WO2017171289A1 - Bipolar plate and redox flow cell comprising same - Google Patents

Bipolar plate and redox flow cell comprising same Download PDF

Info

Publication number
WO2017171289A1
WO2017171289A1 PCT/KR2017/002987 KR2017002987W WO2017171289A1 WO 2017171289 A1 WO2017171289 A1 WO 2017171289A1 KR 2017002987 W KR2017002987 W KR 2017002987W WO 2017171289 A1 WO2017171289 A1 WO 2017171289A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
carbon
bipolar plate
conductive material
flow path
Prior art date
Application number
PCT/KR2017/002987
Other languages
French (fr)
Korean (ko)
Inventor
변수진
노태근
이정배
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170032353A external-priority patent/KR102169179B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004302.8A priority Critical patent/CN108292772B/en
Priority to US15/773,241 priority patent/US10673078B2/en
Publication of WO2017171289A1 publication Critical patent/WO2017171289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a bipolar plate suitable for a cell having a high flow rate and a high current density and a redox flow cell comprising the same.
  • Redox flow battery is an electrochemical power storage device that stores the chemical energy of the electrolyte directly as electrical energy as a system in which the active material in the electrolyte is redoxed and charged and discharged, unlike the existing secondary battery.
  • Such batteries have the advantage of being easy for large capacity power storage, having high energy density and efficiency, and having a long life and safety.
  • the battery does not require frequent replacement, low maintenance costs, operating at room temperature, and in particular have the advantage that can be designed in a variety of capacity and output, it is in the spotlight as the next generation mass storage device.
  • the basic structure of the redox flow battery includes a stack including a structure of a bipolar plate / electrode / ion exchange membrane / electrode / bipolar plate, an electrolyte tank containing active materials having different oxidation states, and a pump for circulating the same. .
  • Redox pairs used as active materials in the electrolyte include V / V, Zn / Br, Fe / Cr, and Zn / air. Among them, V / V and Zn / Br redox pairs are most widely used.
  • the electrochemical reaction is determined by the interaction between the electrode and the electrolyte flowing along the bipolar plate in the stack.
  • FIG. 1 is a cross-sectional view showing a contact between a bipolar plate and the electrode according to the prior art, the bipolar plate 11 / electrode 12 / ion exchange membrane 13 / electrode 14 / bipolar plate 15 is stacked from above Has a structure.
  • This structure is a method of flowing the electrolyte solution directly to the bipolar plates (11, 15), there is an advantage that the structure is simple.
  • the electrolyte is accompanied by a high flow rate, thereby causing a high differential pressure between the electrolyte inlet and the outlet, thereby causing a large energy loss.
  • US Patent Publication No. 2012-0244395 proposes a configuration of a bipolar plate in which an interdigitated type or interdigitated flow path is formed.
  • bipolar plate 21 / electrode 22 / ion exchange membrane 23 / electrode 24 / bipolar plate from above 25 has a stacked structure, and flow paths 27 and 29 are formed in the bipolar plates 21 and 25, respectively.
  • the pressure difference between the inlet and the outlet applied to the battery module is reduced to some extent.
  • the present inventors extend the residence time of the electrolyte flowing through the flow path of the bipolar plate to increase the contact between the electrolyte and the electrode, thereby increasing the chance of the electrochemical reaction, while reducing the pressure difference between the inlet and the outlet of the electrolyte in the bipolar plate.
  • a new bipolar plate with a conductive material was designed and applied to the redox flow battery, and it was confirmed that the resistance value per unit area was lowered while increasing the charge / discharge capacity and energy efficiency.
  • an object of the present invention is to provide a bipolar plate having a novel structure.
  • Another object of the present invention is to provide a unit cell for a redox flow battery having the bipolar plate.
  • another object of the present invention is to provide a redox flow battery having a plurality of the unit cells to target a high flow rate and a high current density.
  • the present invention to achieve the above object is a plate-shaped body; And a flow path formed to move the electrolyte in the center of the body, wherein the bipolar plate for a redox flow battery is characterized in that a fibrous conductive material is inserted into the flow path.
  • the parallel (parallel), serpentine (serpentine), semi-serpentine (semi-serpentine), zigzag (zigzag), interdigitated (interdigitated) and pin (pin) pattern is formed by including one or more types It is done.
  • the fibrous conductive material is characterized in that at least one type of fabric selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt and foamed metal.
  • the present invention is an ion exchange membrane; Electrode layers disposed on both sides of the ion exchange membrane; And a bipolar plate disposed on one side of the electrode layer, wherein the bipolar plate provides a unit cell for a redox flow battery, which is the bipolar plate described above.
  • the present invention is a battery module formed by electrically connecting a unit module including a unit stack for generating a current to the side of each other; An electrolyte tank for supplying an electrolyte solution to the battery module and storing an electrolyte solution flowing out of the module; And an electrolyte pump for circulating the electrolyte between the module and the electrolyte tank, wherein the unit stack provides a redox flow battery in which a plurality of unit cells for the redox flow battery are connected.
  • the redox flow battery according to the present invention includes a bipolar plate in which a fibrous conductive material is inserted in the flow path, thereby extending the residence time in the electrolyte flow path, thereby increasing the chance of the electrochemical reaction between the electrode and the electrolyte, thereby charging and discharging the redox flow battery.
  • the capacity and energy efficiency increase, while reducing the overvoltage, which lowers the resistance value per unit area.
  • Such a battery can be applied to various industrial fields as a redox flow battery targeting high flow rate and high current density.
  • FIG. 1 is a cross-sectional view showing a contact between a bipolar plate and the electrode according to the prior art.
  • FIG. 2 is a cross-sectional view showing contact between a bipolar plate and an electrode disclosed in US Patent Publication No. 2012-0244395.
  • FIG. 3 is a schematic diagram showing the structure of a redox flow battery according to the present invention.
  • FIG. 4 is a three-dimensional perspective view showing a unit stack according to the present invention.
  • FIG. 5 is a front view showing a bipolar plate according to the present invention.
  • FIG. 6 is a three-dimensional perspective view showing the insertion of a fibrous conductive material into the flow path of the bipolar plate according to the present invention.
  • FIG. 7 is a schematic diagram showing various types of flow paths according to an embodiment of the present invention.
  • FIG. 8 is a photograph of a bipolar plate manufactured in Example 1.
  • FIG. 10 is a graph showing charge and discharge capacities of batteries manufactured in Example 1 and Comparative Example 1.
  • FIG. 10 is a graph showing charge and discharge capacities of batteries manufactured in Example 1 and Comparative Example 1.
  • Example 11 is a graph showing the energy efficiency of the batteries produced in Example 1 and Comparative Example 1.
  • the present invention proposes a redox flow battery having excellent energy efficiency and high charge / discharge capacity.
  • FIG 3 is a schematic view showing a redox flow battery according to an embodiment of the present invention
  • Figure 4 is a three-dimensional perspective view showing a unit stack.
  • the redox flow battery 1000 is formed by arranging and electrically connecting unit modules 101, 102, 103, and 104 including unit stacks that generate current to each other. ;
  • Electrolyte pumps 302 and 304 for circulating the electrolyte between the battery module 100 and the electrolyte tanks 202 and 204 are included.
  • the unit stack is formed by stacking a plurality of unit cells 130.
  • FIG. 4 illustrates a unit stack formed by stacking one unit cell 130.
  • an ion exchange membrane plate 123 is disposed at the center of the unit cell 130, and electrode plates 120 and 121 and bipolar plates 118 and 119 are symmetrically disposed on both sides thereof, respectively.
  • the unit cell 130 has a structure in which a plurality of unit cells 130 are stacked, and current collector plates 115 and 117 and end plates 111 and 113 are stacked to contact the bipolar plates 118 and 119.
  • Each of the above components is provided with unit cells 130 by joining each other using a connecting member (eg, bolt / nut) through a through hole after drilling each side, and arranging a plurality of unit cells 130. The unit stack is then formed through electrical connections.
  • a connecting member eg, bolt / nut
  • Spacers may be interposed between the ion exchange membrane plates 123, the electrode plates 120 and 121, the bipolar plates 118 and 119, the current collector plates 115 and 117, and the end plates 111 and 113 for the flow or coupling of the electrolyte.
  • the ion exchange membrane plate 123 may be interposed between the electrode plates 120 and 121.
  • a plurality of unit cells 130 has a structure connected in series or in parallel as shown in FIG. 3, and configured to generate a current in the circulation of the electrolyte.
  • the unit stack is electrically connected to another neighboring unit stack through a bus bar (not shown).
  • the unit modules 101, 102, 103, 104 and the battery module 100 discharge current generated inside the unit stacks or are connected to an external power source.
  • the ion exchange membrane plate 123 has a plate-shaped body and a structure in which an ion exchange membrane is mounted at the center thereof.
  • the electrode plates 120 and 121 have a plate-shaped body and a structure in which an electrode layer is mounted at the center thereof.
  • the bipolar plates 118 and 119 have a plate-shaped body and a structure in which a flow path is mounted at the center thereof.
  • the configuration of the bipolar plates 118 and 119 constituting the unit cell is changed to improve the battery characteristics of the redox flow battery 1000.
  • the bipolar plates 118 and 119 in contact with the electrode plates 120 and 121 are supplied with electrolyte from the electrolyte tanks 202 and 204 for the electrochemical reaction, and are supplied to the electrode plates 120 and 121 in a uniform pressure and amount.
  • FIG. 5 is a front view showing a bipolar plate.
  • the bipolar plates 118 and 119 include a plate-shaped body 152 and a flow path F formed to move the electrolyte in the electrolyte reaction part R, which is an area where the electrode layer and the electrolyte contact.
  • the body 152 of the bipolar plates 118 and 119 may be made of a conductive or nonconductive material and is not particularly limited in the present invention.
  • the conductive material can be coated with a carbon material such as metal or graphite, or a conductive polymer
  • the non-conductive material can be ethylene-tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), or fluorinated FEP (non-conductive material).
  • EFE ethylene-tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy
  • fluorinated FEP non-conductive material.
  • Fluorine resins such as ethyleneepropylene polymer, ECTFE (Ethylene ChloroTriFluoroEthylene), and PVDF (Polyvinylidene fluoride) may be coated.
  • the bipolar plates 118 and 119 may have an inlet 161 for introducing the electrolyte to supply the electrolyte to the electrode plates 120 and 121 on one side of the body 152, an outlet 162 for discharging the electrolyte to the bottom of one side, and an electrode.
  • Connection members 181, 182, 183 and 184 are disposed at one end of the body 162 to be physically bonded to the electrode plate.
  • supply passage 171 and the discharge passage 172 may have various forms so as to distribute or evenly distribute the flow rate of the electrolyte, and may have a distribution passage form having a plurality of branches, for example.
  • the flow of electrolyte in the redox flow battery 1000 is very important.
  • the electrolyte transferred through the electrolyte pumps 302 and 304 is moved to the bipolar plates 118 and 119 having the flow path F, and then contacted with the electrode plates 120 and 121 having the electrode layers causing redox.
  • the flow rate characteristics of the electrolyte is not uniform, the difference in speed in the electrode layer, or overvoltage due to the portion that cannot react.
  • the temperature inside the stack rises, and when vanadium-based electrolyte is used, precipitation occurs to block the flow path.
  • V 2 O 5 precipitated in solid state reduces the flow path of the electrolyte passage, or reduces the reaction site with the electrolyte, thereby lowering battery efficiency.
  • clogging due to precipitation causes leakage by increasing the internal pressure to expand the gasket portion of the unit stack connected in series. As a result, these problems can lead to malfunctions and shutdowns that can cause problems for the entire system.
  • the redox flow battery 1000 has a performance and lifespan of the unit stack depending on the flow rate characteristics of the electrolyte solution. Although it was used, there was a disadvantage that the installation is not easy due to the increase in peripheral equipment and volume accordingly.
  • the fibrous conductive material 151 is inserted into the flow path in the bipolar plates 118 and 119.
  • the partition wall 154 is disposed on the bodies 151 of the bipolar plates 118 and 119 to form a flow path F, and the fibrous conductive material ( 3D is a perspective view showing the insertion of 151.
  • the residence time of the electrolyte passing through the flow path F is increased, thereby sufficiently securing the electrode reaction time, and thus the redox flow battery 1000 has a charge / discharge capacity.
  • the differential pressure of the electrolyte solution at the inlet / outlet of the bipolar plates 118 and 119 can be dramatically reduced.
  • the fibrous conductive material 151 When the fibrous conductive material 151 is installed in the supply passage 171 or the discharge passage 172, the fibrous conductive material 151 may affect the fluid flow of the electrolyte, thereby increasing the pressure difference between the inlet 161 and the outlet 162. It is installed in electrolyte solution part R which contact
  • the fibrous conductive material 151 or conductive fiber refers to a plurality of fiber structures forming a three-dimensional porous network structure.
  • the material of the fibrous conductive material 151 inserted into the flow path F may have any porosity and may be any material as long as it is conductive.
  • the same or similar material used in the electrode layers of the electrode plates 120 and 121 may be used to increase the reaction between the electrolyte and the electrode layers of the electrode plates 120 and 121 without blocking the flow of the electrolyte.
  • the fibrous conductive material 151 of the present invention means having a structure in which carbon fibers or metal fibers are stacked to form an aggregate.
  • the fibrous conductive material 151 is characterized in that at least one type of fabric selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt and foamed metal.
  • the 'carbon felt or graphite felt' means that the fiber produced by spinning the carbon or graphite material to form an irregular aggregate (mat shape) in the form of a plate.
  • the 'carbon cloth' means that the carbon fibers produced through the spinning process to form a three-dimensional regular aggregate through the weaving.
  • the 'carbon paper' means that the carbon fibers are aggregated to form a paper-like aggregate.
  • the 'metal cloth' means that the metal fibers produced through spinning and the like form a three-dimensionally regular aggregate through weaving.
  • the 'foam metal' refers to a three-dimensional structure in which a metal material has a large number of air bubble gratings therein through a foaming process.
  • the metal cloth and the foamed metal may include Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni, and Fe. It can be used including one or more metals selected from the group.
  • the fibrous conductive material 151 has a high rigidity by having a three-dimensional mesh structure in which fibers are regularly or irregularly bonded in the case of felt, and has a large number of pores without being easily deformed, thereby allowing the electrolyte to move smoothly. have.
  • the fibrous conductive material 151 has a complex micropores, mesopores, macropores, etc. in the structure, the control of these pores may vary depending on the manufacturing method.
  • the fibrous conductive material 151 In order to prevent the fibrous conductive material 151 from disturbing the flowability of the electrolyte, it is necessary to control the parameters for physical properties. As a parameter related to the flowability of the electrolyte, various factors may be considered. First, the porosity of the fibrous conductive material 151 and the bulk density associated with it may be mentioned.
  • the porosity is too low or too high, the flow of the electrolyte is delayed by the filling of the fibrous conductive material 151, thereby increasing the differential pressure measured at the inlet 161 and the outlet 162 of the electrolyte, and the load on the battery due to the overvoltage. It may cause a drop in battery performance.
  • the porosity (or porosity) is a parameter related to the fabric density, and when the bulk density is too high, it can prevent the fluid flow of the electrolyte and increase the differential pressure in the battery. ) The residence time of the electrolyte in the interior cannot be sufficiently increased.
  • the porosity of the fibrous conductive material 151 is preferably 10 to 99%, preferably 50 to 95%, and the bulk density is 0.05 to 0.2 g / cm 3 , preferably 3 mm thick. To 0.1 to 0.15 g / cm 3 is used.
  • the diameter of each fiber constituting the fibrous conductive material 151 may have a 0.5 to 50 ⁇ m, preferably 0.1 to 30 ⁇ m, the average diameter of the fibrous conductive material 151 is 0.01 to 900 ⁇ m, Preferably it may have a range of 0.05 to 500 ⁇ m.
  • a material including a carbon material, a metal material, or a combination thereof may be used, and preferably, carbon felt is used.
  • the carbon felt and the graphite felt have characteristics of chemical resistance, stability over a wide voltage range, and high strength.
  • the metal cloth or the foamed metal may increase the electrochemical reaction rate due to high conductivity.
  • the fibrous conductive material 151 may be manufactured directly or be manufactured by customizing a commercially available product suitable for the flow path F of the bipolar plates 118 and 119.
  • the carbon felt may be prepared by carbonizing the carbon fiber precursor felt.
  • the carbon fiber precursor felt can be made of rayon fiber, polyacrylonitrile fiber, or the like, and carbonization and graphitization are carried out in a nitrogen atmosphere or a vacuum atmosphere.
  • the carbon fiber precursor felt is decomposed and removed except for carbon by carbonization and graphitization processes, and only carbon remains to produce carbon felt.
  • the fibrous conductive material 151 of the present invention may perform surface treatment or further add an additional material to the fibrous conductive material 151 in order to increase conductivity or promote a redox reaction to the felt material.
  • the surface of the carbon felt is hydrophobic, it may be very important to remove the surface polymer, introduce oxygen functional groups, and improve hydrophilicity so that the electrolyte solution and the electrode can easily react.
  • the carbon material has different electrochemical performance when other anions are introduced, and in particular, nitrogen element increases electrochemical properties such as oxidation / reduction reaction.
  • the surface treatment is a heat treatment of about 1 to 15 hours at about 300 to 450 °C or in an ozone or air atmosphere to produce a functional group on the surface to improve the affinity with the electrolyte solution, 140 to 600 °C Heat treatment at temperature for 4 minutes to 7 hours to introduce oxygen functional groups such as carboxyl group, carbonyl group, or hydroxyl group on the surface, or nitrogen precursor under an inert gas atmosphere and heat treatment for 10 to 60 minutes at a temperature of 800 to 1000 ° C. It can be used by introducing a nitrogen functional group on the surface.
  • the addition of the additional material may consist of carbon-based conductive material and / or metal particles.
  • the carbon-based conductive material may be carbon paper, carbon fiber, carbon black, acetylene black, activated carbon, fullerene, carbon nanotubes, carbon nanowires, carbon nano-horns, and carbon nano rings. one or more selected from the group consisting of rings).
  • the metal particles are at least one selected from the group consisting of Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni and Fe This is possible. They may use particles of several nanometers to several hundred microns for the catalytic effect of the electrochemical reaction, preferably those having a nanoscale particle size.
  • the additional material may be used at a level that does not prevent the flow of the electrolyte, and may be used in an amount of 10 wt% or less in the fibrous conductive material 151.
  • the flow path F is formed through the partition wall 154, and the width and thickness of the partition wall 154 may be appropriately adjusted according to the sizes of the bipolar plates 118 and 119. Referring to FIG. 5, the distance between the partition walls 154 is defined as the flow channel width, and the thickness of the partition walls 154 is defined as the depth of the flow channel.
  • the cross section of the partition wall 154 may have various shapes such as a rectangle, a square, a triangle, a trench structure, a hemisphere, a polygon, and the like, and generally have a rectangular shape for the flow of the electrolyte.
  • the partition wall 154 has a width of 3.0 to 8.0 mm, a thickness of 1 to 3.5 mm, a flow channel width of 3.0 to 8.0 mm, The depth of the flow channel is between 1 and 3.5 mm.
  • the filling of the fibrous conductive material 151 may be filled at a volume of 10 to 100%, preferably 50 to 95%, based on the flow volume (flow channel width * flow channel depth * length of the partition wall).
  • the depth (X) of the flow channel is compared with the thickness (Y) of the fibrous conductive material 151 such that 1 ⁇ Y / X ⁇ 2.5, preferably 1 ⁇ Y / X ⁇ 1.5.
  • a predetermined pressure is applied to fix the fibrous conductive material 151 inside the flow path (F).
  • the fibrous conductive material 151 finally fixed after the application of pressure has a thickness (Y) equal to the maximum flow channel depth (X) to be horizontal or formed slightly higher or lower than this (0.8 ⁇ Y / X ⁇ 1.2), taking into account the flow of the electrolyte, it can be formed to satisfy the formula 0.8 ⁇ Y / X ⁇ 1.0.
  • W1: W2 has a ratio of 1:10 to 10: 1.
  • the number of flow paths is the same, when the spacing between the flow paths F is too dense and the flow channel width W2 is wide, there is almost no effect difference with the flow path-free bipolar plates 118 and 119. It is difficult to control the generated internal differential pressure.
  • the width W1 is too wide and the flow channel channel width W2 is narrow, a sufficient amount of electrolyte is difficult to flow into the flow path F, resulting in low battery efficiency.
  • the fluid flow of the electrolyte may be affected, and the differential pressure may occur or the resistance value per unit area may be increased, thereby reducing the charge / discharge current density. It is preferable to manufacture the bipolar plates (118, 119) by adjusting the filling degree of (151).
  • the flow paths F of the bipolar plates 118 and 119 of the present invention may include various flow path shapes, as illustrated in FIG. 6.
  • the shape of the flow path (F) can be used in various forms known in the art related to the fluid flow, for example, various forms are possible as shown in FIG.
  • the flow path (F) is (a) parallel (parallel), (b) serpentine, (c) ⁇ (d) semi-serpentine, (e) interlocking type ( Various forms such as interdigitated, (f) zigzag, and (h) to (i) pins are possible, and the start and end of the flow path may be open or closed.
  • the flow paths F of the bipolar plates 118 and 119 may have an interdigitated or pod shaped shape.
  • the interlocking flow path structure refers to a structure in which flow paths F engaged with each other are continuously disposed, and each flow path F has a closed surface, and the inlet or outlet of the flow path F is alternately opened. .
  • the interlocking flow channel structure not only the electrolyte flows along the flow path but also flows through the flow path F, thereby increasing the chance of the electrode reaction, thereby increasing the charge / discharge capacity of the redox flow battery 1000.
  • the electrolyte when the fibrous conductive material 151 is filled in the flow path F, the electrolyte does not flow along the flow path, but contacts the fibrous conductive material 151 inserted in the flow path and the bipolar plate ( Through the electrode layers in contact with the 118 and 119, it is transferred to the next adjacent flow path F beyond one flow path F. That is, the electrolyte solution does not simply flow, but stays in the flow path F, and sufficiently reacts with the fibrous conductive material 151, and reacts with the electrode layers in contact with the bipolar plates 118 and 119, while slowly reacting with one flow path F. ) Is transported through the process of passing over to another adjacent flow path (F) several times.
  • the fibrous conductive material 151 inserted into the flow path F may cause an efficient electrode reaction even with the same amount of electrolyte and control the transport speed (flowability) of the electrolyte. This is because the electrolyte does not pass through the flow path (F), but contacts the fibrous conductive material 151 and stays for a predetermined time and diffuses in multiple directions, and the residence time of the electrolyte is long and the reaction surface area is widened, thereby increasing the chance of electrode reaction. Because it will increase.
  • the bipolar plates 118 and 119 having the interlocking flow path structure in which the fibrous conductive material 151 is inserted according to the embodiment of the present invention the area of the electrochemical reaction is reduced by the fluid flow of the electrolyte. This can increase the resistance value per unit area. Therefore, even if a large capacity battery is implemented, it is possible to implement a battery having improved energy efficiency with high charge and discharge capacity and current efficiency.
  • the bipolar plates 118 and 119 having the above-described configuration are bonded to the electrode plates 120 and 121 and the ion exchange membrane plate 123 to form a unit cell.
  • the ion exchange membrane plate 123 has a plate-shaped body and an ion exchange membrane is inserted in the center thereof, and the electrode plates 120 and 121 have a structure in which an electrode layer is inserted in the center thereof together with the plate-shaped body.
  • the ion exchange membrane of the ion exchange membrane plate 123 is called an ion permeable membrane or a separator, and is configured to pass ions in the electrolyte, and conducts electricity through an electrochemical reaction of the electrode layers of the electrode plates 120 and 121 located at both sides through the electrolyte. Occurs.
  • the material, thickness and each component of the ion exchange membrane is not particularly limited in the present invention, a known one can be used.
  • the electrode plates 120 and 121 positioned between the ion exchange membrane plate 123 and the bipolar plates 118 and 119 function as one of the electrode plates 120 and 121 as the anode and the other as the cathode according to the composition of the electrolyte.
  • the electrode plates 120 and 121 are provided with an electrode layer (or electrode layer) for electrochemical reaction in the body, and a material having conductivity as known in the electrode layer is used.
  • the electrode layer may be one kind of conductive material selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt, and foamed metal.
  • the electrode layer may be the same as or similar to the fibrous conductive material 151 described in the bipolar plates 118 and 119. That is, according to the composition and physical properties (eg, porosity, bulk density) as referred to as the fibrous conductive material 151.
  • the same materials as the fibrous conductive material 151 and the electrode layer filled in the bipolar plates 118 and 119 are used, and more preferably both sides use carbon felt.
  • the fibrous conductive material 151 and the electrode layer may have the same or similar porosity.
  • the porosity of the electrode layer is controlled to be larger than that of the fibrous conductive material 151 in the bipolar plates 118 and 119.
  • a maximum contact area for the reaction may be provided to sufficiently infiltrate the electrolyte into the fibrous conductive material 151 having many voids and remain in the flow path F, and the electrolyte in the flow path F until the reaction proceeds sufficiently. It may include, it is possible to finer pressure differential adjustment.
  • the electrode layer of this invention can use what has a gradient form as needed. Such a gradient may solve the nonuniformity of the reaction due to the pressure gradient inevitably occurring at the inlet 161 and the outlet 162 of the bipolar plates 118 and 119, a decrease in the current density, and an increase in the local resistance in the flow path F. .
  • the coating or impregnation to have a concentration gradient when using a material formed to have a porosity gradient or a pore size gradient in consideration of the fluid flow of the electrolyte, or when using additional materials such as metal particles can be used.
  • the gradient may be made in the same direction with respect to the vertical direction of the inlet 161 and the outlet 162 of the bipolar plates 118 and 119 or in a direction orthogonal to or perpendicular to this direction. Preferably it may be made in a direction perpendicular to the inlet 161.
  • the gradient may be made in the same direction with respect to the longitudinal direction of the flow path (F) of the bipolar plates (118, 119) or in a direction orthogonal or a predetermined angle thereof. Preferably it may be made in the same direction with respect to the longitudinal direction of the flow path (F).
  • the residence time of the electrolyte solution can increase.
  • the outlet 162 side is designed to have a step or progressively higher porosity than the inlet 161 of the bipolar plates 118 and 119 to enable relatively fast diffusion and electrolyte movement in various directions.
  • the electrolyte solution can be flow balanced without excessively stagnating in the flow path (F).
  • the electrochemical in the electrode layer is increased to the center portion The reaction can be further promoted.
  • the electrode layer of the present invention may be composed of a single layer of one material or a combination of different materials. For example, after distributing the electrode layer into a plurality of areas, materials of the electrode layer corresponding to each area may be used differently.
  • the electrode layer of the present invention may be formed of a single layer or may be formed of two or more layers using one material or different materials.
  • the materials, the porosity, and the content of additional materials such as metal catalysts may be formed by the same or different.
  • the present invention is not particularly limited and may vary depending on a required charge / discharge capacity of the battery and purpose of use.
  • the area of the electrode layer of the present invention may be the same as or different from the area of the electrolyte reaction portion (A) of the bipolar plates (118, 119), so as to sufficiently react with the electrolyte.
  • the bipolar plates 118 and 119 have an interlocking flow path F filled with carbon felt therein, and the carbon chemical reaction part of the electrode plate has carbon felt or Use carbon paper.
  • the carbon felt filled in the bipolar plates 118 and 119 and the carbon felt of the electrode plate are preferably made of the same material, and in this case, each carbon felt may be selected to have a different porosity.
  • the porosity of the carbon felt of the electrode plate may be adjusted to be larger than that of the carbon felt in the bipolar plates 118 and 119.
  • a maximum contact area for the reaction may be provided to sufficiently infiltrate the electrolyte into the fibrous conductive material 151 having many voids and remain in the flow path F, and the electrolyte in the flow path F until the reaction proceeds sufficiently. It may include, it is possible to finer pressure differential adjustment.
  • the carbon felt may be filled by setting the porosity from the top to the bottom or from the left to the right with respect to the vertical direction of the body of the bipolar plates 118 and 119. . That is, by designing the upper side to have a lower porosity than the lower side and these porosities are gradually or gradually higher porosity toward the lower portion of the vertical direction to enable relatively fast diffusion and movement of electrolyte in multiple directions, It is possible to balance the flow of the electrolyte without excessive stagnation in the flow path (F).
  • components constituting the redox flow battery 1000 according to the present invention in particular, the various components for constituting the battery module 100, components such as the electrolyte tank 202,204, and the electrolyte pump 302,304 It does not specifically limit in this invention, It follows the content of well-known.
  • the electrolyte stored in the electrolyte tanks 202 and 204 is not particularly limited in the present invention, and electrolytes known in the art may be used.
  • the electrolytic solution includes an active material and a solvent, wherein the active material includes a 'redox' coupler organic material that reacts electrochemically stably, and the solvent may be an aqueous solvent, an organic solvent, or a mixture thereof.
  • the electrolyte may be an anode electrolyte for the function of the anode or a cathode electrolyte for the function of the cathode, which includes a redox pair configuration. That is, in the case of the positive electrode active material, it refers to a redox pair dissolved in the positive electrolyte, and means that the redox pair is charged when the redox pair is changed to a higher one of two oxidation states, that is, oxidation occurs. In the case of the negative electrode active material, it refers to a redox pair dissolved in the negative electrode electrolyte solution, which means that it is charged to the lower side of two oxidation states of the redox pair, that is, when reduced.
  • the active material used in the present invention is not particularly limited, and an active material commonly used in the art may be used.
  • an active material commonly used in the art may be used.
  • V, Fe, Cr, Cu, Ti, Sn, Zn, Br, etc. are mentioned.
  • Such active materials can be obtained by a variety of redox pairs such as V / V, Zn / Br, Fe / Cr by a combination of oxidation and reduction differences.
  • redox pairs made of V / V are used.
  • the positive electrode electrolyte is V 4 + / V 5 + used, and the negative electrolyte can be used for V 2+ / V3 + as the redox pair.
  • the aqueous solvent is one or a mixture of two or more selected from sulfuric acid, hydrochloric acid or phosphoric acid, and the organic solvent is acetonitrile, dimethyl carbonate, diethyl carbonate, dimethyl sulfoxide, dimethylformamide, propylene carbonate, ethylene carbonate, N-methyl-2-pyrrolidone, fluoroethylene carbonate, ethanol, methanol and gamma-butyrolactone may be one or a mixture of two or more thereof.
  • the electrolyte may further include a supporting electrolyte.
  • the supporting electrolyte may be selected from the group consisting of alkylammonium salts, lithium salts and sodium salts.
  • a combination of an anion selected from a tetraalkylammonium cation, wherein alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation Can be made.
  • the lithium salt is LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN ( It may be at least one selected from CF 3 SO 2 ) 2 and LiCH (CF 3 SO 2 ) 2 .
  • the sodium salt is NaPF 6 , NaBF 4 , NaAsF 6 , NaClO 4 , NaCF 3 SO 3 , NaCF 3 SO 3 , NaC (SO 2 CF 3 ) 3 , NaN ( It may be at least one selected from CF 3 SO 2 ) 2 and NaCH (CF 3 SO 2 ) 2 .
  • the electrolyte pumps 302 and 304 are not specifically mentioned in the present invention, and those known in the art may be used.
  • the redox flow battery 1000 according to the present invention having the above-described configuration includes the bipolar plates 118 and 119 as described above as components of the unit cell, thereby providing substantial charge / discharge opportunities for the electrolyte in the flow path F.
  • FIG. To increase.
  • the redox flow battery 1000 is capable of maximizing charge / discharge capacity and efficiency while minimizing energy loss regardless of the flow rate of the electrolyte and the battery output, and thus, the redox flow battery 1000 that targets a high flow rate and a high current density. Is preferably applied. For this reason, it can be usefully used in various fields of various industries such as various industrial facilities, electronic products and automobiles.
  • the bipolar plate formed a body having a width of 82 * 82 mm and an engaging flow path therein.
  • the width of the partition wall for forming the flow path is 5.0 mm
  • the flow channel channel width is 4.0 mm
  • the depth of the flow channel has a 2.5 mm.
  • a carbon felt (95 mm thick) having a porosity of 95% was purchased and used to cut it to fit the flow channel channel width.
  • the fibrous conductive material was mounted in the flow path and then inserted into the flow path by applying pressure. At this time, pressure was applied until the thickness of the fibrous conductive material was equal to the depth of the flow channel.
  • the bipolar plate produced in the above (1) was configured to produce a unit cell.
  • Electrode layers (900 ⁇ m) formed by stacking three sheets of carbon paper (300 ⁇ m each) on both sides with an ion exchange membrane (Nafion 115, 75 ⁇ m) in between, and placing a bipolar plate on each outside Using a 0.5 g gasket, these were fastened to produce a redox flow battery.
  • Example 9 As shown in FIG. 9, a bipolar plate having no fibrous conductive material inserted therein was manufactured, and the same procedure as in Example 1 was performed to prepare a redox flow battery.
  • Charge and discharge capacity and energy efficiency were measured using the unit cells produced in Example 1 and Comparative Example 1, respectively, and the results obtained are shown in FIGS. 10 and 11.
  • the charging and discharging conditions were performed in 10 cycles at 2.5A, 10 cycles at 3.75A, 10 cycles at 2.5A, and 5 cycles at 2.5A.
  • Example 10 is a graph showing the charge and discharge capacity of Example 1 and Comparative Example 1, it can be seen that the battery capacity of Example 1 is lower than the battery of Comparative Example 1 capacity decrease as the number of cycles.
  • Example 1 shows a slightly better tendency in Example 1. This difference can be clearly seen through the energy efficiency comparison graph of Table 1 and FIG. 11. 11 is a graph showing the energy efficiency of Example 1 and Comparative Example 1.
  • Example 1 2 to 10 times average energy efficiency EE (%) 50 mA / cm 2 Comparative Example 1 79.0
  • Example 1 87.0 100 mA / cm 2 Comparative Example 1 69.3
  • Example 1 80.2 150 mA / cm 2 Comparative Example 1 56.5
  • reaction area increases due to the insertion of the carbon felt as the fibrous conductive material, thereby decreasing the resistance value per unit area.
  • the redox flow battery of the present invention is preferably applicable as a high performance battery having a high flow rate and high current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a bipolar plate having a fiber-type conductive material inserted into a flow path, and a redox flow cell comprising the same. The fiber-type conductive material prolongs a residence time of an electrolyte solution in the flow path and increases the chance of a reaction with an electrode layer, whereby it is possible to implement a redox flow cell having improved charging/discharging capacity and efficiency while having excellent energy efficiency regardless of the flow rate of the electrolyte solution.

