WO2017146359A1 - Fuel cell separator plate and fuel cell stack having same - Google Patents
Fuel cell separator plate and fuel cell stack having same Download PDFInfo
- Publication number
- WO2017146359A1 WO2017146359A1 PCT/KR2016/014110 KR2016014110W WO2017146359A1 WO 2017146359 A1 WO2017146359 A1 WO 2017146359A1 KR 2016014110 W KR2016014110 W KR 2016014110W WO 2017146359 A1 WO2017146359 A1 WO 2017146359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- gas flow
- reaction gas
- separator
- length
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 124
- 239000012495 reaction gas Substances 0.000 claims abstract description 49
- 239000007789 gas Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 abstract description 35
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 22
- 238000010248 power generation Methods 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 150000002431 hydrogen Chemical class 0.000 description 7
- -1 hydrogen cations Chemical class 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010013496 Disturbance in attention Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
- H01M8/2485—Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell separator and a fuel cell stack having the same, and more particularly, to a fuel cell separator capable of maximizing power generation efficiency of a fuel cell stack and reducing hydrogen consumption, and a fuel cell stack having the same. It is about.
- a fuel cell stack is a device that produces electricity electrochemically by using hydrogen gas and oxygen gas, and converts fuel (hydrogen) and air (oxygen) continuously supplied from the outside into electrical energy and thermal energy directly by an electrochemical reaction.
- Device that produces electricity electrochemically by using hydrogen gas and oxygen gas, and converts fuel (hydrogen) and air (oxygen) continuously supplied from the outside into electrical energy and thermal energy directly by an electrochemical reaction.
- the fuel cell stack generates electric power by using an oxidation reaction at the anode and a reduction reaction at the cathode.
- a membrane-electrode assembly consisting of a catalyst layer containing platinum or platinum-ruthenium metal and a polymer electrolyte membrane is used to promote oxidation and reduction reactions, and a separator is fastened to both ends of the membrane-electrode assembly.
- a cell structure is formed.
- the overall characteristics of the fuel cell stack have been improved by improving the material characteristics of the fuel cell separator or by optimizing the driving conditions.
- the biggest problem among these conventional methods is that the increase in the number of flow paths of the fuel cell separator and the addition of the auxiliary flow paths inevitably increase the size of the separator to increase the size of the entire fuel cell stack. In particular, in recent years, it is applied to a lot of cars, etc. Above all, considering that the miniaturization of the size is the biggest issue, the increase in size or change in shape is the biggest constraint in terms of utilization of the fuel cell stack.
- the most important in the reaction of the fuel cell stack is the discharge of liquid water generated by the chemical reaction.
- water generated by the reaction of oxygen in the cathode of the fuel cell stack accumulates over a certain amount without being immediately discharged from the reaction gas flow path, the supplied fuel is not efficiently delivered to the catalyst layer in contact with the separator plate, thereby causing a reaction zone. Call up the concentration loss at.
- An object of the present invention is to maximize the power generation efficiency of a fuel cell stack and to reduce the hydrogen consumption to prevent the reaction activation area of the fuel cell stack, thereby improving the discharge efficiency of the generated water that interferes with the chemical reaction. It is to provide a fuel cell separator and a fuel cell stack having the same capable of improving performance.
- At least two or more fuel cell stacks are stacked, the separator plate body having a channel portion and a manifold portion, respectively, disposed in the channel portion of the separator plate body, A plurality of fuel cell separators having a reaction gas flow passage protruding from the surface to the second surface; And a membrane-electrode assembly interposed between the plurality of fuel cell separators, wherein the reaction gas flow path has a trapezoidal cross-sectional structure in which a lower side corresponding to a channel width is longer than an upper side corresponding to a rib width.
- the length of the rib width is characterized in that 30 to 80% of the length of the channel width.
- the mass transfer loss can be suppressed by design change of the reaction gas flow path into a geometrical structure. Loss is suppressed, and as a result, the amount of hydrogen used for power generation is reduced by reducing the amount of hydrogen injected, and thus the conversion efficiency can be improved, resulting in an increase in power generation and an increase in total power density.
- the fuel cell separator and the fuel cell stack having the same can ensure a uniform fuel distribution throughout the fuel cell stack through the change in the geometry of the reaction gas flow path, and the gas diffusion layer, the anode and the cathode It effectively removes water, which is a reaction byproduct, and reduces the pressure drop at the inlet and outlet when hydrogen, the fuel fluid, passes through the reaction gas flow path, so that the gas is evenly distributed in the entire flow path of the separator plate.
- the reaction efficiency and lifespan improvement of the fuel cell stack can be secured because it is not concentrated on a specific part.
- FIG. 1 is a perspective view showing a fuel cell stack according to an embodiment of the present invention.
- FIG. 2 is an enlarged perspective view of a portion of the fuel cell separator and the membrane-electrode assembly of FIG. 1;
- FIG. 3 is an enlarged cross-sectional view of a reaction gas flow path of FIG. 2;
- Figure 4 is a graph showing the I-V characteristics of the fuel cell stack applying the fuel cell separator prepared according to Examples 1 to 4 and 1 in comparison.
- FIG. 1 is a perspective view showing a fuel cell stack according to an embodiment of the present invention.
- a fuel cell stack 100 includes a plurality of fuel cell separators 110 and a membrane-electrode assembly 120.
- the fuel cell stack 100 according to the embodiment of the present invention may further include a gas diffusion layer (not shown) and the end plate 130.
- At least two fuel cell separator plates 110 are stacked on the separator plate body 112, each having a channel portion and a manifold portion, and disposed on a channel portion of the separator plate body 112. And a reaction gas flow passage 114 protruding from the second surface to the second surface.
- the fuel cell separator 110 has a low structural permeability to maintain a constant shape and low gas permeability.
- the membrane-electrode assembly 120 is interposed between the plurality of fuel cell separators 110, respectively.
- the membrane-electrode assembly 120 includes an electrolyte membrane capable of moving hydrogen cations and an anode and a cathode, which are catalyst layers coated on both surfaces of the electrolyte membrane so that hydrogen and oxygen can react.
- a gas diffusion layer is a porous medium for uniformly dispersing the reaction gas to the surface of the membrane-electrode assembly 120 between the fuel cell separator 110 and the membrane-electrode assembly 120.
- Layer: GDL may be inserted.
- the end plate 130 is disposed at the outermost portion of the plurality of fuel cell separators 110 and the membrane-electrode assembly 120 to support the plurality of fuel cell separators 110 and the membrane-electrode assembly 120. Play a role.
- the end plate 130 supports the plurality of fuel cell separators 110, the membrane-electrode assembly 120, and the gas diffusion layer, and supplies hydrogen, which is a reaction gas, to the channel portion of the fuel cell separator 110. It serves as an inlet for
- the end plate 130 may be formed of anodized aluminum for the purpose of securing insulation with the membrane-electrode assembly 120 while ensuring proper strength, but is not limited thereto.
- an oxidation reaction of hydrogen proceeds at the anode to generate hydrogen ions (protons) and electrons (electrons), and the hydrogen ions and electrons move to the cathode through the electrolyte membrane and the fuel cell separator 110, respectively. Thereafter, the cathode generates an electrochemical reaction in which hydrogen ions, electrons, and oxygen in the air participate to generate water, and electrical energy is generated by the flow of electrons between the anode and the cathode.
- the hydrogen supplied to the anode is decomposed into hydrogen ions (H + ) and electrons (electron, e ⁇ ), and the decomposed hydrogen ions pass through the electrolyte to the cathode, where the hydrogen ions migrated from the anode and it generates electrical energy through a reaction of the oxygen supplied to the cathode, and generates heat and at the same time meet the electrode to produce water - (H +) and a mobile electronic through the external conductors (electron, e).
- FIG. 2 is an enlarged perspective view of a portion of the fuel cell separator and the membrane-electrode assembly of FIG. 1, and FIG. 3 is an enlarged cross-sectional view of the reaction gas flow path of FIG. 2.
- the fuel cell separator 110 includes a separator body 112 and a reaction gas flow passage 114.
- the fuel cell separator 110 according to the embodiment of the present invention may further include a cooling passage 116 and a gasket (not shown).
- the separator plate body 112 has a channel portion disposed at the center portion and a manifold portion disposed at the edge.
- the separator body 112 may have a low permeability of gas and a metal material having sufficient structural strength to maintain a constant shape, but is not limited thereto.
