JP5112581B2 - Method for manufacturing electrolyte membrane / electrode assembly - Google Patents

Method for manufacturing electrolyte membrane / electrode assembly Download PDF

Info

Publication number
JP5112581B2
JP5112581B2 JP2001279923A JP2001279923A JP5112581B2 JP 5112581 B2 JP5112581 B2 JP 5112581B2 JP 2001279923 A JP2001279923 A JP 2001279923A JP 2001279923 A JP2001279923 A JP 2001279923A JP 5112581 B2 JP5112581 B2 JP 5112581B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
gas
electrode assembly
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001279923A
Other languages
Japanese (ja)
Other versions
JP2003086200A (en
Inventor
覚 藤井
慎也 古佐小
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
AGC Inc
Panasonic Holdings Corp
Original Assignee
Asahi Glass Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001279923A priority Critical patent/JP5112581B2/en
Publication of JP2003086200A publication Critical patent/JP2003086200A/en
Application granted granted Critical
Publication of JP5112581B2 publication Critical patent/JP5112581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネシステム等に使用する高分子電解質膜を用いた燃料電池とそれ用いる電解質膜/電極接合体の製造方法に関する。
【0002】
【従来の技術】
高分子電解質膜を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。その構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金系の金属触媒を担持した導電性炭素粒子を主成分とする触媒反応層を形成する。次に、この触媒反応層の外面に、燃料ガスの通気性と、電子導電性を併せ持つ拡散層を形成し、この拡散層と触媒反応層とを合わせて電極とする。
【0003】
次に、供給する燃料ガスおよび酸化剤ガスが外にリークしたり、これら二種類の反応ガスが互いに混合しないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットを配置する。このシール材やガスケットは、電極及び高分子電解質膜と一体化してあらかじめ組み立て、これをMEA(電解質膜/電極接合体)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性のセパレータ板を配置する。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレータ板と別に設けることもできるが、セパレータの表面に溝を設けてガス流路とする方式が一般的である。
【0004】
この溝に燃料ガスを供給するためは、燃料ガスを供給する配管を、使用するセパレータの枚数に分岐し、その分岐先を直接セパレータ状の溝につなぎ込む配管治具が必要となる。この治具をマニホールドと呼び、上記のような燃料ガスの供給配管から直接つなぎ込むタイプを外部マニホールドを呼ぶ。このマニホールドには、構造をより簡単にした内部マニホールドと呼ぶ形式のものがある。内部マニホールドとは、ガス流路を形成したセパレータ板に、貫通した孔を設け、ガス流路の出入り口をこの孔まで通し、この孔から直接燃料ガスを供給するものである。
【0005】
燃料電池は運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に冷却水を流す冷却部をセパレータとセパレータとの間に挿入するが、セパレータの背面に冷却水流路を設けて冷却部とする場合が多い。これらのMEAとセパレータおよび冷却部を交互に重ねていき、10〜200セル積層した後、集電板と絶縁板を介し、端板でこれを挟み、締結ボルトで両端から固定するのが一般的な積層電池の構造である。
【0006】
このような高分子電解質型の燃料電池では、MEAには高いガス気密性を保ち続ける必要がある。
【0007】
【発明が解決しようとする課題】
従来のMEAでは、高分子電解質膜の両面に形成した触媒反応層の外面に、拡散層およびガスケットをホットプレスにより直接接合させていた。しかし、拡散層として主に使用されているカーボンペーパ等により高分子電解質膜に非常に微細な損傷あるいは穴が発生する恐れがあった。その結果、微少短絡が初期あるいは連続運転時に発生する課題があった。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の電解質膜/電極接合体の製造方法は、高分子電解質膜の少なくとも一方の面に触媒層を設ける工程と、前記触媒層を設けた高分子電解質膜をプレスしながら135〜175℃で熱処理する工程と、前記熱処理を行った高分子電解質膜に拡散層および/またはガスケットをホットプレス接合する工程とを備えることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0011】
【実施例】
アセチレンブラック系炭素粒子に、平均粒径約30Åの白金粒子を25重量%担持したものを反応電極の触媒とした。この触媒粉末をイソプロパノ−ルに分散させた溶液に、(化1)で示したパーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、ペースト状にした。
【0012】
【化1】