Description

바이폴라 플레이트 및 이를 포함하는 레독스 흐름 전지Bipolar Plates and Redox Flow Cells Comprising the Same
본 출원은 2016년 3월 31일자 한국 특허 출원 제10-2016-0038848호 및 2017년 3월 15일자 한국 특허 출원 제10-2017-0032353호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0038848 filed March 31, 2016 and Korean Patent Application No. 10-2017-0032353 filed March 15, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 고유량 및 고전류 밀도를 갖는 전지에 적합한 바이폴라 플레이트 및 이를 포함하는 레독스 흐름 전지에 관한 것이다.The present invention relates to a bipolar plate suitable for a cell having a high flow rate and a high current density and a redox flow cell comprising the same.
레독스 흐름 전지는 기존 이차전지와는 달리 전해액 중의 활물질(active material)이 산화 환원되어 충방전되는 시스템으로 전해액의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전장치이다. 이러한 전지는 대용량 전력 저장용으로 용이하고, 높은 에너지 밀도와 효율을 가지며 수명이 길고 안전하다는 이점이 있다. 또한, 상기 전지는 잦은 교체가 필요 없어 유지 보수 비용이 적고 상온에서 작동하며 특히 용량과 출력을 다양하게 설계할 수 있는 이점이 있어, 차세대 대용량 저장 장치로서 각광받고 있다.Redox flow battery is an electrochemical power storage device that stores the chemical energy of the electrolyte directly as electrical energy as a system in which the active material in the electrolyte is redoxed and charged and discharged, unlike the existing secondary battery. Such batteries have the advantage of being easy for large capacity power storage, having high energy density and efficiency, and having a long life and safety. In addition, the battery does not require frequent replacement, low maintenance costs, operating at room temperature, and in particular have the advantage that can be designed in a variety of capacity and output, it is in the spotlight as the next generation mass storage device.
레독스 흐름 전지의 기본 구조는 바이폴라 플레이트/전극/이온 교환막/전극/바이폴라 플레이트의 구조를 포함하는 스택과 함께 산화 상태가 각각 다른 활물질이 저장되어 있는 전해액 탱크와, 이를 순환시키기 위한 펌프를 구비한다. The basic structure of the redox flow battery includes a stack including a structure of a bipolar plate / electrode / ion exchange membrane / electrode / bipolar plate, an electrolyte tank containing active materials having different oxidation states, and a pump for circulating the same. .
실제 전기화학적 반응은 스택(stack)에서 일어나며, 전해액을 펌프를 이용하여 스택 내부에 지속적으로 순환시킴으로써 작동한다. 상기 전해액 내 활물질로 사용되는 레독스쌍으로는 V/V, Zn/Br, Fe/Cr, Zn/air 등이 있는데 이 중 V/V, Zn/Br 레독스쌍이 가장 널리 사용되고 있다.The actual electrochemical reaction takes place in the stack and works by continuously circulating the electrolyte inside the stack using a pump. Redox pairs used as active materials in the electrolyte include V / V, Zn / Br, Fe / Cr, and Zn / air. Among them, V / V and Zn / Br redox pairs are most widely used.
전기화학적 반응은 스택 내 바이폴라 플레이트를 따라 흐르는 전해액과 전극 간의 상호 작용에 따라 결정된다. The electrochemical reaction is determined by the interaction between the electrode and the electrolyte flowing along the bipolar plate in the stack.
도 1은 종래 기술에 따른 바이폴라 플레이트와 전극 간의 접촉을 보여주는 단면도로서, 위에서부터 바이폴라 플레이트(11)/전극(12)/이온 교환막(13)/전극(14)/바이폴라 플레이트(15)가 적층된 구조를 갖는다. 이러한 구조는 바이폴라 플레이트(11, 15)에 직접적으로 전해액을 흘리는 방식으로서, 구조가 간단하다는 이점이 있다. 그러나 고출력 조건으로 충/방전하거나 전지의 크기를 증가시킬 때 전해액이 고유량으로 수반됨에 따라 전해액 유입구와 배출구 간 높은 차압이 생겨나게 되고 이에 따라 막대한 에너지 손실이 발생하는 문제가 발생한다.1 is a cross-sectional view showing a contact between a bipolar plate and the electrode according to the prior art, the bipolar plate 11 / electrode 12 / ion exchange membrane 13 / electrode 14 / bipolar plate 15 is stacked from above Has a structure. This structure is a method of flowing the electrolyte solution directly to the bipolar plates (11, 15), there is an advantage that the structure is simple. However, when charging / discharging at high power conditions or increasing the size of the battery, the electrolyte is accompanied by a high flow rate, thereby causing a high differential pressure between the electrolyte inlet and the outlet, thereby causing a large energy loss.
상기 문제를 해결하기 위한 시도로서 바이폴라 플레이트 내부에 전해액이 흐를 수 있는 유로를 형성한 구조가 제시되었다. In an attempt to solve the above problem, a structure in which a flow path through which an electrolyte can flow is provided in a bipolar plate has been proposed.
미국특허공개 제2012-0244395호에서는 맞물림형(interdigitated type, 또는 깍지형) 유로가 형성된 바이폴라 플레이트의 구성을 제시하였다. US Patent Publication No. 2012-0244395 proposes a configuration of a bipolar plate in which an interdigitated type or interdigitated flow path is formed.
도 2 미국특허공개 제2012-0244395호에서 제시한 바이폴라 플레이트와 전극 간의 접촉을 보여주는 단면도로서, 위에서부터 바이폴라 플레이트(21)/전극(22)/이온 교환막(23)/전극(24)/바이폴라 플레이트(25)가 적층된 구조를 가지며, 상기 바이폴라 플레이트(21, 25) 각각에 유로(27, 29)가 형성된 구조를 갖는다. 이러한 구조의 바이폴라 플레이트를 사용하는 경우 전지 모듈에 인가하는 유입구와 배출구 간의 차압을 어느 정도 저감시켰다. 2 is a cross-sectional view showing the contact between the bipolar plate and the electrode shown in US Patent Publication No. 2012-0244395, bipolar plate 21 / electrode 22 / ion exchange membrane 23 / electrode 24 / bipolar plate from above 25 has a stacked structure, and flow paths 27 and 29 are formed in the bipolar plates 21 and 25, respectively. In the case of using the bipolar plate having such a structure, the pressure difference between the inlet and the outlet applied to the battery module is reduced to some extent.
그러나 도 2의 전지를 보면, 도 1 전지 대비 유로 구성으로 인해 전극과 전해액과의 접촉 면적이 줄어드는 문제가 발생하였다. 이로 인해 전기 발생을 위한 전기화학 반응이 충분히 일어나지 못하게 되고, 그에 따라 전지의 충/방전 용량 및 속도가 저감되는 문제가 발생한다. However, in the battery of FIG. 2, a problem arises in that the contact area between the electrode and the electrolyte is reduced due to the flow path structure of the battery of FIG. 1. As a result, the electrochemical reaction for generating electricity does not occur sufficiently, thereby causing a problem that the charge / discharge capacity and speed of the battery are reduced.
더욱이, 내부 차압을 감소시키기 위한 유로 구조를 가지고 있다 하더라도 전해액의 유량을 모든 범위에서 안정적으로 제어하는 것에는 일정 부분 한계가 존재하였으며 전해액이 유로 내 머무르는 시간이 짧아 충분한 반응 시간을 확보하지 못하는 문제 또한 발생하였다.In addition, even if the flow path structure to reduce the internal differential pressure, there is a limit to the stable control of the flow rate of the electrolyte in all ranges, and the problem of not having sufficient reaction time due to the short residence time of the electrolyte in the flow path Occurred.
따라서 유로를 통하여 전해액이 통과할 때 유량에 관계없이 에너지 손실을 최소화할 수 있으면서도, 충분한 반응 시간을 확보하고 충/방전 용량 및 효율을 향상시킬 수 있는 레독스 흐름 전지에 대한 수요가 증대하고 있다.Therefore, there is an increasing demand for a redox flow battery capable of securing sufficient reaction time and improving charge / discharge capacity and efficiency while minimizing energy loss regardless of flow rate when the electrolyte passes through the flow path.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
미국특허공개 제2012-0244395호(2012.09.27), FLOW BATTERY WITH INTERDIGITATED FLOW FIELD United States Patent Publication No. 2012-0244395 (2012.09.27), FLOW BATTERY WITH INTERDIGITATED FLOW FIELD
본 발명자들은 바이폴라 플레이트의 유로를 흐르는 전해액의 체류 시간을 연장하여 전해액과 전극 간의 접촉을 높여 전기화학 반응 기회를 증가시키면서, 상기 바이폴라 플레이트 내 전해액의 유입구와 배출구 간의 차압을 낮출 수 있도록 상기 유로 내 섬유형 도전재를 삽입한 새로운 구조의 바이폴라 플레이트를 설계하였고, 이를 레독스 흐름 전지에 적용한 결과 충방전 용량과 에너지 효율이 증가하면서도 단위 면적당 걸리는 저항 값이 낮아짐을 확인하였다.The present inventors extend the residence time of the electrolyte flowing through the flow path of the bipolar plate to increase the contact between the electrolyte and the electrode, thereby increasing the chance of the electrochemical reaction, while reducing the pressure difference between the inlet and the outlet of the electrolyte in the bipolar plate. A new bipolar plate with a conductive material was designed and applied to the redox flow battery, and it was confirmed that the resistance value per unit area was lowered while increasing the charge / discharge capacity and energy efficiency.
따라서, 본 발명의 목적은 새로운 구조를 갖는 바이폴라 플레이트를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a bipolar plate having a novel structure.
본 발명의 다른 목적은 상기 바이폴라 플레이트를 구비한 레독스 흐름 전지용 단위셀을 제공하는 데 있다.Another object of the present invention is to provide a unit cell for a redox flow battery having the bipolar plate.
또한, 본 발명의 또 다른 목적은 상기 단위셀을 복수개로 구비하여 고유량 및 고전류 밀도를 타겟으로 하는 레독스 흐름 전지를 제공하는 데 있다. In addition, another object of the present invention is to provide a redox flow battery having a plurality of the unit cells to target a high flow rate and a high current density.
상기 목적을 달성하기 위하여 본 발명은 판 형태의 바디; 및 상기 바디의 중앙부에 전해액이 이동할 수 있도록 형성된 유로를 포함하는 바이폴라 플레이트에 있어서, 상기 유로 내부에 섬유형 도전재가 삽입된 것을 특징으로 하는 레독스 흐름 전지용 바이폴라 플레이트를 제공한다. The present invention to achieve the above object is a plate-shaped body; And a flow path formed to move the electrolyte in the center of the body, wherein the bipolar plate for a redox flow battery is characterized in that a fibrous conductive material is inserted into the flow path.
이때 상기 패러렐(parallel), 서펜틴(serpentine), 세미서펜틴(semi-serpentine), 지그재그(zigzag), 맞물림형(interdigitated) 및 핀(pin) 형태의 패턴을 1종 이상 포함하여 형성되는 것을 특징으로 한다.At this time, the parallel (parallel), serpentine (serpentine), semi-serpentine (semi-serpentine), zigzag (zigzag), interdigitated (interdigitated) and pin (pin) pattern is formed by including one or more types It is done.
상기 섬유형 도전재는 카본 펠트, 그라파이트 펠트, 카본천, 카본 페이퍼, 금속천, 금속 펠트 및 발포금속으로 이루어진 군에서 선택된 1종 이상의 직물 형태인 것을 특징으로 한다.The fibrous conductive material is characterized in that at least one type of fabric selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt and foamed metal.
또한, 본 발명은 이온 교환막; 상기 이온 교환막의 양측에 각각 배치된 전극층; 및 상기 전극층의 일측면에 각각 배치된 바이폴라 플레이트를 포함하고, 상기 바이폴라 플레이트는 전술한 바의 바이폴라 플레이트인 레독스 흐름 전지용 단위셀을 제공한다.In addition, the present invention is an ion exchange membrane; Electrode layers disposed on both sides of the ion exchange membrane; And a bipolar plate disposed on one side of the electrode layer, wherein the bipolar plate provides a unit cell for a redox flow battery, which is the bipolar plate described above.
또한, 본 발명은 전류를 생성하는 단위 스택들을 포함하는 단위 모듈을 서로의 측면에 배치하여 전기적으로 연결하여 형성되는 전지 모듈; 상기 전지 모듈에 전해액을 공급하고 상기 모듈에서 유출되는 전해액을 저장하기 위한 전해액 탱크; 및 상기 모듈과 전해액 탱크 간 전해액을 순환시키기 위한 전해액 펌프를 포함하며, 상기 단위 스택은 상기 레독스 흐름 전지용 단위셀이 복수개로 연결된 레독스 흐름 전지를 제공한다.In addition, the present invention is a battery module formed by electrically connecting a unit module including a unit stack for generating a current to the side of each other; An electrolyte tank for supplying an electrolyte solution to the battery module and storing an electrolyte solution flowing out of the module; And an electrolyte pump for circulating the electrolyte between the module and the electrolyte tank, wherein the unit stack provides a redox flow battery in which a plurality of unit cells for the redox flow battery are connected.
본 발명에 따른 레독스 흐름 전지는 유로 내 섬유형 도전재가 삽입된 바이폴라 플레이트를 구비함으로써 전해액 유로 내 체류 시간을 연장하여, 전극과 전해액 간의 전기화학 반응 기회를 높임으로써 상기 레독스 흐름 전지의 충방전 용량과 에너지 효율이 증가하면서도 과전압을 낮춰 단위 면적당 걸리는 저항 값을 낮춘다.The redox flow battery according to the present invention includes a bipolar plate in which a fibrous conductive material is inserted in the flow path, thereby extending the residence time in the electrolyte flow path, thereby increasing the chance of the electrochemical reaction between the electrode and the electrolyte, thereby charging and discharging the redox flow battery. The capacity and energy efficiency increase, while reducing the overvoltage, which lowers the resistance value per unit area.
이러한 전지는 고유량 및 고전류 밀도를 타겟으로 하는 레독스 흐름 전지로서 다양한 산업 분야에 적용될 수 있다.Such a battery can be applied to various industrial fields as a redox flow battery targeting high flow rate and high current density.
도 1은 종래 기술에 따른 바이폴라 플레이트와 전극 간의 접촉을 보여주는 단면도이다.1 is a cross-sectional view showing a contact between a bipolar plate and the electrode according to the prior art.
도 2 미국특허공개 제2012-0244395호에서 제시한 바이폴라 플레이트와 전극 간의 접촉을 보여주는 단면도이다.FIG. 2 is a cross-sectional view showing contact between a bipolar plate and an electrode disclosed in US Patent Publication No. 2012-0244395.
도 3은 본 발명에 따른 레독스 흐름 전지의 구조를 보여주는 모식도이다.3 is a schematic diagram showing the structure of a redox flow battery according to the present invention.
도 4는 본 발명에 따른 단위 스택을 보여주는 입체 사시도다.4 is a three-dimensional perspective view showing a unit stack according to the present invention.
도 5는 본 발명에 따른 바이폴라 플레이트를 보여주는 정면도이다.5 is a front view showing a bipolar plate according to the present invention.
도 6은 본 발명에 따른 바이폴라 플레이트의 유로 내부에 섬유형 도전재를 삽입함을 보여주는 입체 사시도이다.6 is a three-dimensional perspective view showing the insertion of a fibrous conductive material into the flow path of the bipolar plate according to the present invention.
도 7은 본 발명의 일 구현예에 따른 유로의 다양한 형태를 보여주는 모식도이다.7 is a schematic diagram showing various types of flow paths according to an embodiment of the present invention.
도 8은 실시예 1에서 제작된 바이폴라 플레이트의 사진이다.8 is a photograph of a bipolar plate manufactured in Example 1. FIG.
도 9는 비교예 1에서 제작된 바이폴라 플레이트의 사진이다.9 is a photograph of a bipolar plate prepared in Comparative Example 1.
도 10은 실시예 1 및 비교예 1에서 제작된 전지의 충방전 용량을 보여주는 그래프이다.10 is a graph showing charge and discharge capacities of batteries manufactured in Example 1 and Comparative Example 1. FIG.
도 11은 실시예 1 및 비교예 1에서 제작된 전지의 에너지 효율을 보여주는 그래프이다.11 is a graph showing the energy efficiency of the batteries produced in Example 1 and Comparative Example 1.
본 발명은 에너지 효율이 우수하고 충/방전 용량이 큰 레독스 흐름 전지를 제시한다.The present invention proposes a redox flow battery having excellent energy efficiency and high charge / discharge capacity.
이하 도면을 이용하여 더욱 상세히 설명한다.Hereinafter will be described in more detail with reference to the drawings.
도 3은 본 발명의 일 구현예에 따른 레독스 흐름 전지를 보여주는 모식도이고, 도 4는 단위 스택을 보여주는 입체 사시도다.3 is a schematic view showing a redox flow battery according to an embodiment of the present invention, Figure 4 is a three-dimensional perspective view showing a unit stack.
도 3을 참조하면, 레독스 흐름 전지(1000)는 전류를 생성하는 단위 스택들을 포함하는 단위 모듈(101,102, 103, 104)을 서로의 측면에 배치하여 전기적으로 연결하여 형성되는 전지 모듈(100); 상기 전지 모듈(100)에 전해액을 공급하고 상기 전지 모듈(100)에서 유출되는 전해액을 저장하기 위한 전해액 탱크(202,204); 상기 전지 모듈(100)과 전해액 탱크(202,204) 간 전해액을 순환시키기 위한 전해액 펌프(302,304)를 포함한다.Referring to FIG. 3, the redox flow battery 1000 is formed by arranging and electrically connecting unit modules 101, 102, 103, and 104 including unit stacks that generate current to each other. ; An electrolyte tank (202, 204) for supplying an electrolyte solution to the battery module (100) and storing an electrolyte solution flowing out of the battery module (100); Electrolyte pumps 302 and 304 for circulating the electrolyte between the battery module 100 and the electrolyte tanks 202 and 204 are included.
이때 단위 스택은 단위셀(130)을 복수로 적층하여 형성된다. 편의상, 도 4에서는 하나의 단위셀(130)을 적층하여 형성된 단위 스택을 예시한다.In this case, the unit stack is formed by stacking a plurality of unit cells 130. For convenience, FIG. 4 illustrates a unit stack formed by stacking one unit cell 130.