- the reaction gas flow passage 114 is disposed in the channel portion of the separator plate body 112 and protrudes from the first surface to the second surface. Accordingly, the reaction gas flow passage 114 is disposed to face the membrane-electrode assembly 120.
- the reaction gas flow passage 114 has a trapezoidal cross-sectional structure in which the bottom side corresponding to the channel width w1 is longer than the top side corresponding to the rib width w2.
- the cooling flow path 116 is disposed between the spaced portions of the reaction gas flow paths 114 protruding from the first surface to the second surface.
- the cooling passage 116 may be an air passage through which air passes or a cooling water passage through which cooling water passes.
- the gasket is attached along the boundary of the channel portion and the manifold portion of the separator plate body 112 to prevent leakage of the working fluid.
- These gaskets are formed for the purpose of securing airtightness and facilitating fastening between the fuel cell separators 110 when the fuel cell separators 110 are stacked.
- the material may be a rubber material. Only one example, a plastic material may be used.
- the reaction gas flow passage 114 has a geometric structure because the length of the rib width w2 is designed to be 30 to 80% of the length of the channel width w1.
- the length of the rib width w2 exceeds 80% of the length of the channel width w1
- the supply of fuel gas and the discharge of unreacted substances / reaction products are not smooth. This results in a decrease in operating performance of the battery stack and a shortened lifespan.
- the reaction product water is not discharged smoothly from the cathode, water flooding occurs, which interferes with the mass transfer of the entire fuel cell stack, thereby operating the fuel cell stack. Resulting in reduced performance and reduced lifespan.
- the channel width w1 has a length of 0.9 to 1.2 mm
- the rib width w2 has a length of 0.4 to 0.7 mm.
- the sum total length of the channel width w1 and the rib width w2 is preferably fixed at 1.4 to 1.8 mm.
- the change in the overall length of the single flow path is performed by the repetition of the single flow path of the fuel cell separation plate 110. Since it acts as a factor for changing the overall size, there is a problem in that the overall design of the fuel cell stack needs to be changed. This, in turn, acts as a factor that increases or decreases the size of the mold for manufacturing the fuel cell separator 110, which inevitably leads to an increase in process cost.
- the present invention by fixing the summation length of the channel width w1 and the rib width w2 in a strictly limited range of 1.4 to 1.8 mm, the increase in the overall length and volume of the reaction gas flow passage 114 is minimized.
- the length of the channel width (w1) and the rib width (w2) of the reaction gas flow path 114 in the same or similar volume, by designing a geometric structure, the mold replacement for manufacturing the fuel cell separator 110 Is unnecessary, so the process cost does not increase.
- the reaction gas flow path 114 is designed in a geometric structure having the length of the rib width w2 having 30 to 80% of the length of the channel width w1, the consumption of hydrogen, which is the reaction gas, is reduced.
- the hydrogen used for the overall reduction is reduced, and the power generation output, that is, the conversion efficiency is increased compared to the used hydrogen. Accordingly, water can be effectively removed as well as conversion efficiency because water, which is a product that interferes with power generation of the fuel cell stack, can be effectively removed.
- the reaction gas flow passage 114 has a height of 0.5 to 0.7 mm, which should be designed in the above range so that the pressure drop decreases when hydrogen, which is a fuel fluid, passes through the reaction gas flow passage 114. This can be distributed to increase mass transfer and reaction efficiency of the fuel cell stack.
- the reaction gas flow passage 114 has an equilateral trapezoidal cross-sectional structure in which the inner angles ⁇ formed by the connecting lines between the bottom and bottom vertices B and C and the top and bottom vertices A and D are the same. .
- reaction gas flow passage 114 when the reaction gas flow passage 114 is designed to have a conformal trapezoidal cross-sectional structure, a pressure drop is reduced when hydrogen, which is a fuel fluid, passes through the reaction gas flow passage 114, and thus it is distributed at an even pressure, so that mass transfer and reaction efficiency of the fuel cell stack can be achieved. Because it can increase.
- the inner angle ⁇ of the reaction gas flow path 114 having an equilateral trapezoidal cross-sectional structure preferably has a 55 to 85 °.
- the inner angle ⁇ of the reaction gas flow passage 114 is less than 55 °, the difference in length between the bottom side and the upper side portion of the reaction gas flow passage 114 is increased, and the pressure distribution at the upper portion and the lower portion of the reaction gas flow passage 114 is increased. The nonuniformity causes a problem that the conversion efficiency of the fuel cell stack is lowered.
- the mass transfer loss can be suppressed by design change of the reaction gas flow path into a geometric structure.
- the concentration of the reactant at the electrode surface is lost. This is suppressed, and as a result, the amount of hydrogen used for power generation is reduced by reducing the loss amount compared to the injected hydrogen, so that the conversion efficiency can be improved, and as a result, the power generation amount increases and thus the total power density increases.
- the mass transfer loss is closely related to the product water discharge as well as the change of the concentration of the reactant at the electrode surface.
- the product water discharge is a developmental part, and the fuel is effectively delivered to the entire separator due to the smooth discharge of the product water generated as a by-product of the reaction, blocking the gas diffusion layer and the anode and the cathode. It can prevent the output drop.
- the fuel cell separator according to the embodiment of the present invention can secure a uniform fuel distribution throughout the fuel cell stack by changing the geometry of the reaction gas flow path, and the reaction by-products filled in the gas diffusion layer, the anode and the cathode. It effectively removes phosphorus and reduces the pressure drop at the inlet and outlet when the hydrogen, the fuel fluid, passes through the reaction gas flow path so that the gas is evenly distributed over the entire flow path of the separator plate. As it is not concentrated on the part, it is possible to secure reaction efficiency and lifespan improvement of the fuel cell stack.
- Fuel cell separators according to Examples 1 to 4 and Comparative Example 1 were prepared under the conditions of Table 1. At this time, the fuel cell separator according to Examples 1 to 4 and Comparative Example 1 has 50 mm (width) ⁇ 50 mm (length), and the flow path has a height of 0.6 mm.
- Table 2 shows the results of measuring the moisture content after the final reaction to the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied.
- this discharged water content refers to the amount of discharged water produced.
- Table 3 shows the result of measuring the amount of reactive hydrogen after the final reaction to the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied. At this time, in order to calculate the amount of hydrogen used for the reaction, the amount of hydrogen after the reaction from the discharged water was calculated, and the initial input water content was 74.30%.
- Example 4 Comparative Example 1>
- Table 4 shows the results of measuring the total power density after the final reaction for the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied, and FIG. 4 shows Examples 1 to 4 and 4 is a graph showing IV characteristics of a fuel cell stack to which a fuel cell separator prepared according to 1 is applied.
- a fuel cell stack employing a fuel cell separator manufactured according to Example 3, which has a rib width and a channel width of 0.6 mm / 1.0 mm, is the most preferable flow path in view of discharged water, hydrogen reduction rate, and total power density. It was confirmed that it has a design structure.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Disclosed are a fuel cell separator plate which can maximize power generation efficiency and reduce hydrogen consumption in a fuel cell stack, and a fuel cell stack having the same. The fuel cell separator plate according to the present invention comprises: a separator plate body having a channel part and a manifold part; and a reaction gas flow path disposed in the channel part of the separator plate body and protruding from a first surface to a second surface.
Description
본 발명은 연료전지 분리판 및 이를 갖는 연료전지 스택에 관한 것으로, 보다 상세하게는 연료전지 스택의 발전 효율을 극대화함과 더불어, 수소 소모량을 감소시킬 수 있는 연료전지 분리판 및 이를 갖는 연료전지 스택에 관한 것이다.The present invention relates to a fuel cell separator and a fuel cell stack having the same, and more particularly, to a fuel cell separator capable of maximizing power generation efficiency of a fuel cell stack and reducing hydrogen consumption, and a fuel cell stack having the same. It is about.
연료전지 스택은 수소 가스와 산소 가스를 이용하여 전기 화학적으로 전기를 생산하는 장치로서, 외부에서 연속적으로 공급되는 연료(수소) 및 공기(산소)를 전기화학반응에 의하여 직접 전기에너지와 열에너지로 변환시키는 장치이다.A fuel cell stack is a device that produces electricity electrochemically by using hydrogen gas and oxygen gas, and converts fuel (hydrogen) and air (oxygen) continuously supplied from the outside into electrical energy and thermal energy directly by an electrochemical reaction. Device.
