WO2017173661A1 - 一种故障检测的方法和设备 - Google Patents

一种故障检测的方法和设备 Download PDF

Info

Publication number
WO2017173661A1
WO2017173661A1 PCT/CN2016/078871 CN2016078871W WO2017173661A1 WO 2017173661 A1 WO2017173661 A1 WO 2017173661A1 CN 2016078871 W CN2016078871 W CN 2016078871W WO 2017173661 A1 WO2017173661 A1 WO 2017173661A1
Authority
WO
WIPO (PCT)
Prior art keywords
payload
otn
otn frame
frame
verification information
Prior art date
Application number
PCT/CN2016/078871
Other languages
English (en)
French (fr)
Inventor
尹建
王伟
李鹏
刘福学
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16897595.1A priority Critical patent/EP3429138A4/en
Priority to CN201680001097.5A priority patent/CN107710699B/zh
Priority to BR112018070672-8A priority patent/BR112018070672B1/pt
Priority to JP2018552784A priority patent/JP6783872B2/ja
Priority to PCT/CN2016/078871 priority patent/WO2017173661A1/zh
Publication of WO2017173661A1 publication Critical patent/WO2017173661A1/zh
Priority to US16/153,201 priority patent/US10575074B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0062Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and device for fault detection.
  • a distributed base station solution uses radio remote technology to separate the Radio Remote Unit (RRU) from the Building Base Band Unit (BBU), which are connected by fiber or cable.
  • RRU Radio Remote Unit
  • BBU Building Base Band Unit
  • I/Q in-phase/quadrature
  • CPRI Common Public Radio Interface
  • OTN optical transport network
  • BBU optical transport network
  • RTN optical transport network
  • FIG. 1 After the service of the multi-path RRU is aggregated to the OTN device A, it is transmitted to the OTN device B through the working path, and the OTN device B sends the received service to the BBU. If the working path between the OTN device A and the OTN device B fails, the service can be switched to the protection path for transmission.
  • FIG. 2 is a schematic diagram of a method for detecting faults of an OTN device in the prior art.
  • the OTN device detects the fault by using the optical module and the OTU cost detection module, generates alarm information, and reports the alarm information to the protection switching control module.
  • the protection switching control module receives the alarm information, the service is switched from the working path. To the protection path. From the failure of the working path to the detection of the fault by the OTN device and the reporting of the alarm information, it takes a long time, usually in the millisecond level, resulting in low efficiency of protection switching.
  • the embodiments of the present invention provide a method and a device for detecting faults, which can solve the problem of low protection switching efficiency.
  • an embodiment of the present invention provides a method for detecting a fault, including: an optical transport network OTN device acquiring a first OTN frame, where the first OTN frame includes at least two payload areas, and the at least two nets Each payload area in the payload area includes payload verification information and payload data; the payload verification information is used to verify payload data of a payload area where the payload verification information is located; OTN The device performs fault detection on each of the payload areas according to the payload verification information. By dividing the OTN frame into multiple payload areas, each payload area carries its own payload check information, which is used to verify the payload data of the respective payload areas, so that the OTN device obtains a partial net. When the data is loaded, for example, at least one payload area, the fault can be detected, and the efficiency of fault detection is improved.
  • the first OTN frame includes 4*n payload areas, where n is a positive integer greater than or equal to 1.
  • the first OTN frame may include 4 rows and n columns, for example, n may take 8.
  • the payload area division manner of the OTN frame may be uniform division or non-uniform division, and the fault detection efficiency is improved by the method of sub-area detection.
  • the performing fault detection according to the payload verification information includes: acquiring at least one payload area in the first OTN frame, and acquiring each payload area The payload verification information, wherein each of the payload areas corresponds to a respective payload verification information; and the corresponding payload area is compared according to the respective payload verification information Check it out.
  • the OTN device acquires at least one payload area in the first OTN frame, the OTN device can perform fault detection, thereby improving the efficiency of fault detection.
  • the method when the OTN device performs fault detection according to the payload verification information, when there is an unverified payload area in the first OTN frame, The method also includes obtaining an unverified payload area in the first OTN frame.
  • the OTN device performs fault detection on the first OTN frame the uncorrected payload area in the first OTN frame can also be acquired at the same time, and the fault detection can be implemented without receiving the complete first OTN frame, thereby improving the fault. The efficiency of the test.
  • the payload verification information is carried by an idle padding column of the payload area.
  • the idle fill column is used to carry the payload check information, making full use of the idle position in the OTN frame.
  • the payload verification information is carried by a reserved payload data column of the payload area, or the payload verification information may also pass a reserved field of the overhead area. Hosted. Regardless of how the payload verification information is carried, it can be associated with the payload data to be verified.
  • the method further includes: acquiring, by the OTN device, a second OTN frame, where the second OTN frame is obtained from a protection path, where the first OTN frame is a working path Obtaining, respectively, buffering the first OTN frame and the second OTN frame, where the buffering time is greater than or equal to a preset fault detection time.
  • the service data can be cached in the fault detection period, that is, from the time when the fault occurs to the time when the fault alarm information is reported, thereby implementing the lossless switching of the service. .
  • the preset fault detection time is a time for performing fault detection according to the payload verification information.
  • the setting of the fault detection time enables the OTN device to be in a cached state before the fault detection is completed, thereby implementing a lossless switching of the service.
  • the method further includes: the OTN device acquiring the And a delay value between the OTN frame and the second OTN frame, and the first OTN frame and the second OTN frame are aligned according to the delay value.
  • the first OTN frame is delayed by a time T from the second OTN frame
  • the second OTN frame is more T than the buffer time of the first OTN frame.
  • the setting of the cache time can also align the two service data, thereby implementing the lossless switching of the service.
  • the method further includes: when the first OTN frame does not detect a fault, the OTN device selects to receive the first OTN frame; the first OTN frame detection Upon failure, the OTN device selects to receive the second OTN frame.
  • the reliability of the service is improved by transmitting OTN frames on the working path and the protection path.
  • the embodiment of the present invention provides a fault detection apparatus, including: a first optical module, configured to acquire a first OTN frame, where the first OTN frame includes at least two payload areas, the at least two Each payload area in the payload area includes payload verification information and payload data; a payload verification module is configured to perform fault detection according to the payload verification information, where the payload verification information is used Verifying the payload data of the payload area where the payload verification information is located.
  • each payload area is Carrying the respective payload check information for verifying the payload data of the respective payload areas, so that the optical module can detect the fault when acquiring part of the payload data, for example, at least one payload area, and improve The efficiency of fault detection.
  • the first OTN frame includes 4*n payload areas, where n is a positive integer greater than or equal to 1.
  • the first OTN frame may include 4 rows and n columns, for example, n may take 8.
  • the payload area division manner of the OTN frame may be uniform division or non-uniform division, and the fault detection efficiency is improved by the method of sub-area detection.
  • the device further includes an OTU search frame module, configured to acquire at least one payload area in the first OTN frame, and acquire a payload in each payload area.
  • the verification information wherein each of the payload areas corresponds to a respective payload verification information; and the payload verification module is configured to verify the corresponding payload area according to the respective payload verification information.
  • the OTU search frame module acquires at least one payload area in the first OTN frame, the payload verification module can perform fault detection, thereby improving the efficiency of fault detection.
  • the OTU search frame module is further configured to: when the payload verification module performs fault detection according to the payload verification information, the first OTN When there is an unverified payload area in the frame, the unverified payload area in the first OTN frame is acquired.
  • the OTU search frame module can simultaneously acquire the unverified payload area in the first OTN frame, and does not need to receive the complete first OTN frame. The fault detection is realized, and the efficiency of fault detection is improved.
  • the payload verification information is carried by an idle padding column of the payload area.
  • the idle fill column is used to carry the payload check information, making full use of the idle position in the OTN frame.
  • the payload verification information is carried by a reserved payload data column of the payload area, or the payload verification information may also pass a reserved field of the overhead area. Hosted. Regardless of how the payload verification information is carried, it can be associated with the payload data to be verified.
  • the device further includes a second optical module and a cache alignment module, where the second optical module is configured to acquire the second OTN frame, where the second OTN frame is The first OTN frame is obtained from the working path, and the cache alignment module is configured to buffer the first OTN frame and the second OTN frame respectively, where the buffer time is greater than Or equal to the preset fault detection time.
  • the service data can be cached in the fault detection period, that is, from the time when the fault occurs to the time when the fault alarm information is reported, thereby implementing the lossless switching of the service. .
  • the preset fault detection time is a time when the payload verification module performs fault detection according to the payload verification information.
  • the setting of the fault detection time enables the OTN device to be in a cached state before the fault detection is completed, thereby implementing a lossless switching of the service.
  • the cache alignment module is further configured to: acquire a delay value between the first OTN frame and the second OTN frame, and align according to the delay value The first OTN frame and the second OTN frame.
  • the first OTN frame The delay time T of the second OTN frame is longer than the buffer time of the first OTN frame.
  • the setting of the cache time can also align the two service data, thereby implementing the lossless switching of the service.
  • the device further includes: a selector, configured to: when the first OTN frame does not detect a fault, select to receive the first OTN frame; When an OTN frame detects a failure, it selects to receive the second OTN frame.
  • a selector configured to: when the first OTN frame does not detect a fault, select to receive the first OTN frame; When an OTN frame detects a failure, it selects to receive the second OTN frame. The reliability of the service is improved by transmitting OTN frames on the working path and the protection path.
  • an embodiment of the present invention provides an optical transport network OTN device, including: an optical module and an OTN processing chip; when the OTN device is running, the OTN processing chip executes a preset program code, so that the OTN device performs the same. And the method of any one of the possible implementations of the first aspect.
  • an embodiment of the present invention provides an optical transport network OTN device, including: a control and communication module, an optical module, and an OTN processing chip; the control and communication module is connected to the optical module and the OTN processing chip, and is used for the optical module. And the OTN processing chip is configured; when the OTN device is running, the OTN processing chip executes the preset program code in the configuration of the control and communication module, so that the OTN device performs any one of the first aspect and the first aspect. The method described in the implementation.
  • the OTN frame is divided into at least two payload areas, and the payload verification information for verifying the payload area is configured in each payload area, which can be quickly The fault detection is performed; in addition, the service data can be cached so that the service data transmitted between the failure to the completion of the protection switching is not lost.
  • FIG. 1 is a network architecture diagram of a OTN bearer CPRI service in the prior art
  • FIG. 2 is a schematic diagram of a method for detecting faults of an OTN device in the prior art
  • 3a is a schematic structural diagram of hardware of an OTN device according to an embodiment of the present invention.
  • FIG. 3b is a schematic structural diagram of hardware of an OTN device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a frame of an OTN frame according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • 6b is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 7a is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 7b is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 8b is a schematic diagram of a payload area division of an OTN frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an OTN device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an OTN device according to an embodiment of the present invention.
  • FIG. 10b is a schematic structural diagram of an OTN device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a logical structure of a cache alignment module according to an embodiment of the present invention.
  • FIG. 12 is an exemplary flowchart of a method for detecting faults according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an OTN device according to an embodiment of the present invention.
  • Embodiments of the present invention can be applied to a transport network, such as an optical transport network (OTN) network.
  • OTN optical transport network
  • the OTN network in the embodiment of the present invention may be used to carry a common public radio interface (CPRI) service, but the embodiment of the present invention is not limited to an application scenario that carries a CPRI service.
  • CPRI public radio interface
  • the OTN device can provide multiple customer service interfaces, such as an Asynchronous Transfer Mode (ATM) interface, an Ethernet interface, a CPRI interface, and a Synchronous Digital Hierarchy (SDH) interface.
  • ATM Asynchronous Transfer Mode
  • CPRI CPRI interface
  • SDH Synchronous Digital Hierarchy
  • the CPRI interface can be used to connect to a Baseband Control Unit (BBU) or a Radio Remote Unit (RRU).
  • BBU Baseband Control Unit
  • RRU Radio Remote Unit
  • the OTN device can be an electrical cross-connect device, and the ODUk-level circuit crossover function can be completed through an optical channel data unit (ODU) cross-board. Where k can take 0, 1, 2, 3, 4, flex, Cn, etc., representing different rates.
  • ODU optical channel data unit
  • the optical multiplex section processing multiplexes the multiple wavelength signals on the circuit board, and the optical transmission section processing transmits the multiplexed multiple wavelength signals to the main optical channel.
