TW548871B - Fuel cell or electrolyser construction - Google Patents

Fuel cell or electrolyser construction Download PDF

Info

Publication number
TW548871B
TW548871B TW091108972A TW91108972A TW548871B TW 548871 B TW548871 B TW 548871B TW 091108972 A TW091108972 A TW 091108972A TW 91108972 A TW91108972 A TW 91108972A TW 548871 B TW548871 B TW 548871B
Authority
TW
Taiwan
Prior art keywords
fuel
flow field
fuel cell
flow
oxidant
Prior art date
Application number
TW091108972A
Other languages
Chinese (zh)
Inventor
Mark Christopher Turpin
James Charles Boff
Original Assignee
Morgan Crucible Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0110915A external-priority patent/GB0110915D0/en
Priority claimed from GB0110911A external-priority patent/GB2375064B/en
Priority claimed from GB0110912A external-priority patent/GB2372626B/en
Priority claimed from GB0110910A external-priority patent/GB2375063B/en
Priority claimed from GB0110913A external-priority patent/GB2375222B/en
Application filed by Morgan Crucible Co filed Critical Morgan Crucible Co
Application granted granted Critical
Publication of TW548871B publication Critical patent/TW548871B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/02Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A fuel cell or electrolyser stack comprises countercurrent radially directed fuel and oxidant flow fields on either side of a membrane electrode assembly.