Figure 0005112581
【0013】
このペーストを原料としスクリ−ン印刷法をもちいて、プロトン伝導性高分子電解質膜の両面に、電極触媒層を形成した。プロトン伝導性高分子電解質として、(化2)に示したパーフルオロカーボンスルホン酸を30μmの厚みに薄膜化したものを用いた。
【0014】
【化2】
Figure 0005112581
【0015】
形成後の反応電極中に含まれる白金量は0.5mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。
【0016】
電極触媒を印刷したプロトン伝導性高分子電解質膜を、負荷のある状態で熱処理を行った。具体的には、前記プロトン伝導性高分子電解質膜をフッ素樹脂シ−トで保護しながら熱プレスに挟んだ状態で所定の温度まで昇温し、10分間その温度に保った。本実施例では加熱温度は135、160、175℃である。冷却は、プレスに挟んだまま徐冷させた。あるいは、加熱終了後にプレスからはずして冷却することも可能である。この熱処理工程により、高分子電解質膜と触媒中の被覆樹脂が界面で均一に融着して高分子電解質膜の強度を高める。その結果、拡散層との接合時におけるダメージを軽減できる。
【0017】
その後、プロトン伝導性高分子電解質膜の中心部の両面に、印刷した触媒層と拡散層であるカ−ボン不織布が接するようにホットプレスによって接合して、電解質膜/電極接合体(MEA)を作製した。プレス温度は130℃、圧力は、2MPaである。
【0018】
セパレータは厚さ4mmのカーボン板を用い、その中央部10cm×9cmの領域に、2mmピッチ(溝幅約1mm)の溝を、切削加工によって形成した。このとき溝の深さは1mmとした。ガス流通溝は複数の平行直線とした。対抗する2辺にはそれぞれ水素ガス、冷却水、空気を供給・排出するためのマニホールド孔を設けた。
【0019】
空気側となるセパレータは隣り合う6個の溝が、湾曲して連続したガス流通溝を形成するようにした。空気側と水素ガス側で構造を変えているのは、空気側と水素ガス側とでガス流量が25倍程度異なるからである。
【0020】
2種類のセパレータとガスケットにより、MEAをはさみ電池の構成単位とした。水素側のガス流通溝と空気側のガス流通溝の位置は対応するように構成し、電極に過剰なせんだん力がかからないようにした。単電池を2セル積層ごとに冷却水を流す冷却部を設けた。外周部とガスマニホルド部にフェノール樹脂製のガスケットを設けることによってシール部とした。ガスケットとMEA、セパレータ板とセパレータ板、ガスケットとセパレータ板などのガスシールが必要な部分はグリスを薄く塗布することによってあまり導電性を低下させずにシール性を確保した。
【0021】
以上示したMEAを50セルを積層した後、集電板と絶縁板を介し、ステンレス製の単板と締結ロッドで、20kgf/cm2の圧力で締結した。締結圧力は小さすぎるとガスがリークし、接触抵抗も大きいので電池性能が低くなるが、逆に大きすぎると電極が破損したり、セパレータ板が変形したりするのでガス流通溝の設計に応じて締結圧を変えることが重要であった。
【0022】
このように作製した本実施例の高分子電解質型燃料電池を、85℃に保持し、一方の電極側に83℃の露点となるよう加湿・加温した水素ガスを、もう一方の電極側に78℃の露点となるように加湿・加温した空気を供給した。比較例として、拡散層接合前の熱処理を行っていないMEAを使用した燃料電池も作製し、同様の条件で運転した。その結果、電流を外部に出力しない無負荷時には、50Vの電池開放電圧を得た。
【0023】
この電池を燃料利用率80%、酸素利用率40%、電流密度0.5A/cm2の条件で連続発電試験を行った。、出力特性の時間変化を(図1)に示した。その結果、比較例の電池は駆動時間と共に出力の低下率が増加するのに比べ、本実施例の電池(熱処理温度135℃)は、8000時間以上にわたって1000W(22V−45A)以上の電池出力を維持することを確認した。
【0024】
また、熱処理温度が160および175℃の場合の出力特性の変化を(表1)にまとめた。
【0025】
【表1】
Figure 0005112581
【0026】
熱処理温度が175℃程度までは、比較的出力特性の経時変化は小さかった。以上のように、高分子電解質膜を熱処理する工程を設けることにより、耐久性が向上した。これは、拡散層接合過程における高分子電解質膜のダメージが低減し、経時変化による微小短絡等の発生が減少したためと考えられる。
【0027】
【発明の効果】
本発明によると、電極触媒を両面に形成した高分子電解質膜を熱処理することにより、拡散層による高分子電解質膜へのダメージが低減できる。その結果、燃料電池の耐久性の向上に寄与する。
【図面の簡単な説明】
【図1】本発明の第1の実施例の燃料電池の出力特性を示した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell using a polymer electrolyte membrane used for a portable power source, an electric vehicle power source, a domestic cogeneration system, and the like, and a method for producing an electrolyte membrane / electrode assembly used therefor.
[0002]
[Prior art]
A fuel cell using a polymer electrolyte membrane generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. is there. First, a catalytic reaction layer composed mainly of conductive carbon particles carrying a platinum-based metal catalyst is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a diffusion layer having both fuel gas permeability and electronic conductivity is formed on the outer surface of the catalytic reaction layer, and the diffusion layer and the catalytic reaction layer are combined to form an electrode.
[0003]
Next, a gas seal material or gasket is placed around the electrode with a polymer electrolyte membrane in order to prevent the supplied fuel gas and oxidant gas from leaking out or mixing these two types of reaction gas with each other. To do. This sealing material or gasket is integrated with an electrode and a polymer electrolyte membrane and assembled in advance, and this is called MEA (electrolyte membrane / electrode assembly). On the outside of the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. In the portion of the separator plate that contacts the MEA, a reaction gas is supplied to the electrode surface, and a gas flow path for carrying away the generated gas and surplus gas is formed. The gas flow path can be provided separately from the separator plate, but a system in which a groove is provided on the surface of the separator to form a gas flow path is common.
[0004]
In order to supply the fuel gas to the groove, a pipe jig for branching the pipe for supplying the fuel gas to the number of separators to be used and directly connecting the branch destination to the separator-like groove is required. This jig is called a manifold, and the type connected directly from the fuel gas supply pipe as described above is called an external manifold. There is a type of this manifold called an internal manifold with a simplified structure. The internal manifold is a separator plate in which a gas flow path is formed with a through-hole, through the gas flow path to the hole, and fuel gas is directly supplied from the hole.
[0005]
Since the fuel cell generates heat during operation, it is necessary to cool it with cooling water or the like in order to maintain the battery at a good temperature. Usually, a cooling unit that allows cooling water to flow every 1 to 3 cells is inserted between the separator and the separator. However, a cooling water channel is often provided on the back surface of the separator to form a cooling unit. These MEAs, separators and cooling units are alternately stacked, and after stacking 10 to 200 cells, it is generally sandwiched between end plates via current collector plates and insulating plates, and fixed from both ends with fastening bolts. This is a structure of a laminated battery.
[0006]
In such a polymer electrolyte fuel cell, the MEA needs to keep high gas tightness.
[0007]
[Problems to be solved by the invention]
In the conventional MEA, the diffusion layer and the gasket are directly bonded to the outer surface of the catalytic reaction layer formed on both surfaces of the polymer electrolyte membrane by hot pressing. However, there is a risk that very fine damage or holes may occur in the polymer electrolyte membrane due to carbon paper or the like mainly used as the diffusion layer. As a result, there has been a problem that a micro short circuit occurs at the initial stage or during continuous operation.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a method for producing an electrolyte membrane / electrode assembly according to the present invention comprises a step of providing a catalyst layer on at least one surface of a polymer electrolyte membrane, and a polymer electrolyte membrane provided with the catalyst layer. It comprises a step of heat-treating at 135 to 175 ° C. while pressing, and a step of hot-press bonding a diffusion layer and / or a gasket to the polymer electrolyte membrane subjected to the heat treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0011]
【Example】
A catalyst in which 25% by weight of platinum particles having an average particle diameter of about 30 mm were supported on acetylene black carbon particles was used as a catalyst for the reaction electrode. A dispersion solution in which perfluorocarbon sulfonic acid powder represented by (Chemical Formula 1) was dispersed in ethyl alcohol was mixed with a solution in which this catalyst powder was dispersed in isopropanol to form a paste.
[0012]
[Chemical 1]
Figure 0005112581
[0013]
Using this paste as a raw material, an electrode catalyst layer was formed on both sides of the proton conductive polymer electrolyte membrane using a screen printing method. As the proton conductive polymer electrolyte, a perfluorocarbon sulfonic acid shown in (Chemical Formula 2) having a thickness of 30 μm was used.
[0014]
[Chemical 2]
Figure 0005112581
[0015]
The platinum amount contained in the reaction electrode after formation was adjusted to 0.5 mg / cm 2 and the amount of perfluorocarbon sulfonic acid was adjusted to 1.2 mg / cm 2.
[0016]
The proton conductive polymer electrolyte membrane on which the electrode catalyst was printed was heat-treated in a loaded state. Specifically, the proton conductive polymer electrolyte membrane was heated to a predetermined temperature while being held between hot presses while being protected with a fluororesin sheet, and kept at that temperature for 10 minutes. In this embodiment, the heating temperature is 135, 160, and 175 ° C. The cooling was performed while being sandwiched between presses. Or it is also possible to remove from a press and to cool after completion | finish of a heating. By this heat treatment step, the polymer electrolyte membrane and the coating resin in the catalyst are uniformly fused at the interface to increase the strength of the polymer electrolyte membrane. As a result, damage at the time of joining with the diffusion layer can be reduced.
[0017]
Thereafter, the printed catalyst layer and the carbon nonwoven fabric which is the diffusion layer are bonded to both surfaces of the central portion of the proton conductive polymer electrolyte membrane by hot pressing, and the electrolyte membrane / electrode assembly (MEA) is bonded. Produced. The press temperature is 130 ° C. and the pressure is 2 MPa.
[0018]
As the separator, a carbon plate having a thickness of 4 mm was used, and grooves having a pitch of 2 mm (groove width of about 1 mm) were formed by cutting in an area of 10 cm × 9 cm at the center. At this time, the depth of the groove was 1 mm. The gas flow grooves were a plurality of parallel straight lines. Manifold holes for supplying and discharging hydrogen gas, cooling water, and air were provided on the two opposing sides.
[0019]
In the separator on the air side, six adjacent grooves were curved to form a continuous gas flow groove. The reason for changing the structure between the air side and the hydrogen gas side is that the gas flow rate differs by about 25 times between the air side and the hydrogen gas side.
[0020]
MEA was sandwiched between two types of separators and gaskets to form a structural unit of the battery. The positions of the gas flow grooves on the hydrogen side and the gas flow grooves on the air side are configured to correspond to each other so that an excessive force is not applied to the electrode. A cooling unit for flowing cooling water for every two cells of the unit cell was provided. A seal portion was formed by providing a gasket made of phenol resin on the outer peripheral portion and the gas manifold portion. The gaskets and MEAs, separator plates and separator plates, gaskets and separator plates, etc., where gas seals are required, were coated with a thin layer of grease to ensure the sealing performance without significantly reducing the conductivity.
[0021]
After stacking 50 cells of the MEA shown above, it was fastened at a pressure of 20 kgf / cm 2 with a stainless steel single plate and a fastening rod through a current collector plate and an insulating plate. If the fastening pressure is too small, the gas leaks and the contact resistance is large, so the battery performance is low.On the other hand, if it is too large, the electrode may be damaged or the separator plate may be deformed. It was important to change the fastening pressure.
[0022]
The polymer electrolyte fuel cell of this example produced in this way was held at 85 ° C., and hydrogen gas that had been humidified and heated to a dew point of 83 ° C. on one electrode side was placed on the other electrode side. Air that was humidified and heated to a dew point of 78 ° C. was supplied. As a comparative example, a fuel cell using MEA not subjected to heat treatment before diffusion layer bonding was also produced and operated under the same conditions. As a result, a battery open voltage of 50 V was obtained at no load when no current was output to the outside.
[0023]
This battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.5 A / cm2. The time change of the output characteristics is shown in FIG. As a result, the battery of this example (heat treatment temperature 135 ° C.) has a battery output of 1000 W (22 V-45 A) or more over 8000 hours, while the output decrease rate of the battery of the comparative example increases with driving time. Confirmed to maintain.
[0024]
Further, changes in output characteristics when the heat treatment temperatures are 160 and 175 ° C. are summarized in Table 1.
[0025]
[Table 1]
Figure 0005112581
[0026]
Until the heat treatment temperature was about 175 ° C., the change in output characteristics with time was relatively small. As described above, durability was improved by providing a step of heat-treating the polymer electrolyte membrane. This is presumably because damage to the polymer electrolyte membrane during the diffusion layer bonding process was reduced, and the occurrence of micro-shorts due to changes over time was reduced.
[0027]
【Effect of the invention】
According to the present invention, it is possible to reduce damage to the polymer electrolyte membrane by the diffusion layer by heat-treating the polymer electrolyte membrane having the electrode catalyst formed on both sides. As a result, it contributes to improving the durability of the fuel cell.
[Brief description of the drawings]
FIG. 1 is a graph showing output characteristics of a fuel cell according to a first embodiment of the present invention.

Claims (3)

高分子電解質膜の少なくとも一方の面に触媒層を設ける工程と、前記触媒層を設けた高分子電解質膜をプレスしながら135〜175℃で熱処理する工程と、前記熱処理を行った高分子電解質膜に拡散層および/またはガスケットをホットプレス接合する工程とを備えることを特徴とする電解質膜/電極接合体の製造方法。  A step of providing a catalyst layer on at least one surface of the polymer electrolyte membrane; a step of heat-treating at 135 to 175 ° C. while pressing the polymer electrolyte membrane provided with the catalyst layer; and the polymer electrolyte membrane subjected to the heat treatment And a step of hot-press bonding the diffusion layer and / or the gasket. 前記触媒層を設ける工程が、高分子電解質膜の少なくとも一方の面に、触媒粉末を含むペーストを塗布する工程を含む、請求項1記載の電解質膜/電極接合体の製造方法。  The method for producing an electrolyte membrane / electrode assembly according to claim 1, wherein the step of providing the catalyst layer includes a step of applying a paste containing catalyst powder to at least one surface of the polymer electrolyte membrane. 前記ペーストを塗布する工程が、スクリーン印刷により行われる、請求項2記載の電解質膜/電極接合体の製造方法。  The method for producing an electrolyte membrane / electrode assembly according to claim 2, wherein the step of applying the paste is performed by screen printing.
JP2001279923A 2001-09-14 2001-09-14 Method for manufacturing electrolyte membrane / electrode assembly Expired - Fee Related JP5112581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279923A JP5112581B2 (en) 2001-09-14 2001-09-14 Method for manufacturing electrolyte membrane / electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279923A JP5112581B2 (en) 2001-09-14 2001-09-14 Method for manufacturing electrolyte membrane / electrode assembly