  • the OTN device can be an optical cross device, and the OCh layer crossing is completed through an optical channel (Ohtical Chanel, OCh) cross board. As shown in Figure 3b, OTN can also be optically mixed.
  • the ODU electrical layer crossing is completed through the ODU cross-board, and the OCh optical layer crossing is completed through the OCh cross-board.
  • the ODU service crosses the electrical layer through the ODU cross-connect board, and the wavelength-level service crosses the optical layer through the OCh cross-board.
  • the OTN device may not include the ODU cross board or the OCh cross board, that is, the OTN device is a terminal multiplexing device.
  • At least two payload areas are divided in an OTN frame, and each of the payload areas carries respective payload check information, where the payload check information of each payload area is used for The payload data of the payload area is verified to detect whether a failure has occurred in the network.
  • the technical solution of the embodiment of the present invention can be applied to an OTN device of any of the foregoing forms, which can reduce the time of fault detection and improve the efficiency of protection switching.
  • FIG. 4 is a schematic diagram of a frame structure of an OTN frame according to an embodiment of the present invention.
  • the OTN frame may be a 4-line 4048-column structure, including an overhead (OH) area, an Optical Channel Payload Unit (OPU) payload, and a forward error correction code (Forward Error Correction, FEC). ).
  • the overhead area mainly includes an optical channel transport unit (OTU) overhead, an ODU overhead, an OPU overhead, and a frame header positioning overhead.
  • the OTN frame may also not include FEC.
  • the frame header positioning overhead is used to indicate the starting position of the OTN frame, including a Frame Alignment Signal (FAS) and a MultiFrame Alignment Signal (MFAS).
  • FAS Frame Alignment Signal
  • MFAS MultiFrame Alignment Signal
  • the overhead (OH) area of the OTN frame in FIG. 5a to FIG. 8b may include an OTU overhead, an ODU overhead, an OPU overhead, and the like.
  • OTN The OPU payload area in the frame can be divided into 4*n (n is the number of divided columns) block to be checked, such as payload data 1, payload data 2, ..., payload data 4n in Fig. 5a.
  • payload verification information such as payload verification information 1, payload verification information 2, ..., payload verification information 4n in Fig.
  • the payload check information 1 is used for verifying the payload data 1
  • the payload check information 2 is used for verifying the payload data 2
  • the payload check information 4n is used for the payload data 4n Check it out.
  • n is a positive integer greater than or equal to 1, for example, when n is equal to 8, the OPU payload area is divided into 32 areas to be verified.
  • the difference between Figure 5b and Figure 5a is that the OTN frame in Figure 5b does not have FEC.
  • the OTN frame in FIG. 6a is the case where the OTN frame n in FIG. 5a takes 1, that is, the number of divided columns is 1.
  • the difference between Figure 6b and Figure 6a is that the OTN frame in Figure 6b does not have FEC.
  • the reserved bits in the overhead (OH) in the OTN frame may also carry payload data, and the area to be verified of the first column may also include an overhead (OH) area, such as shown in Figures 7a and 7b.
  • the OPU payload area of the OTN frame can also be divided into 2n (n is the number of columns divided) block to be verified, for example, as shown in FIG. 8a and FIG. 8b, when n is 1, when it is divided into one column, the area to be verified
  • the payload data 1 and the payload data 2 are included, and the corresponding payload verification information is payload verification information 1 and payload verification information 2.
  • the OPU payload area of the OTN frame may be divided into the to-be-checked areas of other quantity blocks, for example, n, 3n, 5n (n is the number of columns to be divided), etc., and the foregoing implementation The examples are similar and will not be described again.
  • the payload check information can occupy one byte, and can be Cyclic Redundancy Code (CRC8) or Bit Interleaved Parity 8 code (BIP8), etc., for OPU.
  • the payload data is error detected.
  • the payload check information may be carried in the idle padding column of the OPU, and may also be carried through the reserved OPU payload data column, and may also pass the reserved word in the overhead area. Paragraph carrying.
  • the to-be-checked area of the OTN frame may be a uniform partition or a non-uniform partition.
  • the payload verification information may also be set in a corresponding area to be verified, that is, in front of the payload data.
  • the embodiments of the present invention are not limited to the manner of dividing the payload area of several OTN frames enumerated above.
  • FIG. 9 is a schematic structural diagram of an OTN device according to an embodiment of the present invention.
  • the OTN device shown in FIG. 9 includes an optical module 11 and a payload verification module 13.
  • the optical module 11 is configured to acquire a first OTN frame, where the first OTN frame includes at least two payload areas, and each of the at least two payload areas includes payload verification information and Payload data.
  • the optical module 11 is configured to perform photoelectric conversion on the received service data, and convert the service data into an OTN frame.
  • the optical module 11 can receive the service data from the client device and convert the service data into the first OTN frame.
  • the client device is a BBU or an RRU and the service data is a CPRI service
  • the optical module 11 converts the CPRI service into a first OTN frame.
  • the optical module 11 can also receive service data from the upstream OTN device and convert the service data into a first OTN frame.
  • the first OTN frame may include an OTU frame, an ODU frame, an OPU frame, and the like.
  • the first OTN frame may include different signal rates, such as OTUk, and k may have values of 1, 2, 3, and 4, and represent rates of 2.5G, 10G, 40G, and 100G, respectively.
  • At least two payload areas may be included in the first OTN frame, and each of the payload areas includes payload check information and payload data.
  • the payload data is a to-be-checked area, and the payload verification information is used to verify the payload data.
  • the division of the payload area may be implemented in any one of the processes of forming the OTN frame, and the addition of the payload verification information may also be implemented in any one of the processes of forming the OTN frame.
  • the ODU is mapped to the high-order OPU, implemented in the process of OTN frame overhead processing, and the like.
  • the first OTN frame may include 4*n payload areas, where n is a positive integer greater than or equal to 1.
  • the payload verification module 13 is configured to perform fault detection according to the payload verification information, where the payload verification information is used to verify payload data of a payload area where the payload verification information is located.
  • the fault detection of the OTN device can be implemented by the payload verification module 13.
  • At least two payload areas may be included in the first OTN frame, and the payload data included in each of the payload areas is a to-be-checked area.
  • the payload data in the payload area can be verified by the payload verification information contained in the payload area, thereby implementing fault detection.
  • the CRC8 check is performed on the first OTN frame, and the payload data of each payload area is subjected to CRC8 processing in units of bytes to obtain a CRC8 check detection value.
  • the CRC8 payload verification information is extracted from the verified payload data.
  • the CRC8 check detection value obtained by the CRC8 process is compared with the extracted CRC8 payload check information to determine whether the payload data is incorrect. For example, if the two are the same or the difference between the two is less than or equal to a preset threshold, the payload data is correct. When the error rate of the payload data reaches a certain level, the alarm information can be reported.
  • the bit error rate can be the bit error rate of a payload area, and can also be the average bit error rate of multiple payload areas.
  • the verification of the payload data may also be performed by using a verification method such as BIP8.
  • the payload verification information corresponding to the partial payload data can be used for calibration.
  • the test does not need to receive the entire OTN frame for verification, which improves the efficiency of fault detection.
  • the OTN device can protect the service data by means of active/standby protection, for example, using the working path and the protection path to transmit service data.
  • 10a and 10b are schematic structural diagrams of an OTN device according to an embodiment of the present invention.
  • the optical module 11, the OTU search frame module 12, and the payload verification module 13 can perform related processing on the service data on the working path; the optical module 21, the OTU search frame module 22, and the payload verification module. 23 can perform related processing on the service data on the protection path.
  • the OTN device also includes a protection switching control module 31 and a selector 32.
  • the optical module 11 and the optical module 21 can be independent and identical circuit modules, or can be integrated into one circuit module.
  • the OTU search frame module 12, the OTU search frame module 22, and the payload check module 13 and the payload checksum are used. Module 23 is also similar.
  • the OTU search frame module 12 is configured to acquire at least one payload area in the first OTN frame, and obtain payload check information in each payload area, where each of the payloads The area corresponds to the respective payload verification information; the payload verification module 13 is configured to verify the corresponding payload area according to the respective payload verification information.
  • the OTU search frame module 12 may search for a frame header positioning overhead pattern of the first OTN frame, and the frame header positioning overhead may include at least any one of FAS and MFAS.
  • the pattern of the FAS can be F6F62828. After finding the frame header positioning overhead pattern, the frame header of the first OTN frame is found, and the payload area of the first OTN frame can be located.
  • the above frame loss (Loss of Frame, LOF) can also be reported, indicating a frame error.
  • the payload verification module 13 performs fault detection according to the payload verification information
  • the first OTN frame remains.
  • the OTU search frame module 12 may also obtain an unverified payload area from the first OTN frame.
  • the OTN device can also receive other unverified payload areas in the first OTN frame while performing fault detection on the first OTN frame, and does not need to wait for the complete first OTN frame to receive fault detection, thereby improving the fault detection. The efficiency of fault detection.
  • the optical module 11 is configured to acquire a first OTN frame
  • the optical module 21 is configured to acquire a second OTN frame.
  • the optical module 11 can receive the service data on the working path
  • the optical module 21 can receive the service data on the protection path.
  • the second OTN frame is obtained from a protection path
  • the first OTN frame is acquired from a working path.
  • the first OTN frame carries the service data on the working path
  • the second OTN frame carries the service data on the protection path, and the service data carried by the two may be the same.
  • the fault detection of the OTN device may also be implemented by one or two modules of the OTU overhead detection module 14 and the OTU overhead detection module 24, and may also pass through one of the optical module 11 and the optical module 21. Or two modules to achieve.
  • the OTU cost detection module 14 and the optical module 11 are taken as an example for description.
  • the OTU overhead detection module 14 acquires the overhead information of the first OTN frame, and stores the payload data of the entire first OTN frame according to the overhead information of the first OTN frame. Check it out.
  • the overhead information of the first OTN frame may carry a BIP8 check value
  • the OTU overhead detection module 14 performs a BIP8 check on the payload data.
  • the BIP8 check value of the current frame is set to the current frame.
  • the overhead position of the second frame is followed, so it is necessary to obtain the second frame after the current frame is received, and the payload data of the entire OTN frame needs to be read before the payload check can be implemented. Therefore, Compared with the fault detection by the payload verification module 13, the detection efficiency of the OTU overhead detection module 14 is relatively low.
  • the optical module 11 can determine whether a fault has occurred by detecting whether an optical signal is received, and cannot detect the payload data in the OTN frame, and the detection efficiency is relatively low.
  • the switching switching control module 31 is configured to use any one or more of the optical module 11, the optical module 21, the OTU overhead detecting module 14, the OTU overhead detecting module 24, the payload checking module 13, and the payload checking module 23.
  • the module receives the fault alarm information and sends the fault alarm information to the selector 32.
  • the selector 32 is configured to perform service data protection switching according to the received fault alarm information. For example, the selector 32 receives service data from the working path before receiving the fault alarm information, and receives the service from the protection path after receiving the fault alarm information. data.
  • the optical module 11, the optical module 21, the OTU overhead detection module 14, the OTU overhead detection module 24, the payload verification module 13, and the payload verification module 23 are collectively referred to as a fault detection module, and these modules may be independent.
  • the circuit modules can also be integrated into one circuit module.
  • the protection switching type of the OTN device may be configured with a protection switching type, for example, automatic switching or forced switching may be configured. If the switch is automatically configured, the switchover is automatically performed according to the alarm information reported by the fault detection module. If the switchover is configured, the switchover can be forced in any preset situation.
  • the service data may also be cache aligned.
  • Cache alignment module 15 and cache alignment module 25 Cache alignment is performed on the first OTN frame and the second OTN frame, respectively.
  • the cache alignment module 15 may buffer data for the first OTN frame
  • the cache alignment module 25 may perform data buffering for the second OTN frame.
  • the cache time is greater than or equal to the preset fault detection time.
  • the cache alignment module 15 and the cache alignment module 25 are configured to acquire a delay value between the first OTN frame and the second OTN frame, and perform delay setting on the first OTN frame and the second OTN frame according to the delay value, so that The first OTN frame and the second OTN frame are aligned.
  • the fault detection time may be a fault detection time of any one of the fault detection modules of the optical module, the OTU overhead detection module, and the payload verification module, or may be the fault detection time with the shortest fault detection time of the multiple fault detection modules. It can also be the time preset by the user.
  • FIG. 11 is a schematic diagram of a logical structure of a cache alignment module according to an embodiment of the present invention.
  • the service data of the primary and backup services for example, the first OTN frame and the second OTN frame are respectively subjected to delay measurement, and then the two service data are delayed configured, so that the two service data enters the buffer area. Achieve data alignment.
  • the manner of delay measurement can be implemented by comparing the delay between the header identifiers of the first OTN frame and the second OTN frame.
  • the frame header identifier may be one or two frame header positioning overheads in the FAS and MFAS.
  • the start is counted by using the header identifier of the first OTN frame (for example, the position where FAS and MFAS are 0) as the starting position.