Description

五、發明説明(1 ^ "〜' ----— 本發明係關於燃料電池及電解器,而特別的係,雖然並 非專屬,關於適用於質子交換膜燃料電池及電解器。 燃料電池係將燃料及氧化劑以受控的方式組合以直接 產生電力之裝置。因為係直接產生電力並不需要中間的燃 燒及產生的步驟,燃料電池的發電效率高於使用該燃料之 傳統發電機。這係吾人所熟知的。燃料電池看似簡單以及 2人滿意,但是近幾年卻已經耗費許多年的人力試圖產生 貝用的燃料屯池系統。電解器實際上係一種反向的燃料電 池/、中會使用電力將水分解成氫及氧。燃料電池及電解 器兩者都可能變成所謂的“氫經濟(hydrogen economy),,中 的重要部件。在下面,將會針對燃料電池進行說明,但是 應β 5己住的係相同的原理適用於電解器。 其中種商用產品之燃料電池係所謂的質子交換膜 (ΡΕΜ)燃料電池[有時稱之為聚合物電解器或固體聚合物 燃料電池(PEFC)]。此類電池利用氫作為燃料並且包括一在 兩面上具有多孔電極之電性絕緣(但是可離子傳導)的聚合 物膜。該膜通常係一種氟磺酸鹽(nu〇r〇sulph〇nate)聚合物 而該電極通常包括散佈在含碳顆粒基板中之貴金屬催化劑 。電極及膜之裝配通常稱之為膜電極裝配(MEA)。 燃料(通常係氫)係供應給一電極(陽陰),其會氧化以釋放 電子給陽極並且釋放氫離子給電解液。氧化劑(通常係空氣 或氧)則係供應給另一電極(陰極),其中來自陰極的電子會 與氧及虱離子結合而產生水。次級之質子交換膜燃料電池 係直接式的甲醇燃料電池其中甲醇係作為燃料。本發明希 -4- 本紙浪尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 548871 五、 A7 -— _B7 發明説明TT~"—一 望涵盍此類燃料電池以及任何其它利用質子交換膜之燃料 電池。 在商用的ΡΕΜ燃料電池中具有許多此類堆疊在一起以流 場板隔離(亦稱之為雙極板)之膜。流場板通常係由金屬或 石墨形成以便在其中一個陽極膜及鄰近的陰極膜之間的電 子能夠產生良好的轉換。 流場板在其表面上具有溝紋圖樣以供應流體(燃料或氧 化劑)及移除燃料電池反應所產生的水。已經有各種產生該 溝紋的方法,舉例來說已經有人提出利用機械,浮雕(emb〇ss) 或鑄造(WO 00/41260),及透過抗蝕劑噴沙(sandblasting) 處理(WO 01/04982)的方式形成溝紋。在噴沙處理系統中, 可以利用空氣氣流將顆粒(例如沙粒,砂礫(grit),微粒(fine bead) ’或凍結物質)導向欲進行處理之成品上。該成品會 以高速進行移動,撞擊該成品以磨擦該表面。 為確保該流體會均勻地散佈在其個別的電極表面上,在 電極及流場板之間會放置一所謂的氣體擴散層(GDL)。該 氣體擴散層係一種多孔的材料並且通常包括碳紙或碳布, 通常在其中一面上具有一碳顆粒黏層並且會塗佈厭水 (hydrophobic)材料以促進排水性。 該燃料及氧化劑流場通常係彎曲的形式,從流體入口歧 管延伸至流體出口歧管。不過可以使用其它的流場圖樣。 在某些揭露中所陳述過(例如US5773 160 , US6087033 ,以 及US-A200 1/0005557)便係提供一種反方向電流配置其中 在該膜電極裝配其中一側上的氧化劑會以反方向移動到該 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)V. Description of the invention (1 ^ " ~ '----- The present invention relates to fuel cells and electrolyzers, and the special ones, although not exclusive, pertain to proton exchange membrane fuel cells and electrolyzers. Fuel cell systems A device that combines fuel and oxidant in a controlled manner to directly generate electricity. Because direct generation of electricity does not require intermediate combustion and generation steps, fuel cells generate electricity more efficiently than traditional generators using the fuel. This system I am familiar with it. The fuel cell seems simple and satisfactory to two people, but in recent years, it has spent many years of manpower trying to produce a fuel tank system for shellfish. The electrolyzer is actually a reverse fuel cell. Electricity is used to split water into hydrogen and oxygen. Both fuel cells and electrolyzers can become important components in the so-called "hydrogen economy." In the following, fuel cells will be described, but The same principle of β 5 has been applied to the electrolyzer. One of the commercial fuel cells is a so-called proton exchange membrane (PEM) fuel cell. [Sometimes called a polymer electrolyzer or solid polymer fuel cell (PEFC)]. This type of battery uses hydrogen as a fuel and includes an electrically insulating (but ionically conductive) polymer with porous electrodes on both sides Membrane. The membrane is usually a nuorosulphonate polymer and the electrode usually includes a precious metal catalyst dispersed in a substrate containing carbon particles. The assembly of electrodes and membranes is commonly referred to as membrane electrode assembly (MEA). Fuel (usually hydrogen) is supplied to one electrode (yang and yin), which oxidizes to release electrons to the anode and release hydrogen ions to the electrolyte. Oxidants (usually air or oxygen) are supplied to another Electrode (cathode), where electrons from the cathode combine with oxygen and lice ions to produce water. The secondary proton exchange membrane fuel cell is a direct methanol fuel cell in which methanol is used as the fuel. Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) 548871 V. A7-_B7 Invention Description TT ~ " —I hope that this type of fuel cell and any other benefits Fuel cells using proton exchange membranes. There are many such membranes stacked together to be separated by a flow field plate (also known as a bipolar plate) in a commercial PEM fuel cell. Flow field plates are usually formed of metal or graphite so that The electrons between one of the anode membranes and the adjacent cathode membrane can produce a good conversion. The flow field plate has a groove pattern on its surface to supply a fluid (fuel or oxidant) and remove water produced by the fuel cell reaction. Various methods have been used to generate this groove. For example, it has been proposed to use machinery, emboss or casting (WO 00/41260), and sandblasting through resist (WO 01/04982). ). In the sand blasting system, particles of air (such as sand, grit, fine bead ', or frozen matter) can be directed to the finished product to be processed by air current. The finished product moves at high speed, hitting the finished product to rub the surface. To ensure that the fluid is evenly spread on its individual electrode surfaces, a so-called gas diffusion layer (GDL) is placed between the electrode and the flow field plate. The gas diffusion layer is a porous material and usually includes carbon paper or carbon cloth. It usually has a carbon particle sticky layer on one side and is coated with a hydrophobic material to promote drainage. The fuel and oxidant flow fields are generally curved, extending from the fluid inlet manifold to the fluid outlet manifold. However, other flow field patterns can be used. As stated in some disclosures (for example, US5773 160, US6087033, and US-A200 1/0005557), a reverse current configuration is provided in which the oxidant on one side of the membrane electrode assembly moves to the opposite direction This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

