WO2017051875A1 - Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic - Google Patents
Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic Download PDFInfo
- Publication number
- WO2017051875A1 WO2017051875A1 PCT/JP2016/078032 JP2016078032W WO2017051875A1 WO 2017051875 A1 WO2017051875 A1 WO 2017051875A1 JP 2016078032 W JP2016078032 W JP 2016078032W WO 2017051875 A1 WO2017051875 A1 WO 2017051875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- salt
- compound
- formula
- linear
- carbon atoms
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/60—Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/12—Acyclic radicals, not substituted by cyclic structures attached to a nitrogen atom of the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
Definitions
- the present invention relates to a compound having an ability to absorb ultraviolet rays or a salt thereof, a production method thereof, an external preparation for skin, and a cosmetic.
- Ultraviolet rays contained in sunlight have various effects on human skin and the like. Specifically, various harmful effects due to ultraviolet rays are known, such as causing blemishes and wrinkles on the skin to promote aging, causing allergic reactions, and causing carcinogenesis. Ultraviolet rays contained in sunlight are roughly classified into ultraviolet A waves (UVA) having a wavelength of 320 to 400 nm, ultraviolet B waves (UVB) having a wavelength of 280 to 320 nm, and ultraviolet C waves (UVC) having a wavelength of 200 to 280 nm.
- UVA ultraviolet A waves
- UVB ultraviolet B waves
- UVC ultraviolet C waves
- UV absorbers are used to protect human skin from ultraviolet rays.
- chemically synthesized UV absorbers having UVB absorption ability such as salicylic acid derivatives, p-aminobenzoic acid, benzophenone derivatives and the like.
- an ultraviolet absorber having UVA absorption ability there is a chemically synthesized material such as avobenzene.
- an ultraviolet absorber having UVA absorption ability yangonin obtained by extraction from a plant belonging to the family Pepperaceae (for example, see Patent Document 1), an extract obtained from a Gramineae family plant (for example, see Patent Document 2). 2-amino-3- ( ⁇ -D-glucopyranosyloxy) - ⁇ -oxobenzenebutanoic acid extracted from human and primate ocular lenses has been reported (see, for example, Patent Document 3). .
- Patent Document 4 a compound collected from a culture of microorganisms belonging to the genus Perradibacter (Patent Document 4) is known.
- Patent Document 5 a compound collected from a culture of a microorganism belonging to the genus Thermoactinomyces (Patent Document 5) is known as an ultraviolet absorber having a UVC absorption ability produced by marine bacteria.
- Patent Document 6 discloses an ultraviolet absorbent composition derived from microorganisms that inhabit the plant surface and having an ultraviolet absorption spectrum absorption peak in the UVA region.
- JP-A-9-67238 Special table 2012-516311 gazette JP-A-8-3183 JP 2000-016976 A JP 2006-160662 A JP 2013-127027 A
- UVA penetrates deeper into the skin and promotes skin aging than UVB and UVC. For this reason, there is a high social interest in protecting human skin and the like from UVA, and there is a great demand for UV absorbers having UVA absorption ability.
- the ultraviolet absorber used as a material such as a skin external preparation is a compound having solubility in an aqueous solvent.
- This invention is made
- the present inventors have intensively studied. As a result, the inventors succeeded in identifying and producing a novel compound having UVA absorption ability and solubility in an aqueous solvent, and completed the present invention. That is, the present invention adopts the following configuration.
- a compound having a UV-absorbing ability represented by the formula (I) or a salt thereof is represented by the formula (I) or a salt thereof.
- R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms.
- R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
- X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.
- [4] A method for producing the compound or salt thereof according to any one of [1] to [3], Culturing microorganisms growing on plants to obtain microbial cells; Extracting the cells with a solvent to obtain an extract; Recovering the compound represented by the formula (I) or a salt thereof from the extract.
- [6] A skin external preparation containing the compound or salt thereof according to any one of [1] to [3].
- the compound of the present invention or a salt thereof has ultraviolet absorbing ability and solubility in an aqueous solvent.
- the compound of the present invention or a salt thereof is excellent in ultraviolet absorbing ability in the UVA region.
- the compound of the present invention or a salt thereof is excellent in solubility in an aqueous solvent, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations. Since the cosmetic and external preparation for skin of the present invention contains the compound of the present invention or a salt thereof, it has excellent UVA absorption ability and can be produced without using a hydrophobic solvent.
- FIG. 2 is a graph showing the relationship between ultraviolet absorption intensity and elution time in the HPLC analysis of the crude product obtained in Example 1.
- FIG. 2 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 1 and detection sensitivity (relative intensity).
- 2 is a diagram showing the results of X-ray crystal structure analysis of the purified compound obtained in Example 1.
- FIG. 2 is a graph showing the relationship between ultraviolet absorption intensity and elution time in HPLC analysis of the purified compound obtained in Example 1.
- FIG. 4 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 2 and detection sensitivity (relative intensity).
- 4 is a graph showing the relationship between ultraviolet absorption intensity and elution time in HPLC analysis of the purified compound obtained in Example 2.
- 4 is a graph showing the relationship between the mass-to-charge ratio of the crude product obtained in Example 3 and detection sensitivity (relative intensity).
- R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms.
- R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
- X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.
- R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
- a linear or branched alkenyl group preferably a linear alkyl group having 1 to 5 carbon atoms, a methoxy group, or a vinyl group, and more preferably an alkyl group having 1 to 2 carbon atoms.
- it is a methyl group.
- R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a linear or branched group having 1 to 5 carbon atoms.
- the alkenyl group is preferably a straight-chain alkyl group having 1 to 5 carbon atoms or a methoxy group, more preferably an alkyl group having 1 to 2 carbon atoms, and most preferably a methyl group. preferable.
- R 2 is a linear or branched alkenyl group having 1 to 5 carbon atoms, if it is a —CH 2 —C 4 H 7 group, it has an influence on the conjugation of electrons related to the ultraviolet absorption ability. Since there are few, it is preferable.
- R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkenyl group having 1 to 5 carbon atoms, a hydrogen atom or an alkyl having 1 to 2 carbon atoms It is preferably a group, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
- the carboxyl group possessed by the compound represented by formula (I) may form a salt.
- the carboxyl group of the compound is preferably a carboxylic acid alkali metal salt or a carboxylic acid amine salt, more preferably a carboxylic acid alkali metal salt, and a carboxylic acid sodium salt. Most preferably it is.
- X is a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules, and is preferably a hydrogen atom or a linear sugar chain having 1 to 10 sugar molecules.
- a straight-chain sugar chain having 3 to 8 sugar molecules is more preferred, and a straight-chain sugar chain having 5 sugar molecules or hydrogen atoms is more preferred.
- the compound represented by the formula (I) or a salt thereof is particularly a compound represented by the formula (II) or a salt thereof, wherein R 1 and R 2 are methyl groups, and R 3 and X are hydrogen atoms, or R It is preferable that 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof.
- the sugar molecule may be pyranose or furanose, but is preferably pyranose.
- R 1 and R 2 are methyl groups
- R 3 is a hydrogen atom
- X is a linear sugar chain having 5 sugar molecules, or a salt thereof
- X is 1,4-glycosidically bonded to each other
- a compound represented by the formula (III) which is a sugar chain consisting of five hexoses (pyranose) or a salt thereof, and a sugar chain consisting of five hexoses (pyranose) in which X is 1,6-glycosidically bonded to each other.
- X in the formula (I) is a linear sugar chain composed of five hexoses (pyranose), and the hexoses are 1,4-glycosides
- a compound or a salt thereof which is a sugar chain in which a bonded part and a 1,6-glycoside bonded part are mixed is preferable.
- a compound represented by formula (III) or a salt thereof, a compound represented by formula (IV) or a salt thereof, and X in formula (I) is a linear sugar chain composed of five hexoses (pyranose)
- Two or more kinds may exist as a mixture in which an arbitrary ratio is mixed.
- the compound represented by the formula (I) or a salt thereof has a plurality of stereoisomers.
- the compound represented by the formula (I) or a salt thereof includes all these stereoisomers.
- the compound of the present embodiment or a salt thereof has a structure represented by the formula (I), it has solubility in an aqueous solvent and is excellent in ultraviolet absorbing ability in the UVA region.
- R 1 , R 2 , R 3 , and X are all arranged at positions that do not affect the above-described electron conjugation. For this reason, the excellent ultraviolet absorptivity is similarly obtained regardless of R 1 , R 2 , R 3 , and X in the compound represented by the formula (I) or a salt thereof.
- Method for producing compound or salt thereof having ultraviolet absorbing ability The compound of this embodiment or its salt can be manufactured by the manufacturing method shown below, for example. That is, a step of culturing microorganisms growing on a plant to obtain microbial cells (first step), a step of extracting microbial cells with a solvent to obtain an extract (second step), and formula (I) from the extract And a step (third step) of recovering the compound represented by the formula:
- the microorganisms cultured in this embodiment are grown on plants.
- the type of plant from which the microorganism is collected is not particularly limited. Examples of plant types include wheat ears, strawberry leaves, evening primrose petals, and rice leaf sheaths. These plants are preferable because many microorganisms of the genus Methylobacterium that produce the compound represented by the formula (I) or a salt thereof are grown.
- Examples of the method for collecting microorganisms that grow on the plant from the plant include a method in which the plant is immersed in a phosphate buffer and ground in a mortar to obtain a ground solution containing the microorganism.
- a conventionally known method can be used as a method for culturing microorganisms.
- a liquid culture method, a solid culture method, a liquid culture method or a solid culture method may be used, and the types of cells to be cultured. It can be appropriately determined according to the like.
- the medium used for culturing the microorganism include standard agar medium, L (Lennox) medium, LB (Luria Bertani) medium, NB (Nutient Broth) medium, PD (potato dextrose) medium, PPD (potato peptone dextrose). ) Medium, TB (Terrific broth) medium, etc. can be used.
- a microorganism collected from a plant is cultured by a solid culture method, and each microbial cell contained in the microorganism collected from the plant is separated and recovered.
- a grinding liquid containing microorganisms collected from a plant by the above method is applied (smeared) on the surface of a solid medium and cultured to form colonies.
- Conventionally known conditions can be adopted as culture conditions for microorganisms in the case of using a solid medium.
- aerobic conditions can be set at 25 ° C. for 3 to 7 days.
- the cells forming single colonies are collected by a method of scraping the single colonies appearing on the surface of the solid medium, and the individual cells contained in the microorganisms collected from the plant are separated.
- Each bacterial cell recovered from a single colony that appears on the surface of the solid medium may be applied to the surface of a new solid medium and cultured (pure culture) for each bacterial cell, if necessary, and recovered. .
- the presence or absence of ultraviolet absorbing ability is examined by spectrocolorimetric method, absorptiometric method, etc. for each bacterial cell separated and recovered from the microorganisms collected from the plant in this way.
- cells having ultraviolet absorbing ability are identified.
- a method for identifying a bacterial cell a conventionally known method such as a method of identifying based on the base sequence of an rRNA gene can be used.
- the bacterial cells of the genus Methylobacterium are cultured by a liquid culture method.
- a microorganism belonging to the genus Methylobacterium produces a compound represented by the formula (I) or a salt thereof.
- the WI-182 strain (strain name), the W-213 strain (strain name), the f11 strain (strain name), and the 24N-25 strain (strain name) described later should be used. Is preferred.
- These strains are microorganisms that grow on plants, can be increased by culture, and can efficiently produce the compound represented by the formula (I) or a salt thereof.
- WI-182 strain (strain name) is preferable because it can be easily increased by culture.
- the cells of the genus Methylobacterium separated and recovered from the microorganisms collected from the plant by the above method are cultured by a liquid culture method.
- the cells isolated from the microorganisms collected from the plant contain multiple types of Methylobacterium, the highest UV-absorbing ability from the multiple types of Methylobacterium It is preferable to select cells and culture them by a liquid culture method.
- microorganisms collected from plants are cultured and separated and collected by an individual culture method, and among the obtained bacterial cells, only the cells of the genus Methylobacterium having ultraviolet absorption ability are cultured by a liquid culture method. To do. For this reason, the microbial cell which has the ultraviolet absorption ability contained in the microorganisms extract
- the culture conditions for the bacterial cells when using a liquid medium.
- aerobic conditions can be set at 25 ° C. for 3 to 7 days.
- the liquid medium containing the cells may be cultured while being stirred or shaken, or air is supplied to the liquid medium containing the cells.
- Bacteria obtained by culturing using a liquid medium can be collected using, for example, a centrifugal separation method, a filtration method, or the like.
- the cells recovered from the liquid medium may be frozen and vacuum dried, and then extracted with a solvent in the next step, or may be extracted with a solvent in the next step while being recovered.
- the cells cultured in a liquid medium can be further cultured using a new liquid medium as necessary in order to secure a sufficient amount of the compound represented by formula (I) or a salt thereof. May be recovered from.
- the cells of the genus Methylobacterium collected by culturing in the first step are extracted with a solvent to obtain an extract.
- the method for obtaining the extract include the following methods. First, a solvent is added to the cells and stirred, and the compound represented by the formula (I) or a salt thereof is extracted from the cells in the solvent. Next, the solvent containing the cells after extraction is filtered to obtain an extract as a filtrate. Thereafter, the extract is concentrated, frozen and vacuum dried to obtain an extract.
- the solvent used for bacterial cell extraction include alcohol or a mixed solution of alcohol and water. Among these, as a solvent, it is preferable to use methanol, ethanol, isopropyl alcohol, or a mixed solution of these and water, and it is more preferable to use a mixed solution of methanol and water.
- (Third step) a step of recovering the compound represented by the formula (I) or a salt thereof, which is the target product, from the extract obtained in the second step.
- alkali treatment and purification treatment are performed as a step of recovering the target product from the extract.
- the alkali treatment may be performed before the purification treatment, after the purification treatment, or may be performed together with the purification treatment.
- Alkali treatment is carried out by bringing the extract into contact with an alkaline solution and further extracting the target product from the extract.
- the pH of the alkaline solution is preferably 9.0 to 14.0, more preferably 10.0 to 13.0, still more preferably 11.0 to 12.0.
- Examples of the alkaline solution include a mixed solution of aqueous ammonia and methanol.
- a conventionally known method can be used, and examples thereof include anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography. It is done.
- the purification treatment may be performed by a mixed mode chromatography method in which the above chromatography methods are mixed, or may be performed by a method in which different types of chromatography methods are performed a plurality of times.
- the cation exchange chromatography method using PORAPAK Rxn CX manufactured by WATERS as the column and the hydrophobic chromatography method using Sunrise C28 manufactured by CHROMANIC TECHNOLOGIES are particularly preferable.
- Examples of the method of performing the alkali treatment together with the purification treatment include a method of performing the above-described chromatography method using the above-mentioned alkaline solution. Specifically, it is preferable to use a cation exchange chromatography method using PoraPak Rxn CX manufactured by WATERS as a column and recovering components eluted with a mixed solution of aqueous ammonia and methanol, which is an alkaline solution.
- the compound represented by the formula (I) or a salt thereof, which is the target product is obtained.
- the target product recovered by the production method of the present embodiment is represented by the formula (I) using LC / MS (liquid chromatography mass spectrometry) analysis, NMR (nuclear magnetic resonance) analysis, X-ray crystal structure analysis, and the like. Can be confirmed.
- the LC / MS analysis can be performed, for example, under the following conditions.
- LC liquid chromatography
- PDA detector SPD-M10A
- column temperature 40 ° C.
- flow rate 1.0 ml / min
- mobile phase as ammonium formate
- MS mass spectrometry
- ESI electrospray ionization
- the NMR analysis can be performed in heavy water using, for example, AVANCE500 manufactured by BRUKER BIOSPIN.
- the compound of the present embodiment represented by the formula (I) or a salt thereof has ultraviolet absorption ability and solubility in an aqueous solvent.
- the compound represented by the formula (I) or a salt thereof has a high absorption peak in the wavelength region of 350 to 360 nm, and is excellent in ultraviolet absorption ability in the UVA region.
- the compound of the present embodiment or a salt thereof is a mixed solution of any one or more of methanol, ethanol, propanol, acetonitrile, ethylene glycol, propylene glycol, and butanediol and water, an alkali metal, an alkaline earth metal salt, Since it is excellent in solubility in an aqueous solvent such as water, a mixture of one or more of organic acids and amino acids and water, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations. .
- a highly pure compound represented by the formula (I) or a salt thereof can be produced. Therefore, for example, when the compound represented by the formula (I) obtained by the production method of the present embodiment or a salt thereof is used as a material for cosmetics and skin external preparations, the compound represented by the formula (I) or a salt thereof It is preferable because defects caused by impurities contained in the salt hardly occur.
- the manufacturing method of the compound represented by Formula (I) or its salt is not limited to said method.
- any one of R 1 , R 2 , R 3 , and X in the formula (I) You may manufacture the compound or its salt represented by the formula (I) from which 1 or more differs.
- the compound represented by the formula (I) or a salt thereof is chemically used only as a raw material by using only components that are not derived from nature without using those extracted from cells obtained by culturing microorganisms that grow on plants. May be synthesized.
- the skin external preparation and cosmetics of this embodiment contain the compound represented by the formula (I) or a salt thereof.
- the compound represented by the formula (I) or a salt thereof contained in the external preparation for skin and cosmetics of this embodiment may be only one type or two or more types.
- the skin external preparation and cosmetics of this embodiment may contain only the compound represented by the formula (I) and may not contain the salt of the compound represented by the formula (I). It may contain only the salt of the compound represented, and may not contain the compound represented by formula (I), or it may contain both the compound represented by formula (I) and the salt of the compound represented by formula (I). You may do it.
- the combination and ratio can be appropriately selected depending on the purpose.
- the external preparation for skin and cosmetics are components usually used in the external preparation for skin or cosmetics as long as they do not impair the effects of the present invention.
- Other components may be contained at a general concentration.
- the components that are usually used in the external preparation for skin or cosmetics include ingredients such as raw materials described in existing raw material specifications or official documents, pharmaceutically acceptable carriers, additives, etc. as external preparations for skin. .
- These other components may be used individually by 1 type, and may use 2 or more types together.
- Examples of skin external preparations and cosmetics include, for example, treatment, hair pack, hair foam, hair mousse, hair spray, hair mist, hair wax, hair gel, water grease, set lotion, color lotion, hair tonic, hair liquid, pomade, Cosmetics for hair such as tics, hair creams, hair blows, split coats, hair oils, hair color after treatments, perm after treatments, hair manicures, hair restorers; lotions, soft lotions, astringent lotions, cleansing lotions, Multi-layer lotion, emulsion, emollient lotion, moisture lotion, milky lotion, nourishing lotion, nourishing milk, skin moisture, moisture emulsion, makeup lotion, elbow Lotion, hand lotion, body lotion, cream, emollient cream, nourishing cream, nourishing cream, burnishing cream, moisture cream, night cream, makeup cream, base cream, pre-makeup cream, gel, moisture gel, whitening essence, liposome serum , Basic cosmetics such as liposome lotion; makeup powders such as white powder, dusting powder, foundations, makeup base
- Examples of skin external preparations and cosmetics include emulsified types such as oil-in-water (O / W) type, water-in-oil (W / O) type, W / O / W type, and O / W / O type; Polymer type; Solid; Liquid; Kneaded; Stick; Volatile oil; Powder; Water; Jelly; Gel; Paste; Cream; Sheet; Film; Mist; Spray; Examples include lamellar form; foam form; flake form and the like.
- the external preparation for skin and cosmetics can be produced by blending the compound represented by the formula (I) or a salt thereof, and other components as necessary, and preparing it.
- the skin external preparation and cosmetic can be produced in the same manner as known skin external preparations and cosmetics, except that the compound represented by the formula (I) or a salt thereof is blended.
- the skin external preparation and cosmetics of this embodiment contain a compound represented by the formula (I) having excellent UVA absorption ability or a salt thereof. Therefore, the external preparation for skin and cosmetics of this embodiment are highly effective in protecting human skin and the like from UVA. Moreover, since the skin external preparation and cosmetics of this embodiment contain the compound or its salt represented by Formula (I) which has the solubility with respect to an aqueous solvent, it can be manufactured without using a hydrophobic solvent, and according to a use. Can be made into various dosage forms.
- Example 1 “1. Collecting microorganisms” Strawberry leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground solution containing microorganisms.
- each bacterial cell separated and recovered from the microorganisms collected from the plant in this manner was examined for the presence or absence of ultraviolet absorbing ability by absorptiometry.
- the bacterial cell having the highest ultraviolet absorption ability was identified.
- the bacterial cells were identified based on the base sequence of the rRNA gene. As a result, the cells were of the genus Methylobacterium. This microbial cell was named WI-182 strain.
- agar plate media from which the cells of the genus Methylobacterium (WI-182 strain) were obtained were prepared and suspended in each agar plate medium by adding 10 ml of sterile purified water. Obtained. Suspensions obtained from two agar plate media were mixed to prepare a mixed solution, each 2 ml was added to seven 100 ml PD media (manufactured by Difco), and cultured at 25 ° C. for 90 hours under aerobic conditions. 600 ml was collected from a culture cultured in 7 PD media and added to 30 L of PD media (Difco). Then, 15 L / min of air was supplied to the liquid medium while stirring the liquid medium containing the bacterial cells using a stirrer at a rotational speed of 400 rpm, and cultured at 25 ° C. for 7 days.