  • the frame header location identifier of the second OTN frame for example, the location where FAS and MFAS are 0
  • the counting is stopped, and the count value is obtained as t_cnt. If the count value t_cnt is less than half of the counting period T, the delay value of the second OTN frame relative to the first OTN frame delay is t_cnt; if the count value t_cnt is greater than half of the counting period T, the first OTN frame is opposite to the second OTN
  • the delay value of the frame delay is T-t_cnt.
  • Delay configuration can be combined with two ways
  • the delay value of the service data and the fault detection time are configured.
  • the delay value of the delay of the first OTN frame relative to the second OTN frame is t2
  • the fault detection time is t1
  • the delay value of the buffer data configured for the first OTN frame is t1
  • the buffer of the second OTN frame is buffered.
  • the delay value of the data configuration is t1+t2.
  • the delay value of xt may also be added to the delay value of the two service data configurations.
  • the xt can be the delay value configured for the OTN device, and is the reserved time generated by the fault alarm information. If the time of the fault alarm information is fixed to t1, xt can be 0.
  • Data alignment can be achieved by buffering data writes and reads.
  • the write operation of the cache data may be implemented by: when the input data is a frame header, the data is written to a preset address, and the buffer area is written in an incremental manner. The header of the two data can be written to the same address to ensure data alignment.
  • the buffer area can be implemented by a random access memory (RAM).
  • the size of the buffer area is determined by the configured delay value. The larger the delay value, the larger the storage area of the buffer area.
  • the implementation of the read operation of the cache data may be: if there is data in the cache area corresponding to the service data selected by the current selector, the data is read from the same address in the cache area corresponding to the two service data, otherwise Read the data. After reading two service data, the selector can select one of the two service data to receive one of the service data.
  • the OTN device shown in FIG. 9, FIG. 10a, and FIG. 10b may be a separate OTN device, or may be a circuit module in the OTN device, such as a tributary board, an ODU cross board, a circuit board, and an OCh in the OTN device. It is implemented on any one or more of the cross board, the optical multiplex section processing, and the optical transmission section processing.
  • the optical module, the OTU search frame module, the payload verification module, the OTU overhead detection module, the cache alignment module, the protection switching control module, the selector, etc. in the embodiments of the present invention may be implemented by independent circuit modules, or may be integrated. The implementation of the circuit module.
  • the OTN frame is divided into at least two payload areas, where each payload area includes payload check information and payload data, and the payload check in each payload area The information is used to verify the payload data of the payload area, thereby implementing fault detection.
  • the OTN frame can be subjected to payload verification, thereby improving the efficiency of fault detection.
  • FIG. 12 is an exemplary flowchart of a method for fault detection according to an embodiment of the present invention. As shown in Figure 12, the method can be performed by a transmitting device, such as an OTN device. The method includes:
  • the optical transport network OTN device acquires the first OTN frame, the first OTN frame includes at least two payload areas, and each of the at least two payload areas includes payload check information and a payload. data.
  • the OTN device can acquire the first OTN frame from the client device or the transmitting device.
  • the client device may be an ATM device, an SDH device, a CPRI device, etc.
  • the transmitting device may be an upstream OTN device.
  • the data frame format of the first OTN frame can be referred to the embodiment shown in FIG. 4 to FIG. 8b.
  • the first OTN frame includes 4*n payload areas, where n is a positive integer greater than or equal to one.
  • the first OTN frame may include 4 rows and n columns of payload areas. For example, when n is 8, the first OTN frame includes 32 payload areas. Payload check information and payload data are included in each payload area.
  • the payload data is a to-be-checked area, and the payload verification information is used to verify the payload data.
  • the payload verification information may be carried by the idle padding column of the payload area, and the payload verification information may also be carried by the reserved payload data column of the payload area, and the overhead may also be exceeded.
  • the reserved field of the area carries the payload check information.
  • S1202 Perform fault detection according to the payload verification information, where the payload verification information is used to verify payload data of a payload area where the payload verification information is located.
  • the fault detection of the OTN device can be implemented in any manner: it can be implemented by the payload verification information carried in the payload area, and can also be implemented by the payload verification information carried in the overhead area, and can also be implemented by the detection function of the optical module. .
  • the payload area carries the payload verification information the payload area of the OTN frame may be divided into multiple to-be-checked areas for detection.
  • the payload area carries the payload check information the payload area of the entire OTN frame may be detected as a whole, or the payload area of the OTN frame may be divided into multiple to-be-checked areas for detection.
  • the OTN device When detecting by the optical module, it can be determined whether the optical module receives the optical signal to determine whether the payload information can be CRC8 check value, BIP8 check value, and the like.
  • the OTN device acquires at least one payload area in the first OTN frame, and acquires payload verification information in each payload area, where Each of the payload areas corresponds to a respective payload verification information; and the corresponding payload area is verified according to the respective payload verification information.
  • the OTN device performs fault detection according to the payload verification information, when there is an unverified payload area in the first OTN frame, the first OTN frame may also be acquired. Verify the payload area.
  • by dividing the OTN frame into multiple payload areas it is possible to implement fault detection after acquiring partial payload data of the OTN frame, for example, at least one payload area, thereby improving detection efficiency.
  • the OTN device can protect the service data in the active/standby mode, obtain the first OTN frame from the working path, and obtain the second OTN frame from the protection path.
  • the service data carried by the first OTN frame and the second OTN frame may be the same.
  • the OTN device selects to receive the first OTN frame; when the first OTN frame detects a fault, the OTN device selects to receive the second OTN frame.
  • the service data can also be cache aligned.
  • the OTN device acquires the first OTN frame and the second OTN frame, where the second OTN frame is obtained from the protection path, where the first OTN frame is obtained from the working path, and the first OTN frame and the second OTN are respectively performed. Cache, the cache time is greater than or equal to the preset fault detection time.
  • the preset fault detection time may be a time for performing fault detection according to the payload verification information.
  • the setting of the buffer time can also ensure that the two channels of data are aligned, and the OTN device acquires the delay value between the first OTN frame and the second OTN frame, and aligns the first OTN frame and the second OTN frame according to the delay value. For example, the first OTN frame is delayed by t2 from the second OTN frame, the time of failure detection is t1, the buffer time set for the first OTN frame is t1, and the buffer time set for the second OTN frame is t1+t2.
  • the method shown in FIG. 12 can also be performed by the OTN device shown in FIG. 9, FIG. 10a, and FIG. 10b.
  • the method steps shown in FIG. 12 can also refer to the modules of the OTN device shown in FIG. 9, FIG. 10a, and FIG. 10b.
  • the OTN frame is divided into at least two payload areas, where each payload area includes payload check information and payload data, and the payload check in each payload area
  • the information is used to verify the payload data of the payload area, thereby implementing fault detection.
  • Obtaining at least one payload area of the OTN frame After the domain, the OTN frame can be checked for payload, which improves the efficiency of fault detection.
  • FIG. 13 is a schematic structural diagram of an OTN device according to an embodiment of the present invention. As shown in FIG. 13, the OTN device 1300 includes a control and communication module 1301, an optical module 1302, and an OTN processing chip 1303.
  • the control and communication module 1301 may include a central processing unit (CPU) and a memory.
  • the control and communication module 1301 is connected to the optical module 1302 and the OTN processing chip 1303.
  • the optical module 1302 and the OTN processing chip 1303 can be configured, for example, a protection switching mode, an alarm detection time, a clock frequency, and the like.
  • the control and communication module 1301 can perform some general configurations, and can also be omitted in some application scenarios.
  • the optical module 1302 may be an optical transceiver composed of an optoelectronic device, a functional circuit, an optical interface, and the like.
  • the optoelectronic device may include a semiconductor laser, a light emitting diode, a light detecting diode, and the like.
  • the functional circuit may include a driving circuit, an optical power automatic control circuit, a modulation circuit, and the like.
  • the optical module 1302 can be used to convert the received optical signal into an electrical signal or to convert the electrical signal into an optical signal.
  • the optical module 1302 is configured to acquire a first OTN frame, where the first OTN frame includes at least two payload areas, and each of the at least two payload areas includes payload verification information and Payload data.
  • the optical module 1302 can perform photoelectric conversion on the received service data to convert the service data into an OTN frame.
  • the optical module in FIG. 9, FIG. 10a, FIG. 10b and the optical module in FIG. 13 may be the same circuit module.
  • the OTN processing chip 1303 can be an Application Specific Integrated Circuit (ASIC) or a Field Programmable Gate Array (Field-Programmable). Gate Array, FPGA), or at least one integrated circuit implementation.
  • the OTU search frame module, the payload check module, the OTU overhead detection module, the cache alignment module, the protection switching control module, the selector, etc. in FIG. 9, FIG. 10a, FIG. 10b may be circuit modules set in the OTN processing chip 1303. .
  • the OTN processing chip 1303 can perform some special processing. For example, the program code can be written in the OTN processing chip 1303, thereby implementing the technical solution of the embodiment of the present invention.
  • the OTN processing chip 1303 is configured to perform fault detection according to the payload verification information, where the payload verification information is used to verify payload data of a payload area where the payload verification information is located.
  • the OTN processing chip 1303 is configured to acquire at least one payload area in the first OTN frame, and acquire payload verification information in each payload area, where each of the payload areas corresponds to The respective payload verification information; the corresponding payload area is verified according to the respective payload verification information.
  • the OTN processing chip 1303 performs fault detection according to the payload verification information, when there is an unverified payload area in the first OTN frame, the OTN frame may also be acquired. Verify the payload area. Therefore, other unverified payload areas in the first OTN frame can be acquired at the same time as the fault detection, and the fault detection can be realized without receiving a complete OTN frame, thereby improving the efficiency of fault detection.
  • the first OTN frame includes 4*n payload areas, where n is a positive integer greater than or equal to 1.
  • the payload check information may be carried by the idle padding column of the payload area, may be carried by the reserved payload data column of the payload area, or may be carried by the reserved field of the overhead area.
  • the OTN device 1300 can protect the service data by using the active/standby protection mode, obtain the first OTN frame from the working path, and obtain the second OTN frame from the protection path.
  • First The service data carried by an OTN frame and a second OTN frame may be the same.
  • the OTN device selects to receive the first OTN frame; when the first OTN frame detects a fault, the OTN device selects to receive the second OTN frame.
  • the OTN device obtains the first OTN frame and the second OTN frame through the optical module 1302, where the second OTN frame is obtained from the protection path, and the first OTN frame is obtained.
  • the first OTN frame and the second OTN frame are respectively buffered, and the buffering time is greater than or equal to a preset fault detection time.
  • the preset fault detection time may be a time when the OTN processing chip 1303 performs fault detection according to the payload verification information.
  • the OTN device 1300 acquires a delay value between the first OTN frame and the second OTN frame, and aligns the first OTN frame and the second OTN frame according to the delay value.
  • the OTN processing chip 1303 may further include a read-only memory (ROM) and a RAM, and the two-way service data may be cache-aligned through the RAM.
  • the OTN device 1300 may include two or more optical modules 1302, and may also include two or more OTN processing chips 1303.
  • the first OTN frame and the second OTN frame may be processed by different optical modules and OTN processing chips, or may be processed by the same optical module and the OTN processing chip.
  • the cache time is set for the two-way service data, and the cache time is greater than or equal to the fault detection time. At the same time, the two-way service data is aligned by the cache time setting.
  • the service data is in a cached state during the time period of the failure detection, that is, from the time when the fault occurs to the time when the fault alarm information is reported, thereby implementing the service lossless handover during the protection switching process.
  • the OTN frame is divided into at least two payload areas, where The payload verification information and the payload data are included in each payload area, and the payload verification information in each payload area is used to verify the payload data of the payload area, thereby implementing fault detection.
  • the OTN frame can be subjected to payload verification, thereby improving the efficiency of fault detection.
  • the OTN device 1300 shown in FIG. 13 can implement the steps in the method embodiment shown in FIG. It should be noted that although the OTN device 1300 shown in FIG. 13 only shows the optical module 1301, the control and communication module 1302, and the OTN processing chip 1303, in the specific implementation process, those skilled in the art should understand that the OTN device 1300 also Contains other devices necessary to achieve normal operation, such as power modules. Meanwhile, according to specific needs, those skilled in the art should understand that the OTN device 1300 may also include hardware devices that implement other additional functions, such as a 1588v2 module or the like. Moreover, those skilled in the art will appreciate that the OTN device 1300 may also only include the components necessary to implement the embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Optical Communication System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种故障检测的方法和设备,其中,该方法包括:光传送网络OTN设备获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据;根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。本发明实施例中,通过将OTN帧划分成至少两个净荷区域,并且在每个净荷区域携带相应的净荷校验信息,从而提高了故障检测的效率。