548871 A7 ____B7_ 五、發明説明(3 ) 膜電極裝配另外一側上的燃料。該些配置並未提供該流場 完全的反方向流動而且還會產生引起操作問題(如下面所 討論)之不均勻的壓力分佈。 本申請案發現藉由提供該燃料及氧化劑流場放射狀的 發散/收斂流場便可以解決此種問題,在此方面,其中一個 流場係向外發散而另一個流場則係向内收斂。因此,本發 明提供一種在膜電極裝配兩側具有反方向電流放射導向之 燃料及氧化劑流場之燃料電池或電解器裝配。 此類配置的另一項優點係可以減少流體連結的數量。在 其中一種有利的配置中,第一反應物氣體會從燃料電池堆 | 疊内的歧管向外地流到第一反應物排出裝置(drain)而第二 反應物氣體則會從該流場邊緣向内地流到第二反應物排出 裝置。 本發明將參考圖式在下面的說明予以解釋: 圖1所示的係堆疊之部份剖面圖; 圖2所示的係將數個根據圖1之堆疊置放於一反應室中 之側面圖; 圖3所示的係將數個根據圖1之堆疊置放於一反應室中 之平面圖; 圖4所示的係根據本發明之流場板(fluid flow plate)之俯 視圖; 圖5所示的係圖4之流場板之底部平面圖; 圖6所示的係根據本發明併用密封機制之一對流場板圖 式; -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公釐) 裝548871 A7 ____B7_ V. Description of the invention (3) Fuel on the other side of the membrane electrode assembly. These configurations do not provide complete reverse flow of the flow field and also create uneven pressure distributions that cause operational problems (as discussed below). This application finds that this problem can be solved by providing a radial divergent / convergent flow field for the fuel and oxidant flow fields. In this regard, one flow field diverges outward and the other flow field converges inward. . Therefore, the present invention provides a fuel cell or electrolyzer assembly having a fuel and oxidant flow field directed by current radiation in opposite directions on both sides of a membrane electrode assembly. Another advantage of this type of configuration is the reduced number of fluid connections. In one of the advantageous configurations, the first reactant gas will flow outward from the fuel cell stack | the manifold in the stack to the first reactant drain and the second reactant gas will flow from the edge of the flow field. Flow inward to the second reactant discharge device. The present invention will be explained in the following description with reference to the drawings: FIG. 1 is a partial cross-sectional view of the stack shown in FIG. 1; FIG. 2 is a side view of the stack shown in FIG. 1 placed in a reaction chamber ; FIG. 3 is a plan view of a plurality of stacks placed in a reaction chamber according to FIG. 1; FIG. 4 is a plan view of a fluid flow plate according to the present invention; Fig. 6 is a bottom plan view of the flow field plate of Fig. 4; Fig. 6 is a schematic diagram of a convection field plate according to one of the sealing mechanisms used in accordance with the present invention; -6-This paper size is applicable to China National Standard (CNS) A4 specification (21 x 297 mm)