이러한 연료전지 스택은 산화전극에서의 산화반응 및 환원전극에서의 환원반응을 이용하여 전력(electric power)을 생성하게 된다. 이때, 산화 및 환원 반응을 촉진시키기 위해 백금 또는 백금-루테늄 금속 등을 포함하는 촉매층과 고분자 전해질막으로 구성된 막-전극 접합체(Membrane Electrode Assembly; MEA)가 사용되며 막-전극 접합체 양단으로 분리판이 체결되어 셀(CELL) 구조를 이루게 된다.The fuel cell stack generates electric power by using an oxidation reaction at the anode and a reduction reaction at the cathode. At this time, a membrane-electrode assembly (MEA) consisting of a catalyst layer containing platinum or platinum-ruthenium metal and a polymer electrolyte membrane is used to promote oxidation and reduction reactions, and a separator is fastened to both ends of the membrane-electrode assembly. Thus, a cell structure is formed.
종래의 연료전지 스택의 경우, 연료전지 분리판의 소재 특성을 개선하거나, 구동 조건을 최적화하는 방법 등을 활용하여 연료전지 스택의 전반적인 특성을 증진하였다. 연료전지 분리판의 구조를 변경하는 접근 방법을 통해 성능을 개선하려는 시도가 있었으나, 종래의 경우에는 연료전지 분리판의 유로 개수를 증가하거나, 추가적인 사행 유로나 보조 유로를 추가하는 것이 주로 제안되었다.In the case of the conventional fuel cell stack, the overall characteristics of the fuel cell stack have been improved by improving the material characteristics of the fuel cell separator or by optimizing the driving conditions. There have been attempts to improve performance through an approach that changes the structure of a fuel cell separator, but in the related art, it has been mainly proposed to increase the number of passages of a fuel cell separator or to add an additional meandering passage or an auxiliary passage.
그러나, 이러한 종래의 방법 중 가장 큰 문제는 연료전지 분리판의 유로 개수 증가 및 보조 유로의 추가는 필연적으로 분리판의 크기를 증가시켜 전체적인 연료전지 스택의 크기를 증가시키는 문제가 있다. 특히, 최근에는 자동차 등에 많이 적용되고 있으며, 무엇보다 크기의 소형화가 가장 큰 이슈가 되는 것을 고려할 때, 크기의 대형화 또는 모양의 변화는 연료전지 스택의 활용적인 면에서 가장 큰 제약으로 작용하고 있다.However, the biggest problem among these conventional methods is that the increase in the number of flow paths of the fuel cell separator and the addition of the auxiliary flow paths inevitably increase the size of the separator to increase the size of the entire fuel cell stack. In particular, in recent years, it is applied to a lot of cars, etc. Above all, considering that the miniaturization of the size is the biggest issue, the increase in size or change in shape is the biggest constraint in terms of utilization of the fuel cell stack.
또한, 종래의 방법은 공정성의 문제에 있어서도 면적이 커질 경우, 해당 연료전지 분리판을 제작하기 위한 금형의 크기가 커지며, 금형의 초기 투자 비용도 역시 크기에 비례하여 증가하게 되므로 공정 비용의 상승을 초래하는 문제가 있다.In addition, in the conventional method, even if the area is large in terms of fairness, the size of the mold for manufacturing the fuel cell separator increases, and the initial investment cost of the mold also increases in proportion to the size, thereby increasing the process cost. There is a problem that results.
특히, 연료전지 스택의 반응에 있어서 무엇보다 중요한 것은 화학반응으로 인해 생성되는 액상상태의 물의 배출이다. 연료전지 스택의 환원극에서 일어나는 산소의 반응으로 생성되는 물이 반응가스 유로에서 바로 배출되지 못한 채 일정량 이상 축적될 경우, 공급되는 연료가 분리판과 접촉되어 있는 촉매층에 효율적으로 전달되지 못하여 반응 영역에서의 농도 손실을 불러온다.In particular, the most important in the reaction of the fuel cell stack is the discharge of liquid water generated by the chemical reaction. When water generated by the reaction of oxygen in the cathode of the fuel cell stack accumulates over a certain amount without being immediately discharged from the reaction gas flow path, the supplied fuel is not efficiently delivered to the catalyst layer in contact with the separator plate, thereby causing a reaction zone. Call up the concentration loss at.
따라서, 수분 배출이 어려울 경우, 연료전지 분리판 및 나아가 연료전지 스택의 전체 성능을 저하시켜 불안정화를 유발시킬 수 있다.Therefore, when it is difficult to discharge moisture, the overall performance of the fuel cell separator and even the fuel cell stack may be degraded to cause instability.
관련 선행 문헌으로는 대한민국 공개특허공보 제10-2007-0093734호(2007.09.19. 공개)가 있으며, 상기 문헌에는 연료전지용 분리판 및 이를 포함하는 연료전지에 대하여 기재되어 있다.Related prior art documents include Korean Patent Laid-Open Publication No. 10-2007-0093734 (published on September 19, 2007), which discloses a separator for a fuel cell and a fuel cell including the same.
본 발명의 목적은 연료전지 스택의 발전 효율을 극대화함과 더불어, 수소 소모량을 감소시켜 연료전지 스택의 반응 활성화 면적을 막아 화학반응을 방해하는 생성수의 배출 효율을 개선하여 종합적인 연료전지 스택의 성능을 향상시킬 수 있는 연료전지 분리판 및 이를 갖는 연료전지 스택을 제공하는 것이다.An object of the present invention is to maximize the power generation efficiency of a fuel cell stack and to reduce the hydrogen consumption to prevent the reaction activation area of the fuel cell stack, thereby improving the discharge efficiency of the generated water that interferes with the chemical reaction. It is to provide a fuel cell separator and a fuel cell stack having the same capable of improving performance.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 연료전지 분리판은 채널부 및 매니폴드부를 갖는 분리판 몸체; 및 상기 분리판 몸체의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로;를 포함하며, 상기 반응가스 유로는 채널 폭에 해당하는 밑변이 리브 폭에 해당하는 윗변보다 긴 사다리꼴 단면 구조를 가지며, 상기 리브 폭의 길이는 상기 채널 폭의 길이의 40 ~ 80%인 것을 특징으로 한다.A fuel cell separator according to an embodiment of the present invention for achieving the above object comprises a separator plate body having a channel portion and a manifold portion; And a reaction gas flow passage disposed in the channel portion of the separation plate body and protruding from the first surface to the second surface, wherein the reaction gas flow passage has a lower side corresponding to the channel width longer than an upper side corresponding to the rib width. It has a trapezoidal cross-sectional structure, the length of the rib width is characterized in that 40 to 80% of the length of the channel width.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 연료전지 스택은 적어도 2장 이상이 스택되며, 각각 채널부 및 매니폴드부를 갖는 분리판 몸체과, 상기 분리판 몸체의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로를 갖는 복수의 연료전지 분리판; 및 상기 복수의 연료전지 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며, 상기 반응가스 유로는 채널 폭에 해당하는 밑변이 리브 폭에 해당하는 윗변보다 긴 사다리꼴 단면 구조를 가지며, 상기 리브 폭의 길이는 상기 채널 폭의 길이의 30 ~ 80%인 것을 특징으로 한다.At least two or more fuel cell stacks according to an embodiment of the present invention for achieving the above object are stacked, the separator plate body having a channel portion and a manifold portion, respectively, disposed in the channel portion of the separator plate body, A plurality of fuel cell separators having a reaction gas flow passage protruding from the surface to the second surface; And a membrane-electrode assembly interposed between the plurality of fuel cell separators, wherein the reaction gas flow path has a trapezoidal cross-sectional structure in which a lower side corresponding to a channel width is longer than an upper side corresponding to a rib width. The length of the rib width is characterized in that 30 to 80% of the length of the channel width.
본 발명에 따른 연료전지 분리판 및 이를 갖는 연료전지 스택은 반응가스 유로를 기하학적 구조로 설계 변경하는 것에 의해 물질 전달 손실이 억제될 수 있는바, 물질 전달 손실이 억제되면 전극 표면에서 반응 물질의 농도 손실이 억제되고, 이 결과 투입된 수소 대비 손실량이 감소하여 발전에 쓰이는 수소가 많아져 전환 효율을 향상시킬 수 있으므로 결과적으로 발전량 상승 및 이에 따른 총 출력 밀도가 증가하는 효과가 있다.In the fuel cell separation plate and the fuel cell stack having the same according to the present invention, the mass transfer loss can be suppressed by design change of the reaction gas flow path into a geometrical structure. Loss is suppressed, and as a result, the amount of hydrogen used for power generation is reduced by reducing the amount of hydrogen injected, and thus the conversion efficiency can be improved, resulting in an increase in power generation and an increase in total power density.