Description

一种故障检测的方法和设备 技术领域
本发明涉及通信领域,尤其涉及一种故障检测的方法和设备。
背景技术
为了在无机房或机房位置不理想的情况下,实现低成本、快速地建立无线网络,分布式基站的方案被提出。该方案采用射频拉远技术,将射频拉远单元(Radio Remote Unit,RRU)和基带控制单元(Building Base band Unit,BBU)分离,二者通过光纤或电缆相连。BBU和RRU之间通过公共无线接口(Common Public Radio Interface,CPRI)对数字采样量化的同相正交(In-phase/Quadrature,I/Q)数据进行传输。
BBU和RRU之间可以采用光传送网络(Optical transport network,OTN)作为承载网络。为了加强网络的可靠性,OTN通常采用主、备光纤进行业务保护。如图1所示,多路RRU的业务汇聚到OTN设备A之后,通过工作路径传输到OTN设备B,OTN设备B将接收到的业务发送给BBU。如果OTN设备A和OTN设备B之间的工作路径发生故障,则业务可以切换到保护路径进行传输。
图2为现有技术中OTN设备故障检测的方式示意图。如图2所示,OTN设备利用光模块和OTU开销检测模块检测到故障,产生告警信息,并将告警信息上报到保护倒换控制模块,保护倒换控制模块收到告警信息后将业务从工作路径倒换到保护路径。从工作路径发生故障到OTN设备检测到故障并上报告警信息,需要一段比较长的时间,通常为毫秒级别,导致保护倒换效率低。
发明内容
有鉴于此,本发明实施例提供一种故障检测的方法和设备,可以解决保护倒换效率低的问题。
第一方面,本发明实施例提供了一种故障检测的方法,包括:光传送网络OTN设备获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据;所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验;OTN设备根据所述净荷校验信息分别对每一个净荷区域进行故障检测。通过将OTN帧划分为多个净荷区域,每个净荷区域都携带各自的净荷校验信息,用于对各自净荷区域的净荷数据进行校验,使得OTN设备在获取到部分净荷数据,例如至少一个净荷区域时,即可检测到故障,提高了故障检测的效率。
在第一方面一种可能的实现方式中,所述第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。第一OTN帧可以包括4行n列,例如n可以取8。OTN帧的净荷区域划分方式可以是均匀划分,还可以是非均匀划分的,通过分区域检测的方式提高了故障检测效率。
在第一方面一种可能的实现方式中,所述根据所述净荷校验信息进行故障检测,包括:获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;根据各自的净荷校验信息对对应的净荷区域 进行校验。OTN设备在获取到第一OTN帧中的至少一个净荷区域时,即可进行故障检测,提高了故障检测的效率。
在第一方面一种可能的实现方式中,在所述OTN设备根据所述净荷校验信息进行故障检测的同时,所述第一OTN帧中还存在未被校验的净荷区域时,所述方法还包括:获取所述第一OTN帧中的未被校验的净荷区域。在OTN设备对第一OTN帧进行故障检测时,还可以同时获取第一OTN帧中未被校验的净荷区域,不需要接收到完整的第一OTN帧即可实现故障检测,提高了故障检测的效率。
在第一方面一种可能的实现方式中,所述净荷校验信息通过所述净荷区域的空闲填充列承载。利用空闲填充列承载净荷校验信息,充分利用了OTN帧中的空闲位置。
在第一方面一种可能的实现方式中,所述净荷校验信息通过所述净荷区域的预留净荷数据列承载,或者,净荷校验信息还可以通过开销区域的预留字段承载。净荷校验信息的携带方式不管如何,只要能和待校验的净荷数据对应起来即可。
在第一方面一种可能的实现方式中,该方法还包括:所述OTN设备获取第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;对所述第一OTN帧和所述第二OTN帧分别进行缓存,所述缓存的时间大于或等于预设的故障检测时间。通过对第一OTN帧和第二OTN帧缓存时间的设置,可以使故障检测时间段内,即从发生故障到故障告警信息上报时间段内,业务数据处于缓存状态,从而实现了业务的无损倒换。
在第一方面一种可能的实现方式中,所述预设的故障检测时间为根据所述净荷校验信息进行故障检测的时间。故障检测时间的设置使得OTN设备在完成故障检测之前,OTN帧是处于缓存状态的,从而实现了业务的无损倒换。
在第一方面一种可能的实现方式中,在所述OTN设备对所述第一OTN帧和所述第二OTN帧分别进行缓存时,所述方法还包括:所述OTN设备获取所述第一OTN帧和所述第二OTN帧之间的延时值,根据所述延时值对齐所述第一OTN帧和所述第二OTN帧。例如,第一OTN帧比第二OTN帧延迟时间T,则第二OTN帧比第一OTN帧的缓存时间多T。缓存时间的设置还可以使两路业务数据进行对齐,从而实现了业务的无损倒换。
在第一方面一种可能的实现方式中,所述方法还包括:所述第一OTN帧未检测到故障时,所述OTN设备选择接收所述第一OTN帧;所述第一OTN帧检测到故障时,所述OTN设备选择接收所述第二OTN帧。通过在工作路径和保护路径上传输OTN帧,提高了业务的可靠性。
第二方面,本发明实施例提供了一种故障检测设备,包括:第一光模块,用于获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据;净荷校验模块,用于根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。通过将OTN帧划分为多个净荷区域,每个净荷区域都 携带各自的净荷校验信息,用于对各自净荷区域的净荷数据进行校验,使得光模块在获取到部分净荷数据,例如至少一个净荷区域时,即可检测到故障,提高了故障检测的效率。
在第二方面一种可能的实现方式中,所述第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。第一OTN帧可以包括4行n列,例如n可以取8。OTN帧的净荷区域划分方式可以是均匀划分,还可以是非均匀划分的,通过分区域检测的方式提高了故障检测效率。
在第二方面一种可能的实现方式中,所述设备还包括OTU搜帧模块,用于获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;所述净荷校验模块,用于根据各自的净荷校验信息对对应的净荷区域进行校验。OTU搜帧模块在获取到第一OTN帧中的至少一个净荷区域时,净荷校验模块即可进行故障检测,提高了故障检测的效率。
在第二方面一种可能的实现方式中,所述OTU搜帧模块,还用于:在所述净荷校验模块根据所述净荷校验信息进行故障检测的同时,所述第一OTN帧中还存在未被校验的净荷区域时,获取所述第一OTN帧中的未被校验的净荷区域。在净荷校验模块对第一OTN帧进行故障检测时,OTU搜帧模块还可以同时获取第一OTN帧中未被校验的净荷区域,不需要接收到完整的第一OTN帧即可实现故障检测,提高了故障检测的效率。
在第二方面一种可能的实现方式中,所述净荷校验信息通过所述净荷区域的空闲填充列承载。利用空闲填充列承载净荷校验信息,充分利用了OTN帧中的空闲位置。
在第二方面一种可能的实现方式中,所述净荷校验信息通过所述净荷区域的预留净荷数据列承载,或者,净荷校验信息还可以通过开销区域的预留字段承载。净荷校验信息的携带方式不管如何,只要能和待校验的净荷数据对应起来即可。
在第二方面一种可能的实现方式中,所述设备还包括第二光模块和缓存对齐模块,所述第二光模块,用于所获取第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;所述缓存对齐模块,用于对所述第一OTN帧和所述第二OTN帧分别进行缓存,所述缓存的时间大于或等于预设的故障检测时间。通过对第一OTN帧和第二OTN帧缓存时间的设置,可以使故障检测时间段内,即从发生故障到故障告警信息上报时间段内,业务数据处于缓存状态,从而实现了业务的无损倒换。
在第二方面一种可能的实现方式中,所述预设的故障检测时间为所述净荷校验模块根据所述净荷校验信息进行故障检测的时间。故障检测时间的设置使得OTN设备在完成故障检测之前,OTN帧是处于缓存状态的,从而实现了业务的无损倒换。
在第二方面一种可能的实现方式中,所述缓存对齐模块,还用于:获取所述第一OTN帧和所述第二OTN帧之间的延时值,根据所述延时值对齐所述第一OTN帧和所述第二OTN帧。例如,第一OTN帧 比第二OTN帧延迟时间T,则第二OTN帧比第一OTN帧的缓存时间多T。缓存时间的设置还可以使两路业务数据进行对齐,从而实现了业务的无损倒换。
在第二方面一种可能的实现方式中,所述设备还包括:选择器,用于所述第一OTN帧未检测到故障时,选择接收所述第一OTN帧;还用于所述第一OTN帧检测到故障时,选择接收所述第二OTN帧。通过在工作路径和保护路径上传输OTN帧,提高了业务的可靠性。
第三方面,本发明实施例提供了一种光传送网络OTN设备,包括:光模块和OTN处理芯片;当OTN设备运行时,OTN处理芯片执行预设的程序代码,以使OTN设备执行如第一方面及第一方面的任意一种可能的实现方式所述的方法。
第四方面,本发明实施例提供了一种光传送网络OTN设备,包括:控制与通信模块、光模块和OTN处理芯片;控制与通信模块与光模块和OTN处理芯片相连,用于对光模块和OTN处理芯片进行配置;当OTN设备运行时,OTN处理芯片在控制与通信模块的配置下执行预设的程序代码,以使OTN设备执行如第一方面及第一方面的任意一种可能的实现方式所述的方法。
根据本发明实施例提供的技术方案,将OTN帧划分为至少两个净荷区域,并在每个净荷区域配置用于对该净荷区域进行校验的净荷校验信息,可以快速地进行故障检测;此外,还可以对业务数据进行缓存,使得在发生故障到完成保护倒换之间传输的业务数据无损。
附图说明
为了更清楚地说明本发明的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。
图1是现有技术的一种OTN承载CPRI业务的网络架构图;
图2是现有技术的一种OTN设备故障检测的方式示意图;
图3a是本发明实施例提供的一种OTN设备的硬件结构示意图;
图3b是本发明实施例提供的一种OTN设备的硬件结构示意图;
图4是本发明实施例提供的一种OTN帧的帧结构示意图;
图5a是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图5b是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图6a是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图6b是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图7a是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图7b是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图8a是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图8b是本发明实施例提供的一种OTN帧的净荷区域划分示意图;
