WO2017173869A1 - 液晶显示面板驱动方法、时序控制器及液晶显示装置 - Google Patents

液晶显示面板驱动方法、时序控制器及液晶显示装置 Download PDF

Info

Publication number
WO2017173869A1
WO2017173869A1 PCT/CN2017/070381 CN2017070381W WO2017173869A1 WO 2017173869 A1 WO2017173869 A1 WO 2017173869A1 CN 2017070381 W CN2017070381 W CN 2017070381W WO 2017173869 A1 WO2017173869 A1 WO 2017173869A1
Authority
WO
WIPO (PCT)
Prior art keywords
gray scale
frame
region
image frames
scale voltage
Prior art date
Application number
PCT/CN2017/070381
Other languages
English (en)
French (fr)
Inventor
闫龙
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/541,423 priority Critical patent/US10089943B2/en
Publication of WO2017173869A1 publication Critical patent/WO2017173869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a method for driving a liquid crystal display panel, a timing controller, and a liquid crystal display device.
  • the liquid crystal display panel includes a plurality of rows of scan lines, a plurality of columns of data lines, and a plurality of pixels defined by the scan lines and the data lines.
  • the plurality of rows of scanning lines are sequentially scanned, and the plurality of columns of data lines are applied with corresponding gray scale voltages.
  • interlaced processing is required. By means of the deinterlacing process, the image information missing from the odd (even) number of image frames in the interlaced video signal is reconstructed such that each of the odd (even) number of image frames becomes a complete image frame.
  • polarity of the gray scale voltage applied to each of the plurality of pixels of the liquid crystal display panel is inverted from the frame to the frame.
  • Figure 1 shows an example of various gray scale voltage polarity inversion schemes. As shown in FIG. 1, polarity inversion typically includes frame inversion, column inversion, line inversion, and dot inversion, and odd and even frames have gray scale voltage polarity patterns that are opposite to each other. The polarity inversion can eliminate the DC offset of the liquid crystal for a long time, prevent the liquid crystal from being excessively polarized, and thus avoid the afterimage.
  • afterimages may still occur in some cases (e.g., when deinterlacing processing for interlaced video signals). This can be caused by the fact that the reconstructed grayscale data obtained by the deinterlacing process is not equal to the real grayscale data.
  • each image frame has only half of the data of the full frame.
  • the odd frames have grayscale data of odd rows
  • the even frames have grayscale data of even rows.
  • the other half of the missing data for each image frame can be calculated by a reconstruction algorithm for deinterlacing.
  • FIG. 3 shows an example of a reconstructed interlaced video signal.
  • Reconstruction algorithm can The expression is as follows: the grayscale data of the missing middle row is equal to the average of the grayscale data of the previous row and the grayscale data of the subsequent row, and the grayscale data of the missing edge row is equal to the grayscale data of the adjacent row.
  • deinterlacing can complement the data of each image frame, it may result in unequal reconstruction of grayscale data with real grayscale data at certain pixel rows.
  • the true grayscale data for the pixels in the fourth row in the odd frame should be 255, and the reconstructed grayscale data is 127; the true of the pixels used in the fifth row in the even frame.
  • the grayscale data should be 0 and the reconstructed grayscale data is 127.
  • FIG. 4 shows an example in which the unequality of the reconstructed gray scale voltage data and the real gray scale voltage data causes a DC offset.
  • the polarity of the gray scale voltage applied to each pixel is inverted from the frame to the frame.
  • the gray scale voltage (corresponding to the reconstructed gray scale data) applied to the pixel in the period of the odd frame has a positive polarity (P) with respect to the common voltage Vcom, and is in an even number
  • the gray scale voltage (corresponding to the real gray scale data) applied to the pixel within the period of the frame has a negative polarity (N) with respect to the common voltage Vcom. Since the gray scale voltage VP corresponding to each odd frame is smaller than the absolute value of the gray scale voltage VN corresponding to each even frame, a DC bias biased toward the negative polarity is generated, causing the liquid crystal to be polarized.
  • the inventors have also recognized that the problem of DC offset can be addressed by modulating the gray scale voltage polarity of a set of frames comprising a predetermined number of image frames. Specifically, the DC offset caused by the consecutive two frame groups can be offset by inverting the default gray scale voltage polarity of the image frames in every other frame group.
  • FIG. 5 shows an example in which the gray scale voltage polarity of each image frame in FIG. 4 is modulated.
  • each frame group includes 4 frames, wherein frame group #1 includes frames 1 to 4, and frame group #2 includes frames 5 to 8.
  • the default gray scale voltage polarities of frames 5 through 8 are reversed, thereby allowing the gray scale voltages corresponding to frames 5 through 8 to produce a positive DC bias.
  • the negative DC bias generated by frames 1 through 4 and the positive DC bias generated by frames 5 through 8 cancel each other out, thereby solving the problem of DC bias.
  • the above solution may bring a new problem: the pixel brightness changes at the intersection of the frame groups. This is because the brightness of the pixel depends on both the absolute value and the polarity of the gray scale voltage, so changing (inverting) the polarity of the gray scale voltage can change the brightness of the pixel. In particular, if such a change in brightness occurs at all pixels, significant picture flicker can be caused.
  • Figure 6a shows the change in pixel brightness without grayscale voltage polarity modulation Chemical.
  • the average luminance of the pixel is always (P127 + N255)/2 in every two adjacent frame periods. Therefore, there is no flickering of the screen.
  • Figure 6b shows the change in pixel brightness in the case of gray scale voltage polarity modulation.
  • the average luminance of the pixel in the period of the 4th frame and the 5th frame is (N255+N127)/2, which is adjacent to the frame frame adjacent to the 4th frame.
  • the average luminance (P127+N255)/2 of the pixel is different, and the average luminance of the pixel in the period of the 5th frame and the 6th frame is (N127+P255)/2, which is adjacent to the two frames after the 5th frame.
  • the brightness average brightness (N127+P255)/2 of the pixel is also different during the period. Therefore, there is a screen flicker.
  • embodiments of the present disclosure provide a method, a timing driver, and a liquid crystal display device for driving a liquid crystal display panel to alleviate, alleviate or eliminate at least one of the above problems.
  • a method for driving a liquid crystal display panel is provided.
  • the liquid crystal display panel is configured to display a sequence of image frames, the sequence of image frames comprising an alternating plurality of first frame groups and a plurality of second frame groups, each of the first frame groups including a first number An image frame, each of the second set of frames comprising a second number of image frames.
  • the method includes: modulating a grayscale voltage polarity corresponding to the plurality of first frame groups such that corresponding image frames of the first frame group adjacent to each two time have grayscale voltage polarity patterns opposite to each other .
  • the method further includes modulating a grayscale voltage polarity corresponding to each of the plurality of second frame groups, including: dividing each of the image frames of the second frame group into a first region And a second region; setting a grayscale voltage polarity corresponding to the first region to be opposite to a grayscale voltage polarity corresponding to the second region; and a grayscale corresponding to each image frame of the second frame group
  • the voltage polarity is modulated such that every two consecutive image frames of the second set of frames have a gray scale voltage polarity pattern that is opposite to each other.
  • the first number and the second number are even.
  • dividing each of the image frames of the second frame group into the first region and the second region comprises: dividing each of the image frames of the second frame group into a plurality of a first area of the first sub-area and a second area including a plurality of second sub-areas, the first sub-area and the second sub-area being alternately arranged.
  • Setting the gray scale voltage polarity corresponding to the first region to be opposite to the gray scale voltage polarity corresponding to the second region includes: setting a gray scale voltage polarity corresponding to the plurality of first sub regions to The gray scale voltages corresponding to the plurality of second sub-regions are opposite in polarity.
  • each of the plurality of first sub-regions includes at least one a pixel row
  • each of the plurality of second sub-regions includes at least one pixel row
  • the sequence of image frames is a video signal of a progressive scan format reconstructed from an interlaced video signal.