또한, 본 발명에 따른 연료전지 분리판 및 이를 갖는 연료전지 스택은 반응가스 유로의 기하학적 구조 변화를 통해 연료전지 스택 전체에 균일한 연료 분포를 확보할 수 있으며, 가스 확산층과 애노드 및 캐소드에 차있는 반응 부산물질인 물을 효과적으로 제거하며, 연료 유체인 수소가 반응가스 유로를 통과할 때 주입구(Inlet)와 배출구(outlet)에서의 압력강하가 줄어들어 분리판 전체 유로에 기체가 고른 압력으로분포되도록 하는 것에 의해 특정 부위에만 집중 되지 않아 연료전지 스택의 반응 효율과 수명 개선을 확보할 수 있게 된다.In addition, the fuel cell separator and the fuel cell stack having the same according to the present invention can ensure a uniform fuel distribution throughout the fuel cell stack through the change in the geometry of the reaction gas flow path, and the gas diffusion layer, the anode and the cathode It effectively removes water, which is a reaction byproduct, and reduces the pressure drop at the inlet and outlet when hydrogen, the fuel fluid, passes through the reaction gas flow path, so that the gas is evenly distributed in the entire flow path of the separator plate. As a result, the reaction efficiency and lifespan improvement of the fuel cell stack can be secured because it is not concentrated on a specific part.
도 1은 본 발명의 실시예에 따른 연료전지 스택을 나타낸 사시도.1 is a perspective view showing a fuel cell stack according to an embodiment of the present invention.
도 2는 도 1의 연료전지 분리판 및 막-전극 접합체의 일 부분을 확대하여 나타낸 사시도.FIG. 2 is an enlarged perspective view of a portion of the fuel cell separator and the membrane-electrode assembly of FIG. 1; FIG.
도 3은 도 2의 반응가스 유로를 확대하여 나타낸 단면도.3 is an enlarged cross-sectional view of a reaction gas flow path of FIG. 2;
도 4는 실시예 1 ~ 4 및 비교에 1에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택의 I-V 특성을 나타낸 그래프.Figure 4 is a graph showing the I-V characteristics of the fuel cell stack applying the fuel cell separator prepared according to Examples 1 to 4 and 1 in comparison.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 연료전지 분리판 및 이를 갖는 연료전지 스택에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a fuel cell separator and a fuel cell stack having the same according to exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 연료전지 스택을 나타낸 사시도이다.1 is a perspective view showing a fuel cell stack according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 연료전지 스택(100)은 복수의 연료전지 분리판(110) 및 막-전극 접합체(120)를 포함한다. 또한, 본 발명의 실시예에 따른 연료전지 스택(100)은 가스 확산층(미도시) 및 엔드 플레이트(130)를 더 포함할 수 있다.Referring to FIG. 1, a fuel cell stack 100 according to an exemplary embodiment of the present invention includes a plurality of fuel cell separators 110 and a membrane-electrode assembly 120. In addition, the fuel cell stack 100 according to the embodiment of the present invention may further include a gas diffusion layer (not shown) and the end plate 130.
복수의 연료전지 분리판(110)은 적어도 2장 이상이 스택되며, 각각 채널부 및 매니폴드부를 갖는 분리판 몸체(112)와, 분리판 몸체(112)의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로(114)를 갖는다. 이러한 연료전지 분리판(110)은 기체의 투과도가 낮고, 일정한 형상을 유지할 수 있도록 충분한 구조강도를 가져야 한다.At least two fuel cell separator plates 110 are stacked on the separator plate body 112, each having a channel portion and a manifold portion, and disposed on a channel portion of the separator plate body 112. And a reaction gas flow passage 114 protruding from the second surface to the second surface. The fuel cell separator 110 has a low structural permeability to maintain a constant shape and low gas permeability.
막-전극 접합체(120)는 복수의 연료전지 분리판(110)의 사이에 각각 개재된다. 이러한 막-전극 접합체(120)는 수소 양이온(proton)을 이동시킬 수 있는 전해질막과, 수소와 산소가 반응할 수 있도록 전해질막의 양면에 도포된 촉매층인 애노드 및 캐소드를 포함한다.The membrane-electrode assembly 120 is interposed between the plurality of fuel cell separators 110, respectively. The membrane-electrode assembly 120 includes an electrolyte membrane capable of moving hydrogen cations and an anode and a cathode, which are catalyst layers coated on both surfaces of the electrolyte membrane so that hydrogen and oxygen can react.
도면으로 상세히 도시하지는 않았지만, 연료전지 분리판(110) 및 막-전극 접합체(120) 사이에는 반응가스를 막-전극 접합체(120)의 표면으로 균일하게 분산시키기 위한 다공성 매체인 가스 확산층(Gas Diffusion Layer : GDL)이 삽입될 수 있다.Although not shown in detail in the drawings, a gas diffusion layer (Gas Diffusion) is a porous medium for uniformly dispersing the reaction gas to the surface of the membrane-electrode assembly 120 between the fuel cell separator 110 and the membrane-electrode assembly 120. Layer: GDL) may be inserted.
엔드 플레이트(130)는 복수의 연료전지 분리판(110) 및 막-전극 접합체(120)의 최외곽에 배치되어, 복수의 연료전지 분리판(110) 및 막-전극 접합체(120)를 지지하는 역할을 한다. 이러한 엔드 플레이트(130)는 복수의 연료전지 분리판(110), 막-전극 집합체(120) 및 가스 확산층을 지지하는 역할과 더불어, 연료전지 분리판(110)의 채널부로 반응가스인 수소를 공급하기 위한 주입구 역할을 한다. 이때, 엔드 플레이트(130)는 적정 강도를 확보하면서도 막-전극 접합체(120)와의 절연성을 확보하기 위한 목적으로 아노다이징 처리된 알루미늄으로 형성될 수 있으나, 이에 제한되는 것은 아니다.The end plate 130 is disposed at the outermost portion of the plurality of fuel cell separators 110 and the membrane-electrode assembly 120 to support the plurality of fuel cell separators 110 and the membrane-electrode assembly 120. Play a role. The end plate 130 supports the plurality of fuel cell separators 110, the membrane-electrode assembly 120, and the gas diffusion layer, and supplies hydrogen, which is a reaction gas, to the channel portion of the fuel cell separator 110. It serves as an inlet for In this case, the end plate 130 may be formed of anodized aluminum for the purpose of securing insulation with the membrane-electrode assembly 120 while ensuring proper strength, but is not limited thereto.
전술한 구성을 갖는 연료전지 스택(100)에 대한 전기에너지 생성 원리를 간략히 설명하면 다음과 같다.A brief description of the principle of generating electrical energy for the fuel cell stack 100 having the above-described configuration is as follows.
먼저, 애노드에서 수소의 산화반응이 진행되어 수소이온(proton)과 전자(electron)가 발생하고, 수소 이온과 전자는 각각 전해질막과 연료전지 분리판(110)을 통하여 캐소드로 이동하게 된다. 이후, 캐소드에서는 수소이온과, 전자와, 공기 중의 산소가 참여하는 전기화학반응이 일어나 물이 생성되고, 애노드와 캐소드 사이의 전자의 흐름에 의해 전기에너지가 발생된다.First, an oxidation reaction of hydrogen proceeds at the anode to generate hydrogen ions (protons) and electrons (electrons), and the hydrogen ions and electrons move to the cathode through the electrolyte membrane and the fuel cell separator 110, respectively. Thereafter, the cathode generates an electrochemical reaction in which hydrogen ions, electrons, and oxygen in the air participate to generate water, and electrical energy is generated by the flow of electrons between the anode and the cathode.