图9是本发明实施例提供的一种OTN设备结构示意图;
图10a是本发明实施例提供的一种OTN设备结构示意图;
图10b是本发明实施例提供的一种OTN设备结构示意图;
图11为本发明实施例提供的一种缓存对齐模块的逻辑结构示意图;
图12为本发明实施例提供的一种故障检测的方法的示范性流程图;
图13是本发明实施例提供的一种OTN设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明实施例可以应用于传送网络,例如光传送网络(Optical transport network,OTN)网络中。本发明实施例中的OTN网络可以用于承载公共无线接口(Common Public Radio Interface,CPRI)业务,但本发明实施例不限于承载CPRI业务的应用场景。
图3a和图3b分别为本发明实施例提供的一种OTN设备的硬件结构示意图。如图3a所示,OTN设备可以提供多种客户业务接口,例如异步传输模式(Asynchronous Transfer Mode,ATM)接口、以太网接口、CPRI接口、同步数字体系(Synchronous Digital Hierarchy,SDH)接口等。例如,CPRI接口可以用于和基带控制单元(Building Base band Unit,BBU)、射频拉远单元(Radio Remote Unit,RRU)等设备相连。该OTN设备可以为电交叉设备,通过光通道数据单元(Optical Channel Data Unit,ODU)交叉单板完成ODUk级别的电路交叉功能。其中,k可以取0、1、2、3、4、flex、Cn等,代表不同的速率。当然,客户业务还可以从支路板直接到线路板,不进行ODU交叉。光复用段处理对线路板上的多路波长信号进行复用,光传输段处理将复用后的多路波长信号发送到主光通道中。
OTN设备可以为光交叉设备,通过光通道(Optical Chanel,OCh)交叉板完成OCh光层交叉。如图3b所示,OTN还可以光电混合交叉设 备,即通过ODU交叉板完成ODU电层交叉,同时通过OCh交叉板完成OCh光层交叉。例如,ODU业务通过ODU交叉板进行电层交叉,波长级别业务通过OCh交叉板进行光层交叉。可选地,OTN设备还可以不包括ODU交叉板,也不包括OCh交叉板,即OTN设备为终端复用设备。
本发明实施例中,通过在OTN帧中划分至少两个净荷区域,并且每个净荷区域携带各自的净荷校验信息,其中,每个净荷区域的净荷校验信息用于对该净荷区域的净荷数据进行校验,从而检测网络中是否发生故障。本发明实施例的技术方案可以应用于上述任意一种形态的OTN设备中,可以减少故障检测的时间,提高保护倒换的效率。
图4为本发明实施例提供的一种OTN帧的帧结构示意图。如图4所示,OTN帧可以为4行4048列结构,包括开销(Overhead,OH)区域、光通道净荷单元(Optical Channel Payload Unit,OPU)净荷和前向纠错码(ForwardErrorCorrection,FEC)。开销区域主要包括光通道传送单元(Optical Channel Transport Unit,OTU)开销、ODU开销、OPU开销、帧头定位开销。可选地,OTN帧还可以不包括FEC。其中,帧头定位开销用于指示OTN帧的起始位置,包括帧定位信号(Frame Alignment Signal,FAS)和复帧定位信号(MultiFrame Alignment Signal,MFAS)。
图5a、图5b、图6a、图6b、图7a、图7b、图8a、图8b为本发明实施例提供的几种OTN帧的净荷区域划分示意图。图5a~图8b中OTN帧的开销(OH)区域可以包括OTU开销、ODU开销、OPU开销等。OTN 帧中的OPU净荷区域可以划分为4*n(n为划分的列数)块待校验区域,例如图5a中的净荷数据1,净荷数据2,……,净荷数据4n。并且,在每个待校验区域的后面添加相应的净荷校验信息,例如图5a中的净荷校验信息1,净荷校验信息2,……,净荷校验信息4n。净荷校验信息1用于对净荷数据1进行校验,净荷校验信息2用于对净荷数据2进行校验,……,净荷校验信息4n用于对净荷数据4n进行校验。其中,n为大于等于1的正整数,例如,当n等于8时,OPU净荷区域划分为32个待校验区域。图5b和图5a的差别在于,图5b中的OTN帧不带FEC。图6a中的OTN帧为图5a中OTN帧n取1的情况,即划分的列数为1。图6b和图6a的差别在于,图6b中的OTN帧不带FEC。OTN帧中的开销(OH)中的预留比特位还可以携带净荷数据,则第一列的待校验区域还可以包括开销(OH)区,例如图7a和图7b所示。OTN帧的OPU净荷区域还可以划分为2n(n为划分的列数)块待校验区域,例如图8a和图8b所示,n取1时,即划分为一列时,待校验区域包括净荷数据1和净荷数据2,相应的净荷校验信息为净荷校验信息1和净荷校验信息2。可选地,本发明实施例中还可以将OTN帧的OPU净荷区划分为其他数量块的待校验区域,例如n、3n、5n(n为划分的列数)等,原理和上述实施例类似,不再赘述。净荷校验信息可以占用一个字节,可以为循环冗余码校验(Cyclic Redundancy Code 8,CRC8)或者8bit间插奇偶校验码(Bit Interleaved Parity 8 code,BIP8)等,用于对OPU净荷数据进行误码检测。净荷校验信息可以通过OPU的空闲填充列携带,还可以通过预留的OPU净荷数据列携带,还可以通过开销区域的预留字 段携带。OTN帧的待校验区域可以是均匀划分,还可以是非均匀划分。可选地,净荷校验信息还可以设置于相应的待校验区域,即净荷数据的前面。本发明实施例不限于上述列举的几种OTN帧的净荷区域划分方式。
图9是本发明实施例提供的一种OTN设备结构示意图。图9所示的OTN设备包括光模块11和净荷校验模块13。
其中,光模块11,用于获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据。
光模块11用于将接收到的业务数据进行光电转换,将业务数据转换为OTN帧。光模块11可以从客户设备接收到业务数据,将业务数据转换为第一OTN帧。例如,客户设备为BBU或RRU,业务数据为CPRI业务,则光模块11将CPRI业务转换为第一OTN帧。光模块11还可以从上游OTN设备接收到业务数据,将业务数据转换为第一OTN帧。第一OTN帧可以包括OTU帧、ODU帧、OPU帧等。第一OTN帧可以包括不同的信号速率,例如OTUk,k的取值可以为1、2、3、4,代表的速率分别为2.5G、10G、40G、100G。
第一OTN帧中可以包括至少两个净荷区域,每一个净荷区域中均包含净荷校验信息和净荷数据。其中,净荷数据为待校验区域,净荷校验信息用于对净荷数据进行校验。其中,净荷区域的划分可以是在形成OTN帧中的任意一个处理过程中实现的,净荷校验信息的添加也可以是在形成OTN帧的任意一个处理中实现的。例如,在低阶 ODU映射到高阶OPU之后实现、在OTN帧开销处理的过程中实现等。可选地,第一OTN帧可以包括4*n个净荷区域,其中,n为大于或等于1的正整数。第一OTN帧的净荷区域划分方式和净荷校验信息携带方式还可以参见图5a~图8b所示的实施例,此处不再赘述。
净荷校验模块13,用于根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。
OTN设备的故障检测可以通过净荷校验模块13实现。第一OTN帧中可以包括至少两个净荷区域,每一个净荷区域中包含的净荷数据为待校验区域。可以通过该净荷区域包含的净荷校验信息对该净荷区域中的净荷数据进行校验,从而实现故障检测。例如,对第一OTN帧进行CRC8校验,对每一个净荷区域的净荷数据以字节为单位进行CRC8处理,得到CRC8校验检测值。同时,从被校验的净荷数据中提取出CRC8净荷校验信息。将CRC8处理获得的CRC8校验检测值和提取出的CRC8净荷校验信息作比较,得出净荷数据是否有误。例如,二者相同或者二者的差别小于等于预设的阈值,则净荷数据是正确的。当净荷数据的误码率达到一定的程度时,可以上报告警信息。误码率可以为一个净荷区域的误码率,还可以是多个净荷区域的误码率平均值。可选地,还可以使用BIP8等校验方式进行净荷数据的校验。通过对OTN帧的净荷区进行分块处理,当接收到OTN帧的部分净荷数据时,即可根据该部分净荷数据对应的净荷校验信息进行校 验,不需要接收到整个OTN帧后才进行校验,提高了故障检测的效率。
OTN设备可以采用主备保护的方式对业务数据进行保护,例如采用工作路径和保护路径传输业务数据。图10a和图10b为本发明实施例提供的一种OTN设备的结构示意图。如图10a所示,光模块11、OTU搜帧模块12、净荷校验模块13可以对工作路径上的业务数据进行相关的处理;光模块21、OTU搜帧模块22、净荷校验模块23可以对保护路径上的业务数据进行相关的处理。OTN设备还包括保护倒换控制模块31和选择器32。光模块11和光模块21可以为独立的、相同的电路模块,也可以集成为一个电路模块,同理,OTU搜帧模块12、OTU搜帧模块22以及净荷校验模块13、净荷校验模块23也类似。
可选地,OTU搜帧模块12,用于获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;净荷校验模块13,用于根据各自的净荷校验信息对对应的净荷区域进行校验。OTU搜帧模块12,可以搜索第一OTN帧的帧头定位开销图案,帧头定位开销可以包括FAS和MFAS中的至少任意一种。例如,FAS的图案可以为F6F62828。找到帧头定位开销图案后,即找到了第一OTN帧的帧头,可以定位到第一OTN帧的净荷区域。如果找不到帧头,还可以上报帧丢失(Loss of Frame,LOF),表示帧错误。当净荷校验模块13根据所述净荷校验信息进行故障检测的同时,所述第一OTN帧中还存 在未被校验的净荷区域时,OTU搜帧模块12还可以从第一OTN帧中获取未被校验的净荷区域。OTN设备在对第一OTN帧进行故障检测的同时还可以接收第一OTN帧中其他未被校验的净荷区域,不需要等到接收到完整的第一OTN帧即可进行故障检测,提高了故障检测的效率。
光模块11,用于获取第一OTN帧;光模块21,可以用于获取第二OTN帧。光模块11可以接收工作路径上的业务数据,光模块21可以接收保护路径上的业务数据。所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的。第一OTN帧携带工作路径上的业务数据,第二OTN帧携带保护路径上的业务数据,二者携带的业务数据可以是相同的。在工作路径处于正常状态时,可以通过选择器32从工作路径上接收业务数据,当工作路径发生故障时,可以通过选择器32从保护路径上接收业务数据。