線 548871 A7 ___B7 五、發明説明(4 ) 圖7所tf的係根據本發明之流場板之替代形式。 堆叠1 (圖1)包括複數個流場板2。該流場板具有排列過的 孔徑403(圖4&5)形成燃料供應孔3。該堆疊的其中一端係含 有電子連接器5之末端板4。末端板4會封閉燃料供應孔3的 末端。該堆疊具有作為燃料出口 6 ;氧化劑出口 7 ;冷卻劑 入口 8 ;及冷卻劑出口 9之連接線。 在具有歧管1 02系統的反應室1 〇丨中會安裝數個堆疊1以 連接燃料出口 6 ;氧化物出口 7 ;冷卻劑入口 8 ;及冷卻劑出 口 9。該反應室1〇1亦具有一用以連接堆疊電子連接器5之電 子連接系統103。形成部份歧管丨〇2系統之對應電子連接系 統會連接每個疊的基部。在反應室1 〇 1及堆疊1之間會界定 一空間104。 流場板2係環狀的並且,如上所述,具有一中央孔4 〇 3。 燃料入口 404係從孔403導向潤濕部407。從潤濕部407會有 一流場408導向燃料排出裝置405。(圖中只顯示部份的流場 ’其中有數個通道會從潤濕部向外地呈放射狀延伸)。孔409 會穿過流場板1並且讓堆疊中排列過的孔409形成一外漏路 徑(escape route)用於將剩餘的燃料引導至燃料出口 6。 陸地406係配置以進行密封而且此結構可以在形成流場 時進行或是在分離的步驟中進行。 在場板2下面的氧化劑流場係反向的,氧化劑會從該 流場板402的外側邊緣放射狀地向内地流至連接孔4 1 〇之内 側排出裝置407。在堆疊中排列過之孔4 1 0會形成一外漏路 徑用於將剩餘的氧化劑引導至氧化劑出口 7。冷卻劑通道 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 548871 A7 B7 五、發明説明(5 ) 4 1 1係從冷卻劑入口孔4 1 2導向冷卻劑出口孔4 1 3。在鄰近板 中排列過之冷卻劑入口孔4 1 2係用以接收來自冷卻劑入口 8 之冷卻劑,而在鄰近板中排列過之冷卻劑出口孔4 1 3則係用 以將冷卻劑傳送至冷卻劑出口 9。 冷卻劑通道4 11係位於鄰近的流場板的潤濕部407的對 面。藉由在冷卻劑通道4 11以及濕潤通道407之間放置一可 滲水膜便將進入的氫氣濕潤。必須要足夠的濕潤可以避免 該膜的乾裂。 利用相對之流場板之燃料侧中的冷卻劑軌道,便可以使 用相同的配置潤濕進入的氧化劑。在氧化劑側並不需要像 燃料側一樣的潤濕,因為在該膜電極裝配的氧化劑側會產 生水。該氧化劑需要稍微地潤濕(以預防水分從該氧化劑進 入該膜的區域流失),但是卻不希望太多的濕潤,因為這會 限制該氧化劑的水分攜載容量。 該可滲水膜可以藉由,例如,薄膜矽橡膠製作而成。該 膜電極裝配之膜可以充當此種功能。 在空間1 04的氧化劑的壓力會以圖1中箭號,,A"的方向向 下壓迫該堆疊。該堆疊内的氣體的壓力會以方向,,B"向外地 壓迫该堆疊’有將該堆登板分離的傾向。方向,,A"的壓縮 力可以抵制方向” B ’’的氣體壓力《當然,如果適當地選取 所施加的壓力及區域的話,便可以壓所該堆疊β此原理亦 可以應用於反應室中的單一堆疊,以及範例中的多重堆疊 〇 當然可以將整個配置反轉(氧化物在中間的上面而燃料 -8 - 本紙張尺度適用中8 S家樣準(CNS) Α4規格_X 297公爱) ------- 548871 A7Line 548871 A7 ___B7 V. Description of the invention (4) The tf in FIG. 7 is an alternative form of the flow field plate according to the present invention. Stack 1 (Figure 1) includes a plurality of flow field plates 2. The flow field plate has aligned apertures 403 (Fig. 4 & 5) to form a fuel supply hole 3. One end of the stack is an end plate 4 containing an electronic connector 5. The end plate 4 closes the end of the fuel supply hole 3. The stack has connection lines as a fuel outlet 6; an oxidant outlet 7; a coolant inlet 8; and a coolant outlet 9. In the reaction chamber 10 with a manifold 102 system, several stacks 1 will be installed to connect the fuel outlet 6; the oxide outlet 7; the coolant inlet 8; and the coolant outlet 9. The reaction chamber 101 also has an electronic connection system 103 for connecting the stacked electronic connectors 5. The corresponding electrical connection system that forms part of the manifold system will connect the base of each stack. A space 104 is defined between the reaction chamber 101 and the stack 1. The flow field plate 2 is annular and, as described above, has a central hole 403. The fuel inlet 404 is guided from the hole 403 to the wetting portion 407. From the wetting section 407, a first field 408 is directed to the fuel discharge device 405. (Only a part of the flow field is shown in the picture ’several channels will extend radially outward from the wetted part). The hole 409 passes through the flow field plate 1 and forms an escape route for the holes 409 arranged in the stack to guide the remaining fuel to the fuel outlet 6. Terrestrial 406 is configured for sealing and this structure can be performed during the formation of the flow field or in a separate step. The flow field of the oxidant under the field plate 2 is reversed, and the oxidant will flow radially inward from the outer edge of the flow field plate 402 to the inner side discharge device 407 of the connection hole 4 10. The holes 4 1 0 arranged in the stack form a leakage path for guiding the remaining oxidant to the oxidant outlet 7. Coolant channel This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 548871 A7 B7 V. Description of the invention (5) 4 1 1 is directed from the coolant inlet hole 4 1 2 to the coolant outlet hole 4 1 3. The coolant inlet holes 4 1 2 arranged in the adjacent plate are used to receive the coolant from the coolant inlet 8, and the coolant outlet holes 4 1 3 arranged in the adjacent plate are used to convey the coolant. To the coolant outlet 9. The coolant channels 4 11 are located opposite to the wetting portion 407 of the adjacent flow field plate. The incoming hydrogen is moistened by placing a water-permeable membrane between the coolant passage 41 and the wet passage 407. Moisture must be sufficient to prevent cracking of the film. With the coolant track in the fuel side of the opposite flow field plate, the incoming oxidant can be wetted in the same configuration. Wetting on the oxidant side is not required as on the fuel side because water is generated on the oxidant side of the membrane electrode assembly. The oxidant needs to be slightly moistened (to prevent the loss of water from the area where the oxidant enters the membrane), but too much wetting is not desired because this limits the oxidant's moisture carrying capacity. The water-permeable membrane can be made of, for example, thin-film silicon rubber. The membrane-assembled membrane can serve this function. The pressure of the oxidant in the space 104 will press the stack downward in the direction of the arrow in Fig. 1, A ". The pressure of the gas in the stack will be directional, and B " pressing the stack outwardly ' has a tendency to separate the stack from the board. Direction, the compression force of A " can resist the gas pressure in the direction "B" "Of course, if the applied pressure and area are appropriately selected, the stacking can be pressed. This principle can also be applied to the reaction chamber. Single stack, as well as multiple stacks in the example. Of course, the entire configuration can be reversed (the oxide is on the middle and the fuel is -8-this paper size applies to 8 S home sample standard (CNS) Α4 size _X 297 public love) ------- 548871 A7