즉, 애노드로 공급된 수소는 수소이온(H+)과 전자(electron, e-)로 분해되고, 분해된 수소이온은 전해질을 통과하여 캐소드로 이동하게 되고, 이 캐소드에서는 애노드에서 이동해 온 수소이온(H+)과 외부도선을 통하여 이동한 전자(electron, e-) 및 캐소드로 공급된 산소가 전극에서 만나 물을 생성함과 동시에 열을 발생시키는 반응을 통하여 전기에너지를 생성하게 된다.That is, the hydrogen supplied to the anode is decomposed into hydrogen ions (H + ) and electrons (electron, e − ), and the decomposed hydrogen ions pass through the electrolyte to the cathode, where the hydrogen ions migrated from the anode and it generates electrical energy through a reaction of the oxygen supplied to the cathode, and generates heat and at the same time meet the electrode to produce water - (H +) and a mobile electronic through the external conductors (electron, e).
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 연료전지 분리판에 대하여 보다 구체적으로 설명하도록 한다.Hereinafter, a fuel cell separator according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 도 1의 연료전지 분리판 및 막-전극 접합체의 일 부분을 확대하여 나타낸 사시도이고, 도 3은 도 2의 반응가스 유로를 확대하여 나타낸 단면도이다.2 is an enlarged perspective view of a portion of the fuel cell separator and the membrane-electrode assembly of FIG. 1, and FIG. 3 is an enlarged cross-sectional view of the reaction gas flow path of FIG. 2.
도 2 및 도 3을 참조하면, 본 발명의 실시예에 따른 연료전지 분리판(110)은 분리판 몸체(112) 및 반응가스 유로(114)를 포함한다. 또한, 본 발명의 실시예에 따른 연료전지 분리판(110)은 냉각 유로(116) 및 가스켓(미도시)을 더 포함할 수 있다.2 and 3, the fuel cell separator 110 according to the exemplary embodiment of the present invention includes a separator body 112 and a reaction gas flow passage 114. In addition, the fuel cell separator 110 according to the embodiment of the present invention may further include a cooling passage 116 and a gasket (not shown).
분리판 몸체(112)는 중앙 부분에 배치된 채널부와, 가장자리에 배치된 매니폴드부를 갖는다. 이러한 분리판 몸체(112)는 기체의 투과도가 낮고, 일정한 형상을 유지할 수 있도록 충분한 구조강도를 갖는 금속 재질이 이용될 수 있으나, 이에 제한되는 것은 아니다.The separator plate body 112 has a channel portion disposed at the center portion and a manifold portion disposed at the edge. The separator body 112 may have a low permeability of gas and a metal material having sufficient structural strength to maintain a constant shape, but is not limited thereto.
반응가스 유로(114)는 분리판 몸체(112)의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된다. 이에 따라, 반응가스 유로(114)는 막-전극 접합체(120)와 마주보도록 배치된다. 이러한 반응가스 유로(114)는 채널 폭(w1)에 해당하는 밑변이 리브 폭(w2)에 해당하는 윗변보다 긴 사다리꼴 단면 구조를 갖는다.The reaction gas flow passage 114 is disposed in the channel portion of the separator plate body 112 and protrudes from the first surface to the second surface. Accordingly, the reaction gas flow passage 114 is disposed to face the membrane-electrode assembly 120. The reaction gas flow passage 114 has a trapezoidal cross-sectional structure in which the bottom side corresponding to the channel width w1 is longer than the top side corresponding to the rib width w2.
냉각 유로(116)는 제1면으로부터 제2면으로 돌출된 반응가스 유로(114)들의 이격된 사이에 배치된다. 이러한 냉각 유로(116)는 공기가 통과하는 공기 유로 또는 냉각수가 통과하는 냉각수 유로일 수 있다.The cooling flow path 116 is disposed between the spaced portions of the reaction gas flow paths 114 protruding from the first surface to the second surface. The cooling passage 116 may be an air passage through which air passes or a cooling water passage through which cooling water passes.
도면으로 상세히 나타내지는 않았지만, 가스켓은 분리판 몸체(112)의 채널부 및 매니폴드부의 경계를 따라 부착되어, 작동 유체가 새는 것을 방지하는 역할을 한다. 이러한 가스켓은 기밀성을 확보하고 연료전지 분리판(110)의 적층 시 연료전지 분리판(110) 상호 간의 체결을 용이하게 하기 위한 목적으로 형성되는 것으로, 그 재질은 고무 재질이 이용될 수 있으나, 이는 일 예에 불과하며, 플라스틱 재질이 이용될 수도 있다.Although not shown in detail in the drawings, the gasket is attached along the boundary of the channel portion and the manifold portion of the separator plate body 112 to prevent leakage of the working fluid. These gaskets are formed for the purpose of securing airtightness and facilitating fastening between the fuel cell separators 110 when the fuel cell separators 110 are stacked. The material may be a rubber material. Only one example, a plastic material may be used.
특히, 도 3에 도시된 바와 같이, 반응가스 유로(114)는 리브 폭(w2)의 길이가 채널 폭(w1)의 길이의 30 ~ 80%로 설계되어 기하학적인 구조를 갖는다.In particular, as shown in FIG. 3, the reaction gas flow passage 114 has a geometric structure because the length of the rib width w2 is designed to be 30 to 80% of the length of the channel width w1.
이때, 리브 폭(w2)의 길이가 채널 폭(w1)의 길이의 30% 미만일 경우에는 유로 성형성이 저하됨은 물론, 반응가스 유로(114)의 밑변 부분과 윗변 부분의 길이 차이가 심해져 반응가스 유로(114)의 윗 부분과 아랫 부분에서의 압력 분포가 불균일해져 연료전지 스택(도 1의 100)의 전환 효율이 저하되는 문제가 있다. 반대로, 리브 폭(w2)의 길이가 채널 폭(w1)의 길이의 80%를 초과할 경우에는 사다리꼴 단면 구조를 갖는 반응가스 유로(114)의 내각(θ)이 커지게 되는 요인으로 작용하여 30% 미만과 마찬가지 경우로 성형성이 저하되며, 심할 경우에는 반응가스 유로(114) 자체의 성형이 불가능해질 수 있다. 뿐만 아니라, 냉각수 유로 확보가 어려워 연료전지 스택의 냉각 성능 저하를 초래하여, 전체적인 성능 저하를 유발하게 된다.At this time, when the length of the rib width w2 is less than 30% of the length of the channel width w1, the flow formability is deteriorated, and the difference between the length of the bottom side and the top side of the reaction gas flow passage 114 is increased. There is a problem that the pressure distribution in the upper portion and the lower portion of the flow passage 114 is uneven, so that the switching efficiency of the fuel cell stack (100 in FIG. 1) is lowered. On the contrary, when the length of the rib width w2 exceeds 80% of the length of the channel width w1, the inner angle θ of the reaction gas flow passage 114 having the trapezoidal cross-sectional structure becomes large. In the case of less than%, the moldability is lowered, and in severe cases, molding of the reaction gas flow path 114 itself may be impossible. In addition, it is difficult to secure the cooling water flow path, which leads to a decrease in the cooling performance of the fuel cell stack, thereby causing an overall decrease in performance.
이에 더불어, 리브 폭(w2)의 길이가 채널 폭(w1)의 길이의 80%를 초과할 경우, 연료가스의 공급 및 미반응물/반응 생성물(주로 H2O 등)의 배출이 원활하지 못하여 연료전지 스택의 작동 성능 저하 및 수명 단축을 초래한다. 예를 들어, 캐소드(Cathode)로부터 반응 생성물인 물의 배출이 원활히 이루어지지 않을 경우, 물 넘침(Water flooding) 현상이 발생하고, 이로 인해 전체 연료전지 스택의 물질 전달에 방해를 받아 연료전지 스택의 작동 성능 저하 및 수명 단축을 초래한다.In addition, when the length of the rib width w2 exceeds 80% of the length of the channel width w1, the supply of fuel gas and the discharge of unreacted substances / reaction products (mainly H 2 O, etc.) are not smooth. This results in a decrease in operating performance of the battery stack and a shortened lifespan. For example, when the reaction product water is not discharged smoothly from the cathode, water flooding occurs, which interferes with the mass transfer of the entire fuel cell stack, thereby operating the fuel cell stack. Resulting in reduced performance and reduced lifespan.
이를 위해, 채널 폭(w1)은 0.9 ~ 1.2mm의 길이를 갖고, 리브 폭(w2)은 0.4 ~ 0.7mm의 길이를 갖는 것이 바람직하다. 이 경우, 채널 폭(w1)과 리브 폭(w2)의 합산 길이는 1.4 ~ 1.8mm로 고정되는 것이 바람직하다.For this purpose, it is preferable that the channel width w1 has a length of 0.9 to 1.2 mm, and the rib width w2 has a length of 0.4 to 0.7 mm. In this case, the sum total length of the channel width w1 and the rib width w2 is preferably fixed at 1.4 to 1.8 mm.