可选地,如图10b所示,OTN设备的故障检测还可以通过OTU开销检测模块14和OTU开销检测模块24中的一个或两个模块实现,还可以通过光模块11和光模块21中的一个或两个模块实现。本发明实施例以OTU开销检测模块14和光模块11为例进行说明。例如,即在OTU搜帧模块12进行OTN帧帧头定位后,OTU开销检测模块14获取到第一OTN帧的开销信息,根据第一OTN帧的开销信息对整个第一OTN帧的净荷数据进行校验。例如,第一OTN帧的开销信息可以携带BIP8校验值,OTU开销检测模块14对净荷数据进行BIP8校验。在进行OTU开销检测时,当前帧的BIP8校验值设置于当前帧 后面的第二个帧的开销位置处,因此需要得到收到当前帧后面的第二个帧后,并且需要将整个OTN帧的净荷数据读取之后才能实现净荷校验,因此,和采用净荷校验模块13进行故障检测相比,采用OTU开销检测模块14检测效率相对较低。光模块11可以通过检测是否接收到光信号判断是否发生故障,并不能检测到OTN帧中的净荷数据,检测效率也相对较低。
保换倒换控制模块31,用于从光模块11、光模块21、OTU开销检测模块14、OTU开销检测模块24、净荷校验模块13、净荷校验模块23中的任意一个或多个模块接收到故障告警信息,并将故障告警信息发送给选择器32。选择器32,用于根据接收到的故障告警信息进行业务数据保护倒换,例如,选择器32在收到故障告警信息之前从工作路径接收业务数据,在收到故障告警信息后从保护路径接收业务数据。本发明实施例中,光模块11、光模块21、OTU开销检测模块14、OTU开销检测模块24、净荷校验模块13、净荷校验模块23统称为故障检测模块,这些模块可以为独立的电路模块,也可以集成到一个电路模块中。可选地,还可以对OTN设备的保护倒换控制模块31配置保护倒换类型,例如可以配置自动倒换或者强制倒换等。如果配置为自动倒换,则根据故障检测模块上报的告警信息自动进行保护倒换,如果配置为强制倒换,则可以在任意预设的情况下强制进行倒换。
可选地,为了在保护倒换的过程中实现业务数据的无损倒换,还可以对业务数据进行缓存对齐。缓存对齐模块15和缓存对齐模块25, 对第一OTN帧和第二OTN帧分别进行缓存对齐。例如,缓存对齐模块15可以对第一OTN帧进行数据缓存,缓存对齐模块25可以对第二OTN帧进行数据缓存。其中,缓存的时间大于或等于预设的故障检测时间。缓存对齐模块15、缓存对齐模块25,用于获取第一OTN帧和第二OTN帧之间的延时值,根据延时值对第一OTN帧和第二OTN帧进行延时设置,以使得第一OTN帧和第二OTN帧实现对齐。其中,故障检测时间可以是光模块、OTU开销检测模块、净荷校验模块中任意一种故障检测模块的故障检测时间,还可以是多种故障检测模块中故障检测时间最短的故障检测时间,还可以是用户预设的时间。
图11为本发明实施例提供的一种缓存对齐模块的逻辑结构示意图。如图11所示,对主备两路业务数据,例如第一OTN帧和第二OTN帧分别进行延时测量,然后对两路业务数据进行延时配置,使得两路业务数据进入缓存区域后实现数据对齐。延时测量的方式可以通过比较第一OTN帧和第二OTN帧的帧头标识之间的延时实现。帧头标识可以为FAS和MFAS中的一种或两种帧头定位开销。以第一OTN帧的帧头标识(例如FAS和MFAS为0的位置)作为起始位置,开始计数。当第二OTN帧的帧头定位标识(例如FAS和MFAS为0的位置)到达时,停止计数,得到计数值为t_cnt。如果计数值t_cnt小于计数周期T的一半,则第二OTN帧相对第一OTN帧延时的延时值为t_cnt;如果计数值t_cnt大于计数周期T的一半,则第一OTN帧相对第二OTN帧延时的延时值为T-t_cnt。延时配置可以结合两路 业务数据的延时值和故障检测时间进行配置。例如,第一OTN帧相对第二OTN帧延时的延时值为t2,故障检测时间为t1,则对第一OTN帧的缓存数据配置的延时值为t1,对第二OTN帧的缓存数据配置的延时值t1+t2。可选地,还可以在两路业务数据配置的延时值上均增加xt的延时值。其中,xt可以为OTN设备配置的延时值,为故障告警信息产生的预留时间,如果故障告警信息产生的时间固定为t1,则xt可以为0。数据对齐可以通过缓存数据的写操作和读操作实现。缓存数据的写操作的实现方式可以为:当输入的数据为帧头时,将数据写入到预设的地址处,按照地址递增的方式写入缓存区域。可以将两路数据的帧头写入相同的地址处,以保证数据对齐。缓存区域可以通过随机存取存储器(Random-Access Memory,RAM)实现,缓存区域的大小由配置的延时值的大小决定,延时值越大缓存区域的存储量越大。缓存数据的读操作的实现方式可以为:若当前选择器选择的一路业务数据对应的缓存区域有数据时,则同时从两路业务数据对应的缓存区域中的同一个地址读取数据,否则不读数据。读取出两路业务数据后,选择器可以从两路业务数据中选择接收其中一路业务数据。
图9、图10a、图10b所示的OTN设备可以是一个独立的OTN设备,也可以是OTN设备中的一个电路模块,例如在OTN设备中的支路板、ODU交叉板、线路板、OCh交叉板、光复用段处理、光传输段处理中的任意一种或多种单板上实现。本发明实施例中的光模块、OTU搜帧模块、净荷校验模块、OTU开销检测模块、缓存对齐模块、保护倒换控制模块、选择器等可以通过独立的电路模块实现,也可以通过集成 的电路模块实现。
本发明实施例中,通过将OTN帧划分为至少两个净荷区域,其中,每个净荷区域中都包括净荷校验信息和净荷数据,每个净荷区域中的净荷校验信息用于对该净荷区域的净荷数据进行校验,从而实现故障检测。在获取到OTN帧的至少一个净荷区域后,即可对OTN帧进行净荷校验,从而提高了故障检测的效率。
图12为本发明实施例提供的一种故障检测的方法的示范性流程图。如图12所示,该方法可以由传送设备执行,例如OTN设备。该方法包括:
S1201:光传送网络OTN设备获取第一OTN帧所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据。
OTN设备可以从客户设备或者传送设备获取第一OTN帧。客户设备可以为ATM设备、SDH设备、CPRI设备等,传送设备可以为上游的OTN设备。
第一OTN帧的数据帧格式可以参考图4~图8b所示的实施例。第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。第一OTN帧可以包括4行n列个净荷区域,例如n取8时,第一OTN帧包括32个净荷区域。每一个净荷区域中均包含净荷校验信息和净荷数据。其中,净荷数据为待校验区域,净荷校验信息用于对净荷数据进行校验。可选地,可以通过净荷区域的空闲填充列承载净荷校验信息,还可以通过净荷区域的预留净荷数据列承载净荷校验信息,还可以通过开销 区域的预留字段承载净荷校验信息。第一OTN帧的净荷区域划分方式和净荷校验信息携带方式可以参见图5a~图8b所示的实施例,此处不再赘述。
S1202:根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。
OTN设备的故障检测可以通过任意一种方式实现:可以通过净荷区域携带的净荷校验信息实现,还可以通过开销区域携带的净荷校验信息实现,还可以通过光模块的检测功能实现。其中,通过净荷区域携带净荷校验信息时,可以对OTN帧的净荷区域分成多个待校验区域进行分别检测。通过开销区域携带净荷校验信息时,可以将整个OTN帧的净荷区域作为一个整体来检测,或者也可以对OTN帧的净荷区域分成多个待校验区域进行分别检测。通过光模块检测时,可以通过判断光模块是否接收到光信号判断是否发生净荷校信息可以为CRC8校验值,BIP8校验值等。可选地,根据所述净荷校验信息进行故障检测时,OTN设备获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;根据各自的净荷校验信息对对应的净荷区域进行校验。当所述OTN设备根据所述净荷校验信息进行故障检测时,所述第一OTN帧中还存在未被校验的净荷区域时,还可以获取所述第一OTN帧中的未被校验的净荷区域。本发明实施例中,通过将OTN帧的分成多个净荷区域,能够在获取OTN帧的部分净荷数据,例如至少一个净荷区域后,实现故障检测,从而提高了检测效率。
OTN设备可以采用主备保护的方式对业务数据进行保护,从工作路径中获取第一OTN帧,从保护路径中获取第二OTN帧。第一OTN帧和第二OTN帧携带的业务数据可以是相同的。所述第一OTN帧未检测到故障时,所述OTN设备选择接收所述第一OTN帧;所述第一OTN帧检测到故障时,所述OTN设备选择接收所述第二OTN帧。为了在保护倒换的过程中实现业务数据的无损倒换,还可以对业务数据进行缓存对齐。OTN设备获取第一OTN帧和第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;对第一OTN帧和第二OTN分别进行缓存,缓存的时间大于或等于预设的故障检测时间。可选地,所述预设的故障检测时间可以是根据所述净荷校验信息进行故障检测的时间。缓存时间的设置还可以保证两路数据实现对齐,OTN设备获取第一OTN帧和第二OTN帧之间的延时值,根据延时值对齐第一OTN帧和第二OTN帧。例如,第一OTN帧比第二OTN帧延迟t2,故障检测的时间为t1,则对第一OTN帧设置的缓存时间为t1,对第二OTN帧设置的缓存时间为t1+t2。
图12所示的方法还可以由图9、图10a、图10b所示的OTN设备执行,图12所示的方法步骤还可以参考图9、图10a、图10b所示的OTN设备的各个模块执行的步骤。本发明实施例中,通过将OTN帧划分为至少两个净荷区域,其中,每个净荷区域中都包括净荷校验信息和净荷数据,每个净荷区域中的净荷校验信息用于对该净荷区域的净荷数据进行校验,从而实现故障检测。在获取到OTN帧的至少一个净荷区 域后,即可对OTN帧进行净荷校验,从而提高了故障检测的效率。
图13是本发明实施例提供的一种OTN设备的结构示意图。如图13所示,OTN设备1300包括:控制与通信模块1301、光模块1302、OTN处理芯片1303。
其中,控制与通信模块1301可以包括中央处理器(Central Processing Unit,CPU)和存储器。控制与通信模块1301与光模块1302和OTN处理芯片1303相连,可以对光模块1302和OTN处理芯片1303做相关的配置,例如,配置保护倒换的模式,配置告警检测时间,配置时钟频率等。控制与通信模块1301可以做一些通用的配置,在某些应用场景中也可以省略。
光模块1302可以是光收发器,由光电子器件、功能电路和光接口等组成。其中,光电子器件可以包括半导体激光器、发光二极管和光探测二极管等。功能电路可以包括驱动电路、光功率自动控制电路、调制电路等。光模块1302可以用于将接收到的光信号转化为电信号,或者将电信号转化为光信号。例如,光模块1302,用于获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据。光模块1302可以将接收到的业务数据进行光电转换,将业务数据转换为OTN帧。图9、图10a、图10b中的光模块和图13中的光模块可以是相同的电路模块。