  • the method further comprises: modulating a grayscale voltage polarity corresponding to each image frame of each of the plurality of first frame groups such that each two consecutive of the first frame group The image frames have grayscale voltage polarity patterns that are opposite to each other.
  • a timing controller for controlling a data driver to drive a liquid crystal display panel to display a sequence of image frames, the sequence of image frames comprising an alternating plurality of first frame groups and a plurality of second frames Group, each of the first set of frames includes a first number of image frames, each of the second set of frames including a second number of image frames.
  • the timing controller includes a control signal generator configured to generate a control signal to control the data driver to: modulate a gray scale voltage polarity corresponding to the plurality of first frame groups, Corresponding image frames of the first frame group adjacent to each other two times have gray scale voltage polarity patterns opposite to each other; and modulating gray scale voltage polarities corresponding to each of the plurality of second frame groups
  • the method includes: dividing each of the image frames of the second frame group into a first region and a second region; setting a grayscale voltage polarity corresponding to the first region to correspond to the second region
  • the gray scale voltages are opposite in polarity; and the gray scale voltage polarities corresponding to the image frames of the second frame group are modulated such that every two consecutive image frames of the second frame group have opposite gray scale voltage poles Sexual pattern.
  • a liquid crystal display device comprising: a liquid crystal display panel including a pixel array and configured to display a sequence of image frames, the sequence of image frames comprising an alternating plurality of first frame groups and a plurality of second frame groups, each of the first frame groups including a first number of image frames, each of the second frame groups including a second number of image frames; a data driver configured to Converting grayscale data of each image frame of the sequence of image frames into grayscale voltages to be applied to the array of pixels; and timing controller including a control signal generator configured to control The data driver performs an operation of modulating grayscale voltage polarities corresponding to the plurality of first frame groups such that corresponding image frames of the first frame group adjacent to each two time have grayscale voltages opposite to each other a polarity pattern; and modulating a grayscale voltage polarity corresponding to each of the plurality of second frame groups, comprising: dividing each of the image frames of the second frame group into the first region And a second
  • Figure 1 shows an example of various gray scale voltage polarity inversion schemes
  • Figure 2 shows an example of an interlaced video signal
  • Figure 3 shows an example of a reconstructed interlaced video signal
  • FIG. 5 shows an example of a gray scale voltage applied to a pixel in the case of performing gray scale voltage polarity modulation
  • Figure 6a shows the change in pixel brightness without grayscale voltage polarity modulation
  • Figure 6b shows the change in pixel brightness in the case of gray scale voltage polarity modulation
  • FIG. 7 illustrates an example of a gray scale voltage polarity pattern of each image frame obtained using a method according to an embodiment of the present disclosure
  • FIG. 8 shows an example of a gray scale voltage polarity pattern of image frames n+1 and n+2 in FIG. 7;
  • FIG. 9 illustrates a block diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of the timing controller of FIG.
  • FIG. 7 illustrates an example of a gray scale voltage polarity pattern for each image frame obtained using a method in accordance with an embodiment of the present disclosure.
  • the method is for driving a liquid crystal display panel.
  • the liquid crystal display panel is configured to display a sequence of image frames.
  • the sequence of image frames includes an alternating plurality of first frame groups and a plurality of second frame groups.
  • Each of the first set of frames includes a first number of image frames
  • each of the second set of frames includes a second number of image frames.
  • only two first frame groups #1 and one second frame group #2 are shown in FIG. 7, which The two first frame groups #1 include frames 1 to 4 and frames n+3 to 2n+2, respectively, and the second frame group #2 includes frames n+1 and n+2.
  • the method includes modulating grayscale voltage polarities corresponding to the plurality of first frame groups such that corresponding image frames of the first frame group adjacent each two time have opposite gray scale voltage polarity patterns from each other.
  • the corresponding frames 1 and n+3 have opposite gray scale voltage polarity patterns
  • the corresponding frames 2 and n+4 have opposite Gray scale voltage polarity pattern, and so on. Similar to the modulation scheme of FIG. 5, this can offset the DC offset of the gray scale voltage generated by the two first frame groups #1 adjacent in time.
  • the method also includes modulating a grayscale voltage polarity corresponding to each of the plurality of second frame groups. Specifically, each of the image frames of the second frame group is divided into a first region and a second region, and a grayscale voltage polarity corresponding to the first region is set to correspond to the second region.
  • the gray scale voltages are opposite in polarity, and the gray scale voltage polarities corresponding to the image frames of the second frame group are modulated such that every two consecutive image frames of the second frame group have opposite gray scale voltage polarities pattern.
  • a grayscale voltage polarity corresponding to each of the plurality of second frame groups.
  • the image frames n+1 and n+2 of the second frame group #2 are divided into a first region and a second region, wherein the grayscale voltage polarity corresponding to the first region is set to The gray scale voltages corresponding to the second region are opposite in polarity.
  • the grayscale voltage polarity corresponding to the first region is set to the positive polarity P
  • the grayscale voltage polarity corresponding to the second region is set to the negative polarity N
  • the image frame n+2 The gray scale voltage polarity corresponding to the first region is set to the negative polarity N
  • the gray scale voltage polarity corresponding to the second region is set to the positive polarity P. Therefore, the image frames n+1 and n+2 have gray scale voltage polarity patterns opposite to each other.
  • the screen flicker at the boundary between the frame group 1# and the frame group #2 can be reduced. This is because the polarity of the gray scale voltage that is not applied to all pixels at the frame group boundary is now changed compared to the modulation scheme of FIG.
  • the second region of image frame n+1 has the same grayscale voltage polarity (N) as image frame n
  • the first region of the image frame n+2 has the same grayscale voltage polarity (N) as the image frame n+3.
  • the method may further include: modulating a grayscale voltage polarity corresponding to each image frame of each of the plurality of first frame groups, such that the first Each two consecutive image frames of the frame group have a gray scale voltage polarity pattern that is opposite to each other.
  • frames 1 and 2 have opposite gray scale voltage polarity patterns
  • frames 2 and 3 have opposite gray scale voltage polarity patterns, and so on. This can ensure that the polarity of the gray scale voltage applied to each pixel is changed from frame to frame, thereby facilitating prevention of excessive polarization of the liquid crystal.
  • each first frame group #1 includes an even number of image frames.
  • the first frame group #1 includes 4 image frames. This can ensure that in the case where the image frame sequence is reconstructed from the interlaced video signal, each frame group #1 has an equal number of reconstructed grayscale data and an equal number of original grayscale data, such that two frames temporally adjacent The gray scale voltage DC offset generated by group #1 is completely offset.
  • the present disclosure is not limited thereto.
  • each second frame group #2 includes an even number of image frames.
  • the second frame group #2 includes 2 image frames. This can ensure that the number of gray scale data having positive polarity in each second frame group #2 is equal to the number of gray scale data having negative polarity, thereby better eliminating the DC offset.
  • each image frame of the first frame group #1 is illustrated in FIG. 7 as having a gray scale voltage polarity pattern corresponding to frame inversion (ie, the gray scale data of the entire frame has the same gray scale voltage pole Sex, either P or N), but the disclosure is not limited thereto.
  • each image frame of the first frame group #1 may have a gray scale voltage polarity pattern corresponding to other polarity inversion schemes (eg, column inversion, row inversion, and dot inversion).
  • FIG. 8 shows an example of a gray scale voltage polarity pattern of the image frames n+1 and n+2 in FIG.
  • each of the image frames n+1 and n+2 is divided into a first region including a plurality of first sub-regions and a second region including a plurality of second sub-regions, wherein the first The sub-region and the second sub-region are alternately arranged, and gray scale voltage polarities corresponding to the plurality of first sub-regions are set to be opposite to gray scale voltages corresponding to the plurality of second sub-regions.