왜냐하면, 채널 폭(w1)과 리브 폭(w2)의 합산 길이가 상기의 범위를 벗어나 늘어나거나 줄어들 경우, 단일 유로의 전체 길이의 변경은 단일 유로의 반복으로 구성되는 연료전지 분리판(110)의 전체 크기를 변경시키는 요인으로 작용하기 때문에 연료전지 스택의 전체 디자인을 변경해야 하는 문제가 있다. 이는 결국, 연료전지 분리판(110)을 제작하기 위한 금형의 크기가 커지거나 작아지는 요인으로 작용하여 금형 교체가 불가피해지므로 공정 비용의 상승을 초래하는 문제가 있다.Because, when the combined length of the channel width w1 and the rib width w2 increases or decreases out of the above range, the change in the overall length of the single flow path is performed by the repetition of the single flow path of the fuel cell separation plate 110. Since it acts as a factor for changing the overall size, there is a problem in that the overall design of the fuel cell stack needs to be changed. This, in turn, acts as a factor that increases or decreases the size of the mold for manufacturing the fuel cell separator 110, which inevitably leads to an increase in process cost.
이와 달리, 본 발명에서는 채널 폭(w1)과 리브 폭(w2)의 합산 길이를 1.4 ~ 1.8mm로 엄격히 한정된 범위로 고정하는 것에 의해, 반응가스 유로(114)의 전체적인 길이 및 체적의 증가는 최소화하면서도, 동일 또는 유사한 체적에서 반응가스 유로(114)의 채널 폭(w1) 및 리브 폭(w2)의 길이 변화를 통해 기하학적 구조를 갖도록 설계함으로써, 연료전지 분리판(110)을 제작하기 위한 금형 교체가 불필요하므로 공정 비용이 증가하지 않는다.In contrast, in the present invention, by fixing the summation length of the channel width w1 and the rib width w2 in a strictly limited range of 1.4 to 1.8 mm, the increase in the overall length and volume of the reaction gas flow passage 114 is minimized. In addition, by changing the length of the channel width (w1) and the rib width (w2) of the reaction gas flow path 114 in the same or similar volume, by designing a geometric structure, the mold replacement for manufacturing the fuel cell separator 110 Is unnecessary, so the process cost does not increase.
이와 같이, 리브 폭(w2)의 길이가 채널 폭(w1)의 길이의 30 ~ 80%를 갖는 기하학적인 구조로 반응가스 유로(114)를 설계할 경우, 반응가스인 수소의 소모량이 감소하여 발전에 사용되는 수소가 전반적으로 저감하며, 사용한 수소 대비 발전 출력, 즉 전환 효율이 증가한다. 이에 따라, 전환 효율 뿐만 아니라 연료전지 스택의 발전에 방해가 되는 생성물질인 물을 효과적으로 제거할 수 있으므로 물질 전달 및 반응이 효과적으로 이루어질 수 있다.As such, when the reaction gas flow path 114 is designed in a geometric structure having the length of the rib width w2 having 30 to 80% of the length of the channel width w1, the consumption of hydrogen, which is the reaction gas, is reduced. The hydrogen used for the overall reduction is reduced, and the power generation output, that is, the conversion efficiency is increased compared to the used hydrogen. Accordingly, water can be effectively removed as well as conversion efficiency because water, which is a product that interferes with power generation of the fuel cell stack, can be effectively removed.
이때, 반응가스 유로(114)는 0.5 ~ 0.7mm의 높이를 갖는 것이 바람직한데, 이는 상기의 범위로 설계해야 연료 유체인 수소가 반응가스 유로(114)를 통과할 때 압력강하가 줄어들어 고른 압력으로분포되어 연료전지 스택의 물질 전달 및 반응 효율을 증가시킬 수 있기 때문이다.At this time, it is preferable that the reaction gas flow passage 114 has a height of 0.5 to 0.7 mm, which should be designed in the above range so that the pressure drop decreases when hydrogen, which is a fuel fluid, passes through the reaction gas flow passage 114. This can be distributed to increase mass transfer and reaction efficiency of the fuel cell stack.
이러한 반응가스 유로(114)는 밑변과 밑변의 양 꼭지점(B, C)과 윗변의 양 꼭지점(A, D)의 연결선이 이루는 내각(θ)이 서로 동일한 등각 사다리꼴 단면 구조를 갖는 것이 보다 바람직하다.More preferably, the reaction gas flow passage 114 has an equilateral trapezoidal cross-sectional structure in which the inner angles θ formed by the connecting lines between the bottom and bottom vertices B and C and the top and bottom vertices A and D are the same. .
이와 같이, 등각 사다리꼴 단면 구조로 반응가스 유로(114)를 설계해야 연료 유체인 수소가 반응가스 유로(114)를 통과할 때 압력강하가 줄어들어 고른 압력으로분포되어 연료전지 스택의 물질 전달 및 반응 효율을 증가시킬 수 있기 때문이다.As such, when the reaction gas flow passage 114 is designed to have a conformal trapezoidal cross-sectional structure, a pressure drop is reduced when hydrogen, which is a fuel fluid, passes through the reaction gas flow passage 114, and thus it is distributed at an even pressure, so that mass transfer and reaction efficiency of the fuel cell stack can be achieved. Because it can increase.
이때, 등각 사다리꼴 단면 구조를 갖는 반응가스 유로(114)의 내각(θ)은 55 ~ 85°를 갖는 것이 바람직하다. 반응가스 유로(114)의 내각(θ)이 55° 미만일 경우에는 반응가스 유로(114)의 밑변 부분과 윗변 부분의 길이 차이가 심해져 반응가스 유로(114)의 윗 부분과 아랫 부분에서의 압력 분포가 불균일해져 연료전지 스택의 전환 효율이 저하되는 문제가 있다. 반대로, 반응가스 유로(114)의 내각(θ)이 85°를 초과할 경우에는 직각에 가까운 과도한 각도 설계로 인하여 연료전지 분리판(110)의 성형성이 매우 좋지 않아질 우려가 크며, 반응가스 유로(114) 자체의 성형이 불가능해질 수 있다.At this time, the inner angle θ of the reaction gas flow path 114 having an equilateral trapezoidal cross-sectional structure preferably has a 55 to 85 °. When the inner angle θ of the reaction gas flow passage 114 is less than 55 °, the difference in length between the bottom side and the upper side portion of the reaction gas flow passage 114 is increased, and the pressure distribution at the upper portion and the lower portion of the reaction gas flow passage 114 is increased. The nonuniformity causes a problem that the conversion efficiency of the fuel cell stack is lowered. On the contrary, when the internal angle θ of the reaction gas flow passage 114 exceeds 85 °, there is a high possibility that the formability of the fuel cell separator 110 may be very poor due to the excessive angle design close to the right angle, and the reaction gas. Molding of the flow path 114 itself may become impossible.
전술한 본 발명의 실시예에 따른 연료전지 분리판은 반응가스 유로를 기하학적 구조로 설계 변경하는 것에 의해 물질 전달 손실이 억제될 수 있는바, 물질 전달 손실이 억제되면 전극 표면에서 반응 물질의 농도 손실이 억제되고, 이 결과 투입된 수소 대비 손실량이 감소하여 발전에 쓰이는 수소가 많아져 전환 효율을 향상시킬 수 있으므로 결과적으로 발전량 상승 및 이에 따른 총 출력 밀도가 증가하는 효과가 있다.In the fuel cell separator according to the embodiment of the present invention described above, the mass transfer loss can be suppressed by design change of the reaction gas flow path into a geometric structure. When the mass transfer loss is suppressed, the concentration of the reactant at the electrode surface is lost. This is suppressed, and as a result, the amount of hydrogen used for power generation is reduced by reducing the loss amount compared to the injected hydrogen, so that the conversion efficiency can be improved, and as a result, the power generation amount increases and thus the total power density increases.