도 4를 참조하면, 단위셀(130)은 중앙에 이온 교환막 플레이트(123)이 배치되고, 이의 양측에 좌우 대칭 구조로 전극 플레이트(120,121) 및 바이폴라 플레이트(118,119)가 각각 대칭하여 배치된다.Referring to FIG. 4, an ion exchange membrane plate 123 is disposed at the center of the unit cell 130, and electrode plates 120 and 121 and bipolar plates 118 and 119 are symmetrically disposed on both sides thereof, respectively.
상기 단위셀(130)은 1개 또는 그 이상의 복수 개로 적층된 구조를 가지며, 상기 바이폴라 플레이트(118,119)와 접하도록 집전 플레이트(115,117) 및 엔드 플레이트(111,113)가 적층된다.  The unit cell 130 has a structure in which a plurality of unit cells 130 are stacked, and current collector plates 115 and 117 and end plates 111 and 113 are stacked to contact the bipolar plates 118 and 119.
상기 각각의 구성은 각각의 일측을 천공한 후 관통홀을 통해 연결부재(예, 볼트/너트)를 이용하여 서로 접합하여 단위셀(130)을 구비하고, 이 단위셀(130)을 복수 개 배치한 후 전기적 연결을 통해 단위 스택을 형성한다. Each of the above components is provided with unit cells 130 by joining each other using a connecting member (eg, bolt / nut) through a through hole after drilling each side, and arranging a plurality of unit cells 130. The unit stack is then formed through electrical connections.
상기 이온 교환막 플레이트(123), 전극 플레이트(120,121), 바이폴라 플레이트(118,119), 집전 플레이트(115,117) 및 엔드 플레이트(111,113) 사이에는 전해액의 흐름이나 결합을 위해 스페이서(미도시)를 각각 개재할 수 있으며, 일례로 이온 교환막 플레이트(123)과 전극 플레이트(120,121) 사이에 배치하는 것이 바람직하다. Spacers (not shown) may be interposed between the ion exchange membrane plates 123, the electrode plates 120 and 121, the bipolar plates 118 and 119, the current collector plates 115 and 117, and the end plates 111 and 113 for the flow or coupling of the electrolyte. For example, it is preferable to arrange the ion exchange membrane plate 123 between the electrode plates 120 and 121.
복수 개의 단위셀(130)이 도 3과 같이 직렬로 연결되거나 병렬로 연결된 구조를 가지며, 전해액의 순환으로 전류를 발생시키도록 구성한다. 단위 스택은 버스바(미도시)를 통해 이웃하는 다른 단위 스택과 전기적으로 연결된다. 단위 모듈(101,102,103,104) 및 전지 모듈(100)은 단위 스택들의 내부에서 생성된 전류를 방전하거나 외부 전원에 연결된다. A plurality of unit cells 130 has a structure connected in series or in parallel as shown in FIG. 3, and configured to generate a current in the circulation of the electrolyte. The unit stack is electrically connected to another neighboring unit stack through a bus bar (not shown). The unit modules 101, 102, 103, 104 and the battery module 100 discharge current generated inside the unit stacks or are connected to an external power source.
상기 단위셀(130)의 구조를 보면, 이온 교환막 플레이트(123)는 판 형태의 바디와 이의 중앙에 이온 교환막이 장착된 구조를 갖는다. 또한, 전극 플레이트(120,121)는 판 형태의 바디와 이의 중앙에 전극층이 장착된 구조를 갖는다. 그리고, 바이폴라 플레이트(118,119)는 판 형태의 바디와 이의 중앙에 유로가 장착된 구조를 갖는다.In the structure of the unit cell 130, the ion exchange membrane plate 123 has a plate-shaped body and a structure in which an ion exchange membrane is mounted at the center thereof. In addition, the electrode plates 120 and 121 have a plate-shaped body and a structure in which an electrode layer is mounted at the center thereof. The bipolar plates 118 and 119 have a plate-shaped body and a structure in which a flow path is mounted at the center thereof.
본 발명에서는 단위셀을 구성하는 바이폴라 플레이트(118,119)의 구성을 변경하여 레독스 흐름 전지(1000)의 전지 특성을 향상시킨다. In the present invention, the configuration of the bipolar plates 118 and 119 constituting the unit cell is changed to improve the battery characteristics of the redox flow battery 1000.
전극 플레이트(120,121)와 접하는 바이폴라 플레이트(118,119)는 전기화학적 반응을 위해 전해액 탱크(202,204)로부터 전해액을 공급받고, 이를 전극 플레이트(120,121)로 균일한 압력과 양으로 공급한다The bipolar plates 118 and 119 in contact with the electrode plates 120 and 121 are supplied with electrolyte from the electrolyte tanks 202 and 204 for the electrochemical reaction, and are supplied to the electrode plates 120 and 121 in a uniform pressure and amount.
도 5는 바이폴라 플레이트를 보여주는 정면도이다.5 is a front view showing a bipolar plate.
구체적으로, 바이폴라 플레이트(118,119)는 판 형태의 바디(152)와, 전극층과 전해액이 접촉하는 영역인 전해액 반응부(R) 내 전해액이 이동할 수 있도록 형성된 유로(F)를 포함한다.In detail, the bipolar plates 118 and 119 include a plate-shaped body 152 and a flow path F formed to move the electrolyte in the electrolyte reaction part R, which is an area where the electrode layer and the electrolyte contact.
바이폴라 플레이트(118,119)의 바디(152)는 전도성 또는 비전도성 재질이 사용될 수 있으며 본 발명에서 특별히 한정하지는 않는다. 전도성 재질의 경우 금속, 그라파이트 등의 카본재, 또는 전도성 고분자 등으로 바디 표면을 코팅할 수 있으며, 비전도성 재질의 경우 ETFE(ethylene-tetrafluoroethylene), PTFE(Polytetrafluoroethylene), PFA(Perfluoroalkoxy), FEP(fluorinated ethyleneepropylene polymer), ECTFE(Ethylene ChloroTriFluoroEthylene), PVDF(Polyvinylidene fluoride) 등의 불소 수지를 코팅하여 사용할 수 있다.The body 152 of the bipolar plates 118 and 119 may be made of a conductive or nonconductive material and is not particularly limited in the present invention. The conductive material can be coated with a carbon material such as metal or graphite, or a conductive polymer, and the non-conductive material can be ethylene-tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), or fluorinated FEP (non-conductive material). Fluorine resins such as ethyleneepropylene polymer, ECTFE (Ethylene ChloroTriFluoroEthylene), and PVDF (Polyvinylidene fluoride) may be coated.
바이폴라 플레이트(118,119)는 바디(152)의 일측 상부에 전극 플레이트(120,121)에 전해액을 공급할 수 있도록 전해액을 유입하기 위한 유입구(161), 일측 하부에 전해액을 배출할 수 있는 배출구(162), 전극 플레이트(120,121)와 접촉하는 전해액 반응부(R), 상기 배출구(161)와 전해액 반응부(R) 사이에 위치하여 전해액의 균등 분배를 위한 공급 유로(171), 및 상기 배출구(162)와 전해액 반응부(R) 사이에 위치하여 전해액의 균등 분배를 위한 배출 유로(172)를 포함한다. The bipolar plates 118 and 119 may have an inlet 161 for introducing the electrolyte to supply the electrolyte to the electrode plates 120 and 121 on one side of the body 152, an outlet 162 for discharging the electrolyte to the bottom of one side, and an electrode. Electrolyte reaction part (R) in contact with the plate (120, 121), the supply port 171 for equal distribution of the electrolyte is located between the outlet 161 and the electrolyte reaction part (R), and the outlet 162 and the electrolyte solution Located between the reaction unit (R) includes a discharge passage 172 for equal distribution of the electrolyte.
바디(162)의 말단 일측에는 연결 부재(181,182,183,184)가 배치되어 전극 플레이트와 물리적으로 접합된다. Connection members 181, 182, 183 and 184 are disposed at one end of the body 162 to be physically bonded to the electrode plate.
또한, 상기 공급유로(171) 및 배출유로(172)는 전해액 유량을 균등하게 분배하여 공급 또는 배출시킬 수 있도록 다양한 형태를 가지며, 일례로 다수개의 분지를 갖는 분배 유로 형태를 구비할 수 있다.In addition, the supply passage 171 and the discharge passage 172 may have various forms so as to distribute or evenly distribute the flow rate of the electrolyte, and may have a distribution passage form having a plurality of branches, for example.
레독스 흐름 전지(1000)에서 전해액의 흐름은 굉장히 중요하다. 전해액 펌프(302,304)를 통해 이동된 전해액은 유로(F)를 갖는 바이폴라 플레이트(118,119)로 이동하게 되고, 이어서 산화 환원을 일으키는 전극층을 갖는 전극 플레이트(120,121)와 접촉한다. 이때 전해액의 유량 특성이 균일하지 못할 경우 전극층에서 속도 차이가 나게 되거나, 반응을 하지 못하는 부분에 의한 과전압이 발생하게 된다. 과전압이 발생하게 되면 스택 내부의 온도가 상승하게 되고 전해액으로 바나듐 계열을 사용할 경우 석출이 발생하여 유로를 막는다. 고체 상태로 석출된 V2O5  (Vanadium oxide)에 의해 전해액의 이동 통로인 유로를 막거나, 전해액과의 반응 사이트를 감소시켜 전지 효율이 저하된다. 뿐만 아니라, 석출에 의한 막힘 현상은 내부 압력을 증가시켜 직렬로 연결된 단위 스택의 가스켓 부분을 팽창시킴으로써 누수가 발생된다. 결국 위와 같은 문제로 오작동 및 셧다운 현상이 발생하여 전체적인 시스템에 문제를 일으킬 수 있다.The flow of electrolyte in the redox flow battery 1000 is very important. The electrolyte transferred through the electrolyte pumps 302 and 304 is moved to the bipolar plates 118 and 119 having the flow path F, and then contacted with the electrode plates 120 and 121 having the electrode layers causing redox. At this time, if the flow rate characteristics of the electrolyte is not uniform, the difference in speed in the electrode layer, or overvoltage due to the portion that cannot react. When an overvoltage occurs, the temperature inside the stack rises, and when vanadium-based electrolyte is used, precipitation occurs to block the flow path. V 2 O 5 precipitated in solid state   (Vanadium oxide) reduces the flow path of the electrolyte passage, or reduces the reaction site with the electrolyte, thereby lowering battery efficiency. In addition, clogging due to precipitation causes leakage by increasing the internal pressure to expand the gasket portion of the unit stack connected in series. As a result, these problems can lead to malfunctions and shutdowns that can cause problems for the entire system.
따라서 레독스 흐름 전지(1000)는 전해액의 유량 특성에 의해 단위 스택의 성능 및 수명이 좌우된다는 점을 알 수 있으며, 이러한 유량 특성을 개선하기 위해 전지의 단위 스택 외부에 부가적인 장치를 이용하는 방법이 사용되었으나, 그에 따른 주변 기자재 및 부피 증가에 따라 설치가 용이하지 못한 단점이 있었다.Accordingly, it can be seen that the redox flow battery 1000 has a performance and lifespan of the unit stack depending on the flow rate characteristics of the electrolyte solution. Although it was used, there was a disadvantage that the installation is not easy due to the increase in peripheral equipment and volume accordingly.
본 발명에서는 바이폴라 플레이트(118,119)에 있는 유로 내부에 섬유형 도전재(151)를 삽입한다.In the present invention, the fibrous conductive material 151 is inserted into the flow path in the bipolar plates 118 and 119.
도 5의 (a) 및 (b)는 바이폴라 플레이트(118,119)의 바디(151) 상에 격벽(154)을 배치하여 유로(F)를 형성하고, 이 유로(F) 내부에 섬유형 도전재(151)를 삽입한 것을 보여주는 입체 사시도이다. 5A and 5B, the partition wall 154 is disposed on the bodies 151 of the bipolar plates 118 and 119 to form a flow path F, and the fibrous conductive material ( 3D is a perspective view showing the insertion of 151.
도 5(b)와 같이 섬유형 도전재(151)를 삽입함으로써 유로(F) 내부를 통과하는 전해액의 체류 시간을 높여 전극 반응 시간을 충분히 확보하여 레독스 흐름 전지(1000)는 충/방전 용량을 증가시킬 뿐만 아니라 바이폴라 플레이트(118,119)에 유입구/배출구에서의 전해액의 차압을 획기적으로 저감시킬 수 있다.By inserting the fibrous conductive material 151 as shown in FIG. 5 (b), the residence time of the electrolyte passing through the flow path F is increased, thereby sufficiently securing the electrode reaction time, and thus the redox flow battery 1000 has a charge / discharge capacity. In addition, the differential pressure of the electrolyte solution at the inlet / outlet of the bipolar plates 118 and 119 can be dramatically reduced.
섬유형 도전재(151)는 공급 유로(171) 또는 배출 유로(172)에 설치할 경우 전해액의 유체 흐름에 영향을 주어, 유입구(161) 및 배출구(162) 사이의 차압을 증가시킬 수 있으므로, 전극 플레이트와 접하는 전해액 반응부(R) 내에 설치한다. When the fibrous conductive material 151 is installed in the supply passage 171 or the discharge passage 172, the fibrous conductive material 151 may affect the fluid flow of the electrolyte, thereby increasing the pressure difference between the inlet 161 and the outlet 162. It is installed in electrolyte solution part R which contact | connects a plate.
섬유형 도전재(151, 또는 도전성 섬유)란 3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체를 의미한다. 유로(F) 내 삽입되는 섬유형 도전재(151)의 재질은 어느 정도의 기공도를 가지고, 전도성이 있는 재질이면 어느 것이든 가능하다. 바람직하기로, 전해액의 흐름을 막지 않으면서도 상기 전해액과 전극 플레이트(120,121)의 전극층과의 반응을 높이기 위해 상기 전극 플레이트(120,121)의 전극층에서 사용하는 동일 또는 유사한 재질을 사용하는 것이 바람직하다.The fibrous conductive material 151 or conductive fiber refers to a plurality of fiber structures forming a three-dimensional porous network structure. The material of the fibrous conductive material 151 inserted into the flow path F may have any porosity and may be any material as long as it is conductive. Preferably, the same or similar material used in the electrode layers of the electrode plates 120 and 121 may be used to increase the reaction between the electrolyte and the electrode layers of the electrode plates 120 and 121 without blocking the flow of the electrolyte.
더욱 바람직하기로, 본 발명의 섬유형 도전재(151)란 탄소 재질 또는 금속 재질의 섬유가 집합체를 이루어 판상 형태로 적층된 구조를 가지는 것을 의미한다.More preferably, the fibrous conductive material 151 of the present invention means having a structure in which carbon fibers or metal fibers are stacked to form an aggregate.
상기 섬유형 도전재(151)는 카본 펠트, 그라파이트 펠트, 카본천, 카본 페이퍼, 금속천, 금속 펠트 및 발포금속으로 이루어진 군에서 선택된 1종 이상의 직물 형태인 것을 특징으로 한다.The fibrous conductive material 151 is characterized in that at least one type of fabric selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt and foamed metal.
상기 '카본 펠트 또는 그라파이트 펠트'는 탄소 또는 그라파이트 재질을 방사 공정을 통해 제작된 섬유가 판상 형태로 불규칙적인 집합체(매트 형태)를 형성한 것을 의미한다. The 'carbon felt or graphite felt' means that the fiber produced by spinning the carbon or graphite material to form an irregular aggregate (mat shape) in the form of a plate.
상기 '카본천'은 방사 등의 공정을 통해 제작된 탄소 섬유가 직조를 통해 3차원적으로 규칙적인 집합체를 형성한 것을 의미한다.The 'carbon cloth' means that the carbon fibers produced through the spinning process to form a three-dimensional regular aggregate through the weaving.
상기 '카본 페이퍼'는 탄소 재질의 섬유가 응집하여 종이 형태의 집합체를 형성한 것을 의미한다.The 'carbon paper' means that the carbon fibers are aggregated to form a paper-like aggregate.
상기 '금속천'은 방사 등의 공정을 통해 제작된 금속 섬유가 직조를 통해 3차원적으로 규칙적인 집합체를 형성한 것을 의미한다.The 'metal cloth' means that the metal fibers produced through spinning and the like form a three-dimensionally regular aggregate through weaving.
상기 '발포금속'은 금속 재질이 발포 공정을 통해 내부에 많은 공기방울 격자를 갖는 3차원적 구조체를 의미한다.The 'foam metal' refers to a three-dimensional structure in which a metal material has a large number of air bubble gratings therein through a foaming process.
상기 금속천 및 발포금속은 일례로 Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni 및 Fe로 이루어진 군에서 선택된 1종 이상의 금속을 포함하여 사용할 수 있다.The metal cloth and the foamed metal may include Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni, and Fe. It can be used including one or more metals selected from the group.
섬유형 도전재(151)는 섬유가 규칙적 또는 펠트의 경우 불규칙적으로 결합하여 이루어지는 삼차원 그물눈 구조를 가짐으로써 강성이 높고, 변형이 쉽게 이루어지지 않으면서도 다수의 기공을 가져 전해액의 이동이 원활이 이루어질 수 있다. 상기 섬유형 도전재(151)는 구조체 내에 마이크로 기공, 메조 기공, 매크로 기공 등이 복합적으로 존재하며, 이러한 기공의 조절은 제조 방법에 따라 달라질 수 있다.The fibrous conductive material 151 has a high rigidity by having a three-dimensional mesh structure in which fibers are regularly or irregularly bonded in the case of felt, and has a large number of pores without being easily deformed, thereby allowing the electrolyte to move smoothly. have. The fibrous conductive material 151 has a complex micropores, mesopores, macropores, etc. in the structure, the control of these pores may vary depending on the manufacturing method.
카본 블랙과 같은 전도성 입자의 경우 유로(F) 내 고정이 어렵고, 고정 하더라도 전지의 작동 중 이동이 쉽게 발생하여 전해액의 유속 조절이 어려운 문제가 발생한다. 또한, 금속 메쉬의 경우 전해액의 흐름 시 난류를 발생할 우려가 있고, 이로 인해 전지 내 차압이 커지는 문제가 발생한다. 따라서, 섬유형 도전재(151)의 사용이 가장 바람직하다 할 수 있다.In the case of conductive particles such as carbon black, it is difficult to fix in the flow path (F), and even if fixed, movement occurs easily during operation of the battery, and thus it is difficult to control the flow rate of the electrolyte. In addition, in the case of the metal mesh, there is a fear that turbulence may occur during the flow of the electrolyte, thereby causing a problem that the pressure difference in the battery increases. Therefore, the use of the fibrous conductive material 151 may be most preferable.