在外側)’但是為了安全起見,較佳的配置係如圖中所示。 雖然慣用的係矩形流場板’其會在角邊會發生密封的問 題,但是所說明及圖式之配置並不受限於圓形的流場板。 圓形或橢圓形狀對於密封而言比較有利。不過圓形的配置 並不容易排列,而如圖4及5所示之六角形板則便於與角邊 的固定孔一起使用以接收螺紋桿(threaded r〇d)或其它用以 排列或固定該堆疊之裝置。不過,當該堆疊内的壓力至少 部份被該堆疊的外部壓力抵銷時,便可以使用較輕的固定 工具。 圖4-6的放射狀氣流配置具有幾項優點。第一項係在燃料 及氧化劑之間具有一反方向電流流動其與易於造成橫流 (cr〇SS-fl〇w)配置之慣用的雙極比較起來可以在該膜電極 上保持均句的壓力差。此種較均勻的壓力差意謂著該膜係 處於較低的應力狀態下。第二,該壓力係更平均地分佈在 該堆疊寬度上而這意謂著作用於該雙極板上的壓力係均勻 地分佈,可以降低該板破裂或變形的風險。另外,壓力的 均勻分佈可以改善該膜電極中電力產生的均勻性。 圖7所示的係不同形式的放射狀反方向電流流場雙極, 其中流場板702係具有一燃料供應孔703之六角環狀。分流 場(branching flow field)圖樣704(部份顯示)會將燃料供應 孔703連接到燃料排出裝置705其會導向燃料排出埠port 708。陸地706係配置以進行密封而且此結構可以在形成流 場時進行或是在分離的步驟中進行。 在鄰近流場板中的氧化劑流場係反向的,氧化劑會從該 -9 - 本紙張尺度適用t國國家標準(CNS) A4規格(210X297公釐) 548871 A7 B7 五、發明説明(7 ) 流場板的外側邊緣向内流至與氧化劑排出埠709相連的内 側排出裝置。在該氧化劑流場板的反向處係冷卻劍軌道。 冷卻劑入口埠7 11會經由此冷卻劑軌道連接至冷卻劑出口 埠 7 12。 在此配置中燃料流係發散的而氧化劑流則係收斂的,因 此可以在該膜電極的每一側提供一反方向電流放射導向之 流場(使用“放射狀係因為朝某點移動或從某點放射而非 受限於圓形的半徑)^該板之較佳的材係石墨,碳-碳合成 物,或碳-樹脂合成物。不過本發明並料不受限於該此材料 以及可以使用任何適當物理特徵之任何材料。 上述之數字及組合以正確的形式構成本發明。 1 -10-(Outside) 'but for safety reasons, the preferred configuration is shown in the figure. Although the conventional rectangular flow field plate 'has a problem of sealing at the corners, the illustrated and illustrated configuration is not limited to the circular flow field plate. Round or oval shapes are more advantageous for sealing. However, the circular configuration is not easy to arrange, and the hexagonal plates shown in Figs. 4 and 5 are convenient for use with the corner fixing holes to receive threaded rods or other arrangements or fixing the Stacked devices. However, when the pressure inside the stack is at least partially offset by the external pressure of the stack, lighter fixing tools can be used. The radial airflow configuration of Figure 4-6 has several advantages. The first is to have a current flowing in the opposite direction between the fuel and the oxidant, which can maintain a uniform pressure difference on the membrane electrode compared to the conventional bipolar which tends to cause cross flow (cr0SS-fl0w) configuration. . This more uniform pressure difference means that the membrane system is under a lower stress state. Second, the pressure system is more evenly distributed across the stack width and this means that the pressure system used for the bipolar plate is evenly distributed, which reduces the risk of cracking or deformation of the plate. In addition, the uniform distribution of pressure can improve the uniformity of power generation in the membrane electrode. The system shown in FIG. 7 is a radial bidirectional current flow field bipolar of different forms, in which the flow field plate 702 is a hexagonal ring with a fuel supply hole 703. A branching flow field pattern 704 (partially shown) will connect the fuel supply hole 703 to the fuel discharge device 705 which will lead to the fuel discharge port port 708. Terrestrial 706 is configured for sealing and this structure can be performed during the formation of the flow field or in a separate step. The flow field of the oxidant in the adjacent flow field plate is reversed, and the oxidant will be from this -9-this paper size applies the national standard (CNS) A4 specification (210X297 mm) 548871 A7 B7 V. Description of the invention (7) The outer edge of the flow field plate flows inward to an inner discharge device connected to the oxidant discharge port 709. A cooling sword track is positioned opposite the oxidant flow field plate. The coolant inlet port 7 11 is connected to the coolant outlet port 7 12 via this coolant rail. In this configuration, the fuel flow is divergent and the oxidant flow is convergent, so a reverse-direction current radiation-directed flow field can be provided on each side of the membrane electrode (using the "radial system because it moves towards a certain point or from Some point of radiation is not limited by the radius of the circle) ^ The preferred material of the plate is graphite, carbon-carbon composite, or carbon-resin composite. However, the present invention is not limited to this material and Any material with any suitable physical characteristics can be used. The numbers and combinations described above constitute the present invention in the correct form. 1 -10-

