)
WO (1) WO2017173994A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114437A (zh) * 2019-06-03 2020-12-22 驻景(广州)科技有限公司 一种实现大视区小视点间距的三维显示方法
CN113341567A (zh) * 2021-05-12 2021-09-03 北京理工大学 一种双焦面光波导近眼显示光学系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759557B (zh) * 2016-04-07 2019-02-05 中山大学 一种多视点三维显示系统和方法
US10652526B2 (en) * 2016-04-25 2020-05-12 Sun Yat-Sen University Three-dimentional display system based on division multiplexing of viewer's entrance-pupil and display method thereof
CN107147895A (zh) * 2017-04-18 2017-09-08 中山大学 一种用于多视图时序呈现的视频处理方法
CN109425993B (zh) * 2017-09-01 2020-09-04 中山大学 一种时空混合复用的三维显示系统及方法
CN107561706B (zh) * 2017-09-16 2021-04-16 中创博利科技控股有限公司 一种虚拟现实投影成像系统
CN107490867B (zh) * 2017-10-07 2021-05-11 深圳市狮子汇文化传播有限公司 虚拟现实投影成像系统
CN109782453A (zh) * 2018-12-04 2019-05-21 中山大学 一种单目多视图的三维显示方法
CN108572462A (zh) * 2018-07-16 2018-09-25 肖丹 一种显示设备
CN109375381B (zh) * 2018-11-27 2021-09-07 浙江理工大学 一种高信息通量低串扰的三维显示方法和系统
CN112925110B (zh) * 2019-12-06 2022-09-27 驻景(广州)科技有限公司 基于光出射受限像素块-孔径对的三维显示模组
CN113835235B (zh) * 2020-06-24 2023-12-15 中山大学 面对多用户的基于入瞳分割复用的三维显示系统
CN112859362B (zh) * 2021-02-02 2023-04-11 驻景(广州)科技有限公司 一种光栅单元子通光孔径时序选通复用的三维显示模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007061A1 (en) * 1998-07-29 2000-02-10 Digilens, Inc. Three dimensional projection systems based on switchable holographic optics
CN103472589A (zh) * 2013-09-29 2013-12-25 中山大学 可便携的三维图像显示系统和方法
CN104503093A (zh) * 2014-12-08 2015-04-08 中山大学 一种用于生成空间渐变过渡视图的光线互补拼接技术及基于该技术的三维显示系统
CN105404010A (zh) * 2015-12-10 2016-03-16 中山大学 允许时间复用的光栅式三维显示系统和方法
CN105759557A (zh) * 2016-04-07 2016-07-13 中山大学 一种多视点三维显示系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015711A (ja) * 2011-07-05 2013-01-24 Sony Corp 表示装置
JP6112815B2 (ja) * 2012-09-27 2017-04-12 京セラ株式会社 表示装置、制御システムおよび制御プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007061A1 (en) * 1998-07-29 2000-02-10 Digilens, Inc. Three dimensional projection systems based on switchable holographic optics
CN103472589A (zh) * 2013-09-29 2013-12-25 中山大学 可便携的三维图像显示系统和方法
CN104503093A (zh) * 2014-12-08 2015-04-08 中山大学 一种用于生成空间渐变过渡视图的光线互补拼接技术及基于该技术的三维显示系统
CN105404010A (zh) * 2015-12-10 2016-03-16 中山大学 允许时间复用的光栅式三维显示系统和方法
CN105759557A (zh) * 2016-04-07 2016-07-13 中山大学 一种多视点三维显示系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112114437A (zh) * 2019-06-03 2020-12-22 驻景(广州)科技有限公司 一种实现大视区小视点间距的三维显示方法
CN112114437B (zh) * 2019-06-03 2022-06-07 驻景(广州)科技有限公司 一种实现大视区小视点间距的三维显示方法
CN113341567A (zh) * 2021-05-12 2021-09-03 北京理工大学 一种双焦面光波导近眼显示光学系统

Also Published As

Publication number Publication date
CN105759557A (zh) 2016-07-13
CN105759557B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2017173994A1 (zh) 一种多视点三维显示系统和方法
EP0764869B1 (en) Autostereoscopic display apparatus
JP3192298B2 (ja) ディスプレイ
TW571120B (en) Three-dimensional display method and its device
CN108008540B (zh) 一种三维显示系统
US5546120A (en) Autostereoscopic display system using shutter and back-to-back lenticular screen
CN110012286B (zh) 一种高视点密度的人眼追踪立体显示装置
JP5852383B2 (ja) 映像表示装置
JP3269823B2 (ja) 情報の2次元および3次元表示のための光学システム
US20120057131A1 (en) Full parallax three-dimensional display device
WO2015043098A1 (zh) 一种多视角裸眼立体显示系统及其显示方法
CN103913845A (zh) 一种利用遮罩和时间复用方式的三维全景图像显示方法
JPH08163603A (ja) 立体映像表示装置
CN104536145A (zh) 2d/3d可切换显示装置
CN109782453A (zh) 一种单目多视图的三维显示方法
CN104503093B (zh) 一种用于生成空间渐变过渡视图的光线互补拼接技术及基于该技术的三维显示系统
CN102566250B (zh) 一种裸眼自由立体显示的投影系统及显示器
JP3710934B2 (ja) 眼鏡無し立体映像表示装置
CN108319030A (zh) 一种自由立体显示系统
CN213634008U (zh) 一种裸眼三维图像显示装置
CN102081239B (zh) 广角裸眼立体显示系统
JPS6238695A (ja) 立体表示システム
JPH08254767A (ja) 立体映像表示装置
JP7304264B2 (ja) 立体画像表示システム
Javidi et al. Enhanced 3D color integral imaging using multiple display devices

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778658

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778658

Country of ref document: EP

Kind code of ref document: A1