섬유형 도전재(151)는 전해액의 흐름성을 방해하지 않도록 하기 위해, 물성에 대한 파라미터의 제어가 필요하다. 전해액의 흐름성과 관련된 파라미터로는 다양한 인자가 고려될 수 있으나, 우선적으로 섬유형 도전재(151)의 기공도와 이와 관련된 벌크 밀도를 들 수 있다.In order to prevent the fibrous conductive material 151 from disturbing the flowability of the electrolyte, it is necessary to control the parameters for physical properties. As a parameter related to the flowability of the electrolyte, various factors may be considered. First, the porosity of the fibrous conductive material 151 and the bulk density associated with it may be mentioned.
기공도가 너무 낮거나 높을 경우 섬유형 도전재(151)의 충진에 의해 전해액의 흐름이 지체되어 전해액의 유입구(161) 및 배출구(162)에서 측정되는 차압을 높아져, 과전압에 의해 전지에 부하가 걸려 전지 성능의 저하를 야기한다. 상기 기공도(또는 공극률)는 직물 밀도과 관련된 파라미터로서, 벌크 밀도(bulk density)가 너무 높을 경우 전해액의 유체 흐름을 방지하여 전지 내 차압을 높일 수 있고, 반대로 직물 밀도가 너무 낮을 경우에는 유로(F) 내부에서의 전해액의 체류 시간을 충분히 높일 수 없다.If the porosity is too low or too high, the flow of the electrolyte is delayed by the filling of the fibrous conductive material 151, thereby increasing the differential pressure measured at the inlet 161 and the outlet 162 of the electrolyte, and the load on the battery due to the overvoltage. It may cause a drop in battery performance. The porosity (or porosity) is a parameter related to the fabric density, and when the bulk density is too high, it can prevent the fluid flow of the electrolyte and increase the differential pressure in the battery. ) The residence time of the electrolyte in the interior cannot be sufficiently increased.
바람직하기로, 섬유형 도전재(151)의 기공도는 10 내지 99%, 바람직하기로 50 내지 95%인 것이 바람직하고, 벌크 밀도는 3mm 두께를 기준으로 0.05 내지 0.2 g/cm3, 바람직하기로 0.1 내지 0.15 g/cm3인 것을 사용한다. Preferably, the porosity of the fibrous conductive material 151 is preferably 10 to 99%, preferably 50 to 95%, and the bulk density is 0.05 to 0.2 g / cm 3 , preferably 3 mm thick. To 0.1 to 0.15 g / cm 3 is used.
이때 섬유형 도전재(151)를 구성하는 각 섬유의 직경은 0.5 내지 50㎛, 바람직하기로 0.1 내지 30㎛을 가질 수 있으며, 상기 섬유형 도전재(151)의 평균 직경은 0.01 내지 900㎛, 바람직하기로 0.05 내지 500㎛의 범위를 가질 수 있다.At this time, the diameter of each fiber constituting the fibrous conductive material 151 may have a 0.5 to 50㎛, preferably 0.1 to 30㎛, the average diameter of the fibrous conductive material 151 is 0.01 to 900㎛, Preferably it may have a range of 0.05 to 500㎛.
본 발명의 섬유형 도전재(151)의 재질은 탄소 재질, 금속 재질 또는 이들의 조합을 포함하는 재질이 사용될 수 있으며, 바람직하기로 카본 펠트를 사용한다. 상기 카본 펠트 및 그라파이트 펠트는 내화학성, 넓은 전압 범위에서의 안정성, 고강도의 특성을 갖는다. 상기 금속천 또는 발포금속은 높은 도전성으로 인해 전기화학 반응 속도를 높일 수 있다.As the material of the fibrous conductive material 151 of the present invention, a material including a carbon material, a metal material, or a combination thereof may be used, and preferably, carbon felt is used. The carbon felt and the graphite felt have characteristics of chemical resistance, stability over a wide voltage range, and high strength. The metal cloth or the foamed metal may increase the electrochemical reaction rate due to high conductivity.
이러한 섬유형 도전재(151)는 직접 제조하거나 바이폴라 플레이트(118,119)의 유로(F)에 적합하도록 시판되는 것을 주문 제작하여 사용이 가능하다. The fibrous conductive material 151 may be manufactured directly or be manufactured by customizing a commercially available product suitable for the flow path F of the bipolar plates 118 and 119.
일례로, 카본 펠트는 카본섬유 전구체 펠트를 탄화하여 제조할 수 있다. 카본섬유 전구체 펠트는 레이온 섬유, 폴리아크릴로니트릴 섬유 등으로 제조할 수 있으며, 탄화 및 흑연화는 질소 분위기나 진공 분위기에서 실시한다. 카본섬유 전구체 펠트는 탄화 및 흑연화 공정에 의하여 카본을 제외한 나머지 원소들이 분해되어서 제거되고, 카본만이 남아 카본 펠트를 제작한다.In one example, the carbon felt may be prepared by carbonizing the carbon fiber precursor felt. The carbon fiber precursor felt can be made of rayon fiber, polyacrylonitrile fiber, or the like, and carbonization and graphitization are carried out in a nitrogen atmosphere or a vacuum atmosphere. The carbon fiber precursor felt is decomposed and removed except for carbon by carbonization and graphitization processes, and only carbon remains to produce carbon felt.
본 발명의 섬유형 도전재(151)는 펠트 재질에 전도성을 높이거나 산화환원 반응을 촉진시키기 위해 상기 섬유형 도전재(151)에 대해 표면 처리를 수행하거나 추가 물질을 더욱 첨가할 수 있다.The fibrous conductive material 151 of the present invention may perform surface treatment or further add an additional material to the fibrous conductive material 151 in order to increase conductivity or promote a redox reaction to the felt material.
카본 펠트는 표면이 소수성을 띠기 때문에 전해질 용액과 전극이 용이하게 반응할 수 있도록 표면 고분자 제거와 산소 관능기 도입 및 친수성 향상이 매우 중요하다 할 수 있다. 카본재료는 다른 음이온이 도입되었을 때 전기화학적 성능이 달라지며 특히, 질소 원소의 경우 산화/환원 반응 등의 전기화학적 특성을 증가시킨다.Since the surface of the carbon felt is hydrophobic, it may be very important to remove the surface polymer, introduce oxygen functional groups, and improve hydrophilicity so that the electrolyte solution and the electrode can easily react. The carbon material has different electrochemical performance when other anions are introduced, and in particular, nitrogen element increases electrochemical properties such as oxidation / reduction reaction.
일례로, 표면 처리는 전해액과의 친화성을 향상시키기 위한 표면에 관능기가 생성되도록 약 300 내지 450℃에서 1 내지 15시간 정도의 열처리를 수행하거나 오존 또는 공기 분위기하에서 수행되며, 140 내지 600℃의 온도에서 4 분 내지 7 시간 동안 열처리하여 표면에 카르복실기, 카르보닐기, 또는 하이드록실기와 같은 산소 작용기를 도입하거나, 비활성 기체 분위기하에서 질소 전구체를 투입하고 800 내지 1000℃의 온도로 10 내지 60 분 동안 열처리하여 표면에 질소 작용기를 도입하여 사용할 수 있다.In one example, the surface treatment is a heat treatment of about 1 to 15 hours at about 300 to 450 ℃ or in an ozone or air atmosphere to produce a functional group on the surface to improve the affinity with the electrolyte solution, 140 to 600 ℃ Heat treatment at temperature for 4 minutes to 7 hours to introduce oxygen functional groups such as carboxyl group, carbonyl group, or hydroxyl group on the surface, or nitrogen precursor under an inert gas atmosphere and heat treatment for 10 to 60 minutes at a temperature of 800 to 1000 ° C. It can be used by introducing a nitrogen functional group on the surface.
또한, 추가 물질의 첨가는 카본계 도전재 및/또는 금속 입자로 이루어질 수 있다. In addition, the addition of the additional material may consist of carbon-based conductive material and / or metal particles.
상기 카본계 도전재는 카본 페이퍼, 카본 파이버, 카본 블랙, 아세틸렌 블랙, 활성 카본, 플러렌(fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼(carbon nano-horn), 및 카본 나노 링(carbon nano ring)으로 이루어진 군으로부터 선택된 1종 이상이 가능하다.The carbon-based conductive material may be carbon paper, carbon fiber, carbon black, acetylene black, activated carbon, fullerene, carbon nanotubes, carbon nanowires, carbon nano-horns, and carbon nano rings. one or more selected from the group consisting of rings).
금속 입자는 Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni 및 Fe로 이루어진 군에서 선택된 1종 이상이 가능하다. 이들은 전기화학 반응의 촉매 효과를 위해 수 나노에서 수백 마이크론 입자 크기의 것을 사용할 수 있으며, 바람직하기로 나노 수준의 입자 크기를 갖는 것을 사용한다. The metal particles are at least one selected from the group consisting of Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni and Fe This is possible. They may use particles of several nanometers to several hundred microns for the catalytic effect of the electrochemical reaction, preferably those having a nanoscale particle size.
상기 추가 물질은 전해액의 흐름을 방지하지 않는 수준에서 사용하며, 섬유형 도전재(151) 내 10 중량% 이하의 함량으로 사용할 수 있다.The additional material may be used at a level that does not prevent the flow of the electrolyte, and may be used in an amount of 10 wt% or less in the fibrous conductive material 151.
이러한 표면 처리 또는 추가 물질은 각각 또는 혼합하여 사용이 가능하며, 이로 인해 산화환원 반응이 보다 원활해지고 산화환원에 의한 전자 전달 속도 및 산화환원의 가역성도 증가하게 되어, 결과적으로 레독스 흐름 전지(1000)의 성능을 향상시킨다.These surface treatments or additional materials can be used individually or in combination, which results in smoother redox reactions, increased electron transfer rates and redox reversibility by redox, and consequently redox flow cells (1000). Improve performance).
유로(F)는 격벽(154)을 통해 형성되며 이때 격벽(154)의 폭 및 두께는 바이폴라 플레이트(118,119)의 크기에 따라 적절히 조절할 수 있다. 도 5를 참조하여 보면, 격벽(154) 사이의 간격은 유로 채널 폭으로 정의되며, 격벽(154)의 두께는 유로 채널의 깊이로 정의한다.The flow path F is formed through the partition wall 154, and the width and thickness of the partition wall 154 may be appropriately adjusted according to the sizes of the bipolar plates 118 and 119. Referring to FIG. 5, the distance between the partition walls 154 is defined as the flow channel width, and the thickness of the partition walls 154 is defined as the depth of the flow channel.
상기 격벽(154)의 단면은 직사각형, 정사각형, 삼각형, 트렌치 구조, 반구형, 다각형 등 다양한 형태가 가능하며, 통상적으로 전해액의 흐름을 위해 직사각형 형태를 갖도록 한다.The cross section of the partition wall 154 may have various shapes such as a rectangle, a square, a triangle, a trench structure, a hemisphere, a polygon, and the like, and generally have a rectangular shape for the flow of the electrolyte.
일반적으로, 가로*세로 (5 내지 10 cm2)의 바이폴라 플레이트(118,119)를 제작할 경우 격벽(154)의 폭은 3.0 내지 8.0 mm, 두께는 1 내지 3.5 mm, 유로 채널 폭은 3.0 내지 8.0 mm, 유로 채널의 깊이는 1 내지 3.5 mm가 된다.Generally, when the bipolar plates 118 and 119 having a width * length (5 to 10 cm 2 ) are manufactured, the partition wall 154 has a width of 3.0 to 8.0 mm, a thickness of 1 to 3.5 mm, a flow channel width of 3.0 to 8.0 mm, The depth of the flow channel is between 1 and 3.5 mm.
이때 섬유형 도전재(151)의 충진은 유로 부피(유로 채널 폭*유로 채널 깊이*격벽의 길이)에 대해 10 내지 100%, 바람직하기로 50 내지 95%의 부피로 충진될 수 있다.In this case, the filling of the fibrous conductive material 151 may be filled at a volume of 10 to 100%, preferably 50 to 95%, based on the flow volume (flow channel width * flow channel depth * length of the partition wall).
또한, 충진 두께로 조절할 경우 섬유형 도전재(151)의 두께(Y) 대비 유로 채널의 깊이(X) 가 1< Y/X ≤2.5, 바람직하게는 1< Y/X ≤1.5 식을 만족하도록 상기 섬유형 도전재(151)를 삽입 배치한 다음, 소정의 압력을 인가하여 유로(F) 내부에 섬유형 도전재(151)를 고정한다. 이때 압력 인가 후 최종적으로 고정된 섬유형 도전재(151)는 그 두께(Y)가 최대 유로 채널 깊이(X)와 동등하여 수평을 유지하거나 이보다 약간 높거나 낮게 형성하고(0.8≤Y/X≤1.2), 전해액 흐름을 고려하여 0.8≤Y/X≤1.0 식을 만족하도록 형성될 수 있도록 한다. In addition, when the filling thickness is adjusted, the depth (X) of the flow channel is compared with the thickness (Y) of the fibrous conductive material 151 such that 1 <Y / X≤2.5, preferably 1 <Y / X≤1.5. After the fibrous conductive material 151 is inserted and disposed, a predetermined pressure is applied to fix the fibrous conductive material 151 inside the flow path (F). At this time, the fibrous conductive material 151 finally fixed after the application of pressure has a thickness (Y) equal to the maximum flow channel depth (X) to be horizontal or formed slightly higher or lower than this (0.8≤Y / X≤ 1.2), taking into account the flow of the electrolyte, it can be formed to satisfy the formula 0.8≤Y / X≤1.0.
이때 유로(F) 내 전지의 흐름성을 높이기 위해 유로(F) 간 간격과 유로(F) 내부 폭의 조절이 필요하다. At this time, in order to increase the flowability of the battery in the flow path (F) it is necessary to adjust the interval between the flow path (F) and the inner width of the flow path (F).
전해액 반응부(R)의 수평 방향의 폭을 W1라 하고, 유로 채널의 수평 방향의 폭을 W2라 할 때 W1:W2는 1:10~10:1의 비를 갖는다. 좀더 자세히 설명하면, 유로의 개수가 동일할 때, 유로(F) 간 간격이 지나치게 조밀하면서 유로 채널 폭(W2)은 넓을 경우에는 유로가 없는 바이폴라 플레이트(118,119)와 효과 차이가 거의 없어서 유량에 따라 발생하는 내부 차압을 조절하기 어렵고, 반대로 폭(W1)이 지나치게 넓으면서 유로 채널 폭(W2)은 좁은 경우에는 유로(F) 내로 충분한 양의 전해액이 흐르기 어려워 전지의 효율이 떨어진다.When the width in the horizontal direction of the electrolyte reaction unit R is W1 and the width in the horizontal direction of the flow channel is W2, W1: W2 has a ratio of 1:10 to 10: 1. In more detail, when the number of flow paths is the same, when the spacing between the flow paths F is too dense and the flow channel width W2 is wide, there is almost no effect difference with the flow path-free bipolar plates 118 and 119. It is difficult to control the generated internal differential pressure. On the contrary, when the width W1 is too wide and the flow channel channel width W2 is narrow, a sufficient amount of electrolyte is difficult to flow into the flow path F, resulting in low battery efficiency.
상기 충진 부피 및 충진 두께를 조절하지 않을 경우 전해액의 유체 흐름에 영향을 주게 되고, 차압이 발생하거나 단위 면적당 걸리는 저항 값이 높아져 충방전 전류밀도가 낮아질 수 있으므로, 상기 파라미터를 고려하여 섬유형 도전재(151)의 충진 정도를 조절하여 바이폴라 플레이트(118,119)를 제작하는 것이 바람직하다. If the filling volume and the filling thickness are not controlled, the fluid flow of the electrolyte may be affected, and the differential pressure may occur or the resistance value per unit area may be increased, thereby reducing the charge / discharge current density. It is preferable to manufacture the bipolar plates (118, 119) by adjusting the filling degree of (151).
한편, 본 발명의 바이폴라 플레이트(118,119)의 유로(F)는 도 6에 도시한 바를 포함하여 다양한 유로 형태를 구성할 수 있다.Meanwhile, the flow paths F of the bipolar plates 118 and 119 of the present invention may include various flow path shapes, as illustrated in FIG. 6.
유로(F)의 형태는 유체 흐름과 관련된 기술 분야에서 알려진 다양한 형태가 사용될 수 있으며, 그 예로서 도 7에 나타낸 바와 같이 다양한 형태가 가능하다.The shape of the flow path (F) can be used in various forms known in the art related to the fluid flow, for example, various forms are possible as shown in FIG.
도 7을 참조하면, 유로(F)는 (a) 패러렐(parallel), (b) 서펜틴(serpentine), (c)~(d) 세미서펜틴(semi-serpentine), (e) 맞물림형(interdigitated), (f) 지그재그(zigzag), (h)~(i) 핀(pin) 등의 다양한 형태가 가능하고, 이때 유로의 시작과 끝은 개방(open) 또는 폐쇄(closed) 형태를 갖는다.Referring to Figure 7, the flow path (F) is (a) parallel (parallel), (b) serpentine, (c) ~ (d) semi-serpentine, (e) interlocking type ( Various forms such as interdigitated, (f) zigzag, and (h) to (i) pins are possible, and the start and end of the flow path may be open or closed.
본 발명의 바람직한 구현예에 따르면, 바이폴라 플레이트(118,119)의 유로(F)는 맞물림형(interdigitated, 또는 깍지형)의 형태를 가질 수 있다.According to a preferred embodiment of the present invention, the flow paths F of the bipolar plates 118 and 119 may have an interdigitated or pod shaped shape.
맞물림형 유로 구조란 서로 맞물려 있는 형태의 유로(F)들이 연속 배치되고, 각 유로(F)들은 일면이 폐쇄되어 있는 구조로서, 번 갈아서 유로(F)의 입구 또는 출구가 개방되는 형태를 의미한다. 상기 맞물림형 유로 구조의 경우 전해액이 유로를 따라 흐르는 것뿐만 아니라 유로(F)를 타고 흘러 전극 반응의 기회를 더욱 높여 레독스 흐름 전지(1000)의 충/방전 용량을 높일 수 있다. The interlocking flow path structure refers to a structure in which flow paths F engaged with each other are continuously disposed, and each flow path F has a closed surface, and the inlet or outlet of the flow path F is alternately opened. . In the interlocking flow channel structure, not only the electrolyte flows along the flow path but also flows through the flow path F, thereby increasing the chance of the electrode reaction, thereby increasing the charge / discharge capacity of the redox flow battery 1000.
그러나 이러한 맞물림형 유로 구조에서는 유로(F) 내부로 흐르는 전해액의 일부 만이 전극층(32a, 32b)과 반응하므로 전해액의 단위 량 대비 최대의 반응 효율을 이끌어내는 것에는 한계가 있다. 특히, 전지의 고출력 또는 고밀도 등의 이유로 전해액을 높은 유량으로 제공하는 경우에도 전해액의 유로(F) 내 체류 시간을 충분히 확보하기 어렵다.However, in such an interlocking flow channel structure, only a part of the electrolyte flowing into the flow path F reacts with the electrode layers 32a and 32b, and thus there is a limit in obtaining the maximum reaction efficiency compared to the unit amount of the electrolyte. In particular, even when the electrolyte is provided at a high flow rate due to the high output or high density of the battery, it is difficult to sufficiently secure the residence time in the flow path F of the electrolyte.
