WO2017171132A1 - 3차원 스위치드 릴럭턴스 모터 - Google Patents

3차원 스위치드 릴럭턴스 모터 Download PDF

Info

Publication number
WO2017171132A1
WO2017171132A1 PCT/KR2016/004625 KR2016004625W WO2017171132A1 WO 2017171132 A1 WO2017171132 A1 WO 2017171132A1 KR 2016004625 W KR2016004625 W KR 2016004625W WO 2017171132 A1 WO2017171132 A1 WO 2017171132A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
salient pole
core
switched reluctance
Prior art date
Application number
PCT/KR2016/004625
Other languages
English (en)
French (fr)
Inventor
정영춘
Original Assignee
주식회사 에스엔이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엔이노베이션 filed Critical 주식회사 에스엔이노베이션
Publication of WO2017171132A1 publication Critical patent/WO2017171132A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • H02K19/06Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a three-dimensional switched reluctance motor that improves efficiency and improves output by minimizing the leakage of magnetic force flux formed three-dimensionally in the stator core by the three-dimensional configuration of the stator protrusion and the rotor protrusion.
  • a switched reluctance motor has a simple structure in which an excitation coil is wound only on a stator. Since the torque and output of the motor are determined by the magnitude of the current flowing through the excitation coil, the motor is not affected by the material of the permanent magnet and the magnitude of the magnetic force as compared to other types of motors using permanent magnets. It has advantages, and is easy to manufacture, robust, relatively reliable, and competitive in price compared to other types of motors.
  • Such switched reluctance motors are radiated by the direction of air gap and flux paths, which depend on the arrangement of the poles, which are formed in the stator and the rotor, respectively. It is classified into Radial Air Gap Motor, Axial Air Gap Motor and Transverse Flux Motor.
  • FIG. 1 shows a typical switched reluctance motor, with a radial air gap motor illustrated in an outer rotor type.
  • the stator 1 includes a plurality of stator poles 1a formed at equal intervals along the circumferential direction on the outer circumferential surface thereof, and each stator pole 1a has a radial magnetic flux.
  • the coil 1a to be wound is wound, and is stabilized by the stator base 3a which is fixed to the shaft hub 3 which has penetrated the center of the rotation center line, and supports the shaft hub 3.
  • the rotor 2 surrounds the outer circumferential surface of the stator 1 at intervals and has a rotor pole 2a formed so as to face each other with the stator salient pole 1a and an air gap therebetween. It is provided at equal intervals along the direction, the rotor housing (4a) having a shaft (4) disposed on the rotation center line is coupled to the shaft hub (3) as a bearing (4b) to wrap around the stator (1) to rotate have.
  • the stator salient pole 1a when a current flows through the coil 1b, the stator salient pole 1a is excited to generate a radial magnetic flux F-1, so that the rotor salient pole 2a is intended to be aligned with the stator salient pole 1a. Reluctance torque occurs.
  • the current starts to flow in the coil 1b when the rotor salient pole 2a is unaligned with the stator salient pole 1a, and the rotor salient pole 2a becomes the stator salient pole 1a.
  • the rotor 2 can be rotated by repeating the current interruption operation that cuts off the current at the time of alignment.
  • the path of the magnetic flux generated in the stator salient pole 1a is not only formed by the radial path F-1 facing the rotor salient pole 2a, but the leakage path F-2 not passing through the rotor salient pole 2a. , F-3) is present, and magnetic leakage occurs.
  • Such magnetic leakage increases torque loss, output loss, and volume loss (or lower utilization rate) of the motor relative to the output, and further shortens the life of the bearing 4b, and the shaft 21 and the rotor housing 22. Induced current flows to the back, which may cause corrosion by an electrochemical reaction.
  • magnetic insulating plates for blocking the leakage paths F-2 and F-3 may be provided, but the structure becomes complicated, and the efficiency is reduced by the additional installation of the magnetic insulating plates.
  • FIG. 2 is a side cross-sectional view of a motor classified as an axial air gap motor (SRM) in a conventional switched reluctance motor (SRM).
  • SRM axial air gap motor
  • SRM switched reluctance motor
  • stator salient pole 1a is formed along the circumferential direction on the top surface of the stator 1, and the rotor salient pole 2a is formed along the circumferential direction on the bottom surface of the rotor 2. Face up and down with 1a).
  • the magnetic flux generated by the coil 1b wound on the stator salient pole 1a is formed by the axial magnetic flux path F-1.
  • FIG 3 is a side cross-sectional view of a motor classified as a transverse flux motor (STX) in a conventional switched reluctance motor (SRM).
  • STX transverse flux motor
  • SRM switched reluctance motor
  • stator 1 winds the coil 1a along the circumferential direction, and stator poles 1a vertically separated with the coil 1b therebetween are formed along the circumferential direction of the outer circumferential surface.
  • the rotor 2 has a circumferential direction of the rotor salient pole 2a which provides the transverse flux path F-1 to the stator salient pole 1a which is vertically separated from the stator salient pole 1a.
  • Patent Document 1 US 2010-0295389 A1 2010.11.25.
  • an object of the present invention is to provide a three-dimensional switched reluctance motor that obtains reluctance torque by utilizing both the transverse flux and the axial magnetic flux generated at the stator salient pole by the exciting current of the coil.
  • an object of the present invention is to provide a three-dimensional switched reluctance motor that obtains reluctance torque by utilizing both the transverse flux and the axial magnetic flux generated at the stator salient pole by the exciting current of the coil.
  • stator salient pole 110 and the rotor salient pole 210 are formed in the polar angle range of the salient pole before the extension and are in phase.
  • the stator core 100 extends up and down the stator salient poles 110 of the outer circumferential surface separated up and down based on the coil 120 wound along the circumferential direction of the outer circumferential surface, and the rotor core 200 is a stator.
  • the rotor dolpole 210 of the inner circumferential surface extending to the inner ceiling and the bottom surface to provide a transverse magnetic flux path to the stator dolpole 110 radially facing the dolpole 110 in a radial direction and extended to the inner ceiling and the bottom surface to extend the stator pole 110. It is characterized by providing an axial flux path to the site.
  • the stator salient pole 110 and the rotor salient pole 210 each have a cross-sectional shape vertically cut along the axial direction and are bent in multiple stages, and maintain uniform voids throughout the entire section.
  • the stator salient pole 110 and the rotor salient pole 210 each have a cross-sectional shape vertically cut along the axial direction are curved over some sections or all sections, and maintain uniform voids over each section.
  • the present invention configured as described above is to surround the stator core with the rotor core within the range that does not interfere with the rotation of the rotor core and three-dimensionally formed stator salient pole and rotor salient pole, magnetic flux flux formed in the stator core three-dimensionally minimize leakage And it contributes to the reluctance torque, thereby improving the efficiency and output.
  • FIG. 1 is a planar cross-sectional view (a) and side cross-sectional view (b) of a motor classified as a radial air gap motor (SRM) in a conventional switched reluctance motor (SRM).
  • SRM radial air gap motor
  • FIG. 2 is a side cross-sectional view of a motor classified as an axial air gap motor (SRM) among a conventional switched reluctance motor (SRM).
  • SRM axial air gap motor
  • SRM switched reluctance motor
  • FIG 3 is a side cross-sectional view of a motor classified as a transverse flux motor (STX) in a conventional switched reluctance motor (SRM).
  • STX transverse flux motor
  • SRM switched reluctance motor
  • FIG. 4 is a perspective view of a three-dimensional switched reluctance motor according to the first embodiment of the present invention.
  • FIG. 5 is a side cross-sectional view of a three-dimensional switched reluctance motor according to a first embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of a three-dimensional switched reluctance motor according to the first embodiment of the present invention.
  • FIG. 7 is an enlarged perspective view of the stator core 100 and the rotor core 200 shown in FIG. 6.
  • FIG. 8 is a perspective view of a three-dimensional switched reluctance motor according to a second embodiment of the present invention.
  • FIG. 9 is a side cross-sectional view of a three-dimensional switched reluctance motor according to a second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of a three-dimensional switched reluctance motor according to a second embodiment of the present invention.
  • FIG. 11 is an enlarged perspective view of the stator core 100 and the rotor core 200 shown in FIG. 10.
  • FIG. 12 is a cross-sectional view of a multiphase three-dimensional switched reluctance motor of a series assembly structure according to a third embodiment of the present invention.
  • FIG. 13 is a diagram showing the rotation angle of the rotor salient pole 210 in each unit module in a plan sectional view of one unit module.
  • FIG. 14 is a perspective view of a polyphase three-dimensional switched reluctance motor of a parallel assembly structure according to a fourth embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a gear in dotted line in FIG. 14.
  • 16 is a side cross-sectional view of a three-dimensional switched reluctance motor according to a fifth embodiment of the present invention.
  • 17 is a side cross-sectional view of a three-dimensional switched reluctance motor according to a sixth embodiment of the present invention.
  • FIG. 18 is a side cross-sectional view of a three-dimensional switched reluctance motor according to a seventh embodiment of the present invention.
  • Fig. 19 is a side sectional view of a three-dimensional switched reluctance motor according to an eighth embodiment of the invention.
  • a rotor core facing the data pole 110 at intervals along the circumferential direction and rotatably coupled to the stator core 100 (Rotor Core, rotor core, 200)
  • the stator core 100 Rotor Core, rotor core, 200
  • any one of radial magnetic flux, axial magnetic flux, and transverse magnetic flux passes through the voids.
  • the rotor core 200 is rotated by a reluctance torque to be aligned with each other when the stator salient pole 110 is excited.
  • the rotor core 200 is provided in a conventional switched reluctance motor in which torque is generated using a magnetic flux in any one of radial magnetic flux, axial magnetic flux, and transverse magnetic flux. 3 surrounds the outer side of the stator core 100 in three dimensions so as to further surround the outer side of the stator core 100 to the surface of the other direction in which the stator protrusion 110 is not formed within a range that does not interfere with the rotation. It is further surrounded by magnetic leakage.
  • the rotor core 200 wraps the remaining portions except for the portion for positioning the support means in each portion of the stator core 100, but does not catch the stator core 100 when rotating. Wrap the stator core 100 at.
  • stator salient pole 110 by further extending the stator salient pole 110 over the entire enclosed area, and by further extending the rotor salient pole 210 in the rotor core 200 which is additionally enclosed, the space between the pores to concentrate the magnetic flux flux between The stator salient pole 110 and the rotor salient pole 210 facing each other are three-dimensionally formed, whereby the magnetic flux leaked to the extended portion contributes to the reluctance torque.
  • This invention is embodied by the following specific example applied to an outer rotor type Transverse Flux Motor.
  • the three-dimensional switched reluctance motor includes a stator core 100, a rotor core 200, a stator mounting unit 300, and a rotor mounting unit 400.
  • the stator core 100 is formed in a cylindrical shape having a predetermined height, and has a coil 120 and a plurality of stator protrusions 110 on an outer circumferential surface thereof.
  • the coil 120 is wound a predetermined number of times along the circumferential direction (circumferential direction) on the outer circumferential surface of the stator core 100.
  • the stator salient pole 110 is composed of a pair of salient pole pieces 111 and 112 separated up and down so that the coil 120 passes between the upper and lower salient pole pieces 111 and 112 and is formed at equal intervals along the circumferential direction. do.
  • each of the stator salient poles 110 provided on the outer circumferential surface of the stator core 100 is divided into an upper salient pole piece 111 and a lower salient pole piece 112 spaced up and down, and the upper salient pole piece 111
  • an excitation current flows through the coil 120 passing between the lower salient pole pieces 112
  • a magnetic flux path that circulates the coil 120 is provided.