OTN处理芯片1303可以采用专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable  Gate Array,FPGA)、或者至少一个集成电路实现。图9、图10a、图10b中的OTU搜帧模块、净荷校验模块、OTU开销检测模块、缓存对齐模块、保护倒换控制模块、选择器等可以是在OTN处理芯片1303中设置的电路模块。OTN处理芯片1303可以做一些专用的处理,例如,可以在OTN处理芯片1303中写入程序代码,从而实现本发明实施例的技术方案。OTN处理芯片1303,用于根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。可选地,OTN处理芯片1303用于获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;根据各自的净荷校验信息对对应的净荷区域进行校验。当OTN处理芯片1303根据所述净荷校验信息进行故障检测时,所述第一OTN帧中还存在未被校验的净荷区域时,还可以获取所述第一OTN帧中的未被校验的净荷区域。因此,可以在故障检测的同时获取第一OTN帧中其他未被校验的净荷区域,不需要接收到完整的OTN帧即可实现故障检测,提高了故障检测的效率。
可选地,所述第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。净荷校验信息可以通过所述净荷区域的空闲填充列承载,可以通过所述净荷区域的预留净荷数据列承载,还可以通过开销区域的预留字段承载。
OTN设备1300可以采用主备保护的方式对业务数据进行保护,从工作路径中获取第一OTN帧,从保护路径中获取第二OTN帧。第 一OTN帧和第二OTN帧携带的业务数据可以是相同的。所述第一OTN帧未检测到故障时,所述OTN设备选择接收所述第一OTN帧;所述第一OTN帧检测到故障时,所述OTN设备选择接收所述第二OTN帧。为了在保护倒换的过程中实现业务数据的无损倒换,OTN设备通过光模块1302获取第一OTN帧和第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;对所述第一OTN帧和所述第二OTN帧分别进行缓存,所述缓存的时间大于或等于预设的故障检测时间。可选地,所述预设的故障检测时间可以为OTN处理芯片1303根据所述净荷校验信息进行故障检测的时间。OTN设备1300获取所述第一OTN帧和所述第二OTN帧之间的延时值,根据所述延时值对齐所述第一OTN帧和所述第二OTN帧。OTN处理芯片1303还可以包括只读存储器(read-only memory,ROM)和RAM,可以通过RAM对两路业务数据进行缓存对齐。采用主备保护的方式,OTN设备1300可以包含两个或以上的光模块1302,也可以包含两个或以上的OTN处理芯片1303。第一OTN帧和第二OTN帧可以通过不同的光模块和OTN处理芯片进行处理,也可以通过同一个光模块和OTN处理芯片进行处理。对两路业务数据进行了缓存时间设置,并且缓存时间大于或等于故障检测时间,同时通过缓存时间设置也使得两路业务数据实现对齐。由于在故障检测时间段内,即从故障发生到故障告警信息上报的时间段内业务数据是处于缓存状态的,从而实现了保护倒换过程中业务无损切换。
本发明实施例中,通过将OTN帧划分为至少两个净荷区域,其中, 每个净荷区域中都包括净荷校验信息和净荷数据,每个净荷区域中的净荷校验信息用于对该净荷区域的净荷数据进行校验,从而实现故障检测。在获取到OTN帧的至少一个净荷区域后,即可对OTN帧进行净荷校验,从而提高了故障检测的效率。
图13所示的OTN设备1300可以实现图12所示的方法实施例中的步骤。应注意,尽管图13所示的OTN设备1300仅仅示出了光模块1301、控制与通信模块1302、OTN处理芯片1303,但是在具体实现过程中,本领域的技术人员应当明白,OTN设备1300还包含实现正常运行所必须的其他器件,例如电源模块等。同时,根据具体需要,本领域的技术人员应当明白,OTN设备1300还可包含实现其他附加功能的硬件器件,例如1588v2模块等。此外,本领域的技术人员应当明白,OTN设备1300也可仅仅包含实现本发明实施例所必须的器件,而不必包含图13中所示的全部器件。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种故障检测的方法,其特征在于,所述方法包括:
    光传送网络OTN设备获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据;
    根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。
  2. 如权利要求1所述的方法,其特征在于,所述第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述净荷校验信息进行故障检测,包括:
    获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;
    根据各自的净荷校验信息对对应的净荷区域进行校验。
  4. 如权利要求3所述的方法,其特征在于,在所述OTN设备根据所述净荷校验信息进行故障检测的同时,所述第一OTN帧中还存在未被校验的净荷区域时,所述方法还包括:
    获取所述第一OTN帧中的未被校验的净荷区域。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述净荷校验信息通过所述净荷区域的空闲填充列承载。
  6. 如权利要求1-4任一所述的方法,其特征在于,所述净荷校验信息通过所述净荷区域的预留净荷数据列承载。
  7. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述OTN设备获取第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;
    对所述第一OTN帧和所述第二OTN帧分别进行缓存,所述缓存的时间大于或等于预设的故障检测时间。
  8. 如权利要求7所述的方法,其特征在于,所述预设的故障检测时间为根据所述净荷校验信息进行故障检测的时间。
  9. 如权利要求7或8所述的方法,其特征在于,在所述OTN设备对所述第一OTN帧和所述第二OTN帧分别进行缓存时,所述方法还包括:
    所述OTN设备获取所述第一OTN帧和所述第二OTN帧之间的延时值,根据所述延时值对齐所述第一OTN帧和所述第二OTN帧。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一OTN帧未检测到故障时,所述OTN设备选择接收所述第一OTN帧;
    所述第一OTN帧检测到故障时,所述OTN设备选择接收所述第二OTN帧。
  11. 一种故障检测的设备,其特征在于,所述设备包括:
    第一光模块,用于获取第一OTN帧,所述第一OTN帧包括至少两个净荷区域,所述至少两个净荷区域中的每个净荷区域包括净荷校验信息和净荷数据;
    净荷校验模块,用于根据所述净荷校验信息进行故障检测,所述净荷校验信息用于对所述净荷校验信息所在净荷区域的净荷数据进行校验。
  12. 如权利要求11所述的设备,其特征在于,所述第一OTN帧包括4*n个净荷区域,其中,n为大于或等于1的正整数。
  13. 如权利要求11或12所述的设备,其特征在于,所述设备还包括OTU搜帧模块,用于获取所述第一OTN帧中的至少一个净荷区域,并获取每个净荷区域中的净荷校验信息,其中,所述每个净荷区域对应各自的净荷校验信息;
    所述净荷校验模块,用于根据各自的净荷校验信息对对应的净荷区域进行校验。
  14. 如权利要求13所述的设备,其特征在于,所述OTU搜帧模块,还用于:
    在所述净荷校验模块根据所述净荷校验信息进行故障检测的同时,所述第一OTN帧中还存在未被校验的净荷区域时,获取所述第一OTN帧中的未被校验的净荷区域。
  15. 如权利要求11-14任一所述的设备,其特征在于,所述净荷校验信息通过所述净荷区域的空闲填充列承载。
  16. 如权利要求11-14任一所述的设备,其特征在于,所述净荷校验信息通过所述净荷区域的预留净荷数据列承载。
  17. 如权利要求11所述的设备,其特征在于,所述设备还包括第二光模块和缓存对齐模块,
    所述第二光模块,用于所获取第二OTN帧,所述第二OTN帧是从保护路径获取的,所述第一OTN帧是从工作路径获取的;
    所述缓存对齐模块,用于对所述第一OTN帧和所述第二OTN帧分别进行缓存,所述缓存的时间大于或等于预设的故障检测时间。
  18. 如权利要求17所述的设备,其特征在于,所述预设的故障检测时间为所述净荷校验模块根据所述净荷校验信息进行故障检测的时间。
  19. 如权利要求17或18所述的设备,其特征在于,所述缓存对齐模块,还用于:
    获取所述第一OTN帧和所述第二OTN帧之间的延时值,根据所述延时值对齐所述第一OTN帧和所述第二OTN帧。
  20. 如权利要求19所述的设备,其特征在于,所述设备还包括:
    选择器,用于所述第一OTN帧未检测到故障时,选择接收所述第一OTN帧;还用于所述第一OTN帧检测到故障时,选择接收所述第二OTN帧。
PCT/CN2016/078871 2016-04-08 2016-04-08 一种故障检测的方法和设备 WO2017173661A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16897595.1A EP3429138A4 (en) 2016-04-08 2016-04-08 APPARATUS AND METHOD FOR DETECTING DEFECT
CN201680001097.5A CN107710699B (zh) 2016-04-08 2016-04-08 一种故障检测的方法和设备
BR112018070672-8A BR112018070672B1 (pt) 2016-04-08 Método e dispositivo de detecção de falha
JP2018552784A JP6783872B2 (ja) 2016-04-08 2016-04-08 故障検出方法及びデバイス
PCT/CN2016/078871 WO2017173661A1 (zh) 2016-04-08 2016-04-08 一种故障检测的方法和设备
US16/153,201 US10575074B2 (en) 2016-04-08 2018-10-05 Fault detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078871 WO2017173661A1 (zh) 2016-04-08 2016-04-08 一种故障检测的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/153,201 Continuation US10575074B2 (en) 2016-04-08 2018-10-05 Fault detection method and device