본 발명에서 제시하는 바와 같이 유로(F) 내부에 섬유형 도전재(151)를 충진할 경우 전해액이 유로에 따라 흐르는 것이 아니라 상기 유로 내 삽입된 섬유형 도전재(151)와 접촉하고 바이폴라 플레이트(118,119)와 접한 전극층을 통하여 하나의 유로(F)를 넘어서 인접한 다음 유로(F)로 이송된다. 즉, 전해액이 단순히 흐르는 것이 아니라 유로(F) 내에 머무르며 섬유형 도전재(151)와 충분히 반응함과 동시에, 바이폴라 플레이트(118,119)와 접하는 전극층과도 충분히 접촉하여 반응하면서, 천천히 하나의 유로(F)에서 인접하는 다른 유로(F)로 타고 넘어서는 과정을 여러 번 거쳐 이송된다.As shown in the present invention, when the fibrous conductive material 151 is filled in the flow path F, the electrolyte does not flow along the flow path, but contacts the fibrous conductive material 151 inserted in the flow path and the bipolar plate ( Through the electrode layers in contact with the 118 and 119, it is transferred to the next adjacent flow path F beyond one flow path F. That is, the electrolyte solution does not simply flow, but stays in the flow path F, and sufficiently reacts with the fibrous conductive material 151, and reacts with the electrode layers in contact with the bipolar plates 118 and 119, while slowly reacting with one flow path F. ) Is transported through the process of passing over to another adjacent flow path (F) several times.
이러한 구조에서는 유로(F) 내부에 삽입된 상기 섬유형 도전재(151)로 인해 동일한 양의 전해액으로도 효율적인 전극 반응을 일으킬 수 있고 전해액의 이송 속도(흐름성)를 조절할 수 있다. 이는 전해액이 유로(F)를 통과하지 않고 상기 섬유형 도전재(151)에 일단 접촉하여 일정 시간 동안 머무르면서 다 방향으로 확산되고, 전해액의 체류 시간이 길어지고 반응 표면적이 넓어져 전극 반응의 기회가 증가하게 되기 때문이다. In this structure, the fibrous conductive material 151 inserted into the flow path F may cause an efficient electrode reaction even with the same amount of electrolyte and control the transport speed (flowability) of the electrolyte. This is because the electrolyte does not pass through the flow path (F), but contacts the fibrous conductive material 151 and stays for a predetermined time and diffuses in multiple directions, and the residence time of the electrolyte is long and the reaction surface area is widened, thereby increasing the chance of electrode reaction. Because it will increase.
또한, 반응 면적의 증가는 전해액 반응에 걸리는 과전압 감소로 이어져, 전지의 효율을 상승시키는 효과를 일으킨다. 이러한 구조에서는, 전해액이 빠른 유속으로 이송되는 흐름 전지의 경우 바이폴라 플레이트(118,119)의 전해액 유입구/배출구에서 발생하는 압력 차이도 줄일 수 있다.In addition, an increase in the reaction area leads to a decrease in the overvoltage applied to the electrolyte reaction, resulting in an effect of increasing the efficiency of the battery. In such a structure, the pressure difference generated at the electrolyte inlet / outlet of the bipolar plates 118 and 119 can be reduced in the case of the flow battery in which the electrolyte is transferred at a high flow rate.
결과적으로, 본 발명의 일 구현예에 의해 내부에 섬유형 도전재(151)가 삽입된 맞물림형 유로 구조를 갖는 바이폴라 플레이트(118,119)를 채용할 경우 전해액의 유체 흐름에 의해 전기화학 반응의 면적이 증가하여 단위 면적당 걸리는 저항 값을 낮출 수 있다. 이로 인해 대용량의 전지를 구현하더라도 높은 충방전 용량 및 전류 효율과 함께 보다 향상된 에너지 효율을 갖는 전지의 구현이 가능하다.As a result, when the bipolar plates 118 and 119 having the interlocking flow path structure in which the fibrous conductive material 151 is inserted according to the embodiment of the present invention, the area of the electrochemical reaction is reduced by the fluid flow of the electrolyte. This can increase the resistance value per unit area. Therefore, even if a large capacity battery is implemented, it is possible to implement a battery having improved energy efficiency with high charge and discharge capacity and current efficiency.
전술한 바의 구성을 갖는 바이폴라 플레이트(118,119)는 전극 플레이트(120,121) 및 이온 교환막 플레이트(123)와 접합되어 단위셀을 구성한다.The bipolar plates 118 and 119 having the above-described configuration are bonded to the electrode plates 120 and 121 and the ion exchange membrane plate 123 to form a unit cell.
이온 교환막 플레이트(123)는 판 형태의 바디와 함께 이의 중앙부에 이온 교환막이 삽입되고, 전극 플레이트(120,121)는 판 형태의 바디와 함께 이의 중앙부에 전극층이 삽입된 구조를 갖는다. The ion exchange membrane plate 123 has a plate-shaped body and an ion exchange membrane is inserted in the center thereof, and the electrode plates 120 and 121 have a structure in which an electrode layer is inserted in the center thereof together with the plate-shaped body.
이온 교환막 플레이트(123)의 이온 교환막은 이온 투과막 또는 세퍼레이터라 하며, 전해액 내 이온을 통과시키도록 구성되며, 상기 전해액을 통해 양측에 위치한 전극 플레이트(120,121)의 전극층의 전기화학적 반응을 통해 전기를 발생한다. 이때 이온 교환막의 재질, 두께 및 각 구성 요소는 본 발명에서 특별히 한정하지 않으며, 공지의 것이 사용될 수 있다.The ion exchange membrane of the ion exchange membrane plate 123 is called an ion permeable membrane or a separator, and is configured to pass ions in the electrolyte, and conducts electricity through an electrochemical reaction of the electrode layers of the electrode plates 120 and 121 located at both sides through the electrolyte. Occurs. At this time, the material, thickness and each component of the ion exchange membrane is not particularly limited in the present invention, a known one can be used.
또한, 이온 교환막 플레이트(123)와 바이폴라 플레이트(118,119) 사이에 위치하는 전극 플레이트(120,121)는 전해액의 조성에 따라 전극 플레이트(120,121) 중 하나는 양극, 다른 하나는 음극으로서의 기능을 한다. 전극 플레이트(120,121) 는 바디 내부에 전기화학적 반응을 위한 전극층(또는 전극층)를 구비하고, 상기 전극층에는 공지한 바의 도전성을 갖는 재질이 사용된다. 일례로, 상기 전극층은 카본 펠트, 그라파이트 펠트, 카본천, 카본 페이퍼, 금속천, 금속 펠트 및 발포금속으로 이루어진 군으로부터 선택되는 1종의 도전성 재질이 가능하다.In addition, the electrode plates 120 and 121 positioned between the ion exchange membrane plate 123 and the bipolar plates 118 and 119 function as one of the electrode plates 120 and 121 as the anode and the other as the cathode according to the composition of the electrolyte. The electrode plates 120 and 121 are provided with an electrode layer (or electrode layer) for electrochemical reaction in the body, and a material having conductivity as known in the electrode layer is used. For example, the electrode layer may be one kind of conductive material selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt, and foamed metal.
전극층은 바이폴라 플레이트(118,119)에서 설명한 바의 섬유형 도전재(151)와 동일하거나 이와 유사한 것을 사용한다. 즉, 상기 섬유형 도전재(151)로서 언급한 바의 조성 및 물성(예, 기공도, 벌크 밀도)을 따른다.The electrode layer may be the same as or similar to the fibrous conductive material 151 described in the bipolar plates 118 and 119. That is, according to the composition and physical properties (eg, porosity, bulk density) as referred to as the fibrous conductive material 151.
바람직하기로, 전기화학 반응을 위해서 바이폴라 플레이트(118,119) 내부에 충진된 섬유형 도전재(151)와 전극층의 재질을 서로 동일한 것을 사용하며, 더욱 바람직하기로 양 측 모두 카본 펠트를 사용한다. Preferably, for the electrochemical reaction, the same materials as the fibrous conductive material 151 and the electrode layer filled in the bipolar plates 118 and 119 are used, and more preferably both sides use carbon felt.
또한, 상기 섬유형 도전재(151)와 전극층은 동일 또는 유사한 기공도를 가질 수 있으며, 바람직하기로는 전극층의 기공도가 바이폴라 플레이트(118,119) 내 섬유형 도전재(151)의 기공도보다 크게 조절하여 사용할 수 있다. 이 경우 많은 공극을 가지는 섬유형 도전재(151) 내로 전해액이 충분히 스며들어 유로(F) 내에 머무르게 반응을 위한 최대한의 접촉 면적이 제공될 수 있고, 반응이 충분히 진행될 때까지 유로(F) 내 전해액을 포함하고 있을 수 있으며, 보다 섬세한 차압 조절 또한 가능해진다. In addition, the fibrous conductive material 151 and the electrode layer may have the same or similar porosity. Preferably, the porosity of the electrode layer is controlled to be larger than that of the fibrous conductive material 151 in the bipolar plates 118 and 119. Can be used. In this case, a maximum contact area for the reaction may be provided to sufficiently infiltrate the electrolyte into the fibrous conductive material 151 having many voids and remain in the flow path F, and the electrolyte in the flow path F until the reaction proceeds sufficiently. It may include, it is possible to finer pressure differential adjustment.
또한, 본 발명의 전극층은 필요한 경우 구배 형태를 갖는 것을 사용할 수 있다. 이러한 구배는 바이폴라 플레이트(118,119)의 유입구(161) 및 배출구(162)에서 필연적으로 발생하는 압력 구배에 의한 반응의 불균일성, 전류 밀도의 저하, 유로(F) 내 국부적 저항 증가 등을 해소할 수 있다.In addition, the electrode layer of this invention can use what has a gradient form as needed. Such a gradient may solve the nonuniformity of the reaction due to the pressure gradient inevitably occurring at the inlet 161 and the outlet 162 of the bipolar plates 118 and 119, a decrease in the current density, and an increase in the local resistance in the flow path F. .
일 구현예에 따르면, 전해액의 유체 흐름을 고려하여 기공도가 구배를 갖거나 기공의 크기가 구배를 갖도록 형성한 재질을 사용하거나, 금속 입자 등의 추가 물질을 사용할 경우 농도 구배를 갖도록 코팅 또는 함침시켜 사용할 수 있다.According to one embodiment, the coating or impregnation to have a concentration gradient when using a material formed to have a porosity gradient or a pore size gradient in consideration of the fluid flow of the electrolyte, or when using additional materials such as metal particles Can be used.
상기 구배는 바이폴라 플레이트(118,119)의 유입구(161) 및 배출구(162)의 수직 방향에 대해 동일 방향으로 이루어지거나 이와 직교 방향 또는 소정 각도를 이루는 방향으로 이루어질 수 있다. 바람직하기로는 유입구(161)에 대해 수직 방향으로 이루어질 수 있다.The gradient may be made in the same direction with respect to the vertical direction of the inlet 161 and the outlet 162 of the bipolar plates 118 and 119 or in a direction orthogonal to or perpendicular to this direction. Preferably it may be made in a direction perpendicular to the inlet 161.
또한, 상기 구배는 바이폴라 플레이트(118,119)의 유로(F)의 길이 방향에 대해 동일 방향으로 이루어지거나 이와 직교 방향 또는 소정 각도를 이루는 방향으로 이루어질 수 있다. 바람직하기로는 유로(F)의 길이 방향에 대해 동일 방향으로 이루어질 수 있다.In addition, the gradient may be made in the same direction with respect to the longitudinal direction of the flow path (F) of the bipolar plates (118, 119) or in a direction orthogonal or a predetermined angle thereof. Preferably it may be made in the same direction with respect to the longitudinal direction of the flow path (F).
본 발명의 또 다른 구현예에 따르면, 바이폴라 플레이트(118,119)의 유입구(161) 및 배출구(162)와 접하는 측의 전극층의 기공도는 높이면서, 중앙부로 갈수록 낮은 기공도를 갖도록 하여 전해액의 체류 시간을 높일 수 있다.According to another embodiment of the present invention, while maintaining the porosity of the electrode layer on the side in contact with the inlet 161 and the outlet 162 of the bipolar plates (118,119) to have a lower porosity toward the center, the residence time of the electrolyte solution Can increase.
본 발명의 또 다른 구현예에 따르면, 바이폴라 플레이트(118,119)의 유입구(161) 보다 배출구(162) 측이 단계적 또는 점진적으로 높은 기공도를 갖도록 설계하여 비교적 빠른 확산과 여러 방향의 전해액 이동을 가능하게 함으로써, 전해액이 과도하게 유로(F) 내 정체되지 않고 유동 균형을 이룰 수 있도록 한다.According to another embodiment of the present invention, the outlet 162 side is designed to have a step or progressively higher porosity than the inlet 161 of the bipolar plates 118 and 119 to enable relatively fast diffusion and electrolyte movement in various directions. As a result, the electrolyte solution can be flow balanced without excessively stagnating in the flow path (F).
본 발명의 또 다른 구현예에 따르면, 바이폴라 플레이트(118,119)의 유입구(161) 및 배출구(162)와 접하는 측의 전극층에 존재하는 금속 촉매의 함량을 낮추면서, 중앙부로 갈수록 높여 전극층에서의 전기화학 반응을 더욱 촉진시킬 수 있다.According to another embodiment of the present invention, while lowering the content of the metal catalyst present in the electrode layer on the side in contact with the inlet 161 and the outlet 162 of the bipolar plates (118,119), the electrochemical in the electrode layer is increased to the center portion The reaction can be further promoted.
본 발명의 또 다른 구현예에 따르면, 바이폴라 플레이트(118,119)의 유입구(161) 보다 배출구(162)와 접하는 측의 전극층의 기공도를 높이면서 금속 촉매의 함량을 높여 전해액의 유속을 조절함과 동시에 전기화학 반응을 더욱 촉진시킬 수 있다.According to another embodiment of the present invention, while increasing the porosity of the electrode layer on the side in contact with the outlet 162 than the inlet 161 of the bipolar plates (118,119) while increasing the content of the metal catalyst to control the flow rate of the electrolyte It may further promote the electrochemical reaction.
상기 농도 구배와 함께, 본 발명의 전극층은 하나의 재질로 단층으로 구성하거나 서로 다른 재질을 조합하여 구성할 수 있다. 일례로, 전극층을 복수 개의 면적으로 분배한 다음, 각 면적에 해당하는 전극층의 재질을 달리 사용할 수 있다.Along with the concentration gradient, the electrode layer of the present invention may be composed of a single layer of one material or a combination of different materials. For example, after distributing the electrode layer into a plurality of areas, materials of the electrode layer corresponding to each area may be used differently.
또한, 본 발명의 전극층은 단층으로 형성하거나 하나의 재질 또는 서로 다른 재질을 이용하여 2층 이상의 복수 층으로 형성할 수 있다. 상기 복수 층으로 형성할 경우 상기 언급한 바의 재질, 기공도 및 금속 촉매와 같은 추가 물질의 함량을 서로 같거나 달리하여 형성할 수 있다. In addition, the electrode layer of the present invention may be formed of a single layer or may be formed of two or more layers using one material or different materials. In the case of forming the plural layers, the materials, the porosity, and the content of additional materials such as metal catalysts may be formed by the same or different.
이러한 구성 및 재질의 선택은. 본 발명에서 특별히 한정하지 않으며 전지의 충/방전 필요 용량 및 사용 목적에 따라 달라질 수 있다.The choice of these configurations and materials. The present invention is not particularly limited and may vary depending on a required charge / discharge capacity of the battery and purpose of use.
또한, 본 발명의 전극층의 면적은 바이폴라 플레이트(118,119)의 전해액 반응부(A)의 면적과 같거나 다를 수 있으며, 전해액과 충분히 반응할 수 있도록 한다. In addition, the area of the electrode layer of the present invention may be the same as or different from the area of the electrolyte reaction portion (A) of the bipolar plates (118, 119), so as to sufficiently react with the electrolyte.
본 발명의 바람직한 일 구현예에 따른 레독스 흐름 전지 단위셀은, 바이폴라 플레이트(118,119)는 내부에 카본 펠트가 충진된 맞물림형 유로(F)를 가지며, 전극 플레이트의 전지 화학 반응부에는 카본 펠트 또는 카본 페이퍼를 사용한다. In the redox flow battery unit cell according to the preferred embodiment of the present invention, the bipolar plates 118 and 119 have an interlocking flow path F filled with carbon felt therein, and the carbon chemical reaction part of the electrode plate has carbon felt or Use carbon paper.
이때 상기 바이폴라 플레이트(118,119) 내부에 충진된 카본 펠트와 전극 플레이트의 카본 펠트는 서로 동일한 재질을 사용하는 것이 바람직하고, 이때 각 카본 펠트는 서로 다른 공극률을 갖는 것을 선정할 수 있다.In this case, the carbon felt filled in the bipolar plates 118 and 119 and the carbon felt of the electrode plate are preferably made of the same material, and in this case, each carbon felt may be selected to have a different porosity.
더욱 바람직하기로, 전극 플레이트의 카본 펠트의 기공도가 바이폴라 플레이트(118,119) 내 카본 펠트의 기공도보다 크게 조절하여 사용할 수 있다. 이 경우 많은 공극을 갖는 섬유형 도전재(151) 내로 전해액이 충분히 스며들어 유로(F) 내에 머무르게 반응을 위한 최대한의 접촉 면적이 제공될 수 있고, 반응이 충분히 진행될 때까지 유로(F) 내 전해액을 포함하고 있을 수 있으며, 보다 섬세한 차압 조절 또한 가능해진다. More preferably, the porosity of the carbon felt of the electrode plate may be adjusted to be larger than that of the carbon felt in the bipolar plates 118 and 119. In this case, a maximum contact area for the reaction may be provided to sufficiently infiltrate the electrolyte into the fibrous conductive material 151 having many voids and remain in the flow path F, and the electrolyte in the flow path F until the reaction proceeds sufficiently. It may include, it is possible to finer pressure differential adjustment.