- the extract was purified by cation exchange chromatography using an alkaline solution.
- an extract was added to methanol and dissolved to obtain a methanol solution.
- the methanol solution was passed through a column (PoraPak Rxn CX manufactured by WATERS) to adsorb the extract on the ion exchange resin.
- the adsorbed extract components dissolved in the alkaline solution were eluted to obtain an eluate. Thereafter, the eluate was concentrated on a rotary evaporator, frozen and vacuum dried to recover 1.36 g of a tan compound as a crude product.
- FIG. 1 is a graph showing the relationship between the ultraviolet absorption intensity of the crude product obtained in Example 1 and the elution time.
- the crude product obtained in Example 1 was eluted at 3.3 min, 4.3 min, 5.2 min, 16.8 min, 17.6 min when measured at a UV measurement wavelength of 360 nm.
- a major peak was detected at the position of. It was confirmed that the peaks at elution times of 4.3 min, 16.8 min, and 17.6 min show high absorption peaks in the wavelength region of 350 to 360 nm.
- the elution fraction of the peak with an elution time of 4.3 min from which the strongest UV absorption result was obtained in the HPLC analysis was collected.
- the collected eluate was concentrated under reduced pressure using a rotary evaporator, frozen, and vacuum dried to recover a yellowish white compound (target product) as a purified compound.
- MS mass spectrometry
- ESI electrospray ionization
- source voltage positive mode 3.5 kV, negative mode -3.0 kV
- capillary temperature 275 ° C. source heater temperature
- FIG. 2 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 1 and the detection sensitivity (relative intensity). From FIG. 2, it was confirmed that the molecular weight of the purified compound obtained in Example 1 was 302.
- NMR analysis of purified compounds NMR analysis of the purified compound of Example 1 obtained as described above was performed.
- an NMR apparatus an AVANCE 500 manufactured by BRUKER BIOSPIN was used and analyzed in heavy water. The results are shown below.
- X-ray crystal structure analysis of purified compounds 8 mg of the purified compound of Example 1 obtained as described above was weighed into a 10 mL glass-made pitch glass, and 0.2 mL of ultrapure water was added and completely dissolved. Next, 1 mL of ethanol was gently added to the upper layer along the wall of the vessel and allowed to stand in the laboratory for 2 days to precipitate crystals. The obtained crystal was subjected to X-ray crystal structure analysis using R-AXIS RAPID II manufactured by Rigaku. As a result, the molecular formula was found to be C 12 H 18 N 2 O 7 .
- the X-ray crystal structure analysis result of the purified compound obtained in Example 1 is shown in FIG.
- Example 1 Obtained in Example 1 from the results of “liquid chromatography mass spectrometry (LC / MS) analysis of purified compound”, “nuclear magnetic resonance (NMR) analysis of purified compound”, and “X-ray crystal structure analysis of purified compound” above. It was confirmed that the purified compound was a compound represented by the formula (V).
- FIG. 4 is a graph showing the relationship between the ultraviolet absorption intensity of the purified compound obtained in Example 1 and the elution time. As shown in FIG. 4, in the purified compound obtained in Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
- solubility test of purified compounds About the refinement
- 5 mg of the purified compound obtained in Example 1 was precisely weighed, 0.5 ml of each of the solvents 1 to 7 shown in Table 1 was added and stirred for 30 seconds, and then filtered to obtain 1 to 7 dissolved solutions. .
- 100 ⁇ l of each of the obtained 1-7 lysates was put in a 96-well microplate, and an ultraviolet absorption spectrum was measured with a microplate reader (INFINITE200 PRO manufactured by TECAN). The ultraviolet absorption spectrum was measured by a spectrum scan method in which wavelengths in the 200 to 600 nm region were continuously measured at 10 nm intervals.
- Example 2 The crude purified product obtained in Example 1 was subjected to HPLC analysis in the same manner as in “6. Recovery of target product from extract (2)” in Example 1, and the second UV absorption intensity in HPLC analysis. The elution fraction of the peak (see FIG. 1) with an elution time of 16.8 min, which gave a strong result, was collected. Then, the fraction eluted was concentrated under reduced pressure using a rotary evaporator, frozen and vacuum dried to recover a yellowish white compound.
- Example 2 The yellowish white compound obtained in Example 2 was subjected to HPLC in the same manner as in “6. Recovery of target product from extract (2)” in Example 1 except that the gradient conditions were as follows. It refine
- Example 2 The purified compound obtained in Example 2 was subjected to “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” in the same manner as in Example 1 except that the gradient conditions were changed as follows.
- FIG. 5 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 2 and the detection sensitivity (relative intensity). From FIG. 5, it was confirmed that the molecular weight of the purified compound obtained in Example 2 was 1112.
- Example 2 The purified compound obtained in Example 2 was subjected to “nuclear magnetic resonance (NMR) analysis of the purified compound” in the same manner as in Example 1. The results are shown below.
- Example 2 From the results of the above-mentioned “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” and “nuclear magnetic resonance (NMR) analysis of the purified compound”, the purified compound obtained in Example 2 is represented by the formula (I). It was confirmed that R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof.
- LC / MS liquid chromatography mass spectrometry
- NMR nuclear magnetic resonance
- the purified compound obtained in Example 2 has the formula (III ) And / or a compound represented by formula (IV).
- FIG. 6 is a graph showing the relationship between the ultraviolet absorption intensity and the elution time of the purified compound obtained in Example 2.
- FIG. 6 As shown in FIG. 6, in the purified compound obtained in Example 2, a peak was detected at an elution time of 21.25 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
- Example 2 the purified compound obtained in Example 2 was subjected to a “purification compound solubility test” in the same manner as in Example 1.
- the higher the proportion of water in the solvent the greater the absorbance value. From this, it was found that the solubility of the purified compound in water was high.
- Example 3 “1. Collecting microorganisms” Wheat leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground liquid containing microorganisms. Thereafter, the steps from “2. Cultivation of microorganism” to “5. Recovery of target substance from extract (1)” were carried out in the same manner as in Example 1.
- Example 3 each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named W-213 strain. In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
- Example 3 The crude purified product obtained in Example 3 was subjected to LC / MS analysis in the same manner as in “Liquid chromatography mass spectrometry (LC / MS) analysis of purified compound” in Example 1. The result is shown in FIG. FIG. 7 is a graph showing the relationship between the mass-to-charge ratio of the crude product obtained in Example 3 and detection sensitivity (relative intensity). From FIG. 7, it was confirmed that the crudely purified product obtained in Example 3 contains a compound having a molecular weight of 302.
- Example 3 The crude product obtained in Example 3 was obtained in Example 1 based on the fact that the identified cells were of the genus Methylobacterium and the results of LC / MS analysis of the obtained crude product. It is considered to be the same as the crude product.
- the crude compound obtained in Example 3 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound.
- the “HPLC analysis of the purified compound” in Example 1 was performed on the purified compound of Example 3 thus obtained.
- a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
- Example 3 the purified compound obtained in Example 3 was subjected to the same test as the “purified compound solubility test” in Example 1. As a result, it was confirmed that the higher the proportion of water in the solvent, the higher the absorbance value and the higher the solubility in water.
- Example 4 In “1. Collecting microorganisms”, except that primrose petals were used in place of strawberry leaves, the same procedures as in Example 1 were performed, except that “1. Collecting microorganisms” to “5. The steps up to “Recovery (1)” were performed. Each bacterial cell obtained by separation and recovery in “2. Microbial culture” in Example 4 was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named f11 strain. In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
- Example 5 In “1. Collecting microorganisms”, except for using a rice leaf sheath instead of strawberry leaves, the same procedures as in Example 1 were performed, “1. Collecting microorganisms” to “5. The steps up to (1) ”were performed.
- each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorption ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named 24N-25 strain.
- a tan compound which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
- Example 4 the crude purified product obtained in Example 4 and Example 5 was subjected to HPLC analysis in the same manner as in “6. Recovery of target product from extract (2)” in Example 1, respectively.
- the peak with the strongest ultraviolet absorption intensity was obtained at the elution time of 4.3 min in the HPLC analysis.
- Example 4 and Example 5 The crude product obtained in Example 4 and Example 5 was obtained in Example 1 based on the fact that the identified bacterial cells belong to the genus Methylobacterium and the results of HPLC analysis of the obtained crude product. It is considered to be the same as the obtained crude product. Further, the crude compound obtained in Example 4 and Example 5 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound. . The “HPLC analysis of the purified compound” in Example 1 was performed on the purified compounds of Example 4 and Example 5 thus obtained. As a result, similar to the purified compound of Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm.
- Table 2 shows the plants from which microorganisms were collected, the molecular weight of the purified compound, the structure of the purified compound, the ultraviolet absorption ability, and the solubility.
- the ultraviolet absorption ability “ ⁇ ” means having an absorption ability in the ultraviolet A wave (UVA) region having a wavelength of 320 to 400 nm.
- the solubility “ ⁇ ” means having solubility in water.
- the compound of the present invention or a salt thereof has ultraviolet absorption ability in the UVA region and solubility in an aqueous solvent, and is suitable as a material for cosmetics and skin external preparations.
- the compound of the present invention or a salt thereof can be expected to be used as a UV absorber in cosmetics and skin external preparations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Cosmetics (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Provided is a compound represented by formula (I) or a salt thereof (in formula (I): R1 and R2 each represent hydrogen, a C1-5 straight-chain or branched alkyl group, a C1-5 straight-chain or branched alkoxy group, or a C1-5 straight-chain or branched alkenyl group; R3 represents hydrogen, a C1-5 straight-chain or branched alkyl group, or a C1-5 straight-chain or branched alkenyl group; and X represents hydrogen, or a straight or branched sugar chain having 1-10 sugar molecules).
Description
本発明は、紫外線吸収能を有する化合物またはその塩、およびその製造方法、皮膚外用剤、化粧料に関する。
本出願は、2015年9月24日に日本に出願された特願2015-187181に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a compound having an ability to absorb ultraviolet rays or a salt thereof, a production method thereof, an external preparation for skin, and a cosmetic.
This application claims priority based on Japanese Patent Application No. 2015-187181 filed in Japan on September 24, 2015, the contents of which are incorporated herein by reference.
本出願は、2015年9月24日に日本に出願された特願2015-187181に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a compound having an ability to absorb ultraviolet rays or a salt thereof, a production method thereof, an external preparation for skin, and a cosmetic.
This application claims priority based on Japanese Patent Application No. 2015-187181 filed in Japan on September 24, 2015, the contents of which are incorporated herein by reference.
太陽光線に含まれる紫外線は、人間の皮膚などに様々な影響を及ぼす。具体的には、皮膚にシミ、シワを発生させて老化を促進する、アレルギー反応を引き起こす、発癌の原因となるなど、紫外線による様々な有害性が知られている。
太陽光線に含まれる紫外線は、波長320~400nmの紫外線A波(UVA)、波長280~320nmの紫外線B波(UVB)、波長200~280nmの紫外線C波(UVC)に大別される。 Ultraviolet rays contained in sunlight have various effects on human skin and the like. Specifically, various harmful effects due to ultraviolet rays are known, such as causing blemishes and wrinkles on the skin to promote aging, causing allergic reactions, and causing carcinogenesis.
Ultraviolet rays contained in sunlight are roughly classified into ultraviolet A waves (UVA) having a wavelength of 320 to 400 nm, ultraviolet B waves (UVB) having a wavelength of 280 to 320 nm, and ultraviolet C waves (UVC) having a wavelength of 200 to 280 nm.
太陽光線に含まれる紫外線は、波長320~400nmの紫外線A波(UVA)、波長280~320nmの紫外線B波(UVB)、波長200~280nmの紫外線C波(UVC)に大別される。 Ultraviolet rays contained in sunlight have various effects on human skin and the like. Specifically, various harmful effects due to ultraviolet rays are known, such as causing blemishes and wrinkles on the skin to promote aging, causing allergic reactions, and causing carcinogenesis.
Ultraviolet rays contained in sunlight are roughly classified into ultraviolet A waves (UVA) having a wavelength of 320 to 400 nm, ultraviolet B waves (UVB) having a wavelength of 280 to 320 nm, and ultraviolet C waves (UVC) having a wavelength of 200 to 280 nm.
従来、紫外線から人間の皮膚などを守るために、様々な紫外線吸収剤が利用されている。例えば、UVB吸収能を有する紫外線吸収剤として、サリチル酸誘導体、p-アミノ安息香酸、ベンゾフェノン誘導体等の化学的に合成されたものがある。また、UVA吸収能を有する紫外線吸収剤として、アボベンゼン等の化学的に合成されたものがある。
Conventionally, various ultraviolet absorbers are used to protect human skin from ultraviolet rays. For example, there are chemically synthesized UV absorbers having UVB absorption ability such as salicylic acid derivatives, p-aminobenzoic acid, benzophenone derivatives and the like. Further, as an ultraviolet absorber having UVA absorption ability, there is a chemically synthesized material such as avobenzene.
また、UVA吸収能を有する紫外線吸収剤として、コショウ科の植物から抽出して得られるヤンゴニン(例えば、特許文献1参照。)、Gramineae科植物から得られる抽出物(例えば、特許文献2参照。)、ヒトおよび霊長類の眼球水晶体から抽出する2-アミノ-3-(β-D-グルコピラノシロキシ)-γ-オキソベンゼンブタノイックアシド(例えば、特許文献3参照。)が報告されている。
Moreover, as an ultraviolet absorber having UVA absorption ability, yangonin obtained by extraction from a plant belonging to the family Pepperaceae (for example, see Patent Document 1), an extract obtained from a Gramineae family plant (for example, see Patent Document 2). 2-amino-3- (β-D-glucopyranosyloxy) -γ-oxobenzenebutanoic acid extracted from human and primate ocular lenses has been reported (see, for example, Patent Document 3). .
海洋細菌が生産するUVB吸収能を有する紫外線吸収剤として、ぺラジオバクター属に属する微生物の培養物から採取した化合物(特許文献4)が知られている。また、海洋細菌が生産するUVC吸収能を有する紫外線吸収剤として、サーモアクチノマイセス属に属する微生物の培養物から採取した化合物(特許文献5)が知られている。
As an ultraviolet absorber having a UVB absorbing ability produced by marine bacteria, a compound collected from a culture of microorganisms belonging to the genus Perradibacter (Patent Document 4) is known. In addition, a compound collected from a culture of a microorganism belonging to the genus Thermoactinomyces (Patent Document 5) is known as an ultraviolet absorber having a UVC absorption ability produced by marine bacteria.
また、特許文献6には、植物表面に生息する微生物に由来する紫外線吸収剤組成物であって、UVA領域に紫外線吸収スペクトルの吸収ピークを有する紫外線吸収剤組成物が開示されている。
Patent Document 6 discloses an ultraviolet absorbent composition derived from microorganisms that inhabit the plant surface and having an ultraviolet absorption spectrum absorption peak in the UVA region.
UVAは、UVBおよびUVCよりも皮膚の深部に侵入して、皮膚の老化を促進することが広く知られている。このため、UVAから人間の皮膚などを守ることに対する社会の関心は高く、UVA吸収能を有する紫外線吸収剤の需要は多い。
また、皮膚外用剤などの材料として用いる紫外線吸収剤は、水系溶媒に対する溶解性を有する化合物であることが望ましい。 It is well known that UVA penetrates deeper into the skin and promotes skin aging than UVB and UVC. For this reason, there is a high social interest in protecting human skin and the like from UVA, and there is a great demand for UV absorbers having UVA absorption ability.
Moreover, it is desirable that the ultraviolet absorber used as a material such as a skin external preparation is a compound having solubility in an aqueous solvent.
また、皮膚外用剤などの材料として用いる紫外線吸収剤は、水系溶媒に対する溶解性を有する化合物であることが望ましい。 It is well known that UVA penetrates deeper into the skin and promotes skin aging than UVB and UVC. For this reason, there is a high social interest in protecting human skin and the like from UVA, and there is a great demand for UV absorbers having UVA absorption ability.
Moreover, it is desirable that the ultraviolet absorber used as a material such as a skin external preparation is a compound having solubility in an aqueous solvent.
本発明は、上記事情に鑑みてなされたものであり、UVA吸収能および水系溶媒に対する溶解性を有する新規化合物およびその製造方法を提供することを課題とする。
また、本発明は、UVA吸収能および水系溶媒に対する溶解性を有する新規化合物を含む皮膚外用剤、化粧料を提供することを課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to provide the novel compound which has UVA absorptivity, and the solubility with respect to an aqueous solvent, and its manufacturing method.
Moreover, this invention makes it a subject to provide the skin external preparation and cosmetics containing the novel compound which has the solubility with respect to UVA absorption ability and an aqueous solvent.
また、本発明は、UVA吸収能および水系溶媒に対する溶解性を有する新規化合物を含む皮膚外用剤、化粧料を提供することを課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to provide the novel compound which has UVA absorptivity, and the solubility with respect to an aqueous solvent, and its manufacturing method.
Moreover, this invention makes it a subject to provide the skin external preparation and cosmetics containing the novel compound which has the solubility with respect to UVA absorption ability and an aqueous solvent.
本発明者らは、上記課題を解決するために、鋭意検討した。
その結果、本発明者らは、UVA吸収能および水系溶媒に対する溶解性を有する新規化合物の同定および製造に成功し、本発明を完成するに至った。
すなわち、本発明は以下の構成を採用する。 In order to solve the above-mentioned problems, the present inventors have intensively studied.
As a result, the inventors succeeded in identifying and producing a novel compound having UVA absorption ability and solubility in an aqueous solvent, and completed the present invention.
That is, the present invention adopts the following configuration.
その結果、本発明者らは、UVA吸収能および水系溶媒に対する溶解性を有する新規化合物の同定および製造に成功し、本発明を完成するに至った。
すなわち、本発明は以下の構成を採用する。 In order to solve the above-mentioned problems, the present inventors have intensively studied.
As a result, the inventors succeeded in identifying and producing a novel compound having UVA absorption ability and solubility in an aqueous solvent, and completed the present invention.
That is, the present invention adopts the following configuration.
[1] 式(I)で表わされる紫外線吸収能を有する化合物またはその塩。
[1] A compound having a UV-absorbing ability represented by the formula (I) or a salt thereof.
(式(I)において、R1およびR2は、それぞれ独立して、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。R3は、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖を表す。)
(In Formula (I), R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms. Represents an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkenyl group having 1 to 5 carbon atoms, wherein R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.)
[2] 式(I)で表わされる化合物またはその塩が、式(II)で表わされる化合物またはその塩である[1]に記載の化合物またはその塩。
[2] The compound or salt thereof according to [1], wherein the compound represented by formula (I) or a salt thereof is a compound represented by formula (II) or a salt thereof.
[3] 式(I)において、R1およびR2がメチル基であり、R3が水素原子であり、Xが糖分子数5の直鎖状の糖鎖である[1]に記載の化合物またはその塩。
[3] The compound according to [1], wherein in formula (I), R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules. Or its salt.
[4] [1]~[3]のいずれかに記載の化合物またはその塩の製造方法であり、
植物に生育する微生物を培養して菌体を得る工程と、
前記菌体を溶媒で抽出して抽出物を得る工程と、
前記抽出物から式(I)で表される化合物またはその塩を回収する工程とを含む化合物またはその塩の製造方法。 [4] A method for producing the compound or salt thereof according to any one of [1] to [3],
Culturing microorganisms growing on plants to obtain microbial cells;
Extracting the cells with a solvent to obtain an extract;
Recovering the compound represented by the formula (I) or a salt thereof from the extract.
植物に生育する微生物を培養して菌体を得る工程と、
前記菌体を溶媒で抽出して抽出物を得る工程と、
前記抽出物から式(I)で表される化合物またはその塩を回収する工程とを含む化合物またはその塩の製造方法。 [4] A method for producing the compound or salt thereof according to any one of [1] to [3],
Culturing microorganisms growing on plants to obtain microbial cells;
Extracting the cells with a solvent to obtain an extract;
Recovering the compound represented by the formula (I) or a salt thereof from the extract.
[5] 前記菌体が、メチロバクテリウム属である[4]に記載の化合物またはその塩の製造方法。
[5] The method for producing a compound or a salt thereof according to [4], wherein the cells are of the genus Methylobacterium.
[6] [1]~[3]のいずれかに記載の化合物またはその塩を含む皮膚外用剤。
[7] [1]~[3]のいずれかに記載の化合物またはその塩を含む化粧料。 [6] A skin external preparation containing the compound or salt thereof according to any one of [1] to [3].
[7] A cosmetic comprising the compound or salt thereof according to any one of [1] to [3].
[7] [1]~[3]のいずれかに記載の化合物またはその塩を含む化粧料。 [6] A skin external preparation containing the compound or salt thereof according to any one of [1] to [3].
[7] A cosmetic comprising the compound or salt thereof according to any one of [1] to [3].