Publications (1)

Publication Number Publication Date
WO2017173661A1 true WO2017173661A1 (zh) 2017-10-12

Family

ID=60000834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078871 WO2017173661A1 (zh) 2016-04-08 2016-04-08 一种故障检测的方法和设备

Country Status (5)

Country Link
US (1) US10575074B2 (zh)
EP (1) EP3429138A4 (zh)
JP (1) JP6783872B2 (zh)
CN (1) CN107710699B (zh)
WO (1) WO2017173661A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218639A1 (zh) * 2020-04-27 2021-11-04 华为技术有限公司 一种业务处理的方法、装置及设备
EP3840293A4 (en) * 2018-08-03 2021-12-15 ZTE Corporation METHOD, DEVICE AND SYSTEM FOR CONFIGURATION OF SERVICE INFORMATION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257093B (zh) * 2017-07-14 2021-09-14 华为技术有限公司 一种光网络中光监控信道处理的方法和装置
US10985837B2 (en) * 2019-06-17 2021-04-20 Ciena Corporation Generic non-client specific protection via TCM status and enhanced OTN network propagation of client faults

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099282A1 (fr) * 2004-04-09 2005-10-20 Utstarcom Telecom Co., Ltd. Procede et systeme de transmission de signaux reposant sur une station de base a frequences radio
CN1983931A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 在光网络中传递故障信息的方法及系统
CN101656588A (zh) * 2009-09-21 2010-02-24 中兴通讯股份有限公司 一种传输数据的方法及系统
US20100074624A1 (en) * 2008-09-12 2010-03-25 Glen Miller System and Method for Transporting Asynchronous ODUk Signals over a Synchronous Interface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791057B (zh) 2004-12-15 2011-06-15 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
US7898944B2 (en) * 2005-12-14 2011-03-01 Cisco Technology, Inc. Smart mechanism for multi-client bidirectional optical channel protection scheme
CN101043309B (zh) * 2007-04-13 2010-06-02 华为技术有限公司 主备倒换的控制方法以及装置
CN101369926B (zh) * 2007-08-13 2011-04-20 华为技术有限公司 无源光网络系统的故障检测方法、系统和设备
JP5375221B2 (ja) * 2009-03-12 2013-12-25 富士通株式会社 フレーム転送装置およびフレーム転送方法
US8446906B2 (en) * 2009-07-01 2013-05-21 Infinera Corporation Providing access to client overhead while transparently transmitting the client signal
JP5482182B2 (ja) * 2009-12-18 2014-04-23 富士通株式会社 通信装置および通信方法
WO2012014310A1 (ja) * 2010-07-30 2012-02-02 富士通株式会社 信号収容方法、フレーム生成装置、フレーム受信装置及び伝送システム
WO2013084341A1 (ja) 2011-12-08 2013-06-13 三菱電機株式会社 フレーム生成方法、光伝送装置および光伝送システム
CN104618057B (zh) * 2014-12-31 2016-05-11 国网山东省电力公司青岛供电公司 一种分组传送网无损伤保护倒换方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099282A1 (fr) * 2004-04-09 2005-10-20 Utstarcom Telecom Co., Ltd. Procede et systeme de transmission de signaux reposant sur une station de base a frequences radio
CN1983931A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 在光网络中传递故障信息的方法及系统
US20100074624A1 (en) * 2008-09-12 2010-03-25 Glen Miller System and Method for Transporting Asynchronous ODUk Signals over a Synchronous Interface
CN101656588A (zh) * 2009-09-21 2010-02-24 中兴通讯股份有限公司 一种传输数据的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3429138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3840293A4 (en) * 2018-08-03 2021-12-15 ZTE Corporation METHOD, DEVICE AND SYSTEM FOR CONFIGURATION OF SERVICE INFORMATION
WO2021218639A1 (zh) * 2020-04-27 2021-11-04 华为技术有限公司 一种业务处理的方法、装置及设备

Also Published As

Publication number Publication date
CN107710699B (zh) 2020-07-21
US20190045282A1 (en) 2019-02-07
JP6783872B2 (ja) 2020-11-11
EP3429138A4 (en) 2019-03-13
CN107710699A (zh) 2018-02-16
JP2019516296A (ja) 2019-06-13
BR112018070672A2 (pt) 2019-02-19
US10575074B2 (en) 2020-02-25
EP3429138A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US8705570B2 (en) Communication device and communication method
US10230455B2 (en) Communication system, communication control method, and transmission apparatus
US10575074B2 (en) Fault detection method and device
KR102582988B1 (ko) 플렉시블 이더넷 통신 방법 및 네트워크 장치
US9705589B2 (en) Method of resizing a protected ODUflex connection in an optical transport network
US8965197B2 (en) Method of switching optical transport network and node device
WO2016197881A1 (zh) 一种网络保护的方法、网络节点及系统
US11431407B2 (en) Hardware-based protection group switching method and optical communication equipment
US20200403698A1 (en) Method And Apparatus For Processing Ethernet Data In Optical Network, And System
US11611816B2 (en) Service data processing method and device
CN111052632A (zh) 一种光传送网中时延测量的方法、装置和系统
KR20210116625A (ko) 플렉서블 이더넷 통신 방법 및 네트워크 디바이스
US10771178B2 (en) Method for sending and receiving optical transport network (OTN) signal, OTN device, and system
CN113078980A (zh) 一种数据传输的方法以及装置
CN101686151A (zh) 一种业务传送网络的通道保护方法和系统
US9391697B2 (en) Proactive delay measurement for optical transport network
WO2023082128A1 (zh) 一种发送故障告警信息的方法及装置
CN102804651A (zh) 网络中断期间通过伪线连接保持时分复用
WO2019061406A1 (zh) 一种业务数据发送方法及装置
WO2024002084A1 (zh) 数据帧的校验方法及相关设备
JP2009159481A (ja) 光切替方法および光切替システム
BR112018070672B1 (pt) Método e dispositivo de detecção de falha
US20240154713A1 (en) Synchronization method and apparatus, device, and storage medium
CN101686094A (zh) 一种业务传送网络的通道保护方法和系统
WO2011125217A1 (ja) 伝送装置及び方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897595

Country of ref document: EP

Effective date: 20181009

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018070672

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018070672

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181008