본 발명의 다른 구현예에 따르면, 상기 카본 펠트는 바이폴라 플레이트(118,119) 바디(152)의 수직 방향에 대해 상부에서부터 하부까지, 또는 좌측에서부터 우측까지의 기공도가 서로 다르도록 설정하여 충진할 수 있다. 즉, 상부 측이 하부 측보다 낮은 기공도를 갖도록 하고 이들 기공도는 수직 방향의 하부로 갈수록 기공도가 단계적으로 또는 점진적으로 높아지도록 설계하여 비교적 빠른 확산과 여러 방향의 전해액 이동을 가능하게 함으로써, 전해액이 과도하게 유로(F) 내 정체되지 않고 유동 균형을 이룰 수 있도록 한다. According to another embodiment of the present invention, the carbon felt may be filled by setting the porosity from the top to the bottom or from the left to the right with respect to the vertical direction of the body of the bipolar plates 118 and 119. . That is, by designing the upper side to have a lower porosity than the lower side and these porosities are gradually or gradually higher porosity toward the lower portion of the vertical direction to enable relatively fast diffusion and movement of electrolyte in multiple directions, It is possible to balance the flow of the electrolyte without excessive stagnation in the flow path (F).
한편, 본 발명에 따른 레독스 흐름 전지(1000)를 구성하는 다른 요소, 구체적으로, 전지 모듈(100)을 구성하기 위한 여러 요소, 전해액 탱크(202,204), 및 전해액 펌프(302,304) 같은 구성요소는 본 발명에서 특별히 한정하지 않으며, 공지된 바의 내용을 따른다.On the other hand, other components constituting the redox flow battery 1000 according to the present invention, in particular, the various components for constituting the battery module 100, components such as the electrolyte tank 202,204, and the electrolyte pump 302,304 It does not specifically limit in this invention, It follows the content of well-known.
전해액 탱크(202,204)에서 저장되는 전해액은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바의 전해액이 사용될 수 있다. The electrolyte stored in the electrolyte tanks 202 and 204 is not particularly limited in the present invention, and electrolytes known in the art may be used.
전해액은 활물질 및 용매를 포함하고, 이때 활물질은 전기화학적으로 안정하게 반응하는 레독스 커플 유기물을 포함하고, 용매는 수계 용매, 유기계 용매 또는 이들의 혼합물일 수 있다.The electrolytic solution includes an active material and a solvent, wherein the active material includes a 'redox' coupler organic material that reacts electrochemically stably, and the solvent may be an aqueous solvent, an organic solvent, or a mixture thereof.
상기 전해액은 양극을 기능을 위한 양극 전해액 또는 음극의 기능을 위한 음극 전해액일 수 있으며, 이들은 산화환원쌍 구성을 포함한다. 즉, 상기 양극활물질의 경우, 양극 전해액에 용해시키는 산화환원쌍을 지칭하며, 산화환원쌍이 2개의 산화상태(oxidation state) 중 높은 쪽으로 변할 때, 즉, 산화가 일어날 때 충전이 되는 것을 의미한다. 상기 음극 활물질의 경우, 음극 전해액에 용해시키는 산화환원쌍을 지칭하며, 산화환원쌍의 2개의 산화상태 중 낮은 쪽으로, 즉 환원될 때 충전이 되는 것을 의미한다.The electrolyte may be an anode electrolyte for the function of the anode or a cathode electrolyte for the function of the cathode, which includes a redox pair configuration. That is, in the case of the positive electrode active material, it refers to a redox pair dissolved in the positive electrolyte, and means that the redox pair is charged when the redox pair is changed to a higher one of two oxidation states, that is, oxidation occurs. In the case of the negative electrode active material, it refers to a redox pair dissolved in the negative electrode electrolyte solution, which means that it is charged to the lower side of two oxidation states of the redox pair, that is, when reduced.
본 발명에서 사용되는 활물질은 특별히 한정되지 않으며, 당해 기술 분야에서 통상적으로 사용되는 활물질을 사용할 수 있다. 예를 들면, V, Fe, Cr, Cu, Ti, Sn, Zn, Br 등을 들 수 있다. 이러한 활물질은 산화·환원 차이에 의한 조합에 의해 V/V, Zn/Br, Fe/Cr 등 다양한 레독스쌍을 얻을 수 있는데 본 발명에서는 V/V로 이루어진 레독스쌍을 사용한다. 이와 같이 양극과 음극에서 동일 종류의 레독스쌍을 사용하여 두 전극 사이에서의 혼합 현상에 의한 비가역적 오염을 극복할 수 있는 이점이 있으며, 예를 들어 양극 전해액은 V4+/V5+을 사용하고, 음극 전해액은 V2+/V3+ 을 레독스쌍으로 사용할 수 있다.The active material used in the present invention is not particularly limited, and an active material commonly used in the art may be used. For example, V, Fe, Cr, Cu, Ti, Sn, Zn, Br, etc. are mentioned. Such active materials can be obtained by a variety of redox pairs such as V / V, Zn / Br, Fe / Cr by a combination of oxidation and reduction differences. In the present invention, redox pairs made of V / V are used. Thus, using the same type of redox pair in the positive electrode and the negative electrode has the advantage of overcoming irreversible contamination due to the mixing phenomenon between the two electrodes, for example, the positive electrode electrolyte is V 4 + / V 5 + used, and the negative electrolyte can be used for V 2+ / V3 + as the redox pair.
상기 수계 용매는 황산, 염산 또는 인산 중에서 선택되는 1종 또는 2종 이상의 혼합물이고, 상기 유기계 용매는 아세토나이트릴, 디메틸카보네이트, 디에틸카보네이트, 디메틸술폭사이드, 디메틸포름아미드, 프로필렌카보네이트, 에틸렌카보네이트, N-메틸-2-피롤리돈, 플루오로에틸렌카보네이트, 에탄올, 메탄올 및 감마-부티로락톤 중에서 선택되는 1종 또는 2종 이상의 혼합물일 수 있다.The aqueous solvent is one or a mixture of two or more selected from sulfuric acid, hydrochloric acid or phosphoric acid, and the organic solvent is acetonitrile, dimethyl carbonate, diethyl carbonate, dimethyl sulfoxide, dimethylformamide, propylene carbonate, ethylene carbonate, N-methyl-2-pyrrolidone, fluoroethylene carbonate, ethanol, methanol and gamma-butyrolactone may be one or a mixture of two or more thereof.
추가적으로, 상기 전해액은 지지 전해질을 더욱 포함할 수 있다. In addition, the electrolyte may further include a supporting electrolyte.
지지 전해질은 알킬암모늄계 염, 리튬염 및 소듐염으로 이루어진 군으로부터 선택될 수 있다. 본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 알킬암모늄계 염은, PF6 -, BF4 -, AsF6 -, ClO4 -, CF3SO3 -, CF3SO3 -, C(SO2CF3)3, N(CF3SO2)2 및 CH(CF3SO2)2 중에서 선택되는 하나의 음이온과, 테트라알킬암모늄 양이온에서 알킬은 메틸, 에틸, 부틸 또는 프로필인 암모늄 양이온의 조합으로 이루어질 수 있다. 본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 리튬염은, LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2 중에서 선택되는 1종 이상일 수 있다. 본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 소듐염은, NaPF6, NaBF4, NaAsF6, NaClO4, NaCF3SO3, NaCF3SO3, NaC(SO2CF3)3, NaN(CF3SO2)2 및 NaCH(CF3SO2)2 중에서 선택되는 1종 이상일 수 있다.The supporting electrolyte may be selected from the group consisting of alkylammonium salts, lithium salts and sodium salts. In the redox flow battery electrolyte according to the present invention, the alkyl ammonium salt, PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3 ) 3 , N (CF 3 SO 2 ) 2 and CH (CF 3 SO 2 ) 2 A combination of an anion selected from a tetraalkylammonium cation, wherein alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation Can be made. In the redox flow battery electrolyte according to the present invention, the lithium salt is LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiN ( It may be at least one selected from CF 3 SO 2 ) 2 and LiCH (CF 3 SO 2 ) 2 . In the redox flow battery electrolyte according to the present invention, the sodium salt is NaPF 6 , NaBF 4 , NaAsF 6 , NaClO 4 , NaCF 3 SO 3 , NaCF 3 SO 3 , NaC (SO 2 CF 3 ) 3 , NaN ( It may be at least one selected from CF 3 SO 2 ) 2 and NaCH (CF 3 SO 2 ) 2 .
전해액 펌프(302,304)는 본 발명에서 특별히 언급하지 않으며, 공지된 바의 것을 사용할 수 있다.The electrolyte pumps 302 and 304 are not specifically mentioned in the present invention, and those known in the art may be used.
상기한 구성을 포함하는 본 발명에 따른 레독스 흐름 전지(1000)는 단위셀의 구성 요소로서 전술한 바의 바이폴라 플레이트(118,119)를 구비함으로써 유로(F) 내에 전해액에 대하여 실질적인 충/방전의 기회를 증가시킨다. 또한, 반응에 충분한 시간 유로(F) 내 머무를 수 있도록 하며, 특히 고유량으로 유입되는 전해액에 대하여는 종래보다 효과적으로 내부 차압을 감소시킬 수 있다. 더불어, 반응 면적을 증가시켜 전해액 반응에 걸리는 과전압을 감소하여 결과적으로 전지 효율을 높이는 효과를 얻을 수 있다.The redox flow battery 1000 according to the present invention having the above-described configuration includes the bipolar plates 118 and 119 as described above as components of the unit cell, thereby providing substantial charge / discharge opportunities for the electrolyte in the flow path F. FIG. To increase. In addition, it is possible to stay in the time flow path (F) sufficient for the reaction, and in particular, it is possible to reduce the internal differential pressure more effectively than conventionally with respect to the electrolyte flowing into the high flow rate. In addition, it is possible to increase the reaction area to reduce the overvoltage applied to the reaction of the electrolyte, resulting in an effect of increasing the battery efficiency.
이러한 레독스 흐름 전지(1000)는 전해액의 유량 및 전지 출력에 관계 없이 에너지 손실을 최소화하면서, 충/방전 용량과 효율을 극대화 시킬 수 있어 고유량, 고전류 밀도를 타겟으로 하는 레독스 흐름 전지(1000)로서 바람직하게 적용된다. 이로 인해, 각종 산업 시설, 전자제품 및 자동차 등 산업 전반의 다양한 분야에 유용하게 활용될 수 있다.The redox flow battery 1000 is capable of maximizing charge / discharge capacity and efficiency while minimizing energy loss regardless of the flow rate of the electrolyte and the battery output, and thus, the redox flow battery 1000 that targets a high flow rate and a high current density. Is preferably applied. For this reason, it can be usefully used in various fields of various industries such as various industrial facilities, electronic products and automobiles.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example 1 One
(1) (One) 바이폴라Bipolar 플레이트 제작 Plate making
도 8에 나타낸 바와 같이 유로 내부에 섬유형 도전재가 삽입된 바이폴라 플레이트를 제작하였다. As shown in FIG. 8, a bipolar plate having a fibrous conductive material inserted therein was produced.
도 8을 보면, 바이폴라 플레이트는 가로*세로가 82*82 mm인 바디와, 내부에 맞물림형 유로를 형성하였다. 이때 유로를 형성하기 위한 격벽의 폭은 5.0 mm, 유로 채널 폭은 4.0 mm, 유로 채널의 깊이는 2.5 mm를 갖는다.Referring to FIG. 8, the bipolar plate formed a body having a width of 82 * 82 mm and an engaging flow path therein. At this time, the width of the partition wall for forming the flow path is 5.0 mm, the flow channel channel width is 4.0 mm, the depth of the flow channel has a 2.5 mm.
섬유형 도전재로는 기공도가 95%인 카본 펠트(두께 3.5 mm)를 구입하여 사용하였고, 이를 유로 채널 폭에 맞도록 재단하였다.As a fibrous conductive material, a carbon felt (95 mm thick) having a porosity of 95% was purchased and used to cut it to fit the flow channel channel width.
이어, 상기 섬유형 도전재를 유로에 장착한 후 압력을 인가하여 유로 내부에 삽입하였다. 이때 섬유형 도전재의 두께가 유로 채널의 깊이와 동일할 때가지 압력을 인가하였다. Subsequently, the fibrous conductive material was mounted in the flow path and then inserted into the flow path by applying pressure. At this time, pressure was applied until the thickness of the fibrous conductive material was equal to the depth of the flow channel.
(2) (2) 단위셀Unit cell 제작 making
상기 (1)에서 제작한 바이폴라 플레이트를 구성하여 단위셀을 제작하였다.The bipolar plate produced in the above (1) was configured to produce a unit cell.
이온 교환막(나피온 115, 75㎛)을 사이에 두고 양측에 카본 페이퍼 3장(각 두께 300㎛)을 적층하여 이루어진 전극층(900㎛)을 각각 배치하고, 각각의 외부에 바이폴라 플레이트를 배치시킨 후 0.5t의 가스켓을 이용하여 이들을 체결하여 레독스 흐름 전지를 제작하였다.After placing the electrode layers (900 µm) formed by stacking three sheets of carbon paper (300 µm each) on both sides with an ion exchange membrane ( Nafion 115, 75 µm) in between, and placing a bipolar plate on each outside Using a 0.5 g gasket, these were fastened to produce a redox flow battery.
상기 바이폴라 플레이트의 유입구 및 배출구 각각에 전해액을 주입하였으며, 이때 전해액으로는 1.6M VOSO4 (3M H2SO4) 50ml를 사용하였고, 유량은 25cc/min으로 하였다.An electrolyte was injected into each of the inlet and the outlet of the bipolar plate. At this time, 50 ml of 1.6M VOSO 4 (3M H 2 SO 4 ) was used as the electrolyte, and the flow rate was 25 cc / min.
비교예Comparative example 1 One
도 9에 나타낸 바와 같이 유로 내부에 섬유형 도전재가 미삽입된 바이폴라 플레이트를 제작한 다음, 상기 실시예 1과 동일하게 수행하여 레독스 흐름 전지를 제작하였다.As shown in FIG. 9, a bipolar plate having no fibrous conductive material inserted therein was manufactured, and the same procedure as in Example 1 was performed to prepare a redox flow battery.
실험예Experimental Example 1 One
상기 실시예 1 및 비교예 1에서 각각 제작한 단위셀을 이용하여 충방전 용량 및 에너지 효율을 측정하였으며, 얻어진 결과를 도 10 및 도 11에 나타내었다. 이때 충방전 조건은 1.25A에서 10 사이클 이후 2.5A에서 10 사이클, 3.75A에서 10 사이클, 2.5A에서 5 사이클로 수행하였다. Charge and discharge capacity and energy efficiency were measured using the unit cells produced in Example 1 and Comparative Example 1, respectively, and the results obtained are shown in FIGS. 10 and 11. The charging and discharging conditions were performed in 10 cycles at 2.5A, 10 cycles at 3.75A, 10 cycles at 2.5A, and 5 cycles at 2.5A.
도 10은 실시예 1 및 비교예 1의 충방전 용량을 보여주는 그래프로서, 실시예 1의 전지의 경우 사이클 수가 지남에 따라 용량 저하가 비교예 1의 전지 대비 낮음을 알 수 있다. 10 is a graph showing the charge and discharge capacity of Example 1 and Comparative Example 1, it can be seen that the battery capacity of Example 1 is lower than the battery of Comparative Example 1 capacity decrease as the number of cycles.
상기 도 10에서 보여지는 충방전 용량을 보면 실시예 1에 약간 더 우수한 경향을 보였다. 이러한 차이는 하기 표 1 및 도 11의 에너지 효율 비교 그래프를 통해 확연히 알 수 있다. 이때 도 11은 실시예 1 및 비교예 1의 에너지 효율을 보여주는 그래프이다.Looking at the charge and discharge capacity shown in FIG. 10 showed a slightly better tendency in Example 1. This difference can be clearly seen through the energy efficiency comparison graph of Table 1 and FIG. 11. 11 is a graph showing the energy efficiency of Example 1 and Comparative Example 1.
2회~10회 평균 에너지 효율2 to 10 times average energy efficiency EE(%)EE (%)
50mA/cm2 50 mA / cm 2 비교예 1Comparative Example 1 79.079.0
실시예 1Example 1 87.087.0
100mA/cm2 100 mA / cm 2 비교예 1Comparative Example 1 69.369.3
실시예 1Example 1 80.280.2
150mA/cm2 150 mA / cm 2 비교예 1Comparative Example 1 56.556.5
실시예 1Example 1 67.167.1
상기 표 1 및 도 11을 보면, 섬유형 도전재인 카본 펠트의 삽입으로 인해 반응 면적이 증가하여 단위 면적당 걸리는 저항 값이 낮아지는 것이 확연히 알 수 있다.Referring to Table 1 and FIG. 11, it can be clearly seen that the reaction area increases due to the insertion of the carbon felt as the fibrous conductive material, thereby decreasing the resistance value per unit area.
따라서, 고유량, 고전류 밀도를 타겟으로 하는 레독스 흐름 전지에는 본발명의 구조를 도입할 경우 매우 유리함을 알 수 있다. Therefore, it can be seen that it is very advantageous to introduce the structure of the present invention to a redox flow battery targeting high flow rate and high current density.
본 발명의 레독스 흐름 전지는 고유량 고전류 밀도를 갖는 고성능 전지로서 바람직하게 적용 가능하다.The redox flow battery of the present invention is preferably applicable as a high performance battery having a high flow rate and high current density.
[부호의 설명][Description of the code]
11,15,21,25: 바이폴라 플레이트11,15,21,25: bipolar plate
12,14,22,24: 전극층12,14,22,24: electrode layer
13,23: 이온 교환막13,23: ion exchange membrane
27: 유로27: Euro
1000: 레독스 흐름 전지 1000: redox flow battery
100: 전지 모듈100: battery module
101: 단위 모듈101: unit module
111,113: 엔드 플레이트111,113: end plate
115,117: 집전 플레이트115,117: current collector plate
118,119: 바이폴라 플레이트118,119 bipolar plate
120,121: 전극 플레이트120,121: electrode plate
123: 이온 교환막 플레이트123: ion exchange membrane plate
130: 단위셀130: unit cell
151: 섬유형 도전재151: fibrous conductive material
152: 바디152: body
154: 격벽154: bulkhead
161: 배출구161: outlet
162: 배출구162: outlet
171: 공급 유로171: supply euro
172: 배출 유로172: discharge passage
181,182,183,184: 연결부재181,182,183,184: connecting member
202,204: 전해액 탱크202,204: electrolyte tank
302,304: 전해액 펌프302,304: electrolyte pump
F: 유로F: Euro
A: 전해액 반응부A: electrolyte solution part