Claims (1)

A BCD 548871 六、申請專利範圍 1. 一種燃料電池或電解器組件,在一膜電極裝配兩側具 有反方向電流放射導向之燃料及氧化劑流場。 2. 如申請專利範圍第1項之燃料電池或電解器組件,其中 第一反應物氣體會從一歧管以放射狀向外地流到一第 一反應物排出裝置,而第二反應物氣體則會從該組件的 邊緣向内地流到一第二反應物排出裝置。 3. 如申請專利範圍第1或2項之燃料電池或電解器組件, 其中在流場板的進入氣體將一密封環推向至相對於該 進入氣體保持在低壓狀態之一鄰近流場板上的密封溝 槽中。 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐)A BCD 548871 VI. Scope of patent application 1. A fuel cell or electrolyzer assembly, which has fuel and oxidant flow fields guided by current radiation in opposite directions on both sides of a membrane electrode assembly. 2. If the fuel cell or electrolyzer assembly of the first scope of the patent application, the first reactant gas will flow radially outward from a manifold to a first reactant exhaust device, and the second reactant gas will It will flow inward from the edge of the assembly to a second reactant discharge device. 3. If the fuel cell or electrolyzer assembly of item 1 or 2 of the patent application scope, wherein the inlet gas in the flow field plate pushes a seal ring to an adjacent flow field plate that is maintained at a low pressure relative to the inlet gas Seal groove. -11-This paper size applies to China National Standard (CNS) A4 (210 x 297 mm)
TW091108972A 2001-05-03 2002-04-30 Fuel cell or electrolyser construction TW548871B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0110915A GB0110915D0 (en) 2001-05-03 2001-05-03 Machining method particularly applicable to flow field plates for fuel cells
GB0110911A GB2375064B (en) 2001-05-03 2001-05-03 Abrasive blast machining
GB0110912A GB2372626B (en) 2001-05-03 2001-05-03 Flow field plate geometries
GB0110910A GB2375063B (en) 2001-05-03 2001-05-03 Abrasive blast machining
GB0110913A GB2375222B (en) 2001-05-03 2001-05-03 Flow field plates