이때, 물질 전달 손실은 전극표면에서 반응물질의 농도 변화 뿐만 아니라, 생성수 배출량과도 밀접한 연관이 있다. 생성수 배출은 현상적인 부분이며, 반응의 부산물로 생성되어 가스 확산층과 애노드 및 캐소드를 막고 있던,생성수가 원활하게 배출됨으로인해 연료가분리판 전체에 효과적으로 전달되어,앞서 언급한 물질 전달 손실로 인한 출력 저하를 막을 수 있다.In this case, the mass transfer loss is closely related to the product water discharge as well as the change of the concentration of the reactant at the electrode surface. The product water discharge is a developmental part, and the fuel is effectively delivered to the entire separator due to the smooth discharge of the product water generated as a by-product of the reaction, blocking the gas diffusion layer and the anode and the cathode. It can prevent the output drop.
따라서, 본 발명의 실시예에 따른 연료전지 분리판은 반응가스 유로의 기하학적 구조 변화를 통해 연료전지 스택 전체에 균일한 연료 분포를 확보할 수 있으며, 가스 확산층과 애노드 및 캐소드에 차있는 반응 부산물질인 물을 효과적으로 제거하며, 연료 유체인 수소가 반응가스 유로를 통과할 때 주입구(Inlet)와 배출구(outlet)에서의 압력강하가 줄어들어 분리판 전체 유로에 기체가 고른 압력으로분포되도록 하는 것에 의해 특정 부위에만 집중 되지 않아 연료전지 스택의 반응 효율과 수명 개선을 확보할 수 있게 된다.Therefore, the fuel cell separator according to the embodiment of the present invention can secure a uniform fuel distribution throughout the fuel cell stack by changing the geometry of the reaction gas flow path, and the reaction by-products filled in the gas diffusion layer, the anode and the cathode. It effectively removes phosphorus and reduces the pressure drop at the inlet and outlet when the hydrogen, the fuel fluid, passes through the reaction gas flow path so that the gas is evenly distributed over the entire flow path of the separator plate. As it is not concentrated on the part, it is possible to secure reaction efficiency and lifespan improvement of the fuel cell stack.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 시편 제조1. Specimen Manufacturing
표 1의 조건으로 실시예 1 ~ 4 및 비교예 1에 따른 연료전지 분리판을 제조하였다. 이때, 실시예 1 ~ 4 및 비교예 1에 따른 연료전지 분리판은 50mm(가로) × 50mm(세로)를 갖고, 유로의 높이는 0.6mm를 갖는다.Fuel cell separators according to Examples 1 to 4 and Comparative Example 1 were prepared under the conditions of Table 1. At this time, the fuel cell separator according to Examples 1 to 4 and Comparative Example 1 has 50 mm (width) × 50 mm (length), and the flow path has a height of 0.6 mm.
[표 1]TABLE 1
2. 물성 평가2. Property evaluation
표 2는 실시예 1 ~ 4 및 비교예 1에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택에 대한 최종 반응후의 수분 함유량을 측정한 결과를 나타낸 것이다.Table 2 shows the results of measuring the moisture content after the final reaction to the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied.
[표 2]TABLE 2
표 1 및 표 2에 도시된 바와 같이, 반응가스 유로의 리브 폭을 기준으로 최종반응 후 배출 수분 함유량을 상호 비교하였으며, 이러한 배출 수분 함유량은 배출 생성수 수량을 의미한다.As shown in Table 1 and Table 2, the discharged water content after the final reaction based on the rib width of the reaction gas flow path was compared with each other, this discharged water content refers to the amount of discharged water produced.
이러한 배출 생성수는 실시예 2 및 실시예 3에서 최대 값을 나타내는 것을 알 수 있다.It can be seen that this discharge generated water shows the maximum value in Examples 2 and 3.
표 3은 실시예 1 ~ 4 및 비교예 1에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택에 대한 최종 반응후의 반응 수소량을 측정한 결과를 나타낸 것이다. 이때, 반응에 사용한 수소량을 산출하기 위해 배출 생성수에서 나오는 반응 후의 수소량을 계산하였으며, 초기 투입 수분함량은 74.30%이었다.Table 3 shows the result of measuring the amount of reactive hydrogen after the final reaction to the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied. At this time, in order to calculate the amount of hydrogen used for the reaction, the amount of hydrogen after the reaction from the discharged water was calculated, and the initial input water content was 74.30%.
[표 3]TABLE 3
표 3에 도시된 바와 같이, 연료전지 스택의 셀 출력을 위한 반응에 수소 사용으로 배출 수소량이 점차 감소하였다.As shown in Table 3, the amount of exhaust hydrogen gradually decreased due to the use of hydrogen in the reaction for the cell output of the fuel cell stack.
이때, 수소 저감순은 실시예 4 > 비교예 1 > 실시예 3 > 실시예 1 > 실시예 2이었다. 즉, 실시예 4의 경우가 반응 수소량이 가장 적었고, 실시예 2의 경우가 반응 수소량이 가장 많았다.At this time, the hydrogen reduction order was Example 4> Comparative Example 1> Example 3> Example 1> Example 2. That is, in Example 4, the amount of reactive hydrogen was the smallest, and in Example 2, the amount of reactive hydrogen was the highest.
표 4는 실시예 1 ~ 4 및 비교예 1에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택에 대한 최종 반응후의 총 출력밀도를 측정한 결과를 나타낸 것이고, 도 4는 실시예 1 ~ 4 및 비교에 1에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택의 I-V 특성을 나타낸 그래프이다.Table 4 shows the results of measuring the total power density after the final reaction for the fuel cell stack to which the fuel cell separator prepared according to Examples 1 to 4 and Comparative Example 1 is applied, and FIG. 4 shows Examples 1 to 4 and 4 is a graph showing IV characteristics of a fuel cell stack to which a fuel cell separator prepared according to 1 is applied.
[표 4]TABLE 4
표 4 및 도 4에 도시된 바와 같이, 리브 폭 및 채널 폭의 증가시 연료전지 스택의 I-V 특성 및 총 출력밀도가 증가하는 것을 알 수 있다.As shown in Table 4 and FIG. 4, it can be seen that the I-V characteristics and the total power density of the fuel cell stack increase when the rib width and the channel width are increased.
특히, 리브 폭 및 채널 폭을 0.6mm/1.0mm로 설계한 실시예 3에 따라 제조된 연료전지 분리판을 적용한 연료전지 스택이 배출 생성수, 수소저감율 및 총 출력밀도를 고려할 때, 가장 바람직한 유로 설계 구조를 갖는다는 것을 확인하였다.In particular, a fuel cell stack employing a fuel cell separator manufactured according to Example 3, which has a rib width and a channel width of 0.6 mm / 1.0 mm, is the most preferable flow path in view of discharged water, hydrogen reduction rate, and total power density. It was confirmed that it has a design structure.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.
Claims (10)
- 채널부 및 매니폴드부를 갖는 분리판 몸체; 및 A separator body having a channel portion and a manifold portion; And상기 분리판 몸체의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로;를 포함하며, It is disposed in the channel portion of the separation plate body, the reaction gas flow path protruding from the first surface to the second surface;상기 반응가스 유로는 채널 폭에 해당하는 밑변이 리브 폭에 해당하는 윗변보다 긴 사다리꼴 단면 구조를 가지며, The reaction gas flow path has a trapezoidal cross-sectional structure in which the lower side corresponding to the channel width is longer than the upper side corresponding to the rib width.상기 리브 폭의 길이는 상기 채널 폭의 길이의 30 ~ 80%인 연료전지 분리판.The length of the rib width is 30 ~ 80% of the length of the channel width of the fuel cell separation plate.
- 제1항에 있어서,The method of claim 1,상기 연료전지 분리판은 The fuel cell separator is상기 제1면으로부터 제2면으로 돌출된 반응가스 유로들의 이격된 사이에 배치된 냉각 유로를 더 포함하는 연료전지 분리판.And a cooling flow passage disposed between the reaction gas flow passages protruding from the first surface to the second surface.
- 제1항에 있어서,The method of claim 1,상기 채널 폭은 The channel width is0.9 ~ 1.2mm의 길이를 갖고, 상기 리브 폭은 0.4 ~ 0.7mm의 길이를 갖는 연료전지 분리판.A fuel cell separation plate having a length of 0.9 ~ 1.2mm, the rib width has a length of 0.4 ~ 0.7mm.
- 제1항에 있어서,The method of claim 1,상기 채널 폭과 리브 폭의 합산 길이는 The sum length of the channel width and the rib width is1.4 ~ 1.8mm인 연료전지 분리판.Fuel cell separator plate 1.4 ~ 1.8mm.