Claims (15)

  1. 판 형태의 바디; 및Plate-shaped body; And
    상기 바디의 중앙부에 전해액이 이동할 수 있도록 형성된 유로를 포함하는 바이폴라 플레이트에 있어서, In the bipolar plate comprising a flow path formed to move the electrolyte in the center of the body,
    상기 유로 내부에 섬유형 도전재가 삽입된 레독스 흐름 전지용 바이폴라 플레이트.A bipolar plate for a redox flow battery in which a fibrous conductive material is inserted into the flow path.
  2. 제1항에 있어서, The method of claim 1,
    상기 섬유형 도전재는 카본 펠트, 그라파이트 펠트, 카본천, 카본 페이퍼, 금속천, 금속 펠트 및 발포금속으로 이루어진 군에서 선택된 1종 이상의 직물 형태인 레독스 흐름 전지용 바이폴라 플레이트.The fibrous conductive material is a carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt, and at least one type of fabric selected from the group consisting of foamed metal bipolar plate for redox flow battery.
  3. 제1항에 있어서, The method of claim 1,
    상기 섬유형 도전재는 기공도는 10 내지 99%이고, 벌크 밀도가 0.05 내지 0.2 g/cm3인 레독스 흐름 전지용 바이폴라 플레이트.The fibrous conductive material has a porosity of 10 to 99% and a bulk density of 0.05 to 0.2 g / cm 3 bipolar plate for a redox flow battery.
  4. 제1항에 있어서, The method of claim 1,
    상기 섬유형 도전재는 카본계 도전재 및 금속 입자로 이루어진 군에서 선택된 1종 이상을 더 포함하는 레독스 흐름 전지용 바이폴라 플레이트.The fibrous conductive material is a bipolar plate for redox flow battery further comprises at least one selected from the group consisting of carbon-based conductive material and metal particles.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 카본계 도전재는 카본 페이퍼, 카본 파이버, 카본 블랙, 아세틸렌 블랙, 활성 탄소, 플러렌, 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼 및 카본 나노 링으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 레독스 흐름 전지용 바이폴라 플레이트.The carbon-based conductive material is redox including at least one selected from the group consisting of carbon paper, carbon fiber, carbon black, acetylene black, activated carbon, fullerene, carbon nanotubes, carbon nanowires, carbon nanohorns, and carbon nanorings. Bipolar plate for flow cells.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 금속 입자는 Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni 및 Fe로 이루어진 군에서 선택된 1종 이상을 포함하는 레독스 흐름 전지용 바이폴라 플레이트.The metal particles are Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ni and Fe selected from the group consisting of The bipolar plate for redox flow batteries containing the above.
  7. 제1항에 있어서, The method of claim 1,
    상기 섬유형 도전재는 유로 부피(유로 채널 폭*유로 채널 깊이*격벽의 길이)에 대해 10 내지 100%의 부피비로 충진되는 레독스 흐름 전지용 바이폴라 플레이트.The fibrous conductive material is a bipolar plate for a redox flow battery is filled in a volume ratio of 10 to 100% with respect to the flow volume (flow channel width * flow channel depth * length of the bulkhead).
  8. 제1항에 있어서, The method of claim 1,
    상기 섬유형 도전재의 두께(Y) 대비 유로 채널의 깊이(X)가 1< Y/X ≤2.5의 식을 만족하도록 상기 섬유형 도전재를 유로 내부에 충진하는 레독스 흐름 전지용 바이폴라 플레이트. The bipolar plate for a redox flow battery for filling the fibrous conductive material in the flow path so that the depth (X) of the flow channel to the thickness (Y) of the fibrous conductive material satisfies the formula 1 <Y / X ≤ 2.5.
  9. 제1항에 있어서, The method of claim 1,
    상기 바이폴라 플레이트는 바디의 일측에 전해액의 유입을 위한 유출구;The bipolar plate has an outlet for inflow of the electrolyte on one side of the body;
    유로를 통과한 전해액의 배출을 위한 배출구;An outlet for discharging the electrolyte passing through the flow path;
    전해액이 이동하여 전극 플레이트와 접하도록 내부에 유로가 형성된 전극층;An electrode layer having a flow path formed therein to move the electrolyte and contact the electrode plate;
    상기 유출구와 전극층 사이에 위치하여 전해액의 균등 분배를 위한 공급 유로; 및A supply flow path positioned between the outlet and the electrode layer to distribute the electrolyte evenly; And
    상기 배출구와 전극층 사이에 위치하여 전해액의 균등 분배를 위한 배출 유로;를 포함하는 레독스 흐름 전지용 바이폴라 플레이트.And a discharge flow path disposed between the discharge port and the electrode layer to distribute the electrolyte evenly.
  10. 제1항에 있어서, The method of claim 1,
    상기 유로는 패러렐(parallel), 서펜틴(serpentine), 세미서펜틴(semi-serpentine), 지그재그(zigzag), 맞물림형(interdigitated) 및 핀(pin) 형태로 이루어진 군에서 선택된 1종 이상의 패턴을 포함하는 레독스 흐름 전지용 바이폴라 플레이트.The flow path includes at least one pattern selected from the group consisting of parallel, serpentine, semi-serpentine, zigzag, interdigitated and pin shapes. Bipolar plate for redox flow batteries.
  11. 이온 교환막;Ion exchange membrane;
    상기 이온 교환막의 양측에 각각 배치된 전극층; 및Electrode layers disposed on both sides of the ion exchange membrane; And
    상기 전극층의 일측면에 각각 배치된 바이폴라 플레이트를 포함하고, A bipolar plate disposed on one side of the electrode layer,
    상기 바이폴라 플레이트는 제1항 내지 제10항의 어느 한 항에 따른 바이폴라 플레이트인 레독스 흐름 전지용 단위셀.The bipolar plate is a unit cell for a redox flow battery is a bipolar plate according to any one of claims 1 to 10.
  12. 제11항에 있어서, The method of claim 11,
    상기 전극층은 카본 펠트, 그라파이트 펠트, 카본천, 카본 페이퍼, 금속천, 금속 펠트 및 발포금속으로 이루어진 군에서 선택된 1종 이상의 재질을 포함하는 레독스 흐름 전지용 단위셀.The electrode layer is a unit cell for a redox flow battery comprising at least one material selected from the group consisting of carbon felt, graphite felt, carbon cloth, carbon paper, metal cloth, metal felt and foamed metal.
  13. 제11항에 있어서, The method of claim 11,
    상기 전극층은 탄소재를 1층 또는 2층 이상 적층하여 형성된 레독스 흐름 전지용 단위셀.The electrode layer is a unit cell for a redox flow battery formed by laminating one or two or more carbon materials.
  14. 제11항에 있어서, The method of claim 11,
    상기 전극층은 1층 또는 2층 이상의 탄소재가 적층된 형태를 갖는 레독스 흐름 전지용 단위셀.The electrode layer is a unit cell for a redox flow battery having a form in which one or two or more carbon materials are laminated.
  15. 전류를 생성하는 단위 스택들을 포함하는 단위 모듈을 서로의 측면에 배치하여 전기적으로 연결하여 형성되는 전지 모듈; A battery module formed by arranging and electrically connecting unit modules including unit stacks for generating current to each other;
    상기 전지 모듈에 전해액을 공급하고 상기 모듈에서 유출되는 전해액을 저장하기 위한 전해액 탱크; 및 An electrolyte tank for supplying an electrolyte solution to the battery module and storing an electrolyte solution flowing out of the module; And
    상기 모듈과 전해액 탱크 간 전해액을 순환시키기 위한 전해액 펌프를 포함하며, An electrolyte pump for circulating the electrolyte between the module and the electrolyte tank,
    상기 단위 스택은 제11항의 레독스 흐름 전지용 단위셀이 복수개로 연결된 레독스 흐름 전지.The unit stack is a redox flow battery in which a plurality of unit cells for redox flow battery of claim 11 are connected.
PCT/KR2017/002987 2016-03-31 2017-03-21 Bipolar plate and redox flow cell comprising same WO2017171289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004302.8A CN108292772B (en) 2016-03-31 2017-03-21 Bipolar plate and redox flow battery comprising same
US15/773,241 US10673078B2 (en) 2016-03-31 2017-03-21 Bipolar plate and redox flow cell comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160038848 2016-03-31
KR10-2016-0038848 2016-03-31
KR10-2017-0032353 2017-03-15
KR1020170032353A KR102169179B1 (en) 2016-03-31 2017-03-15 Bipolar plate and redox flow cell battery comprising the same