  • the image frames n+1 and n+2 have gray scale voltage polarity patterns opposite to each other.
  • the first sub-region may include at least one pixel row
  • the second sub-region may include at least one pixel row.
  • the number of pixel rows included in the first sub-region or the second sub-region may be determined according to a polarity inversion scheme of the image frame of the first frame group. A finer division of the image frames n+1 and n+2 may result in less noticeable picture flicker at the junction of the first frame group and the second frame group.
  • FIG. 9 shows a block diagram of a liquid crystal display device 90 in accordance with an embodiment of the present disclosure.
  • the liquid crystal display device 90 includes a display panel 100, a timing controller 200, a gate driver 300, and a data driver 400.
  • the display panel 100 is connected to a plurality of gate lines GL and a plurality of data lines DL.
  • the display panel 100 displays an image having a plurality of gray levels based on the output image data RGBD'.
  • the gate line GL may extend in the first direction D1
  • the data line DL may extend in the second direction D2 crossing (eg, substantially perpendicular) to the first direction D1.
  • the display panel 100 may include a plurality of pixels (not shown) arranged in a matrix form. Each of the pixels may be electrically connected to a corresponding one of the gate lines GL and one corresponding one of the data lines DL.
  • Each of the pixels may include a switching element, a liquid crystal capacitor, and a storage capacitor.
  • the liquid crystal capacitor and the storage capacitor can be electrically connected to the switching element.
  • the switching element can be a thin film transistor.
  • the liquid crystal capacitor may include a first electrode connected to the pixel electrode and a second electrode connected to the common electrode.
  • a gray scale voltage can be applied to the first electrode of the liquid crystal capacitor.
  • a common voltage can be applied to the second electrode of the liquid crystal capacitor.
  • the storage capacitor may include a first electrode connected to the pixel electrode and a second electrode connected to the storage electrode.
  • a gray scale voltage can be applied to the first electrode of the storage capacitor.
  • a storage voltage can be applied to the second electrode of the storage capacitor.
  • the storage voltage can be substantially equal to the common voltage.
  • Each pixel may have a rectangular shape.
  • each pixel may have a relatively short side in the first direction D1 and a relatively long side in the second direction D2.
  • the relatively short sides of each pixel may be substantially parallel to the gate line GL.
  • the relatively long sides of each pixel may be substantially parallel to the data line DL.
  • the timing controller 200 controls operations of the display panel 100, the gate driver 300, and the data driver 400.
  • the timing controller 200 receives input image data RGBD and an input control signal CONT from an external device (for example, a host).
  • the input image data RGBD may include a plurality of input gray scale data for a plurality of pixels.
  • Each of the input grayscale data may include red grayscale data R, green grayscale data G, and blue grayscale data B for a corresponding one of the plurality of pixels.
  • the input control signal CONT may include a main clock signal, a data enable signal, a vertical sync signal, a horizontal sync signal, and the like.
  • the timing controller 200 is based on the input image data RGBD and the input control signal CONT Output image data RGBD', first control signal CONT1, and second control signal CONT2 are generated.
  • the timing controller 200 can generate output image data RGBD' based on the input image data RGBD.
  • the output image data RGBD' can be supplied to the data driver 400.
  • the output image data RGBD' may be substantially the same image data as the input image data RGBD.
  • the output image data RGBD' may be compensated image data generated by compensating the input image data RGBD.
  • the output image data RGBD' may be a progressive scan video signal reconstructed from input image data RGBD as an interlaced video signal.
  • the output image data RGBD' may include a plurality of output gray scale data for a plurality of pixels.
  • the timing controller 200 may generate the first control signal CONT1 based on the input control signal CONT.
  • the first control signal CONT1 may be supplied to the gate driver 300, and the driving timing of the gate driver 300 may be controlled based on the first control signal CONT1.
  • the first control signal CONT1 may include a vertical enable signal, a gate clock signal, and the like.
  • the timing controller 200 can generate the second control signal CONT2 based on the input control signal CONT.
  • the second control signal CONT2 may be supplied to the data driver 400, and the driving timing of the data driver 400 may be controlled based on the second control signal CONT2.
  • the second control signal CONT2 includes a control signal for controlling the data driver 400 to perform various operations of the method according to an embodiment of the present disclosure as described above. Further, the second control signal CONT2 may include a horizontal enable signal, a data clock signal, a data load signal, a polarity control signal, and the like.
  • the gate driver 300 receives the first control signal CONT1 from the timing controller 200.
  • the gate driver 300 generates a plurality of gate signals for driving the gate lines GL based on the first control signal CONT1.
  • the gate driver 300 may sequentially apply a plurality of gate signals to the gate lines GL.
  • the data driver 400 receives the second control signal CONT2 and the output image data RGBD' from the timing controller 200.
  • the data driver 400 generates a plurality of gray scale voltages based on the second control signal CONT2 and the output image data RGBD'.
  • the data driver 400 can apply a plurality of gray scale voltages to the data lines DL.
  • data driver 400 may include a shift register, a latch, a digital to analog converter, and a buffer.
  • the shift register can output a latch pulse to the latch.
  • the latch can temporarily store the output image data RGBD', and can output the output image data RGBD' to the digital-to-analog converter.
  • the digital-to-analog converter can be based on the output image data RGBD’
  • the analog gray scale voltage is generated, and the analog gray scale voltage can be output to the buffer.
  • the buffer can output the analog gray scale voltage to the data line DL.
  • the gate driver 300 and/or the data driver 400 may be disposed (eg, directly mounted) on the display panel 100, or may be connected to, for example, a Tape Carrier Package (TCP) type to The display panel 100.
  • TCP Tape Carrier Package
  • the gate driver 300 and/or the data driver 400 can be integrated in the display panel 100.
  • the liquid crystal display device 90 in this embodiment may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • FIG. 10 is a block diagram showing a timing controller 200 in the display device 90 of FIG. 9 in accordance with an embodiment of the present invention.
  • the timing controller 200 may include a data compensator 210 and a control signal generator 220.
  • the timing controller 200 is shown in FIG. 10 as being divided into two elements, however the timing controller 200 may not be physically divided.
  • the data compensator 210 can receive the input image data RGBD from an external device, and can generate the output image data RGBD' by compensating the input image data RGBD. For example, in the case where the input image data RGBD is an interlaced video signal, the data compensator 210 can reconstruct the output image data RGBD' as a progressive scan video signal from the input image data RGBD using a reconstruction algorithm. Additionally, data compensator 210 can selectively perform image quality compensation, point compensation, adaptive color correction (ACC), and/or dynamic capacitance compensation (DCC) for input image data RGBD to generate output image data RGBD'.
  • ACC adaptive color correction
  • DCC dynamic capacitance compensation
  • data compensator 210 may include a single line memory that stores grayscale data corresponding to a single row of pixels.
  • the control signal generator 220 may receive the input control signal CONT from an external device, and may generate the first control signal CONT1 for the gate driver 300 in FIG. 9 and the data driver 400 in FIG. 9 based on the input control signal CONT.
  • the control signal generator 220 may output the first control signal CONT1 to the gate driver 300 in FIG. 9, and may output the second control signal CONT2 to the data driver 400 in FIG.
  • control signal generator 220 controls the data driver 400 to perform the present disclosure as described above by outputting the second control signal CONT2 to the data driver 400
  • the various operations of the method of the embodiments have been described in detail above with respect to Figures 7 and 8, and are not discussed here for simplicity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种用于驱动液晶显示面板(100)的方法。所述液晶显示面板(100)被配置成显示包括交替的多个第一帧组和多个第二帧组的图像帧序列。所述方法包括:对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。以及一种时序控制器(200)和液晶显示装置(90)。

Description

液晶显示面板驱动方法、时序控制器及液晶显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种用于驱动液晶显示面板的方法、时序控制器及液晶显示装置。
背景技术
液晶显示面板包括多行扫描线、多列数据线、以及由所述扫描线和数据线定义的多个像素。在驱动液晶显示面板显示画面时,多行扫描线被依次扫描,并且多列数据线被施加对应的灰阶电压。在信号源提供隔行扫描视频信号的应用中,需要去隔行处理。借助于去隔行处理,隔行扫描视频信号中的奇(偶)数图像帧所缺失的图像信息被重建,使得所述奇(偶)数图像帧中的每一个成为完整的图像帧。
另外,施加到液晶显示面板的所述多个像素中的每一个的灰阶电压的极性从帧到帧进行反转。图1示出了各种灰阶电压极性反转方案的示例。如图1所示,极性反转(polarity inversion)典型地包括帧反转、列反转、行反转和点反转,并且奇数帧和偶数帧具有彼此相反的灰阶电压极性图案。极性反转可以消除液晶长时间内的直流偏置,防止液晶过度极化,并且因此避免残像。
发明内容
本公开的发明人认识到,尽管引入极性反转,在某些情况下(例如,针对隔行扫描视频信号进行去隔行处理时)仍然会出现残像。这可以由以下事实引起的:由去隔行处理得到的重建灰阶数据与真实灰阶数据不相等。
参考图2,其示出在连续的八个帧(Frame 1至8)中用于八个像素行(Line 1至8)的同一列像素的隔行扫描视频信号的示例。如已知的,对于隔行扫描视频信号,每个图像帧只有完整帧的一半数据。在该示例中,奇数帧具有奇数行的灰阶数据,并且偶数帧具有偶数行的灰阶数据。每个图像帧的缺失的另一半数据可以通过用于去隔行处理的重建算法计算得出。
图3示出了经重建后的隔行扫描视频信号的示例。重建算法可以 表述如下:缺失的中间行的灰阶数据等于前一行的灰阶数据与后一行的灰阶数据的平均值,并且缺失的边缘行的灰阶数据等于相邻行的灰阶数据。虽然去隔行处理能够补全每个图像帧的数据,但是其可能导致在某些像素行处重建灰阶数据与真实灰阶数据的不相等。如图3中的黑色加深框所示,奇数帧中用于第4行的像素的真实灰阶数据应为255,而重建灰阶数据为127;偶数帧中用于第5行的像素的真实灰阶数据应为0,而重建灰阶数据为127。
图4示出了其中重建灰阶电压数据与真实灰阶电压数据的不相等引起直流偏置的示例。如前所述,在液晶显示面板的操作中,施加到每个像素的灰阶电压的极性从帧到帧进行反转。以第4行的该像素为例,假设在奇数帧的周期内被施加到该像素的灰阶电压(对应于重建灰阶数据)具有相对于公共电压Vcom的正极性(P),并且在偶数帧的周期内被施加到该像素的灰阶电压(对应于真实灰阶数据)具有相对于公共电压Vcom的负极性(N)。由于各奇数帧对应的灰阶电压VP小于各偶数帧对应的灰阶电压VN的绝对值,因此会产生偏向负极性的直流偏置,致使液晶极化。
发明人还认识到,可以通过对包括预定数目的图像帧的帧组(set of frames)的灰阶电压极性进行调制来解决直流偏置的问题。具体地,可以通过对每隔一个帧组中的图像帧的默认灰阶电压极性进行反转来抵消连续的两个帧组所引起的直流偏置。
图5示出了其中对图4中的各图像帧的灰阶电压极性进行调制的示例。如图5所示,每个帧组包括4帧,其中帧组#1包括帧1至4,并且帧组#2包括帧5至8。与图3相比,帧5至8的默认灰阶电压极性被反转,从而允许帧5至8所对应的灰阶电压产生正极性的直流偏置。特别地,由帧1至4产生的负极性直流偏置与由帧5至8产生的正极性直流偏置相互抵消,从而解决直流偏置的问题。
然而,上述解决方案可能带来新的问题:像素亮度在帧组的交界处发生变化。这是因为像素的亮度依赖于灰阶电压的绝对值和极性两者,所以改变(反转)灰阶电压的极性可以改变该像素的亮度。特别地,如果这种亮度变化发生在所有像素处,则可以引起显著的画面闪烁。
图6a示出了在不进行灰阶电压极性调制的情况下像素亮度的变 化。如图6a所示,在每相邻两帧周期内该像素的平均亮度总是(P127+N255)/2。因此,不会存在画面闪烁。图6b示出了在进行灰阶电压极性调制的情况下像素亮度的变化。如图6b中的黑色加深框所示,在第4帧和第5帧的周期内该像素的平均亮度为(N255+N127)/2,其与第4帧之前相邻两个帧周期内该像素的平均亮度(P127+N255)/2不同,并且在第5帧和第6帧的周期内该像素的平均亮度为(N127+P255)/2,其与第5帧之后相邻两个帧周期内该像素的亮度平均亮度(N127+P255)/2也不同。因此,存在画面闪烁。
基于以上认识,本公开的实施例提供一种用于驱动液晶显示面板的方法、时序驱动器及液晶显示装置,以减轻、缓解或消除上述问题中的至少一个。
根据根据本公开的第一方面,提供了一种用于驱动液晶显示面板的方法。所述液晶显示面板被配置成显示图像帧序列,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧。所述方法包括:对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案。所述方法还包括:对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
在一些实施例中,所述第一数目和所述第二数目为偶数。
在一些实施例中,将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域包括:将该第二帧组的各图像帧中的每一个划分为包括多个第一子区域的第一区域和包括多个第二子区域的第二区域,所述第一子区域与所述第二子区域交替排列。将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反包括:将所述多个第一子区域对应的灰阶电压极性设置为与所述多个第二子区域对应的灰阶电压极性相反。
在一些实施例中,所述多个第一子区域中的每一个包括至少一个 像素行,并且所述多个第二子区域中的每一个包括至少一个像素行。
在一些实施例中,所述图像帧序列是从隔行扫描视频信号重建的逐行扫描格式的视频信号。
在一些实施例中,所述方法还包括:对所述多个第一帧组中的每一个的各图像帧对应的灰阶电压极性进行调制,使得该第一帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
根据本公开的第二方面,提供了一种用于控制数据驱动器驱动液晶显示面板显示图像帧序列的时序控制器,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧。所述时序控制器包括:控制信号生成器,其被配置成生成用以控制所述数据驱动器执行以下操作的控制信号:对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案;以及对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
根据本公开的第三方面,提供了一种液晶显示装置,包括:液晶显示面板,其包括像素阵列并被配置成显示图像帧序列,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧;数据驱动器,其被配置成将所述图像帧序列的各图像帧的灰阶数据转换成要施加到所述像素阵列的灰阶电压;以及时序控制器,其包括控制信号生成器,所述控制信号生成器被配置成控制所述数据驱动器执行以下操作:对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案;以及对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及对该第二帧组的各图 像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
根据在下文中所描述的实施例,本发明的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
图1示出了各种灰阶电压极性反转方案的示例;
图2示出了隔行扫描视频信号的示例;
图3示出了经重建后的隔行扫描视频信号的示例;
图4示出了其中重建灰阶电压数据与真实灰阶电压数据的不相等引起直流偏置的示例;
图5示出了在进行灰阶电压极性调制的情况下施加到像素的灰阶电压的示例;
图6a示出了在不进行灰阶电压极性调制的情况下像素亮度的变化;
图6b示出了在进行灰阶电压极性调制的情况下像素亮度的变化;
图7示出了使用根据本公开实施例的方法得到的各图像帧的灰阶电压极性图案的示例;
图8示出了图7中的图像帧n+1和n+2的灰阶电压极性图案的示例;
图9示出了根据本公开实施例的液晶显示装置的框图;以及
图10示出了图9中的时序控制器的框图。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显,下面将结合附图对本公开的实施例进行清楚、完整地描述。所描述的实施例仅仅是示例性的,而不应解释为限制本公开。
图7示出了使用根据本公开实施例的方法得到的各图像帧的灰阶电压极性图案的示例。所述方法用于驱动液晶显示面板。所述液晶显示面板被配置成显示图像帧序列。所述图像帧序列包括交替的多个第一帧组和多个第二帧组。所述第一帧组中的每一个包括第一数目的图像帧,并且所述第二帧组中的每一个包括第二数目的图像帧。为了图示的简单性,图7中仅示出了两个第一帧组#1和一个第二帧组#2,其 中两个第一帧组#1分别包括帧1至4和帧n+3至2n+2,并且第二帧组#2包括帧n+1和n+2。
所述方法包括对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案。在图7的示例中,对于时间相邻的两个第一帧组#1,对应的帧1和n+3具有相反的灰阶电压极性图案,对应的帧2和n+4具有相反的灰阶电压极性图案,以此类推。与图5的调制方案类似,这可以抵消时间相邻的两个第一帧组#1所产生的灰阶电压的直流偏置。
所述方法还包括对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制。具体地,该第二帧组的各图像帧中的每一个被划分为第一区域和第二区域,所述第一区域对应的灰阶电压极性被设置为与所述第二区域对应的灰阶电压极性相反,并且该第二帧组的各图像帧对应的灰阶电压极性被调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。在图7的示例中,第二帧组#2的图像帧n+1和n+2被划分为第一区域和第二区域,其中所述第一区域对应的灰阶电压极性被设置为与所述第二区域对应的灰阶电压极性相反。例如,对于图像帧n+1,第一区域对应的灰阶电压极性被设置为正极性P,并且第二区域对应的灰阶电压极性被设置为负极性N;对于图像帧n+2,第一区域对应的灰阶电压极性被设置为负极性N,并且第二区域对应的灰阶电压极性被设置为正极性P。因此,图像帧n+1和n+2具有彼此相反的灰阶电压极性图案。
通过对帧组#2的各图像帧所对应的灰阶电压极性进行调制,可以减小在帧组1#与帧组#2之间的交界处的画面闪烁。这是因为与图5的调制方案相比,现在在帧组交界处并非施加到所有像素的灰阶电压的极性都被改变。例如,在图7的示例中,在帧组#1与帧组#2之间的交界处,图像帧n+1的第二区域具有与图像帧n相同的灰阶电压极性(N),并且图像帧n+2的第一区域具有与图像帧n+3相同的灰阶电压极性(N)。在这些像素处,由于灰阶电压极性保持不变,所以像素亮度不被改变,并且因此降低了画面闪烁。而且,由于第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案,所以施加到各个像素的灰阶电压的极性在第二帧组的周期内仍然被从帧到帧进行反转。这 有利于防止液晶过度极化。
另外,如常规的极性反转方案一样,所述方法还可以包括:对所述多个第一帧组中的每一个的各图像帧对应的灰阶电压极性进行调制,使得该第一帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。在图7的示例中,对于第一帧组#1,帧1和2具有相反的灰阶电压极性图案,帧2和3具有相反的灰阶电压极性图案,以此类推。这可以保证施加到各个像素的灰阶电压的极性从帧到帧被改变,从而有利于防止液晶过度极化。
在各实施例中,每个第一帧组#1包括偶数个图像帧。在图7的示例中,第一帧组#1包括4个图像帧。这可以保证在其中图像帧序列是从隔行扫描视频信号重建的情况下,每个帧组#1具有相等数目的重建灰阶数据和相等数目的原始灰阶数据,使得时间相邻的两个帧组#1所产生的灰阶电压直流偏置完全抵消。然而,本公开不限于此。
在各实施例中,每个第二帧组#2包括偶数个图像帧。在图7的示例中,第二帧组#2包括2个图像帧。这可以保证在每个第二帧组#2内具有正极性的灰阶数据的数目与具有负极性的灰阶数据的数目相等,从而更好地消除直流偏置。
另外,虽然第一帧组#1的各图像帧在图7中被示出为具有对应于帧反转的灰阶电压极性图案(即,整个帧的灰阶数据具有相同的灰阶电压极性,或者为P或者为N),但是本公开不限于此。在其他实施例中,第一帧组#1的各图像帧可以具有对应于其他极性反转方案(例如,列反转、行反转和点反转)的灰阶电压极性图案。
图8示出了图7中的图像帧n+1和n+2的灰阶电压极性图案的示例。在该示例中,图像帧n+1和n+2中的每一个被划分为包括多个第一子区域的第一区域和包括多个第二子区域的第二区域,其中所述第一子区域与所述第二子区域交替排列,并且所述多个第一子区域对应的灰阶电压极性被设置为与所述多个第二子区域对应的灰阶电压极性相反。另外,如图8所示,图像帧n+1和n+2具有彼此相反的灰阶电压极性图案。
在一些实施例中,第一子区域可以包括至少一个像素行,并且第二子区域可以包括至少一个像素行。可以根据第一帧组的图像帧的极性反转方案来确定第一子区域或第二子区域中包括的像素行的数目。 对图像帧n+1和n+2的更精细的划分可以导致第一帧组与第二帧组交界处较不显著的画面闪烁。
图9示出了根据本公开实施例的液晶显示装置90的框图。
参考图9,液晶显示装置90包括显示面板100、时序控制器200、栅极驱动器300和数据驱动器400。
显示面板100连接至多个栅极线GL和多个数据线DL。显示面板100基于输出图像数据RGBD’显示具有多个灰阶的图像。栅极线GL可在第一方向D1延伸,并且数据线DL可在与第一方向D1交叉(例如,基本垂直)的第二方向D2延伸。
显示面板100可包括以矩阵形式排列的多个像素(未示出)。每个像素可电连接至栅极线GL的对应一个栅极线和数据线DL的对应一个数据线。
每个像素可包括开关元件、液晶电容器和存储电容器。液晶电容器和存储电容器可电连接至开关元件。例如,开关元件可以是薄膜晶体管。液晶电容器可包括连接至像素电极的第一电极和连接至公共电极的第二电极。灰阶电压可被施加至液晶电容器的第一电极。公共电压可被施加至液晶电容器的第二电极。存储电容器可包括连接至像素电极的第一电极和连接至存储电极的第二电极。灰阶电压可被施加至存储电容器的第一电极。存储电压可被施加至存储电容器的第二电极。存储电压可基本等于公共电压。
每个像素可具有矩形形状。例如,每个像素可在第一方向D1具有相对短的边,而在第二方向D2具有相对长的边。每个像素的相对短的边可基本平行于栅极线GL。每个像素的相对长的边可基本平行于数据线DL。
时序控制器200控制显示面板100、栅极驱动器300和数据驱动器400的操作。时序控制器200从外部设备(例如,主机)接收输入图像数据RGBD和输入控制信号CONT。输入图像数据RGBD可包括用于多个像素的多个输入灰阶数据。每个输入灰阶数据可包括用于多个像素中的对应一个的红色灰阶数据R、绿色灰阶数据G和蓝色灰阶数据B。输入控制信号CONT可包括主时钟信号、数据使能信号、垂直同步信号、水平同步信号等。
时序控制器200基于输入图像数据RGBD和输入控制信号CONT 生成输出图像数据RGBD’、第一控制信号CONT1和第二控制信号CONT2。
时序控制器200可基于输入图像数据RGBD生成输出图像数据RGBD’。输出图像数据RGBD’可被提供给数据驱动器400。在一些实施例中,输出图像数据RGBD’可以是与输入图像数据RGBD基本相同的图像数据。在一些实施例中,输出图像数据RGBD’可以是通过补偿输入图像数据RGBD生成的补偿图像数据。例如,输出图像数据RGBD’可以是从作为隔行扫描视频信号的输入图像数据RGBD重建的逐行扫描视频信号。输出图像数据RGBD’可包括用于多个像素的多个输出灰阶数据。
时序控制器200可基于输入控制信号CONT生成第一控制信号CONT1。第一控制信号CONT1可被提供给栅极驱动器300,并且栅极驱动器300的驱动时序可基于第一控制信号CONT1被控制。第一控制信号CONT1可包括垂直启动信号、栅极时钟信号等。时序控制器200可基于输入控制信号CONT生成第二控制信号CONT2。第二控制信号CONT2可被提供给数据驱动器400,并且数据驱动器400的驱动时序可基于第二控制信号CONT2被控制。在本实施例中,第二控制信号CONT2包括用于控制数据驱动器400执行如上文描述的根据本公开实施例的方法的各个操作的控制信号。此外,第二控制信号CONT2可包括水平启动信号、数据时钟信号、数据负载信号、极性控制信号等。
栅极驱动器300从时序控制器200接收第一控制信号CONT1。栅极驱动器300基于第一控制信号CONT1生成用于驱动栅极线GL的多个栅极信号。栅极驱动器300可顺序地将多个栅极信号施加至栅极线GL。
数据驱动器400从时序控制器200接收第二控制信号CONT2和输出图像数据RGBD’。数据驱动器400基于第二控制信号CONT2和输出图像数据RGBD’生成多个灰阶电压。数据驱动器400可将多个灰阶电压施加至数据线DL。
在一些示例性实施例中,数据驱动器400可包括移位寄存器、锁存器、数模转换器和缓冲器。移位寄存器可向锁存器输出锁存脉冲。锁存器可暂时存储输出图像数据RGBD’,并且可将输出图像数据RGBD’输出至数模转换器。数模转换器可基于输出图像数据RGBD’生 成模拟灰阶电压,并且可将模拟灰阶电压输出至缓冲器。缓冲器可将模拟灰阶电压输出至数据线DL。
在一些示例性实施例中,栅极驱动器300和/或数据驱动器400可被设置(例如,直接安装)在显示面板100上,或者可以例如带式载体封装(Tape Carrier Package,TCP)类型连接至显示面板100。在一些实施例中,栅极驱动器300和/或数据驱动器400可被集成在显示面板100中。
作为示例而非限制,本实施例中的液晶显示装置90可以为手机、平板电脑、电视机、监视器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
图10是示出了根据本发明实施例的图9的显示装置90中的时序控制器200的框图。
参考图10,时序控制器200可包括数据补偿器210和控制信号生成器220。为了方便描述,时序控制器200在图10中显示为被划分成两个元件,然而时序控制器200可不被物理划分。
数据补偿器210可从外部设备接收输入图像数据RGBD,并且可通过补偿输入图像数据RGBD而生成输出图像数据RGBD’。例如,在输入图像数据RGBD为隔行扫描视频信号的情况下,数据补偿器210可以利用重建算法从输入图像数据RGBD重建作为逐行扫描视频信号的输出图像数据RGBD’。另外,数据补偿器210可选择性地为输入图像数据RGBD执行图像质量补偿、点补偿、适应性颜色校正(ACC)、和/或动态电容补偿(DCC)以生成输出图像数据RGBD’。
在一些示例性实施例中,数据补偿器210可包括单线存储器,该单线存储器存储与单个像素行对应的灰阶数据。
控制信号生成器220可从外部设备接收输入控制信号CONT,并且可基于输入控制信号CONT生成用于图9中的栅极驱动器300的第一控制信号CONT1和用于图9中的数据驱动器400的第二控制信号CONT2。控制信号生成器220可将第一控制信号CONT1输出至图9中的栅极驱动器300,并且可将第二控制信号CONT2输出至图9中的数据驱动器400。
特别地,控制信号生成器220通过将第二控制信号CONT2输出至数据驱动器400而控制数据驱动器400执行如上文描述的根据本公开 实施例的方法的各个操作。这些操作已经关于图7和8在上文详细描述,并且出于简单性而在此不再讨论。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在阅读本公开揭露的技术内容之后可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种用于驱动液晶显示面板的方法,所述液晶显示面板被配置成显示图像帧序列,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧,所述方法包括:
    对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案;以及
    对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:
    将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;
    将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及
    对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
  2. 如权利要求1所述的方法,其中所述第一数目和所述第二数目为偶数。
  3. 如权利要求1所述的方法,其中将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域包括:将该第二帧组的各图像帧中的每一个划分为包括多个第一子区域的第一区域和包括多个第二子区域的第二区域,所述第一子区域与所述第二子区域交替排列,并且其中将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反包括:将所述多个第一子区域对应的灰阶电压极性设置为与所述多个第二子区域对应的灰阶电压极性相反。
  4. 如权利要求3所述的方法,其中所述多个第一子区域中的每一个包括至少一个像素行,并且其中所述多个第二子区域中的每一个包括至少一个像素行。
  5. 如权利要求1所述的方法,其中所述图像帧序列是从隔行扫描视频信号重建的逐行扫描格式的视频信号。
  6. 如前述权利要求中的任一项所述的方法,还包括:对所述多个第一帧组中的每一个的各图像帧对应的灰阶电压极性进行调制,使得该第一帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
  7. 一种用于控制数据驱动器驱动液晶显示面板显示图像帧序列的时序控制器,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧,所述时序控制器包括:
    控制信号生成器,其被配置成生成用以控制所述数据驱动器执行以下操作的控制信号:
    对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案;以及
    对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:
    将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;
    将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及
    对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
  8. 如权利要求7所述的时序控制器,其中所述第一数目和所述第二数目为偶数。
  9. 如权利要求7所述的时序控制器,其中将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域包括:将该第二帧组的各图像帧中的每一个划分为包括多个第一子区域的第一区域和包括多个第二子区域的第二区域,所述第一子区域与所述第二子区域交替排列,并且其中将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反包括:将所述多个第一子区域对应的灰阶电压极性设置为与所述多个第二子区域对应的灰阶电压极性相反。
  10. 如权利要求9所述的时序控制器,其中所述多个第一子区域中 的每一个包括至少一个像素行,并且其中所述多个第二子区域中的每一个包括至少一个像素行。
  11. 如权利要求7所述的时序控制器,还包括数据补偿器,其被配置成接收隔行扫描视频信号并且从所述隔行扫描视频信号重建逐行扫描格式的所述图像帧序列。
  12. 如权利要求7-11中的任一项所述的时序控制器,其中所述控制信号生成器还被配置成控制所述数据驱动器执行以下操作:对所述多个第一帧组中的每一个的各图像帧对应的灰阶电压极性进行调制,使得该第一帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
  13. 一种液晶显示装置,包括:
    液晶显示面板,其包括像素阵列并被配置成显示图像帧序列,所述图像帧序列包括交替的多个第一帧组和多个第二帧组,所述第一帧组中的每一个包括第一数目的图像帧,所述第二帧组中的每一个包括第二数目的图像帧;
    数据驱动器,其被配置成将所述图像帧序列的各图像帧的灰阶数据转换成要施加到所述像素阵列的灰阶电压;以及
    时序控制器,其包括控制信号生成器,所述控制信号生成器被配置成控制所述数据驱动器执行以下操作:
    对所述多个第一帧组对应的灰阶电压极性进行调制,使得每两个时间相邻的第一帧组的对应图像帧具有彼此相反的灰阶电压极性图案;以及
    对所述多个第二帧组中的每一个对应的灰阶电压极性进行调制,包括:
    将该第二帧组的各图像帧中的每一个划分为第一区域和第二区域;
    将所述第一区域对应的灰阶电压极性设置为与所述第二区域对应的灰阶电压极性相反;以及
    对该第二帧组的各图像帧对应的灰阶电压极性进行调制,使得该第二帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
  14. 如权利要求13所述的液晶显示装置,其中所述时序控制器还 包括数据补偿器,其被配置成接收隔行扫描视频信号并且从所述隔行扫描视频信号重建逐行扫描格式的所述图像帧序列。
  15. 如权利要求13或14所述的液晶显示装置,其中所述控制信号生成器还被配置成控制所述数据驱动器执行以下操作:对所述多个第一帧组中的每一个的各图像帧对应的灰阶电压极性进行调制,使得该第一帧组的每两个连续的图像帧具有彼此相反的灰阶电压极性图案。
PCT/CN2017/070381 2016-04-08 2017-01-06 液晶显示面板驱动方法、时序控制器及液晶显示装置 WO2017173869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,423 US10089943B2 (en) 2016-04-08 2017-01-06 Liquid crystal display panel driving method, timing controller and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610218020.5 2016-04-08
CN201610218020.5A CN105654917B (zh) 2016-04-08 2016-04-08 极性反转驱动方法、数据驱动器及液晶面板

Publications (1)

Publication Number Publication Date
WO2017173869A1 true WO2017173869A1 (zh) 2017-10-12

Family

ID=56496187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070381 WO2017173869A1 (zh) 2016-04-08 2017-01-06 液晶显示面板驱动方法、时序控制器及液晶显示装置

Country Status (3)

Country Link
US (1) US10089943B2 (zh)
CN (1) CN105654917B (zh)
WO (1) WO2017173869A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654917B (zh) * 2016-04-08 2018-03-30 京东方科技集团股份有限公司 极性反转驱动方法、数据驱动器及液晶面板
CN105895049B (zh) * 2016-07-01 2018-04-10 京东方科技集团股份有限公司 一种显示面板及显示装置
CN107331357B (zh) * 2017-06-22 2019-09-17 深圳市华星光电技术有限公司 改善液晶显示面板残影的方法
CN109147694B (zh) * 2018-09-03 2021-09-10 明基智能科技(上海)有限公司 防止画面残影的方法及显示系统
CN112837652B (zh) * 2020-04-15 2022-08-30 成都利普芯微电子有限公司 一种灰度数据显示驱动模块及灰度数据传输方法
CN115398531B (zh) * 2021-03-22 2024-08-27 京东方科技集团股份有限公司 用于液晶显示面板的驱动方法和非暂时性计算机存储介质
CN113990237A (zh) 2021-11-02 2022-01-28 Tcl华星光电技术有限公司 像素充电方法及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211029A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置驱动方法
JP2009300781A (ja) * 2008-06-13 2009-12-24 Funai Electric Co Ltd 液晶表示装置
US20120268444A1 (en) * 2009-11-24 2012-10-25 Sharp Kabushiki Kaisha Liquid crystal display device, polarity reversing method, program, and recording medium
CN104081445A (zh) * 2012-02-10 2014-10-01 夏普株式会社 显示装置及其驱动方法
CN105096873A (zh) * 2015-08-12 2015-11-25 京东方科技集团股份有限公司 一种图像显示方法及液晶显示器
CN105654917A (zh) * 2016-04-08 2016-06-08 京东方科技集团股份有限公司 极性反转驱动方法、数据驱动器及液晶面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289654B1 (ko) 2010-05-07 2013-07-25 엘지디스플레이 주식회사 영상표시장치 및 그 구동방법
CN102376279B (zh) * 2010-08-12 2014-07-23 群康科技(深圳)有限公司 液晶显示装置及其驱动方法
CN102831869B (zh) 2012-08-22 2017-02-15 京东方科技集团股份有限公司 液晶面板极性反转驱动方法及装置
JP6067097B2 (ja) * 2013-03-08 2017-01-25 シャープ株式会社 液晶表示装置
CN105096878B (zh) * 2015-08-20 2018-04-06 深圳市华星光电技术有限公司 液晶显示驱动装置及液晶显示驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211029A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示装置驱动方法
JP2009300781A (ja) * 2008-06-13 2009-12-24 Funai Electric Co Ltd 液晶表示装置
US20120268444A1 (en) * 2009-11-24 2012-10-25 Sharp Kabushiki Kaisha Liquid crystal display device, polarity reversing method, program, and recording medium
CN104081445A (zh) * 2012-02-10 2014-10-01 夏普株式会社 显示装置及其驱动方法
CN105096873A (zh) * 2015-08-12 2015-11-25 京东方科技集团股份有限公司 一种图像显示方法及液晶显示器
CN105654917A (zh) * 2016-04-08 2016-06-08 京东方科技集团股份有限公司 极性反转驱动方法、数据驱动器及液晶面板

Also Published As

Publication number Publication date
US20180047351A1 (en) 2018-02-15
CN105654917A (zh) 2016-06-08
US10089943B2 (en) 2018-10-02
CN105654917B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
WO2017173869A1 (zh) 液晶显示面板驱动方法、时序控制器及液晶显示装置
US8525769B2 (en) Liquid crystal display apparatus including color filters of RGBW mosaic arrangement and method of driving the same
US8581823B2 (en) Liquid crystal display device and driving method thereof
JP4859464B2 (ja) 液晶表示装置
US20100007639A1 (en) Method of driving a display panel and display apparatus for performing the method
JP5049101B2 (ja) 液晶表示装置
KR20080002624A (ko) 액정 표시장치의 구동장치와 그의 구동방법
US20080284706A1 (en) Driving Liquid Crystal Display with a Polarity Inversion Pattern
US10127869B2 (en) Timing controller, display apparatus including the same and method of driving the display apparatus
US10388236B2 (en) Liquid crystal display device
JP2006039538A (ja) 液晶表示装置の駆動回路及びその駆動方法
KR20070084694A (ko) 표시장치
CN113284470A (zh) 一种公共电压补偿方法及液晶显示装置
JP2006330171A (ja) 液晶表示装置
US20070195045A1 (en) Liquid crystal display device
US20120075277A1 (en) Liquid crystal display apparatus and method of driving the same
US20080252586A1 (en) Method for driving liquid crystal display with inserting gray image
JP3902031B2 (ja) 液晶表示装置の駆動方法
US20140071105A1 (en) Display device
JP2007213056A (ja) 表示装置及びその駆動装置
US9318041B2 (en) Liquid crystal display device, television receiver, and display method for liquid crystal display device
JP4571782B2 (ja) 画像処理方法及びそれを用いた液晶表示装置
KR20060065955A (ko) 표시 장치 및 표시 장치용 구동 장치
WO2018150490A1 (ja) 液晶表示装置
WO2023103520A1 (zh) 显示面板的驱动方法及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778537

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778537

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17778537

Country of ref document: EP

Kind code of ref document: A1