  • the outer circumferential surface configuration of the stator core 100 follows the configuration of a transverse flux motor that obtains a reluctance torque by a transverse flux caused by the stator salient pole 110.
  • stator core 100 includes a through hole 130 formed by penetrating up and down along the rotation center, and inserts and fixes the shaft hub 310 of the stator mounting part 300 to the through hole 130. have.
  • each stator salient pole 110 formed on the outer circumferential surface of the stator core 100 has extension portions 111a and 112a extending to the top and bottom surfaces of the stator core 100.
  • the upper salient pole piece 111 of the outer circumferential surface has an extension portion 111a extending to the upper surface of the stator core 100
  • the lower salient pole piece 112 of the outer circumferential surface extends to the bottom surface of the stator core 100.
  • the part 112a is provided.
  • the extension portions 111a and 112a provided in this way provide an axial flux path F-2 to the extension portions 211a and 212a of the rotor salient pole 210, which will be described later.
  • the extending portions 111a and 112a of the upper surface and the lower surface are configured in a fan shape gradually narrowing toward the through hole 130 of the rotation center, respectively, and are in phase with the stator protrusion 110 of the outer circumferential surface.
  • the in-phase means that the polar angle is the same as the arc angle of the stator protrusion 110 of the outer circumferential surface, and specifically, the circumferential end points and the through holes of the stator protrusion 110 of the outer circumferential surface. This means that the line connecting the center of 130 becomes a boundary.
  • the extending portions 111a and 112a of the upper and lower surfaces can be made smaller than the polar angle of the stator protrusion 110 on the outer circumferential surface.
  • the stator mounting part 300 has a structure in which the shaft hub 310, which is inserted into and fixed to the through hole 130 of the stator core 100 and is positioned on the rotation center line, protrudes on the stator base 320.
  • the stator base 320 is a portion to be fixed at the position where the motor is to be installed, and may not be limited to the plate shape as shown in the drawing.
  • the shaft hub 310 is satisfied if it is a structure capable of standing and fixing on the stator base 320, and is preferably composed of a non-magnetic material, and penetrates the stator core 100 with the magnetic insulator mounted on the outer circumferential surface thereof. It may be inserted and fixed to the sphere 130.
  • the shaft hub 310 is formed of a hollow tube, has a structure that can be installed on the upper and lower ends of the outer peripheral surface corresponding to the upper and lower sides of the stator core 100 is fixed.
  • the rotor core 200 surrounds the outer circumferential surface of the stator core 100 at intervals, rotatably coupled around the stator core 100, and a plurality of rotor salients formed to be spaced apart from each other along the circumferential direction on the inner circumferential surface. 210 is provided.
  • the rotor protrusion 210 provides a transverse flux path to the stator protrusion 110 which is vertically separated from the stator protrusion 110. Thus, when the stator pole 110 is excited, it generates a reluctance torque due to the transverse flux and receives rotational force.
  • the rotor core 200 is configured to wrap at intervals to the upper and lower surfaces of the stator core 100 in which the extension portions 111a and 112a of the stator protrusion 110 are formed, and the stator protrusion ( Opposing extension portions 211a and 212a of the extension portions 111a and 112a of the 110 are disposed on the inner surface of the rotor protrusion 210 to face each other to provide the axial magnetic flux path F-2.
  • the rotor core 200 is formed to cover not only the outer circumferential surface of the stator core 100 but also the top and bottom surfaces, and the upper and lower plates having holes formed on the center line of rotation are connected to the cylindrical side plates or manufactured integrally.
  • the upper portion 211 of the rotor salient pole 210 is connected to an extension portion 211a that faces the upper salient pole piece 111 of the stator salient pole 110 and simultaneously extends to the inner ceiling of the rotor core 200.
  • the lower portion 212 of the salient pole 210 is connected to an extension portion 212a which faces the lower salient pole piece 112 of the stator salient pole 110 and simultaneously extends to the inner bottom surface of the rotor core 200.
  • the extension portions 211a and 212a of the rotor salient poles 210 are formed in a fan shape so as to be in phase with the rotor salient poles 210 on the inner circumferential surface.
  • the extension portions 211a and 212a do not escape the polar angle of the rotor salient pole 210 on the outer circumferential surface, and may have a smaller polar angle.
  • the bearing 230 fitted in the center hole of the upper plate and the lower plate of the rotor core 200 is to be seated in the upper and lower bearing mounting structure of the shaft portion 310, thereby, the rotor core ( 200 is rotatably coupled to the stator core 100.
  • the rotor salient pole 210 projects the intermediate portion 213 facing the coil 120 slightly lower than the upper portion 211 and the lower portion 212, so that the cross flux is higher than the upper portion 211 and the lower portion. Concentrated on (212).
  • the rotor core 200 surrounds the outer circumferential surface, the upper surface, and the bottom surface of the stator core 100 except for the portion of the rotation center line, for cutting convenience, the portion facing the coil 120 is cut out. It has a structure to be separated and manufactured up and down, and the long bolt 221 is inserted into and coupled to the coupling hole 230 to sequentially penetrate the separated structure up and down.
  • the rotor core 200 may be configured in another structure in addition to the vertical separation structure.
  • the rotor core 200 may be vertically cut along the center of rotation to have a structure separated from right to left.
  • the left and right separation structure after each manufacturing the stator core 100 therein and mutual nesting is assembled in a coupling manner.
  • When combining the left and right separated structure to form a single body can use a band around the outer circumferential surface, or use a bolt fastening method that penetrates the coupling portion.
  • the extension portions 211a and 212a of the rotor salient poles 210 are formed to extend longer toward the rotation center than the extension portions 111a and 112a of the stator salient poles 110. This can further reduce magnetic leakage. That is, the extension portions 211a and 212a of the rotor salient poles 210 have a surface facing the extension portions 111a and 112a of the stator salient poles 110, and stator salient poles 110 under conditions that do not deviate from the range of in-phase phase. It is better to form a wider than the extension portions (111a, 112a) of.
  • the rotor mounting unit 400 is a component for holding the rotor core 200 to transmit the rotational force due to the reluctance torque generated in the rotor core 200 to the outside, according to an embodiment of the present invention, the rotation center line
  • the disc-shaped rotor housing 420 having the shaft 410 to be disposed to protrude upward is fixed to the upper surface of the rotor core 200.
  • the shaft 410 may be combined with the rotor housing 420 after being manufactured separately.
  • the shaft 410 not only protrudes toward the upper portion of the rotor housing 420, but also protrudes partially into the lower portion of the rotor housing 420 so that the shaft 410 can be inserted into the inner hollow of the shaft hub 310 to allow for rotation. It was stabilized.
  • the long bolt 241 is the rotor housing 420.
  • the rotor core 200 of the vertical separation structure is preferably fixed to the rotor housing 420 and coupled at the same time.
  • the rotation timing of the rotor core 200 by generating a reluctance torque is a well-known technique, but is not shown in the drawing, but a position detection sensor for detecting a rotational position of the rotor core 200 and the rotor core 200 are described. It includes a controller for intermittently rotating the current of the coil 120 according to the rotation position of the.
  • the present invention has been briefly described as an example of Patent Publication No.
  • the reflector plates disposed one by one under all the rotor protrusions 210 are installed on the bottom surface of the rotor core 200, the light emitting unit And a position detection sensor having a light receiving unit is installed on the upper surface of the stator base 320 in accordance with the position where the reflecting plate passes, thereby detecting a time point at which the reflecting plate passes by the rotation of the rotor core 200.
  • the controller may perform a dwell angle from a time point at which an alignment is made between the rotor protrusion 210 and the stator protrusion 110 to an alignment point according to the rotational position of the rotor core 200 obtained from the detection of the reflector. Set the current to the coil. Accordingly, reluctance torque generated in a direction aligned with the current periodically flowing in accordance with the dwell angle is also periodically generated to rotate the rotor core 200.
  • the outer side of the stator core 100 is surrounded by the rotor core 200 except for the position on the rotation center line, and the entire outer side surface of the stator core 100 and In order to utilize the entire inner surface of the rotor core 200, the stator salient pole 110 and the rotor salient pole 210 are three-dimensionally formed.
  • the magnetic flux path generated by the excitation current of the coil passes through the stator salient pole 110 and the rotor salient pole 210.
  • the electromagnetic force due to the excitation current flowing in the dwell angle is converted into rotational torque without leakage, thereby improving efficiency and output.
  • stator core 100 and the rotor core 200 are configured differently from those of the first embodiment.
  • the stator core 100 is formed to taper up and down in the axial direction, respectively, except for the portion where the coil 120 is wound along the circumferential direction.
  • the winding has a short, cylindrically shaped middle and an inverted truncated lower part.
  • the upper salient pole piece 111 formed on the upper tapered surface and the lower salient pole piece 112 formed on the lower tapered surface were vertically symmetrical to form a stator salient pole 110 that is divided into two parts.
  • the upper salient pole 111 and the lower salient pole 112 is formed to be narrow in width as it moves up and down, that is, toward the rotation center along the inclined surface, so as to be in phase. That is, the polar angles of the respective parts are the same with respect to the rotation center.
  • the inner surface of the rotor core 200 is configured to cover the outer surface of the stator core 100 at intervals.
  • the spacing here is a spacing which is considerably larger than the space between the stator salient pole 110 and the rotor salient pole 210 and the magnetoresistance becomes very large, and is substantially negligible as a magnetic flux path.
  • a rotor salient pole 210 is formed on the inner surface of the rotor core 200 while maintaining a constant gap with the stator salient pole 110.
  • the rotor salient pole 210 has an upper portion 211 facing the upper salient pole piece 111 of the stator salient pole 110, and a lower side 212 facing the lower salient pole piece 112 of the stator salient pole 110. It includes.
  • the intermediate portion 213 between the upper portion 211 and the lower side 212 is a portion facing the coil 120 wound on the stator core 100, slightly as in the first embodiment than the upper portion and the lower side It is also good to make it protrude low.
  • stator salient pole 110 and the rotor salient pole 210 formed as described above only the magnetic flux that can be seen as the middle of the transverse magnetic flux and the axial magnetic flux exists.
  • the further away from the coil 120 the lower the density of the magnetic flux, that is, the magnetic flux flux, but contributes to the reluctance torque without causing the magnetic flux to leak.
  • the rotor core 200 illustrated in FIGS. 8 to 11 has a cylindrical shape, but since the upper and lower portions of the rotor salient pole 210 formed on the inner surface have a structure with a large radial thickness, a flywheel ) Plays a role. However, if it is necessary to reduce the weight of the rotor core 200, the rotor core 200 is formed to taper the top and bottom, respectively.
  • the third and fourth embodiments will be described in which the three-dimensional switched reluctance motor according to the present invention is configured as a single phase motor, but is configured as a multiphase motor for rotating one shaft in plural numbers.
  • a plurality of unit modules A-1 are formed using one stator core 100 and one rotor core 200 coupled to each other.
  • A-2, A-3, A-4) are sequentially stacked, and the stator core 100 of each unit module is penetrated and fixed to one shaft hub 310 and fixed to the shaft hub 310. do.
  • the rotor core 200 of each unit module is rotatably coupled to each of the shaft hubs 310 by bearings, and is stacked and rotated up and down by the connecting means B so as to rotate as one rotor.
  • the connecting means (B) may be, for example, to form grooves on the surfaces which are in contact with the upper and lower sides, respectively, and then to simultaneously fix the upper and lower grooves.
  • the rotor mounting unit 400 having the shaft 410 is fixed to the uppermost unit module A-4, and the rotational force by the rotor core 200 of each unit module rotating like one rotating body is fixed to the shaft ( 410).
  • the multi-phase motor may be configured.
  • a case in which a unit module is configured using the rotor core 200 having the P rotor poles 210 and N units are stacked is described as follows.
  • the rotation angle ⁇ of the rotor salient pole 210 with respect to the stator salient pole 110 corresponds to the rotation position of the rotor salient pole 210 to be aligned with the stator salient pole 110 according to the rotation of the rotor core 200. It can be seen as an angle represented by the rotation angle difference with 110).
  • the rotation angle ⁇ of the rotor salient pole 210 in each unit module is any one of values calculated by Equation 1 below when expressed as a mechanical angle, and is distributed one by one to each unit module with different values. .
  • Equation 1 Four points having a difference of are determined, and it is assumed that the rotor salient poles 210 are aligned with the stator salient poles 110 in the lowermost unit module A-1, as shown in FIG. When distributed to, depending on the stacking order , , , This is distributed and becomes a four-phase motor.
  • stator poles of each unit module should be placed in a line up and down, and then the rotor poles of each unit module will be
  • the rotor cores 200 may be sequentially stacked and fixed to each other so as to be shifted as much as possible.
  • stator core 100 is fixed to the shaft hub 310, the stator protrusion of each unit module is removed.
  • the rotor cores are fixed to each other so that the rotor cores are arranged in a straight line vertically up and down.
  • Equation 1 the number of rotor salients may be multiplied by P, and thus Equation 2 may be obtained.
  • the rotational phase of the unit module expresses the rotational position of the rotor salient pole 120 with respect to the stator salient pole 110 by an electric angle.
  • the rotation phase between the unit modules N phase motor can be configured by having a phase difference of.
  • FIG. 14 is a perspective view of a multiphase three dimensional switched reluctance motor constructed by combining a plurality of three dimensional switched reluctance motors in a parallel assembly structure.
  • the plurality of three-dimensional switched reluctance motors C-1, C-2, C-3, and C-4 each include a main gear 430 formed of a spur gear on the shaft 410.
  • the gears 440 are arranged around the driven gear 440, and the main gears 430 are disposed to be engaged with the driven gear 440, respectively.
  • each of the three-dimensional switched reluctance motors (C-1, C-2, C-3, C-4) apply a rotational force to the driven gear 440, thereby driving the driven shaft 441 of the driven gear 440. Through this, the rotational force can be transmitted to the outside.
  • Equation 1 the rotational position of the rotor core 200 in each of the three-dimensional switched reluctance motors C-1, C-2, C-3, and C-4 is expressed by Equation 1 above. It has a mechanical angle to be expressed or an electrical angle (or phase difference) expressed by Equation 2 above.
  • four three-dimensional switched reluctance motors C-1, C-2, C-3, and C-4 are arranged along the circumferential direction of the driven gear 440, and sequentially in the order of the counterclockwise direction. To make the phase difference of the ground.
  • the output can be higher than that of a single phase configuration.
  • noise can be reduced by reducing torque ripple.
  • 16 is a side cross-sectional view of a three-dimensional switched reluctance motor configured to have all the features of the first embodiment and the second embodiment, and only different portions will be described in detail.
  • the stator core 100 corresponds to a part of the outer circumferential surface close to the coil 120 wound along the circumferential direction at the middle height of the outer circumferential surface and a portion (ie, the periphery of the through hole 130) close to the rotation axis as in the second embodiment. It has a form that is tapered up and down leaving a part of the upper surface and a portion of the bottom surface. That is, the stator core 100 is inclined by chamfering the upper and lower edges in a cylindrical shape, and winding the coil 120 along the circumferential direction to the middle portion of the remaining outer circumferential surface.
  • the stator protrusion 110 protrudes from the portion 111-1 protruding from the outer circumferential surface left on the upper side of the coil 120 and the portion 111-3 protruding from the upper tapered inclined surface, and protrudes from the left upper surface.
  • Protruding portions 112-1 protruding to the outer periphery surface left on the lower side about the upper pole piece 111 and the coil 120 continuously connected to the portion 111-2 and the tapered inclined surface lower portion. It consists of the site
  • the rotor core 200 is formed to surround all of the outer circumferential surface, the tapered surface, the upper surface, and the bottom surface of the rotor core 200 at predetermined intervals.
  • the rotor salient pole 210 is a salient pole formed at equal intervals along the circumferential direction on the inner surface of the rotor core 200 so as to face the stator salient pole 110, and the upper salient pole pieces 111: 111-1, 111-2, and 111- 3) the upper portion 211: 211-1, 211-2, and 211-3 facing each other along the curved surface of the upper pole pole 111 to maintain a constant gap over the entire portion of the upper pole piece 111, facing the coil 120.
  • the middle portion 213 and the lower pole piece 112, 112-1, 112-2, 112-3 together to be folded along the planes of the lower pole piece 112 to maintain a constant void throughout Side 212: 212-1, 212-2, and 212-3.
  • the rotor salient pole 210 provides the transverse flux path F-1 and the axial flux path F-2 as in the first embodiment, but the flux path F-3 in the inclined direction upward and downward. ).
  • the magnetic flux path F-3 in the inclined direction has an effect of reducing the magnetic force loss generated in the core by shortening the path length.
  • stator protrusions 110 and the rotor protrusions 210 facing each other with uniform voids therebetween have a cross-sectional shape vertically cut along the axial direction and bent twice each up and down through the rotation center.
  • the taper may be tapered in two stages so that the inclined surfaces may be continued while having different inclination angles.
  • the sixth embodiment shown in FIG. 17 is a modification of the fifth embodiment shown in FIG. 16, and shows that it is possible to make a curve rather than tapering to have a constant inclination angle.
  • stator salient pole 110 and the rotor salient pole facing each other with a uniform gap therebetween have a cross-sectional shape vertically cut along the axial direction while passing through a rotation center. It can be curved in some intervals.
  • stator salient pole 110 may be curved over a whole section from a portion close to the coil 120 to a portion where the stator core 100 is fixed to the shaft hub 310.
  • the rotor salient pole 210 should also be curved over the entire section.
  • 18 is a side cross-sectional view of a three-dimensional switched reluctance motor constructed by applying to a radial air gap motor.
  • a coil 120 is individually wound around each stator salient pole 110 formed to be disposed at an equal angle in the circumferential direction of the stator core 100. Therefore, the magnetic flux path is formed through the air gap in the radial direction, and the rotor salient pole 210 facing the stator salient pole 110 is disposed at an equal angle along the circumferential direction on the inner circumferential surface of the rotor core 200.
  • a magnetic flux path passing through the radial gap between the stator salient pole 110 and the rotor salient pole 210 is formed, and the magnetic flux path at this time is formed inside the rotor core, inside the stator core, and adjacent stator salient poles and rotor salient poles. Through the path of the closed curve.
  • the rotor core 200 is formed in a structure covering the top and bottom of the stator core 100, the stator protrusion 110 is the top surface of the stator core 100 And extending portions 111a and 112a extending to the bottom surface, and the rotor salient pole 210 includes extending portions 211a and 212a extending to the inner ceiling and the bottom surface of the rotor core 200.
  • the extension part be in phase with the protrusion before extension.
  • each stator protrusion 110 radially protrudes from the outer circumferential surface of the stator core 100, the circumferential surface (surface facing the adjacent stator core in the circumferential direction) is surrounded by the rotor core 200. In other words, it does not interfere with the rotation of the rotor core (200).
  • the rotor core 200 according to the present invention should be made within a range that does not interfere with the rotation when the stator pole 110 surrounds.
  • the extending portions 111a and 112a of the stator salient pole 110 are constituted by a pair of salient pole pieces which are separated in and out around the portion where the coil 120 is wound, and the extending portions 211a, of the rotor salient pole 210. 212 is configured to provide a magnetic flux path between the pair of salient pole pieces. Accordingly, the rotor salient pole 210 provides a magnetic flux path between the pair of salient pole pieces constituting the stator salient pole 110 like the rotor salient pole of a transverse flux motor.
  • the extension portion As described above, the magnetic flux leaked to the upper and lower portions of the stator core 100 is contributed to the reluctance torque by using the extension portion.
  • 19 is a side cross-sectional view of a three-dimensional switched reluctance motor constructed by applying to an axial air gap motor.
  • a conventional Axial Air Gap Motor-type switched reluctance motor has a circular band-shaped stator core 100 having a fan-shaped stator pole 110 formed on the upper surface in the circumferential direction, and a fan-shaped rotor.
  • the rotor core 200 includes a circular strip-shaped rotor core 200 formed on the upper surface along the circumferential direction, and in general, the rotor core 200 is disposed on the stator core 100 to stator protrusion 110 and the stator pole 110.
  • Rotor salients 210 allow the pores to face each other.
  • the coils 120 provided at each of the stator salient poles 110 are wound in a circumferential direction along the side surface of the stator salient poles 110.
  • an axial magnetic flux is generated in each stator salient pole 110, and the magnetic flux forms a closed curve path through the inside of the rotor core, the inside of the stator core, and other stator salient poles and the rotor salient poles adjacent to each other.
  • the rotor core 200 is formed in a structure covering the outer peripheral surface and the inner peripheral surface of the stator core 100
  • the stator protrusion 110 is the outer peripheral surface of the stator core 100
  • extending portions 111a and 112a extending to the inner circumferential surface
  • the rotor salient pole 210 includes extending portions 211a and 212a extending to a portion covering the outer circumferential surface and the inner circumferential surface of the stator core 100.
  • the extension portion be in phase with the protrusion before extension.
  • the extension portion As described above, the magnetic flux leaked in the outer circumferential surface direction and the inner circumferential surface direction of the stator core 100 is contributed to the reluctance torque by using the extension portion.
  • each stator salient pole 110 are composed of two salient pole pieces separated up and down about the coil 120 wound along the circumferential direction on the side surface of the stator core 100. It is good.
  • the extension portions 211a and 212a of the rotor core 210 may be formed in a shape in which the pair of the salient pole pieces face each other simultaneously so as to provide a magnetic flux path passing therein as if the transverse magnetic flux path is provided.
  • the rotor core 200 does not surround the circumferential surface of the stator salient pole 110 so as not to interfere with the rotation.
  • the rotor core 200 may wrap only the outer side of the stator salient pole 110 and extend the salient pole only to the portion thereof. have.
  • the stator pole 110 should be provided in three-dimensional (three-dimensional) on the stator core 100 in order to utilize all the magnetic flux formed by the stator pole 110 in three-dimensional without leakage
  • the rotor salient pole 210 should be provided in the rotor core 200 in three dimensions.
  • the stator core 100 including the stator protrusion 110 and the rotor core 200 including the rotor protrusion 210 may be made of a pressed powder core obtained by compression-molding a mixed powder of soft magnetic pure iron and silicon steel.
  • a core may be manufactured by laminating thin iron cores (eg, silicon steel sheets) in accordance with a magnetic flux path (or magnetic path).
  • shaft hub 320 stator base
  • main gear 440 driven gear 441: driven shaft

Abstract

본 발명은 스테이터 코어에 입체적으로 형성되는 자기력선속의 누설을 스테이터 돌극 및 로터 돌극의 입체적 구성으로 최소화하여 효율을 높이고 출력을 향상시킨 3차원 스위치드 릴럭턴스 모터에 관한 것으로서, 로터 코어는 회전에 지장을 주지 아니하는 범위 내에서 스테이터 코어의 외측을 스테이터 돌극이 조성되지 아니한 면까지 추가로 에워싸며, 추가로 에워싸는 범위까지 상기 스테이터 돌극 및 로터 돌극을 연장하여 연장된 부위로 누설되었던 자속이 릴럭턴스 토크에 기여하게 한다.

Description

3차원 스위치드 릴럭턴스 모터
본 발명은 스테이터 코어에 입체적으로 형성되는 자기력선속의 누설을 스테이터 돌극 및 로터 돌극의 입체적 구성으로 최소화하여 효율을 높이고 출력을 향상시킨 3차원 스위치드 릴럭턴스 모터에 관한 것이다.
스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor)는 스테이터(stator)에만 여자 코일을 권선하는 간단한 구조로 구성된다. 이러한 모터는 여자 코일에 흘려주는 전류의 크기에 의해 회전 토크(torque) 및 출력이 결정되기 때문에 영구자석을 사용하는 다른 종류의 모터에 비해 영구자석의 재질과 자력의 크기에 의한 영향을 받지 아니하는 장점이 있고, 여타 다른 종류의 모터와 비교하더라도, 제작하기 쉽고, 견고하여 상대적으로 신뢰성이 높으며, 가격 경쟁력도 우수한 장점을 갖는다.
이러한 스위치드 릴럭턴스 모터는 스테이터(stator, 고정자) 및 로터(rotor, 회전자)에 각각 조성하는 돌극(pole)의 배치에 따라 달라지는 공극(air gap)의 방향 및 자속 경로(flux path)에 의해 방사방향 공극 모터(Radial Air Gap Motor), 축방향 공극 모터(Axial Air Gap Motor) 및 횡단 자속 모터(Transverse Flux Motor)로 분류된다.
도 1은 전형적인 스위치드 릴럭턴스 모터를 도시한 도면으로서, 외륜 회전자형(outer rotor type)으로 예시한 방사방향 공극 모터(Radial Air Gap Motor)가 도시되어 있다.
도 1을 참조하면, 스테이터(stator, 1)는 복수의 스테이터 돌극(stator pole, 1a)이 외주면에 둘레방향을 따라 등간격으로 조성되어 있고, 각각의 스테이터 돌극(1a)에는 방사방향의 자속을 발생시키는 코일(1a)이 권선되어 있으며, 회전 중심 선상의 중심에 관통시킨 축 허브(3)에 고정하여 축 허브(3)를 지지하는 스테이터 베이스(3a)에 의해 안정된다.
그리고, 로터(rotor, 2)는 스테이터(1)의 외주면을 간격을 두고 둘러싸고 스테이터 돌극(1a)과 공극(air gap)을 사이에 두고 마주하게 조성한 로터 돌극(rotor pole, 2a)이 내주면에 둘레방향을 따라 등간격으로 구비되며, 회전 중심 선상에 배치하는 샤프트(4)를 구비한 로터 하우징(4a)을 축 허브(3)에 베어링(4b)으로 결합하여 스테이터(1)를 감싸며 회전하게 되어 있다.
여기서, 코일(1b)에 전류를 흘려주면, 스테이터 돌극(1a)이 여자되어 방사상의 자속(F-1)이 발생하므로, 로터 돌극(2a)은 스테이터 돌극(1a)에 정렬(align)되려는 릴럭턴스 토크(reluctance torque)가 발생한다. 이에, 개략적으로 설명하자면, 로터 돌극(2a)이 스테이터 돌극(1a)에 비정렬(unalign)된 시점에 코일(1b)에 전류를 흘려주기 시작하고, 로터 돌극(2a)이 스테이터 돌극(1a)에 정렬(align)되는 시점에 전류를 차단하는 전류 단속 동작을 반복함으로써, 로터(2)를 회전시킬 수 있다.
그런데, 스테이터 돌극(1a)에서 발생하는 자속의 경로는 로터 돌극(2a)을 향하는 방사상의 경로(F-1)로만 형성되는 것이 아니라 로터 돌극(2a)를 경유하지 아니하는 누설 경로(F-2, F-3)가 존재하게 되어, 자기 누설(leakage)이 발생한다. 이러한 자기 누설은 토크 손실, 출력 손실 및 출력대비 모터의 체적 손실(또는 이용율 저하)을 크게 하고, 더욱이, 베어링(4b)의 수명을 단축시키는 요인이 되며, 샤프트(21), 로터 하우징(22) 등에 유도전류를 흐르게 하여 전기 화학적 반응에 의한 부식의 요인이 되기도 한다.
이러한 자기 누설을 방지하기 위해서, 누설 경로(F-2, F-3)를 차단하는 자기 절연판을 설치할 수도 있으나, 구조가 복잡해지고, 자기 절연판의 추가 설치에 의해 효율이 저하되며, 자기 절연판을 설치하더라도 누설 경로를 충분히 차단하지 못하는 한계도 있다.
도 2는 종래 스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor) 중에 축방향 공극 모터(Axial Air Gap Motor)로 분류되는 모터의 측단면도이다.
도 2를 참조하면, 스테이터 돌극(1a)은 스테이터(1)의 상면에 둘레방향을 따라 조성되어 있고, 로터 돌극(2a)은 로터(2)의 저면에 둘레방향을 따라 조성되어 있어 스테이터 돌극(1a)과 상하로 마주한다. 이에, 스테이터 돌극(1a)에 권선된 코일(1b)에 의해 발생하는 자속은 축방향 자속 경로(F-1)로 형성된다.
그렇지만, 이 경우에도 로터 돌극(2a)을 경유하지 아니하고 측면 방향으로 형성되는 누설 경로(F-2)가 존재하여 자기 누설이 발생한다.
도 3은 종래 스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor) 중에 횡단 자속 모터(Transverse Flux Motor)로 분류되는 모터의 측단면도이다.
도 3을 참조하면, 스테이터(1)는 둘레방향을 따라 코일(1a)을 권선하고 코일(1b)을 사이에 두고 상하로 분리된 스테이터 돌극(1a)이 외주면 둘레방향을 따라 조성되어 있다. 그리고, 로터(2)는 스테이터 돌극(1a)과 마주하여 상하로 분리된 스테이터 돌극(1a)에 횡단방향 자속 경로(F-1)를 제공하는 로터 돌극(2a)을 둘레방향을 구비한다.
이러한 모터는 자기 누설을 줄이고, 슬림화 구조가 가능하며, 구조적으로 견고하여 내구성이 우수한 장점을 갖고 있지만, 축방향의 누설 경로(F-2)가 존재하여 자기 누설에 의한 효율 저하 문제는 해소하지 못하고 있다.
한편, 미국 공개특허 2010-0295389에서는 상하로 분리된 스테이터 돌극(1a)의 사이에 로터 돌극(2a)을 배치하여 자기 누설을 줄였지만, 자기 누설이 스테이터 돌극(1a)의 외측으로 존재하여 효율적으로 활용하지 못하고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) US 2010-0295389 A1 2010.11.25.
따라서, 본 발명에서 해결하고자 하는 과제는 코일의 여자 전류에 의해 스테이터 돌극에서 발생하는 횡단 자속 및 축방향 자속을 모두 활용하여 릴럭턴스 토크를 얻는 3차원 스위치드 릴럭턴스 모터를 제공하는 것이다.
따라서, 본 발명에서 해결하고자 하는 과제는 코일의 여자 전류에 의해 스테이터 돌극에서 발생하는 횡단 자속 및 축방향 자속을 모두 활용하여 릴럭턴스 토크를 얻는 3차원 스위치드 릴럭턴스 모터를 제공하는 것이다.
상기 스테이터 돌극(110) 및 로터 돌극(210)의 연장된 부위는 연장하기 이전의 돌극의 극호각 범위 내로 조성되어 동위상이 됨을 특징으로 한다.
상기 스테이터 코어(100)는 외주면의 둘레방향을 따라 권선한 코일(120)을 기준으로 상하로 분리된 외주면의 스테이터 돌극(110)을 상면 및 저면까지 연장한 것이고, 상기 로터 코어(200)는 스테이터 돌극(110)과 방사방향으로 마주하여 상하로 분리된 스테이터 돌극(110)에 횡단 자속 경로를 제공하는 내주면의 로터 돌극(210)을 내부 천장 및 바닥면까지 연장하여 스테이터 돌극(110)의 연장된 부위에 축방향 자속 경로를 제공하는 것임을 특징으로 한다.
스테이터 돌극(110) 및 로터 돌극(210)은 각각 축방향을 따라 수직 절개한 단면 형상이 다단으로 꺾인 형상을 이루며, 전 구간에 걸쳐 균일한 공극을 유지함을 특징으로 한다.
스테이터 돌극(110) 및 로터 돌극(210)은 각각 축방향을 따라 수직 절개한 단면 형상이 일부 구간 또는 전구간에 걸쳐 곡선을 이루며, 각 구간에 걸쳐 균일한 공극을 유지함을 특징으로 한다.
상기와 같이 구성되는 본 발명은 로터 코어의 회전을 방해하지 아니하는 범위 내에서 스테이터 코어를 로터 코어로 감싸고 스테이터 돌극 및 로터 돌극을 입체적으로 형성하여서, 스테이터 코어에 입체적으로 형성되는 자기력선속이 누설을 최소화하며 릴럭턴스 토크에 기여하게 하므로, 효율 향상 및 출력 향상이라는 효과를 얻는다.
도 1은 종래 스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor) 중에 방사방향 공극 모터(Radial Air Gap Motor)로 분류되는 모터의 평단면도(a) 및 측단면도(b).
도 2는 종래 스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor) 중에 축방향 공극 모터(Axial Air Gap Motor)로 분류되는 모터의 측단면도.
도 3은 종래 스위치드 릴럭턴스 모터(SRM : Switched Reluctance Motor) 중에 횡단 자속 모터(Transverse Flux Motor)로 분류되는 모터의 측단면도.
도 4는 본 발명의 제1 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 사시도.
도 5는 본 발명의 제1 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
도 6은 본 발명의 제1 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 분리 사시도.
도 7은 도 6에 도시한 스테이터 코어(100)와 로터 코어(200)의 확대 사시도.
도 8은 본 발명의 제2 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 사시도.
도 9는 본 발명의 제2 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
도 10은 본 발명의 제2 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 분리 사시도.
도 11은 도 10에 도시한 스테이터 코어(100)와 로터 코어(200)의 확대 사시도.
도 12는 본 발명의 제3 실시예에 따른 직렬 조립구조의 다상 3차원 스위치드 릴럭턴스 모터의 단면도.
도 13은 각 단위 모듈에서의 로터 돌극(210)의 회전각을 어느 한 단위 모듈의 평단면도에 표시한 도면.
도 14는 본 발명의 제4 실시예에 따른 병렬 조립구조의 다상 3차원 스위치드 릴럭턴스 모터의 사시도.
도 15는 도 14의 평단면도에 기어를 점선으로 표시한 도면.
도 16은 본 발명의 제5 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
도 17은 본 발명의 제6 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
도 18은 본 발명의 제7 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
도 19는 본 발명의 제8 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 측단면도.
테이터 돌극(110)과 마주하는 로터 돌극(Rotor Pole)을 원주방향을 따라 간격을 두고 구비하고 스테이터 코어(100)에 회전가능하게 결합되는 로터 코어(Rotor Core, 회전자 코어, 200)를 포함하되, 스테이터 돌극(110)과 로터 돌극(210)의 배치방식에 따라 방사상의(radial) 자속, 축방향(axial) 자속 및 횡단(transverse) 자속 중에 어느 한 자속이 공극을 경유하게 한다. 이에, 스테이터 돌극(110)을 여자시킬 시에 상호 정렬하려는 릴럭턴스 토크(Reluctance Torque)로 로터 코어(200)를 회전시킨다.
본 발명에 따르면, 방사상의(radial) 자속, 축방향(axial) 자속 및 횡단(transverse) 자속 중에 어느 일방향의 자속을 이용하여 토크를 발생시켰던 통상적인 스위치드 릴럭턴스 모터에 있어서, 로터 코어(200)는 회전에 지장을 주지 아니하는 범위 내에서 스테이터 코어(100)의 외측을 스테이터 돌극(110)이 조성되지 아니한 다른 방향의 면까지 추가로 에워싸도록 스테이터 코어(100)의 외측을 입체적으로 에워싸 자기 누설이 있는 영역까지 추가로 에워싸게 된다.
예를 들어, 로터 코어(200)는 스테이터 코어(100)의 각 부위 중에 지지수단에 자리 잡게 하기 위한 부위를 제외하고 나머지 부위를 감싸되, 회전할 시에 스테이터 코어(100)에 걸리지 않는 범위 내에서 스테이터 코어(100)를 감싼다.
아울러, 추가로 에워싸이는 영역 전체에 걸쳐 스테이터 돌극(110)을 연장 형성하고, 마찬가지로 추가로 에워싸는 로터 코어(200)에도 로터 돌극(210)을 연장 형성함으로써, 자기력선속이 집중되게 할 공극을 사이에 두고 마주하는 스테이터 돌극(110) 및 로터 돌극(210)이 입체적으로 형성되며, 이에, 연장된 부위로 누설되었던 자속이 릴럭턴스 토크에 기여하게 한다.
이러한 본 발명은 외륜 회전자형(Outer Rotor Type) 횡단 자속 모터(Transverse Flux Motor)에 적용한 하기의 구체적인 실시예에 의해 구체화된다.
<제1 실시예>
도 4에 도시한 사시도, 도 5에 도시한 측단면도, 도 6에 도시한 분리 사시도 및 도 7에 도시한 스테이터 코어(100)와 로터 코어(200)의 확대도 사시도를 참조하면, 본 발명의 제1 실시예에 따른 3차원 스위치드 릴럭턴스 모터는 스테이터 코어(100), 로터 코어(200), 스테이터 장착부(300) 및 로터 장착부(400)를 포함하여 구성된다.
상기 스테이터 코어(100)는 소정의 높이를 갖는 원통형으로 형성되며, 외주면에는 코일(120)과 복수의 스테이터 돌극(110)을 구비한다.
코일(120)은 스테이터 코어(100)의 외주면에 원주방향(둘레방향)을 따라 소정 회수 권선된다. 스테이터 돌극(110)은 상하로 분리된 한쌍의 돌극편(111, 112)으로 구성되어 코일(120)이 상하 돌극편(111, 112) 사이를 지나가도록 형성되며, 원주방향을 따라 등간격으로 조성된다.
즉, 스테이터 코어(100)의 외주면에 구비되는 각각의 스테이터 돌극(110)은 상하로 이격된 상측 돌극편(111)과 하측 돌극편(112)으로 분리 구성되어 있어, 상측 돌극편(111)과 하측 돌극편(112) 사이를 지나가는 코일(120)에 여자 전류가 흐를 시에, 코일(120)을 주회하는 자속 경로를 제공한다.
*이와 같은 스테이터 코어(100)의 외주면 구성은 스테이터 돌극(110)에 의한 횡단 자속(Transverse Flux)에 의해 릴럭턴스 토크(Reluctance Torque)를 얻는 횡단 자속 모터(Transverse Flux Motor)의 구성을 따른다.
그리고, 상기 스테이터 코어(100)는 회전 중심을 따라 상하로 관통시켜 형성하는 관통구(130)를 구비하여, 스테이터 장착부(300)의 축 허브(310)를 관통구(130)에 삽입 고정하게 되어 있다.
본 발명의 제1 실시예에 따르면, 스테이터 코어(100)의 외주면에 조성된 각각의 스테이터 돌극(110)는 스테이터 코어(100)의 상면 및 저면까지 연장시킨 연장 부위(111a, 112a)를 구비한다. 즉, 외주면의 상측 돌극편(111)은 스테이터 코어(100)의 상면까지 연장된 연장 부위(111a)를 구비하고, 외주면의 하측 돌극편(112)은 스테이터 코어(100)의 저면까지 연장된 연장 부위(112a)를 구비한다.
이와 같이 구비된 연장 부위(111a, 112a)는 후술하는 로터 돌극(210)의 연장 부위(211a, 212a)에 축방향 자속의 경로(F-2)를 제공하므로, 횡단 자속 모터(Transverse Flux Motor)에 있어 축방향으로 누설되었던 축방향 자속(F-2)을 릴럭턴스 토크에 기여하게 한다.
여기서, 상면 및 저면의 연장 부위(111a, 112a)는 각각 회전 중심의 관통구(130)를 향해 점차 폭이 좁아지는 부채꼴 형상으로 구성하여서, 외주면의 스테이터 돌극(110)과 동위상에 있게 된다. 동위상이라 함은 외주면의 스테이터 돌극(110)의 극호각(arc angle)과 동일한 극호각을 갖게 되는 것을 의미하며, 구체적으로 설명하면, 외주면의 스테이터 돌극(110)의 원주방향 양 끝점과 관통구(130)의 중심을 이은 선이 경계로 됨을 의미한다.
한편, 상면 및 저면의 연장 부위(111a, 112a)는 외주면의 스테이터 돌극(110)의 극호각보다 작게 하는 것도 가능하다.
상기 스테이터 장착부(300)는 상기 스테이터 코어(100)의 관통구(130)에 삽입 고정하여 회전 중심 선상에 놓이는 축 허브(310)를 스테이터 베이스(320) 상에 돌출시킨 구조를 갖춘다.
여기서, 스테이터 베이스(320)는 모터를 설치하고자 하는 위치에 고정하는 부위이며, 도면처럼 판 형태에 한정하지 아니하여도 된다. 그리고, 축 허브(310)는 스테이터 베이스(320) 상에 세워 고정할 수 있는 구조이면 만족하며, 비 자성체로 구성하는 것이 바람직하고, 자기 절연체를 외주면에 장착한 상태로 스테이터 코어(100)의 관통구(130)에 삽입 고정하는 것도 좋다.
한편, 상기 축 허브(310)는 중공관으로 형성되고, 삽입 고정된 스테이터 코어(100)의 상측 및 하측에 해당되는 외주면의 상단 및 하단에 각각 베어링(430)을 설치할 수 있는 구조를 갖는다.
상기 로터 코어(200)는 스테이터 코어(100)의 외주면을 간격을 두고 에워싸며, 상기 스테이터 코어(100)를 중심으로 회전 가능하게 결합되며, 내주면에 원주방향을 따라 서로 이격되게 조성한 복수의 로터 돌극(210)을 구비한다. 로터 돌륵(210)은 스테이터 돌극(110)과 마주하여 상하로 분리된 스테이터 돌극(110)에 횡단 자속 경로를 제공한다. 이에, 스테이터 돌극(110)이 여자될 시에 횡단 자속에 의한 릴럭턴스 토크를 발생시켜 회전력을 받는다.
본 발명에 따르면, 상기 로터 코어(200)는 스테이터 돌극(110)의 연장 부위(111a, 112a)가 조성되는 상기 스테이터 코어(100)의 상면 및 저면까지 간격을 두고 감싸도록 구성되고, 스테이터 돌극(110)의 연장 부위(111a, 112a)와 공극을 사이에 두고 대향하는 연장 부위(211a, 212a)를 로터 돌극(210)에 이어지게 내면에 구비하여서 축방향 자속 경로(F-2)를 제공한다.
즉, 로터 코어(200)는 스테이터 코어(100)의 외주면 뿐만 아니라, 상면 및 저면 까지 덮도록 형성되어, 회전 중심 선상에 구멍이 형성된 상판과 하판을 원통형의 측면판에 이어지게 하거나 일체형으로 제작한 구조를 갖는다.
그리고, 로터 돌극(210)의 상측부(211)는 스테이터 돌극(110)의 상측 돌극편(111)과 마주하고 동시에 로터 코어(200)의 내측 천장까지 연장되는 연장 부위(211a)와 이어지고, 로터 돌극(210)의 하측부(212)는 스테이터 돌극(110)의 하측 돌극편(112)과 마주하고 동시에 로터 코어(200)의 내측 바닥면까지 연장되는 연장 부위(212a)와 이어진다.
물론, 스테이터 코어(100)와 마찬가지로 로터 돌극(210)의 연장 부위(211a, 212a)는 내주면의 로터 돌극(210)과 동위상이 되도록 부채꼴 형상으로 조성된다. 여기서도, 연장 부위(211a, 212a)는 외주면의 로터 돌극(210)의 극호각을 벗어나지 아니하며, 보다 작은 극호각을 갖게 하는 것도 가능하다.
*이에, 로터 코어(200)의 내주면에 조성된 로터 돌극(210)과 스테이터 코어(100)의 외주면에 조성된 스테이터 돌극(110) 사이의 횡단 자속(F-1)에 의한 릴러턴스 토크와, 로터 코어(200)의 내부 천장 및 내부 바닥에 구비되는 연장 부위(211a, 212a)와 스테이터 코어(100)의 상면 및 저면에 구비되는 연장 부위(111a, 111b) 사이의 축방향 자속(F-2)에 의한 릴럭턴스 토크는 동시에 발생한다.
본 발명의 제1 실시예에 따르면, 로터 코어(200)의 상판 및 하판의 중심 구멍에 끼운 베어링(230)이 축 허부(310)의 상하 베이링 장착구조에 안착되게 하며, 이에, 로터 코어(200)는 스테이터 코어(100)에 회전 가능하게 결합된다.
또한, 로터 돌극(210)은 코일(120)과 마주하는 중간 부위(213)를 상측부(211) 및 하측부(212)보다는 약간 낮게 돌출되어 있어서, 횡단 자속이 상측부(211) 및 하측부(212)에 집중되게 하였다.
본 발명에 따르면, 로터 코어(200)는 회전 중심 선상의 부위를 제외하고 스테이터 코어(100)의 외주면, 상면 및 저면을 감싸므로, 제작의 편의를 위해서, 코일(120)과 마주하는 부위를 절개하여 상하로 분리 제작하는 구조로 되어 있고, 상하 분리된 구조를 순차적으로 관통하는 결합공(230)에 장볼트(221)를 삽입 체결하여 결합하게 되어 있다.
하지만, 상기 로터 코어(200)는 상하 분리 구조 이외에 다른 구조로 구성할 수도 있다. 예를 들어, 상기 로터 코어(200)는 회전 중심을 따라 수직 절개하여 좌우로 분리된 구조를 갖게 할 수 있다. 물론, 좌우 분리 구조로 각각 제작한 후 내부에 스테이터 코어(100)를 수용하며 상호 포개는 결합 방식으로 조립된다. 좌우 분리된 구조를 결합하여 하나의 몸체로 구성할 시에는 외주면을 따라 두르는 밴드를 사용하거나, 또는 결합부위를 관통하는 볼트 체결 방식을 사용할 수 있다. 물론, 수직 절개하되 3개 이상으로 수직 절개한 구조를 결합하는 것도 좋다.
한편, 도 5,6,7에 도시한 바와 같이, 로터 돌극(210)의 연장부위(211a, 212a)를 스테이터 돌극(110)의 연장부위(111a, 112a)보다 회전 중심을 향해 더욱 길게 연장 형성하여서, 자기 누설을 더욱 줄일 수도 있다. 즉, 로터 돌극(210)의 연장부위(211a, 212a)는 스테이터 돌극(110)의 연장부위(111a, 112a)와 마주하는 면을 갖추면서, 동위상의 범위를 벗어나는 않는 조건 하에, 스테이터 돌극(110)의 연장부위(111a, 112a)보다는 넓게 형성하는 것이 좋다.
상기 로터 장착부(400)는 상기 로터 코어(200)를 파지하여 로터 코어(200)에 발생하는 릴럭턴스 토크에 의한 회전력을 외부에 전달하는 구성요소로서, 본 발명의 실시예에 따르면, 회전 중심 선상에 배치할 샤프트(410)를 상부로 돌출되게 구비한 원판형 로터 하우징(420)을 로터 코어(200)의 상면에 고정하게 되어 있다. 물론, 샤프트(410)은 로터 하우징(420)과 분리 제작한 후 결합하여도 좋다.
여기서, 샤프트(410)는 로터 하우징(420)의 상부를 향해 돌출됨은 물론이고, 로터 하우징(420)의 하부로도 일부 돌출시킴으로써 축 허브(310)의 내부 중공에 여유있게 삽입되게 하여서, 회전을 안정되게 하였다.
본 발명의 제1 실시예에 따르면 상기 로터 코어(200)는 상하로 분리된 구조를 결합공(220)에 장볼트(221)를 삽입하여 결합한 것이므로, 장볼트(241)는 로터 하우징(420)를 관통한 후 결합공(220)에 삽입하여, 상하 분리 구조의 로터 코어(200)를 로터 하우징(420)에 고정하며 동시에 결합하는 것이 좋다.
릴럭턴스 토크를 발생시켜 로터 코어(200)를 회전시기는 기술은 공지된 기술이라서 도면에는 도시하지 아니하였지만, 로터 코어(200)의 회전 위치를 감지하기 위한 위치검출 센서와, 로터 코어(200)의 회전 위치에 따라 코일(120)의 전류를 단속하여 회전시키는 컨트롤러를 포함한다. 본 발명의 출원인이 출원한 공개특허 제10-20160009774호를 예로 들어 간략하게 설명하자면, 모든 로터 돌극(210)의 직하에 각각 하나씩 배치되는 반사판을 로터 코어(200)의 저면에 설치하고, 발광부와 수광부를 갖는 위치검출 센서를 반사판이 지나가는 위치에 맞게 스테이터 베이스(320)의 상면에 설치하여서, 로터 코어(200)의 회전에 따라 반사판이 지나가는 시점을 검출한다. 그리고, 컨트롤러는 반사판의 검출로부터 획득하는 로터 코어(200)의 회전 위치에 따라 대략 로터 돌극(210)과 스테이터 돌극(110) 사이에 비정렬되는 시점부터 정렬되는 시점까지를 드웰각(dwell angle)으로 하여 코일에 전류를 흘려준다. 이에, 드웰각에 맞춰 주기적으로 흘려주는 전류에 의해서 정렬되는 방향으로 발생하는 릴럭턴스 토크도 주기적으로 발생하여 로터 코어(200)를 회전시킨다.
상술한 바와 같이 구성되는 본 발명의 제1 실시예에 따르면, 회전 중심 선상의 위치를 제외하고 스테이터 코어(100)의 외측을 로터 코어(200)로 감싸고, 스테이터 코어(100)의 외측 면 전체 및 로터 코어(200)의 내측 면 전체를 활용하기 위해 스테이터 돌극(110) 및 로터 돌극(210)을 입체적으로 조성한다.
이에, 코일의 여자 전류에 의해 입체적인 경로 발생하는 자속 경로가 스테이터 돌극(110) 및 로터 돌극(210)을 경유하게 된다. 이에, 스테이터 코어(100)를 중심으로 입체적으로 형성되는 횡단 자속 및 축방향 자속을 모두 활용하여, 드웰각에 흘려주는 여자 전류에 의한 전자기력을 누설 없이 회전 토크로 전환하여 효율 및 출력이 향상된다.
<제2 실시예>
도 8에 도시한 사시도, 도 9에 도시한 측단면도, 도 10에 도시한 분리 사시도 및 도 11에 도시한 스테이터 코어(100)와 로터 코어(200)의 확대 사시도를 참조하면, 본 발명의 제2 실시예에 따른 3차원 스위치드 릴럭턴스 모터의 구성요소 중에 스테이터 코어(100) 및 로터 코어(200)가 제1 실시예의 것과 상이하게 구성된다.
도면을 참조하면, 스테이터 코어(100)는 원주방향을 따라 코일(120)이 감기는 부위를 제외하고 상하를 각각 축방향으로 테이퍼(taper)지게 형성하여, 원뿔대 형상의 상부, 코일(120)이 감기는 짧은 길이의 원기둥 형상의 중간 및 역원뿔대 형상의 하부를 갖는다. 그리고, 상부 테이퍼진 면에 조성하는 상측 돌극편(111)과 하부 테이퍼진 면에 조성하는 하측 돌극편(112)을 상하 대칭되게 조성하여서, 상하로 양분되는 스테이터 돌극(110)을 형성하였다.
여기서, 상측 돌극(111)과 하측 돌극(112)은 상하로 멀어질수록, 즉, 경사진 면을 따라 회전 중심으로 갈수록, 폭이 좁아지게 조성하여 동위상이 되게 한다. 즉, 회전 중심을 기준으로 각 부위의 극호각은 동일하게 되어 있다.
로터 코어(200)의 내측면은 스테이터 코어(100)의 외측면을 간격을 두고 덮싸도록 구성된다. 물론, 여기서의 간격은 스테이터 돌극(110)과 로터 돌극(210) 사이의 공극에 비해 상당히 커서 자기 저항이 매우 크게 되는 간격으로서, 실질적으로 자속 경로로는 무시할 수 있는 간격이 된다.
그리고, 로터 코어(200)의 내측면에는 스테이터 돌극(110)과 일정한 공극을 유지하며 대향하는 로터 돌극(210)이 조성된다.
즉, 로터 돌극(210)은 스테이터 돌극(110)의 상측 돌극편(111)과 마주하는 상측부(211)와, 스테이터 돌극(110)의 하측 돌극편(112)와 마주하는 하측부(212)를 포함한다. 여기서, 상측부(211)와 하부측(212) 사이의 중간 부위(213)는 스테이터 코어(100)에 감긴 코일(120)과 마주하는 부위로서, 제1 실시예처럼 상측부와 하부측보다는 약간 낮게 돌출되게 하는 것도 좋다.
이와 같이 조성된 스테이터 돌극(110) 및 로터 돌극(210) 사이에는 횡단 자속과 축방향 자속의 중간으로 볼 수 있는 자속만 존재하게 된다. 이에, 코일(120)로부터 멀어질수록 자속의 밀도, 즉, 자기력선속의 밀도가 낮아지지만, 그 자속도 누설되지 아니하게 하면서 릴럭턴스 토크에 기여하게 한다.
한편, 도 8 내지 도 11에 도시한 로터 코어(200)는 외형적으로 원통형을 이루지만, 내면에 로터 돌극(210)이 조성된 상부와 하부가 방사상 두께를 크게 한 구조가 되므로, 플라이휠(flywheel) 역할을 한다. 그렇지만, 로터 코어(200)의 중량을 작게 할 필요가 있다면, 상기 로터 코어(200)는 외형적으로 상부와 하부를 각각 테이퍼지게 형성한다.
상기한 본 발명의 제1,2 실시예는 원주방향을 따라 동일한 각도의 간격을 두고 구비되는 복수의 스테이터 돌극(110)과 복수의 로터 돌극(210)이 일대일로 동시 정렬되는 구조이면, 단상 스위치드 릴럭턴스 모터가 된다.
상기한 본 발명에 따른 3차원 스위치드 릴럭턴스 모터를 단상 모터로 구성하되, 복수 개로 하나의 샤프트를 회전시키는 다상 모터로 구성한 제3,4 실시예를 설명한다.
<제3 실시예>
도 12에 도시한 다상(Multi-Phase) 3차원 스위치드 릴럭턴스 모터에 의하면, 상호 결합한 1개의 스테이터 코어(100)와 1개의 로터 코어(200)를 단위 모듈로 하여 복수의 단위 모듈(A-1, A-2, A-3, A-4)을 순차적으로 적층하며, 각 단위 모듈의 스테이터 코어(100)는 1개 축 허브(310)에 관통되며 고정되고, 그 축 허브(310)에 고정된다.
각 단위 모듈의 로터 코어(200)는 베어링에 의해 각각 축 허브(310)에 회전 가능하게 결합되며 적층되고, 연결수단(B)으로 상하로 상호 고정시켜 하나의 회전체처럼 회전되게 한다. 여기서, 연결수단(B)은 예를 들어 상하로 접촉되는 면에 각각 홈을 조성한 후 상하 홈에 동시 삽입 고정되게 하는 것으로 할 수 있다.
그리고, 최상단의 단위 모듈(A-4)에는 샤프트(410)를 구비한 로터 장착부(400)가 고정되어서, 하나의 회전체처럼 회전하는 각 단위 모듈의 로터 코어(200)에 의한 회전력을 샤프트(410)를 전달한다.
또한, 스테이터 돌극(110)을 기준으로 한 로터 돌극(210)의 회전각(θ)을 단위 모듈 간에 서로 다르게 하되, 일정한 차이를 갖게 하여, 다상(Multi-Phase) 모터를 구성할 수 있다.
P개의 로터 돌극(210)을 구비한 로터 코어(200)를 사용하여 단위 모듈을 구성하고, 이러한 단위 모듈을 N개 적층하여 모터를 구성한 경우를 설명하면 다음과 같다.
스테이터 돌극(110)을 기준으로 한 로터 돌극(210)의 회전각(θ)은 로터 코어(200)의 회전에 따라 스테이터 돌극(110)에 정렬되려는 로터 돌극(210)의 회전 위치를 스테이터 돌극(110)과의 회전각 차이로 표현하는 각도로 볼 수 있다.
그리고, 각 단위 모듈에서의 로터 돌극(210)의 회전각(θ)은 기계각으로 표현하면 다음의 수학식 1에 의해 계산되는 값 중에 어느 하나이며, 각 단위 모듈에 서로 다른 값으로 하나씩 배분된다.
[수학식 1]
Figure PCTKR2016004625-appb-I000001
도 13은 P=8 이고, N=4인 경우로서, 로터 돌극(210)의 회전각(θ)을 최하층에 적층한 단위 모듈(A-1)의 평단면도에 표시한 도면이다.
이 경우, 수학식 1에 따르면,
Figure PCTKR2016004625-appb-I000002
의 차이를 갖는 4개 포인트가 정해지며, 도 13에 도시한 바와 같이 최하층 단위 모듈(A-1)에서 로터 돌극(210)이 스테이터 돌극(110)에 정렬되었다고 가정하고, 적층 순서에 각 단위 모듈에 배분하면, 적층 순번에 따라
Figure PCTKR2016004625-appb-I000003
,
Figure PCTKR2016004625-appb-I000004
,
Figure PCTKR2016004625-appb-I000005
,
Figure PCTKR2016004625-appb-I000006
이 배분되어 4상 모터가 된다.
실제로 4개의 단위 모듈을 조립할 시에는, 각 단위 모듈의 스테이터 돌극이 상하로 일직선상에 놓이게 한 후, 각 단위 모듈의 로터 돌극이
Figure PCTKR2016004625-appb-I000007
만큼 어긋나도록 로터 코어(200)를 순차적으로 적층하며 상호 고정하면 된다.
다른 조립 방법으로서, 스테이터 코어(100)를 축 허브(310)에 고정할 시에 각 단위 모듈의 스테이터 돌극이
Figure PCTKR2016004625-appb-I000008
만큼 어긋나도록 순차적으로 고정하고, 로터 돌극은 상하로 일직선장에 놓이도록 로터 코어를 상호 고정하면 된다.
한편, 원주방향으로 인접하는 로터 돌극(210) 사이의 회전각 차이(θT)가 1주기를 나타내므로, 로터 돌극(210)의 회전 위치는 전기각(electrical angle)으로 표현할 수 있다. 이에, 상기 수학식 1을 전기각으로 표현하려면 로터 돌극의 개수 P를 곱하면 되므로, 아래의 수학식 2를 얻를 수 있다.
[수학식 2]
Figure PCTKR2016004625-appb-I000009
정리하면, 단위 모듈의 회전 위상은 스테이터 돌극(110)에 대한 로터 돌극(120)의 회전 위치를 전기각으로 표현한 것이다. 이에, 상기 단위 모듈 간의 회전 위상이
Figure PCTKR2016004625-appb-I000010
의 위상차를 갖게 하여 N상 모터를 구성할 수 있다.
예를 들어, N개의 단위 모듈을 하나씩 적층할 시에, 이전에 적층한 단위 모듈보다
Figure PCTKR2016004625-appb-I000011
의 위상차만큼 진상이 되게 하는 방식으로 적층하거나, 또는 이전에 적층한 단위 모듈보다
Figure PCTKR2016004625-appb-I000012
의 위상차만큼 지상이 되게 하는 방식으로 적층하면 된다.
<제4 실시예>
도 14는 복수의 3차원 스위치드 릴럭턴스 모터를 병렬 조립구조로 결합하여 구성한 다상 3차원 스위치드 릴럭턴스 모터의 사시도이다.
도 14를 참조하면, 복수 개의 3차원 스위치드 릴럭턴스 모터(C-1, C-2, C-3, C-4)는 각각 평기어로 이루어진 주동 기어(430)를 샤프트(410)에 설치한 것으로서, 평기어로 이루어진 종동 기어(440)의 주위에 배치되되, 각각 주동 기어(430)를 종동 기어(440)에 치합되도록 배치되어 있다. 이에, 각각의 3차원 스위치드 릴럭턴스 모터(C-1, C-2, C-3, C-4)는 종동 기어(440)에 회전력을 가하여, 종동 기어(440)의 종동 샤프트(441)를 통해 회전력을 외부로 전달할 수 있다.
그리도, 도 15에 도시한 바와 같이, 각각의 3차원 스위치드 릴럭턴스 모터(C-1, C-2, C-3, C-4)에서 로터 코어(200)의 회전 위치는 상기 수학식 1으로 표현되는 기계각 또는 상기 수학식 2로 표현되는 전기각(또는 위상차)을 갖게 한다. 도 15에는 4개의 3차원 스위치드 릴럭턴스 모터(C-1, C-2, C-3, C-4)를 종동 기어(440)의 둘레방향을 따라 배치하고, 반시계 방향의 순서에 따라 순차적으로 지상의 위상차를 갖게 하였다.
이와 같이, 본 발명의 제3 실시예에 의한 직렬 조립구조 또는 본 발명의 제4 실시예에 의한 병렬 조립구조로 다상 3차원 스위치드 릴럭턴스 모터를 구성함으로서, 단상으로 구성하는 경우보다 출력을 높일 수 있고, 토크 리플을 줄여 소음도 줄일 수 있다.
<제5 실시예>
도 16은 제1 실시예 및 제2 실시예의 특징을 모두 갖도록 구성한 3차원 스위치드 릴럭턴스 모터의 측단면도이며, 차이 나는 부위만 상세하게 설명한다.
스테이터 코어(100)는 제2 실시예처럼 외주면의 중간 높이에 둘레방향을 따라 권선한 코일(120)에 근접한 외주면 일부와, 회전축에 근접한 부위(즉, 관통구(130)의 주변)에 해당되는 상면의 일부 및 저면의 일부를 남겨두고 상하로 테이퍼지게 형성한 형태를 갖는다. 즉, 스테이터 코어(100)는 원통형에서 상부 모서리 및 하부 모서리를 모깍기(chamfer)하여 경사지게 하고, 남겨진 외주면의 중간 부위에 둘레방향을 따라 코일(120)을 권선한 것이다.
그리고, 스테이터 돌극(110)은 코일(120)을 중심으로 상부측에 남겨진 외주면에 돌출시킨 부위(111-1)와 상부측 테이퍼진 경사면에 돌출시킨 부위(111-3)와, 남겨진 상면에 돌출시킨 부위(111-2)를 연속적으로 이어지게 한 상측 돌극편(111), 및 코일(120)을 중심으로 하부측에 남겨진 외주면에 돌출시킨 부위(112-1)와 하부측 테이퍼진 경사면에 돌출시킨 부위(112-3)와, 남겨진 저면에 돌출시킨 부위(112-2)를 연속적으로 이어지게 한 하측 돌극편(112)으로 구성된다.
로터 코어(200)는 로터 코어(200)의 외주면, 테이퍼진 면, 상면 및 저면을 소정 간격을 두고 모두 감싸도록 형성된다.
로터 돌극(210)은 스테이터 돌극(110)에 대향하도록 로터 코어(200)의 내면에 둘레방향을 따라 등간격으로 조성되는 돌극으로서, 상측 돌극편(111:111-1, 111-2, 111-3)의 꺾인 면을 따라 함께 꺾여 상측 돌극편(111)의 전 부위에서 걸쳐 일정한 공극을 유지하는 상측부(211:211-1, 211-2, 211-3)와, 코일(120)과 마주하는 중간부(213)와, 하측 돌극편(112:112-1, 112-2, 112-3)의 꺾인 면을 따라 함께 꺾여 하측 돌극편(112)의 전 부위에서 걸쳐 일정한 공극을 유지하는 하측부(212:212-1, 212-2, 212-3)로 구성된다.
이에, 로터 돌극(210)은 제1 실시예처럼 횡단 자속 경로(F-1) 및 축방향 자속 경로(F-2)를 제공하되, 상향 및 하향으로 경사진 방향으로의 자속 경로(F-3)를 추가로 제공한다. 여기서, 경사진 방향으로의 자속 경로(F-3)는 경로 길이를 단축함으로써, 코어 내에서 발생하는 자기력 손실을 줄이는 효과를 갖는다.
한편, 상호 균일한 공극을 사이에 두고 마주하는 스테이터 돌극(110) 및 로터 돌극(210)은 각각 회전 중심을 지나가며 축방향을 따라 수직 절개한 단면 형상이 상하로 각각 2번 꺾인 형상으로 갖는 것으로 설명하였으나, 이에 한정되는 것은 아니며, 2번을 초과하여 꺾이게 하여도 좋다. 예를 들면, 테이퍼지게 형성할 시에 2단으로 테이퍼지게 형성하여 서로 다른 경사각을 갖으면서 이어진 경사면을 갖게 할 수 있다.
<제6 실시예>
도 17에 도시한 제6 실시예는 도 16에 도시한 제5 실시예의 변형으로서, 테이퍼지게 하여 일정한 경사각을 갖게 하는 것이 아니라 곡선을 이루게 할 수 있음을 보여준다.
즉, 본 발명에 따른 3차원 스위치드 릴럭턴스 모터는 상호 균일한 공극을 사이에 두고 마주하는 스테이터 돌극(110) 및 로터 돌극(210)은 회전 중심을 지나가며 축방향을 따라 수직 절개한 단면 형상이 일부 구간에서 곡선을 이루게 할 수 있다.
한편, 스테이터 돌극(110)은 코일(120)에 근접한 부위로부터 스테이터 코어(100)를 축 허브(310)에 고정되는 부위에 이르는 전 구간에 걸쳐 곡선을 이루게 하는 것도 가능하다. 이 경우에, 로터 돌극(210)도 전 구간에 걸쳐 곡선을 이루어야 한다.
<제7 실시예>
도 18은 방사방향 공극 모터(Radial Air Gap Motor)에 적용하여 구성한 3차원 스위치드 릴럭턴스 모터의 측단면도이다.
통상적인 방사방향 공극 모터(Radial Air Gap Motor) 타입의 스위치 릴럭턴스 모터는 스테이터 코어(100)의 둘레방향에 등각도로 배치되게 조성한 각각의 스테이터 돌극(110)에 개별적으로 코일(120)이 권선되어 있어 방사방향의 공극을 통해 자속 경로를 형성하고, 로터 코어(200)의 내주면에는 스테이터 돌극(110)과 마주하는 로터 돌극(210)이 둘레방향을 따라 등각도로 배치되게 조성된다. 이에, 스테이터 돌극(110)과 로터 돌극(210) 사이의 방사상 공극을 경유하는 자속 경로가 형성되고, 이때의 자속 경로는 로터 코어의 내부, 스테이코어의 내부, 및 인접한 다른 스테이터 돌극과 로터 돌극을 통해 폐곡선의 경로를 이룬다.
본 발명에 따르면, 이러한 방사방향 공극 모터 타입에 적용되어, 로터 코어(200)가 스테이터 코어(100)의 상면 및 저면까지 덮는 구조로 형성되고, 스테이터 돌극(110)은 스테이터 코어(100)의 상면 및 저면까지 연장되는 연장 부위(111a, 112a)를 구비하고, 로터 돌극(210)은 로터 코어(200)의 내부 천장 및 바닥면까지 연장한 연장 부위(211a, 212a)를 구비한다. 이때의 연장 부위는 연장 이전의 돌극과 동위상이 되게 하는 것이 좋다.
다만, 각각의 스테이터 돌극(110)은 스테이터 코어(100)의 외주면에 방사상으로 돌출되므로, 원주방향의 면(인접하는 스테이터 코어와 원주방향으로 마주하는 면)은 로터 코어(200)에 에워싸이지 아니하게 하여서, 로터 코어(200)의 회전에 지장을 주지 아니하게 한다.
즉, 본 발명에 따른 로터 코어(200)는 스테이터 돌극(110)을 에워싸게 할 시에, 회전에 지장을 주지 아니하는 범위 내에서 이루어져야 한다.
한편, 스테이터 돌극(110)의 연장 부위(111a, 112a)는 코일(120)이 권선된 부위를 중심으로 내외로 분리된 한쌍의 돌극편으로 구성하고, 로터 돌극(210)의 연장 부위(211a, 212)는 한쌍의 돌극편 사이에 자속 경로를 제공하게 구성된다. 이에, 로터 돌극(210)은 횡단 자속 모터(Transverse Flux Motor)의 로터 돌극처럼 스테이터 돌극(110)을 구성하는 한쌍의 돌극편 사이에 자속 경로를 제공한다.
이와 같이 연장 부위를 구비함으로써, 스테이터 코어(100)의 상부 및 하부로 누설되었던 자속을 연장 부위를 이용하여 릴럭턴스 토크에 기여하게 한다.
<제8 실시예>
도 19는 축방향 공극 모터(Axial Air Gap Motor)에 적용하여 구성한 3차원 스위치드 릴럭턴스 모터의 측단면도이다.
통상적인 축방향 공극 모터(Axial Air Gap Motor) 타입의 스위치드 릴럭턴스 모터는 부채꼴 형상의 스테이터 돌극(110)을 원주방향을 따라 상면에 조성한 원형 띠 형상의 스테이터 코어(100)와, 부채꼴 형상의 로터 돌극(210)을 원주방향을 따라 상면에 조성한 원형 띠 형상의 로터 코어(200)를 포함하며, 일반적으로는 스테이터 코어(100)의 상부에 로터 코어(200)를 배치하여 스테이터 돌극(110)과 로터 돌극(210)이 공극을 사이에 두고 마주할 수 있게 한다. 그리고, 각각의 스테이터 돌극(110)에 개별적으로 구비되는 코일(120)은 스테이터 돌극(110)의 측면을 따라 주회하는 방향으로 권선된다.
이에 따르면, 각각의 스테이터 돌극(110)에 축방향 자속이 발생하며, 이때의 자속은 로터 코어의 내부, 스테이터 코어의 내부, 및 인접한 다른 스테이터 돌극과 로터 돌극을 통해 폐곡선의 경로를 이룬다.
본 발명에 따르면, 이러한 축방향 공극 모터 타입에 적용되어, 로터 코어(200)가 스테이터 코어(100)의 외주면 및 내주면까지 덮는 구조로 형성되고, 스테이터 돌극(110)은 스테이터 코어(100)의 외주면 및 내주면까지 연장되는 연장 부위(111a, 112a)를 구비하며, 로터 돌극(210)은 스테이터 코어(100)의 외주면 및 내주면을 덮는 부위까지 연장되는 연장 부위(211a, 212a)를 구비한다. 물론, 제1 실시예처럼 연장 부위는 연장되기 이전의 돌극과 동위상이 되게 하는 것이 좋다.
이와 같이 연장 부위를 구비함으로써, 스테이터 코어(100)의 외주면 방향 및 내주면 방향으로 누설되었던 자속을 연장 부위를 이용하여 릴럭턴스 토크에 기여하게 한다.
한편, 각각의 스테이터 돌극(110)의 연장 부위(111a, 112a)는 스테이터 코어(100)의 측면에 둘레방향을 따라 권선한 코일(120)을 중심으로 상하로 분리된 2개의 돌극편으로 구성되는 것이 좋다. 그리고, 로터 코어(210)의 연장 부위(211a, 212a)는 한쌍의 돌극편을 동시 마주하는 형상으로 조성하여서, 횡단 자속 경로를 제공하는 것처럼 내부를 통과하는 자속 경로를 제공하게 하는 것이 좋다.
*여기서, 로터 코어(200)는 스테이터 돌극(110)의 원주방향 면을 감싸지 아니하여서 회전에 지장을 받지 아니한다.
실제 제작할 시에는, 스테이터 돌극(110)의 둘레면 중에 회전 중심 방향의 면은 외측에 비해 좁으므로, 로터 코어(200)는 스테이터 돌극(110)의 외측 면만 감싸고, 그 부위에만 돌극을 연장할 수도 있다.
본 발명의 실시예에 따르면, 스테이터 돌극(110)에 의해 입체적으로 형성되는 자속을 누설 없이 모두 활용하기 위해 스테이터 돌극(110)이 스테이터 코어(100)에 입체적(3차원적)으로 구비되어야 하고, 마찬가지로, 로터 돌극(210)이 로터 코어(200)에 입체적으로 구비되어야 한다. 이에, 스테이터 돌극(110)을 포함한 스테이터 코어(100)와 로터 돌극(210)을 포함한 로터 코어(200)는 연자성 순철과 실리콘 스틸의 혼합 분말을 압분 성형한 압분 코어로 제작하는 것이 좋다. 물론, 자속 경로(또는 자기 경로)에 맞게 얇은 철심(예: 규소강판)을 적층하여 코어를 제작하여도 좋다.
이상에서 본 발명의 기술적 사상을 예시하기 위해 구체적인 실시 예로 도시하고 설명하였으나, 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용에만 국한되지 않고, 여러가지 변형이 본 발명의 범위를 벗어나지 않는 한도 내에서 실시될 수 있다. 따라서, 그와 같은 변형도 본 발명의 범위에 속하는 것으로 간주해야 하며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.
[부호의 설명]
100 : 스테이터 코어
110 : 스테이터 돌극
111 : 상측 돌극편 112 : 하측 돌극편 111a,112a : 연장 부위
120 : 코일
130 : 관통구
200 : 로터 코어
210 : 로터 돌극
211 : 상측부 212 : 하측부 211a,212a : 연장 부위
220 : 결합공 221 : 장볼트
230 : 베어링
300 : 스테이터 장착부
310 : 축 허브 320 : 스테이터 베이스
400 : 로터 장착부
410 : 샤프트 420 : 로터 하우징
430 : 주동 기어 440 : 종동 기어 441 : 종동 샤프트

Claims (9)

  1. 코일(120)에 의해 여자되는 스테이터 돌극(110)으로 방사방향 자속, 축방향 자속 및 횡단 자속 중에 어느 한 방향의 자속을 발생시키는 스테이터 코어(100); 및
    스테이터 코어(100)에 회전 가능하게 결합되며, 공극을 사이에 두고 스테이터 돌극(110)과 마주하는 로터 돌극(210)을 구비하여 릴럭턴스 토크에 의해 회전하는 로터 코어(200);
    를 포함하되,
    상기 로터 코어(200)는 회전에 지장을 주지 아니하는 범위 내에서 스테이터 코어(100)의 외측을 입체적으로 에워싸 자기 누설이 있는 영역까지 추가로 에워싸게 되며,
    추가로 에워싸는 범위까지 상기 스테이터 돌극(110) 및 로터 돌극(210)을 연장하여 입체적으로 형성하며, 연장된 부위를 통과하는 자속이 릴럭턴스 토크에 기여하게 함을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  2. 제 1항에 있어서,
    상기 스테이터 돌극(110) 및 로터 돌극(210)의 연장된 부위는 연장하기 이전의 돌극의 극호각 범위 내로 조성되어 동위상이 됨을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  3. 제 1항 또는 제 2항에 있어서,
    상기 스테이터 코어(100)는 외주면의 둘레방향을 따라 권선한 코일(120)을 기준으로 상하로 분리된 외주면의 스테이터 돌극(110)을 상면 및 저면까지 연장한 것이고,
    상기 로터 코어(200)는 스테이터 돌극(110)과 방사방향으로 마주하여 상하로 분리된 스테이터 돌극(110)에 횡단 자속 경로를 제공하는 내주면의 로터 돌극(210)을 내부 천장 및 바닥면까지 연장하여 스테이터 돌극(110)의 연장된 부위에 축방향 자속 경로를 제공하는 것임을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  4. 제 3항에 있어서,
    상기 스테이터 코어(100)는 코일(120)이 감기는 부위를 중심으로 상하를 축방향으로 테이퍼지게 되어 있고, 상하의 테이퍼진 면에 스테이터 돌극을 상하 대칭되게 조성하되, 상하로 멀어질수록 폭이 좁아지게 조성하여 동위상이 되게 하며,
    상기 로터 코어(200)의 내면에 조성되는 로터 돌극(200)은 테이퍼진 스테이터 돌극과 일정한 공극을 유지하며 대향하도록 테이퍼진 형상을 따라 경사지게 조성됨을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  5. 제 1항 또는 제 2항에 있어서,
    상기 로터 코어(200)는 둘레방향을 따라 절개된 상하 분리 구조 또는 수직으로 절개된 분리 구조를 결합한 것임을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  6. 제 1항 또는 제 2항에 있어서,
    1개의 로터 코어(200)와 1개의 스테이터 코어(100)의 결합으로 구성된 단위 모듈이 N개 적층되고, 모든 스테이터 코어(100)가 1개의 축 허브에 고정되고, 모든 로터 코어(200)가 상호 연결되어 일체로 회전하게 되며,
    단위 모듈 간에
    Figure PCTKR2016004625-appb-I000013
    의 회전 위상차를 갖는 N상 스위치드 릴럭턴스 모터로 구성됨을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  7. 제 1항 또는 제 2항에 있어서,
    복수의 3차원 스위치드 릴럭턴스 모터가 종동 기어(440)의 둘레방향을 따라 배치되어 각각 종동 기어(440)에 회전력을 전달하고,
    각각의 3차원 스위치드 릴럭턴스 모터에 구비되는 로터 코어 간에
    Figure PCTKR2016004625-appb-I000014
    의 회전 위상차를 갖게 하여 N상 스위치드 릴럭턴스 모터로 구성됨을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  8. 제 1항 또는 제 2항에 있어서,
    스테이터 돌극(110) 및 로터 돌극(210)은 각각 축방향을 따라 수직 절개한 단면 형상이 다단으로 꺾인 형상을 이루며, 전 구간에 걸쳐 균일한 공극을 유지함을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
  9. 제 1항 또는 제 2항에 있어서,
    스테이터 돌극(110) 및 로터 돌극(210)은 각각 축방향을 따라 수직 절개한 단면 형상이 일부 구간 또는 전구간에 걸쳐 곡선을 이루며, 각 구간에 걸쳐 균일한 공극을 유지함을 특징으로 하는 3차원 스위치드 릴럭턴스 모터.
PCT/KR2016/004625 2016-03-30 2016-05-02 3차원 스위치드 릴럭턴스 모터 WO2017171132A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0038747 2016-03-30
KR1020160038747A KR101861806B1 (ko) 2016-03-30 2016-03-30 3차원 스위치드 릴럭턴스 모터

Publications (1)

Publication Number Publication Date
WO2017171132A1 true WO2017171132A1 (ko) 2017-10-05

Family

ID=59959877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004625 WO2017171132A1 (ko) 2016-03-30 2016-05-02 3차원 스위치드 릴럭턴스 모터

Country Status (3)

Country Link
US (1) US20170288515A1 (ko)
KR (1) KR101861806B1 (ko)
WO (1) WO2017171132A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177749B2 (en) * 2018-07-27 2021-11-16 Neapco Intellectual Property Holdings, Llc System and method for rotor positioning within an electric motor
CN110224562A (zh) * 2019-06-21 2019-09-10 赵滟玺 一种具有轴向径向多方向立体磁通路的新型节能电机
TWI792467B (zh) * 2021-08-02 2023-02-11 國立高雄科技大學 軸向磁通切換馬達及其轉子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259376A (ja) * 2007-04-09 2008-10-23 Mitsuba Corp モータ装置
WO2012022974A1 (en) * 2010-08-19 2012-02-23 Oxford Yasa Motors Limited Electric machine - over-moulding construction
KR20120133977A (ko) * 2011-05-30 2012-12-11 조윤현 축방향 릴럭턴스 회전기기
KR20130029659A (ko) * 2011-09-15 2013-03-25 삼성전기주식회사 스위치드 릴럭턴스 모터
KR20130034267A (ko) * 2011-09-28 2013-04-05 삼성전기주식회사 스위치드 릴럭턴스 모터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845398A (en) * 1988-03-25 1989-07-04 Cesare Dominic V De Armature stator configuration for compound interaction/induction electric rotating machine
JP4622248B2 (ja) * 2004-01-16 2011-02-02 トヨタ自動車株式会社 回転電機
US9093874B2 (en) * 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
CA2549882A1 (en) * 2006-06-12 2007-12-12 Msi Machineering Solutions Inc. Axial flux switched reluctance motor
US20130175890A1 (en) * 2012-01-11 2013-07-11 Rusty Atwood Magnetic Energy Cone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259376A (ja) * 2007-04-09 2008-10-23 Mitsuba Corp モータ装置
WO2012022974A1 (en) * 2010-08-19 2012-02-23 Oxford Yasa Motors Limited Electric machine - over-moulding construction
KR20120133977A (ko) * 2011-05-30 2012-12-11 조윤현 축방향 릴럭턴스 회전기기
KR20130029659A (ko) * 2011-09-15 2013-03-25 삼성전기주식회사 스위치드 릴럭턴스 모터
KR20130034267A (ko) * 2011-09-28 2013-04-05 삼성전기주식회사 스위치드 릴럭턴스 모터

Also Published As

Publication number Publication date
KR20170113987A (ko) 2017-10-13
KR101861806B1 (ko) 2018-05-29
US20170288515A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
EP1416619B1 (en) Hybrid synchronous electric machine
US4568846A (en) Permanent magnet laminated rotor with conductor bars
US6495941B1 (en) Dynamo-electric machine
US20150042194A1 (en) Single-phase brushless motor
WO2017003033A1 (ko) 외륜 회전자형 스위치드 릴럭턴스 모터
US6680557B2 (en) Rotary electric machine having cylindrical rotor with alternating magnetic poles thereon
WO2017171132A1 (ko) 3차원 스위치드 릴럭턴스 모터
KR20130025141A (ko) 스위치드 릴럭턴스 모터
US20130241367A1 (en) Exciter of a rotary electric machine
WO2017094689A1 (ja) モータ及びステータの製造方法
US20140084716A1 (en) Rotating electrical machine with so-called double homopolar structure
JP2007325484A (ja) 平面空隙の軸方向空隙型ディスク多層回転電機
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
JP2006166679A (ja) アキシャルギャップ型回転電機のステータ構造
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
KR20100005468A (ko) 교류 모터용 영구자석 회전자
JP2007189841A (ja) ブラシレスモータ
US20170149318A1 (en) Single Phase Permanent Magnet Brushless Motor
JP4043659B2 (ja) 自己始動形永久磁石式同期電動機の製造方法
KR20090038113A (ko) 전동기
JP2002238194A (ja) 永久磁石電動機の回転子構造
JPH11332211A (ja) シリンダ形リニア同期モータ
JP2011072087A (ja) アキシャルギャップモータ
JP4264021B2 (ja) シリンダ形リニア同期モータ
RU2752234C2 (ru) Синхронно-асинхронный электродвигатель

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897153

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897153

Country of ref document: EP

Kind code of ref document: A1