Publications (1)

Publication Number Publication Date
WO2017171289A1 true WO2017171289A1 (en) 2017-10-05

Family

ID=59966107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002987 WO2017171289A1 (en) 2016-03-31 2017-03-21 Bipolar plate and redox flow cell comprising same

Country Status (1)

Country Link
WO (1) WO2017171289A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery
EP4044295A4 (en) * 2019-10-09 2022-11-16 Sumitomo Electric Industries, Ltd. Electrode, battery cell, cell stack, and redox-flow battery system
CN115828712A (en) * 2023-02-20 2023-03-21 中海储能科技(北京)有限公司 Method for designing surface flow channel of bipolar plate of iron-chromium flow battery
CN116565244A (en) * 2023-07-10 2023-08-08 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070036501A (en) * 2005-09-29 2007-04-03 삼성에스디아이 주식회사 Fuel cell system and stack using therefor
KR20070093734A (en) * 2006-03-15 2007-09-19 엘지마이크론 주식회사 Seperators for fuel cell and fuel cell comprising the same
KR20100119230A (en) * 2009-04-30 2010-11-09 연세대학교 산학협력단 Bipolar plate with nano and micro structures
US20130095361A1 (en) * 2011-10-17 2013-04-18 Steven L. Sinsabaugh High surface area flow battery electrodes
KR101359704B1 (en) * 2012-11-28 2014-02-10 롯데케미칼 주식회사 Complex body of electrode and bipolar plate for redox flow battery, preparation method of the same, and redox flow battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070036501A (en) * 2005-09-29 2007-04-03 삼성에스디아이 주식회사 Fuel cell system and stack using therefor
KR20070093734A (en) * 2006-03-15 2007-09-19 엘지마이크론 주식회사 Seperators for fuel cell and fuel cell comprising the same
KR20100119230A (en) * 2009-04-30 2010-11-09 연세대학교 산학협력단 Bipolar plate with nano and micro structures
US20130095361A1 (en) * 2011-10-17 2013-04-18 Steven L. Sinsabaugh High surface area flow battery electrodes
KR101359704B1 (en) * 2012-11-28 2014-02-10 롯데케미칼 주식회사 Complex body of electrode and bipolar plate for redox flow battery, preparation method of the same, and redox flow battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534614A (en) * 2018-08-13 2021-03-19 住友电气工业株式会社 Redox flow battery cell and redox flow battery
CN112534614B (en) * 2018-08-13 2023-08-04 住友电气工业株式会社 Redox flow battery monomer and redox flow battery
EP4044295A4 (en) * 2019-10-09 2022-11-16 Sumitomo Electric Industries, Ltd. Electrode, battery cell, cell stack, and redox-flow battery system
CN115828712A (en) * 2023-02-20 2023-03-21 中海储能科技(北京)有限公司 Method for designing surface flow channel of bipolar plate of iron-chromium flow battery
CN116565244A (en) * 2023-07-10 2023-08-08 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery
CN116565244B (en) * 2023-07-10 2023-10-31 北京普能世纪科技有限公司 Bipolar plate for flow battery and flow battery

Similar Documents

Publication Publication Date Title
WO2017171289A1 (en) Bipolar plate and redox flow cell comprising same
KR102169179B1 (en) Bipolar plate and redox flow cell battery comprising the same
WO2021020939A1 (en) Negative electrode, secondary battery including negative electrode, and method for manufacturing negative electrode
KR101890747B1 (en) Ion conductor filling composition, method of preparing ion exchange membrane, ion exchange membrane and redox flow battery
KR101265201B1 (en) Separator for redox flow battery and redox flow battery
WO2019035669A2 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP3419100A1 (en) Non-aqueous electrolyte, and lithium secondary battery comprising same
WO2019151774A1 (en) Anode active material, preparation method for anode active material, anode comprising anode active material, and secondary battery comprising anode
KR102141964B1 (en) Negative electrode active material slurry, negative electrode comprising thereof and lithium secondary battery containing the negative electrode
US20200083551A1 (en) Process for manufacturing an electrochemical-reactor flow guide
WO2020060292A1 (en) Solid polymer electrolyte composition, and solid polymer electrolyte containing same
US6949314B1 (en) Carbon-carbon composite anode for secondary non-aqueous electrochemical cells
WO2016163773A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
KR20200018902A (en) A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2024111906A1 (en) Anode for lithium secondary battery and method for manufacturing same
KR20020020878A (en) Operation method for polymer electrolytic fuel cell
KR102106986B1 (en) Electrode for secondary battery
WO2017007212A1 (en) Flow battery
WO2022231325A1 (en) Negative electrode, and secondary battery comprising same
KR20200034382A (en) Method for manufacturing positive electrode having the improved battery performance for lithium secondary battery
WO2017146359A1 (en) Fuel cell separator plate and fuel cell stack having same
KR20200055274A (en) Bipolar plate and unit cell for redox flow cell battery and redox flow battery comprising the same
WO2024049176A1 (en) Negative electrode active material particles, negative electrode comprising negative electrode active material particles, and secondary battery including negative electrode
WO2018066931A2 (en) Anode for lithium metal secondary battery and lithium metal secondary battery comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15773241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775714

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775714

Country of ref document: EP

Kind code of ref document: A1