Publications (1)

Publication Number Publication Date
TW548871B true TW548871B (en) 2003-08-21

Family

ID=27516021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091108972A TW548871B (en) 2001-05-03 2002-04-30 Fuel cell or electrolyser construction

Country Status (2)

Country Link
TW (1) TW548871B (en)
WO (2) WO2002090052A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2437892C (en) 2001-02-12 2010-12-14 The Morgan Crucible Company Plc Flow field plate geometries
GB2387264B (en) * 2002-03-20 2004-08-04 Morgan Crucible Co Flow field pattern
GB2387476B (en) 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
FR3025528A1 (en) * 2014-09-09 2016-03-11 Sunhy Energy VOLUME ELECTRODE FOR ELECTROLYSIS CELL OR APPARATUS AND METHOD OF MANUFACTURE
US9382995B2 (en) 2014-12-01 2016-07-05 Extreme Industrial Coatings, LLC Pulley for use with a non-synchronous drive belt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562670B1 (en) * 1992-03-23 1999-06-02 Koninklijke Philips Electronics N.V. Method of manufacturing a plate of electrically insulating material having a pattern of apertures and/or cavities for use in displays
FR2700132B1 (en) * 1993-01-06 1995-02-03 Snecma Method for removing a portion of a coating by jets of liquid.
DE4310470C1 (en) * 1993-03-31 1994-01-27 Rainer Rauschenbach Surface-treatment equipment with spray nozzles - has common extraction cowl containing spray nozzles and outer ring of air nozzles and central top extraction pipe
DE4407271C2 (en) * 1994-03-04 1997-01-16 Dietrich Heinz Method and device for three-dimensional processing of materials by means of water jet cutting
GB9915925D0 (en) * 1999-07-08 1999-09-08 Univ Loughborough Flow field plates
EP1121225A1 (en) * 1999-08-18 2001-08-08 Koninklijke Philips Electronics N.V. Method of obtaining a pattern of concave spaces or apertures in a plate

Also Published As

Publication number Publication date
WO2002090052A1 (en) 2002-11-14
WO2002090053A1 (en) 2002-11-14

Similar Documents

Publication Publication Date Title
US6406807B1 (en) Distribution of hydration fluid in a fuel cell
US6303245B1 (en) Fuel cell channeled distribution of hydration water
US7659024B2 (en) Fuel cell having a separator with water-retaining groove portions
CN109904484B (en) Fuel cell bipolar plate structure and fuel cell
US7335436B2 (en) Proton exchange membrane fuel cell stack
US10074858B2 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
GB2372143A (en) Flow field plate geometries for a fuel cell,including for a polymer electrolyt e fuel cell
EP1378953B1 (en) Polymer electrolyte fuel cell and production method of separator plate thereof
JP3970026B2 (en) Polymer electrolyte fuel cell
US20040137306A1 (en) Fuel cell or electrolyser construction
EP2330668B1 (en) Polymer electrolyte fuel cell and fuel cell stack provided with same
KR101092486B1 (en) Flow channel plate for fuel cell
WO2024037530A1 (en) Fuel cell
TW548871B (en) Fuel cell or electrolyser construction
US20020034671A1 (en) Fuel cell
US20040142225A1 (en) Fuel cell or electrolyser construction
US7261124B2 (en) Bipolar plate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell
JP3685039B2 (en) Polymer electrolyte fuel cell system
US7097931B2 (en) Fluid flow-fields for electrochemical devices
JP2004349013A (en) Fuel cell stack
JP5112581B2 (en) Method for manufacturing electrolyte membrane / electrode assembly
WO2004070859A1 (en) Pem fuel cell with flow-field having a branched midsection
KR20040002930A (en) Fuel cell or electrolyser construction
GB2372144A (en) Fuel cell stack incorporating integral flow field plates and gas diffusion layer
JP2004265632A (en) Polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees