WO2017170713A1 - Anti-photoaging agent - Google Patents

Anti-photoaging agent Download PDF

Info

Publication number
WO2017170713A1
WO2017170713A1 PCT/JP2017/012939 JP2017012939W WO2017170713A1 WO 2017170713 A1 WO2017170713 A1 WO 2017170713A1 JP 2017012939 W JP2017012939 W JP 2017012939W WO 2017170713 A1 WO2017170713 A1 WO 2017170713A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
salt
linear
compound represented
cells
Prior art date
Application number
PCT/JP2017/012939
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 重信
俊太郎 平舘
夕子 中上
進二 山木
藤田 一郎
米田 正
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Publication of WO2017170713A1 publication Critical patent/WO2017170713A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to an anti-photoaging agent.
  • This application claims priority based on Japanese Patent Application No. 2016-073713 filed in Japan on March 31, 2016, the contents of which are incorporated herein by reference.
  • Sun rays are known to have various effects on human skin. Sunlight contains light of various wavelengths. Of the sun rays, it is said that ultraviolet rays A (UVA), ultraviolet rays B (UVB), and near infrared rays have an adverse effect on the skin. Although UVA (wavelength 320 nm to 400 nm) has a lower energy amount than UVB (wavelength 280 nm to 320 nm), it reaches the dermis deep in the skin. Long-term skin exposure to UVA causes photoaging such as wrinkles and reduced elasticity.
  • UVA ultraviolet rays A
  • UVB ultraviolet rays B
  • near infrared rays near infrared rays
  • MMP matrix metalloproteinase
  • elastin and hyaluronic acid which are matrix components that form the dermis together with collagen
  • UVA transmits through glass that UVB cannot transmit. For this reason, UVA also reaches the human skin in the room. For these reasons, in recent years, the importance of suppressing adverse effects on the skin caused by UVA has increased.
  • Patent Document 1 describes a cosmetic comprising a combination of titanium oxide particles and zinc oxide particles coated with silica, alumina, or alumina / silica.
  • Patent Document 2 describes an ultraviolet absorbent composition containing an ultraviolet absorbing component extracted from a bacterium belonging to the genus Methylobacterium which is a plant-inhabiting microorganism.
  • the present inventors paid attention to a compound represented by the following formula (I) having UVA absorption ability, and conducted intensive studies. As a result, the present inventors have found that the compound represented by the formula (I) has an action of suppressing the photoaging of the skin caused by exposing the skin to UVA, and completed the present invention. . That is, the present invention adopts the following configuration.
  • R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.
  • a compound represented by the formula (I) or a salt thereof is a compound represented by the formula (II) in which R 1 and R 2 in the formula (I) are methyl groups, and R 3 and X are hydrogen atoms.
  • R 1 and R 2 are methyl groups
  • R 3 is a hydrogen atom
  • X is a linear sugar chain having 5 sugar molecules. Photoaging agent.
  • the anti-photoaging agent of the present invention contains a compound represented by the formula (I) or a salt thereof.
  • a compound represented by the formula (I) or a salt thereof As a result, when the skin coated with the anti-photoaging agent of the present invention is exposed to UVA, the gene expression of collagen, elastin, and hyaluronic acid as matrix components is promoted and the matrix metalloproteinase as a collagen degrading enzyme is promoted. Suppresses the expression of a gene that produces (MMP). For this reason, in the skin to which the anti-photoaging agent of the present invention is applied, when exposed to UVA, the matrix component in the dermis is less likely to decrease, and wrinkles and a decrease in elasticity associated with the decrease in the matrix component are suppressed. Photoaging is prevented.
  • the anti-photoaging agent of the present invention has UVA absorption ability. Therefore, the anti-photoaging agent of this invention shields skin from UVA when the skin which apply
  • Anti-photoaging agent contains a compound represented by the formula (I) or a salt thereof as an active ingredient.
  • R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.
  • R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • a linear or branched alkenyl group preferably a linear alkyl group having 1 to 5 carbon atoms, a methoxy group, or a vinyl group, and more preferably an alkyl group having 1 to 2 carbon atoms.
  • it is a methyl group.
  • R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a linear or branched group having 1 to 5 carbon atoms.
  • the alkenyl group is preferably a straight-chain alkyl group having 1 to 5 carbon atoms or a methoxy group, more preferably an alkyl group having 1 to 2 carbon atoms, and most preferably a methyl group. preferable.
  • R 2 is a linear or branched alkenyl group having 1 to 5 carbon atoms, if it is a —CH 2 —C 4 H 7 group, it has an influence on the conjugation of electrons related to the ultraviolet absorption ability. Since there are few, it is preferable.
  • R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkenyl group having 1 to 5 carbon atoms, a hydrogen atom or an alkyl having 1 to 2 carbon atoms It is preferably a group, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
  • the carboxyl group possessed by the compound represented by formula (I) may form a salt.
  • the carboxyl group of the compound is preferably a carboxylic acid alkali metal salt or a carboxylic acid amine salt, more preferably a carboxylic acid alkali metal salt, and a carboxylic acid sodium salt. Most preferably it is.
  • X is a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules, and is preferably a hydrogen atom or a linear sugar chain having 1 to 10 sugar molecules.
  • a straight-chain sugar chain having 3 to 8 sugar molecules is more preferred, and a straight-chain sugar chain having 5 sugar molecules or hydrogen atoms is more preferred.
  • the compound represented by the formula (I) or a salt thereof is particularly a compound represented by the formula (II) or a salt thereof, wherein R 1 and R 2 are methyl groups, and R 3 and X are hydrogen atoms, or R It is preferable that 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof.
  • the sugar molecule may be pyranose or furanose, but is preferably pyranose.
  • R 1 and R 2 are methyl groups
  • R 3 is a hydrogen atom
  • X is a linear sugar chain having 5 sugar molecules, or a salt thereof
  • X is 1,4-glycosidically bonded to each other
  • a compound represented by the formula (III) which is a sugar chain consisting of five hexoses (pyranose) or a salt thereof, and a sugar chain consisting of five hexoses (pyranose) in which X is 1,6-glycosidically bonded to each other.
  • X in the formula (I) is a linear sugar chain composed of five hexoses (pyranose), and the hexoses are 1,4-glycosides
  • a compound or a salt thereof which is a sugar chain in which a bonded part and a 1,6-glycoside bonded part are mixed is preferable.
  • a compound represented by formula (III) or a salt thereof, a compound represented by formula (IV) or a salt thereof, and X in formula (I) is a linear sugar chain composed of five hexoses (pyranose)
  • Two or more kinds may exist as a mixture in which an arbitrary ratio is mixed.
  • the compound represented by the formula (I) or a salt thereof has a plurality of stereoisomers.
  • the compound represented by the formula (I) or a salt thereof includes all these stereoisomers.
  • the compound or salt thereof contained in the anti-photoaging agent of this embodiment has a structure represented by the formula (I). For this reason, it has the solubility with respect to an aqueous solvent, and is excellent in the function which suppresses the photoaging of the skin which arises by exposing skin to UVA, and the function which absorbs the ultraviolet-ray in a UVA area
  • R 1 , R 2 , R 3 , and X are all arranged at positions that do not affect the above-described electron conjugation. For this reason, the excellent ultraviolet absorptivity is similarly obtained regardless of R 1 , R 2 , R 3 , and X in the compound represented by the formula (I) or a salt thereof.
  • Method for producing compound or salt thereof The compound represented by the formula (I) or a salt thereof contained in the anti-photoaging agent of the present embodiment can be produced, for example, by the production method shown below. That is, a step of culturing microorganisms growing on a plant to obtain microbial cells (first step), a step of extracting microbial cells with a solvent to obtain an extract (second step), and formula (I) from the extract And a step (third step) of recovering the compound represented by the formula:
  • the microorganisms cultured in this embodiment are grown on plants.
  • the type of plant from which the microorganism is collected is not particularly limited. Examples of plant types include wheat ears, strawberry leaves, evening primrose petals, and rice leaf sheaths. These plants are preferable because many microorganisms of the genus Methylobacterium that produce the compound represented by the formula (I) or a salt thereof are grown.
  • Examples of the method for collecting microorganisms that grow on the plant from the plant include a method in which the plant is immersed in a phosphate buffer and ground in a mortar to obtain a ground solution containing the microorganism.
  • a conventionally known method can be used as a method for culturing microorganisms.
  • a liquid culture method, a solid culture method, a liquid culture method or a solid culture method may be used, and the types of cells to be cultured. It can be appropriately determined according to the like.
  • the medium used for culturing the microorganism include standard agar medium, L (Lennox) medium, LB (Luria Bertani) medium, NB (Nutrient Broth) medium, PD (potato dextrose) medium, PPD (potato peptone dextrose). ) Medium, TB (Terrific broth) medium, etc. can be used.
  • a microorganism collected from a plant is cultured by a solid culture method, and each microbial cell contained in the microorganism collected from the plant is separated and recovered.
  • a grinding liquid containing microorganisms collected from a plant by the above method is applied (smeared) on the surface of a solid medium and cultured to form colonies.
  • Conventionally known conditions can be adopted as culture conditions for microorganisms in the case of using a solid medium.
  • aerobic conditions can be set at 25 ° C. for 3 to 7 days.
  • the cells forming single colonies are collected by a method of scraping the single colonies appearing on the surface of the solid medium, and the individual cells contained in the microorganisms collected from the plant are separated.
  • Each bacterial cell recovered from a single colony that appears on the surface of the solid medium may be applied to the surface of a new solid medium and cultured (pure culture) for each bacterial cell, if necessary, and recovered. .
  • the presence or absence of ultraviolet absorbing ability is examined by spectrocolorimetric method, absorptiometric method, etc. for each bacterial cell separated and recovered from the microorganisms collected from the plant in this way.
  • cells having ultraviolet absorbing ability are identified.
  • a method for identifying a bacterial cell a conventionally known method such as a method of identifying based on the base sequence of an rRNA gene can be used.
  • the bacterial cells of the genus Methylobacterium are cultured by a liquid culture method.
  • a microorganism belonging to the genus Methylobacterium produces a compound represented by the formula (I) or a salt thereof.
  • the WI-182 strain (strain name), the W-213 strain (strain name), the f11 strain (strain name), and the 24N-25 strain (strain name) described later should be used. Is preferred.
  • These strains are microorganisms that grow on plants, can be increased by culture, and can efficiently produce the compound represented by the formula (I) or a salt thereof.
  • WI-182 strain (strain name) is preferable because it can be easily increased by culture.
  • the cells of the genus Methylobacterium separated and recovered from the microorganisms collected from the plant by the above method are cultured by a liquid culture method.
  • the cells isolated from the microorganisms collected from the plant contain multiple types of Methylobacterium, the highest UV-absorbing ability from the multiple types of Methylobacterium It is preferable to select cells and culture them by a liquid culture method.
  • microorganisms collected from plants are cultured and separated and collected by an individual culture method, and among the obtained bacterial cells, only the cells of the genus Methylobacterium having ultraviolet absorption ability are cultured by a liquid culture method. To do. For this reason, the microbial cell which has the ultraviolet absorption ability contained in the microorganisms extract
  • the culture conditions for the bacterial cells when using a liquid medium.
  • aerobic conditions can be set at 25 ° C. for 3 to 7 days.
  • the liquid medium containing the cells may be cultured while being stirred or shaken, or air is supplied to the liquid medium containing the cells.
  • Bacteria obtained by culturing using a liquid medium can be collected using, for example, a centrifugal separation method, a filtration method, or the like.
  • the cells recovered from the liquid medium may be frozen and vacuum dried, and then extracted with a solvent in the next step, or may be extracted with a solvent in the next step while being recovered.
  • the cells cultured in a liquid medium can be further cultured using a new liquid medium as necessary in order to secure a sufficient amount of the compound represented by formula (I) or a salt thereof. May be recovered from.
  • the cells of the genus Methylobacterium collected by culturing in the first step are extracted with a solvent to obtain an extract.
  • the method for obtaining the extract include the following methods. First, a solvent is added to the cells and stirred, and the compound represented by the formula (I) or a salt thereof is extracted from the cells in the solvent. Next, the solvent containing the cells after extraction is filtered to obtain an extract as a filtrate. Thereafter, the extract is concentrated, frozen and vacuum dried to obtain an extract.
  • the solvent used for bacterial cell extraction include alcohol or a mixed solution of alcohol and water. Among these, as a solvent, it is preferable to use methanol, ethanol, isopropyl alcohol, or a mixed solution of these and water, and it is more preferable to use a mixed solution of methanol and water.
  • (Third step) a step of recovering the compound represented by the formula (I) or a salt thereof, which is the target product, from the extract obtained in the second step.
  • alkali treatment and purification treatment are performed as a step of recovering the target product from the extract.
  • the alkali treatment may be performed before the purification treatment, after the purification treatment, or may be performed together with the purification treatment.
  • Alkali treatment is carried out by bringing the extract into contact with an alkaline solution and further extracting the target product from the extract.
  • the pH of the alkaline solution is preferably 9.0 to 14.0, more preferably 10.0 to 13.0, still more preferably 11.0 to 12.0.
  • Examples of the alkaline solution include a mixed solution of aqueous ammonia and methanol.
  • a conventionally known method can be used, and examples thereof include anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography. It is done.
  • the purification treatment may be performed by a mixed mode chromatography method in which the above chromatography methods are mixed, or may be performed by a method in which different types of chromatography methods are performed a plurality of times.
  • the cation exchange chromatography method using PORAPAK Rxn CX manufactured by WATERS as the column and the hydrophobic chromatography method using Sunrise C28 manufactured by CHROMANIC TECHNOLOGIES are particularly preferable.
  • Examples of the method of performing the alkali treatment together with the purification treatment include a method of performing the above-described chromatography method using the above-mentioned alkaline solution. Specifically, it is preferable to use a cation exchange chromatography method using PoraPak Rxn CX manufactured by WATERS as a column and recovering components eluted with a mixed solution of aqueous ammonia and methanol, which is an alkaline solution.
  • the compound represented by the formula (I) or a salt thereof, which is the target product is obtained.
  • the target product recovered by the production method of the present embodiment is represented by the formula (I) using LC / MS (liquid chromatography mass spectrometry) analysis, NMR (nuclear magnetic resonance) analysis, X-ray crystal structure analysis, and the like. Can be confirmed.
  • the LC / MS analysis can be performed, for example, under the following conditions.
  • LC liquid chromatography
  • PDA detector SPD-M10A
  • a column temperature 40 ° C.
  • a flow rate of 1.0 ml / minm as a mobile phase, ammonium formate, formic acid aqueous solution, Any one or more selected from formic acid methanol solutions can be used.
  • MS mass spectrometry
  • ESI electrospray ionization
  • the NMR analysis can be performed in heavy water using, for example, AVANCE500 manufactured by BRUKER BIOSPIN.
  • the compound represented by the formula (I) or a salt thereof has ultraviolet absorbing ability and solubility in an aqueous solvent.
  • the compound represented by the formula (I) or a salt thereof has a high absorption peak in the wavelength region of 350 to 360 nm, and is excellent in ultraviolet absorption ability in the UVA region.
  • the compound of the present embodiment or a salt thereof is a mixed solution of any one or more of methanol, ethanol, propanol, acetonitrile, ethylene glycol, propylene glycol, and butanediol and water, an alkali metal, an alkaline earth metal salt, Since it is excellent in solubility in an aqueous solvent such as water, a mixture of at least one of an organic acid and an amino acid and water, when used as a material for an anti-photoaging agent, it can be easily blended using an aqueous solvent.
  • a highly pure compound represented by the formula (I) or a salt thereof can be produced. Therefore, for example, when the compound represented by the formula (I) obtained by the production method of the present embodiment or a salt thereof is used as a material for an anti-photoaging agent, the compound represented by the formula (I) or a salt thereof is used. It is preferable because defects caused by impurities contained are unlikely to occur.
  • the manufacturing method of the compound represented by Formula (I) or its salt is not limited to said method.
  • any one of R 1 , R 2 , R 3 , and X in the formula (I) You may manufacture the compound or its salt represented by the formula (I) from which 1 or more differs.
  • the compound represented by the formula (I) or a salt thereof is chemically used only as a raw material by using only components that are not derived from nature without using those extracted from cells obtained by culturing microorganisms that grow on plants. May be synthesized.
  • the compound represented by the formula (I) or the salt thereof contained in the anti-photoaging agent of the present embodiment may be only one type or two or more types.
  • the anti-photoaging agent of this embodiment may contain only the compound represented by the formula (I) and may not contain a salt of the compound represented by the formula (I), or may be represented by the formula (I). Contains only a salt of the compound and may not contain the compound represented by formula (I), or contains both the compound represented by formula (I) and the salt of the compound represented by formula (I) But you can.
  • the compound represented by the formula (I) or the salt thereof contained in the anti-photoaging agent is two or more, the combination and ratio can be appropriately selected according to the purpose.
  • the anti-photoaging agent of the present embodiment may be a pharmaceutically acceptable carrier or the like as long as it does not impair the effects of the present invention. These components may be contained at a general concentration.
  • the pharmaceutically acceptable carrier is not particularly limited, and examples thereof include excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, thickeners, wetting agents, pH adjusting agents, Oils, solvents for injections, etc. can be used.
  • moisturizers feel improvers, surfactants, polymer compounds, thickening / gelling agents, solvents, propellants, antioxidants, reducing agents, oxidizing agents, Preservatives, antibacterial agents, chelating agents, pH adjusters, acids, alkalis, powders, inorganic salts, UV absorbers, whitening agents, vitamins and their derivatives, anti-inflammatory agents, anti-inflammatory agents, hair growth agents, blood circulation promoters , Stimulant, hormones, anti-wrinkle agent, anti-aging agent, squeeze agent, cooling sensation agent, warming sensation agent, wound healing promoter, stimulation mitigation agent, analgesic agent, cell activator, plant / animal / microbe extract, antipruritic agent Agent, exfoliating / dissolving agent, antiperspirant, refreshing agent, astringent, enzyme, nucleic acid, fragrance, pigment, colorant, dye, pigment, water, metal-containing compound, unsaturated monomer, polyhydric alcohol, high Molecular additive, anti
  • Examples of pharmaceutically acceptable carriers and other ingredients include, for example, the 16th revised Japanese Pharmacopoeia, Cosmetic Raw Material Standards Second Edition Commentary (Edited by the Japanese Official Church, Yakuji Nipposha, 1984), non-cosmetic raw material standards Ingredient standards (supervised by the Ministry of Health and Welfare Pharmacy Examination Division, Yakuji Nippo Inc., 1993), supplements for ingredients outside the standard of cosmetic ingredients (supervised by the Ministry of Health and Welfare Pharmacy Examination Division, Yakuji Nipposha, 1993) Supervised by the Bureau of Internal Affairs and Communications, Yakuji Nippo, 1993), Cosmetic Raw Material Dictionary (Nikko Chemicals, 1991), International Cosmetic Inditionary and Handbook 2002 Ninth Edition Vol. 1 to 4, by General raw materials described in CTFA and the like can be used. More specifically, for example, the respective raw materials described in JP 2014-114289 A can be mentioned.
  • the anti-photoaging agent of this embodiment is a mixture of the compound represented by the formula (I) or a salt thereof and other components contained as necessary according to a conventional method (for example, a method described in the Japanese Pharmacopoeia). And can be manufactured by formulation.
  • anti-aging agents include creams, lotions, lotions, emulsions, foundations, packs, foams, skin cleansers, extracts, plasters, ointments, spirits, suspensions, tinctures. And dosage forms such as agents, poultices, liniments, and aerosols.
  • the anti-photoaging agent of this embodiment contains a compound represented by the formula (I) or a salt thereof.
  • the anti-photoaging agent of the present embodiment promotes gene expression of the matrix components collagen, elastin, and hyaluronic acid when the skin to which the anti-photoaging agent is applied is exposed to UVA. It suppresses the expression of a gene that produces a certain matrix metalloprotease (MMP). For this reason, when the skin to which the anti-photoaging agent of this embodiment is applied is exposed to UVA, the matrix component in the dermis is less likely to decrease, and wrinkles and elasticity decreases due to the decrease in the matrix component are suppressed. , Photoaging is prevented.
  • MMP matrix metalloprotease
  • the anti-photoaging agent of this embodiment has UVA absorption ability. Therefore, the anti-photoaging agent of the present embodiment shields the skin from UVA when the skin to which it is applied is exposed to UVA, and effectively suppresses photoaging of the skin due to exposure to UVA. .
  • the conventional ultraviolet shielding agent prevents photoaging due to ultraviolet rays by a function of absorbing and scattering ultraviolet rays physicochemically, and the skin caused by exposing the skin to UVA. It did not have a function of physiologically suppressing photoaging itself.
  • the anti-photoaging agent of the present embodiment when the anti-photoaging agent of the present embodiment is applied to the skin, not only the skin is shielded from UVA, but also the effect of physiologically suppressing skin aging caused by exposing the skin to UVA is obtained. It is done.
  • the matrix component increases in the dermis after the skin is exposed to UVA, and the effect of improving aging can be expected. The above effect is also exhibited when the anti-photoaging agent of this embodiment is applied to the skin after being exposed to UVA.
  • the anti-photoaging agent of the present embodiment contains a compound represented by the formula (I) having a solubility in an aqueous solvent or a salt thereof, it can be produced without using a hydrophobic solvent, and variously depending on applications.
  • the dosage form can be changed.
  • compositions of the anti-photoaging agent of this embodiment include the compositions of Composition Examples 1 to 8 shown in Tables 1 to 5.
  • Example> “1. Collecting microorganisms” Strawberry leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground solution containing microorganisms.
  • each bacterial cell separated and recovered from the microorganisms collected from the plant in this manner was examined for the presence or absence of ultraviolet absorbing ability by absorptiometry.
  • the bacterial cell having the highest ultraviolet absorption ability was identified.
  • the bacterial cells were identified based on the base sequence of the rRNA gene. As a result, the cells were of the genus Methylobacterium. This microbial cell was named WI-182 strain.
  • agar plate media from which the cells of the genus Methylobacterium (WI-182 strain) were obtained were prepared and suspended in each agar plate medium by adding 10 ml of sterile purified water. Obtained. Suspensions obtained from two agar plate media were mixed to prepare a mixed solution, each 2 ml was added to seven 100 ml PD media (manufactured by Difco), and cultured at 25 ° C. for 90 hours under aerobic conditions. 600 ml was collected from a culture cultured in 7 PD media and added to 30 L of PD media (Difco). Then, 15 L / min of air was supplied to the liquid medium while stirring the liquid medium containing the bacterial cells using a stirrer at a rotational speed of 400 rpm, and cultured at 25 ° C. for 7 days.
  • the extract was purified by cation exchange chromatography using an alkaline solution.
  • an extract was added to methanol and dissolved to obtain a methanol solution.
  • the methanol solution was passed through a column (PoraPak Rxn CX manufactured by WATERS) to adsorb the extract on the ion exchange resin.
  • the adsorbed extract components dissolved in the alkaline solution were eluted to obtain an eluate. Thereafter, the eluate was concentrated on a rotary evaporator, frozen and vacuum dried to recover 1.36 g of a tan compound as a crude product.
  • FIG. 1 is a graph showing the relationship between the ultraviolet absorption intensity and elution time of the crude product obtained in the examples.
  • the crude product obtained in the examples had elution times of 3.3 min, 4.3 min, 5.2 min, 16.8 min, and 17.6 min when measured at a UV measurement wavelength of 360 nm.
  • a major peak was detected at the position. It was confirmed that the peaks at elution times of 4.3 min, 16.8 min, and 17.6 min show high absorption peaks in the wavelength region of 350 to 360 nm.
  • Example 1 Normal human fibroblasts (NB1RGB cells) manufactured by RIKEN BioResource Center are seeded in a plastic petri dish at a seeding density of 10,000 cells / cm 2 , and Sigma Dulbecco's Modified Eagle (DMEM) medium containing 10% fetal bovine serum Incubated for 24 hours. Subsequently, the NB1RGB cells were irradiated with 15 J / cm 2 of UVA using a UVA irradiation apparatus manufactured by UVP. Thereafter, the purified product dissolved in 60% ethanol is added to a plastic petri dish so that the concentration of the purified product contained in the culture solution in the DMEM medium is 0.01% by mass, and further cultured for 24 hours. Sample 1 was obtained.
  • DMEM Sigma Dulbecco's Modified Eagle
  • Sample 2 After irradiation with UVA, Sample 2 was obtained in the same manner as Sample 1, except that 60% ethanol was added to the plastic petri dish instead of the purified product dissolved in 60% ethanol.
  • Sample 3 Sample 3 was obtained in the same manner as Sample 2, except that UVA was not irradiated.
  • RNA ribonucleic acid
  • cDNA complementary deoxyribonucleic acid
  • quantitative real-time PCR polymerase chain reaction
  • the expression level of the internal standard gene in the NB1RGB cells of Sample 1 to Sample 3 was quantified in the same manner as the expression levels of the collagen gene, elastin gene, and HAS3 gene in the NB1RGB cells of Sample 1 to Sample 3.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • GAPDH GAPDH (ID: HA067812) manufactured by Takara Bio Inc. was used.
  • GAPDH As a collagen gene amplification primer, COLA1 (ID: HA181818) manufactured by Takara Bio Inc. is used, and as an elastin gene amplification primer, ELA (ID: CH000581) manufactured by Takara Bio Inc. is used, and the HAS3 gene is used.
  • ELA ID: CH000581
  • HAS3 gene As an amplification primer, (ID: HA095624) manufactured by Takara Bio Inc. was used.
  • MMP-1 gene expression suppression effect The purified metal matrix protease-1 (MMP-1) gene expression inhibitory effect of the purified product was examined by the method described below.
  • RNA ribonucleic acid
  • cDNA complementary deoxyribonucleic acid
  • quantitative real-time PCR polymerase chain reaction
  • the MMP-1 gene caused by UVA irradiation was compared to the sample 2 in which the purified product was not added. Is expressed less.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided is an anti-photoaging agent containing a compound represented by formula (I) or a salt thereof. (In formula (I), R1 and R2 are a hydrogen atom, C1-5 linear or branched alkyl group, C1-5 linear or branched alkoxy group, or C1-5 linear or branched alkenyl group. R3 is a hydrogen atom, C1-5 linear or branched alkyl group, or C1-5 linear or branched alkenyl group. X is a hydrogen atom or a linear or branched sugar chain having 1-10 sugar molecules.)

Description

抗光老化剤Anti-photoaging agent
 本発明は、抗光老化剤に関する。
 本出願は、2016年3月31日に日本に出願された特願2016-073713に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an anti-photoaging agent.
This application claims priority based on Japanese Patent Application No. 2016-073713 filed in Japan on March 31, 2016, the contents of which are incorporated herein by reference.
 太陽光線は、人間の皮膚に様々な影響を及ぼすことが知られている。太陽光線には、様々な波長の光が混在している。太陽光線のうち、皮膚に悪影響を及ぼすのは、紫外線A(UVA)、紫外線B(UVB)、及び近赤外線といわれている。
 UVA(波長320nm~400nm)は、UVB(波長280nm~320nm)と比べてエネルギー量が低いものの、皮膚の深部にある真皮まで到達する。長期間にわたる皮膚へのUVAの暴露は、しわや弾力性の低下といった光老化を引き起こす原因となる。
Sun rays are known to have various effects on human skin. Sunlight contains light of various wavelengths. Of the sun rays, it is said that ultraviolet rays A (UVA), ultraviolet rays B (UVB), and near infrared rays have an adverse effect on the skin.
Although UVA (wavelength 320 nm to 400 nm) has a lower energy amount than UVB (wavelength 280 nm to 320 nm), it reaches the dermis deep in the skin. Long-term skin exposure to UVA causes photoaging such as wrinkles and reduced elasticity.
 より詳細には、皮膚にUVAを照射すると、表皮の内側の真皮において、コラーゲン分解酵素であるマトリックスメタロプロテアーゼ(MMP)が発現亢進する。このため、真皮を形成しているコラーゲンの分解が進む。また、皮膚にUVAを照射すると、コラーゲンとともに真皮を形成しているマトリックス成分であるエラスチンおよびヒアルロン酸も減少する(例えば、非特許文献1参照。)。マトリックス成分の減少は、しわや皮膚の弾力性の低下の原因となる。 More specifically, when the skin is irradiated with UVA, expression of matrix metalloproteinase (MMP), which is a collagenolytic enzyme, is increased in the dermis inside the epidermis. For this reason, degradation of collagen forming the dermis proceeds. Moreover, when UVA is irradiated to the skin, elastin and hyaluronic acid, which are matrix components that form the dermis together with collagen, are also reduced (see, for example, Non-Patent Document 1). A decrease in matrix components causes a decrease in wrinkles and skin elasticity.
 また、UVAは、UVBが透過し得ないガラスをも透過する。このため、UVAは、室内にいる人間の皮膚にも到達する。これらのことにより、近年、UVAに起因する皮膚への悪影響を抑制することの重要性が高まっている。 Also, UVA transmits through glass that UVB cannot transmit. For this reason, UVA also reaches the human skin in the room. For these reasons, in recent years, the importance of suppressing adverse effects on the skin caused by UVA has increased.
 従来、紫外線による皮膚への悪影響を回避するために、紫外線遮蔽剤を含む皮膚外用剤が用いられている。紫外線遮蔽剤としては、有機系または無機系の種々の紫外線吸収剤および/または紫外線散乱剤が知られている。
 例えば、特許文献1には、シリカ、アルミナ、またはアルミナ/シリカにより被覆された酸化チタン粒子および酸化亜鉛粒子が併用配合されてなる化粧料が記載されている。
 また、特許文献2には、植物生息微生物であるメチロバクテリウム属の細菌から抽出した紫外線吸収成分を含む紫外線吸収剤組成物が記載されている。
Conventionally, an external preparation for skin containing an ultraviolet shielding agent has been used in order to avoid the adverse effects of ultraviolet rays on the skin. As the ultraviolet shielding agent, various organic or inorganic ultraviolet absorbers and / or ultraviolet scattering agents are known.
For example, Patent Document 1 describes a cosmetic comprising a combination of titanium oxide particles and zinc oxide particles coated with silica, alumina, or alumina / silica.
Patent Document 2 describes an ultraviolet absorbent composition containing an ultraviolet absorbing component extracted from a bacterium belonging to the genus Methylobacterium which is a plant-inhabiting microorganism.
特開2002-154915号公報JP 2002-154915 A 特開2013-127027号公報JP 2013-127027 A
 従来、皮膚をUVAから遮蔽する機能を有し、かつ皮膚をUVAに暴露することによって起こる皮膚の光老化を生理的に抑制する抗光老化剤はなかった。
 本発明は、上記事情に鑑みてなされたものであり、皮膚をUVAに暴露することによって起こる皮膚の光老化を抑制する抗光老化剤を提供することを課題とする。
Conventionally, there has been no anti-photoaging agent that has a function of shielding the skin from UVA and physiologically suppresses photoaging of the skin caused by exposing the skin to UVA.
This invention is made | formed in view of the said situation, and makes it a subject to provide the anti-photoaging agent which suppresses the photoaging of the skin which arises by exposing skin to UVA.
 本発明者らは、上記課題を解決するために、UVA吸収能を有する下記式(I)で表わされる化合物に着目し、鋭意検討した。その結果、本発明者らは、式(I)で表わされる化合物が、皮膚をUVAに暴露することによって起こる皮膚の光老化を抑制する作用を有することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の構成を採用する。
In order to solve the above-mentioned problems, the present inventors paid attention to a compound represented by the following formula (I) having UVA absorption ability, and conducted intensive studies. As a result, the present inventors have found that the compound represented by the formula (I) has an action of suppressing the photoaging of the skin caused by exposing the skin to UVA, and completed the present invention. .
That is, the present invention adopts the following configuration.
[1] 式(I)で表わされる化合物またはその塩を含有する抗光老化剤。 [1] An anti-photoaging agent containing a compound represented by the formula (I) or a salt thereof.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(I)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖を表す。) (In Formula (I), R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms. Represents an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkenyl group having 1 to 5 carbon atoms, wherein R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.)
[2] 式(I)で表わされる化合物またはその塩が、式(I)におけるRおよびRがメチル基であり、RおよびXが水素原子である式(II)で表わされる化合物またはその塩である[1]に記載の抗光老化剤。 [2] A compound represented by the formula (I) or a salt thereof is a compound represented by the formula (II) in which R 1 and R 2 in the formula (I) are methyl groups, and R 3 and X are hydrogen atoms. The anti-photoaging agent according to [1], which is a salt thereof.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[3] 式(I)において、RおよびRがメチル基であり、Rが水素原子であり、Xが糖分子数5の直鎖状の糖鎖である[1]に記載の抗光老化剤。 [3] In Formula (I), R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules. Photoaging agent.
 本発明の抗光老化剤は、式(I)で表わされる化合物またはその塩を含有する。このことによって、本発明の抗光老化剤を塗布した皮膚がUVAに暴露された場合に、マトリックス成分であるコラーゲン、エラスチン、ヒアルロン酸の遺伝子発現を促進するとともに、コラーゲン分解酵素であるマトリックスメタロプロテアーゼ(MMP)を産生する遺伝子の発現を抑制する。このため、本発明の抗光老化剤を塗布した皮膚では、UVAに暴露された場合に、真皮におけるマトリックス成分の減少が生じにくく、マトリックス成分の減少に伴うしわや弾力性の低下が抑制され、光老化が防止される。 The anti-photoaging agent of the present invention contains a compound represented by the formula (I) or a salt thereof. As a result, when the skin coated with the anti-photoaging agent of the present invention is exposed to UVA, the gene expression of collagen, elastin, and hyaluronic acid as matrix components is promoted and the matrix metalloproteinase as a collagen degrading enzyme is promoted. Suppresses the expression of a gene that produces (MMP). For this reason, in the skin to which the anti-photoaging agent of the present invention is applied, when exposed to UVA, the matrix component in the dermis is less likely to decrease, and wrinkles and a decrease in elasticity associated with the decrease in the matrix component are suppressed. Photoaging is prevented.
 また、本発明の抗光老化剤は、UVA吸収能を有する。よって、本発明の抗光老化剤は、これを塗布した皮膚がUVAに暴露された場合に、皮膚をUVAから遮蔽し、UVAに暴露されることによる皮膚の光老化を効果的に抑制する。 Moreover, the anti-photoaging agent of the present invention has UVA absorption ability. Therefore, the anti-photoaging agent of this invention shields skin from UVA when the skin which apply | coated this is exposed to UVA, and suppresses the photoaging of the skin by exposure to UVA effectively.
実施例で得られた粗精製物のHPLC解析における紫外線吸収強度と溶出時間との関係を示したグラフである。It is the graph which showed the relationship between the ultraviolet absorption intensity and the elution time in the HPLC analysis of the crudely purified product obtained in the examples.
 以下、本発明について詳細に説明する。
「抗光老化剤」
 本実施形態の抗光老化剤は、式(I)で表わされる化合物またはその塩を有効成分として含有する。
Hereinafter, the present invention will be described in detail.
"Anti-photoaging agent"
The anti-photoaging agent of this embodiment contains a compound represented by the formula (I) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(I)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖を表す。) (In Formula (I), R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms. Represents an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkenyl group having 1 to 5 carbon atoms, wherein R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.)
 式(I)において、Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、炭素数1~5の直鎖状のアルキル基、メトキシ基、ビニル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましく、メチル基であることが最も好ましい。 In the formula (I), R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. A linear or branched alkenyl group, preferably a linear alkyl group having 1 to 5 carbon atoms, a methoxy group, or a vinyl group, and more preferably an alkyl group having 1 to 2 carbon atoms. Preferably, it is a methyl group.
 Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、炭素数1~5の直鎖状のアルキル基、メトキシ基であることが好ましく、炭素数1~2のアルキル基であることがより好ましく、メチル基であることが最も好ましい。
 なお、Rが炭素数1~5の直鎖状または分岐状のアルケニル基である場合、-CH-C基であると、紫外線吸収能に関係のある電子の共役に対する影響が少ないため好ましい。
R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a linear or branched group having 1 to 5 carbon atoms. The alkenyl group is preferably a straight-chain alkyl group having 1 to 5 carbon atoms or a methoxy group, more preferably an alkyl group having 1 to 2 carbon atoms, and most preferably a methyl group. preferable.
In the case where R 2 is a linear or branched alkenyl group having 1 to 5 carbon atoms, if it is a —CH 2 —C 4 H 7 group, it has an influence on the conjugation of electrons related to the ultraviolet absorption ability. Since there are few, it is preferable.
 Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、水素原子または炭素数1~2アルキル基であることが好ましく、水素原子またはメチル基であることがより好ましく、水素原子であることが最も好ましい。 R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkenyl group having 1 to 5 carbon atoms, a hydrogen atom or an alkyl having 1 to 2 carbon atoms It is preferably a group, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
 式(I)において、Rが水素原子である場合、式(I)で表わされる化合物が有しているカルボキシル基は、塩を形成していてもよい。化合物の有しているカルボキシル基が塩を形成している場合、カルボン酸アルカリ金属塩またはカルボン酸アミン塩であることが好ましく、カルボン酸アルカリ金属塩であることがより好ましく、カルボン酸ナトリウム塩であることが最も好ましい。 In formula (I), when R 3 is a hydrogen atom, the carboxyl group possessed by the compound represented by formula (I) may form a salt. When the carboxyl group of the compound forms a salt, it is preferably a carboxylic acid alkali metal salt or a carboxylic acid amine salt, more preferably a carboxylic acid alkali metal salt, and a carboxylic acid sodium salt. Most preferably it is.
 Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖であり、水素原子または糖分子数1~10の直鎖状の糖鎖であることが好ましく、水素原子または糖分子数3~8の直鎖状の糖鎖であることがより好ましく、水素原子または糖分子数5の直鎖状の糖鎖であることがさらに好ましい。 X is a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules, and is preferably a hydrogen atom or a linear sugar chain having 1 to 10 sugar molecules. A straight-chain sugar chain having 3 to 8 sugar molecules is more preferred, and a straight-chain sugar chain having 5 sugar molecules or hydrogen atoms is more preferred.
 式(I)で表わされる化合物またはその塩は、特に、RおよびRがメチル基であり、RおよびXが水素原子である式(II)で表される化合物またはその塩、またはRおよびRがメチル基であり、Rが水素原子であり、Xが糖分子数5の直鎖状の糖鎖である化合物またはその塩であることが好ましい。糖分子はピラノースでもフラノースでもよいが、ピラノースであることが好ましい。 The compound represented by the formula (I) or a salt thereof is particularly a compound represented by the formula (II) or a salt thereof, wherein R 1 and R 2 are methyl groups, and R 3 and X are hydrogen atoms, or R It is preferable that 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof. The sugar molecule may be pyranose or furanose, but is preferably pyranose.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 RおよびRがメチル基であり、Rが水素原子であり、Xが糖分子数5の直鎖状の糖鎖である化合物またはその塩は、Xが互いに1,4-グリコシド結合した5つの六炭糖(ピラノース)からなる糖鎖である式(III)で表される化合物またはその塩、Xが互いに1,6-グリコシド結合した5つの六炭糖(ピラノース)からなる糖鎖である式(IV)で表される化合物またはその塩、式(I)におけるXが5つの六炭糖(ピラノース)からなる直鎖状の糖鎖であって六炭糖同士が1,4-グリコシド結合している部分と1,6-グリコシド結合している部分とが混在している糖鎖である化合物またはその塩であることが好ましい。式(III)で表される化合物またはその塩、式(IV)で表される化合物またはその塩、式(I)におけるXが5つの六炭糖(ピラノース)からなる直鎖状の糖鎖であって六炭糖同士が1,4-グリコシド結合している部分と1,6-グリコシド結合している部分とが混在している糖鎖である化合物またはその塩は、これらの中から選ばれる2種以上が任意の割合で混合された混合物として存在していてもよい。 R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules, or a salt thereof, X is 1,4-glycosidically bonded to each other A compound represented by the formula (III), which is a sugar chain consisting of five hexoses (pyranose) or a salt thereof, and a sugar chain consisting of five hexoses (pyranose) in which X is 1,6-glycosidically bonded to each other. A compound represented by the formula (IV) or a salt thereof, wherein X in the formula (I) is a linear sugar chain composed of five hexoses (pyranose), and the hexoses are 1,4-glycosides A compound or a salt thereof which is a sugar chain in which a bonded part and a 1,6-glycoside bonded part are mixed is preferable. A compound represented by formula (III) or a salt thereof, a compound represented by formula (IV) or a salt thereof, and X in formula (I) is a linear sugar chain composed of five hexoses (pyranose) A compound or a salt thereof, which is a sugar chain in which a portion where hexoses are bonded with 1,4-glycosides and a portion where 1,6-glycosides are bonded, is selected from these. Two or more kinds may exist as a mixture in which an arbitrary ratio is mixed.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(II)で表わされる化合物またはその塩は、式(V)で表わされる平衡状態の分子内塩として存在しているものであってもよい。より詳細には、式(V)では、式(II)で表わされる化合物またはその塩における炭素原子と二重結合している窒素原子から別の窒素原子との間の構造(N=C-C=C-N)が、平衡状態(N=C-C=C-N⇔N-C=C-C=N)となっている。 The compound represented by the formula (II) or a salt thereof may exist as an inner salt in an equilibrium state represented by the formula (V). More specifically, in the formula (V), a structure (N═C—C) between a nitrogen atom double-bonded to a carbon atom and another nitrogen atom in the compound represented by the formula (II) or a salt thereof. = CN) is in an equilibrium state (N + = C—C = CN⇔N—C = C—C = N + ).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(I)、式(III)、式(IV)で表される化合物またはその塩においても、式中における(N=C-C=C-N)の部分が、平衡状態(N=C-C=C-N⇔N-C=C-C=N(式(V)参照))の分子内塩として存在していてもよい。
 また、式(I)で表される化合物またはその塩には、複数の立体異性体が存在する。式(I)で表される化合物またはその塩には、これらすべての立体異性体が包含される。
Also in the compound represented by the formula (I), the formula (III), the formula (IV) or a salt thereof, the (N═C—C═CN) moiety in the formula is in an equilibrium state (N + = C It may be present as an inner salt of —C═CN—N—C═C—C═N + (see formula (V)).
In addition, the compound represented by the formula (I) or a salt thereof has a plurality of stereoisomers. The compound represented by the formula (I) or a salt thereof includes all these stereoisomers.
 本実施形態の抗光老化剤に含まれる化合物またはその塩は、式(I)で表わされる構造を有する。このため、水系溶媒に対する溶解性を有し、皮膚をUVAに暴露することによって起こる皮膚の光老化を抑制する機能と、UVA領域での紫外線を吸収する機能とに優れる。
 式(I)で表わされる化合物またはその塩における紫外線吸収能は、式(I)における共役系(炭素原子と二重結合している窒素原子からRの結合した窒素原子との間の構造(N=C-C=C-N))が寄与するものと推定される。詳細なメカニズムは不明だが、pH等を調整することにより、式(I)における(N=C-C=C-N)の部分が平衡状態(N=C-C=C-N⇔N-C=C-C=N(式(V)参照))を形成し、電子の共役に関与して、紫外線吸収能を示すものと考えられる。
The compound or salt thereof contained in the anti-photoaging agent of this embodiment has a structure represented by the formula (I). For this reason, it has the solubility with respect to an aqueous solvent, and is excellent in the function which suppresses the photoaging of the skin which arises by exposing skin to UVA, and the function which absorbs the ultraviolet-ray in a UVA area | region.
The ultraviolet absorptivity of the compound represented by the formula (I) or a salt thereof is determined by the conjugated system in the formula (I) (the structure between the nitrogen atom double-bonded to the carbon atom and the nitrogen atom bonded to R 1 ( N = C—C = CN)) is presumed to contribute. Although the detailed mechanism is unknown, by adjusting pH or the like, the part of (N = C—C = C—N) in the formula (I) is in an equilibrium state (N + = C—C = C−N⇔N− C = C—C═N + (see formula (V))), and is considered to exhibit ultraviolet absorption ability by participating in electron conjugation.
 なお、式(I)で表わされる化合物またはその塩では、R、R、R、Xはいずれも上述した電子の共役に影響を与えない位置に配置されている。このため、式(I)で表わされる化合物またはその塩におけるR、R、R、Xが、上述した如何なるものであっても同様に優れた紫外線吸収能が得られる。 In the compound represented by formula (I) or a salt thereof, R 1 , R 2 , R 3 , and X are all arranged at positions that do not affect the above-described electron conjugation. For this reason, the excellent ultraviolet absorptivity is similarly obtained regardless of R 1 , R 2 , R 3 , and X in the compound represented by the formula (I) or a salt thereof.
「化合物またはその塩の製造方法」
 本実施形態の抗光老化剤に含まれる式(I)で表される化合物またはその塩は、例えば、以下に示す製造方法により製造できる。
 すなわち、植物に生育する微生物を培養して菌体を得る工程(第1工程)と、菌体を溶媒で抽出して抽出物を得る工程(第2工程)と、抽出物から式(I)で表される化合物またはその塩を回収する工程(第3工程)とを行う。
"Method for producing compound or salt thereof"
The compound represented by the formula (I) or a salt thereof contained in the anti-photoaging agent of the present embodiment can be produced, for example, by the production method shown below.
That is, a step of culturing microorganisms growing on a plant to obtain microbial cells (first step), a step of extracting microbial cells with a solvent to obtain an extract (second step), and formula (I) from the extract And a step (third step) of recovering the compound represented by the formula:
(第1工程)
 本実施形態において培養する微生物は、植物に成育しているものである。
 微生物を採取する植物の種類は、特に限定されるものではない。植物の種類としては、例えば、コムギ穂、イチゴ葉、月見草の花弁、イネ葉鞘などが挙げられる。これらの植物は、式(I)で表わされる化合物またはその塩を生成するメチロバクテリウム属の微生物が多く生育しているため好ましい。
 植物に生育する微生物を植物から採取する方法としては、例えば、植物をリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得る方法などが挙げられる。
(First step)
The microorganisms cultured in this embodiment are grown on plants.
The type of plant from which the microorganism is collected is not particularly limited. Examples of plant types include wheat ears, strawberry leaves, evening primrose petals, and rice leaf sheaths. These plants are preferable because many microorganisms of the genus Methylobacterium that produce the compound represented by the formula (I) or a salt thereof are grown.
Examples of the method for collecting microorganisms that grow on the plant from the plant include a method in which the plant is immersed in a phosphate buffer and ground in a mortar to obtain a ground solution containing the microorganism.
 微生物の培養方法としては、従来公知の方法を用いることができる。具体的には、微生物の培養方法として、液体培養法を用いてもよいし、固体培養法を用いてもよいし、液体培養法および固体培養法を用いてもよく、培養する菌体の種類等に応じて適宜決定できる。
 微生物の培養に用いる培地としては、例えば、標準寒天培地、L(Lennox)培地、LB(Luria Bertani)培地、NB(Nutrient Broth)培地、PD(ポテトデキストロース)培地、PPD(ポテト・ぺプトン・デキストロース)培地、TB(Terrific broth)培地などを使用できる。
A conventionally known method can be used as a method for culturing microorganisms. Specifically, as a method for culturing microorganisms, a liquid culture method, a solid culture method, a liquid culture method or a solid culture method may be used, and the types of cells to be cultured. It can be appropriately determined according to the like.
Examples of the medium used for culturing the microorganism include standard agar medium, L (Lennox) medium, LB (Luria Bertani) medium, NB (Nutrient Broth) medium, PD (potato dextrose) medium, PPD (potato peptone dextrose). ) Medium, TB (Terrific broth) medium, etc. can be used.
 本実施形態では、微生物の培養方法の一例として、以下に示す方法を用いる場合を例に挙げて説明する。
 まず、植物から採取した微生物を固体培養法により培養し、植物から採取した微生物中に含まれる各菌体を分離回収する。具体的には、上記の方法により植物から採取した微生物を含む磨砕液を、固体培地の表面に塗布(塗抹)して培養し、コロニーを形成させる。固体培地を用いる場合における微生物の培養条件としては、従来公知の条件を採用できる。具体的には、例えば、25℃で3~7日間、好気条件とすることができる。
In the present embodiment, as an example of a microorganism culturing method, a case where the following method is used will be described as an example.
First, a microorganism collected from a plant is cultured by a solid culture method, and each microbial cell contained in the microorganism collected from the plant is separated and recovered. Specifically, a grinding liquid containing microorganisms collected from a plant by the above method is applied (smeared) on the surface of a solid medium and cultured to form colonies. Conventionally known conditions can be adopted as culture conditions for microorganisms in the case of using a solid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
 次いで、固体培地の表面に出現した単コロニーを掻き取る方法により、単コロニーを形成している菌体を回収し、植物から採取した微生物中に含まれる各菌体を分離する。
 固体培地の表面に出現した単コロニーから回収した各菌体は、必要に応じて、各菌体毎に、新たな固体培地の表面に塗布して培養(純粋培養)し、回収してもよい。
Next, the cells forming single colonies are collected by a method of scraping the single colonies appearing on the surface of the solid medium, and the individual cells contained in the microorganisms collected from the plant are separated.
Each bacterial cell recovered from a single colony that appears on the surface of the solid medium may be applied to the surface of a new solid medium and cultured (pure culture) for each bacterial cell, if necessary, and recovered. .
 次に、このようにして植物から採取した微生物中から分離回収した各菌体について、分光測色方法、吸光光度法などにより、紫外線吸収能の有無を調べる。
 次いで、分離回収した各菌体のうち紫外線吸収能を有する菌体を同定する。菌体の同定方法としては、例えば、rRNA遺伝子の塩基配列に基づき同定する方法など、従来公知の方法を用いることができる。
Next, the presence or absence of ultraviolet absorbing ability is examined by spectrocolorimetric method, absorptiometric method, etc. for each bacterial cell separated and recovered from the microorganisms collected from the plant in this way.
Next, among the separated and recovered cells, cells having ultraviolet absorbing ability are identified. As a method for identifying a bacterial cell, a conventionally known method such as a method of identifying based on the base sequence of an rRNA gene can be used.
 本実施形態では、同定した菌体のうち、メチロバクテリウム属の菌体を、液体培養法により培養する。メチロバクテリウム属の微生物は、式(I)で表される化合物またはその塩を生成する。メチロバクテリウム属に属する微生物の中でも特に、後述するWI-182株(菌株名)、W-213株(菌株名)、f11株(菌株名)、24N-25株(菌株名)を用いることが好ましい。これらの菌株は、植物に成育する微生物であり、培養により増やすことができ、式(I)で表される化合物またはその塩を効率よく生成できる。特に、WI-182株(菌株名)は、培養により容易に増やすことができ、好ましい。 In this embodiment, among the identified bacterial cells, the bacterial cells of the genus Methylobacterium are cultured by a liquid culture method. A microorganism belonging to the genus Methylobacterium produces a compound represented by the formula (I) or a salt thereof. Among the microorganisms belonging to the genus Methylobacterium, the WI-182 strain (strain name), the W-213 strain (strain name), the f11 strain (strain name), and the 24N-25 strain (strain name) described later should be used. Is preferred. These strains are microorganisms that grow on plants, can be increased by culture, and can efficiently produce the compound represented by the formula (I) or a salt thereof. In particular, WI-182 strain (strain name) is preferable because it can be easily increased by culture.
 次に、植物から採取した微生物中から上記の方法により分離回収したメチロバクテリウム属の菌体を、液体培養法により培養する。植物から採取した微生物から分離回収した菌体中に、複数種のメチロバクテリウム属の菌体が含まれている場合、複数種のメチロバクテリウム属の菌体から紫外線吸収能の最も高い菌体を選択して、液体培養法により培養することが好ましい。
 本実施形態では、植物から採取した微生物を個体培養法により培養・分離回収し、得られた各菌体のうち、紫外線吸収能を有するメチロバクテリウム属の菌体のみを液体培養法により培養する。このため、植物から採取した微生物中に含まれる紫外線吸収能を有する菌体を、効率よく増やすことができる。
Next, the cells of the genus Methylobacterium separated and recovered from the microorganisms collected from the plant by the above method are cultured by a liquid culture method. When the cells isolated from the microorganisms collected from the plant contain multiple types of Methylobacterium, the highest UV-absorbing ability from the multiple types of Methylobacterium It is preferable to select cells and culture them by a liquid culture method.
In the present embodiment, microorganisms collected from plants are cultured and separated and collected by an individual culture method, and among the obtained bacterial cells, only the cells of the genus Methylobacterium having ultraviolet absorption ability are cultured by a liquid culture method. To do. For this reason, the microbial cell which has the ultraviolet absorption ability contained in the microorganisms extract | collected from the plant can be increased efficiently.
 液体培地を用いる場合における菌体の培養条件としては、従来公知の条件を採用できる。具体的には、例えば、25℃で3~7日間、好気条件とすることができる。
 液体培養法では、菌体を効率よく増やすために、菌体を含む液体培地を撹拌したり振盪したり、菌体を含む液体培地に空気を供給したりしながら培養してもよい。
 液体培地を用いて培養して得られた菌体は、例えば、遠心分離法、濾過法などを用いて回収できる。液体培地から回収した菌体は、凍結し、真空乾燥してから、次の工程において溶媒で抽出してもよいし、回収した状態のまま、次の工程において溶媒で抽出してもよい。
Conventionally known conditions can be employed as the culture conditions for the bacterial cells when using a liquid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
In the liquid culture method, in order to increase the number of cells efficiently, the liquid medium containing the cells may be cultured while being stirred or shaken, or air is supplied to the liquid medium containing the cells.
Bacteria obtained by culturing using a liquid medium can be collected using, for example, a centrifugal separation method, a filtration method, or the like. The cells recovered from the liquid medium may be frozen and vacuum dried, and then extracted with a solvent in the next step, or may be extracted with a solvent in the next step while being recovered.
 また、液体培地で培養した菌体は、式(I)で表される化合物またはその塩の生成量を十分に確保するために、必要に応じて、新たな液体培地を用いてさらに培養してから回収してもよい。 In addition, the cells cultured in a liquid medium can be further cultured using a new liquid medium as necessary in order to secure a sufficient amount of the compound represented by formula (I) or a salt thereof. May be recovered from.
(第2工程)
 次に、第1工程で培養して回収したメチロバクテリウム属の菌体を、溶媒で抽出して抽出物を得る。抽出物を得る方法としては、例えば、以下に示す方法が挙げられる。まず、菌体に溶媒を加えて撹拌し、菌体から溶媒中に式(I)で表される化合物またはその塩を抽出する。次いで、抽出後の菌体を含む溶媒を濾過することにより、濾過液として抽出液を得る。その後、抽出液を濃縮し、凍結、真空乾燥させることにより、抽出物が得られる。
 本実施形態において、菌体の抽出に用いる溶媒としては、例えば、アルコール、またはアルコールと水との混合溶液などが挙げられる。これらの中でも、溶媒として、メタノール、エタノール、イソプロピルアルコール、またはこれらと水との混合溶液を用いることが好ましく、メタノールと水との混合溶液を用いることがより好ましい。
(Second step)
Next, the cells of the genus Methylobacterium collected by culturing in the first step are extracted with a solvent to obtain an extract. Examples of the method for obtaining the extract include the following methods. First, a solvent is added to the cells and stirred, and the compound represented by the formula (I) or a salt thereof is extracted from the cells in the solvent. Next, the solvent containing the cells after extraction is filtered to obtain an extract as a filtrate. Thereafter, the extract is concentrated, frozen and vacuum dried to obtain an extract.
In the present embodiment, examples of the solvent used for bacterial cell extraction include alcohol or a mixed solution of alcohol and water. Among these, as a solvent, it is preferable to use methanol, ethanol, isopropyl alcohol, or a mixed solution of these and water, and it is more preferable to use a mixed solution of methanol and water.
(第3工程)
 次に、第2工程で得た抽出物から目的物である式(I)で表される化合物またはその塩を回収する工程を行う。
 本実施形態では、抽出物から目的物を回収する工程として、アルカリ処理と精製処理とを行う。アルカリ処理は、精製処理の前に行ってもよいし、精製処理の後に行ってもよいし、精製処理とともに行ってもよい。
(Third step)
Next, a step of recovering the compound represented by the formula (I) or a salt thereof, which is the target product, from the extract obtained in the second step.
In the present embodiment, alkali treatment and purification treatment are performed as a step of recovering the target product from the extract. The alkali treatment may be performed before the purification treatment, after the purification treatment, or may be performed together with the purification treatment.
 アルカリ処理は、抽出物とアルカリ性溶液とを接触させて、抽出物からさらに目的物を抽出することにより実施する。アルカリ性溶液のpHは、好ましくは9.0~14.0、より好ましくは10.0~13.0、さらに好ましくは11.0~12.0である。アルカリ性溶液としては、例えば、アンモニア水とメタノールとの混合溶液が挙げられる。 Alkali treatment is carried out by bringing the extract into contact with an alkaline solution and further extracting the target product from the extract. The pH of the alkaline solution is preferably 9.0 to 14.0, more preferably 10.0 to 13.0, still more preferably 11.0 to 12.0. Examples of the alkaline solution include a mixed solution of aqueous ammonia and methanol.
 精製処理の方法としては、従来公知の方法を用いることができ、例えば、アニオン交換クロマトグラフィー法、カチオン交換クロマトグラフィー法、疎水性クロマトグラフィー法、アフィニティークロマトグラフィー法、逆相クロマトグラフィー法などが挙げられる。精製処理は、上記のクロマトグラフィー法を混合した混合モードクロマトグラフィー法により行ってもよいし、異なる種類のクロマトグラフィー法を複数回実施する方法により行ってもよい。精製処理の方法としては、上記の中でも特に、カラムとしてWATERS製のPoraPak Rxn CX等を用いるカチオン交換クロマトグラフィー法、カラムとしてクロマニックテクノロジーズ製のSunrise C28等を用いる疎水性クロマトグラフィー法が好ましい。 As a purification method, a conventionally known method can be used, and examples thereof include anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography. It is done. The purification treatment may be performed by a mixed mode chromatography method in which the above chromatography methods are mixed, or may be performed by a method in which different types of chromatography methods are performed a plurality of times. Among the above-mentioned purification methods, the cation exchange chromatography method using PORAPAK Rxn CX manufactured by WATERS as the column and the hydrophobic chromatography method using Sunrise C28 manufactured by CHROMANIC TECHNOLOGIES are particularly preferable.
 精製処理とともにアルカリ処理を行う方法としては、例えば、前述のクロマトグラフィー法を前述のアルカリ性溶液を用いて実施する方法が挙げられる。具体的には、カラムとしてWATERS製のPoraPak Rxn CXを用いるカチオン交換クロマトグラフィー法を用い、アルカリ性溶液であるアンモニア水とメタノールとの混合溶液で溶出した成分を回収する方法を用いることが好ましい。 Examples of the method of performing the alkali treatment together with the purification treatment include a method of performing the above-described chromatography method using the above-mentioned alkaline solution. Specifically, it is preferable to use a cation exchange chromatography method using PoraPak Rxn CX manufactured by WATERS as a column and recovering components eluted with a mixed solution of aqueous ammonia and methanol, which is an alkaline solution.
 以上の工程を行うことにより、目的物である式(I)で表される化合物またはその塩が得られる。 By performing the above steps, the compound represented by the formula (I) or a salt thereof, which is the target product, is obtained.
 本実施形態の製造方法により回収した目的物は、LC/MS(液体クロマトグラフィー質量分析)解析、NMR(核磁気共鳴)解析、X線結晶構造解析などを用いて、式(I)で表される化合物であることを確認できる。 The target product recovered by the production method of the present embodiment is represented by the formula (I) using LC / MS (liquid chromatography mass spectrometry) analysis, NMR (nuclear magnetic resonance) analysis, X-ray crystal structure analysis, and the like. Can be confirmed.
 LC/MS解析は、例えば、以下に示す条件で実施できる。
 LC(液体クロマトグラフィー)としては、株式会社島津製作所製のLCSolution、PDA検出器(SPD-M10A)を用い、カラム温度40℃、流速1.0ml/minm、移動相として、ギ酸アンモニウム、ギ酸水溶液、ギ酸メタノール溶液から選ばれるいずれか1種以上を用いて実施できる。MS(質量分析)は、ESI(エレクトロスプレーイオン化)イオントラップ法にしたがって実施できる。
 NMR解析は、例えば、BRUKER BIOSPIN製のAVANCE500を使用して、重水中で実施できる。
The LC / MS analysis can be performed, for example, under the following conditions.
As LC (liquid chromatography), an LCSolution manufactured by Shimadzu Corporation, a PDA detector (SPD-M10A), a column temperature of 40 ° C., a flow rate of 1.0 ml / minm, as a mobile phase, ammonium formate, formic acid aqueous solution, Any one or more selected from formic acid methanol solutions can be used. MS (mass spectrometry) can be performed according to an ESI (electrospray ionization) ion trap method.
The NMR analysis can be performed in heavy water using, for example, AVANCE500 manufactured by BRUKER BIOSPIN.
 式(I)で表わされる化合物またはその塩は、紫外線吸収能および水系溶媒に対する溶解性を有する。特に、式(I)で表わされる化合物またはその塩は、波長350~360nm領域に高い吸収ピークを有し、UVA領域での紫外線吸収能に優れる。
 また、本実施形態の化合物またはその塩は、メタノール、エタノール、プロパノール、アセトニトリル、エチレングリコール、プロピレングリコール、ブタンジオールのいずれか1種以上と水との混合液、アルカリ金属、アルカリ土類金属塩、有機酸、アミノ酸のいずれか1種以上と水との混合液、水などの水系溶媒に対する溶解性に優れるので、抗光老化剤の材料として用いる場合、水系溶媒を用いて容易に配合できる。
The compound represented by the formula (I) or a salt thereof has ultraviolet absorbing ability and solubility in an aqueous solvent. In particular, the compound represented by the formula (I) or a salt thereof has a high absorption peak in the wavelength region of 350 to 360 nm, and is excellent in ultraviolet absorption ability in the UVA region.
In addition, the compound of the present embodiment or a salt thereof is a mixed solution of any one or more of methanol, ethanol, propanol, acetonitrile, ethylene glycol, propylene glycol, and butanediol and water, an alkali metal, an alkaline earth metal salt, Since it is excellent in solubility in an aqueous solvent such as water, a mixture of at least one of an organic acid and an amino acid and water, when used as a material for an anti-photoaging agent, it can be easily blended using an aqueous solvent.
 また、本実施形態の化合物またはその塩の製造方法によれば、高純度の式(I)で表わされる化合物またはその塩を製造できる。したがって、例えば、本実施形態の製造方法で得られた式(I)で表わされる化合物またはその塩を、抗光老化剤の材料として用いた場合、式(I)で表わされる化合物またはその塩に含まれる不純物に起因する不具合が生じにくく、好ましい。 Further, according to the method for producing a compound or a salt thereof of the present embodiment, a highly pure compound represented by the formula (I) or a salt thereof can be produced. Therefore, for example, when the compound represented by the formula (I) obtained by the production method of the present embodiment or a salt thereof is used as a material for an anti-photoaging agent, the compound represented by the formula (I) or a salt thereof is used. It is preferable because defects caused by impurities contained are unlikely to occur.
 なお、式(I)で表わされる化合物またはその塩の製造方法は、上記の方法に限定されるものではない。
 例えば、本実施形態の製造方法により製造した目的物を原料として化学的に合成することにより、製造した目的物と式(I)中のR、R、R、Xのうちのいずれか1以上が異なっている式(I)で表わされる化合物またはその塩を製造してもよい。
 また、原料として、植物に生育する微生物を培養して得た菌体から抽出したものを用いず、天然に由来しない成分のみを用いて、式(I)で表わされる化合物またはその塩を化学的に合成してもよい。
In addition, the manufacturing method of the compound represented by Formula (I) or its salt is not limited to said method.
For example, by chemically synthesizing the target product manufactured by the manufacturing method of this embodiment as a raw material, any one of R 1 , R 2 , R 3 , and X in the formula (I) You may manufacture the compound or its salt represented by the formula (I) from which 1 or more differs.
In addition, the compound represented by the formula (I) or a salt thereof is chemically used only as a raw material by using only components that are not derived from nature without using those extracted from cells obtained by culturing microorganisms that grow on plants. May be synthesized.
 本実施形態の抗光老化剤に含まれる式(I)で表わされる化合物またはその塩は、1種類のみであってもよいし、2種類以上であってもよい。本実施形態の抗光老化剤は、式(I)で表わされる化合物のみを含有し、式(I)で表わされる化合物の塩を含有していないものでもよいし、式(I)で表わされる化合物の塩のみを含有し、式(I)で表わされる化合物を含有していないものでもよいし、式(I)で表わされる化合物および式(I)で表わされる化合物の塩を共に含有するものでもよい。抗光老化剤の含有する式(I)で表わされる化合物またはその塩が2種以上である場合、その組み合わせおよび比率は、目的に応じて適宜選択できる。 The compound represented by the formula (I) or the salt thereof contained in the anti-photoaging agent of the present embodiment may be only one type or two or more types. The anti-photoaging agent of this embodiment may contain only the compound represented by the formula (I) and may not contain a salt of the compound represented by the formula (I), or may be represented by the formula (I). Contains only a salt of the compound and may not contain the compound represented by formula (I), or contains both the compound represented by formula (I) and the salt of the compound represented by formula (I) But you can. When the compound represented by the formula (I) or the salt thereof contained in the anti-photoaging agent is two or more, the combination and ratio can be appropriately selected according to the purpose.
 本実施形態の抗光老化剤は、式(I)で表わされる化合物またはその塩の他に、必要に応じて、本発明の効果を損なわない範囲で、薬学的に許容される担体などの他の成分を、一般的な濃度で含有していてもよい。
 薬学的に許容される担体としては、特に制限されず、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、乳化剤、安定剤、希釈剤、増粘剤、湿潤剤、pH調整剤、油剤、注射剤用溶剤等を使用できる。
In addition to the compound represented by the formula (I) or a salt thereof, the anti-photoaging agent of the present embodiment may be a pharmaceutically acceptable carrier or the like as long as it does not impair the effects of the present invention. These components may be contained at a general concentration.
The pharmaceutically acceptable carrier is not particularly limited, and examples thereof include excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, thickeners, wetting agents, pH adjusting agents, Oils, solvents for injections, etc. can be used.
 その他の成分としては、特に制限されず、例えば、保湿剤、感触向上剤、界面活性剤、高分子化合物、増粘・ゲル化剤、溶剤、噴射剤、酸化防止剤、還元剤、酸化剤、防腐剤、抗菌剤、キレート剤、pH調整剤、酸、アルカリ、粉体、無機塩、紫外線吸収剤、美白剤、ビタミン類及びその誘導体、消炎剤、抗炎症剤、育毛用薬剤、血行促進剤、刺激剤、ホルモン類、抗しわ剤、抗老化剤、ひきしめ剤、冷感剤、温感剤、創傷治癒促進剤、刺激緩和剤、鎮痛剤、細胞賦活剤、植物・動物・微生物エキス、鎮痒剤、角質剥離・溶解剤、制汗剤、清涼剤、収れん剤、酵素、核酸、香料、色素、着色剤、染料、顔料、水、金属含有化合物、不飽和単量体、多価アルコール、高分子添加剤、消炎鎮痛剤、抗真菌剤、抗ヒスタミン剤、催眠鎮静剤、精神安定剤、抗高血圧剤、降圧利尿剤、抗生物質、麻酔剤、抗菌性物質、抗てんかん剤、冠血管拡張剤、生薬、補助剤、湿潤剤、収れん剤、増粘剤、粘着付与物質、止痒剤、角質軟化剥離剤、紫外線遮断剤、防腐殺菌剤、金属セッケン等が挙げられる。 Other components are not particularly limited, for example, moisturizers, feel improvers, surfactants, polymer compounds, thickening / gelling agents, solvents, propellants, antioxidants, reducing agents, oxidizing agents, Preservatives, antibacterial agents, chelating agents, pH adjusters, acids, alkalis, powders, inorganic salts, UV absorbers, whitening agents, vitamins and their derivatives, anti-inflammatory agents, anti-inflammatory agents, hair growth agents, blood circulation promoters , Stimulant, hormones, anti-wrinkle agent, anti-aging agent, squeeze agent, cooling sensation agent, warming sensation agent, wound healing promoter, stimulation mitigation agent, analgesic agent, cell activator, plant / animal / microbe extract, antipruritic agent Agent, exfoliating / dissolving agent, antiperspirant, refreshing agent, astringent, enzyme, nucleic acid, fragrance, pigment, colorant, dye, pigment, water, metal-containing compound, unsaturated monomer, polyhydric alcohol, high Molecular additive, anti-inflammatory analgesic, antifungal, antihistamine, hypnotic sedative, mental Fixed agent, antihypertensive agent, antihypertensive diuretic, antibiotic, anesthetic, antibacterial agent, antiepileptic agent, coronary vasodilator, herbal medicine, adjuvant, wetting agent, astringent, thickener, tackifier, stop Examples include glazes, keratin softening release agents, UV blockers, antiseptic disinfectants, and metal soaps.
 薬学的に許容される担体及びその他の成分としては、例えば、第十六改正日本薬局方、化粧品原料基準第二版注解(日本公定書教会編、薬事日報社、1984年)、化粧品原料基準外成分規格(厚生省薬務局審査課監修、薬事日報社、1993年)、化粧品原料基準外成分規格追補(厚生省薬務局審査課監修、薬事日報社、1993年)、化粧品種別許可基準(厚生省薬務局審査課監修、薬事日報社、1993年)、化粧品原料辞典(日光ケミカルズ社、平成3年)、International Cosmetic Ingredient Dictionary and Handbook 2002 Ninth Edition Vol.1~4,by CTFA等に記載されている一般的な原料を使用できる。より具体的には、例えば、特開2014-114289号公報に記載された各原料等が挙げられる。 Examples of pharmaceutically acceptable carriers and other ingredients include, for example, the 16th revised Japanese Pharmacopoeia, Cosmetic Raw Material Standards Second Edition Commentary (Edited by the Japanese Official Church, Yakuji Nipposha, 1984), non-cosmetic raw material standards Ingredient standards (supervised by the Ministry of Health and Welfare Pharmacy Examination Division, Yakuji Nippo Inc., 1993), supplements for ingredients outside the standard of cosmetic ingredients (supervised by the Ministry of Health and Welfare Pharmacy Examination Division, Yakuji Nipposha, 1993) Supervised by the Bureau of Internal Affairs and Communications, Yakuji Nippo, 1993), Cosmetic Raw Material Dictionary (Nikko Chemicals, 1991), International Cosmetic Inditionary and Handbook 2002 Ninth Edition Vol. 1 to 4, by General raw materials described in CTFA and the like can be used. More specifically, for example, the respective raw materials described in JP 2014-114289 A can be mentioned.
 本実施形態の抗光老化剤は、常法(例えば、日本薬局方記載の方法)にしたがって、式(I)で表わされる化合物またはその塩、および必要に応じて含有される他の成分を混合して製剤化することにより製造できる。 The anti-photoaging agent of this embodiment is a mixture of the compound represented by the formula (I) or a salt thereof and other components contained as necessary according to a conventional method (for example, a method described in the Japanese Pharmacopoeia). And can be manufactured by formulation.
 抗光老化剤としては、具体的には、クリーム、ローション、化粧水、乳液、ファンデーション、パック剤、フォーム剤、皮膚洗浄剤、エキス剤、硬膏剤、軟膏剤、酒精剤、懸濁剤、チンキ剤、パップ剤、リニメント剤、エアゾール剤等の剤型が挙げられる。 Specific examples of anti-aging agents include creams, lotions, lotions, emulsions, foundations, packs, foams, skin cleansers, extracts, plasters, ointments, spirits, suspensions, tinctures. And dosage forms such as agents, poultices, liniments, and aerosols.
 本実施形態の抗光老化剤は、式(I)で表わされる化合物またはその塩を含有する。このことによって、本実施形態の抗光老化剤は、これを塗布した皮膚がUVAに暴露された場合に、マトリックス成分であるコラーゲン、エラスチン、ヒアルロン酸の遺伝子発現を促進するとともに、コラーゲン分解酵素であるマトリックスメタロプロテアーゼ(MMP)を産生する遺伝子の発現を抑制する。このため、本実施形態の抗光老化剤を塗布した皮膚は、UVAに暴露された場合に、真皮におけるマトリックス成分の減少が生じにくく、マトリックス成分の減少に伴うしわや弾力性の低下が抑制され、光老化が防止される。 The anti-photoaging agent of this embodiment contains a compound represented by the formula (I) or a salt thereof. Thus, the anti-photoaging agent of the present embodiment promotes gene expression of the matrix components collagen, elastin, and hyaluronic acid when the skin to which the anti-photoaging agent is applied is exposed to UVA. It suppresses the expression of a gene that produces a certain matrix metalloprotease (MMP). For this reason, when the skin to which the anti-photoaging agent of this embodiment is applied is exposed to UVA, the matrix component in the dermis is less likely to decrease, and wrinkles and elasticity decreases due to the decrease in the matrix component are suppressed. , Photoaging is prevented.
 また、本実施形態の抗光老化剤は、UVA吸収能を有する。よって、本実施形態の抗光老化剤は、これを塗布した皮膚がUVAに暴露された場合に、皮膚をUVAから遮蔽し、UVAに暴露されることによる皮膚の光老化を効果的に抑制する。 Moreover, the anti-photoaging agent of this embodiment has UVA absorption ability. Therefore, the anti-photoaging agent of the present embodiment shields the skin from UVA when the skin to which it is applied is exposed to UVA, and effectively suppresses photoaging of the skin due to exposure to UVA. .
 なお、従来の紫外線遮蔽剤は、物理化学的に紫外線を吸収したり、散乱させたりする機能によって、紫外線に起因する光老化を防止するものであり、皮膚をUVAに暴露することによって起こる皮膚の光老化自体を生理的に抑制する機能を有するものではなかった。
 これに対し、本実施形態の抗光老化剤を皮膚に塗布した場合、皮膚をUVAから遮蔽するだけでなく、皮膚をUVAに暴露することにより生じる皮膚の老化を生理的に抑制する効果が得られる。さらに、抗光老化剤のコラーゲン、エラスチン、ヒアルロン酸の遺伝子発現を促進する機能により、皮膚をUVAに暴露した後の真皮においてマトリックス成分が増大し、老化を改善する効果も期待できる。上記効果は、UVAに暴露された後の皮膚に、本実施形態の抗光老化剤を塗布した場合にも発現する。
In addition, the conventional ultraviolet shielding agent prevents photoaging due to ultraviolet rays by a function of absorbing and scattering ultraviolet rays physicochemically, and the skin caused by exposing the skin to UVA. It did not have a function of physiologically suppressing photoaging itself.
In contrast, when the anti-photoaging agent of the present embodiment is applied to the skin, not only the skin is shielded from UVA, but also the effect of physiologically suppressing skin aging caused by exposing the skin to UVA is obtained. It is done. Furthermore, due to the function of promoting gene expression of collagen, elastin and hyaluronic acid as anti-photoaging agents, the matrix component increases in the dermis after the skin is exposed to UVA, and the effect of improving aging can be expected. The above effect is also exhibited when the anti-photoaging agent of this embodiment is applied to the skin after being exposed to UVA.
 また、本実施形態の抗光老化剤は、水系溶媒に対する溶解性を有する式(I)で表わされる化合物またはその塩を含むため、疎水性溶媒を使わずに製造できるとともに、用途に応じて様々な剤型にすることができる。 In addition, since the anti-photoaging agent of the present embodiment contains a compound represented by the formula (I) having a solubility in an aqueous solvent or a salt thereof, it can be produced without using a hydrophobic solvent, and variously depending on applications. The dosage form can be changed.
 本実施形態の抗光老化剤の具体的な組成としては、例えば、表1~表5に示す組成例1~組成例8の組成が挙げられる。 Specific examples of the composition of the anti-photoaging agent of this embodiment include the compositions of Composition Examples 1 to 8 shown in Tables 1 to 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以下、実施例により本発明を詳細に説明する。本発明は、以下に示す実施例によって何ら限定されるものではない。
<実施例>
「1.微生物の採取」
 イチゴ葉を10mMリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得た。
Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited by the following examples.
<Example>
“1. Collecting microorganisms”
Strawberry leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground solution containing microorganisms.
「2.微生物の培養」
 「1.微生物の採取」で得た微生物を含む磨砕液を、標準寒天培地(Difco製)の表面に塗布し、25℃で5日間、好気条件で培養した。その後、標準寒天培地の表面に出現した単コロニーを掻き取り、単コロニーを形成している菌体を分離回収した。
 次に、単コロニーから回収した各菌体を、複数のNB(Nutrient Broth)寒天平板培地(Difco製)の表面に塗布して、それぞれ25℃で6日間、好気条件で培養した。その後、寒天平板培地の表面に出現したコロニーを掻き取り、菌体を回収した。
“2. Culture of microorganisms”
The ground solution containing microorganisms obtained in “1. Collecting microorganisms” was applied to the surface of a standard agar medium (manufactured by Difco) and cultured at 25 ° C. for 5 days under aerobic conditions. Then, the single colony which appeared on the surface of the standard agar medium was scraped off, and the bacterial cells forming the single colony were separated and recovered.
Next, each microbial cell recovered from a single colony was applied to the surface of a plurality of NB (Nutrient Broth) agar plates (manufactured by Difco) and cultured at 25 ° C. for 6 days under aerobic conditions. Thereafter, colonies that appeared on the surface of the agar plate medium were scraped off, and the cells were collected.
 次に、このようにして植物から採取した微生物中から分離回収した各菌体について、吸光光度法により、紫外線吸収能の有無を調べた。
 次いで、分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。菌体の同定は、rRNA遺伝子の塩基配列に基づいて行った。その結果、菌体はメチロバクテリウム属であった。この菌体をWI-182株と名付けた。
Next, each bacterial cell separated and recovered from the microorganisms collected from the plant in this manner was examined for the presence or absence of ultraviolet absorbing ability by absorptiometry.
Next, among the separated and recovered bacterial cells, the bacterial cell having the highest ultraviolet absorption ability was identified. The bacterial cells were identified based on the base sequence of the rRNA gene. As a result, the cells were of the genus Methylobacterium. This microbial cell was named WI-182 strain.
 次に、メチロバクテリウム属の菌体(WI-182株)の得られた寒天平板培地を2枚用意し、各寒天平板培地にそれぞれ無菌精製水10mlを加えて懸濁し、懸濁液を得た。2枚の寒天平板培地から得た懸濁液を混合して混合液とし、7本の100mlのPD培地(Difco製)にそれぞれ2mlずつ加え、25℃で90時間、好気条件で培養した。
 7本のPD培地で培養した培養物から600ml採取して、30LのPD培地(Difco製)に加えた。そして、菌体を含む液体培地を回転速度400rpmで撹拌機を用いて撹拌しながら、液体培地に15L/minの空気を供給し、好気状態で、25℃で7日間培養した。
Next, two agar plate media from which the cells of the genus Methylobacterium (WI-182 strain) were obtained were prepared and suspended in each agar plate medium by adding 10 ml of sterile purified water. Obtained. Suspensions obtained from two agar plate media were mixed to prepare a mixed solution, each 2 ml was added to seven 100 ml PD media (manufactured by Difco), and cultured at 25 ° C. for 90 hours under aerobic conditions.
600 ml was collected from a culture cultured in 7 PD media and added to 30 L of PD media (Difco). Then, 15 L / min of air was supplied to the liquid medium while stirring the liquid medium containing the bacterial cells using a stirrer at a rotational speed of 400 rpm, and cultured at 25 ° C. for 7 days.
「3.菌体の回収」
 上記の通りにして培養した培養物28kg(培養した菌体を含む液体培地)を、回転速度8000rpmで20分間遠心分離して、ウェット状の菌体を回収した。その後、回収した菌体を凍結し、真空乾燥して、51gの菌体を得た。
“3. Recovery of bacterial cells”
28 kg of the culture cultured as described above (liquid medium containing the cultured cells) was centrifuged at a rotational speed of 8000 rpm for 20 minutes to collect wet cells. Thereafter, the collected cells were frozen and vacuum-dried to obtain 51 g of cells.
「4.微生物からの抽出」
 上記の通りにして得た菌体(WI-182株)45gに、水とメタノールとの混合溶液(水:メタノール(体積比)=2:8)2250mlを加えて、25℃で1時間、スリーワンモータ(登録商標)撹拌翼を用いて回転速度140rpmで撹拌することにより抽出した。次いで、抽出後の菌体を含む溶媒を吸引濾過することにより、濾過液として抽出液を回収した。その後、回収した抽出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて12.2gの抽出物を得た。
“4. Extraction from microorganisms”
To 45 g of the microbial cells (WI-182 strain) obtained as described above, 2250 ml of a mixed solution of water and methanol (water: methanol (volume ratio) = 2: 8) was added, and the three-one was treated at 25 ° C. for 1 hour. Extraction was performed by stirring with a motor (registered trademark) stirring blade at a rotation speed of 140 rpm. Next, the solvent containing the cells after the extraction was suction filtered to collect the extract as a filtrate. Thereafter, the recovered extract was concentrated with a rotary evaporator, frozen and vacuum dried to obtain 12.2 g of extract.
「5.抽出物からの目的物の回収(1)」
 以下に示すように、アルカリ性溶液を用いるカチオン交換クロマトグラフィー法により、抽出物を精製した。
 まず、メタノールに抽出物を加えて溶解し、メタノール溶液とした。次いで、メタノール溶液をカラム(WATERS製 PoraPak Rxn CX)に通過させて、イオン交換樹脂に抽出物を吸着させた。次に、カラムに、アルカリ性溶液としてアンモニア水(28質量%)とメタノールとの混合溶液(アンモニア水:メタノール(体積比)=5:95(pH11.2))を通過させて、イオン交換樹脂に吸着した抽出物からアルカリ性溶液に溶解する成分を溶出させて溶出液を得た。
 その後、溶出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて粗精製物である1.36gの黄褐色化合物を回収した。
"5. Recovery of target product from extract (1)"
As shown below, the extract was purified by cation exchange chromatography using an alkaline solution.
First, an extract was added to methanol and dissolved to obtain a methanol solution. Next, the methanol solution was passed through a column (PoraPak Rxn CX manufactured by WATERS) to adsorb the extract on the ion exchange resin. Next, a mixed solution of ammonia water (28% by mass) and methanol (ammonia water: methanol (volume ratio) = 5: 95 (pH 11.2)) as an alkaline solution is passed through the column to obtain an ion exchange resin. From the adsorbed extract, components dissolved in the alkaline solution were eluted to obtain an eluate.
Thereafter, the eluate was concentrated on a rotary evaporator, frozen and vacuum dried to recover 1.36 g of a tan compound as a crude product.
「6.抽出物からの目的物の回収(2)」
 上記の通りにして得られた粗精製物を高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製LCSolution、PDA(フォトダイオードアレイ)検出器(SPD-M10A))を用いて精製した。条件は下記の通りとした。
"6. Recovery of target product from extract (2)"
The crude product obtained as described above was purified using high performance liquid chromatography (HPLC) (LCSolution manufactured by Shimadzu Corporation, PDA (photodiode array) detector (SPD-M10A)). The conditions were as follows.
カラム:Sunrise C28(カラム内に充填されている基材の粒子径:5μm、カラムの内径:10mm、カラムの長さ:250mm、クロマニックテクノロジーズ製)
カラム温度:40℃
流速:5.0ml/min
移動相A:10mMギ酸アンモニウム、0.2%ギ酸
     溶媒 水
移動相B:10mMギ酸アンモニウム、0.2%ギ酸
     溶媒 水とメタノールとの混合溶液(メタノール:水(体積比)=95:5)
グラジエント条件:0~7min  移動相A100%で固定
        7~15min  移動相A:移動相B=100:0~移動相A:移動相B=24:76のリニアグラジエント
        15~25min 移動相B95%で固定
        25~35min 移動相A100%で固定
Column: Sunrise C28 (particle diameter of the substrate packed in the column: 5 μm, column inner diameter: 10 mm, column length: 250 mm, manufactured by Chromanic Technologies)
Column temperature: 40 ° C
Flow rate: 5.0 ml / min
Mobile phase A: 10 mM ammonium formate, 0.2% formic acid solvent Water mobile phase B: 10 mM ammonium formate, 0.2% formic acid solvent Mixed solution of water and methanol (methanol: water (volume ratio) = 95: 5)
Gradient condition: 0 to 7 min Fixed at mobile phase A 100% 7 to 15 min Mobile phase A: Mobile phase B = 100: 0 to mobile phase A: Mobile phase B = 24:76 linear gradient 15 to 25 min Fixed at mobile phase B 95% 25 to 35 min Fixed at 100% mobile phase A
 高速液体クロマトグラフィー解析結果を図1に示す。図1は、実施例で得られた粗精製物の紫外線吸収強度と溶出時間との関係を示したグラフである。図1に示すように、実施例で得られた粗精製物では、UV測定波長360nmで測定したときに、溶出時間3.3min、4.3min、5.2min、16.8min、17.6minの位置に主要ピークが検出された。溶出時間4.3min、16.8min、17.6minのピークにおいては、波長350~360nm領域に高い吸収ピークを示すことが確認された。 The results of high performance liquid chromatography analysis are shown in FIG. FIG. 1 is a graph showing the relationship between the ultraviolet absorption intensity and elution time of the crude product obtained in the examples. As shown in FIG. 1, the crude product obtained in the examples had elution times of 3.3 min, 4.3 min, 5.2 min, 16.8 min, and 17.6 min when measured at a UV measurement wavelength of 360 nm. A major peak was detected at the position. It was confirmed that the peaks at elution times of 4.3 min, 16.8 min, and 17.6 min show high absorption peaks in the wavelength region of 350 to 360 nm.
「光老化関連遺伝子発現促進効果」
 実施例で得られた粗精製物をイオン交換カラムにて精製し、5%アンモニア水で溶出する画分を分取後、エバポレーターにて溶媒を除去し、精製された固形分を得た。この精製物は、高速液体クロマトグラフィー(HPLC)解析結果の面積比から、前項記載のUV測定波長360nmで測定したときに、式(II)で表される化合物と式(V)で表される化合物に相当する溶出時間4.3minの主要ピークを64%、その他の化合物を36%の割合(質量比)で含むものであると推定される。
 次いで、得られた精製物について、以下に示す方法により、光老化関連遺伝子(コラーゲン遺伝子、エラスチン遺伝子、ヒアルロン酸合成酵素(HAS3)遺伝子)発現促進効果を調べた。
"Photoaging-related gene expression promotion effect"
The crude product obtained in the examples was purified with an ion exchange column, and the fraction eluted with 5% aqueous ammonia was collected, and then the solvent was removed with an evaporator to obtain a purified solid. This purified product is represented by the compound represented by the formula (II) and the formula (V) when measured at the UV measurement wavelength of 360 nm described in the previous section from the area ratio of the high performance liquid chromatography (HPLC) analysis result. It is estimated that it contains 64% of the main peak with an elution time of 4.3 min corresponding to the compound and 36% of other compounds (mass ratio).
Next, the effect of promoting the expression of photoaging-related genes (collagen gene, elastin gene, hyaluronic acid synthase (HAS3) gene) was examined for the obtained purified product by the method described below.
(試料1)
 理化学研究所バイオリソースセンター製の正常ヒト線維芽細胞(NB1RGB細胞)を、10000個/cmの播種密度でプラスチックシャーレに播種し、10%ウシ胎児血清を含むSigma社製ダルベッコ改変イーグル(DMEM)培地中で24時間培養した。
 続いて、NB1RGB細胞に、UVP社のUVA照射装置を用いて15J/cmのUVAを照射した。その後、プラスチックシャーレに、60%エタノールに溶解した上記精製物を、DMEM培地中の培養液に含まれる上記精製物の濃度が0.01質量%となるように添加し、更に24時間培養して試料1を得た。
(Sample 1)
Normal human fibroblasts (NB1RGB cells) manufactured by RIKEN BioResource Center are seeded in a plastic petri dish at a seeding density of 10,000 cells / cm 2 , and Sigma Dulbecco's Modified Eagle (DMEM) medium containing 10% fetal bovine serum Incubated for 24 hours.
Subsequently, the NB1RGB cells were irradiated with 15 J / cm 2 of UVA using a UVA irradiation apparatus manufactured by UVP. Thereafter, the purified product dissolved in 60% ethanol is added to a plastic petri dish so that the concentration of the purified product contained in the culture solution in the DMEM medium is 0.01% by mass, and further cultured for 24 hours. Sample 1 was obtained.
(試料2)
 UVAを照射した後、プラスチックシャーレに、60%エタノールに溶解した上記精製物に代えて、60%エタノールを添加したこと以外は、試料1と同様にして試料2を得た。
(試料3)
 UVAを照射しなかったこと以外は、試料2と同様にして試料3を得た。
(Sample 2)
After irradiation with UVA, Sample 2 was obtained in the same manner as Sample 1, except that 60% ethanol was added to the plastic petri dish instead of the purified product dissolved in 60% ethanol.
(Sample 3)
Sample 3 was obtained in the same manner as Sample 2, except that UVA was not irradiated.
 試料1~試料3の細胞からそれぞれ総RNA(リボ核酸)を抽出し、cDNA(相補的デオキシリボ核酸)を合成した。続いて、上記のcDNAを鋳型として、定量リアルタイムPCR(ポリメラーゼ連鎖反応)を行い、試料1~試料3のNB1RGB細胞におけるコラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の発現量を定量した。 Total RNA (ribonucleic acid) was extracted from the cells of sample 1 to sample 3, and cDNA (complementary deoxyribonucleic acid) was synthesized. Subsequently, quantitative real-time PCR (polymerase chain reaction) was performed using the above cDNA as a template, and the expression levels of collagen gene, elastin gene, and HAS3 gene in NB1RGB cells of samples 1 to 3 were quantified.
 また、試料1~試料3のNB1RGB細胞におけるコラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の発現量と同様にして、試料1~試料3のNB1RGB細胞における内部標準遺伝子の発現量を定量した。内部標準遺伝子として、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(GAPDH)遺伝子を用いた。
 そして、試料1~試料3のNB1RGB細胞におけるGAPDH遺伝子の発現量に基づいて、NB1RGB細胞におけるコラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の各遺伝子の発現量を標準化し、試料3のコラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の各遺伝子の発現量を1.00としたときの発現量(相対値)を算出した。その結果を表6に示す。
Further, the expression level of the internal standard gene in the NB1RGB cells of Sample 1 to Sample 3 was quantified in the same manner as the expression levels of the collagen gene, elastin gene, and HAS3 gene in the NB1RGB cells of Sample 1 to Sample 3. As an internal standard gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used.
Then, based on the expression level of the GAPDH gene in the NB1RGB cells of Sample 1 to Sample 3, the expression levels of the collagen gene, elastin gene, and HAS3 gene in the NB1RGB cells are standardized, and the collagen gene, elastin gene, The expression level (relative value) when the expression level of each gene of the HAS3 gene was 1.00 was calculated. The results are shown in Table 6.
 なお、GAPDH遺伝子増幅用プライマーとしては、タカラバイオ社製のGAPDH(ID:HA067812)を使用した。また、コラーゲン遺伝子増幅用プライマーとしては、タカラバイオ社製のCOLA1(ID:HA181838)を使用し、エラスチン遺伝子増幅用プライマーとしては、タカラバイオ社製のELA(ID:CH000581)を使用し、HAS3遺伝子増幅用プライマーとしては、タカラバイオ社製の(ID:HA095624)を使用した。 As a GAPDH gene amplification primer, GAPDH (ID: HA067812) manufactured by Takara Bio Inc. was used. As a collagen gene amplification primer, COLA1 (ID: HA181818) manufactured by Takara Bio Inc. is used, and as an elastin gene amplification primer, ELA (ID: CH000581) manufactured by Takara Bio Inc. is used, and the HAS3 gene is used. As an amplification primer, (ID: HA095624) manufactured by Takara Bio Inc. was used.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表6に示すように、NB1RGB細胞を入れたプラスチックシャーレに上記精製物を添加した試料1では、コラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の各遺伝子の発現量が、UVAを照射していない試料3と比較して多くなっている。
 これに対し、上記精製物を添加していない試料2では、UVAを照射していない試料3と比較して、コラーゲン遺伝子、エラスチン遺伝子、HAS3遺伝子の各遺伝子の発現量が少なくなっている。
As shown in Table 6, in sample 1 in which the purified product was added to a plastic petri dish containing NB1RGB cells, the expression levels of the collagen gene, elastin gene, and HAS3 gene were different from those in sample 3 that had not been irradiated with UVA. Compared to more.
On the other hand, in the sample 2 to which the purified product is not added, the expression levels of the collagen gene, elastin gene, and HAS3 gene are reduced compared to the sample 3 not irradiated with UVA.
「MMP-1遺伝子発現抑制効果」
 以下に示す方法により、上記精製物のマトリックスメタロプロテアーゼー1(MMP-1)遺伝子発現抑制効果を調べた。
"MMP-1 gene expression suppression effect"
The purified metal matrix protease-1 (MMP-1) gene expression inhibitory effect of the purified product was examined by the method described below.
 試料1~試料3の細胞からそれぞれ総RNA(リボ核酸)を抽出し、cDNA(相補的デオキシリボ核酸)を合成した。続いて、上記のcDNAを鋳型として、定量リアルタイムPCR(ポリメラーゼ連鎖反応)を行い、試料1~試料3のNB1RGB細胞におけるMMP-1遺伝子の発現量を定量した。 Total RNA (ribonucleic acid) was extracted from the cells of sample 1 to sample 3, and cDNA (complementary deoxyribonucleic acid) was synthesized. Subsequently, quantitative real-time PCR (polymerase chain reaction) was performed using the above cDNA as a template, and the expression level of the MMP-1 gene in NB1RGB cells of Sample 1 to Sample 3 was quantified.
 そして、試料1~試料3のNB1RGB細胞におけるGAPDH遺伝子の発現量に基づいて、NB1RGB細胞におけるMMP-1遺伝子の発現量を標準化し、試料3のMMP-1遺伝子の発現量を1.00としたときの発現量(相対値)を算出した。その結果を表7に示す。
 なお、MMP-1遺伝子増幅用プライマーとしては、タカラバイオ社製のMMP-1(ID:HA205024)を使用した。
Based on the expression level of the GAPDH gene in the NB1RGB cells of Sample 1 to Sample 3, the expression level of the MMP-1 gene in the NB1RGB cells was standardized, and the expression level of the MMP-1 gene in Sample 3 was set to 1.00. The expression level (relative value) was calculated. The results are shown in Table 7.
As a MMP-1 gene amplification primer, MMP-1 (ID: HA205024) manufactured by Takara Bio Inc. was used.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表7に示すように、NB1RGB細胞を入れたプラスチックシャーレに上記精製物を添加した試料1では、上記精製物を添加していない試料2と比較して、UVAを照射したことによるMMP-1遺伝子の発現量が少なくなっている。 As shown in Table 7, in the sample 1 in which the purified product was added to the plastic petri dish containing NB1RGB cells, the MMP-1 gene caused by UVA irradiation was compared to the sample 2 in which the purified product was not added. Is expressed less.

Claims (3)

  1.  式(I)で表わされる化合物またはその塩を含有する抗光老化剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Rは、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖を表す。)
    An anti-photoaging agent comprising a compound represented by the formula (I) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (I), R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms. Represents an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkenyl group having 1 to 5 carbon atoms, wherein R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.)
  2.  式(I)で表わされる化合物またはその塩が、式(I)におけるRおよびRがメチル基であり、RおよびXが水素原子である式(II)で表わされる化合物またはその塩である請求項1に記載の抗光老化剤。
    Figure JPOXMLDOC01-appb-C000002
    The compound represented by the formula (I) or a salt thereof is a compound represented by the formula (II) or a salt thereof in which R 1 and R 2 in the formula (I) are methyl groups and R 3 and X are hydrogen atoms. The anti-photoaging agent according to claim 1.
    Figure JPOXMLDOC01-appb-C000002
  3.  式(I)において、RおよびRがメチル基であり、Rが水素原子であり、Xが糖分子数5の直鎖状の糖鎖である請求項1に記載の抗光老化剤。 The anti-photoaging agent according to claim 1, wherein in formula (I), R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules. .
PCT/JP2017/012939 2016-03-31 2017-03-29 Anti-photoaging agent WO2017170713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073713A JP6614448B2 (en) 2016-03-31 2016-03-31 Anti-photoaging agent
JP2016-073713 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170713A1 true WO2017170713A1 (en) 2017-10-05

Family

ID=59964640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012939 WO2017170713A1 (en) 2016-03-31 2017-03-29 Anti-photoaging agent

Country Status (2)

Country Link
JP (1) JP6614448B2 (en)
WO (1) WO2017170713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186259A (en) * 2016-03-31 2017-10-12 昭和電工株式会社 Antiinflammatory agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083018A (en) * 1994-06-20 1996-01-09 Toshimitsu Otomo Cosmetic for skin aging prevention
JP2005298383A (en) * 2004-04-09 2005-10-27 Kanebo Cosmetics Inc Wrinkle improver
JP2009173584A (en) * 2008-01-25 2009-08-06 Fancl Corp Silybin glycoside-containing external composition for skin
JP2010132639A (en) * 2008-11-10 2010-06-17 Nikko Chemical Co Ltd Dna damage inhibitor and matrix metalloprotease-1 production inhibitor
JP2013127027A (en) * 2011-12-19 2013-06-27 National Institute For Agro-Environmental Science Ultraviolet absorber composition originated from plant inhabiting microbes
WO2017051875A1 (en) * 2015-09-24 2017-03-30 昭和電工株式会社 Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614449B2 (en) * 2016-03-31 2019-12-04 国立研究開発法人農業・食品産業技術総合研究機構 Anti-inflammatory agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083018A (en) * 1994-06-20 1996-01-09 Toshimitsu Otomo Cosmetic for skin aging prevention
JP2005298383A (en) * 2004-04-09 2005-10-27 Kanebo Cosmetics Inc Wrinkle improver
JP2009173584A (en) * 2008-01-25 2009-08-06 Fancl Corp Silybin glycoside-containing external composition for skin
JP2010132639A (en) * 2008-11-10 2010-06-17 Nikko Chemical Co Ltd Dna damage inhibitor and matrix metalloprotease-1 production inhibitor
JP2013127027A (en) * 2011-12-19 2013-06-27 National Institute For Agro-Environmental Science Ultraviolet absorber composition originated from plant inhabiting microbes
WO2017051875A1 (en) * 2015-09-24 2017-03-30 昭和電工株式会社 Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186259A (en) * 2016-03-31 2017-10-12 昭和電工株式会社 Antiinflammatory agent

Also Published As

Publication number Publication date
JP2017186258A (en) 2017-10-12
JP6614448B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP5615966B2 (en) Piceatannol-containing composition
JP5969738B2 (en) Anti-glycation agent
CN1812795A (en) Composition for external use
JP5025030B2 (en) DNA damage recovery agent, epidermal keratinocyte proliferation promoter and profilagrin mRNA expression promoter
KR20190050627A (en) Fermented Extract of Ginseng Leaf for Skin Whitening and manufacturing method thereof
WO2017170713A1 (en) Anti-photoaging agent
JP6614449B2 (en) Anti-inflammatory agent
JP6406636B2 (en) Cosmetic or skin preparation
KR20160114980A (en) Cosmetic composition comprising protein-polysaccharide extracted from linum usitatissimum seed, protein-polysaccharide extracted from salvia hispanica seed and polyglutamic acid, and method of preparing the same
JP2009102299A (en) Collagen production promoter, and cosmetic and oral composition for collagen production promotion
JP2008255051A (en) Ceramide synthesis promoter, skin barrier function-ameliorating agent, and agent for preventing and treating disease caused by ceramide synthesis trouble
Tang et al. Cyclic tetrapyrrolic photosensitizers from Cladophora patentiramea (Cladophoraceae, Chlorophyta) and Turbinaria conoides (Sargassaceae, Phaeophyta) for photodynamic therapy
JP6732341B2 (en) Compounds having ultraviolet absorption ability or salts thereof, and methods for producing the same, skin external preparations, cosmetics
JP2010215571A (en) ENDOTHELIN-1 mRNA EXPRESSION INCREASE INHIBITOR, BASIC FIBROBLAST CELL PROLIFERATION FACTOR mRNA EXPRESSION INCREASE INHIBITOR AND PRO-OPIOMELANOCORTIN mRNA EXPRESSION INCREASE INHIBITOR
JP2016056102A (en) Keratin producing action-exhibiting curcumin derivative and production process therefor
JP2008214335A (en) Sparassis crispa extract, biaryl compound and cosmetic
JP5307369B2 (en) Whitening agent, whitening cosmetic, and method for producing whitening agent
JP2017178862A (en) Anti-inflammatory agents, cosmetics, external skin agents, agents for ameliorating inflammatory disease, and methods for producing anti-inflammatory agents
JP2017178862A6 (en) Anti-inflammatory agent, cosmetic, topical skin preparation, inflammatory disease ameliorating agent, and method for producing anti-inflammatory agent
JP5992661B2 (en) Hyaluronic acid production promoter
JP5621330B2 (en) Method for producing a terpene peptide conjugate exhibiting a ceramide producing action
JP7015775B2 (en) Polyphenol derivative exhibiting gene repair action
CN116687824A (en) Method for preparing herba Melissae axillaris extract, and cosmetic composition
JP6738524B2 (en) Leucocyanidin derivatives exhibiting activating effect on oxidative phosphorylation
WO2021182283A1 (en) Composition for suppressing decrease in or improving skin barrier function, composition for suppressing decrease in or improving expression of type 4 collagen, and method for screening substances having action to suppress decrease in or improve skin barrier function

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775247

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775247

Country of ref document: EP

Kind code of ref document: A1