本発明の化合物またはその塩は、紫外線吸収能および水系溶媒に対する溶解性を有する。特に、本発明の化合物またはその塩は、UVA領域での紫外線吸収能に優れる。
また、本発明の化合物またはその塩は、水系溶媒に対する溶解性に優れるので、化粧料および皮膚外用剤の材料として用いる場合、水系溶媒を用いて容易に配合できる。
本発明の化粧料、皮膚外用剤は、本発明の化合物またはその塩を含むため、優れたUVA吸収能を有し、疎水性溶媒を使わずに製造できる。 The compound of the present invention or a salt thereof has ultraviolet absorbing ability and solubility in an aqueous solvent. In particular, the compound of the present invention or a salt thereof is excellent in ultraviolet absorbing ability in the UVA region.
Further, since the compound of the present invention or a salt thereof is excellent in solubility in an aqueous solvent, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations.
Since the cosmetic and external preparation for skin of the present invention contains the compound of the present invention or a salt thereof, it has excellent UVA absorption ability and can be produced without using a hydrophobic solvent.
また、本発明の化合物またはその塩は、水系溶媒に対する溶解性に優れるので、化粧料および皮膚外用剤の材料として用いる場合、水系溶媒を用いて容易に配合できる。
本発明の化粧料、皮膚外用剤は、本発明の化合物またはその塩を含むため、優れたUVA吸収能を有し、疎水性溶媒を使わずに製造できる。 The compound of the present invention or a salt thereof has ultraviolet absorbing ability and solubility in an aqueous solvent. In particular, the compound of the present invention or a salt thereof is excellent in ultraviolet absorbing ability in the UVA region.
Further, since the compound of the present invention or a salt thereof is excellent in solubility in an aqueous solvent, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations.
Since the cosmetic and external preparation for skin of the present invention contains the compound of the present invention or a salt thereof, it has excellent UVA absorption ability and can be produced without using a hydrophobic solvent.
以下、本発明について詳細に説明する。
「紫外線吸収能を有する化合物またはその塩」
本実施形態の化合物またはその塩は、下記式(I)で表わされる新規化合物またはその塩である。 Hereinafter, the present invention will be described in detail.
"Compound having ultraviolet absorbing ability or salt thereof"
The compound of the present embodiment or a salt thereof is a novel compound represented by the following formula (I) or a salt thereof.
「紫外線吸収能を有する化合物またはその塩」
本実施形態の化合物またはその塩は、下記式(I)で表わされる新規化合物またはその塩である。 Hereinafter, the present invention will be described in detail.
"Compound having ultraviolet absorbing ability or salt thereof"
The compound of the present embodiment or a salt thereof is a novel compound represented by the following formula (I) or a salt thereof.
(式(I)において、R1およびR2は、それぞれ独立して、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。R3は、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基を表す。Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖を表す。)
(In Formula (I), R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or a linear or branched structure having 1 to 5 carbon atoms. Represents an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkenyl group having 1 to 5 carbon atoms, wherein R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. X represents a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules.)
式(I)において、R1は、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、炭素数1~5の直鎖状のアルキル基、メトキシ基、ビニル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましく、メチル基であることが最も好ましい。
In the formula (I), R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. A linear or branched alkenyl group, preferably a linear alkyl group having 1 to 5 carbon atoms, a methoxy group, or a vinyl group, and more preferably an alkyl group having 1 to 2 carbon atoms. Preferably, it is a methyl group.
R2は、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルコキシ基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、炭素数1~5の直鎖状のアルキル基、メトキシ基であることが好ましく、炭素数1~2のアルキル基であることがより好ましく、メチル基であることが最も好ましい。
なお、R2が炭素数1~5の直鎖状または分岐状のアルケニル基である場合、-CH2-C4H7基であると、紫外線吸収能に関係のある電子の共役に対する影響が少ないため好ましい。 R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a linear or branched group having 1 to 5 carbon atoms. The alkenyl group is preferably a straight-chain alkyl group having 1 to 5 carbon atoms or a methoxy group, more preferably an alkyl group having 1 to 2 carbon atoms, and most preferably a methyl group. preferable.
In the case where R 2 is a linear or branched alkenyl group having 1 to 5 carbon atoms, if it is a —CH 2 —C 4 H 7 group, it has an influence on the conjugation of electrons related to the ultraviolet absorption ability. Since there are few, it is preferable.
なお、R2が炭素数1~5の直鎖状または分岐状のアルケニル基である場合、-CH2-C4H7基であると、紫外線吸収能に関係のある電子の共役に対する影響が少ないため好ましい。 R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkoxy group having 1 to 5 carbon atoms, or a linear or branched group having 1 to 5 carbon atoms. The alkenyl group is preferably a straight-chain alkyl group having 1 to 5 carbon atoms or a methoxy group, more preferably an alkyl group having 1 to 2 carbon atoms, and most preferably a methyl group. preferable.
In the case where R 2 is a linear or branched alkenyl group having 1 to 5 carbon atoms, if it is a —CH 2 —C 4 H 7 group, it has an influence on the conjugation of electrons related to the ultraviolet absorption ability. Since there are few, it is preferable.
R3は、水素原子、炭素数1~5の直鎖状または分岐状のアルキル基、炭素数1~5の直鎖状または分岐状のアルケニル基であり、水素原子または炭素数1~2アルキル基であることが好ましく、水素原子またはメチル基であることがより好ましく、水素原子であることが最も好ましい。
R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a linear or branched alkenyl group having 1 to 5 carbon atoms, a hydrogen atom or an alkyl having 1 to 2 carbon atoms It is preferably a group, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
式(I)において、R3が水素原子である場合、式(I)で表わされる化合物が有しているカルボキシル基は、塩を形成していてもよい。化合物の有しているカルボキシル基が塩を形成している場合、カルボン酸アルカリ金属塩またはカルボン酸アミン塩であることが好ましく、カルボン酸アルカリ金属塩であることがより好ましく、カルボン酸ナトリウム塩であることが最も好ましい。
In formula (I), when R 3 is a hydrogen atom, the carboxyl group possessed by the compound represented by formula (I) may form a salt. When the carboxyl group of the compound forms a salt, it is preferably a carboxylic acid alkali metal salt or a carboxylic acid amine salt, more preferably a carboxylic acid alkali metal salt, and a carboxylic acid sodium salt. Most preferably it is.
Xは、水素原子、糖分子数1~10の直鎖状または分岐状の糖鎖であり、水素原子または糖分子数1~10の直鎖状の糖鎖であることが好ましく、水素原子または糖分子数3~8の直鎖状の糖鎖であることがより好ましく、水素原子または糖分子数5の直鎖状の糖鎖であることがさらに好ましい。
X is a hydrogen atom or a linear or branched sugar chain having 1 to 10 sugar molecules, and is preferably a hydrogen atom or a linear sugar chain having 1 to 10 sugar molecules. A straight-chain sugar chain having 3 to 8 sugar molecules is more preferred, and a straight-chain sugar chain having 5 sugar molecules or hydrogen atoms is more preferred.
式(I)で表わされる化合物またはその塩は、特に、R1およびR2がメチル基であり、R3およびXが水素原子である式(II)で表される化合物またはその塩、またはR1およびR2がメチル基であり、R3が水素原子であり、Xが糖分子数5の直鎖状の糖鎖である化合物またはその塩であることが好ましい。糖分子はピラノースでもフラノースでもよいが、ピラノースであることが好ましい。
The compound represented by the formula (I) or a salt thereof is particularly a compound represented by the formula (II) or a salt thereof, wherein R 1 and R 2 are methyl groups, and R 3 and X are hydrogen atoms, or R It is preferable that 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof. The sugar molecule may be pyranose or furanose, but is preferably pyranose.
R1およびR2がメチル基であり、R3が水素原子であり、Xが糖分子数5の直鎖状の糖鎖である化合物またはその塩は、Xが互いに1,4-グリコシド結合した5つの六炭糖(ピラノース)からなる糖鎖である式(III)で表される化合物またはその塩、Xが互いに1,6-グリコシド結合した5つの六炭糖(ピラノース)からなる糖鎖である式(IV)で表される化合物またはその塩、式(I)におけるXが5つの六炭糖(ピラノース)からなる直鎖状の糖鎖であって六炭糖同士が1,4-グリコシド結合している部分と1,6-グリコシド結合している部分とが混在している糖鎖である化合物またはその塩であることが好ましい。式(III)で表される化合物またはその塩、式(IV)で表される化合物またはその塩、式(I)におけるXが5つの六炭糖(ピラノース)からなる直鎖状の糖鎖であって六炭糖同士が1,4-グリコシド結合している部分と1,6-グリコシド結合している部分とが混在している糖鎖である化合物またはその塩は、これらの中から選ばれる2種以上が任意の割合で混合された混合物として存在していてもよい。
R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules, or a salt thereof, X is 1,4-glycosidically bonded to each other A compound represented by the formula (III), which is a sugar chain consisting of five hexoses (pyranose) or a salt thereof, and a sugar chain consisting of five hexoses (pyranose) in which X is 1,6-glycosidically bonded to each other. A compound represented by the formula (IV) or a salt thereof, wherein X in the formula (I) is a linear sugar chain composed of five hexoses (pyranose), and the hexoses are 1,4-glycosides A compound or a salt thereof which is a sugar chain in which a bonded part and a 1,6-glycoside bonded part are mixed is preferable. A compound represented by formula (III) or a salt thereof, a compound represented by formula (IV) or a salt thereof, and X in formula (I) is a linear sugar chain composed of five hexoses (pyranose) A compound or a salt thereof, which is a sugar chain in which a portion where hexoses are bonded with 1,4-glycosides and a portion where 1,6-glycosides are bonded, is selected from these. Two or more kinds may exist as a mixture in which an arbitrary ratio is mixed.
式(II)で表わされる化合物またはその塩は、式(V)で表わされる平衡状態の分子内塩として存在しているものであってもよい。より詳細には、式(V)では、式(II)で表わされる化合物またはその塩における炭素原子と二重結合している窒素原子から別の窒素原子との間の構造(N=C-C=C-N)が、平衡状態(N+=C-C=C-N⇔N-C=C-C=N+)となっている。
The compound represented by the formula (II) or a salt thereof may exist as an inner salt in an equilibrium state represented by the formula (V). More specifically, in the formula (V), a structure (N═C—C) between a nitrogen atom double-bonded to a carbon atom and another nitrogen atom in the compound represented by the formula (II) or a salt thereof. = CN) is in an equilibrium state (N + = C—C = CN⇔N—C = C—C = N + ).
式(I)、式(III)、式(IV)で表される化合物またはその塩においても、式中における(N=C-C=C-N)の部分が、平衡状態(N+=C-C=C-N⇔N-C=C-C=N+(式(V)参照))の分子内塩として存在していてもよい。
また、式(I)で表される化合物またはその塩には、複数の立体異性体が存在する。式(I)で表される化合物またはその塩には、これらすべての立体異性体が包含される。 Also in the compound represented by the formula (I), the formula (III), the formula (IV) or a salt thereof, the (N═C—C═CN) moiety in the formula is in an equilibrium state (N + = C It may be present as an inner salt of —C═CN—N—C═C—C═N + (see formula (V)).
In addition, the compound represented by the formula (I) or a salt thereof has a plurality of stereoisomers. The compound represented by the formula (I) or a salt thereof includes all these stereoisomers.
また、式(I)で表される化合物またはその塩には、複数の立体異性体が存在する。式(I)で表される化合物またはその塩には、これらすべての立体異性体が包含される。 Also in the compound represented by the formula (I), the formula (III), the formula (IV) or a salt thereof, the (N═C—C═CN) moiety in the formula is in an equilibrium state (N + = C It may be present as an inner salt of —C═CN—N—C═C—C═N + (see formula (V)).
In addition, the compound represented by the formula (I) or a salt thereof has a plurality of stereoisomers. The compound represented by the formula (I) or a salt thereof includes all these stereoisomers.
本実施形態の化合物またはその塩は、式(I)で表わされる構造を有するため、水系溶媒に対する溶解性を有し、UVA領域での紫外線吸収能に優れる。
式(I)で表わされる化合物またはその塩における紫外線吸収能は、式(I)における共役系(炭素原子と二重結合している窒素原子からR1の結合した窒素原子までの間の構造(N=C-C=C-N))が寄与するものと推定される。詳細なメカニズムは不明だが、pH等を調整することにより、式(I)における(N=C-C=C-N)の部分が平衡状態(N+=C-C=C-N⇔N-C=C-C=N+(式(V)参照))を形成し、電子の共役に関与して、紫外線吸収能を示すものと考えられる。 Since the compound of the present embodiment or a salt thereof has a structure represented by the formula (I), it has solubility in an aqueous solvent and is excellent in ultraviolet absorbing ability in the UVA region.
The ultraviolet absorptivity in the compound represented by the formula (I) or a salt thereof is determined by the conjugated system in the formula (I) (the structure between the nitrogen atom double-bonded to the carbon atom and the nitrogen atom bonded to R 1 ( N = C—C = CN)) is presumed to contribute. Although the detailed mechanism is unknown, by adjusting pH or the like, the part of (N = C—C = C—N) in the formula (I) is in an equilibrium state (N + = C—C = C−N⇔N− C = C—C═N + (see formula (V))), and is considered to exhibit ultraviolet absorption ability by participating in electron conjugation.
式(I)で表わされる化合物またはその塩における紫外線吸収能は、式(I)における共役系(炭素原子と二重結合している窒素原子からR1の結合した窒素原子までの間の構造(N=C-C=C-N))が寄与するものと推定される。詳細なメカニズムは不明だが、pH等を調整することにより、式(I)における(N=C-C=C-N)の部分が平衡状態(N+=C-C=C-N⇔N-C=C-C=N+(式(V)参照))を形成し、電子の共役に関与して、紫外線吸収能を示すものと考えられる。 Since the compound of the present embodiment or a salt thereof has a structure represented by the formula (I), it has solubility in an aqueous solvent and is excellent in ultraviolet absorbing ability in the UVA region.
The ultraviolet absorptivity in the compound represented by the formula (I) or a salt thereof is determined by the conjugated system in the formula (I) (the structure between the nitrogen atom double-bonded to the carbon atom and the nitrogen atom bonded to R 1 ( N = C—C = CN)) is presumed to contribute. Although the detailed mechanism is unknown, by adjusting pH or the like, the part of (N = C—C = C—N) in the formula (I) is in an equilibrium state (N + = C—C = C−N⇔N− C = C—C═N + (see formula (V))), and is considered to exhibit ultraviolet absorption ability by participating in electron conjugation.
なお、式(I)で表わされる化合物またはその塩では、R1、R2、R3、Xはいずれも上述した電子の共役に影響を与えない位置に配置されている。このため、式(I)で表わされる化合物またはその塩におけるR1、R2、R3、Xが、上述した如何なるものであっても同様に優れた紫外線吸収能が得られる。
In the compound represented by formula (I) or a salt thereof, R 1 , R 2 , R 3 , and X are all arranged at positions that do not affect the above-described electron conjugation. For this reason, the excellent ultraviolet absorptivity is similarly obtained regardless of R 1 , R 2 , R 3 , and X in the compound represented by the formula (I) or a salt thereof.
「紫外線吸収能を有する化合物またはその塩の製造方法」
本実施形態の化合物またはその塩は、例えば、以下に示す製造方法により製造できる。
すなわち、植物に生育する微生物を培養して菌体を得る工程(第1工程)と、菌体を溶媒で抽出して抽出物を得る工程(第2工程)と、抽出物から式(I)で表される化合物またはその塩を回収する工程(第3工程)とを行う。 “Method for producing compound or salt thereof having ultraviolet absorbing ability”
The compound of this embodiment or its salt can be manufactured by the manufacturing method shown below, for example.
That is, a step of culturing microorganisms growing on a plant to obtain microbial cells (first step), a step of extracting microbial cells with a solvent to obtain an extract (second step), and formula (I) from the extract And a step (third step) of recovering the compound represented by the formula:
本実施形態の化合物またはその塩は、例えば、以下に示す製造方法により製造できる。
すなわち、植物に生育する微生物を培養して菌体を得る工程(第1工程)と、菌体を溶媒で抽出して抽出物を得る工程(第2工程)と、抽出物から式(I)で表される化合物またはその塩を回収する工程(第3工程)とを行う。 “Method for producing compound or salt thereof having ultraviolet absorbing ability”
The compound of this embodiment or its salt can be manufactured by the manufacturing method shown below, for example.
That is, a step of culturing microorganisms growing on a plant to obtain microbial cells (first step), a step of extracting microbial cells with a solvent to obtain an extract (second step), and formula (I) from the extract And a step (third step) of recovering the compound represented by the formula:
(第1工程)
本実施形態において培養する微生物は、植物に成育しているものである。
微生物を採取する植物の種類は、特に限定されるものではない。植物の種類としては、例えば、コムギ穂、イチゴ葉、月見草の花弁、イネ葉鞘などが挙げられる。これらの植物は、式(I)で表わされる化合物またはその塩を生成するメチロバクテリウム属の微生物が多く生育しているため好ましい。
植物に生育する微生物を植物から採取する方法としては、例えば、植物をリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得る方法などが挙げられる。 (First step)
The microorganisms cultured in this embodiment are grown on plants.
The type of plant from which the microorganism is collected is not particularly limited. Examples of plant types include wheat ears, strawberry leaves, evening primrose petals, and rice leaf sheaths. These plants are preferable because many microorganisms of the genus Methylobacterium that produce the compound represented by the formula (I) or a salt thereof are grown.
Examples of the method for collecting microorganisms that grow on the plant from the plant include a method in which the plant is immersed in a phosphate buffer and ground in a mortar to obtain a ground solution containing the microorganism.
本実施形態において培養する微生物は、植物に成育しているものである。
微生物を採取する植物の種類は、特に限定されるものではない。植物の種類としては、例えば、コムギ穂、イチゴ葉、月見草の花弁、イネ葉鞘などが挙げられる。これらの植物は、式(I)で表わされる化合物またはその塩を生成するメチロバクテリウム属の微生物が多く生育しているため好ましい。
植物に生育する微生物を植物から採取する方法としては、例えば、植物をリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得る方法などが挙げられる。 (First step)
The microorganisms cultured in this embodiment are grown on plants.
The type of plant from which the microorganism is collected is not particularly limited. Examples of plant types include wheat ears, strawberry leaves, evening primrose petals, and rice leaf sheaths. These plants are preferable because many microorganisms of the genus Methylobacterium that produce the compound represented by the formula (I) or a salt thereof are grown.
Examples of the method for collecting microorganisms that grow on the plant from the plant include a method in which the plant is immersed in a phosphate buffer and ground in a mortar to obtain a ground solution containing the microorganism.
微生物の培養方法としては、従来公知の方法を用いることができる。具体的には、微生物の培養方法として、液体培養法を用いてもよいし、固体培養法を用いてもよいし、液体培養法および固体培養法を用いてもよく、培養する菌体の種類等に応じて適宜決定できる。
微生物の培養に用いる培地としては、例えば、標準寒天培地、L(Lennox)培地、LB(Luria Bertani)培地、NB(Nutrient Broth)培地、PD(ポテトデキストロース)培地、PPD(ポテト・ぺプトン・デキストロース)培地、TB(Terrific broth)培地などを使用できる。 A conventionally known method can be used as a method for culturing microorganisms. Specifically, as a method for culturing microorganisms, a liquid culture method, a solid culture method, a liquid culture method or a solid culture method may be used, and the types of cells to be cultured. It can be appropriately determined according to the like.
Examples of the medium used for culturing the microorganism include standard agar medium, L (Lennox) medium, LB (Luria Bertani) medium, NB (Nutient Broth) medium, PD (potato dextrose) medium, PPD (potato peptone dextrose). ) Medium, TB (Terrific broth) medium, etc. can be used.
微生物の培養に用いる培地としては、例えば、標準寒天培地、L(Lennox)培地、LB(Luria Bertani)培地、NB(Nutrient Broth)培地、PD(ポテトデキストロース)培地、PPD(ポテト・ぺプトン・デキストロース)培地、TB(Terrific broth)培地などを使用できる。 A conventionally known method can be used as a method for culturing microorganisms. Specifically, as a method for culturing microorganisms, a liquid culture method, a solid culture method, a liquid culture method or a solid culture method may be used, and the types of cells to be cultured. It can be appropriately determined according to the like.
Examples of the medium used for culturing the microorganism include standard agar medium, L (Lennox) medium, LB (Luria Bertani) medium, NB (Nutient Broth) medium, PD (potato dextrose) medium, PPD (potato peptone dextrose). ) Medium, TB (Terrific broth) medium, etc. can be used.
本実施形態では、微生物の培養方法の一例として、以下に示す方法を用いる場合を例に挙げて説明する。
まず、植物から採取した微生物を固体培養法により培養し、植物から採取した微生物中に含まれる各菌体を分離回収する。具体的には、上記の方法により植物から採取した微生物を含む磨砕液を、固体培地の表面に塗布(塗抹)して培養し、コロニーを形成させる。固体培地を用いる場合における微生物の培養条件としては、従来公知の条件を採用できる。具体的には、例えば、25℃で3~7日間、好気条件とすることができる。 In the present embodiment, as an example of a microorganism culturing method, a case where the following method is used will be described as an example.
First, a microorganism collected from a plant is cultured by a solid culture method, and each microbial cell contained in the microorganism collected from the plant is separated and recovered. Specifically, a grinding liquid containing microorganisms collected from a plant by the above method is applied (smeared) on the surface of a solid medium and cultured to form colonies. Conventionally known conditions can be adopted as culture conditions for microorganisms in the case of using a solid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
まず、植物から採取した微生物を固体培養法により培養し、植物から採取した微生物中に含まれる各菌体を分離回収する。具体的には、上記の方法により植物から採取した微生物を含む磨砕液を、固体培地の表面に塗布(塗抹)して培養し、コロニーを形成させる。固体培地を用いる場合における微生物の培養条件としては、従来公知の条件を採用できる。具体的には、例えば、25℃で3~7日間、好気条件とすることができる。 In the present embodiment, as an example of a microorganism culturing method, a case where the following method is used will be described as an example.
First, a microorganism collected from a plant is cultured by a solid culture method, and each microbial cell contained in the microorganism collected from the plant is separated and recovered. Specifically, a grinding liquid containing microorganisms collected from a plant by the above method is applied (smeared) on the surface of a solid medium and cultured to form colonies. Conventionally known conditions can be adopted as culture conditions for microorganisms in the case of using a solid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
次いで、固体培地の表面に出現した単コロニーを掻き取る方法により、単コロニーを形成している菌体を回収し、植物から採取した微生物中に含まれる各菌体を分離する。
固体培地の表面に出現した単コロニーから回収した各菌体は、必要に応じて、各菌体毎に、新たな固体培地の表面に塗布して培養(純粋培養)し、回収してもよい。 Next, the cells forming single colonies are collected by a method of scraping the single colonies appearing on the surface of the solid medium, and the individual cells contained in the microorganisms collected from the plant are separated.
Each bacterial cell recovered from a single colony that appears on the surface of the solid medium may be applied to the surface of a new solid medium and cultured (pure culture) for each bacterial cell, if necessary, and recovered. .
固体培地の表面に出現した単コロニーから回収した各菌体は、必要に応じて、各菌体毎に、新たな固体培地の表面に塗布して培養(純粋培養)し、回収してもよい。 Next, the cells forming single colonies are collected by a method of scraping the single colonies appearing on the surface of the solid medium, and the individual cells contained in the microorganisms collected from the plant are separated.
Each bacterial cell recovered from a single colony that appears on the surface of the solid medium may be applied to the surface of a new solid medium and cultured (pure culture) for each bacterial cell, if necessary, and recovered. .
次に、このようにして植物から採取した微生物中から分離回収した各菌体について、分光測色方法、吸光光度法などにより、紫外線吸収能の有無を調べる。
次いで、分離回収した各菌体のうち紫外線吸収能を有する菌体を同定する。菌体の同定方法としては、例えば、rRNA遺伝子の塩基配列に基づき同定する方法など、従来公知の方法を用いることができる。 Next, the presence or absence of ultraviolet absorbing ability is examined by spectrocolorimetric method, absorptiometric method, etc. for each bacterial cell separated and recovered from the microorganisms collected from the plant in this way.
Next, among the separated and recovered cells, cells having ultraviolet absorbing ability are identified. As a method for identifying a bacterial cell, a conventionally known method such as a method of identifying based on the base sequence of an rRNA gene can be used.
次いで、分離回収した各菌体のうち紫外線吸収能を有する菌体を同定する。菌体の同定方法としては、例えば、rRNA遺伝子の塩基配列に基づき同定する方法など、従来公知の方法を用いることができる。 Next, the presence or absence of ultraviolet absorbing ability is examined by spectrocolorimetric method, absorptiometric method, etc. for each bacterial cell separated and recovered from the microorganisms collected from the plant in this way.
Next, among the separated and recovered cells, cells having ultraviolet absorbing ability are identified. As a method for identifying a bacterial cell, a conventionally known method such as a method of identifying based on the base sequence of an rRNA gene can be used.
本実施形態では、同定した菌体のうち、メチロバクテリウム属の菌体を、液体培養法により培養する。メチロバクテリウム属の微生物は、式(I)で表される化合物またはその塩を生成する。メチロバクテリウム属に属する微生物の中でも特に、後述するWI-182株(菌株名)、W-213株(菌株名)、f11株(菌株名)、24N-25株(菌株名)を用いることが好ましい。これらの菌株は、植物に成育する微生物であり、培養により増やすことができ、式(I)で表される化合物またはその塩を効率よく生成できる。特に、WI-182株(菌株名)は、培養により容易に増やすことができ、好ましい。
In this embodiment, among the identified bacterial cells, the bacterial cells of the genus Methylobacterium are cultured by a liquid culture method. A microorganism belonging to the genus Methylobacterium produces a compound represented by the formula (I) or a salt thereof. Among the microorganisms belonging to the genus Methylobacterium, the WI-182 strain (strain name), the W-213 strain (strain name), the f11 strain (strain name), and the 24N-25 strain (strain name) described later should be used. Is preferred. These strains are microorganisms that grow on plants, can be increased by culture, and can efficiently produce the compound represented by the formula (I) or a salt thereof. In particular, WI-182 strain (strain name) is preferable because it can be easily increased by culture.
次に、植物から採取した微生物中から上記の方法により分離回収したメチロバクテリウム属の菌体を、液体培養法により培養する。植物から採取した微生物から分離回収した菌体中に、複数種のメチロバクテリウム属の菌体が含まれている場合、複数種のメチロバクテリウム属の菌体から紫外線吸収能の最も高い菌体を選択して、液体培養法により培養することが好ましい。
本実施形態では、植物から採取した微生物を個体培養法により培養・分離回収し、得られた各菌体のうち、紫外線吸収能を有するメチロバクテリウム属の菌体のみを液体培養法により培養する。このため、植物から採取した微生物中に含まれる紫外線吸収能を有する菌体を、効率よく増やすことができる。 Next, the cells of the genus Methylobacterium separated and recovered from the microorganisms collected from the plant by the above method are cultured by a liquid culture method. When the cells isolated from the microorganisms collected from the plant contain multiple types of Methylobacterium, the highest UV-absorbing ability from the multiple types of Methylobacterium It is preferable to select cells and culture them by a liquid culture method.
In the present embodiment, microorganisms collected from plants are cultured and separated and collected by an individual culture method, and among the obtained bacterial cells, only the cells of the genus Methylobacterium having ultraviolet absorption ability are cultured by a liquid culture method. To do. For this reason, the microbial cell which has the ultraviolet absorption ability contained in the microorganisms extract | collected from the plant can be increased efficiently.
本実施形態では、植物から採取した微生物を個体培養法により培養・分離回収し、得られた各菌体のうち、紫外線吸収能を有するメチロバクテリウム属の菌体のみを液体培養法により培養する。このため、植物から採取した微生物中に含まれる紫外線吸収能を有する菌体を、効率よく増やすことができる。 Next, the cells of the genus Methylobacterium separated and recovered from the microorganisms collected from the plant by the above method are cultured by a liquid culture method. When the cells isolated from the microorganisms collected from the plant contain multiple types of Methylobacterium, the highest UV-absorbing ability from the multiple types of Methylobacterium It is preferable to select cells and culture them by a liquid culture method.
In the present embodiment, microorganisms collected from plants are cultured and separated and collected by an individual culture method, and among the obtained bacterial cells, only the cells of the genus Methylobacterium having ultraviolet absorption ability are cultured by a liquid culture method. To do. For this reason, the microbial cell which has the ultraviolet absorption ability contained in the microorganisms extract | collected from the plant can be increased efficiently.
液体培地を用いる場合における菌体の培養条件としては、従来公知の条件を採用できる。具体的には、例えば、25℃で3~7日間、好気条件とすることができる。
液体培養法では、菌体を効率よく増やすために、菌体を含む液体培地を撹拌したり振盪したり、菌体を含む液体培地に空気を供給したりしながら培養してもよい。
液体培地を用いて培養して得られた菌体は、例えば、遠心分離法、濾過法などを用いて回収できる。液体培地から回収した菌体は、凍結し、真空乾燥してから、次の工程において溶媒で抽出してもよいし、回収した状態のまま、次の工程において溶媒で抽出してもよい。 Conventionally known conditions can be employed as the culture conditions for the bacterial cells when using a liquid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
In the liquid culture method, in order to increase the number of cells efficiently, the liquid medium containing the cells may be cultured while being stirred or shaken, or air is supplied to the liquid medium containing the cells.
Bacteria obtained by culturing using a liquid medium can be collected using, for example, a centrifugal separation method, a filtration method, or the like. The cells recovered from the liquid medium may be frozen and vacuum dried, and then extracted with a solvent in the next step, or may be extracted with a solvent in the next step while being recovered.
液体培養法では、菌体を効率よく増やすために、菌体を含む液体培地を撹拌したり振盪したり、菌体を含む液体培地に空気を供給したりしながら培養してもよい。
液体培地を用いて培養して得られた菌体は、例えば、遠心分離法、濾過法などを用いて回収できる。液体培地から回収した菌体は、凍結し、真空乾燥してから、次の工程において溶媒で抽出してもよいし、回収した状態のまま、次の工程において溶媒で抽出してもよい。 Conventionally known conditions can be employed as the culture conditions for the bacterial cells when using a liquid medium. Specifically, for example, aerobic conditions can be set at 25 ° C. for 3 to 7 days.
In the liquid culture method, in order to increase the number of cells efficiently, the liquid medium containing the cells may be cultured while being stirred or shaken, or air is supplied to the liquid medium containing the cells.
Bacteria obtained by culturing using a liquid medium can be collected using, for example, a centrifugal separation method, a filtration method, or the like. The cells recovered from the liquid medium may be frozen and vacuum dried, and then extracted with a solvent in the next step, or may be extracted with a solvent in the next step while being recovered.
また、液体培地で培養した菌体は、式(I)で表される化合物またはその塩の生成量を十分に確保するために、必要に応じて、新たな液体培地を用いてさらに培養してから回収してもよい。
In addition, the cells cultured in a liquid medium can be further cultured using a new liquid medium as necessary in order to secure a sufficient amount of the compound represented by formula (I) or a salt thereof. May be recovered from.
(第2工程)
次に、第1工程で培養して回収したメチロバクテリウム属の菌体を、溶媒で抽出して抽出物を得る。抽出物を得る方法としては、例えば、以下に示す方法が挙げられる。まず、菌体に溶媒を加えて撹拌し、菌体から溶媒中に式(I)で表される化合物またはその塩を抽出する。次いで、抽出後の菌体を含む溶媒を濾過することにより、濾過液として抽出液を得る。その後、抽出液を濃縮し、凍結、真空乾燥させることにより、抽出物が得られる。
本実施形態において、菌体の抽出に用いる溶媒としては、例えば、アルコール、またはアルコールと水との混合溶液などが挙げられる。これらの中でも、溶媒として、メタノール、エタノール、イソプロピルアルコール、またはこれらと水との混合溶液を用いることが好ましく、メタノールと水との混合溶液を用いることがより好ましい。 (Second step)
Next, the cells of the genus Methylobacterium collected by culturing in the first step are extracted with a solvent to obtain an extract. Examples of the method for obtaining the extract include the following methods. First, a solvent is added to the cells and stirred, and the compound represented by the formula (I) or a salt thereof is extracted from the cells in the solvent. Next, the solvent containing the cells after extraction is filtered to obtain an extract as a filtrate. Thereafter, the extract is concentrated, frozen and vacuum dried to obtain an extract.
In the present embodiment, examples of the solvent used for bacterial cell extraction include alcohol or a mixed solution of alcohol and water. Among these, as a solvent, it is preferable to use methanol, ethanol, isopropyl alcohol, or a mixed solution of these and water, and it is more preferable to use a mixed solution of methanol and water.
次に、第1工程で培養して回収したメチロバクテリウム属の菌体を、溶媒で抽出して抽出物を得る。抽出物を得る方法としては、例えば、以下に示す方法が挙げられる。まず、菌体に溶媒を加えて撹拌し、菌体から溶媒中に式(I)で表される化合物またはその塩を抽出する。次いで、抽出後の菌体を含む溶媒を濾過することにより、濾過液として抽出液を得る。その後、抽出液を濃縮し、凍結、真空乾燥させることにより、抽出物が得られる。
本実施形態において、菌体の抽出に用いる溶媒としては、例えば、アルコール、またはアルコールと水との混合溶液などが挙げられる。これらの中でも、溶媒として、メタノール、エタノール、イソプロピルアルコール、またはこれらと水との混合溶液を用いることが好ましく、メタノールと水との混合溶液を用いることがより好ましい。 (Second step)
Next, the cells of the genus Methylobacterium collected by culturing in the first step are extracted with a solvent to obtain an extract. Examples of the method for obtaining the extract include the following methods. First, a solvent is added to the cells and stirred, and the compound represented by the formula (I) or a salt thereof is extracted from the cells in the solvent. Next, the solvent containing the cells after extraction is filtered to obtain an extract as a filtrate. Thereafter, the extract is concentrated, frozen and vacuum dried to obtain an extract.
In the present embodiment, examples of the solvent used for bacterial cell extraction include alcohol or a mixed solution of alcohol and water. Among these, as a solvent, it is preferable to use methanol, ethanol, isopropyl alcohol, or a mixed solution of these and water, and it is more preferable to use a mixed solution of methanol and water.
(第3工程)
次に、第2工程で得た抽出物から目的物である式(I)で表される化合物またはその塩を回収する工程を行う。
本実施形態では、抽出物から目的物を回収する工程として、アルカリ処理と精製処理とを行う。アルカリ処理は、精製処理の前に行ってもよいし、精製処理の後に行ってもよいし、精製処理とともに行ってもよい。 (Third step)
Next, a step of recovering the compound represented by the formula (I) or a salt thereof, which is the target product, from the extract obtained in the second step.
In the present embodiment, alkali treatment and purification treatment are performed as a step of recovering the target product from the extract. The alkali treatment may be performed before the purification treatment, after the purification treatment, or may be performed together with the purification treatment.
次に、第2工程で得た抽出物から目的物である式(I)で表される化合物またはその塩を回収する工程を行う。
本実施形態では、抽出物から目的物を回収する工程として、アルカリ処理と精製処理とを行う。アルカリ処理は、精製処理の前に行ってもよいし、精製処理の後に行ってもよいし、精製処理とともに行ってもよい。 (Third step)
Next, a step of recovering the compound represented by the formula (I) or a salt thereof, which is the target product, from the extract obtained in the second step.
In the present embodiment, alkali treatment and purification treatment are performed as a step of recovering the target product from the extract. The alkali treatment may be performed before the purification treatment, after the purification treatment, or may be performed together with the purification treatment.
アルカリ処理は、抽出物とアルカリ性溶液とを接触させて、抽出物からさらに目的物を抽出することにより実施する。アルカリ性溶液のpHは、好ましくは9.0~14.0、より好ましくは10.0~13.0、さらに好ましくは11.0~12.0である。アルカリ性溶液としては、例えば、アンモニア水とメタノールとの混合溶液が挙げられる。
Alkali treatment is carried out by bringing the extract into contact with an alkaline solution and further extracting the target product from the extract. The pH of the alkaline solution is preferably 9.0 to 14.0, more preferably 10.0 to 13.0, still more preferably 11.0 to 12.0. Examples of the alkaline solution include a mixed solution of aqueous ammonia and methanol.
精製処理の方法としては、従来公知の方法を用いることができ、例えば、アニオン交換クロマトグラフィー法、カチオン交換クロマトグラフィー法、疎水性クロマトグラフィー法、アフィニティークロマトグラフィー法、逆相クロマトグラフィー法などが挙げられる。精製処理は、上記のクロマトグラフィー法を混合した混合モードクロマトグラフィー法により行ってもよいし、異なる種類のクロマトグラフィー法を複数回実施する方法により行ってもよい。精製処理の方法としては、上記の中でも特に、カラムとしてWATERS製のPoraPak Rxn CX等を用いるカチオン交換クロマトグラフィー法、カラムとしてクロマニックテクノロジーズ製のSunrise C28等を用いる疎水性クロマトグラフィー法が好ましい。
As a purification method, a conventionally known method can be used, and examples thereof include anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography. It is done. The purification treatment may be performed by a mixed mode chromatography method in which the above chromatography methods are mixed, or may be performed by a method in which different types of chromatography methods are performed a plurality of times. Among the above-mentioned purification methods, the cation exchange chromatography method using PORAPAK Rxn CX manufactured by WATERS as the column and the hydrophobic chromatography method using Sunrise C28 manufactured by CHROMANIC TECHNOLOGIES are particularly preferable.
精製処理とともにアルカリ処理を行う方法としては、例えば、前述のクロマトグラフィー法を前述のアルカリ性溶液を用いて実施する方法が挙げられる。具体的には、カラムとしてWATERS製のPoraPak Rxn CXを用いるカチオン交換クロマトグラフィー法を用い、アルカリ性溶液であるアンモニア水とメタノールとの混合溶液で溶出した成分を回収する方法を用いることが好ましい。
Examples of the method of performing the alkali treatment together with the purification treatment include a method of performing the above-described chromatography method using the above-mentioned alkaline solution. Specifically, it is preferable to use a cation exchange chromatography method using PoraPak Rxn CX manufactured by WATERS as a column and recovering components eluted with a mixed solution of aqueous ammonia and methanol, which is an alkaline solution.
以上の工程を行うことにより、目的物である式(I)で表される化合物またはその塩が得られる。
By performing the above steps, the compound represented by the formula (I) or a salt thereof, which is the target product, is obtained.
本実施形態の製造方法により回収した目的物は、LC/MS(液体クロマトグラフィー質量分析)解析、NMR(核磁気共鳴)解析、X線結晶構造解析などを用いて、式(I)で表される化合物であることを確認できる。
The target product recovered by the production method of the present embodiment is represented by the formula (I) using LC / MS (liquid chromatography mass spectrometry) analysis, NMR (nuclear magnetic resonance) analysis, X-ray crystal structure analysis, and the like. Can be confirmed.
LC/MS解析は、例えば、以下に示す条件で実施できる。
LC(液体クロマトグラフィー)としては、株式会社島津製作所製のLCSolution、PDA検出器(SPD-M10A)を用い、カラム温度40℃、流速1.0ml/min、移動相として、ギ酸アンモニウム、ギ酸水溶液、ギ酸メタノール溶液から選ばれるいずれか1種以上を用いて実施できる。MS(質量分析)は、ESI(エレクトロスプレーイオン化)イオントラップ法にしたがって実施できる。
NMR解析は、例えば、BRUKER BIOSPIN製のAVANCE500を使用して、重水中で実施できる。 The LC / MS analysis can be performed, for example, under the following conditions.
As LC (liquid chromatography), LCSolution manufactured by Shimadzu Corporation, PDA detector (SPD-M10A),column temperature 40 ° C., flow rate 1.0 ml / min, mobile phase as ammonium formate, formic acid aqueous solution, Any one or more selected from formic acid methanol solutions can be used. MS (mass spectrometry) can be performed according to an ESI (electrospray ionization) ion trap method.
The NMR analysis can be performed in heavy water using, for example, AVANCE500 manufactured by BRUKER BIOSPIN.
LC(液体クロマトグラフィー)としては、株式会社島津製作所製のLCSolution、PDA検出器(SPD-M10A)を用い、カラム温度40℃、流速1.0ml/min、移動相として、ギ酸アンモニウム、ギ酸水溶液、ギ酸メタノール溶液から選ばれるいずれか1種以上を用いて実施できる。MS(質量分析)は、ESI(エレクトロスプレーイオン化)イオントラップ法にしたがって実施できる。
NMR解析は、例えば、BRUKER BIOSPIN製のAVANCE500を使用して、重水中で実施できる。 The LC / MS analysis can be performed, for example, under the following conditions.
As LC (liquid chromatography), LCSolution manufactured by Shimadzu Corporation, PDA detector (SPD-M10A),
The NMR analysis can be performed in heavy water using, for example, AVANCE500 manufactured by BRUKER BIOSPIN.
式(I)で表わされる本実施形態の化合物またはその塩は、紫外線吸収能および水系溶媒に対する溶解性を有する。特に、式(I)で表わされる化合物またはその塩は、波長350~360nm領域に高い吸収ピークを有し、UVA領域での紫外線吸収能に優れる。
また、本実施形態の化合物またはその塩は、メタノール、エタノール、プロパノール、アセトニトリル、エチレングリコール、プロピレングリコール、ブタンジオールのいずれか1種以上と水との混合液、アルカリ金属、アルカリ土類金属塩、有機酸、アミノ酸のいずれか1種以上と水との混合液、水などの水系溶媒に対する溶解性に優れるので、化粧料および皮膚外用剤の材料として用いる場合、水系溶媒を用いて容易に配合できる。 The compound of the present embodiment represented by the formula (I) or a salt thereof has ultraviolet absorption ability and solubility in an aqueous solvent. In particular, the compound represented by the formula (I) or a salt thereof has a high absorption peak in the wavelength region of 350 to 360 nm, and is excellent in ultraviolet absorption ability in the UVA region.
In addition, the compound of the present embodiment or a salt thereof is a mixed solution of any one or more of methanol, ethanol, propanol, acetonitrile, ethylene glycol, propylene glycol, and butanediol and water, an alkali metal, an alkaline earth metal salt, Since it is excellent in solubility in an aqueous solvent such as water, a mixture of one or more of organic acids and amino acids and water, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations. .
また、本実施形態の化合物またはその塩は、メタノール、エタノール、プロパノール、アセトニトリル、エチレングリコール、プロピレングリコール、ブタンジオールのいずれか1種以上と水との混合液、アルカリ金属、アルカリ土類金属塩、有機酸、アミノ酸のいずれか1種以上と水との混合液、水などの水系溶媒に対する溶解性に優れるので、化粧料および皮膚外用剤の材料として用いる場合、水系溶媒を用いて容易に配合できる。 The compound of the present embodiment represented by the formula (I) or a salt thereof has ultraviolet absorption ability and solubility in an aqueous solvent. In particular, the compound represented by the formula (I) or a salt thereof has a high absorption peak in the wavelength region of 350 to 360 nm, and is excellent in ultraviolet absorption ability in the UVA region.
In addition, the compound of the present embodiment or a salt thereof is a mixed solution of any one or more of methanol, ethanol, propanol, acetonitrile, ethylene glycol, propylene glycol, and butanediol and water, an alkali metal, an alkaline earth metal salt, Since it is excellent in solubility in an aqueous solvent such as water, a mixture of one or more of organic acids and amino acids and water, it can be easily formulated using an aqueous solvent when used as a material for cosmetics and skin external preparations. .
また、本実施形態の化合物またはその塩の製造方法によれば、高純度の式(I)で表わされる化合物またはその塩を製造できる。したがって、例えば、本実施形態の製造方法で得られた式(I)で表わされる化合物またはその塩を、化粧料および皮膚外用剤の材料として用いた場合、式(I)で表わされる化合物またはその塩に含まれる不純物に起因する不具合が生じにくく、好ましい。
Further, according to the method for producing a compound or a salt thereof of the present embodiment, a highly pure compound represented by the formula (I) or a salt thereof can be produced. Therefore, for example, when the compound represented by the formula (I) obtained by the production method of the present embodiment or a salt thereof is used as a material for cosmetics and skin external preparations, the compound represented by the formula (I) or a salt thereof It is preferable because defects caused by impurities contained in the salt hardly occur.
なお、式(I)で表わされる化合物またはその塩の製造方法は、上記の方法に限定されるものではない。
例えば、本実施形態の製造方法により製造した目的物を原料として化学的に合成することにより、製造した目的物と式(I)中のR1、R2、R3、Xのうちのいずれか1以上が異なっている式(I)で表わされる化合物またはその塩を製造してもよい。
また、原料として、植物に生育する微生物を培養して得た菌体から抽出したものを用いず、天然に由来しない成分のみを用いて、式(I)で表わされる化合物またはその塩を化学的に合成してもよい。 In addition, the manufacturing method of the compound represented by Formula (I) or its salt is not limited to said method.
For example, by chemically synthesizing the target product manufactured by the manufacturing method of this embodiment as a raw material, any one of R 1 , R 2 , R 3 , and X in the formula (I) You may manufacture the compound or its salt represented by the formula (I) from which 1 or more differs.
In addition, the compound represented by the formula (I) or a salt thereof is chemically used only as a raw material by using only components that are not derived from nature without using those extracted from cells obtained by culturing microorganisms that grow on plants. May be synthesized.
例えば、本実施形態の製造方法により製造した目的物を原料として化学的に合成することにより、製造した目的物と式(I)中のR1、R2、R3、Xのうちのいずれか1以上が異なっている式(I)で表わされる化合物またはその塩を製造してもよい。
また、原料として、植物に生育する微生物を培養して得た菌体から抽出したものを用いず、天然に由来しない成分のみを用いて、式(I)で表わされる化合物またはその塩を化学的に合成してもよい。 In addition, the manufacturing method of the compound represented by Formula (I) or its salt is not limited to said method.
For example, by chemically synthesizing the target product manufactured by the manufacturing method of this embodiment as a raw material, any one of R 1 , R 2 , R 3 , and X in the formula (I) You may manufacture the compound or its salt represented by the formula (I) from which 1 or more differs.
In addition, the compound represented by the formula (I) or a salt thereof is chemically used only as a raw material by using only components that are not derived from nature without using those extracted from cells obtained by culturing microorganisms that grow on plants. May be synthesized.
「皮膚外用剤、化粧料」
本実施形態の皮膚外用剤および化粧料は、式(I)で表わされる化合物またはその塩を含む。本実施形態の皮膚外用剤および化粧料に含まれる式(I)で表わされる化合物またはその塩は、1種類のみであってもよいし、2種類以上であってもよい。本実施形態の皮膚外用剤および化粧料は、式(I)で表わされる化合物のみを含有し、式(I)で表わされる化合物の塩を含有していないものでもよいし、式(I)で表わされる化合物の塩のみを含有し、式(I)で表わされる化合物を含有していないものでもよいし、式(I)で表わされる化合物および式(I)で表わされる化合物の塩を共に含有するものでもよい。皮膚外用剤および化粧料の含有する式(I)で表わされる化合物またはその塩が2種以上である場合、その組み合わせおよび比率は、目的に応じて適宜選択できる。 "External preparation for skin, cosmetics"
The skin external preparation and cosmetics of this embodiment contain the compound represented by the formula (I) or a salt thereof. The compound represented by the formula (I) or a salt thereof contained in the external preparation for skin and cosmetics of this embodiment may be only one type or two or more types. The skin external preparation and cosmetics of this embodiment may contain only the compound represented by the formula (I) and may not contain the salt of the compound represented by the formula (I). It may contain only the salt of the compound represented, and may not contain the compound represented by formula (I), or it may contain both the compound represented by formula (I) and the salt of the compound represented by formula (I). You may do it. When there are two or more compounds represented by the formula (I) or salts thereof contained in the external preparation for skin and cosmetics, the combination and ratio can be appropriately selected depending on the purpose.
本実施形態の皮膚外用剤および化粧料は、式(I)で表わされる化合物またはその塩を含む。本実施形態の皮膚外用剤および化粧料に含まれる式(I)で表わされる化合物またはその塩は、1種類のみであってもよいし、2種類以上であってもよい。本実施形態の皮膚外用剤および化粧料は、式(I)で表わされる化合物のみを含有し、式(I)で表わされる化合物の塩を含有していないものでもよいし、式(I)で表わされる化合物の塩のみを含有し、式(I)で表わされる化合物を含有していないものでもよいし、式(I)で表わされる化合物および式(I)で表わされる化合物の塩を共に含有するものでもよい。皮膚外用剤および化粧料の含有する式(I)で表わされる化合物またはその塩が2種以上である場合、その組み合わせおよび比率は、目的に応じて適宜選択できる。 "External preparation for skin, cosmetics"
The skin external preparation and cosmetics of this embodiment contain the compound represented by the formula (I) or a salt thereof. The compound represented by the formula (I) or a salt thereof contained in the external preparation for skin and cosmetics of this embodiment may be only one type or two or more types. The skin external preparation and cosmetics of this embodiment may contain only the compound represented by the formula (I) and may not contain the salt of the compound represented by the formula (I). It may contain only the salt of the compound represented, and may not contain the compound represented by formula (I), or it may contain both the compound represented by formula (I) and the salt of the compound represented by formula (I). You may do it. When there are two or more compounds represented by the formula (I) or salts thereof contained in the external preparation for skin and cosmetics, the combination and ratio can be appropriately selected depending on the purpose.
皮膚外用剤および化粧料は、式(I)で表わされる化合物またはその塩の他に、必要に応じて、本発明の効果を損なわない範囲で、皮膚外用剤または化粧料に通常用いられる成分などの他の成分を、一般的な濃度で含有していてもよい。
皮膚外用剤または化粧料に通常用いられる成分としては、例えば、既存の原料規格書または公定書に記載された原料、皮膚外用剤として薬学的に許容される担体、添加剤等の成分が挙げられる。これらの他の成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 In addition to the compound represented by the formula (I) or a salt thereof, the external preparation for skin and cosmetics are components usually used in the external preparation for skin or cosmetics as long as they do not impair the effects of the present invention. Other components may be contained at a general concentration.
Examples of the components that are usually used in the external preparation for skin or cosmetics include ingredients such as raw materials described in existing raw material specifications or official documents, pharmaceutically acceptable carriers, additives, etc. as external preparations for skin. . These other components may be used individually by 1 type, and may use 2 or more types together.
皮膚外用剤または化粧料に通常用いられる成分としては、例えば、既存の原料規格書または公定書に記載された原料、皮膚外用剤として薬学的に許容される担体、添加剤等の成分が挙げられる。これらの他の成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 In addition to the compound represented by the formula (I) or a salt thereof, the external preparation for skin and cosmetics are components usually used in the external preparation for skin or cosmetics as long as they do not impair the effects of the present invention. Other components may be contained at a general concentration.
Examples of the components that are usually used in the external preparation for skin or cosmetics include ingredients such as raw materials described in existing raw material specifications or official documents, pharmaceutically acceptable carriers, additives, etc. as external preparations for skin. . These other components may be used individually by 1 type, and may use 2 or more types together.
皮膚外用剤および化粧料の種類としては、例えば、トリートメント、ヘアパック、ヘアフォーム、ヘアムース、ヘアスプレー、ヘアミスト、ヘアワックス、ヘアジェル、ウォーターグリース、セットローション、カラーローション、ヘアトニック、ヘアリキッド、ポマード、チック、ヘアクリーム、ヘアブロー、枝毛コート、ヘアオイル、ヘアカラーアフタートリートメント、パーマアフタートリートメント、ヘアマニキュア、育毛剤等の毛髪用化粧料;化粧水、柔軟化粧水、収れん化粧水、洗浄用化粧水、多層式化粧水、乳液、エモリエントローション、モイスチャーローション、ミルキィーローション、ナリシングローション、ナリシングミルク、スキンモイスチャー、モイスチャーエマルション、メーキャップローション、エルボーローション、ハンドローション、ボディローション、クリーム、エモリエントクリーム、栄養クリーム、ナリシングクリーム、バニシングクリーム、モイスチャークリーム、ナイトクリーム、メーキャップクリーム、ベースクリーム、プレメーキャップクリーム、ジェル、モイスチャージェル、美白エッセンス、リポソーム美容液、リポソーム化粧水等の基礎化粧料;白粉・打粉類、ファンデーション類、化粧下地、口紅類、リップグロス、頬紅類、アイライナー、マスカラ、アイシャドー、眉墨等のメーキャップ化粧料;香水、パフューム、パルファム、オードパルファム、オードトワレ、オーデコロン、練香水、芳香パウダー、ボディローション、バスオイル等の芳香化粧料;ボディーパウダー、デオドラントローション、デオドラントパウダー、デオドラントスプレー、デオドラントスティック、防臭化粧料、虫よけスプレー、インセクトリペラー等のボディ化粧料;軟膏剤、貼付剤、ローション剤、リニメント剤、液状塗布剤等が例示できる。
Examples of skin external preparations and cosmetics include, for example, treatment, hair pack, hair foam, hair mousse, hair spray, hair mist, hair wax, hair gel, water grease, set lotion, color lotion, hair tonic, hair liquid, pomade, Cosmetics for hair such as tics, hair creams, hair blows, split coats, hair oils, hair color after treatments, perm after treatments, hair manicures, hair restorers; lotions, soft lotions, astringent lotions, cleansing lotions, Multi-layer lotion, emulsion, emollient lotion, moisture lotion, milky lotion, nourishing lotion, nourishing milk, skin moisture, moisture emulsion, makeup lotion, elbow Lotion, hand lotion, body lotion, cream, emollient cream, nourishing cream, nourishing cream, burnishing cream, moisture cream, night cream, makeup cream, base cream, pre-makeup cream, gel, moisture gel, whitening essence, liposome serum , Basic cosmetics such as liposome lotion; makeup powders such as white powder, dusting powder, foundations, makeup base, lipstick, lip gloss, blusher, eyeliner, mascara, eye shadow, eyebrow; perfume, perfume, parfum Fragrance cosmetics such as eau de parfum, eau de toilette, eau de cologne, perfume, fragrance powder, body lotion, bath oil; body powder, deodorant lotion, deodorant Uda, deodorant spray, deodorant sticks, deodorant cosmetics, bug spray, insect repeller body cosmetics such as Ra; ointments, plasters, lotions, liniments, liquid liniments and the like.
皮膚外用剤および化粧料の剤型としては、水中油(O/W)型、油中水(W/O)型、W/O/W型、O/W/O型等の乳化型;乳化高分子型;固形;液状;練状;スティック状;揮発性油型;粉状;水状;ゼリー状;ジェル状;ペースト状;クリーム状;シート状;フィルム状;ミスト状;スプレー型;多層状;泡状;フレーク状等が例示できる。
Examples of skin external preparations and cosmetics include emulsified types such as oil-in-water (O / W) type, water-in-oil (W / O) type, W / O / W type, and O / W / O type; Polymer type; Solid; Liquid; Kneaded; Stick; Volatile oil; Powder; Water; Jelly; Gel; Paste; Cream; Sheet; Film; Mist; Spray; Examples include lamellar form; foam form; flake form and the like.
皮膚外用剤および化粧料は、式(I)で表わされる化合物またはその塩、および必要に応じて他の成分を配合し、製剤化することで製造できる。皮膚外用剤および化粧料は、式(I)で表わされる化合物またはその塩を配合すること以外は、公知の皮膚外用剤および化粧料と同様の方法で製造できる。
The external preparation for skin and cosmetics can be produced by blending the compound represented by the formula (I) or a salt thereof, and other components as necessary, and preparing it. The skin external preparation and cosmetic can be produced in the same manner as known skin external preparations and cosmetics, except that the compound represented by the formula (I) or a salt thereof is blended.
本実施形態の皮膚外用剤および化粧料は、優れたUVA吸収能を有する式(I)で表わされる化合物またはその塩を含有する。したがって、本実施形態の皮膚外用剤および化粧料は、UVAから人間の皮膚などを守る効果が高い。また、本実施形態の皮膚外用剤および化粧料は、水系溶媒に対する溶解性を有する式(I)で表わされる化合物またはその塩を含むため、疎水性溶媒を使わずに製造できるとともに、用途に応じて様々な剤型にすることができる。
The skin external preparation and cosmetics of this embodiment contain a compound represented by the formula (I) having excellent UVA absorption ability or a salt thereof. Therefore, the external preparation for skin and cosmetics of this embodiment are highly effective in protecting human skin and the like from UVA. Moreover, since the skin external preparation and cosmetics of this embodiment contain the compound or its salt represented by Formula (I) which has the solubility with respect to an aqueous solvent, it can be manufactured without using a hydrophobic solvent, and according to a use. Can be made into various dosage forms.
以下、実施例により本発明を詳細に説明する。本発明は、以下に示す実施例によって何ら限定されるものではない。
<実施例1>
「1.微生物の採取」
イチゴ葉を10mMリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得た。 Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited by the following examples.
<Example 1>
“1. Collecting microorganisms”
Strawberry leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground solution containing microorganisms.
<実施例1>
「1.微生物の採取」
イチゴ葉を10mMリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得た。 Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited by the following examples.
<Example 1>
“1. Collecting microorganisms”
Strawberry leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground solution containing microorganisms.
「2.微生物の培養」
「1.微生物の採取」で得た微生物を含む磨砕液を、標準寒天培地(Difco製)の表面に塗布し、25℃で5日間、好気条件で培養した。その後、標準寒天培地の表面に出現した単コロニーを掻き取り、単コロニーを形成している菌体を分離回収した。
次に、単コロニーから回収した各菌体を、複数のNB(Nutrient Broth)寒天平板培地(Difco製)の表面に塗布して、それぞれ25℃で6日間、好気条件で培養した。その後、寒天平板培地の表面に出現したコロニーを掻き取り、菌体を回収した。 “2. Culture of microorganisms”
The ground solution containing microorganisms obtained in “1. Collecting microorganisms” was applied to the surface of a standard agar medium (manufactured by Difco) and cultured at 25 ° C. for 5 days under aerobic conditions. Then, the single colony which appeared on the surface of the standard agar medium was scraped off, and the bacterial cells forming the single colony were separated and recovered.
Next, each microbial cell recovered from a single colony was applied to the surface of a plurality of NB (Nutrient Broth) agar plates (manufactured by Difco) and cultured at 25 ° C. for 6 days under aerobic conditions. Thereafter, colonies that appeared on the surface of the agar plate medium were scraped off, and the cells were collected.
「1.微生物の採取」で得た微生物を含む磨砕液を、標準寒天培地(Difco製)の表面に塗布し、25℃で5日間、好気条件で培養した。その後、標準寒天培地の表面に出現した単コロニーを掻き取り、単コロニーを形成している菌体を分離回収した。
次に、単コロニーから回収した各菌体を、複数のNB(Nutrient Broth)寒天平板培地(Difco製)の表面に塗布して、それぞれ25℃で6日間、好気条件で培養した。その後、寒天平板培地の表面に出現したコロニーを掻き取り、菌体を回収した。 “2. Culture of microorganisms”
The ground solution containing microorganisms obtained in “1. Collecting microorganisms” was applied to the surface of a standard agar medium (manufactured by Difco) and cultured at 25 ° C. for 5 days under aerobic conditions. Then, the single colony which appeared on the surface of the standard agar medium was scraped off, and the bacterial cells forming the single colony were separated and recovered.
Next, each microbial cell recovered from a single colony was applied to the surface of a plurality of NB (Nutrient Broth) agar plates (manufactured by Difco) and cultured at 25 ° C. for 6 days under aerobic conditions. Thereafter, colonies that appeared on the surface of the agar plate medium were scraped off, and the cells were collected.
次に、このようにして植物から採取した微生物中から分離回収した各菌体について、吸光光度法により、紫外線吸収能の有無を調べた。
次いで、分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。菌体の同定は、rRNA遺伝子の塩基配列に基づいて行った。その結果、菌体はメチロバクテリウム属であった。この菌体をWI-182株と名付けた。 Next, each bacterial cell separated and recovered from the microorganisms collected from the plant in this manner was examined for the presence or absence of ultraviolet absorbing ability by absorptiometry.
Next, among the separated and recovered bacterial cells, the bacterial cell having the highest ultraviolet absorption ability was identified. The bacterial cells were identified based on the base sequence of the rRNA gene. As a result, the cells were of the genus Methylobacterium. This microbial cell was named WI-182 strain.
次いで、分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。菌体の同定は、rRNA遺伝子の塩基配列に基づいて行った。その結果、菌体はメチロバクテリウム属であった。この菌体をWI-182株と名付けた。 Next, each bacterial cell separated and recovered from the microorganisms collected from the plant in this manner was examined for the presence or absence of ultraviolet absorbing ability by absorptiometry.
Next, among the separated and recovered bacterial cells, the bacterial cell having the highest ultraviolet absorption ability was identified. The bacterial cells were identified based on the base sequence of the rRNA gene. As a result, the cells were of the genus Methylobacterium. This microbial cell was named WI-182 strain.
次に、メチロバクテリウム属の菌体(WI-182株)の得られた寒天平板培地を2枚用意し、各寒天平板培地にそれぞれ無菌精製水10mlを加えて懸濁し、懸濁液を得た。2枚の寒天平板培地から得た懸濁液を混合して混合液とし、7本の100mlのPD培地(Difco製)にそれぞれ2mlずつ加え、25℃で90時間、好気条件で培養した。
7本のPD培地で培養した培養物から600ml採取して、30LのPD培地(Difco製)に加えた。そして、菌体を含む液体培地を回転速度400rpmで撹拌機を用いて撹拌しながら、液体培地に15L/minの空気を供給し、好気状態で、25℃で7日間培養した。 Next, two agar plate media from which the cells of the genus Methylobacterium (WI-182 strain) were obtained were prepared and suspended in each agar plate medium by adding 10 ml of sterile purified water. Obtained. Suspensions obtained from two agar plate media were mixed to prepare a mixed solution, each 2 ml was added to seven 100 ml PD media (manufactured by Difco), and cultured at 25 ° C. for 90 hours under aerobic conditions.
600 ml was collected from a culture cultured in 7 PD media and added to 30 L of PD media (Difco). Then, 15 L / min of air was supplied to the liquid medium while stirring the liquid medium containing the bacterial cells using a stirrer at a rotational speed of 400 rpm, and cultured at 25 ° C. for 7 days.
7本のPD培地で培養した培養物から600ml採取して、30LのPD培地(Difco製)に加えた。そして、菌体を含む液体培地を回転速度400rpmで撹拌機を用いて撹拌しながら、液体培地に15L/minの空気を供給し、好気状態で、25℃で7日間培養した。 Next, two agar plate media from which the cells of the genus Methylobacterium (WI-182 strain) were obtained were prepared and suspended in each agar plate medium by adding 10 ml of sterile purified water. Obtained. Suspensions obtained from two agar plate media were mixed to prepare a mixed solution, each 2 ml was added to seven 100 ml PD media (manufactured by Difco), and cultured at 25 ° C. for 90 hours under aerobic conditions.
600 ml was collected from a culture cultured in 7 PD media and added to 30 L of PD media (Difco). Then, 15 L / min of air was supplied to the liquid medium while stirring the liquid medium containing the bacterial cells using a stirrer at a rotational speed of 400 rpm, and cultured at 25 ° C. for 7 days.
「3.菌体の回収」
上記の通りにして培養した培養物28kg(培養した菌体を含む液体培地)を、回転速度8000rpmで20分間遠心分離して、ウェット状の菌体を回収した。その後、回収した菌体を凍結し、真空乾燥して、51gの菌体を得た。 “3. Recovery of bacterial cells”
28 kg of the culture cultured as described above (liquid medium containing the cultured cells) was centrifuged at a rotational speed of 8000 rpm for 20 minutes to collect wet cells. Thereafter, the collected cells were frozen and vacuum-dried to obtain 51 g of cells.
上記の通りにして培養した培養物28kg(培養した菌体を含む液体培地)を、回転速度8000rpmで20分間遠心分離して、ウェット状の菌体を回収した。その後、回収した菌体を凍結し、真空乾燥して、51gの菌体を得た。 “3. Recovery of bacterial cells”
28 kg of the culture cultured as described above (liquid medium containing the cultured cells) was centrifuged at a rotational speed of 8000 rpm for 20 minutes to collect wet cells. Thereafter, the collected cells were frozen and vacuum-dried to obtain 51 g of cells.
「4.微生物からの抽出」
上記の通りにして得た菌体(WI-182株)45gに、水とメタノールとの混合溶液(水:メタノール(体積比)=2:8)2250mlを加えて、25℃で1時間、スリーワンモーター撹拌翼を用いて回転速度140rpmで撹拌することにより抽出した。次いで、抽出後の菌体を含む溶媒を吸引濾過することにより、濾過液として抽出液を回収した。その後、回収した抽出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて12.2gの抽出物を得た。 “4. Extraction from microorganisms”
To 45 g of the microbial cells (WI-182 strain) obtained as described above, 2250 ml of a mixed solution of water and methanol (water: methanol (volume ratio) = 2: 8) was added, and the three-one was treated at 25 ° C. for 1 hour. Extraction was performed by stirring at a rotational speed of 140 rpm using a motor stirring blade. Next, the solvent containing the cells after the extraction was suction filtered to collect the extract as a filtrate. Thereafter, the recovered extract was concentrated with a rotary evaporator, frozen and vacuum dried to obtain 12.2 g of extract.
上記の通りにして得た菌体(WI-182株)45gに、水とメタノールとの混合溶液(水:メタノール(体積比)=2:8)2250mlを加えて、25℃で1時間、スリーワンモーター撹拌翼を用いて回転速度140rpmで撹拌することにより抽出した。次いで、抽出後の菌体を含む溶媒を吸引濾過することにより、濾過液として抽出液を回収した。その後、回収した抽出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて12.2gの抽出物を得た。 “4. Extraction from microorganisms”
To 45 g of the microbial cells (WI-182 strain) obtained as described above, 2250 ml of a mixed solution of water and methanol (water: methanol (volume ratio) = 2: 8) was added, and the three-one was treated at 25 ° C. for 1 hour. Extraction was performed by stirring at a rotational speed of 140 rpm using a motor stirring blade. Next, the solvent containing the cells after the extraction was suction filtered to collect the extract as a filtrate. Thereafter, the recovered extract was concentrated with a rotary evaporator, frozen and vacuum dried to obtain 12.2 g of extract.
「5.抽出物からの目的物の回収(1)」
以下に示すように、アルカリ性溶液を用いるカチオン交換クロマトグラフィー法により、抽出物を精製した。
まず、メタノールに抽出物を加えて溶解し、メタノール溶液とした。次いで、メタノール溶液をカラム(WATERS製 PoraPak Rxn CX)に通過させて、イオン交換樹脂に抽出物を吸着させた。次に、カラムに、アルカリ性溶液としてアンモニア水(28質量%)とメタノールとの混合溶液(アンモニア水:メタノール(体積比)=5:95(pH11.2))を通過させて、イオン交換樹脂に吸着した抽出物からアルカリ性溶液に溶解する成分を溶出させて溶出液を得た。
その後、溶出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて粗精製物である1.36gの黄褐色化合物を回収した。 "5. Recovery of target product from extract (1)"
As shown below, the extract was purified by cation exchange chromatography using an alkaline solution.
First, an extract was added to methanol and dissolved to obtain a methanol solution. Next, the methanol solution was passed through a column (PoraPak Rxn CX manufactured by WATERS) to adsorb the extract on the ion exchange resin. Next, a mixed solution of ammonia water (28% by mass) and methanol (ammonia water: methanol (volume ratio) = 5: 95 (pH 11.2)) as an alkaline solution is passed through the column to obtain an ion exchange resin. From the adsorbed extract, components dissolved in the alkaline solution were eluted to obtain an eluate.
Thereafter, the eluate was concentrated on a rotary evaporator, frozen and vacuum dried to recover 1.36 g of a tan compound as a crude product.
以下に示すように、アルカリ性溶液を用いるカチオン交換クロマトグラフィー法により、抽出物を精製した。
まず、メタノールに抽出物を加えて溶解し、メタノール溶液とした。次いで、メタノール溶液をカラム(WATERS製 PoraPak Rxn CX)に通過させて、イオン交換樹脂に抽出物を吸着させた。次に、カラムに、アルカリ性溶液としてアンモニア水(28質量%)とメタノールとの混合溶液(アンモニア水:メタノール(体積比)=5:95(pH11.2))を通過させて、イオン交換樹脂に吸着した抽出物からアルカリ性溶液に溶解する成分を溶出させて溶出液を得た。
その後、溶出液をロータリーエバポレーターで濃縮し、凍結、真空乾燥させて粗精製物である1.36gの黄褐色化合物を回収した。 "5. Recovery of target product from extract (1)"
As shown below, the extract was purified by cation exchange chromatography using an alkaline solution.
First, an extract was added to methanol and dissolved to obtain a methanol solution. Next, the methanol solution was passed through a column (PoraPak Rxn CX manufactured by WATERS) to adsorb the extract on the ion exchange resin. Next, a mixed solution of ammonia water (28% by mass) and methanol (ammonia water: methanol (volume ratio) = 5: 95 (pH 11.2)) as an alkaline solution is passed through the column to obtain an ion exchange resin. From the adsorbed extract, components dissolved in the alkaline solution were eluted to obtain an eluate.
Thereafter, the eluate was concentrated on a rotary evaporator, frozen and vacuum dried to recover 1.36 g of a tan compound as a crude product.
「6.抽出物からの目的物の回収(2)」
上記の通りにして得られた粗精製物を高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製LCSolution、PDA(フォトダイオードアレイ)検出器(SPD-M10A))を用いて精製した。条件は下記の通りとした。 "6. Recovery of target product from extract (2)"
The crude product obtained as described above was purified using high performance liquid chromatography (HPLC) (LCSolution manufactured by Shimadzu Corporation, PDA (photodiode array) detector (SPD-M10A)). The conditions were as follows.
上記の通りにして得られた粗精製物を高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製LCSolution、PDA(フォトダイオードアレイ)検出器(SPD-M10A))を用いて精製した。条件は下記の通りとした。 "6. Recovery of target product from extract (2)"
The crude product obtained as described above was purified using high performance liquid chromatography (HPLC) (LCSolution manufactured by Shimadzu Corporation, PDA (photodiode array) detector (SPD-M10A)). The conditions were as follows.
カラム:Sunrise C28(カラム内に充填されている基材の粒子径:5μm、カラムの内径:10mm、カラムの長さ:250mm、クロマニックテクノロジーズ製)カラム温度:40℃
流速:5.0ml/min
移動相A:10mMギ酸アンモニウム、0.2%ギ酸
溶媒 水
移動相B:10mMギ酸アンモニウム、0.2%ギ酸
溶媒 水とメタノールとの混合溶液(メタノール:水(体積比)=95:5)
グラジエント条件:0~7min 移動相A100%で固定
7~15min 移動相A:移動相B=100:0~移動相A:移動相B=24:76のリニアグラジエント
15~25min 移動相B95%で固定
25~35min 移動相A100%で固定 Column: Sunrise C28 (particle diameter of the substrate packed in the column: 5 μm, column inner diameter: 10 mm, column length: 250 mm, manufactured by Chromanic Technologies) Column temperature: 40 ° C.
Flow rate: 5.0 ml / min
Mobile phase A: 10 mM ammonium formate, 0.2% formic acid solvent Water mobile phase B: 10 mM ammonium formate, 0.2% formic acid solvent Mixed solution of water and methanol (methanol: water (volume ratio) = 95: 5)
Gradient condition: 0 to 7 min Fixed at mobile phase A 100% 7 to 15 min Mobile phase A: Mobile phase B = 100: 0 to mobile phase A: Mobile phase B = 24:76 linear gradient 15 to 25 min Fixed at mobile phase B 95% 25 to 35 min Fixed at 100% mobile phase A
流速:5.0ml/min
移動相A:10mMギ酸アンモニウム、0.2%ギ酸
溶媒 水
移動相B:10mMギ酸アンモニウム、0.2%ギ酸
溶媒 水とメタノールとの混合溶液(メタノール:水(体積比)=95:5)
グラジエント条件:0~7min 移動相A100%で固定
7~15min 移動相A:移動相B=100:0~移動相A:移動相B=24:76のリニアグラジエント
15~25min 移動相B95%で固定
25~35min 移動相A100%で固定 Column: Sunrise C28 (particle diameter of the substrate packed in the column: 5 μm, column inner diameter: 10 mm, column length: 250 mm, manufactured by Chromanic Technologies) Column temperature: 40 ° C.
Flow rate: 5.0 ml / min
Mobile phase A: 10 mM ammonium formate, 0.2% formic acid solvent Water mobile phase B: 10 mM ammonium formate, 0.2% formic acid solvent Mixed solution of water and methanol (methanol: water (volume ratio) = 95: 5)
Gradient condition: 0 to 7 min Fixed at mobile phase A 100% 7 to 15 min Mobile phase A: Mobile phase B = 100: 0 to mobile phase A: Mobile phase B = 24:76 linear gradient 15 to 25 min Fixed at mobile phase B 95% 25 to 35 min Fixed at 100% mobile phase A
高速液体クロマトグラフィー解析結果を図1に示す。図1は、実施例1で得られた粗精製物の紫外線吸収強度と溶出時間との関係を示したグラフである。図1に示すように、実施例1で得られた粗精製物では、UV測定波長360nmで測定したときに、溶出時間3.3min、4.3min、5.2min、16.8min、17.6minの位置に主要ピークが検出された。溶出時間4.3min、16.8min、17.6minのピークにおいては、波長350~360nm領域に高い吸収ピークを示すことが確認された。
The results of high performance liquid chromatography analysis are shown in FIG. FIG. 1 is a graph showing the relationship between the ultraviolet absorption intensity of the crude product obtained in Example 1 and the elution time. As shown in FIG. 1, the crude product obtained in Example 1 was eluted at 3.3 min, 4.3 min, 5.2 min, 16.8 min, 17.6 min when measured at a UV measurement wavelength of 360 nm. A major peak was detected at the position of. It was confirmed that the peaks at elution times of 4.3 min, 16.8 min, and 17.6 min show high absorption peaks in the wavelength region of 350 to 360 nm.
また、HPLC解析において最も紫外線吸収強度の強い結果が得られた、溶出時間4.3minのピークの溶出分を分取した。そして、分取した溶出分をロータリーエバポレーターで減圧濃縮し、凍結、真空乾燥させて精製化合物である黄白色化合物(目的物)を回収した。
In addition, the elution fraction of the peak with an elution time of 4.3 min from which the strongest UV absorption result was obtained in the HPLC analysis was collected. The collected eluate was concentrated under reduced pressure using a rotary evaporator, frozen, and vacuum dried to recover a yellowish white compound (target product) as a purified compound.
「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」
上記の通りにして得た実施例1の精製化合物をLC/MS解析し、分子量を求めた。
LC(液体クロマトグラフィー)は、カラムの内径を4.6mmにし、流速を1.0mL/minにし、グラジエント条件を下記の通りに変更した点以外は、「6.抽出物からの目的物の回収(2)」のHPLCと同じ条件で行った。 "Liquid chromatography mass spectrometry (LC / MS) analysis of purified compounds"
The purified compound of Example 1 obtained as described above was subjected to LC / MS analysis to determine the molecular weight.
LC (Liquid Chromatography) is “6. Recovery of target substance from extract” except that the column inner diameter is 4.6 mm, the flow rate is 1.0 mL / min, and the gradient conditions are changed as follows. (2) "was performed under the same conditions as in HPLC.
上記の通りにして得た実施例1の精製化合物をLC/MS解析し、分子量を求めた。
LC(液体クロマトグラフィー)は、カラムの内径を4.6mmにし、流速を1.0mL/minにし、グラジエント条件を下記の通りに変更した点以外は、「6.抽出物からの目的物の回収(2)」のHPLCと同じ条件で行った。 "Liquid chromatography mass spectrometry (LC / MS) analysis of purified compounds"
The purified compound of Example 1 obtained as described above was subjected to LC / MS analysis to determine the molecular weight.
LC (Liquid Chromatography) is “6. Recovery of target substance from extract” except that the column inner diameter is 4.6 mm, the flow rate is 1.0 mL / min, and the gradient conditions are changed as follows. (2) "was performed under the same conditions as in HPLC.
グラジエント条件:0~10min 移動相A100%で固定
10~20min 移動相A:移動相B=100:0~移動相A:移動相B=5:95のリニアグラジエント
20~23min 移動相B95%で固定
23~30min 移動相A100%で固定 Gradient condition: 0 to 10 min Fixed with mobile phase A 100% 10 to 20 min Mobile phase A: Mobile phase B = 100: 0 to mobile phase A: Mobile phase B = 5: 95linear gradient 20 to 23 min Fixed with mobile phase B 95% 23 ~ 30min Mobile phase A fixed at 100%
10~20min 移動相A:移動相B=100:0~移動相A:移動相B=5:95のリニアグラジエント
20~23min 移動相B95%で固定
23~30min 移動相A100%で固定 Gradient condition: 0 to 10 min Fixed with mobile phase A 100% 10 to 20 min Mobile phase A: Mobile phase B = 100: 0 to mobile phase A: Mobile phase B = 5: 95
MS(質量分析)は、エレクトロスプレーイオン化法(ESI法)イオントラップで、ポジティブ、ネガティブ検出モード、ソース電圧(ポジティブモード3.5kV、ネガティブモード-3.0kV)、キャピラリー温度275℃、ソースヒーター温度450℃の条件で、サーモフィッシャーサイエンティフィック Orbitrap Eliteを用いて行った。
その結果を図2に示す。図2は、実施例1で得られた精製化合物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図2より、実施例1で得られた精製化合物の分子量は302であることが確認された。 MS (mass spectrometry) is an electrospray ionization (ESI) ion trap, positive and negative detection mode, source voltage (positive mode 3.5 kV, negative mode -3.0 kV), capillary temperature 275 ° C., source heater temperature The measurement was performed using a Thermo Fisher Scientific Orbitrap Elite at 450 ° C.
The result is shown in FIG. FIG. 2 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 1 and the detection sensitivity (relative intensity). From FIG. 2, it was confirmed that the molecular weight of the purified compound obtained in Example 1 was 302.
その結果を図2に示す。図2は、実施例1で得られた精製化合物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図2より、実施例1で得られた精製化合物の分子量は302であることが確認された。 MS (mass spectrometry) is an electrospray ionization (ESI) ion trap, positive and negative detection mode, source voltage (positive mode 3.5 kV, negative mode -3.0 kV), capillary temperature 275 ° C., source heater temperature The measurement was performed using a Thermo Fisher Scientific Orbitrap Elite at 450 ° C.
The result is shown in FIG. FIG. 2 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 1 and the detection sensitivity (relative intensity). From FIG. 2, it was confirmed that the molecular weight of the purified compound obtained in Example 1 was 302.
「精製化合物の核磁気共鳴(NMR)解析」
上記の通りにして得た実施例1の精製化合物のNMR解析を行った。NMR装置としては、BRUKER BIOSPIN製AVANCE500を使用し、重水中で解析した。その結果を以下に示す。 "Nuclear magnetic resonance (NMR) analysis of purified compounds"
NMR analysis of the purified compound of Example 1 obtained as described above was performed. As an NMR apparatus, anAVANCE 500 manufactured by BRUKER BIOSPIN was used and analyzed in heavy water. The results are shown below.
上記の通りにして得た実施例1の精製化合物のNMR解析を行った。NMR装置としては、BRUKER BIOSPIN製AVANCE500を使用し、重水中で解析した。その結果を以下に示す。 "Nuclear magnetic resonance (NMR) analysis of purified compounds"
NMR analysis of the purified compound of Example 1 obtained as described above was performed. As an NMR apparatus, an
1H-NMR(500MHz)
δppm2.36(s,3H),3.41(s,3H),3.78(dd,1H),3.84(dd,1H),3.90(dd,1H)4.00(s,1H)4.30(dd,1H)5.42(d,1H)、
13C-NMR(126MHz):
δppm18.0(q),45.4(q),64.0(t),64.1(d),71.7(d),71.7(d),76.2(d),94.0(d),121.7(s),156.9(s),159.9(s),171.4(s) 1 H-NMR (500 MHz)
δ ppm 2.36 (s, 3H), 3.41 (s, 3H), 3.78 (dd, 1H), 3.84 (dd, 1H), 3.90 (dd, 1H) 4.00 (s, 1H) 4.30 (dd, 1H) 5.42 (d, 1H),
13 C-NMR (126 MHz):
δppm 18.0 (q), 45.4 (q), 64.0 (t), 64.1 (d), 71.7 (d), 71.7 (d), 76.2 (d), 94 0.0 (d), 121.7 (s), 156.9 (s), 159.9 (s), 171.4 (s)
δppm2.36(s,3H),3.41(s,3H),3.78(dd,1H),3.84(dd,1H),3.90(dd,1H)4.00(s,1H)4.30(dd,1H)5.42(d,1H)、
13C-NMR(126MHz):
δppm18.0(q),45.4(q),64.0(t),64.1(d),71.7(d),71.7(d),76.2(d),94.0(d),121.7(s),156.9(s),159.9(s),171.4(s) 1 H-NMR (500 MHz)
δ ppm 2.36 (s, 3H), 3.41 (s, 3H), 3.78 (dd, 1H), 3.84 (dd, 1H), 3.90 (dd, 1H) 4.00 (s, 1H) 4.30 (dd, 1H) 5.42 (d, 1H),
13 C-NMR (126 MHz):
δppm 18.0 (q), 45.4 (q), 64.0 (t), 64.1 (d), 71.7 (d), 71.7 (d), 76.2 (d), 94 0.0 (d), 121.7 (s), 156.9 (s), 159.9 (s), 171.4 (s)
「精製化合物のX線結晶構造解析」
上記の通りにして得た実施例1の精製化合物8mgを10mLのガラス製スピッチグラス内に秤量し、超純水0.2mLを加えて完全に溶解させた。次に、エタノール1mLを、器壁を伝わせながら静かに上層に添加し、二日間実験室内に静置し、結晶を析出させた。
得られた結晶をRigaku製のR-AXIS RAPID IIを用いてX線結晶構造解析した。その結果、分子式はC12H18N2O7であることが分かった。実施例1で得られた精製化合物のX線結晶構造解析結果を図3に示す。 "X-ray crystal structure analysis of purified compounds"
8 mg of the purified compound of Example 1 obtained as described above was weighed into a 10 mL glass-made pitch glass, and 0.2 mL of ultrapure water was added and completely dissolved. Next, 1 mL of ethanol was gently added to the upper layer along the wall of the vessel and allowed to stand in the laboratory for 2 days to precipitate crystals.
The obtained crystal was subjected to X-ray crystal structure analysis using R-AXIS RAPID II manufactured by Rigaku. As a result, the molecular formula was found to be C 12 H 18 N 2 O 7 . The X-ray crystal structure analysis result of the purified compound obtained in Example 1 is shown in FIG.
上記の通りにして得た実施例1の精製化合物8mgを10mLのガラス製スピッチグラス内に秤量し、超純水0.2mLを加えて完全に溶解させた。次に、エタノール1mLを、器壁を伝わせながら静かに上層に添加し、二日間実験室内に静置し、結晶を析出させた。
得られた結晶をRigaku製のR-AXIS RAPID IIを用いてX線結晶構造解析した。その結果、分子式はC12H18N2O7であることが分かった。実施例1で得られた精製化合物のX線結晶構造解析結果を図3に示す。 "X-ray crystal structure analysis of purified compounds"
8 mg of the purified compound of Example 1 obtained as described above was weighed into a 10 mL glass-made pitch glass, and 0.2 mL of ultrapure water was added and completely dissolved. Next, 1 mL of ethanol was gently added to the upper layer along the wall of the vessel and allowed to stand in the laboratory for 2 days to precipitate crystals.
The obtained crystal was subjected to X-ray crystal structure analysis using R-AXIS RAPID II manufactured by Rigaku. As a result, the molecular formula was found to be C 12 H 18 N 2 O 7 . The X-ray crystal structure analysis result of the purified compound obtained in Example 1 is shown in FIG.
上記の「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」「精製化合物の核磁気共鳴(NMR)解析」「精製化合物のX線結晶構造解析」の結果から、実施例1で得られた精製化合物は、式(V)で表わされる化合物であることが確認できた。
Obtained in Example 1 from the results of “liquid chromatography mass spectrometry (LC / MS) analysis of purified compound”, “nuclear magnetic resonance (NMR) analysis of purified compound”, and “X-ray crystal structure analysis of purified compound” above. It was confirmed that the purified compound was a compound represented by the formula (V).
「精製化合物のHPLC解析」
上記の通りにして得た精製化合物をHPLC(株式会社島津製作所製LCSolution、PDA検出器(SPD-M10A))を用いて解析した。
その結果を図4に示す。図4は、実施例1で得られた精製化合物の紫外線吸収強度と溶出時間との関係を示したグラフである。
図4に示すように、実施例1で得られた精製化合物では、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。 "HPLC analysis of purified compounds"
The purified compound obtained as described above was analyzed using HPLC (LC Solution manufactured by Shimadzu Corporation, PDA detector (SPD-M10A)).
The result is shown in FIG. FIG. 4 is a graph showing the relationship between the ultraviolet absorption intensity of the purified compound obtained in Example 1 and the elution time.
As shown in FIG. 4, in the purified compound obtained in Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
上記の通りにして得た精製化合物をHPLC(株式会社島津製作所製LCSolution、PDA検出器(SPD-M10A))を用いて解析した。
その結果を図4に示す。図4は、実施例1で得られた精製化合物の紫外線吸収強度と溶出時間との関係を示したグラフである。
図4に示すように、実施例1で得られた精製化合物では、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。 "HPLC analysis of purified compounds"
The purified compound obtained as described above was analyzed using HPLC (LC Solution manufactured by Shimadzu Corporation, PDA detector (SPD-M10A)).
The result is shown in FIG. FIG. 4 is a graph showing the relationship between the ultraviolet absorption intensity of the purified compound obtained in Example 1 and the elution time.
As shown in FIG. 4, in the purified compound obtained in Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
「精製化合物の溶解性試験」
上記の通りにして得た精製化合物について、以下に示す方法により、水、メタノール、アセトニトリルに対する溶解性試験を行った。
実施例1で得られた精製化合物5mgを精秤し、表1に示す1~7の各溶媒を0.5ml加えて30秒間撹拌した後、ろ過し、1~7の各溶解液を得た。次に、得られた1~7の溶解液100μlを、それぞれ96穴のマイクロプレートに入れ、マイクロプレートリーダー(TECAN製 INFINITE200 PRO)で紫外線吸収スペクトルを測定した。紫外線吸収スペクトルは、200~600nm領域の波長を10nm間隔で連続測定するスペクトルスキャン法で測定した。 "Solubility test of purified compounds"
About the refinement | purification compound obtained as mentioned above, the solubility test with respect to water, methanol, and acetonitrile was done by the method shown below.
5 mg of the purified compound obtained in Example 1 was precisely weighed, 0.5 ml of each of the solvents 1 to 7 shown in Table 1 was added and stirred for 30 seconds, and then filtered to obtain 1 to 7 dissolved solutions. . Next, 100 μl of each of the obtained 1-7 lysates was put in a 96-well microplate, and an ultraviolet absorption spectrum was measured with a microplate reader (INFINITE200 PRO manufactured by TECAN). The ultraviolet absorption spectrum was measured by a spectrum scan method in which wavelengths in the 200 to 600 nm region were continuously measured at 10 nm intervals.
上記の通りにして得た精製化合物について、以下に示す方法により、水、メタノール、アセトニトリルに対する溶解性試験を行った。
実施例1で得られた精製化合物5mgを精秤し、表1に示す1~7の各溶媒を0.5ml加えて30秒間撹拌した後、ろ過し、1~7の各溶解液を得た。次に、得られた1~7の溶解液100μlを、それぞれ96穴のマイクロプレートに入れ、マイクロプレートリーダー(TECAN製 INFINITE200 PRO)で紫外線吸収スペクトルを測定した。紫外線吸収スペクトルは、200~600nm領域の波長を10nm間隔で連続測定するスペクトルスキャン法で測定した。 "Solubility test of purified compounds"
About the refinement | purification compound obtained as mentioned above, the solubility test with respect to water, methanol, and acetonitrile was done by the method shown below.
5 mg of the purified compound obtained in Example 1 was precisely weighed, 0.5 ml of each of the solvents 1 to 7 shown in Table 1 was added and stirred for 30 seconds, and then filtered to obtain 1 to 7 dissolved solutions. . Next, 100 μl of each of the obtained 1-7 lysates was put in a 96-well microplate, and an ultraviolet absorption spectrum was measured with a microplate reader (INFINITE200 PRO manufactured by TECAN). The ultraviolet absorption spectrum was measured by a spectrum scan method in which wavelengths in the 200 to 600 nm region were continuously measured at 10 nm intervals.
そして、1~7の各溶解液の波長360nmの吸光度について、溶媒として水100%(溶媒1)を用いた溶解液の吸光度を1.000としたときの各溶解液の吸光度の値(吸光度比率)を求めた。その結果を表1に示す。
表1に示すように、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなっている。このことから精製化合物の水への溶解度が高いことが分かった。 Then, with respect to the absorbance at a wavelength of 360 nm of each solution 1 to 7, the absorbance value of each solution (absorbance ratio) when the absorbance of the solution using 100% water (solvent 1) is 1.000. ) The results are shown in Table 1.
As shown in Table 1, the higher the proportion of water in the solvent, the greater the absorbance value. From this, it was found that the solubility of the purified compound in water was high.
表1に示すように、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなっている。このことから精製化合物の水への溶解度が高いことが分かった。 Then, with respect to the absorbance at a wavelength of 360 nm of each solution 1 to 7, the absorbance value of each solution (absorbance ratio) when the absorbance of the solution using 100% water (solvent 1) is 1.000. ) The results are shown in Table 1.
As shown in Table 1, the higher the proportion of water in the solvent, the greater the absorbance value. From this, it was found that the solubility of the purified compound in water was high.
<実施例2>
実施例1で得られた粗精製物を実施例1での「6.抽出物からの目的物の回収(2)」と同様にしてHPLC解析を行い、HPLC解析において2番目に紫外線吸収強度の強い結果が得られた、溶出時間16.8minのピーク(図1参照)の溶出分を分取した。そして、分取した溶出分をロータリーエバポレーターで減圧濃縮し、凍結、真空乾燥させて黄白色化合物を回収した。 <Example 2>
The crude purified product obtained in Example 1 was subjected to HPLC analysis in the same manner as in “6. Recovery of target product from extract (2)” in Example 1, and the second UV absorption intensity in HPLC analysis. The elution fraction of the peak (see FIG. 1) with an elution time of 16.8 min, which gave a strong result, was collected. Then, the fraction eluted was concentrated under reduced pressure using a rotary evaporator, frozen and vacuum dried to recover a yellowish white compound.
実施例1で得られた粗精製物を実施例1での「6.抽出物からの目的物の回収(2)」と同様にしてHPLC解析を行い、HPLC解析において2番目に紫外線吸収強度の強い結果が得られた、溶出時間16.8minのピーク(図1参照)の溶出分を分取した。そして、分取した溶出分をロータリーエバポレーターで減圧濃縮し、凍結、真空乾燥させて黄白色化合物を回収した。 <Example 2>
The crude purified product obtained in Example 1 was subjected to HPLC analysis in the same manner as in “6. Recovery of target product from extract (2)” in Example 1, and the second UV absorption intensity in HPLC analysis. The elution fraction of the peak (see FIG. 1) with an elution time of 16.8 min, which gave a strong result, was collected. Then, the fraction eluted was concentrated under reduced pressure using a rotary evaporator, frozen and vacuum dried to recover a yellowish white compound.
その後、グラジエント条件を下記の通りとしたこと以外は実施例1での「6.抽出物からの目的物の回収(2)」と同様にして、実施例2で得られた黄白色化合物をHPLCにて精製した。
グラジエント条件: 0~13min 移動相A100%で固定
13~18min 移動相B5%で固定
18~20min 移動相B10%で固定
20~22min 移動相B15%で固定
22~23min 移動相A:移動相B=85:15~移動相A:移動相B=5:95のリニアグラジエント
23~26min 移動相B95%で固定
26~33min 移動相A100%で固定
回収して得た液をロータリーエバポレーターで減圧濃縮し、凍結、真空乾燥させて、精製化合物である黄色化合物を回収した。 Thereafter, the yellowish white compound obtained in Example 2 was subjected to HPLC in the same manner as in “6. Recovery of target product from extract (2)” in Example 1 except that the gradient conditions were as follows. It refine | purified in.
Gradient condition: 0 to 13 min Fixed with mobile phase A 100% 13 to 18 min Fixed with mobile phase B 5% 18 to 20 min Fixed withmobile phase B 10% 20 to 22 min Fixed with mobile phase B 15% 22 to 23 min Mobile phase A: Mobile phase B = 85:15 to mobile phase A: mobile phase B = linear gradient of 5:95 23 to 26 min fixed with mobile phase B 95% fixed 26 to 33 min fixed with mobile phase A 100% The liquid obtained by recovery was concentrated under reduced pressure on a rotary evaporator, The purified yellow compound was recovered by freezing and vacuum drying.
グラジエント条件: 0~13min 移動相A100%で固定
13~18min 移動相B5%で固定
18~20min 移動相B10%で固定
20~22min 移動相B15%で固定
22~23min 移動相A:移動相B=85:15~移動相A:移動相B=5:95のリニアグラジエント
23~26min 移動相B95%で固定
26~33min 移動相A100%で固定
回収して得た液をロータリーエバポレーターで減圧濃縮し、凍結、真空乾燥させて、精製化合物である黄色化合物を回収した。 Thereafter, the yellowish white compound obtained in Example 2 was subjected to HPLC in the same manner as in “6. Recovery of target product from extract (2)” in Example 1 except that the gradient conditions were as follows. It refine | purified in.
Gradient condition: 0 to 13 min Fixed with mobile phase A 100% 13 to 18 min Fixed with mobile phase B 5% 18 to 20 min Fixed with
実施例2で得られた精製化合物について、グラジエント条件を下記の通りに変更した点以外は実施例1と同様にして「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」を行った。
グラジエント条件:0~10min 移動相A100%で固定
10~15min 移動相B5%で固定
15~17min 移動相B10%で固定
17~19min 移動相B15%で固定
19~20min 移動相A:移動相B=85:15~移動相A:移動相B=5:95のリニアグラジエント
20~23min 移動相B95%で固定
23~30min 移動相A100%で固定
その結果を図5に示す。図5は、実施例2で得られた精製化合物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図5より、実施例2で得られた精製化合物の分子量は1112であることが確認された。 The purified compound obtained in Example 2 was subjected to “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” in the same manner as in Example 1 except that the gradient conditions were changed as follows.
Gradient condition: 0 to 10 min Fixed with mobile phase A 100% 10 to 15 min Fixed with mobile phase B 5% 15 to 17 min Fixed withmobile phase B 10% 17 to 19 min Fixed with mobile phase B 15% 19 to 20 min Mobile phase A: Mobile phase B = Linear gradient of 85:15 to mobile phase A: mobile phase B = 5: 95 20 to 23 min Fixed with mobile phase B 95% 23 to 30 min Fixed with mobile phase A 100% The results are shown in FIG. FIG. 5 is a graph showing the relationship between the mass-to-charge ratio of the purified compound obtained in Example 2 and the detection sensitivity (relative intensity). From FIG. 5, it was confirmed that the molecular weight of the purified compound obtained in Example 2 was 1112.
グラジエント条件:0~10min 移動相A100%で固定
10~15min 移動相B5%で固定
15~17min 移動相B10%で固定
17~19min 移動相B15%で固定
19~20min 移動相A:移動相B=85:15~移動相A:移動相B=5:95のリニアグラジエント
20~23min 移動相B95%で固定
23~30min 移動相A100%で固定
その結果を図5に示す。図5は、実施例2で得られた精製化合物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図5より、実施例2で得られた精製化合物の分子量は1112であることが確認された。 The purified compound obtained in Example 2 was subjected to “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” in the same manner as in Example 1 except that the gradient conditions were changed as follows.
Gradient condition: 0 to 10 min Fixed with mobile phase A 100% 10 to 15 min Fixed with mobile phase B 5% 15 to 17 min Fixed with
実施例2で得られた精製化合物について、実施例1と同様にして「精製化合物の核磁気共鳴(NMR)解析」を行った。その結果を以下に示す。
The purified compound obtained in Example 2 was subjected to “nuclear magnetic resonance (NMR) analysis of the purified compound” in the same manner as in Example 1. The results are shown below.
1H-NMR(500MHz)
δppm2.36(s,3H),3.35(t,1H), 3.41-3.58(m,16H),3.65(t,1H),3.73-3.80(m,10H),3.90-4.09(m,10H),4.47(dd,1H),4.65(d,1H),4.80-4.90(m,4H),5.42(d,1H)、
13C-NMR(126MHz):
δppm18.0(q),45.4(q),63.4(t),63.5(t),63.6(t),63.7(t),64.1(d),71.5(d),71.7(d),71.9(t),72.1(d),72.3(d),74.7(d),76.7(d),78.3(d),78.5(d),78.6(d),78.7(d),78.9(d),79.1(d),79.3(d),84.1(d),84.9(d),85.0(d),86.1(d),94.0(d),104.1(d),104.5(d),104.8(d),105.3(d),106.0(d),121.7(s),156.8(s),160.0(s) 1 H-NMR (500 MHz)
δppm 2.36 (s, 3H), 3.35 (t, 1H), 3.41-3.58 (m, 16H), 3.65 (t, 1H), 3.73-3.80 (m, 10H), 3.90-4.09 (m, 10H), 4.47 (dd, 1H), 4.65 (d, 1H), 4.80-4.90 (m, 4H), 5.42 (D, 1H),
13 C-NMR (126 MHz):
δ ppm 18.0 (q), 45.4 (q), 63.4 (t), 63.5 (t), 63.6 (t), 63.7 (t), 64.1 (d), 71 .5 (d), 71.7 (d), 71.9 (t), 72.1 (d), 72.3 (d), 74.7 (d), 76.7 (d), 78. 3 (d), 78.5 (d), 78.6 (d), 78.7 (d), 78.9 (d), 79.1 (d), 79.3 (d), 84.1 (D), 84.9 (d), 85.0 (d), 86.1 (d), 94.0 (d), 104.1 (d), 104.5 (d), 104.8 ( d), 105.3 (d), 106.0 (d), 121.7 (s), 156.8 (s), 160.0 (s)
δppm2.36(s,3H),3.35(t,1H), 3.41-3.58(m,16H),3.65(t,1H),3.73-3.80(m,10H),3.90-4.09(m,10H),4.47(dd,1H),4.65(d,1H),4.80-4.90(m,4H),5.42(d,1H)、
13C-NMR(126MHz):
δppm18.0(q),45.4(q),63.4(t),63.5(t),63.6(t),63.7(t),64.1(d),71.5(d),71.7(d),71.9(t),72.1(d),72.3(d),74.7(d),76.7(d),78.3(d),78.5(d),78.6(d),78.7(d),78.9(d),79.1(d),79.3(d),84.1(d),84.9(d),85.0(d),86.1(d),94.0(d),104.1(d),104.5(d),104.8(d),105.3(d),106.0(d),121.7(s),156.8(s),160.0(s) 1 H-NMR (500 MHz)
δppm 2.36 (s, 3H), 3.35 (t, 1H), 3.41-3.58 (m, 16H), 3.65 (t, 1H), 3.73-3.80 (m, 10H), 3.90-4.09 (m, 10H), 4.47 (dd, 1H), 4.65 (d, 1H), 4.80-4.90 (m, 4H), 5.42 (D, 1H),
13 C-NMR (126 MHz):
δ ppm 18.0 (q), 45.4 (q), 63.4 (t), 63.5 (t), 63.6 (t), 63.7 (t), 64.1 (d), 71 .5 (d), 71.7 (d), 71.9 (t), 72.1 (d), 72.3 (d), 74.7 (d), 76.7 (d), 78. 3 (d), 78.5 (d), 78.6 (d), 78.7 (d), 78.9 (d), 79.1 (d), 79.3 (d), 84.1 (D), 84.9 (d), 85.0 (d), 86.1 (d), 94.0 (d), 104.1 (d), 104.5 (d), 104.8 ( d), 105.3 (d), 106.0 (d), 121.7 (s), 156.8 (s), 160.0 (s)
上記の「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」「精製化合物の核磁気共鳴(NMR)解析」の結果から、実施例2で得られた精製化合物は、式(I)におけるR1およびR2がメチル基であり、R3が水素原子であり、Xが糖分子数5の直鎖状の糖鎖である化合物またはその塩であることが確認できた。
また、上記の「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」「精製化合物の核磁気共鳴(NMR)解析」の結果から、実施例2で得られた精製化合物は、式(III)で表わされる化合物および/または式(IV)で表わされる化合物であることが確認された。 From the results of the above-mentioned “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” and “nuclear magnetic resonance (NMR) analysis of the purified compound”, the purified compound obtained in Example 2 is represented by the formula (I). It was confirmed that R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof.
Further, from the results of the above-mentioned “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” and “nuclear magnetic resonance (NMR) analysis of the purified compound”, the purified compound obtained in Example 2 has the formula (III ) And / or a compound represented by formula (IV).
また、上記の「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」「精製化合物の核磁気共鳴(NMR)解析」の結果から、実施例2で得られた精製化合物は、式(III)で表わされる化合物および/または式(IV)で表わされる化合物であることが確認された。 From the results of the above-mentioned “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” and “nuclear magnetic resonance (NMR) analysis of the purified compound”, the purified compound obtained in Example 2 is represented by the formula (I). It was confirmed that R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a straight-chain sugar chain having 5 sugar molecules or a salt thereof.
Further, from the results of the above-mentioned “liquid chromatography mass spectrometry (LC / MS) analysis of the purified compound” and “nuclear magnetic resonance (NMR) analysis of the purified compound”, the purified compound obtained in Example 2 has the formula (III ) And / or a compound represented by formula (IV).
次に、実施例2で得られた精製化合物について、実施例1と同様にして「精製化合物のHPLC解析」を行った。
その結果を図6に示す。図6は、実施例2で得られた精製化合物の紫外線吸収強度と溶出時間との関係を示したグラフである。
図6に示すように、実施例2で得られた精製化合物では、UV測定波長360nmで測定したときに溶出時間21.25minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。 Next, the purified compound obtained in Example 2 was subjected to “HPLC analysis of the purified compound” in the same manner as in Example 1.
The result is shown in FIG. 6 is a graph showing the relationship between the ultraviolet absorption intensity and the elution time of the purified compound obtained in Example 2. FIG.
As shown in FIG. 6, in the purified compound obtained in Example 2, a peak was detected at an elution time of 21.25 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
その結果を図6に示す。図6は、実施例2で得られた精製化合物の紫外線吸収強度と溶出時間との関係を示したグラフである。
図6に示すように、実施例2で得られた精製化合物では、UV測定波長360nmで測定したときに溶出時間21.25minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。 Next, the purified compound obtained in Example 2 was subjected to “HPLC analysis of the purified compound” in the same manner as in Example 1.
The result is shown in FIG. 6 is a graph showing the relationship between the ultraviolet absorption intensity and the elution time of the purified compound obtained in Example 2. FIG.
As shown in FIG. 6, in the purified compound obtained in Example 2, a peak was detected at an elution time of 21.25 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm.
次に、実施例2で得られた精製化合物について、実施例1と同様にして「精製化合物の溶解性試験」を行った。
その結果、実施例2で得られた精製化合物においても、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなった。このことから精製化合物の水への溶解度が高いことが分かった。 Next, the purified compound obtained in Example 2 was subjected to a “purification compound solubility test” in the same manner as in Example 1.
As a result, also in the purified compound obtained in Example 2, the higher the proportion of water in the solvent, the greater the absorbance value. From this, it was found that the solubility of the purified compound in water was high.
その結果、実施例2で得られた精製化合物においても、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなった。このことから精製化合物の水への溶解度が高いことが分かった。 Next, the purified compound obtained in Example 2 was subjected to a “purification compound solubility test” in the same manner as in Example 1.
As a result, also in the purified compound obtained in Example 2, the higher the proportion of water in the solvent, the greater the absorbance value. From this, it was found that the solubility of the purified compound in water was high.
<実施例3>
「1.微生物の採取」
コムギ葉を10mMリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得た。
その後、「2.微生物の培養」~「5.抽出物からの目的物の回収(1)」までの工程を実施例1と同様に行った。 <Example 3>
“1. Collecting microorganisms”
Wheat leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground liquid containing microorganisms.
Thereafter, the steps from “2. Cultivation of microorganism” to “5. Recovery of target substance from extract (1)” were carried out in the same manner as in Example 1.
「1.微生物の採取」
コムギ葉を10mMリン酸緩衝液中に浸漬して、乳鉢中で磨砕し、微生物を含む磨砕液を得た。
その後、「2.微生物の培養」~「5.抽出物からの目的物の回収(1)」までの工程を実施例1と同様に行った。 <Example 3>
“1. Collecting microorganisms”
Wheat leaves were immersed in a 10 mM phosphate buffer and ground in a mortar to obtain a ground liquid containing microorganisms.
Thereafter, the steps from “2. Cultivation of microorganism” to “5. Recovery of target substance from extract (1)” were carried out in the same manner as in Example 1.
実施例3において「2.微生物の培養」で分離回収して得られた各菌体について実施例1と同様にして紫外線吸収能の有無を調べ、実施例1と同様にして分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。その結果、菌体はメチロバクテリウム属であった。この菌体をW-213株と名付けた。
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 In Example 3, each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named W-213 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 In Example 3, each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named W-213 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
実施例3で得られた粗精製物について、実施例1での「精製化合物の液体クロマトグラフィー質量分析(LC/MS)解析」と同様にして、LC/MS解析を行った。
その結果を図7に示す。図7は、実施例3で得られた粗精製物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図7より、実施例3で得られた粗精製物は、分子量302の化合物を含むことが確認された。 The crude purified product obtained in Example 3 was subjected to LC / MS analysis in the same manner as in “Liquid chromatography mass spectrometry (LC / MS) analysis of purified compound” in Example 1.
The result is shown in FIG. FIG. 7 is a graph showing the relationship between the mass-to-charge ratio of the crude product obtained in Example 3 and detection sensitivity (relative intensity). From FIG. 7, it was confirmed that the crudely purified product obtained in Example 3 contains a compound having a molecular weight of 302.
その結果を図7に示す。図7は、実施例3で得られた粗精製物の質量電荷比と検出感度(相対強度)との関係を示したグラフである。図7より、実施例3で得られた粗精製物は、分子量302の化合物を含むことが確認された。 The crude purified product obtained in Example 3 was subjected to LC / MS analysis in the same manner as in “Liquid chromatography mass spectrometry (LC / MS) analysis of purified compound” in Example 1.
The result is shown in FIG. FIG. 7 is a graph showing the relationship between the mass-to-charge ratio of the crude product obtained in Example 3 and detection sensitivity (relative intensity). From FIG. 7, it was confirmed that the crudely purified product obtained in Example 3 contains a compound having a molecular weight of 302.
実施例3で得られた粗精製物は、同定した菌体がメチロバクテリウム属であることと、得られた粗精製物のLC/MS解析の結果とから、実施例1で得られた粗精製物と同じであると考えられる。
実施例3で得られた粗精製物に対して実施例1での「6.抽出物からの目的物の回収(2)」を行うことにより、精製化合物を得た。このようにして得た実施例3の精製化合物に対して実施例1での「精製化合物のHPLC解析」を行った。その結果、実施例1の精製化合物と同様に、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。また、実施例3で得られた精製化合物について、実施例1の「精製化合物の溶解性試験」と同様の試験を行った。その結果、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなり、水への溶解度が高いことが確認された。 The crude product obtained in Example 3 was obtained in Example 1 based on the fact that the identified cells were of the genus Methylobacterium and the results of LC / MS analysis of the obtained crude product. It is considered to be the same as the crude product.
The crude compound obtained in Example 3 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound. The “HPLC analysis of the purified compound” in Example 1 was performed on the purified compound of Example 3 thus obtained. As a result, similar to the purified compound of Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm. Further, the purified compound obtained in Example 3 was subjected to the same test as the “purified compound solubility test” in Example 1. As a result, it was confirmed that the higher the proportion of water in the solvent, the higher the absorbance value and the higher the solubility in water.
実施例3で得られた粗精製物に対して実施例1での「6.抽出物からの目的物の回収(2)」を行うことにより、精製化合物を得た。このようにして得た実施例3の精製化合物に対して実施例1での「精製化合物のHPLC解析」を行った。その結果、実施例1の精製化合物と同様に、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。また、実施例3で得られた精製化合物について、実施例1の「精製化合物の溶解性試験」と同様の試験を行った。その結果、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなり、水への溶解度が高いことが確認された。 The crude product obtained in Example 3 was obtained in Example 1 based on the fact that the identified cells were of the genus Methylobacterium and the results of LC / MS analysis of the obtained crude product. It is considered to be the same as the crude product.
The crude compound obtained in Example 3 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound. The “HPLC analysis of the purified compound” in Example 1 was performed on the purified compound of Example 3 thus obtained. As a result, similar to the purified compound of Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm. Further, the purified compound obtained in Example 3 was subjected to the same test as the “purified compound solubility test” in Example 1. As a result, it was confirmed that the higher the proportion of water in the solvent, the higher the absorbance value and the higher the solubility in water.
<実施例4>
「1.微生物の採取」において、イチゴ葉に代えて、月見草の花弁を用いたこと以外は、実施例1と同様にして「1.微生物の採取」~「5.抽出物からの目的物の回収(1)」までの工程を行った。
実施例4において「2.微生物の培養」で分離回収して得られた各菌体について実施例1と同様にして紫外線吸収能の有無を調べ、実施例1と同様にして分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。その結果、菌体はメチロバクテリウム属であった。この菌体をf11株と名付けた。
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 <Example 4>
In “1. Collecting microorganisms”, except that primrose petals were used in place of strawberry leaves, the same procedures as in Example 1 were performed, except that “1. Collecting microorganisms” to “5. The steps up to “Recovery (1)” were performed.
Each bacterial cell obtained by separation and recovery in “2. Microbial culture” in Example 4 was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named f11 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
「1.微生物の採取」において、イチゴ葉に代えて、月見草の花弁を用いたこと以外は、実施例1と同様にして「1.微生物の採取」~「5.抽出物からの目的物の回収(1)」までの工程を行った。
実施例4において「2.微生物の培養」で分離回収して得られた各菌体について実施例1と同様にして紫外線吸収能の有無を調べ、実施例1と同様にして分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。その結果、菌体はメチロバクテリウム属であった。この菌体をf11株と名付けた。
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 <Example 4>
In “1. Collecting microorganisms”, except that primrose petals were used in place of strawberry leaves, the same procedures as in Example 1 were performed, except that “1. Collecting microorganisms” to “5. The steps up to “Recovery (1)” were performed.
Each bacterial cell obtained by separation and recovery in “2. Microbial culture” in Example 4 was examined for the presence or absence of ultraviolet absorbing ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named f11 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
<実施例5>
「1.微生物の採取」において、イチゴ葉に代えて、イネ葉鞘を用いたこと以外は、実施例1と同様にして「1.微生物の採取」~「5.抽出物からの目的物の回収(1)」までの工程を行った。
実施例5において「2.微生物の培養」で分離回収して得られた各菌体について実施例1と同様にして紫外線吸収能の有無を調べ、実施例1と同様にして分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。その結果、菌体はメチロバクテリウム属であった。この菌体を24N-25株と名付けた。
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 <Example 5>
In “1. Collecting microorganisms”, except for using a rice leaf sheath instead of strawberry leaves, the same procedures as in Example 1 were performed, “1. Collecting microorganisms” to “5. The steps up to (1) ”were performed.
In Example 5, each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorption ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named 24N-25 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
「1.微生物の採取」において、イチゴ葉に代えて、イネ葉鞘を用いたこと以外は、実施例1と同様にして「1.微生物の採取」~「5.抽出物からの目的物の回収(1)」までの工程を行った。
実施例5において「2.微生物の培養」で分離回収して得られた各菌体について実施例1と同様にして紫外線吸収能の有無を調べ、実施例1と同様にして分離回収した各菌体のうち最も高い紫外線吸収能を有する菌体を同定した。その結果、菌体はメチロバクテリウム属であった。この菌体を24N-25株と名付けた。
また「5.抽出物からの目的物の回収(1)」を行うことにより、実施例1で得られた粗精製物と外観の類似する粗精製物である黄褐色化合物が得られた。 <Example 5>
In “1. Collecting microorganisms”, except for using a rice leaf sheath instead of strawberry leaves, the same procedures as in Example 1 were performed, “1. Collecting microorganisms” to “5. The steps up to (1) ”were performed.
In Example 5, each bacterial cell obtained by separation and recovery in “2. Microbial culture” was examined for the presence or absence of ultraviolet absorption ability in the same manner as in Example 1, and each bacterial cell isolated and recovered in the same manner as in Example 1. A cell having the highest UV-absorbing ability was identified. As a result, the cells were of the genus Methylobacterium. This microbial cell was named 24N-25 strain.
In addition, by performing “5. Recovery of target product from extract (1)”, a tan compound, which was a crude product similar in appearance to the crude product obtained in Example 1, was obtained.
次に、実施例4および実施例5で得られた粗精製物を、それぞれ実施例1での「6.抽出物からの目的物の回収(2)」と同様にしてHPLC解析を行った。その結果、実施例4と実施例5の両方とも、HPLC解析において、溶出時間4.3minに最も紫外線吸収強度の強いピークが得られた。
Next, the crude purified product obtained in Example 4 and Example 5 was subjected to HPLC analysis in the same manner as in “6. Recovery of target product from extract (2)” in Example 1, respectively. As a result, in both Example 4 and Example 5, the peak with the strongest ultraviolet absorption intensity was obtained at the elution time of 4.3 min in the HPLC analysis.
実施例4および実施例5で得られた粗精製物は、同定した菌体がメチロバクテリウム属であることと、得られた粗精製物のHPLC解析の結果とから、実施例1で得られた粗精製物と同じであると考えられる。
また、実施例4および実施例5で得られた粗精製物に対して、実施例1での「6.抽出物からの目的物の回収(2)」を行うことにより、精製化合物を得た。このようにして得た実施例4および実施例5の精製化合物に対して実施例1での「精製化合物のHPLC解析」を行った。その結果、実施例1の精製化合物と同様に、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。また、実施例4および実施例5で得られた精製化合物について、実施例1の「精製化合物の溶解性試験」と同様の試験を行った。その結果、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなり、水への溶解度が高いことが確認された。 The crude product obtained in Example 4 and Example 5 was obtained in Example 1 based on the fact that the identified bacterial cells belong to the genus Methylobacterium and the results of HPLC analysis of the obtained crude product. It is considered to be the same as the obtained crude product.
Further, the crude compound obtained in Example 4 and Example 5 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound. . The “HPLC analysis of the purified compound” in Example 1 was performed on the purified compounds of Example 4 and Example 5 thus obtained. As a result, similar to the purified compound of Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm. In addition, the purified compound obtained in Example 4 and Example 5 was subjected to the same test as the “purified compound solubility test” in Example 1. As a result, it was confirmed that the higher the proportion of water in the solvent, the higher the absorbance value and the higher the solubility in water.
また、実施例4および実施例5で得られた粗精製物に対して、実施例1での「6.抽出物からの目的物の回収(2)」を行うことにより、精製化合物を得た。このようにして得た実施例4および実施例5の精製化合物に対して実施例1での「精製化合物のHPLC解析」を行った。その結果、実施例1の精製化合物と同様に、UV測定波長360nmで測定したときに溶出時間4.1minにおいてピークが検出された。このピークは、波長350~360nm領域に高い吸収ピークを示すことが確認された。また、実施例4および実施例5で得られた精製化合物について、実施例1の「精製化合物の溶解性試験」と同様の試験を行った。その結果、溶媒中の水の割合が高い溶解液ほど、吸光度の値が大きくなり、水への溶解度が高いことが確認された。 The crude product obtained in Example 4 and Example 5 was obtained in Example 1 based on the fact that the identified bacterial cells belong to the genus Methylobacterium and the results of HPLC analysis of the obtained crude product. It is considered to be the same as the obtained crude product.
Further, the crude compound obtained in Example 4 and Example 5 was subjected to “6. Recovery of target product from extract (2)” in Example 1 to obtain a purified compound. . The “HPLC analysis of the purified compound” in Example 1 was performed on the purified compounds of Example 4 and Example 5 thus obtained. As a result, similar to the purified compound of Example 1, a peak was detected at an elution time of 4.1 min when measured at a UV measurement wavelength of 360 nm. This peak was confirmed to show a high absorption peak in the wavelength region of 350 to 360 nm. In addition, the purified compound obtained in Example 4 and Example 5 was subjected to the same test as the “purified compound solubility test” in Example 1. As a result, it was confirmed that the higher the proportion of water in the solvent, the higher the absorbance value and the higher the solubility in water.
実施例1~5において、微生物を採取した植物、精製化合物の分子量、精製化合物の構造、紫外線吸収能、溶解性を表2に示す。表2において、紫外線吸収能「○」とは、波長320~400nmの紫外線A波(UVA)領域での吸収能を有することを意味する。また、溶解性「○」とは、水への溶解性を有することを意味する。
In Examples 1 to 5, Table 2 shows the plants from which microorganisms were collected, the molecular weight of the purified compound, the structure of the purified compound, the ultraviolet absorption ability, and the solubility. In Table 2, the ultraviolet absorption ability “◯” means having an absorption ability in the ultraviolet A wave (UVA) region having a wavelength of 320 to 400 nm. Further, the solubility “◯” means having solubility in water.
以上説明したように、本発明の化合物またはその塩は、UVA領域での紫外線吸収能および水系溶媒に対する溶解性を有し、化粧料および皮膚外用剤の材料として好適である。
As described above, the compound of the present invention or a salt thereof has ultraviolet absorption ability in the UVA region and solubility in an aqueous solvent, and is suitable as a material for cosmetics and skin external preparations.
本発明の化合物またはその塩は、化粧料や皮膚外用剤等において、紫外線吸収剤として利用の利用が期待できる。
The compound of the present invention or a salt thereof can be expected to be used as a UV absorber in cosmetics and skin external preparations.
Claims (7)
- 式(I)で表わされる紫外線吸収能を有する化合物またはその塩。
- 式(I)において、R1およびR2がメチル基であり、R3が水素原子であり、Xが糖分子数5の直鎖状の糖鎖である請求項1に記載の化合物またはその塩。 The compound or salt thereof according to claim 1, wherein in formula (I), R 1 and R 2 are methyl groups, R 3 is a hydrogen atom, and X is a linear sugar chain having 5 sugar molecules. .
- 請求項1~請求項3のいずれか一項に記載の化合物またはその塩の製造方法であり、
植物に生育する微生物を培養して菌体を得る工程と、
前記菌体を溶媒で抽出して抽出物を得る工程と、
前記抽出物から式(I)で表される化合物またはその塩を回収する工程とを含む化合物またはその塩の製造方法。 A method for producing the compound or salt thereof according to any one of claims 1 to 3,
Culturing microorganisms growing on plants to obtain microbial cells;
Extracting the cells with a solvent to obtain an extract;
Recovering the compound represented by the formula (I) or a salt thereof from the extract. - 前記菌体が、メチロバクテリウム属である請求項4に記載の化合物またはその塩の製造方法。 The method for producing a compound or a salt thereof according to claim 4, wherein the microbial cell belongs to the genus Methylobacterium.
- 請求項1~請求項3のいずれか一項に記載の化合物またはその塩を含む皮膚外用剤。 An external preparation for skin comprising the compound or a salt thereof according to any one of claims 1 to 3.
- 請求項1~請求項3のいずれか一項に記載の化合物またはその塩を含む化粧料。 A cosmetic comprising the compound or a salt thereof according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017541589A JP6732341B2 (en) | 2015-09-24 | 2016-09-23 | Compounds having ultraviolet absorption ability or salts thereof, and methods for producing the same, skin external preparations, cosmetics |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015187181 | 2015-09-24 | ||
JP2015-187181 | 2015-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051875A1 true WO2017051875A1 (en) | 2017-03-30 |
Family
ID=58386061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078032 WO2017051875A1 (en) | 2015-09-24 | 2016-09-23 | Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6732341B2 (en) |
WO (1) | WO2017051875A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170713A1 (en) * | 2016-03-31 | 2017-10-05 | 国立研究開発法人農業・食品産業技術総合研究機構 | Anti-photoaging agent |
WO2017170722A1 (en) * | 2016-03-31 | 2017-10-05 | 国立研究開発法人農業・食品産業技術総合研究機構 | Anti-inflammatory agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013127027A (en) * | 2011-12-19 | 2013-06-27 | National Institute For Agro-Environmental Science | Ultraviolet absorber composition originated from plant inhabiting microbes |
JP2014048173A (en) * | 2012-08-31 | 2014-03-17 | Tsukishima Foods Industry Co Ltd | Method of measuring milk fat content |
-
2016
- 2016-09-23 JP JP2017541589A patent/JP6732341B2/en active Active
- 2016-09-23 WO PCT/JP2016/078032 patent/WO2017051875A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013127027A (en) * | 2011-12-19 | 2013-06-27 | National Institute For Agro-Environmental Science | Ultraviolet absorber composition originated from plant inhabiting microbes |
JP2014048173A (en) * | 2012-08-31 | 2014-03-17 | Tsukishima Foods Industry Co Ltd | Method of measuring milk fat content |
Non-Patent Citations (1)
Title |
---|
KOUTSOMPOGERAS, P. ET AL.: "The formation of 2,5-dimethyl-4-hydroxy-2H-furan-3-one by cell - free extracts of Methylobacterium extorquens and strawberry (Fragaria x ananassa cv. Elsanta", FOOD CHEMISTRY, vol. 104, no. 4, 2007, pages 1654 - 1661, XP022095497 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170713A1 (en) * | 2016-03-31 | 2017-10-05 | 国立研究開発法人農業・食品産業技術総合研究機構 | Anti-photoaging agent |
WO2017170722A1 (en) * | 2016-03-31 | 2017-10-05 | 国立研究開発法人農業・食品産業技術総合研究機構 | Anti-inflammatory agent |
JP2017186259A (en) * | 2016-03-31 | 2017-10-12 | 昭和電工株式会社 | Antiinflammatory agent |
JP2017186258A (en) * | 2016-03-31 | 2017-10-12 | 昭和電工株式会社 | Anti-photoaging agent |
Also Published As
Publication number | Publication date |
---|---|
JP6732341B2 (en) | 2020-07-29 |
JPWO2017051875A1 (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5913988B2 (en) | Multifunctional cosmetic ingredients containing Aureobasidium pullulans cell extract | |
CN103340761A (en) | Use of lignan compound for anti-wrinkle treatment | |
WO2017051875A1 (en) | Compound exhibiting ultraviolet absorption ability or salt thereof, production method therefor, external preparation for skin, and cosmetic | |
KR20190006888A (en) | Composition comprising extracts, fractions and the isolated compounds of hibiscus hamabo siebold and zucc. for skin anti-pollution | |
JP6369751B2 (en) | Curcumin derivative exhibiting keratin producing action and method for producing the same | |
JP2008214335A (en) | Sparassis crispa extract, biaryl compound and cosmetic | |
JP6436337B2 (en) | Quercetin derivative exhibiting elastin producing action and method for producing the same | |
US20020044915A1 (en) | Whitening cosmetics containing extracts from Ecklonia cava | |
JP5786019B2 (en) | Cosmetic composition | |
US6384085B1 (en) | Material separated from Ecklonia cava, method for extracting and purifying the same, and use thereof as antioxidants | |
JP2010018559A (en) | Cosmetic composition containing biosurfactant | |
JP6614449B2 (en) | Anti-inflammatory agent | |
JP2018193339A (en) | Peptide glycan derivative exhibiting anti-inflammatory activity | |
JP6741965B2 (en) | Dehydroretinol derivative exhibiting keratin increasing action | |
US6774145B1 (en) | Material separated from Ecklonia cava, method for extracting and purifying the same, and use thereof as antioxidants | |
JP6614448B2 (en) | Anti-photoaging agent | |
US9789046B2 (en) | Water-based resin nail polish | |
JP5946510B2 (en) | Melanin production inhibitor, cosmetic, and method for producing melanin production inhibitor | |
EP3381441A1 (en) | Antiaging composition for external preparation for skin, containing extract of germinatedglycine gracilis | |
JP2019089723A (en) | Humectant | |
JP7079920B2 (en) | A method for producing a hydroxypyran derivative exhibiting a proliferative effect on vascular endothelial cells and a method for culturing human oral cells. | |
WO2017082144A1 (en) | Novel mycosporine-like amino acid | |
JP5621330B2 (en) | Method for producing a terpene peptide conjugate exhibiting a ceramide producing action | |
JP6606635B2 (en) | Carotenoid derivatives with cytokeratin increasing action | |
JP6010073B2 (en) | Resveratrol derivative producing hydrogen gas and exhibiting keratin production action and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16848663 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017541589 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16848663 Country of ref document: EP Kind code of ref document: A1 |