Publications (2)

Publication Number Publication Date
JP2003086200A JP2003086200A (en) 2003-03-20
JP5112581B2 true JP5112581B2 (en) 2013-01-09

Family

ID=19104013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279923A Expired - Fee Related JP5112581B2 (en) 2001-09-14 2001-09-14 Method for manufacturing electrolyte membrane / electrode assembly

Country Status (1)

Country Link
JP (1) JP5112581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252408B2 (en) * 2005-12-27 2013-07-31 日産自動車株式会社 High durability fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299119A (en) * 1999-04-16 2000-10-24 Japan Storage Battery Co Ltd Manufacture of catalyst layer
JP2001160405A (en) * 1999-12-02 2001-06-12 Asahi Glass Co Ltd Manufacturing method of solid polymer fuel cell
JP2002184414A (en) * 2000-12-15 2002-06-28 Asahi Glass Co Ltd Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell

Also Published As

Publication number Publication date
JP2003086200A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP3596761B2 (en) Polymer electrolyte fuel cell
US6649293B1 (en) Heatable end plate, fuel cell assembly, and method for operating a fuel cell assembly
JPWO2008149554A1 (en) Polymer electrolyte fuel cell
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
WO2005074062A1 (en) Polymer electrolyte fuel cell
JP3970026B2 (en) Polymer electrolyte fuel cell
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
JP4071032B2 (en) Solid polymer fuel cell and power generation system using the same
JP2000021418A (en) Solid high polymer electrolyte fuel cell
JP4366726B2 (en) Polymer electrolyte fuel cell
JP2004103296A (en) Solid polymer type fuel cell
JP2002280003A (en) Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP5112581B2 (en) Method for manufacturing electrolyte membrane / electrode assembly
JP4439646B2 (en) Conductive separator, polymer electrolyte fuel cell, and method for producing polymer electrolyte fuel cell
JP4083304B2 (en) Polymer electrolyte fuel cell
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP2000021419A (en) Solid high polymer electrolyte fuel cell
JP4314696B2 (en) Polymer electrolyte fuel cell stack
JP5136051B2 (en) Fuel cell
JP5375208B2 (en) Fuel cell manufacturing method, fuel cell
JP2002231262A (en) High polymer electrolyte fuel cell
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
KR20160051319A (en) Fuel cell having condensate water eliminating part and method for manufacturing the same
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees