WO2017173809A1 - 液晶混合物、光截止部件及其制备方法和显示装置 - Google Patents

液晶混合物、光截止部件及其制备方法和显示装置 Download PDF

Info

Publication number
WO2017173809A1
WO2017173809A1 PCT/CN2016/102959 CN2016102959W WO2017173809A1 WO 2017173809 A1 WO2017173809 A1 WO 2017173809A1 CN 2016102959 W CN2016102959 W CN 2016102959W WO 2017173809 A1 WO2017173809 A1 WO 2017173809A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal molecules
pitch
range
Prior art date
Application number
PCT/CN2016/102959
Other languages
English (en)
French (fr)
Inventor
李文波
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/538,722 priority Critical patent/US20180046021A1/en
Publication of WO2017173809A1 publication Critical patent/WO2017173809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers

Definitions

  • Embodiments of the present disclosure relate to a liquid crystal mixture, a method of fabricating the same, a light-cutting member, a method of fabricating the same, a wearable display device, and other display devices.
  • Blue light is a high-energy visible light that causes photochemical damage to the retina of the eye. Blue light is widely found in artificial light sources.
  • the backlight structure tends to be light and thin, and currently the LED backlight design is mainly used, in which the LED chip emits a large amount of blue light.
  • a high-brightness backlight structure is often used, and the blue light emitted by the backlight structure is higher. Therefore, there is a need to reduce the possibility of damage to the eyes caused by blue light in the backlight.
  • the long pass cut filter includes a dielectric film set 104 disposed on a substrate 102.
  • the dielectric film group 104 includes several to several tens of layers of dielectric films of different refractive indices and different thicknesses according to design requirements. For example, one dielectric film is a high refractive index layer, and another dielectric film is a low refractive index layer, and a high refractive index layer and a low refractive index layer are alternately laminated to form the dielectric film group 104.
  • the reflected light When light is incident on the high refractive index layer, the reflected light has no phase shift; and when light is incident on the low refractive index layer, the reflected light undergoes a phase shift of 360°. Light that is reflected by the low refractive index layer is superimposed with light that is reflected by the high refractive index layer such that light that is reflected by the respective layers is superimposed near the center wavelength.
  • prior art optical film layers that utilize this particular wavelength selective characteristic separate or combine different wavelengths.
  • the multilayer material of the dielectric film layer 104 can be deposited on the substrate by a plasma enhanced chemical vapour deposition (PECVD) process on the line process.
  • PECVD plasma enhanced chemical vapour deposition
  • silicon nitride (SiNx) is used as the high refractive index material
  • silicon dioxide (SiO 2 ) is selected as the low refractive index material.
  • the dielectric film layer 104 requires a laminate of at least 10 layers, and the thickness of each layer is strictly controlled, otherwise the wavelength range of the reflected light is difficult to control.
  • Embodiments of the present disclosure provide a method of preparing a liquid crystal mixture, comprising:
  • a concentration of a chiral additive is added to the liquid crystal molecules to form the liquid crystal mixture such that the liquid crystal mixture reflects light waves in the reflected wavelength range.
  • Embodiments of the present disclosure also provide a method of fabricating a light-cutting component, including:
  • the liquid crystal mixture is cured to form a liquid crystal layer that reflects light waves in the reflected wavelength range.
  • the chiral additive is mixed between the liquid crystal molecules, and the liquid crystal molecules are in a cholesteric phase such that the liquid crystal mixture reflects light waves in a range of reflected wavelengths.
  • Embodiments of the present disclosure also provide a light cutoff member comprising: the liquid crystal layer formed by the liquid crystal mixture described above, wherein the liquid crystal layer reflects the light wave located within the reflected wavelength range.
  • An embodiment of the present disclosure also provides a wearable display device, including:
  • the wearable display device comprises an upper polarizing plate, a display panel, and a lower polarizing plate, an optical rotation characteristic of the optical upper polarizing plate and the quarter wave plate, and a liquid crystal layer of the optical cutoff member
  • the optical structure of the liquid crystal molecules is consistent.
  • An embodiment of the present disclosure also provides a display device, including:
  • a display device wherein the display device includes an upper polarizing plate, a display panel, and a lower polarizing plate, and optical rotation characteristics of the upper polarizing plate and the quarter wave plate and optical rotation of liquid crystal molecules of the liquid crystal layer of the light blocking member
  • the structure is consistent.
  • FIG. 1 is a schematic structural view of a long pass-cut filter according to the prior art
  • FIG. 2 is a schematic view of an exemplary liquid crystal molecular layer in a cholesteric phase
  • FIG. 3 is a schematic diagram of an exemplary light transmittance of liquid crystal molecules in a cholesteric phase
  • FIG. 4A is a flow chart of a method for preparing a liquid crystal mixture according to an embodiment of the present disclosure
  • 4B is a second flowchart of a method for preparing a liquid crystal mixture according to an embodiment of the present disclosure
  • FIG. 5 is a flow chart of a method for determining a pitch and a light refractive index of liquid crystal molecules according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 6B is a schematic diagram of light reflection and transmission of the display device illustrated in FIG. 6A according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a wearable display device according to an embodiment of the present disclosure.
  • the cholesteric phase is an important phase of liquid crystal molecules. As shown in Fig. 2, in the cholesteric phase, liquid crystal molecules are arranged in a layered manner and have a continuous spiral structure.
  • the liquid crystal molecules in the cholesteric phase can selectively reflect the incident light (similar to the Bragg reflection of the crystal). For example, the cholesteric liquid crystal molecules reflect the circularly polarized light of the same direction as the direction of rotation, and the circle opposite thereto is rotated. The polarized light passes through, and the circularly polarized light that passes through passes through the quarter-wave plate to become linearly polarized light.
  • the quarter-wave plate is a birefringent single crystal sheet of a certain thickness. When the light is incident toward the incident, the phase difference between the ordinary light (o light) and the extraordinary light (e light) is ⁇ /2 or ⁇ /. An odd multiple of 2.
  • the liquid crystal molecules in the cholesteric phase may be left-handed liquid crystal molecules or right-handed liquid crystal molecules.
  • liquid crystal molecules in different planes are respectively arranged in parallel. They are listed in their respective planes, but the orientation directions of the liquid crystal molecules in the adjacent planes change and spirally change along the normal direction of the plane.
  • the pitch 202 of the liquid crystal molecules is the distance when the orientation direction of the liquid crystal molecules undergoes a 360° change.
  • the reflected light is left-handed circularly polarized light in a certain wavelength or wavelength range, which may be referred to as a reflection wavelength range or a cut-off wavelength range; and the transmitted light is a right-handed circularly polarized light or a left-handed rotation in a non-reflective wavelength range.
  • Circularly polarized light when the liquid crystal molecules in the cholesteric phase are right-handed liquid crystal molecules, the right-handed liquid crystal molecules partially reflect the incident light, while the other part of the incident light will pass through the liquid crystal molecules.
  • the reflected light is right-handed circularly polarized light in a certain wavelength range; and the transmitted light is left-handed circularly polarized light or right-handed circularly polarized light in a non-reflecting wavelength range. Therefore, the liquid crystal molecules in the cholesteric phase can achieve selective reflection. For example, as shown in FIG. 3, a light wave having a wavelength range of ⁇ passes through a liquid crystal molecule having a cholesteric phase with a transmittance of about 50%, that is, a partial light wave in a wavelength range ⁇ is reflected by a liquid crystal molecule of a cholesteric phase. Or cut off.
  • Embodiments of the present disclosure provide a method of preparing a liquid crystal mixture by twisting an orientation of liquid crystal molecules by adding a chiral additive to liquid crystal molecules to form a liquid crystal molecule having a cholesteric phase having a certain pitch.
  • the cholesteric liquid crystal molecules can reflect light waves in a certain wavelength range (ie, cut off the light waves through the liquid crystal molecules), and the reflection wavelength range is related to the pitch of the liquid crystal molecules, and the reflection wavelength range of the liquid crystal molecules can be changed by changing the pitch.
  • embodiments of the present disclosure provide a method for controlling a wavelength band of a reflected light wave, which can control the light wave reflection band by the design of the liquid crystal structure, thereby directly and effectively reducing the passage of light waves in the reflection band.
  • an embodiment of the present disclosure provides a method for controlling a blue light reflection band, which can control a blue light reflection band by designing a liquid crystal structure, thereby directly and effectively reducing the passage of blue light and reducing the damage of blue light to the eyes.
  • FIG. 4A is a flow chart showing a method for preparing a liquid crystal mixture provided by an embodiment of the present disclosure.
  • the preparation method of the liquid crystal mixture includes:
  • Step S402 acquiring a reflection wavelength range of the liquid crystal mixture
  • Step S404 adding a certain concentration of a chiral additive to the liquid crystal molecules to form the liquid crystal mixture, so that the liquid crystal mixture reflects light waves in the reflection wavelength range.
  • the liquid crystal molecules are liquid crystal molecules in a cholesteric phase, and the chiral additive is uniformly mixed between the liquid crystal molecules.
  • the reflected light wave is blue light
  • the blue light wavelength ranges from 400 nm (nanometer) to 480 nm
  • the half-wave width peak ranges from 435 nm to 450 nm
  • the half-wave width center wavelength is 440 nm. Since the shorter the wavelength, the larger the energy, in step S402, a range between 400 nm and 440 nm can be selected as the reflected wavelength range, thereby reducing the passage of high-energy blue light.
  • Embodiments of the present disclosure may also select other ranges of reflected wavelengths such that the liquid crystal mixture reflects light waves located in other ranges of reflected wavelengths, and the disclosure is not limited herein.
  • FIG. 4B is a second flowchart of a method for preparing a liquid crystal mixture provided by an embodiment of the present disclosure.
  • the preparation method of the liquid crystal mixture includes:
  • Step S422 acquiring a reflection wavelength range of the liquid crystal mixture
  • Step S424 determining a pitch of the liquid crystal molecules, an ordinary light refractive index, and an extraordinary light refractive index based on the reflected wavelength range and a minimum wavelength and a maximum wavelength in the reflection wavelength range;
  • Step S426 determining a concentration of the chiral additive in the liquid crystal mixture according to the pitch of the liquid crystal molecules
  • Step S428 adding the chiral additive of the concentration to the liquid crystal molecules to form the liquid crystal mixture, so that the liquid crystal mixture reflects light waves in the reflection wavelength range.
  • steps S422 and S428 shown in FIG. 4B are similar to steps S402 and S404 shown in FIG. 4A, respectively.
  • the reflected wavelength range ⁇ is:
  • ⁇ max is the maximum wavelength in the reflection wavelength range
  • ⁇ min is the minimum wavelength in the reflection wavelength range
  • the relationship between the minimum wavelength ⁇ min , the ordinary light refractive index n o of the liquid crystal molecules, and the pitch P of the liquid crystal molecules is:
  • step S424 the determination of the pitch P of the liquid crystal molecules, the ordinary light refractive index n o , and the extraordinary light refractive index n e will be described in detail with reference to FIG. 5 below.
  • the concentration C of the chiral additive in the liquid crystal mixture may be determined as:
  • HTP is an inherent distortion energy constant of the liquid crystal molecule.
  • the concentration of the additive in the liquid crystal mixture C can cause the liquid crystal mixture to reflect light waves in a certain wavelength range, thereby shielding the light waves from passing through the liquid crystal mixture.
  • the concentration C of the chiral additive in the liquid crystal mixture it is possible to adjust the pitch P of the cholesteric liquid crystal molecules, and by changing the pitch P, the reflection wavelength range ⁇ of the liquid crystal molecules can be changed; therefore, by adjusting the chiral additive At the concentration C of the liquid crystal mixture, it is possible to adjust the wavelength range ⁇ of the light wave that is reflected or cut off.
  • FIG. 5 is a flow chart showing a method for determining the pitch P and the light refractive indices n e and n o of liquid crystal molecules provided by an embodiment of the present disclosure. The method includes:
  • Step S501 determining a pitch range of the liquid crystal molecules based on the reflection wavelength range ⁇ ;
  • Step S502 determining a birefringence range of the liquid crystal molecule based on a pitch range of the liquid crystal molecules;
  • Step S504 selecting a birefringence ⁇ n of the liquid crystal molecule in the range of the birefringence;
  • Step S506 determining the pitch P of the liquid crystal molecules based on the birefringence ⁇ n and the reflection wavelength range ⁇ ;
  • Step S508 determining the ordinary light refraction index n o of the liquid crystal molecules based on the pitch P and the minimum wavelength ⁇ min of the reflection wavelength range ⁇ ;
  • Step S510 determining the extraordinary light refractive index n e of the liquid crystal molecules based on the pitch P and the maximum wavelength ⁇ max of the reflected wavelength range.
  • n o,min ordinary light refractive index n o ⁇ unusual light refractive index n e ⁇ n e,max
  • n o,min is the minimum possible value of the ordinary light refractive index n o
  • n e,max is The maximum possible value of the extraordinary light refraction index n e .
  • the first possible pitch range of the liquid crystal molecules can be obtained by the above formula (2.1): ( ⁇ min /n e,max ) ⁇ P ⁇ ( ⁇ min /n o,min ).
  • the first possible pitch range of the liquid crystal molecules can be obtained by the above formula (2.1):
  • the pitch range of the liquid crystal molecules may be determined as a coincident portion of the first possible pitch range and the second possible pitch range.
  • the pitch range of the liquid crystal molecules can be expressed as P min ⁇ P ⁇ P max . Therefore, the pitch range of the pitch P can be obtained from the overlapping portion of the ranges of the above formulas (7) and (8):
  • the birefringence ⁇ n of the liquid crystal molecules is selected within the birefringence range shown by the above formula (10).
  • a birefringence ⁇ n 0.16 can be selected.
  • the birefringence ⁇ n can also be selected from other values.
  • step S508 the ordinary light refractive index n o is obtained from the above formula (2):
  • step S510 an extraordinary light refraction index n e can be obtained from the above formula (3):
  • the pitch P of the liquid crystal molecules can be selected to be 250 nm, the ordinary light refractive index n o is about 1.6, and the extraordinary light refractive index n e is about 1.76.
  • the inherent distortion energy constant of the liquid crystal molecule is related to the material, structure or other properties of the liquid crystal molecule, when the material and structure of the liquid crystal molecule are known, the inherent distortion energy constant of the liquid crystal molecule can be measured.
  • the concentration C of the chiral additive can be obtained from the obtained pitch P and the above formula (6). Further, according to the range of the pitch P obtained by the above formula (9) and the above formula (6), a range of the concentration of the chiral additive when the liquid crystal molecules reflect blue light between 400 nm and 440 nm can be obtained. For example, the concentration C of the chiral additive ranges between 1/(P max ⁇ HTP)C and 1/(P min ⁇ HTP).
  • the values of the pitch P, the ordinary light refractive index n o and the extraordinary light refractive index n e corresponding thereto can also be obtained.
  • the method shown in FIG. 5 is merely an exemplary method of determining the pitch P of the liquid crystal molecules and the light refractive indices n e and n o .
  • the pitch P and the light refraction indices n e and n o of the liquid crystal molecules can also be obtained according to other methods, which are not limited in the present disclosure.
  • Embodiments of the present disclosure also provide a method of fabricating a light-cutting component, including:
  • the liquid crystal mixture is cured to form a liquid crystal layer that reflects light waves in the reflected wavelength range.
  • the liquid crystal mixture may be cured by exposing a liquid crystal mixture or other conventional means, and the disclosure is not described herein again.
  • Embodiments of the present disclosure also provide a light reflecting liquid crystal mixture, for example, a blue reflective liquid crystal mixed Compound.
  • the liquid crystal mixture includes:
  • the chiral additive is mixed between the liquid crystal molecules, and the liquid crystal molecules are in a cholesteric phase such that the liquid crystal mixture reflects light waves in a range of reflected wavelengths.
  • the pitch P, the ordinary light refractive index n o , and the extraordinary light refractive index n e of the liquid crystal molecules may be from the reflected wavelength range, the minimum wavelength in the reflected wavelength range, and The maximum wavelength is determined.
  • the first possible pitch range of the liquid crystal molecules is: ( ⁇ min /n e,max ) ⁇ the first possible pitch range ⁇ ( ⁇ min /n o,min ); the second possible pitch range of the liquid crystal molecules Is: ( ⁇ max /n e,max ) ⁇ second possible pitch range ⁇ ( ⁇ max /n o,min ); and the range of the pitch P of the liquid crystal molecules is the first possible pitch range and the first a coincident portion of two possible pitch ranges, wherein n o,min is the possible minimum of the ordinary light refractive index n o , n e,max is the maximum possible value of the extraordinary light refractive index n e , ⁇ min is The minimum wavelength of the reflected wavelength range, ⁇ max is the maximum wavelength of the reflected wavelength range.
  • the range of the pitch P of the liquid crystal molecules satisfies: P min ⁇ P ⁇ P max , where P min represents the minimum value of the pitch P and P max represents the maximum value of the pitch P.
  • the range of the birefringence of the liquid crystal molecules satisfies: ( ⁇ / P max ) ⁇ ⁇ n ⁇ ( ⁇ / P min ), wherein ⁇ n represents the birefringence of the liquid crystal molecules, and ⁇ represents the reflection wavelength range .
  • the concentration C of the chiral additive in the liquid crystal mixture can be determined by the pitch P of the liquid crystal molecules.
  • the relationship between the concentration of the chiral additive in the liquid crystal mixture and the pitch of the liquid crystal molecules is:
  • C is the concentration of the chiral additive in the liquid crystal mixture
  • HTP is an inherent distortion energy constant of the liquid crystal molecule
  • the reflected light wave is blue light, and the reflection wavelength ranges from 400 nm to 440 nm. The range between. The range of the reflected wavelengths may also be other wavelength ranges, and the disclosure is not limited herein.
  • Embodiments of the present disclosure also provide a light cutoff member comprising: a liquid crystal layer formed of a liquid crystal mixture as described above, wherein the liquid crystal layer reflects the light wave located within the reflected wavelength range.
  • An embodiment of the present disclosure further provides a light-cutting component for wide-wave reflection, comprising: a plurality of liquid crystal layers formed by a plurality of liquid crystal mixtures, wherein the plurality of liquid crystal layers are respectively reflected in a plurality of reflection wavelength ranges The light waves, each liquid crystal layer reflects a light wave in a reflected wavelength range.
  • the plurality of liquid crystal layers may be stacked to form the light cutoff member for wide wave reflection.
  • the light cutoff member includes: a first liquid crystal layer formed of a first liquid crystal mixture, wherein the first liquid crystal layer reflects light waves located in a first reflection wavelength range; and a second liquid crystal mixture is formed a liquid crystal layer, wherein the second liquid crystal layer reflects light waves located in a second reflection wavelength range.
  • the first liquid crystal mixture is cured to form the first liquid crystal layer
  • the second liquid crystal mixture is cured to form the second liquid crystal layer.
  • the first liquid crystal layer may be disposed on the second liquid crystal layer. Therefore, the light cutoff member can reflect light waves located within the first reflection wavelength range and the second reflection wavelength range.
  • the range of the birefringence ⁇ n of the liquid crystal molecules is limited by the liquid crystal material, and the birefringence ⁇ n is currently in the range of 0.1 to 0.4.
  • the plurality of reflection wavelength ranges ⁇ 1 , ⁇ 2 , . . . , ⁇ N and the corresponding pitches P 1 , P 2 . . . P N are examples of the plurality of reflection wavelength ranges ⁇ 1 , ⁇ 2 , . . . , ⁇ N and the corresponding pitches P 1 , P 2 . . . P N .
  • ⁇ 1 ⁇ n P 1
  • ⁇ 2 ⁇ n P 2
  • ⁇ N ⁇ n P N
  • a liquid crystal layer having a different pitch gradient can be formed in the light-cutting member to achieve wide-wave reflection.
  • FIG. 6A illustrates a structure of a display device according to an embodiment of the present disclosure.
  • the display device includes: a light cutoff member 610; a quarter wave plate 608; and a display device.
  • the display device includes an upper polarizing plate 606, a display panel 604, and a lower polarizing plate 602.
  • the display device can be a display screen or other device with a display function. Since the light-cutting member 610 can reflect light waves in at least a certain wavelength range, the quarter-wave plate 608 can also be implemented using a corresponding wide-wave design technique, which is not limited herein.
  • the optical rotation characteristics of the upper polarizing plate 606 and the quarter wave plate 608 coincide with the optical rotation structure of the liquid crystal molecules of the liquid crystal layer of the light-cutting member 610.
  • upper polarizer 606, quarter The wave plate 608 and the light cutoff member 610 are optically matched, and the pitch of the liquid crystal molecules of the liquid crystal layer of the light cutoff member 610 is also matched with the reflected wavelength range to achieve selective reflection.
  • the light passing through the upper polarizing plate 606 is linearly polarized light.
  • the quarter wave plate 608, and the light cutoff member 610 when the linearly polarized light emitted from the upper polarizing plate 606 passes through the quarter wave plate 608 and is left-handed polarized light,
  • the liquid crystal molecules of the liquid crystal layer of the light-cutting member 610 need to be left-handed to the liquid crystal molecules and have a pitch matching the reflection wavelength range, so that the light-cutting member 610 reflects the left-handed circularly polarized light within the reflection wavelength range.
  • left-handed circularly polarized light 612 located in the remaining wavelength range passes through the light-cutting member 610.
  • left-handed circularly polarized blue light between 400 nm and 440 nm can be reflected by the light-cutting member, and left-handed circularly polarized light of the remaining wavelength will pass through the light-cutting member, thereby realizing a blue-light-proof design.
  • the liquid crystal molecules of the liquid crystal layer of the light-cutting member 610 need to be right-handed to the liquid crystal molecules and have a pitch matching the reflected wavelength range such that the light-cutting member reflects right-handed circularly polarized light within the reflected wavelength range, and right-handed circularly polarized light located in the remaining wavelength range passes through the light-cutting member .
  • a right-handed circularly polarized blue light between 400 nm and 440 nm may be reflected by the light-cutting member, and the remaining wavelength of right-handed circularly polarized light will pass through the light-cutting member, thereby realizing an anti-blue light design.
  • the light-cutting member 610 can also achieve wide-wave reflection as described above for reflecting light waves located in a plurality of reflected wavelength ranges.
  • FIG. 7 is a schematic structural diagram of a wearable display device according to an embodiment of the present disclosure.
  • the wearable display device includes a light cutoff member 704, a quarter wave plate 706, and a wearable display device 708.
  • the wearable display device 708 includes an upper polarizing plate, a display panel, a lower polarizing plate, and the like.
  • the optical rotation characteristics of the upper polarizing plate and the quarter wave plate 706 coincide with the optical rotation structure of the liquid crystal molecules of the liquid crystal layer of the light-cutting member 704.
  • the wearable display device 708 is a wearable virtual reality glasses, and the quarter wave plate 706 and the light cutoff member 704 are located inside the virtual reality glasses.
  • Light passing through the upper polarizing plate of the wearable display device 708 is linearly polarized light.
  • the quarter wave plate 706 and the light cutoff member 704 when the linearly polarized light emitted from the upper polarizing plate passes through the quarter wave plate 706 and is left-handed polarized light, Light cutoff
  • the liquid crystal molecules of the liquid crystal layer of the member 704 need to be left-handed to the liquid crystal molecules and have a pitch matching the range of the reflection wavelength, such that the light-cutting member 704 reflects the left-handed circularly polarized light within the range of the reflected wavelength, while the remaining wavelengths
  • the left circularly polarized light passes through the light cutoff member 704.
  • left-handed circularly polarized blue light between 400 nm and 440 nm can be reflected by the light-cutting member, while left-handed circularly polarized blue light of the remaining wavelength band and left-handed circularly polarized light of other wavelengths will pass through the light-cutting member, thereby realizing a blue-light-proof design.
  • the liquid crystal molecules of the liquid crystal layer of the light-cutting member 704 need to be right-handed to the liquid crystal molecules and have The pitch of the reflected wavelength range is matched such that the light-cutting member reflects right-handed circularly polarized light within the reflected wavelength range, and the remaining wavelengths of right-handed circularly polarized light pass through the light-cutting member.
  • a right-handed circularly polarized blue light between 400 nm and 440 nm can be reflected by the light-cutting member, and the right-handed circularly polarized blue light and other wavelengths of right-handed circularly polarized light will pass through the light-cutting member, thereby realizing anti-blue light. design.
  • the light-cutting component 704 can also achieve wide-wave reflection as described above for reflecting light waves located in a plurality of reflected wavelength ranges.
  • the wearable display device may be a blue-light-resistant health wear device, and the liquid crystal structure is designed to control the reflected blue light band, thereby directly reducing the blue light reaching the human glasses through the wearable display device, thereby reducing the damage of the blue light to the eyes.
  • the wearable display device can be used in outdoor wearable products, virtual reality wearable products, or other products with highlights.
  • Embodiments of the present disclosure provide a liquid crystal mixture, a method of fabricating the same, a light-cutting member, a method of fabricating the same, a display device, and a wearable display device.
  • the orientation of the liquid crystal molecules is twisted by adding a chiral additive to the liquid crystal molecules to form a liquid crystal molecule having a cholesteric phase having a certain pitch.
  • the pitch of the liquid crystal molecules can be adjusted, so that the wavelength range of the reflected or cut light wave can be adjusted.
  • embodiments of the present disclosure provide a method for controlling a wavelength band of a reflected light wave, which can control the light wave reflection band by the design of the liquid crystal structure, thereby directly and effectively reducing the passage of light waves in the reflection band.
  • an embodiment of the present disclosure provides a method for controlling a blue light reflection band, which can control a blue light reflection band by designing a liquid crystal structure, thereby directly and effectively reducing the passage of blue light and reducing the damage of blue light to the eyes.
  • the liquid crystal mixture provided by the embodiments of the present disclosure, the preparation method thereof, the light-cutting member, the preparation method thereof, the display device and the wearable display device can be reflected by reflecting high-energy blue Light prevents it from passing, reducing the damage caused by high-energy blue light to the eye, while retaining some of the low-energy blue light and other color light waves to achieve the display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

一种液晶混合物及其制备方法、光截止部件及其制备方法和显示装置。液晶混合物包括:液晶分子;以及一定浓度的手性添加剂;其中,手性添加剂混合于液晶分子之间,液晶分子呈胆甾相,以使液晶混合物反射位在反射波长范围内的光波。

Description

液晶混合物、光截止部件及其制备方法和显示装置 技术领域
本公开的实施例涉及一种液晶混合物及其制备方法、光截止部件及其制备方法、可穿戴显示装置及其他显示装置。
背景技术
蓝光是一种高能可见光,可对眼睛的视网膜造成光化学损伤。蓝光广泛存在于人造光源中。在液晶显示面板中,背光结构趋于轻薄化,目前主要是采用LED背光设计,其中的LED芯片发出大量蓝光。在移动产品和智能穿戴产品中,为了提高户外可读性,往往采用高亮背光结构,该背光结构所发出的蓝光强度更高。因此,需要减少背光中的蓝光对眼睛造成的可能性伤害。
在现有技术中,常采用长波通截止滤光片来减少蓝光对眼睛的伤害。如图1所示,该长波通截止滤光片包括设置于衬底102上的介质膜组104。该介质膜组104包括几层到几十层不同折射率和不同厚度的按照设计要求组合起来的介质薄膜。例如,一层介质薄膜为高折射率层,另一层介质薄膜为低折射率层,高折射率层和低折射率层交替叠合而形成该介质膜组104。当光入射到高折射率层时,反射光没有相移;而当光入射到低折射率层时,反射光经历了360°的相移。经历低折射率层反射的光与经历高折射率层反射的光相叠加,这样,在中心波长附近,经历各层反射的光叠加在一起。因此,现有技术利用这种特定波长选择特性的光学膜层将不同的波长分离或者合并起来。
介质膜层104的多层材料在生产线工艺上可以采用等离子增强化学气相沉积(plasma enhanced chemical vapour deposition,PECVD)工艺在基板上进行薄膜沉积。例如,高折射率材料选用氮化硅(silicon nitride,SiNx),低折射率材料选用二氧化硅(silicon dioxide,SiO2)。然而,介质膜层104需要的叠层数量至少为10多层,且每层厚度均需严格控制,否则反射光的波长范围难以控制。
发明内容
本公开的实施例提供了一种液晶混合物的制备方法,其包括:
获取所述液晶混合物的反射波长范围;以及
在液晶分子中添加一定浓度的手性添加剂来形成所述液晶混合物,以使所述液晶混合物反射所述反射波长范围内的光波。
本公开的实施例还提供了一种光截止部件的制备方法,其包括:
上述的液晶混合物的制备方法;以及
固化所述液晶混合物形成液晶层,所述液晶层反射所述反射波长范围内的光波。
本公开的实施例还提供了一种液晶混合物,其包括:
液晶分子;以及
一定浓度的手性添加剂;
其中,所述手性添加剂混合于所述液晶分子之间,所述液晶分子呈胆甾相,以使所述液晶混合物反射位在反射波长范围内的光波。
本公开的实施例还提供了一种光截止部件,其包括:上述的液晶混合物形成的液晶层,其中,所述液晶层反射位于所述反射波长范围内的所述光波。
本公开的实施例还提供了一种可穿戴显示装置,其包括:
上述的光截止部件;
四分之一波片;以及
可穿戴显示器件,其中,所述可穿戴显示器件包括上偏振片、显示面板和下偏振片,所述光上偏振片和四分之一波片的旋光特性与所述光截止部件的液晶层的液晶分子的旋光结构相一致。
本公开的实施例还提供了一种显示装置,其包括:
上述的光截止部件;
四分之一波片;以及
显示器件,其中,所述显示器件包括上偏振片、显示面板和下偏振片,所述上偏振片和四分之一波片的旋光特性与所述光截止部件的液晶层的液晶分子的旋光结构相一致。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为现有技术中的一种长波通截止滤光片的结构示意图;
图2为一种示例性的呈胆甾相的液晶分子层示意图;
图3为一种示例性的呈胆甾相的液晶分子的光透过率示意图;
图4A为本公开实施例提供的一种液晶混合物的制备方法的流程图之一;
图4B为本公开实施例提供的一种液晶混合物的制备方法的流程图之二;
图5为本公开实施例提供的一种确定液晶分子的螺距和光折射指数的方法的流程图;
图6A为本公开实施例提供的一种显示装置的结构示意图;
图6B为本公开实施例提供的图6A所示的显示装置的光反射和透射示意图;以及
图7为本公开实施例提供的一种可穿戴显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
胆甾相是液晶分子的一种重要相态。如图2所示,在胆甾相内,液晶分子呈层状排布,并具有连续的螺旋结构。呈胆甾相的液晶分子可以选择性地反射入射光(类似晶体的布拉格反射(Bragg reflection)),例如,胆甾相液晶分子反射与其旋向相同的圆偏振光而使与其旋向相反的圆偏振光通过,所通过的圆偏振光再经过四分之一波片后成为线偏振光。四分之一波片为一定厚度的双折射单晶薄片,当光法向入射透过时,寻常光(o光)和非寻常光(e光)之间的位相差为π/2或π/2的奇数倍。
呈胆甾相的液晶分子可以为左旋向液晶分子或者右旋向液晶分子。以左旋向液晶分子为例,在平面织构状态下,不同平面内的液晶分子分别平行排 列于各自的平面内,但相邻平面中的液晶分子的取向方向发生变化并沿平面的法线方向作螺旋状变动。如图2所示,液晶分子的螺距202为液晶分子的取向方向经历360°变化时的距离。当入射光入射到左旋向液晶分子时,左旋向液晶分子将部分入射光进行布拉格反射,而另一部分入射光将透过液晶分子。被反射的光为某一波长或波长范围内的左旋圆偏振光,该波长范围可以被称为反射波长范围或截止波长范围;而透射光为右旋圆偏振光或非反射波长范围内的左旋圆偏振光。又例如,当呈胆甾相的液晶分子为右旋向液晶分子时,右旋向液晶分子将部分入射光进行布拉格反射,而另一部分入射光将透过液晶分子。被反射的光为某一波长范围内的右旋圆偏振光;而透射光为左旋圆偏振光或非反射波长范围内的右旋圆偏振光。因此,呈胆甾相的液晶分子可以实现选择性反射。例如,如图3所示,波长范围在Δλ内的光波通过呈胆甾相的液晶分子的透过率为大约50%,即在波长范围Δλ内的部分光波被呈胆甾相的液晶分子反射或截止通过。
本公开的实施例提供了一种液晶混合物的制备方法,通过在液晶分子中添加手性添加剂使得液晶分子的取向发生扭转,形成具有一定螺距的呈胆甾相的液晶分子。呈胆甾相的液晶分子可以反射某一波长范围内的光波(即截止该光波通过液晶分子),该反射波长范围与液晶分子的螺距相关,通过改变该螺距可以改变液晶分子的反射波长范围。通过调整手性添加剂在液晶混合物的浓度,可以调整液晶分子的螺距(例如,手性添加剂的浓度越大,液晶分子的扭曲越容易);因此,通过调整手性添加剂在液晶混合物的浓度,可以调整被反射或被截止的光波的波长范围。因此,本公开的实施例提供了一种控制反射光波波段的方法,可以通过液晶结构的设计控制光波反射波段,从而直接有效地减少该反射波段内的光波的通过。例如,本公开的实施例提供了一种控制反射蓝光波段的方法,可以通过液晶结构的设计控制蓝光反射波段,从而直接有效地减少蓝光的通过,降低蓝光对眼睛的伤害。
图4A示出了本公开实施例提供的一种液晶混合物的制备方法的流程图之一。该液晶混合物的制备方法包括:
步骤S402:获取所述液晶混合物的反射波长范围;以及
步骤S404:在液晶分子中添加一定浓度的手性添加剂来形成所述液晶混合物,以使所述液晶混合物反射所述反射波长范围内的光波。
例如,在所述液晶混合物中,所述液晶分子为呈胆甾相的液晶分子,所述手性添加剂均匀混合于所述液晶分子之间。
例如,被反射的所述光波为蓝光,蓝光波长范围为400nm(纳米,nanometer)到480nm,半波宽峰范围为435nm到450nm,半波宽中心波长为440nm。由于波长越短,能量越大,在步骤S402中,可以选择400nm到440nm之间的范围为所述反射波长范围,从而减少高能量的蓝光的通过。本公开的实施例也可以选择其他反射波长范围,使得液晶混合物反射位于其他反射波长范围内的光波,本公开在此不作限制。
图4B示出了本公开实施例提供的一种液晶混合物的制备方法的流程图之二。该液晶混合物的制备方法包括:
步骤S422:获取所述液晶混合物的反射波长范围;
步骤S424:基于所述反射波长范围以及在所述反射波长范围内的最小波长和最大波长,确定所述液晶分子的螺距、寻常光折射指数以及非寻常光折射指数;
步骤S426:根据所述液晶分子的所述螺距来确定所述手性添加剂在所述液晶混合物中的浓度;以及
步骤S428:在所述液晶分子中添加所述浓度的手性添加剂来形成所述液晶混合物,以使所述液晶混合物反射所述反射波长范围内的光波。
例如,图4B所示的步骤S422和S428分别与图4A所示的步骤S402和S404相似。
在本公开的实施例中,反射波长范围Δλ为:
Δλ=λmaxmin,         (1)
其中,λmax为反射波长范围内的最大波长,λmin为反射波长范围内的最小波长。
波长λ、液晶分子的光折射指数n和液晶分子的螺距P之间的关系为:
λ=nP       (2.1)
其中,最小波长λmin、液晶分子的寻常光折射指数no和液晶分子的螺距P之间的关系为:
λmin=noP        (2.2)
最大波长λmax、液晶分子的非寻常光折射指数ne和液晶分子的螺距P之 间的关系为:
λmax=neP      (3)
液晶分子的双折射率Δn、非寻常光折射指数ne和寻常光折射指数no之间的关系为:
Δn=ne-no       (4)
反射波长范围Δλ、液晶分子的双折射率Δn和螺距P之间的关系为:
Δλ=(ne-no)P=ΔnP        (5)
在步骤S424中,所述液晶分子的螺距P、寻常光折射指数no以及非寻常光折射指数ne的确定将参照下面的图5进行详细的说明。
在步骤S426中,基于所述液晶分子的螺距P,所述手性添加剂在液晶混合物中的浓度C可以被确定为:
C=1/(P×HTP)        (6)
其中,HTP为所述液晶分子固有的扭曲能量常数。
结合步骤S424和步骤S426可知,根据反射波长范围Δλ(Δλ=λmaxmin)可以确定液晶分子的螺距P;而根据液晶分子的螺距P,可以由上述公式(6)得到所述手性添加剂在液晶混合物的浓度C。依据手性添加剂的浓度C配比液晶混合物中的液晶分子和手性添加剂,可以使得液晶混合物反射某一波长范围内的光波,从而屏蔽该光波通过所述液晶混合物。此外,通过调整手性添加剂在液晶混合物的浓度C,可以实现调整呈胆甾相液晶分子的螺距P,而通过改变该螺距P可以改变液晶分子的反射波长范围Δλ;因此,通过调整手性添加剂在液晶混合物的浓度C,可以实现调整被反射或被截止的光波的波长范围Δλ。
图5示出了本公开实施例提供的一种确定液晶分子的螺距P和光折射指数ne和no的方法的流程图。所述方法包括:
步骤S501:基于所述反射波长范围Δλ,确定所述液晶分子的螺距范围;
步骤S502:基于所述液晶分子的螺距范围,确定所述液晶分子的双折射率范围;
步骤S504:在所述双折射率范围内选择所述液晶分子的双折射率Δn;
步骤S506:基于所述双折射率Δn和所述反射波长范围Δλ,确定所述液晶分子的所述螺距P;
步骤S508:基于所述螺距P和所述反射波长范围Δλ的最小波长λmin,确定所述液晶分子的所述寻常光折射指数no;以及
步骤S510:基于所述螺距P和所述反射波长范围的最大波长λmax,确定所述液晶分子的所述非寻常光折射指数ne
下面将以反射位于400nm和440nm之间的蓝光为例,对图5的步骤S501、S502、S504、S506、S508和S510进行详细的说明。由于需要反射位于400nm和440nm之间的蓝光,反射波长范围为Δλ=440nm-400nm=40nm,最小波长为λmin=400nm,最大波长为λmax=440nm。并且,no,min≤寻常光折射指数no<非寻常光折射指数ne≤ne,max,其中,no,min为寻常光折射指数no的可能最小值,ne,max为非寻常光折射指数ne的可能最大值。例如,液晶分子的折射率位于1.5~1.9之间,即no,min=1.5≤寻常光折射指数no<非寻常光折射指数ne≤ne,max=1.9。
在步骤S501中,由上述公式(2.1)可得到液晶分子的第一可能螺距范围为:(λmin/ne,max)≤P≤(λmin/no,min)。例如,当最小波长λmin=400nm,no,min=1.5,ne,max=1.9,由上述公式(2.1)可得到液晶分子的第一可能螺距范围为:
min/1.9)≤P≤(λmin/1.5),即,210.5nm≤P≤266.7nm。     (7)
相似地,可得到液晶分子的第二可能螺距范围为:(λmax/ne,max)≤P≤(λmax/no,min)。例如,当最大波长λmax=440nm,no,min=1.5,ne,max=1.9,由上述公式(2.1)可得到液晶分子的第二可能螺距范围为:
max/1.9)≤P≤(λmax/1.5),即,231.6nm≤P≤293.3nm。     (8)
所述液晶分子的螺距范围可以被确定为所述第一可能螺距范围和所述第二可能螺距范围的重合部分。所述液晶分子的螺距范围可以表示为Pmin≤P≤Pmax。因此,由上式(7)和(8)的范围的重合部分可以得到螺距P的螺距范围为:
231.6nm≤P≤266.7nm,     (9)
即最小螺距为Pmin=231.1nm,最大螺距为Pmax=266.7nm。
在步骤S502中,当反射波长范围为Δλ=40nm,由上述公式(5)以及上式(9)的螺距范围可得液晶分子的双折射率范围为:
(Δλ/Pmax)≤Δn≤(Δλ/Pmin),
即0.15≤Δn≤0.17或0.15≤ne-no≤0.17。       (10)
在步骤S504中,在上式(10)所示的双折射率范围内选择所述液晶分子的双折射率Δn。例如,为了描述的方便,可以选择双折射率Δn=0.16。当然,双折射率Δn也可以选择其他数值。
在步骤S506中,例如,双折射率Δn=0.16,由上式(5)可以得到螺距P为:
P=Δλ/Δn=40nm/0.16=250nm。
在步骤S508中,由上式(2)可以得到寻常光折射指数no约为:
no=λmin/P=400nm/250nm=1.6。
在步骤S510中,由上式(3)可以得到非寻常光折射指数ne约为:
ne=λmax/P=440nm/250nm=1.76。
因此,可以选择液晶分子的螺距P为250nm,寻常光折射指数no约为1.6,非寻常光折射指数ne约为1.76。
另外,由于液晶分子固有的扭曲能量常数与液晶分子的材料、结构或其他属性相关,当液晶分子的材料和结构已知时,可以测量液晶分子固有的扭曲能量常数。根据得到的螺距P和上式(6),可以得到手性添加剂的浓度C。另外,根据上式(9)得到的螺距P的范围以及上式(6),也可以得到液晶分子反射位于400nm和440nm之间的蓝光时的手性添加剂的浓度的范围。例如,手性添加剂的浓度C的范围为1/(Pmax×HTP)C和1/(Pmin×HTP)之间。
当然,根据步骤S504选择的双折射率Δn的不同数值,也可以得到与之相对应的螺距P、寻常光折射指数no和非寻常光折射指数ne的数值。
需要说明的是,图5所示的方法只是确定液晶分子的螺距P和光折射指数ne和no的一个示例性的方法。液晶分子的螺距P和光折射指数ne和no也可以根据其他方式得到,本公开对此不作限定。
本公开的实施例还提供了一种光截止部件的制备方法,其包括:
如图4A、图4B和/或图5所述的液晶混合物的制备方法;以及
固化所述液晶混合物形成液晶层,所述液晶层反射所述反射波长范围内的光波。
在所述光截止部件的制备方法中,可以通过曝光液晶混合物或其他常用方式来固化所述液晶混合物,本公开在此不再赘述。
本公开实施例还提供了一种光反射液晶混合物,例如,蓝光反射液晶混 合物。所述液晶混合物包括:
液晶分子;以及
一定浓度的手性添加剂;
其中,所述手性添加剂混合于所述液晶分子之间,所述液晶分子呈胆甾相,以使所述液晶混合物反射位在反射波长范围内的光波。
在一些实施方式中,结合图5,所述液晶分子的螺距P、寻常光折射指数no以及非寻常光折射指数ne可以由所述反射波长范围、所述反射波长范围内的最小波长和最大波长来确定。例如,所述液晶分子的第一可能螺距范围为:(λmin/ne,max)≤第一可能螺距范围≤(λmin/no,min);所述液晶分子的第二可能螺距范围为:(λmax/ne,max)≤第二可能螺距范围≤(λmax/no,min);以及所述液晶分子的螺距P的范围为所述第一可能螺距范围和所述第二可能螺距范围的重合部分,其中,no,min为所述寻常光折射指数no的可能最小值,ne,max为所述非寻常光折射指数ne的可能最大值,λmin为所述反射波长范围的最小波长,λmax为所述反射波长范围的最大波长。
例如,所述液晶分子的螺距P的范围满足:Pmin≤P≤Pmax,其中,Pmin表示所述螺距P的最小值,Pmax表示所述螺距P的最大值。
例如,所述液晶分子的双折射率的范围满足:(Δλ/Pmax)≤Δn≤(Δλ/Pmin),其中,Δn表示所述液晶分子的双折射率,Δλ表示所述反射波长范围。
例如,所述液晶分子的螺距P还满足:P=Δλ/Δn。
例如,所述液晶分子的寻常光折射指数no满足:no=λmin/P,其中,no表示所述寻常光折射指数。
例如,所述液晶分子的非寻常光折射指数满足:ne=λmax/P,其中,ne表示所述非寻常光折射指数。
例如,所述手性添加剂在所述液晶混合物中的浓度C可以由所述液晶分子的所述螺距P来确定。例如,所述手性添加剂在所述液晶混合物中的浓度和所述液晶分子的螺距的关系为:
C=1/(P×HTP),
其中,C为所述手性添加剂在所述液晶混合物中的浓度,HTP为所述液晶分子固有的扭曲能量常数。
例如,被反射的所述光波为蓝光,所述反射波长范围为400nm到440nm 之间的范围。所述反射波长范围也可以为其他波长范围,本公开在此不作限定。
本公开实施例还提供了一种光截止部件,包括:如上所述的液晶混合物形成的液晶层,其中,所述液晶层反射位于所述反射波长范围内的所述光波。
本公开实施例还提供了一种用于宽波反射的光截止部件,其包括:多组液晶混合物形成的多个液晶层,其中,所述多个液晶层分别反射位于多个反射波长范围内的光波,每个液晶层反射一个反射波长范围内的光波。所述多个液晶层可以层叠设置,形成用于宽波反射的所述光截止部件。
例如,所述光截止部件包括:由第一液晶混合物形成的第一液晶层,其中,所述第一液晶层反射位于第一反射波长范围内的光波;以及由第二液晶混合物形成的第二液晶层,其中,所述第二液晶层反射位于第二反射波长范围内的光波。所述第一液晶混合物经过固化形成所述第一液晶层,所述第二液晶混合物经过固化形成所述第二液晶层。所述第一液晶层可以设置于所述第二液晶层之上。因此,所述光截止部件可以反射位于所述第一反射波长范围和第二反射波长范围内的光波。
例如,液晶分子的双折射率Δn的范围受到液晶材料的限制,目前,双折射率Δn的范围为0.1~0.4之间。根据多个反射波长范围Δλ1,Δλ2,…,ΔλN与相应的螺距P1,P2…PN之间的关系可得:
Δλ1=Δn P1,Δλ2=Δn P2,…,ΔλN=Δn PN
即,Δλ1+Δλ2+…+ΔλN==Δn(P1+P2+…+PN)。
因此,可以在光截止部件中形成具有不同的螺距梯度的液晶层来实现宽波反射。
图6A示出了本公开实施例提供的一种显示装置的结构。所述显示装置包括:光截止部件610;四分之一波片608;以及显示器件。所述显示器件包括上偏振片606、显示面板604和下偏振片602。所述显示器件可以为显示屏或带显示功能的其他器件。由于光截止部件610可以反射至少某一波长范围内的光波,所以四分之一波片608也可以使用相应的宽波设计技术来实现,本公开在此不作限制。
所述上偏振片606和四分之一波片608的旋光特性与所述光截止部件610的液晶层的液晶分子的旋光结构相一致。例如,上偏振片606、四分之一 波片608和光截止部件610在光学特性上相匹配,并且光截止部件610的液晶层的液晶分子的螺距还与反射波长范围相匹配,实现选择性的反射。
如图6B所示,经过上偏振片606的光为线偏振光。为了实现上偏振片606、四分之一波片608和光截止部件610在光学特性上相匹配,当从上偏振片606出射的线偏振光经过四分之一波片608后为左旋偏振光时,所述光截止部件610的液晶层的液晶分子需为左旋向液晶分子并具有与反射波长范围相匹配的螺距,使得所述光截止部件610反射位于所述反射波长范围内的左旋圆偏振光614,而位于其余波长范围内的左旋圆偏振光612则透过所述光截止部件610。例如,位于400nm~440nm之间的左旋圆偏振蓝光可以被光截止部件反射,而其余波长的左旋圆偏振光将通过该光截止部件,从而实现防蓝光设计。
或者,当从上偏振片606出射的线偏振光经过四分之一波片608后为右旋偏振光时,所述光截止部件610的液晶层的液晶分子需为右旋向液晶分子并具有与反射波长范围相匹配的螺距,使得所述光截止部件反射位于所述反射波长范围内的右旋圆偏振光,而位于其余波长范围内的右旋圆偏振光则透过所述光截止部件。例如,位于400nm~440nm之间的右旋圆偏振蓝光可以被光截止部件反射,而其余波长的右旋圆偏振光将通过该光截止部件,从而实现防蓝光设计。
在一些实施方式中,光截止部件610也可以实现如上所述的宽波反射,用于反射位于多个反射波长范围内的光波。
图7示出了本公开实施例提供的一种可穿戴显示装置的结构示意图。所述可穿戴显示装置包括:光截止部件704;四分之一波片706;以及可穿戴显示器件708。例如,所述可穿戴显示器件708包括上偏振片、显示面板和下偏振片等。所述上偏振片和四分之一波片706的旋光特性与所述光截止部件704的液晶层的液晶分子的旋光结构相一致。
例如,所述可穿戴显示器件708为可穿戴虚拟现实眼镜,所述四分之一波片706和光截止部件704位于所述虚拟现实眼镜的内侧。
经过可穿戴显示器件708的上偏振片的光为线偏振光。为了实现上偏振片、四分之一波片706和光截止部件704在光学特性上相匹配,当从上偏振片出射的线偏振光经过四分之一波片706后为左旋偏振光时,所述光截止部 件704的液晶层的液晶分子需为左旋向液晶分子并具有与反射波长范围相匹配的螺距,使得所述光截止部件704反射位于所述反射波长范围内的左旋圆偏振光,而其余波长的左旋圆偏振光则透过所述光截止部件704。例如,位于400nm~440nm之间的左旋圆偏振蓝光可以被光截止部件反射,而其余波段的左旋圆偏振蓝光和其他波长的左旋圆偏振光将通过该光截止部件,从而实现防蓝光设计。
或者,当从上偏振片出射的线偏振光经过四分之一波片706后为右旋偏振光时,所述光截止部件704的液晶层的液晶分子需为右旋向液晶分子并具有与反射波长范围相匹配的螺距,使得所述光截止部件反射位于所述反射波长范围内的右旋圆偏振光,而其余波长的右旋圆偏振光则透过所述光截止部件。例如,位于400nm~440nm之间的右旋圆偏振蓝光可以被光截止部件反射,而其余波段的右旋圆偏振蓝光和其他波长的右旋圆偏振光将通过该光截止部件,从而实现防蓝光设计。
在一些实施方式中,光截止部件704也可以实现如上所述的宽波反射,用于反射位于多个反射波长范围内的光波。
所述可穿戴显示装置可以为防蓝光的健康穿戴装置,通过液晶结构设计来控制反射的蓝光波段,从而直接减少蓝光通过所述可穿戴显示装置到达人的眼镜,降低蓝光对眼睛的伤害。所述可穿戴显示装置可以使用于户外用可穿戴产品、虚拟现实可穿戴产品或其他具有高亮显示的产品中。
本公开的实施例提供了一种液晶混合物及其制备方法、光截止部件及其制备方法、显示装置和可穿戴显示装置。在液晶混合物中,通过在液晶分子中添加手性添加剂使得液晶分子的取向发生扭转,形成具有一定螺距的呈胆甾相的液晶分子。通过调整手性添加剂在液晶混合物的浓度,可以调整液晶分子的螺距,从而可以调整被反射或被截止的光波的波长范围。因此,本公开的实施例提供了一种控制反射光波波段的方法,可以通过液晶结构的设计控制光波反射波段,从而直接有效地减少该反射波段内的光波的通过。例如,本公开的实施例提供了一种控制反射蓝光波段的方法,可以通过液晶结构的设计控制蓝光反射波段,从而直接有效地减少蓝光的通过,降低蓝光对眼睛的伤害。又例如,本公开的实施例提供的液晶混合物及其制备方法、光截止部件及其制备方法、显示装置和可穿戴显示装置,可以通过反射高能量的蓝 光来阻止其通过,降低高能量的蓝光对眼睛造成的伤害,同时保留部分低能量的蓝光通过以及其他颜色的光波的通过来实现显示的功能。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年4月7日递交的中国专利申请第201610214352.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种液晶混合物的制备方法,包括:
    获取所述液晶混合物的反射波长范围;以及
    在液晶分子中添加一定浓度的手性添加剂来形成所述液晶混合物,以使所述液晶混合物反射所述反射波长范围内的光波。
  2. 根据权利要求1所述的液晶混合物的制备方法,其中,所述液晶分子呈胆甾相,所述手性添加剂混合于所述液晶分子之间。
  3. 根据权利要求1所述液晶混合物的制备方法,还包括:
    基于所述反射波长范围以及在所述反射波长范围内的最小波长和最大波长,确定所述液晶分子的螺距、寻常光折射指数以及非寻常光折射指数。
  4. 根据权利要求3所述的液晶混合物的制备方法,还包括:
    在所述液晶分子中添加所述手性添加剂之前,根据所述液晶分子的所述螺距来确定所述手性添加剂在所述液晶混合物中的浓度。
  5. 根据权利要求3所述的液晶混合物的制备方法,其中,确定所述液晶分子的螺距、寻常光折射指数以及非寻常光折射指数,包括:
    基于所述反射波长范围,确定所述液晶分子的螺距范围;
    基于所述液晶分子的螺距范围,确定所述液晶分子的双折射率范围;
    在所述双折射率范围内选择所述液晶分子的双折射率;
    基于所述双折射率和所述反射波长范围,确定所述液晶分子的所述螺距;
    基于所述螺距和所述反射波长范围的最小波长,确定所述液晶分子的所述寻常光折射指数;以及
    基于所述螺距和所述反射波长范围的最大波长,确定所述液晶分子的所述非寻常光折射指数。
  6. 根据权利要求5所述的液晶混合物的制备方法,其中,基于所述反射波长范围,确定所述液晶分子的螺距范围,包括:
    确定所述液晶分子的第一可能螺距范围为:(λmin/ne,max)≤第一可能螺距范围≤(λmin/no,min);
    确定所述液晶分子的第二可能螺距范围为:(λmax/ne,max)≤第二可能螺距范围≤(λmax/no,min);以及
    确定所述液晶分子的螺距范围为所述第一可能螺距范围和所述第二可能螺距范围的重合部分,
    其中,所述螺距范围为Pmin≤P≤Pmax,P表示所述液晶分子的螺距,Pmin为所述螺距P的最小值,Pmax为所述螺距P的最大值,no,min为寻常光折射指数no的可能最小值,ne,max为非寻常光折射指数ne的可能最大值,λmin为所述反射波长范围的最小波长,λmax为所述反射波长范围的最大波长。
  7. 根据权利要求6所述的液晶混合物的制备方法,其中,基于所述液晶分子的螺距范围,确定所述液晶分子的双折射率范围,包括:
    确定所述液晶分子的双折射率范围为:(Δλ/Pmax)≤Δn≤(Δλ/Pmin),其中,Δn表示所述液晶分子的双折射率,Δλ表示所述反射波长范围。
  8. 根据权利要求7所述的液晶混合物的制备方法,其中,
    基于所述双折射率和所述反射波长范围,确定所述液晶分子的所述螺距,包括:确定所述螺距P为P=Δλ/Δn;
    基于所述螺距和所述反射波长范围的最小波长,确定所述液晶分子的所述寻常光折射指数,包括:确定所述寻常光折射指数no为no=λmin/P;以及
    基于所述螺距和所述反射波长范围的最大波长,确定所述液晶分子的所述非寻常光折射指数,包括:确定所述非寻常光折射指数ne为ne=λmax/P。
  9. 根据权利要求1所述的液晶混合物的制备方法,其中,被反射的所述光波为蓝光,所述反射波长范围为400nm到440nm。
  10. 一种光截止部件的制备方法,包括:
    根据权利要求1-9任一项所述的液晶混合物的制备方法;以及
    固化所述液晶混合物形成液晶层,其中,所述液晶层反射所述反射波长范围内的光波。
  11. 一种液晶混合物,包括:
    液晶分子;以及
    一定浓度的手性添加剂;
    其中,所述手性添加剂混合于所述液晶分子之间,所述液晶分子呈胆甾相,以使所述液晶混合物反射位在反射波长范围内的光波。
  12. 根据权利要求11所述的液晶混合物,其中,所述手性添加剂在所述液晶混合物中的浓度和所述液晶分子的螺距的关系为:
    C=1/(P×HTP),
    其中,C为所述手性添加剂在所述液晶混合物中的浓度,HTP为所述液晶分子固有的扭曲能量常数,P为所述液晶分子的螺距。
  13. 根据权利要求12所述的液晶混合物,其中,
    所述液晶分子的螺距P的范围满足:Pmin≤P≤Pmax,其中,Pmin表示所述螺距P的最小值,Pmax表示所述螺距P的最大值;
    所述液晶分子的双折射率的范围满足:(Δλ/Pmax)≤Δn≤(Δλ/Pmin),其中,Δn表示所述液晶分子的双折射率,Δλ表示所述反射波长范围;
    所述液晶分子的螺距P还满足:P=Δλ/Δn;
    所述液晶分子的寻常光折射指数no满足:no=λmin/P,其中,no表示所述寻常光折射指数,λmin为所述反射波长范围的最小波长;以及
    所述液晶分子的非寻常光折射指数满足:ne=λmax/P,其中,ne表示所述非寻常光折射指数,λmax为所述反射波长范围的最大波长。
  14. 根据权利要求13所述的液晶混合物,其中,
    所述液晶分子的第一可能螺距范围为:(λmin/ne,max)≤第一可能螺距范围≤(λmin/no,min);
    所述液晶分子的第二可能螺距范围为:(λmax/ne,max)≤第二可能螺距范围≤(λmax/no,min);以及
    所述液晶分子的螺距P的范围为所述第一可能螺距范围和所述第二可能螺距范围的重合部分,
    其中,no,min为所述寻常光折射指数no的可能最小值,ne,max为所述非寻常光折射指数ne的可能最大值。
  15. 根据权利要求13所述的液晶混合物,其中,被反射的所述光波为蓝光,所述反射波长范围为400nm到440nm之间的范围,所述手性添加剂的浓度C的范围在1/(Pmax×HTP)和1/(Pmin×HTP)之间,其中,HTP为所述液晶分子固有的扭曲能量常数。
  16. 一种光截止部件,包括:根据权利要求11-15任一项所述的液晶混合物形成的液晶层,其中,所述液晶层反射位于所述反射波长范围内的所述光波。
  17. 一种显示装置,包括:
    如权利要求16所述的光截止部件;
    四分之一波片;以及
    显示器件,
    其中,所述显示器件包括上偏振片、显示面板和下偏振片,所述上偏振片和四分之一波片的旋光特性与所述光截止部件的液晶层的液晶分子的旋光结构相一致。
  18. 如权利要求17所述的显示装置,其中,所述可穿戴显示器件为可穿戴虚拟现实眼镜,所述四分之一波片和所述光截止部件位于所述虚拟现实眼镜的内侧。
  19. 根据权利要求17或18所述的显示装置,其中,
    经过上偏振片的光为线偏振光;
    经过四分之一波片的光为左旋偏振光;
    所述光截止部件的液晶层的液晶分子为左旋向液晶分子;以及
    所述光截止部件反射位于所述反射波长范围内的左旋圆偏振光。
  20. 根据权利要求17或18所述的显示装置,其中,
    经过上偏振片的光为线偏振光;
    经过四分之一波片的光为右旋偏振光;
    所述光截止部件的液晶层的液晶分子为右旋向液晶分子;以及
    所述光截止部件反射位于所述反射波长范围内的右旋圆偏振光。
PCT/CN2016/102959 2016-04-07 2016-10-21 液晶混合物、光截止部件及其制备方法和显示装置 WO2017173809A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/538,722 US20180046021A1 (en) 2016-04-07 2016-10-21 Liquid crystal compound and preparation method thereof, optical cut-off component and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610214352.6 2016-04-07
CN201610214352.6A CN105652550B (zh) 2016-04-07 2016-04-07 液晶混合物、光截止部件及其制备方法和显示装置

Publications (1)

Publication Number Publication Date
WO2017173809A1 true WO2017173809A1 (zh) 2017-10-12

Family

ID=56496877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102959 WO2017173809A1 (zh) 2016-04-07 2016-10-21 液晶混合物、光截止部件及其制备方法和显示装置

Country Status (3)

Country Link
US (1) US20180046021A1 (zh)
CN (1) CN105652550B (zh)
WO (1) WO2017173809A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600213B2 (en) * 2016-02-27 2020-03-24 Focal Sharp, Inc. Method and apparatus for color-preserving spectrum reshape
CN105652550B (zh) * 2016-04-07 2019-03-01 京东方科技集团股份有限公司 液晶混合物、光截止部件及其制备方法和显示装置
JP6840734B2 (ja) * 2016-04-08 2021-03-10 日本化薬株式会社 アイウェア用光学フィルム、並びにこれを用いた光学積層体およびアイウェア
CN108680980B (zh) * 2018-07-10 2024-03-15 宁波激智科技股份有限公司 一种防蓝光光学薄膜及其制备方法
CN112680969B (zh) * 2020-12-16 2022-03-08 北京大学 具有紫外光强度检测及防护功能的光响应智能液晶变色纤维及其制备方法和应用
WO2024020996A1 (zh) * 2022-07-29 2024-02-01 京东方科技集团股份有限公司 显示面板、后视镜和交通设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338807B1 (en) * 1991-11-27 2002-01-15 Reveo, Inc. Cholesteric liquid crystal (CLC)-based coloring media for producing color effects having improved brightness and color characteristics
CN102109703A (zh) * 2009-12-23 2011-06-29 乐金显示有限公司 液晶显示装置
CN104710990A (zh) * 2015-04-02 2015-06-17 江苏和成新材料有限公司 可聚合液晶组合物及其应用
CN105093649A (zh) * 2015-08-14 2015-11-25 深圳市华星光电技术有限公司 防蓝光偏光板及液晶显示面板
CN105242473A (zh) * 2015-10-30 2016-01-13 南方科技大学 一种胆甾相液晶显示装置及该装置中反射层的制备方法
CN105388662A (zh) * 2015-12-25 2016-03-09 武汉华星光电技术有限公司 显示面板及偏振片
CN105652550A (zh) * 2016-04-07 2016-06-08 京东方科技集团股份有限公司 液晶混合物、光截止部件及其制备方法和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164895A (ja) * 1997-08-14 1999-03-05 Fuji Xerox Co Ltd 反射型カラー液晶表示装置
GB0414882D0 (en) * 2004-07-02 2004-08-04 Univ Cambridge Tech Liquid crystal device
CN101706625B (zh) * 2009-11-13 2011-07-20 北京科技大学 用聚合物稳定胆甾相液晶材料制备宽波反射薄膜的方法
KR101251403B1 (ko) * 2010-07-16 2013-04-05 엘지디스플레이 주식회사 액정표시장치
CN103353689B (zh) * 2013-06-28 2016-03-16 京东方科技集团股份有限公司 光阀器件、红外显示装置、专用眼镜及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338807B1 (en) * 1991-11-27 2002-01-15 Reveo, Inc. Cholesteric liquid crystal (CLC)-based coloring media for producing color effects having improved brightness and color characteristics
CN102109703A (zh) * 2009-12-23 2011-06-29 乐金显示有限公司 液晶显示装置
CN104710990A (zh) * 2015-04-02 2015-06-17 江苏和成新材料有限公司 可聚合液晶组合物及其应用
CN105093649A (zh) * 2015-08-14 2015-11-25 深圳市华星光电技术有限公司 防蓝光偏光板及液晶显示面板
CN105242473A (zh) * 2015-10-30 2016-01-13 南方科技大学 一种胆甾相液晶显示装置及该装置中反射层的制备方法
CN105388662A (zh) * 2015-12-25 2016-03-09 武汉华星光电技术有限公司 显示面板及偏振片
CN105652550A (zh) * 2016-04-07 2016-06-08 京东方科技集团股份有限公司 液晶混合物、光截止部件及其制备方法和显示装置

Also Published As

Publication number Publication date
CN105652550B (zh) 2019-03-01
CN105652550A (zh) 2016-06-08
US20180046021A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2017173809A1 (zh) 液晶混合物、光截止部件及其制备方法和显示装置
TWI606277B (zh) 具有不同光學封包的變跡寬帶局部反射器
TWI653474B (zh) 含有延遲層的光學薄膜堆疊
TWI375094B (en) Optical film and method of adjusting wavelength dispersion characteristics of the same
TW200526998A (en) Mirror with built-in display
US9411168B2 (en) Optical module and optically functional film applied for optical device
JP2012242449A (ja) 位相差素子及びその製造方法
CN110036319A (zh) 两侧均具有高反射率的线栅偏振器
JP2010530995A (ja) 反射抑制ワイヤーグリッド偏光素子
KR20140084195A (ko) 아포다이징된 광대역 부분 반사기
JP2013167823A (ja) 無機偏光板
JP2020501184A (ja) 光学積層体
TW201030418A (en) Liquid crystal display
CN106154622B (zh) 镜面显示设备
JP2003307622A (ja) 偏光素子
JP2007310052A (ja) 波長板
CN110456519A (zh) 偏振分束器及其制备方法、偏振分束方法
CN103984054B (zh) 全介质f‑p窄带消偏振滤光片
TWI258039B (en) Display panel and liquid crystal display device
US9383483B2 (en) Diffuse cholesteric reflector
Zheng et al. Single layer narrow bandwidth angle-insensitive guided-mode resonance bandstop filters
US8369016B2 (en) Optical sheet
JP6440172B2 (ja) 無機偏光板
JP2010522891A (ja) 光学素子、その作製方法およびその使用方法
JP6027199B2 (ja) 位相差素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15538722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897741

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897741

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16897741

Country of ref document: EP

Kind code of ref document: A1