- 제1항에 있어서,The method of claim 1,상기 반응가스 유로는 The reaction gas flow path is0.5 ~ 0.7mm의 높이를 갖는 연료전지 분리판.A fuel cell separator having a height of 0.5 to 0.7 mm.
- 제1항에 있어서,The method of claim 1,상기 반응가스 유로는 The reaction gas flow path is밑변과 상기 밑변의 양 꼭지점과 윗변의 양 꼭지점의 연결선이 이루는 내각이 서로 동일한 등각 사다리꼴 단면 구조를 갖는 연료전지 분리판.A fuel cell splitter plate having an equilateral trapezoidal cross-sectional structure with equal internal angles formed by a connecting line between a bottom side and both vertices of the bottom and upper vertices.
- 제6항에 있어서,The method of claim 6,상기 내각은 The cabinet55 ~ 85°를 갖는 연료전지 분리판.Fuel cell separator with 55 to 85 °.
- 제1항에 있어서,The method of claim 1,상기 연료전지 분리판은 The fuel cell separator is상기 분리판 몸체의 채널부 및 매니폴드부의 경계를 따라 부착된 가스켓을 더 포함하는 연료전지 분리판.And a gasket attached along a boundary of a channel portion and a manifold portion of the separator plate body.
- 적어도 2장 이상이 스택되며, 각각 채널부 및 매니폴드부를 갖는 분리판 몸체과, 상기 분리판 몸체의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로를 갖는 복수의 연료전지 분리판; 및 At least two or more sheets are stacked, the plurality of fuel cells each having a separator plate body having a channel portion and a manifold portion, and a reaction gas flow passage disposed in the channel portion of the separator plate and protruding from the first surface to the second surface. Separators; And상기 복수의 연료전지 분리판의 사이에 각각 개재된 막-전극 접합체;를 포함하며, And a membrane-electrode assembly interposed between the plurality of fuel cell separators, respectively.상기 반응가스 유로는 채널 폭에 해당하는 밑변이 리브 폭에 해당하는 윗변보다 긴 사다리꼴 단면 구조를 가지며, The reaction gas flow path has a trapezoidal cross-sectional structure in which the lower side corresponding to the channel width is longer than the upper side corresponding to the rib width.상기 리브 폭의 길이는 상기 채널 폭의 길이의 30 ~ 80%인 연료전지 스택.The length of the rib width is 30 ~ 80% of the length of the channel width fuel cell stack.
- 제9항에 있어서,The method of claim 9,상기 연료전지 스택은 The fuel cell stack상기 연료전지 분리판과 막-전극 접합체 사이에 배치된 가스 확산층과, A gas diffusion layer disposed between the fuel cell separator and the membrane-electrode assembly;상기 복수의 연료전지 분리판 및 막-전극 접합체의 최외곽에 배치되어, 상기 복수의 연료전지 분리판 및 막-전극 접합체를 지지하는 엔드 플레이트를 더 포함하는 연료전지 스택.The fuel cell stack further comprises an end plate disposed at an outermost portion of the plurality of fuel cell separators and the membrane-electrode assembly to support the plurality of fuel cell separators and the membrane-electrode assembly.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0021441 | 2016-02-23 | ||
KR1020160021441A KR101926454B1 (en) | 2016-02-23 | 2016-02-23 | Fuel cell separator and fuel cell stack including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017146359A1 true WO2017146359A1 (en) | 2017-08-31 |
Family
ID=59685332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/014110 WO2017146359A1 (en) | 2016-02-23 | 2016-12-02 | Fuel cell separator plate and fuel cell stack having same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101926454B1 (en) |
WO (1) | WO2017146359A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109496373A (en) * | 2018-03-16 | 2019-03-19 | 清华大学 | A kind of fuel cell composite dual-electrode plates and its binary channels three-dimensional flow field |
CN112397740A (en) * | 2019-08-13 | 2021-02-23 | 丰田自动车株式会社 | Separator for fuel cell and single cell for fuel cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335306A (en) * | 2003-05-08 | 2004-11-25 | Honda Motor Co Ltd | Fuel cell |
JP2008258134A (en) * | 2007-03-12 | 2008-10-23 | Toyota Motor Corp | Fuel cell and manufacturing method of separator for fuel cell |
JP2009252470A (en) * | 2008-04-04 | 2009-10-29 | Hitachi Ltd | Separator, and solid polymer electrolyte fuel cell using the same |
KR100938023B1 (en) * | 2009-07-31 | 2010-01-21 | 현대하이스코 주식회사 | Air cooled metal separator for fuel cell and fuel cell stack using the air cooled metal separator |
JP2011113785A (en) * | 2009-11-26 | 2011-06-09 | Honda Motor Co Ltd | Fuel cell |
-
2016
- 2016-02-23 KR KR1020160021441A patent/KR101926454B1/en active IP Right Grant
- 2016-12-02 WO PCT/KR2016/014110 patent/WO2017146359A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335306A (en) * | 2003-05-08 | 2004-11-25 | Honda Motor Co Ltd | Fuel cell |
JP2008258134A (en) * | 2007-03-12 | 2008-10-23 | Toyota Motor Corp | Fuel cell and manufacturing method of separator for fuel cell |
JP2009252470A (en) * | 2008-04-04 | 2009-10-29 | Hitachi Ltd | Separator, and solid polymer electrolyte fuel cell using the same |
KR100938023B1 (en) * | 2009-07-31 | 2010-01-21 | 현대하이스코 주식회사 | Air cooled metal separator for fuel cell and fuel cell stack using the air cooled metal separator |
JP2011113785A (en) * | 2009-11-26 | 2011-06-09 | Honda Motor Co Ltd | Fuel cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109496373A (en) * | 2018-03-16 | 2019-03-19 | 清华大学 | A kind of fuel cell composite dual-electrode plates and its binary channels three-dimensional flow field |
CN109496373B (en) * | 2018-03-16 | 2022-05-20 | 清华大学 | Composite bipolar plate for fuel cell and dual-channel three-dimensional flow field thereof |
CN112397740A (en) * | 2019-08-13 | 2021-02-23 | 丰田自动车株式会社 | Separator for fuel cell and single cell for fuel cell |
CN112397740B (en) * | 2019-08-13 | 2024-05-10 | 丰田自动车株式会社 | Separator for fuel cell and single cell for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
KR20170099274A (en) | 2017-08-31 |
KR101926454B1 (en) | 2018-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2269842C2 (en) | Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell | |
KR100949423B1 (en) | Fuel Cell | |
US6638658B1 (en) | Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks | |
WO2014104584A1 (en) | Stack structure for fuel cell | |
US20190245236A1 (en) | Polymer electrolyte fuel cell stack | |
WO2011120426A1 (en) | Bipolar plate for fuel cell | |
WO2013077488A1 (en) | Separation plate for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using same | |
WO2011013870A1 (en) | Metal separator for fuel cell, and fuel cell stack provided with same | |
US7645537B2 (en) | Multi-cell fuel cell layer and system | |
WO2021070979A1 (en) | Method for manufacturing metal separator for hydrogen fuel cell stack | |
WO2017146359A1 (en) | Fuel cell separator plate and fuel cell stack having same | |
KR100954432B1 (en) | Fuel Cell Stack Having Current Collector Unified Gasket | |
WO2013183885A1 (en) | Stack structure for fuel cell and composition thereof | |
WO2024037530A1 (en) | Fuel cell | |
WO2011090246A1 (en) | Fuel cell separator including a sub-channel | |
WO2013100554A1 (en) | Fuel cell stack using branch flow path | |
WO2012091463A2 (en) | Fuel cell system and stack | |
WO2016093604A1 (en) | Polymer electrolyte-type fuel cell, fuel cell stack and end plate | |
US7569303B2 (en) | Membrane electrode assembly with modified catalyst layout | |
CN102714321A (en) | Fuel cell and vehicle equipped with fuel cell | |
WO2014104732A1 (en) | Separator for fuel cell, and fuel cell comprising same | |
WO2018143610A1 (en) | Fuel cell stack | |
US20220077485A1 (en) | Fuel Cell | |
TW548871B (en) | Fuel cell or electrolyser construction | |
WO2024058353A1 (en) | Fuel cell metal separator and fuel cell comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891761 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891761 Country of ref document: EP Kind code of ref document: A1 |