WO2017170710A1 - 輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体 - Google Patents

輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体 Download PDF

Info

Publication number
WO2017170710A1
WO2017170710A1 PCT/JP2017/012932 JP2017012932W WO2017170710A1 WO 2017170710 A1 WO2017170710 A1 WO 2017170710A1 JP 2017012932 W JP2017012932 W JP 2017012932W WO 2017170710 A1 WO2017170710 A1 WO 2017170710A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
screen
display units
display
image
Prior art date
Application number
PCT/JP2017/012932
Other languages
English (en)
French (fr)
Inventor
青木 透
偉雄 藤田
的場 成浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018509346A priority Critical patent/JP6461426B2/ja
Publication of WO2017170710A1 publication Critical patent/WO2017170710A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Definitions

  • the present invention relates to a brightness adjusting apparatus and method for adjusting the brightness of a plurality of display units constituting an image display apparatus.
  • the present invention also relates to an image display system including the brightness adjusting device and the image display device.
  • the present invention further provides a program for causing a computer to execute a part of the process in the brightness adjusting device or a part of the process in the brightness adjusting method, and a computer-readable recording medium storing such a program.
  • a brightness adjusting device that adjusts the brightness of a plurality of display units constituting an image display device is disclosed in, for example, Patent Document 1 below.
  • a pattern image is displayed on a plurality of display units, the displayed image is captured by a camera, and the position of each display unit in the image obtained by the imaging is specified. . Further, from the image obtained by photographing, the photographing angle with respect to each display unit and the luminance of the display image of each display unit are measured. Then, a correction value used for luminance adjustment of each display unit is calculated from the shooting angle with respect to each display unit and the measured luminance of the display image of each display unit.
  • Japanese Patent No. 5300981 paragraphs 0009-0013, FIG. 1
  • Non-patent document 1 will be mentioned later.
  • the distance between the camera and each display unit is not considered. Therefore, when shooting with a lens with a wide viewing angle, for example, a camera equipped with an ultra-wide-angle lens, close to the image display device, the distance from the camera varies greatly between display units. However, the brightness on the photographed image differs greatly between the display units, and there is a problem that the brightness cannot be adjusted correctly.
  • the present invention is to solve the above-mentioned problems of the prior art.
  • the brightness adjusting apparatus is A brightness adjusting device for adjusting the brightness of an image displayed on the plurality of display units of an image display device having a combination screen configured by arranging screens of a plurality of display units, A pattern image display processing unit for displaying a pattern image on the plurality of display units; A camera that captures the pattern image displayed on the plurality of display units; A unit position specifying unit for specifying the position of the screen of each of the plurality of display units in the captured image obtained by the shooting by the camera; A camera position specifying unit for specifying the position of the camera in real space; The shooting angle of the camera with respect to each screen of the plurality of display units is specified from the position of each screen of the plurality of display units in the real space and the position of the camera specified by the camera position specifying unit.
  • An angle specifying unit to perform, Based on the position of each screen of the plurality of display units in real space, a distance specifying unit that specifies the distance from the camera to each screen of the plurality of display units; Based on the position in the captured image of the screen of each of the plurality of display units specified by the unit position specifying unit, the area occupied by each screen of the plurality of display units in the captured image is specified, A luminance measurement unit that measures the luminance in the identified area as the luminance of each screen of the plurality of display units; The light distribution characteristic value for each screen of the plurality of display units was calculated from the light distribution characteristic formula and the shooting angle for each screen of the plurality of display units specified by the angle specifying unit, and calculated.
  • a target luminance for the display unit is determined, and the plurality of the measurement values measured by the luminance measuring unit.
  • a correction value calculating unit that calculates a correction value for matching the luminance of each screen of the display unit with the target luminance of the display unit.
  • the brightness can be adjusted correctly.
  • FIG. 2 is an explanatory diagram showing a horizontal shooting angle and a vertical shooting angle of the screen of the image display apparatus of FIG. 1. It is a block diagram which shows the structural example of the correction value calculation part of FIG.
  • FIG. 1 shows an image display system provided with a brightness adjusting apparatus according to Embodiment 1 of the present invention.
  • the illustrated image display system includes an image display device 11, a luminance adjustment device 12, a video signal input unit 13, a video signal correction unit 14, a switching unit 15, and a control unit 16.
  • the image display device 11 is a large screen display device having a screen configured by arranging the screens of a plurality of display units in the horizontal direction and the vertical direction.
  • the number of display units is represented by “N”.
  • the screens of the display units are arranged in a matrix as shown in FIG. 2, for example.
  • the number of rows is represented by “N rt ” and the number of columns is represented by “N ct ”.
  • N is 18, N rt is 3, and N ct is 6.
  • the screen DUn of each display unit Un (n is any one of 1 to N) has a rectangular shape
  • the screen DA of the image display device 11 has a rectangular shape as a whole.
  • the video signal input unit 13 receives an externally supplied video signal Va and supplies it to the video signal correction unit 14.
  • the video signal correction unit 14 corrects the video signal Va output from the video signal input unit 13 and supplies the corrected video signal Vb to the switching unit 15.
  • the switching unit 15 selects either the video signal Vb output from the video signal correction unit 14 or a signal Vp representing a pattern image described later output from the luminance adjustment device 12 and supplies the selected signal to the image display device 11. .
  • the control unit 16 operates the image display system in the correction value calculation mode or the video display mode.
  • the control unit 16 causes the switching unit 15 to select the signal Vp representing the pattern image output from the luminance adjustment device 12, causes the luminance adjustment device 12 to perform processing for luminance adjustment, and As a result of the processing, correction values H 1 to H N are calculated and stored.
  • the control unit 16 causes the switching unit 15 to select the video signal Vb output from the video signal correction unit 14 and supplies the stored correction values H 1 to H N to the video signal correction unit 14.
  • the video signal correction unit 14 corrects the video signal Va using the supplied correction values H 1 to H N and supplies the corrected video signal Vb to the image display device 11 via the switching unit 15.
  • the image display device 11 displays a video corresponding to the corrected video signal Vb.
  • the control of the switching unit 15 by the control unit 16 is performed by the control unit 16 giving the control signal Sw to the switching unit 15.
  • the brightness adjusting device 12 includes a pattern image display processing unit 21, a camera 22, and an arithmetic processing unit 23.
  • the arithmetic processing unit 23 includes a coordinate generating unit 31, a reference position specifying unit 32, a transformation matrix generating unit 33, a unit position specifying unit 34, a camera position specifying unit 35, an angle specifying unit 36, and a distance specifying unit. 37, a luminance measurement unit 38, a light distribution characteristic input unit 39, a light distribution characteristic storage unit 40, a correction value calculation unit 41, and a correction value storage unit 42.
  • the pattern image display processing unit 21 In the correction value calculation mode, the pattern image display processing unit 21 generates a pattern image and supplies the pattern image to the switching unit 15, and the image display device 11 displays the supplied pattern image.
  • This pattern image is used for luminance measurement and detection of reference positions on the screen, for example, the positions of the four corners. For example, a single color image, that is, the same color throughout the screen DA of the image display device 11 is used. It is an image.
  • the camera 22 captures the pattern image displayed on the image display device 11. Shooting is performed so that the entire screen DA of the image display device 11 is included in the shooting range.
  • the coordinate generation unit 31 is based on the number of rows N rt and the number of columns N ct of the display units constituting the image display device 11, and the image display device in the real space, that is, the space where the image display device 11 is installed.
  • 11 specifies the position of each part of the screen DA, and generates coordinates indicating the specified position.
  • reference positions of the screen DA for example, coordinates indicating the positions of the four corners, coordinates indicating the center position of the screen DUn of each display unit Un, and positions of the four corners of the screen DUn of each display unit Un And the coordinates indicating.
  • the reference position specifying unit 32 receives the signal Ic representing the shot image from the camera 22 and specifies the position in the shot image corresponding to the reference position of the screen DA of the image display device 11, for example, the four corner positions.
  • the transformation matrix generation unit 33 generates the coordinates of the positions of the four corners as the reference positions of the screen DA of the image display device in the real space generated by the coordinate generation unit 31, and the captured image specified by the reference position specifying unit 32.
  • Projective transformation matrix M p indicating the correspondence between the coordinates in the real space and the coordinates indicating the position in the captured image based on the corresponding position in the captured image, that is, the coordinates of the reference position of the screen DA in the captured image. Is generated.
  • the unit position specifying unit 34 converts the coordinates indicating the position of the screen DUn of each display unit Un generated by the coordinate generation unit 31 using the projective transformation matrix M p, so that the screen DUn of each display unit Un Coordinates indicating the position in the captured image are calculated.
  • the positions of the four corners are calculated as the positions of the screen DUn of each display unit Un.
  • Camera position specifying unit 35 a projection transformation matrix M p generated by the transformation matrix generating unit 33, based on the camera internal matrix M c held therein, to identify the position of the camera 22 in the real space.
  • the position of the camera 22 in the real space is not always constant and may be different every time shooting is performed. Therefore, it can be said that the position of the camera 22 in the real space is variable.
  • the angle specifying unit 36 generates the coordinates indicating the position (for example, the center position) of the screen DUn of each display unit Un generated by the coordinate generating unit 31, and the position of the camera 22 specified by the camera position specifying unit 35. Based on the above, the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the screen DUn of each display unit Un are specified.
  • the shooting angle ⁇ n is the horizontal shooting angle of the screen DA of the image display device 11, and the shooting angle ⁇ n is the vertical shooting angle of the screen DA.
  • the shooting angle of each display unit Un with respect to the screen DUn for example, the shooting angle with respect to the center of the screen DUn is specified.
  • Distance specifying unit 37 specifies the distance R n to the screen DUn of the respective display units Un from the camera 22.
  • the distance to the screen DUn of each display unit Un for example, the distance to the center of the screen DUn is specified.
  • Particular distance R n is, for example, generated by the coordinate generating unit 31, a coordinate indicating a position (e.g., position of the center) of each display unit, and the position of the camera 22, which is identified by the camera position determination unit 35 Based on.
  • the luminance measuring unit 38 displays each display in the captured image based on the signal Ic representing the captured image from the camera 22 and the screen position of each display unit in the captured image specified by the unit position specifying unit 34. Measure the brightness of the unit screen.
  • the light distribution characteristic input unit 39 receives the light distribution characteristic formula f ( ⁇ , ⁇ ) supplied from the outside and stores it in the light distribution characteristic storage unit 40.
  • the light distribution characteristic equation f ( ⁇ , ⁇ ) supplied from the outside is generated from data measured by a dedicated light distribution characteristic measurement device for the image display device 11 that is the object of brightness adjustment, for example. It is. Instead, a light distribution characteristic equation f ( ⁇ , ⁇ ) separately determined for a display unit having a light distribution characteristic similar to that of the display unit constituting the image display device 11 that is the object of brightness adjustment is supplied from the outside. It is also good to do.
  • the light distribution characteristic formula f ( ⁇ , ⁇ ) stored in the light distribution characteristic storage unit 40 is read in the correction value calculation mode and supplied to the correction value calculation unit 41.
  • Correction value calculation unit 41 calculates the correction value H n for each display unit Un.
  • the calculation of the correction value H n for each display unit Un is performed for the light distribution characteristic equation f ( ⁇ , ⁇ ) stored in the light distribution characteristic storage unit 40 and each display unit Un specified by the angle specifying unit 36.
  • Correction value H n of each display unit Un calculated is stored in the correction value storage unit 42.
  • the stored correction value H n is read out and supplied to the video signal correction unit 14 in the subsequent operation in the video display mode.
  • Video signal correction unit 14 the correction values H n, used for correcting the video signal supplied to the corresponding display unit Un.
  • Video signal correction unit 14 the correction value H n read from the correction value storage unit 42, while the operation in the video display mode is continued, with repeated use, perform correction.
  • the correction value H n calculated by the correction value calculation unit 41 may be stored in the video signal correction unit 14.
  • the correction value storage unit 42 in the brightness adjusting device 12 can be omitted.
  • the pattern image display processing unit 21 displays, for example, a single color image such as one green color on the screen DA of the image display device 11 as the pattern image.
  • a single color image is an image in which the entire screen has the same color.
  • a single-color image is generated by driving the display element with signals representing the same color and the same brightness over the entire screen DA of the image display device 11.
  • the screen DA of the image display device 11 is composed of the screens of N display units.
  • the screens DU1 to DUN are arranged with no gap between them.
  • the screens DU1 to DUN have the same shape and size.
  • the horizontal dimension of each screen DUn (n is any one of 1 to N) is D ux and the vertical dimension is D ui .
  • the horizontal interval between screens (distance between centers) is also D ux
  • the vertical interval between screens (distance between centers) is also D ui .
  • the screen DUn of each display unit Un may be referred to as a unit screen
  • the screen DA of the image display device 11 may be referred to as a device screen or a combination screen.
  • a coordinate system (S x , S y , S z ) defined with reference to the device screen DA is used.
  • the coordinate system of real space is also called an apparatus coordinate system.
  • S z the position on the device screen DA is represented by the coordinates of the device coordinate system.
  • the reference position of the screen DA for example, coordinates (S 1x , S 1y ), (S 2x , S 2y ) indicating the positions of the four corners DA1 to DA4, (S 3x , S 3y ) and (S 4x , S 4y ), coordinates (S n0x , S n0y ) indicating the position of the center DUn0 of the screen DUn of each display unit Un, and the screen DUn of each display unit Un 4 coordinates indicating the position of the corner DUn1 ⁇ DUn4 (S n1x, S n1y), and the (S n2x, S n2y), (S n3x, S n3y), and (S n4x, S n4y) is generated.
  • the coordinates (S n0x , S n0y ) indicating the position of the center DUn0 of the screen DUn of each display unit Un are indicated by the symbol “Sm” and the positions of the four corners DUn1 to DUn4 of the screen DUn of each display unit Un the shown coordinate (S n1x, S n1y), indicated by (S n2x, S n2y), (S n3x, S n3y), and (S n4x, S n4y) code data indicating "Sn".
  • each unit screen DUn that is, the dimension D ux in the horizontal direction and the dimension D ui in the vertical direction are held in the coordinate generation unit 31 in advance.
  • the number of rows N rt and the number of columns N ct of the display unit may be input by an operator using a man-machine interface such as a keyboard (not shown).
  • the arithmetic processing unit 23 guides the operator to input the number of rows and the number of columns, and the operator inputs the number of rows and the number of columns in accordance with this guidance.
  • the number of rows N rt and the number of columns N ct are known to the operator. In the example shown in FIG.
  • the image display device 11 automatically sends the number of rows N rt and the number of columns N ct to the coordinate generation unit 31. It may be input.
  • the unit screens DU1 to DUN are arranged in a matrix as shown in FIG. 2, the horizontal dimension of each unit screen is D ux , and the vertical direction of each unit screen is The dimension is Duy , and the upper left corner DA1 of the device screen DA is the origin. From this, the coordinates representing the position of each part of the device screen DA are obtained as follows.
  • the coordinates representing the position of the center DUn0 and the positions of the four corners DUn1 to DUn4 of each unit screen DUn are obtained as follows. That is, the unit screen DUn is N c -th column from the left, will have to allow the N r th row from the top, the coordinates of the position and the four corners of the position of the center, respectively obtained by the following expressions.
  • S n1x (N c ⁇ 1) ⁇ D ux
  • S n1y (N r ⁇ 1) ⁇ D uy Is required.
  • Data Sa indicating the coordinates (S 1x , S 1y ), (S 2x , S 2y ), (S 3x , S 3y ), and (S 4x , S 4y ) is supplied to the transformation matrix generation unit 33.
  • Data Sm indicating the coordinates (S n0x , S n0y ) is supplied to the angle specifying unit 36 and the distance specifying unit 37.
  • Coordinates (S n1x, S n1y), (S n2x, S n2y), (S n3x, S n3y), and (S n4x, S n4y) data Sn indicating the is supplied to the unit position specifying unit 34.
  • the camera 22 performs shooting so that the entire device screen DA is included in the shooting range. As described above, when a rectangular pattern image is displayed, the entire rectangular pattern image is included in the shooting range.
  • FIG. 4 shows the state of shooting by the camera 22.
  • the symbol CP represents the position of the camera 22, that is, the position of the center of the lens of the camera 22.
  • An image of the device screen DA is formed on the imaging surface PS by a lens, and a captured image is formed.
  • the captured image includes a pattern image, that is, a region QE corresponding to the outside of the device screen DA in addition to the region QA corresponding to the device screen DA.
  • the area QA corresponding to the device screen DA may be referred to as a pattern image area.
  • the area QA of the pattern image in the captured image is a rectangle. If the optical axis of the camera 22 is perpendicular to the apparatus screen DA and passes through the center of the apparatus screen DA, the pattern image area QA in the captured image is also rectangular.
  • the area QA of the pattern image shown in FIG. 4 includes areas QU1 to QUN corresponding to the unit screens DU1 to DUN as shown in FIG. Since the areas QU1 to QUN correspond to the screens DU1 to DUN of the display units U1 to UN in the real space, the areas QU1 to QUN are also referred to as the screens of the display units in the captured image.
  • the photographing by the camera 22 can be grasped as a projection of the device screen DA to be photographed onto the imaging surface PS.
  • a coordinate system representing a position on the imaging surface PS a straight line along sides orthogonal to each other with one corner PS1 of the imaging surface PS as an origin and one corner PS1 as one end is defined as a horizontal axis (Ix axis) and A coordinate system with a vertical axis (Iy axis) is defined, and this coordinate system is called a coordinate system of the imaging surface.
  • the coordinates in the apparatus coordinate system can be converted into coordinates in the coordinate system of the imaging surface by projective transformation. Since the coordinate system of the imaging surface represents a position on the imaging surface PS and thus represents a position in the captured image, it is also called a coordinate system of the captured image.
  • the reference position specifying unit 32 receives the signal Ic representing the shot image from the camera 22, specifies the position in the shot image corresponding to the reference position on the device screen DA, and generates the coordinates of the specified position.
  • the reference positions of the device screen DA are, for example, the four corners.
  • the reference position specifying unit 32 detects the four corners QA1 to QA4 (FIGS. 4 and 5) of the area QA corresponding to the device screen DA in the captured image, and the positions of the detected four corners QA1 to QA4 are detected. Generate coordinates.
  • the coordinates (I 1x , I 1y ), (I 2x , I 2y ), (I 3x , I 3y ) and (I 4x , I 4y ) in the coordinate system of the captured image are used. Is generated.
  • the four corners QA1 to QA4 in the captured image are detected by, for example, detecting the four vertices of the region by detecting the edge of the region of the specific color (pattern image color) in the image. You may perform by recognizing a vertex as four corners. Instead, the points closest to the four corners PS1 to PS4 (FIGS. 4 and 5) of the imaging surface PS in the region QA corresponding to the device screen DA may be detected as the four corners of the region QA. .
  • the data Ia representing the positions of the detected four corners QA1 to QA4 is supplied to the transformation matrix generation unit 33.
  • the transformation matrix generation unit 33 is a projective transformation that represents the correspondence between the apparatus coordinate system and the coordinate system of the captured image from the data Sa supplied from the coordinate generation unit 31 and the data Ia supplied from the reference position specifying unit 32.
  • a matrix M p is generated.
  • the projective transformation matrix M p is a matrix represented by the following equation (1), which includes coefficients p 11 to p 33 .
  • the projective transformation matrix M p has coordinates (S 1x , S 1y ), (S 2x , S 2y ), (S 2x , S 2y ), (S 1x , S 1y ), (D) in the device coordinate system shown in FIG. S 3x , S 3y ), (S 4x , S 4y ), and coordinates (I 1x , I 1y ), (I 1 ) of the points QA 1 to QA 4 corresponding to the reference positions DA 1 to DA 4 of the device screen DA in the captured image 2x , I 2y ), (I 3x , I 3y ), and (I 4x , I 4y ), and is obtained from the relationship represented by the following formula (2).
  • An inverse matrix of the matrix of 8 rows and 8 columns on the right side of the above equation (2) is calculated, and the calculated inverse matrix is multiplied by an 8-dimensional column vector (matrix of 8 rows and 1 column) on the left side to obtain the coefficient p 11 , p 12 , p 13 , p 21 , p 22 , p 23 , p 31 , p 32 can be obtained.
  • the coefficient p 33 expression (1) is a fixed value, is "1".
  • the generated projective transformation matrix M p is supplied to the unit position specifying unit 34 and the camera position specifying unit 35.
  • the unit position specifying unit 34 receives the signal Ic representing the captured image from the camera 22 and corresponds to the position in the captured image of the screen (unit screen) DUn of each display unit Un, that is, the position of the screen DUn in real space. Specify the position in the captured image. As the position of each unit screen QUn in the captured image, the positions of the four corners QUn1 to QUn4 of the unit screen QUn are specified.
  • Equation (3) is used for this conversion.
  • is a constant.
  • the unit position specifying unit 34 specifies the positions of the four corners QUn1 to QUn4 in the captured image for all the unit screens DU1 to DN.
  • Data Iu indicating the positions of the four corners of each of the unit screens DU1 to DN is supplied to the luminance measuring unit 38.
  • the camera position specifying unit 35 specifies the position of the camera 22 in the apparatus coordinate system, and outputs coordinates (S cx , S cy , S cz ) indicating the position of the specified camera 22.
  • the camera position specifying unit 35 includes a projective transformation matrix M p that represents the relationship between the apparatus coordinate system and the coordinate system (I x , I y ) of the captured image, and a camera held therein for specifying the camera position.
  • An internal matrix Mc is used.
  • M t is a parallel row of 3 rows and 1 column. Therefore, [M r1 M r2 M r3 M t ] is a 3 ⁇ 4 matrix.
  • M c is a 3 ⁇ 3 camera internal matrix.
  • the internal parameters of the camera can be calculated using the method described in Non-Patent Document 1 above, for example. It is assumed that internal parameters of the camera 22 are calculated in advance and held in the camera position specifying unit 35.
  • is a constant.
  • equation (4) can be rewritten as equation (5) below.
  • Equation (3) is the projective transformation matrix of Equation (1).
  • the camera internal matrix M c is known, since projection transformation matrix M p is generated by the transformation matrix generating unit 33, based on these, be determined matrix M r1, M r2, M t it can.
  • the matrix M r3 can be obtained by the outer product (M r1 ⁇ M r2 ) of the matrix M r1 and the matrix M r2 .
  • the position CP of the camera 22 is set to the origin (0, 0, 0), parallel to the horizontal axis (Ix axis) and vertical axis (Iy axis) of the photographed image, and in the same direction.
  • a coordinate system having an extended horizontal axis (Cx axis) and vertical axis (Cy axis) is defined, and this coordinate system is called a camera coordinate system.
  • the coordinates (C x , C y , C z ) of an arbitrary point in the real space and the coordinates (I x , I y ) of the point corresponding to the above point in the coordinate system of the captured image If the camera internal matrix Mc is used, it can be associated by the following equation (7).
  • the camera position specifying unit 35 converts the coordinates (0, 0, 0) representing the position of the camera 22 in the camera coordinates into the coordinates (S cx , S cy , S cz ) of the apparatus coordinate system using Expression (8). To do.
  • the coordinates (S cx , S cy , S cz ) obtained by the conversion indicate the position of the camera 22 (the center position of the lens) in the apparatus coordinate system.
  • Data Sc representing coordinates (S cx , S cy , S cz ) indicating the position of the camera 22 is supplied to the angle specifying unit 36 and the distance specifying unit 37.
  • the angle specifying unit 36 specifies the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the center of each unit screen DUn.
  • the shooting angle ⁇ n is a shooting angle in the Sx axis direction of the apparatus coordinate system
  • the shooting angle ⁇ n is a shooting angle in the Sy axis direction of the apparatus coordinate system. That is, the shooting angles ⁇ n and ⁇ n are the component in the Sx axis direction and Sy of the angle formed by the shooting vector represented by a straight line extending from the camera 22 to the center of each unit screen DUn and the device screen DA, respectively. It is an axial component.
  • the angle specifying unit 36 specifies coordinates (S n0x , S n0y , S n0z ) representing the position of the center of each unit screen DUn and coordinates (S S0 ) indicating the position of the camera in the apparatus coordinate system for specifying the shooting angle. cx , S cy , S cz ).
  • coordinates (S n0x , S n0y , S n0z ) representing the center position of the center DUn0 of each unit screen DUn
  • those generated by the coordinate generation unit 31 can be used.
  • coordinates (S cx , S cy , S cz ) indicating the position of the camera 22 those specified by the camera position specifying unit 35 can be used.
  • the angle specifying unit 36 obtains a shooting vector V cn from the position of the camera 22 toward the position of the center DUn0 of each unit screen DUn.
  • V cnx S n0x ⁇ S cx
  • V cny S n0y -S cy
  • V cnz S n0z -S cz
  • the angle specifying unit 36 orthogonally projects the shooting vector V cn onto the plane PLXZ perpendicular to the Sy axis, and the projection vector V cnxz and the unit vector V (1,0, Sx axis direction).
  • the angle alpha n with 0) is obtained as the horizontal direction of the shooting angle of the camera 22 relative to the center of each unit screen DUn.
  • Sx-axis direction component and Sz-axis component of the projected vector V Cnxz is equal to Sx axis component V cnx and Sz axial component V CNZ shooting vector V cn.
  • Sx axis direction component V cnx and Sz axis direction component V cnz of the projection vector V cnxz and the angle ⁇ n there is a relationship.
  • the following formula (10) is obtained by modifying the formula (9).
  • the angle ⁇ n can be obtained from Equation (10).
  • the angle specifying unit 36 orthogonally projects the shooting vector V cn onto the plane PLYZ perpendicular to the Sx axis, and the projection vector V cnyz and the unit vector V (0, 0) in the Sy axis direction.
  • the angle beta n with 1,0 determined as the photographing angle in the vertical direction of the camera 22 relative to the center of each unit screen DUn.
  • Sy-axis direction component and Sz-axis component of the projected vector V Cnyz is equal to Sy-axis component V (cny) and Sz axial component V CNZ shooting vector V cn.
  • V (cny) and Sz axial component V CNZ shooting vector V cn As shown in FIG. 6, between the Sy axis direction component V cny and the Sz axis direction component V cnz of the projection vector V cnyz and the angle ⁇ n , There is a relationship.
  • the following equation (12) is obtained by modifying the equation (11).
  • the angle ⁇ n can be obtained from Equation (12).
  • the angle specifying unit 36 specifies the shooting angles ( ⁇ n , ⁇ n ) with respect to the centers of all the unit screens DU1 to DUN. Data representing the shooting angle ( ⁇ n , ⁇ n ) is supplied to the correction value calculation unit 41.
  • Distance specifying unit 37 specifies the distance R n from the camera 22 to the center of each unit screen DUn. For example, the distance specifying unit 37 obtains the distance to the center of each unit screen from the coordinates indicating the position of the camera 22 and the coordinates indicating the center of each unit screen DUn. That is, if the coordinates indicating the position of the camera 22 are (S cx , S cy , S cz ) and the coordinates indicating the center of each unit screen are (S n0x , S n0y , S n0z ), the center of the unit screen distance R n to can be determined by calculation of the following formula (13).
  • the distance specifying unit 37 can use the coordinates obtained by the camera position specifying unit 35 as coordinates (S cx , S cy , S cz ) indicating the position of the camera used in the above equation (13). Moreover, what was produced
  • the distance specifying unit 37 specifies the distances R 1 to R N to the centers of all the unit screens DU1 to DUN. Data representing the distance R n is supplied to the correction value calculation unit 41.
  • the luminance measuring unit 38 measures the luminance of the screen of each display unit in the captured image. That is, the luminance measuring unit 38 refers to the screen position of each display unit specified by the unit position specifying unit 34, and the range occupied by the screen of each display unit in the captured image, that is, the screen in the captured image.
  • Area QUn (FIG. 5) is specified, an average value L n of the values of a plurality of pixels constituting the area QUn is calculated, and output as the luminance of the screen DUn of the display unit Un.
  • the screen position of each display unit for example, with reference to the positions of the four corners, the area QUn of the screen in the captured image is specified.
  • the luminance L n obtained by such processing is the luminance when the unit screen DUn in the real space corresponding to the region QUn is viewed from the position of the camera 22.
  • the luminance L n depends on the light distribution characteristics of the unit screen DUn and the distance R n from the camera 22 to the unit screen DUn.
  • the luminance measuring unit 38 calculates the respective luminances L 1 to L N for all the display units U 1 to UN. Data representing the luminance L n is supplied to the correction value calculation unit 41.
  • the light distribution characteristic equation f ( ⁇ , ⁇ ) stored in the light distribution characteristic storage unit 40 represents the relationship between the angle ( ⁇ , ⁇ ) at which each unit screen DUn is viewed and the luminance when viewed from that direction. It is a mathematical formula. For example, the luminance when viewed from the direction of a line that passes through the center of each unit screen DUn and is perpendicular to the unit screen DUn (the direction of 90 degrees with respect to the unit screen DUn) is set as the reference luminance, and from other directions.
  • the light distribution characteristic is represented by the ratio of the luminance when viewed to the reference luminance.
  • the correction value calculation unit 41 includes the light distribution characteristic formula f ( ⁇ , ⁇ ) stored in the light distribution characteristic storage unit 40 and the shooting angle ⁇ n with respect to the center of the screen of the display unit specified by the angle specification unit 36. , ⁇ n , the distance R n to the center of the screen of the display unit specified by the distance specifying unit 37, and the luminance L n of the screen of each display unit measured by the luminance measuring unit 38, to calculate the correction value H n to be used for brightness control of the display unit Un.
  • the correction value calculation unit 41 calculates the light distribution for the screen of the display unit from the light distribution characteristic equation f ( ⁇ , ⁇ ) and the shooting angle ( ⁇ n , ⁇ n ) with respect to the screen of each display unit.
  • a characteristic value f ( ⁇ n , ⁇ n ) is obtained, a target luminance L tn is determined from the light distribution characteristic value f ( ⁇ n , ⁇ n ) and the distance R n to the display unit, and the display unit
  • a correction value H n used for correction for matching the screen brightness L n with the target brightness is calculated.
  • the correction value calculation unit 41 includes, for example, a reference unit selection unit 41a, a light distribution characteristic value calculation unit 41b, a reference luminance calculation unit 41c, a target luminance calculation unit 41d, and a division unit 41e as shown in FIG.
  • the reference unit selection unit 41a selects a reference display unit Ur from the plurality of display units U1 to UN constituting the image display device 11.
  • the selection of the reference display unit Ur may be performed according to the designation of the reference display unit performed by the operator using a man-machine interface such as a keyboard (not shown). For example, a display unit near the center of the image display device 11 is designated.
  • the reference unit selection unit 41a outputs information Sr indicating the selected unit.
  • Light distribution characteristic value calculating unit 41b includes a photographing angle alpha n of each display unit from the angle specifying unit 36 acquires the beta n, the calculation formula of the light distribution characteristic stored in the light distribution characteristic storing unit 40 alpha n , ⁇ n are applied to calculate the light distribution characteristic value f ( ⁇ n , ⁇ n ) of each display unit.
  • the reference display unit Ur also corresponds to “each display unit Un” here.
  • the light distribution characteristic value calculation unit 41b applies the shooting angles ⁇ r and ⁇ r with respect to the screen DUr of the reference display unit Ur to the light distribution characteristic equation f ( ⁇ , ⁇ ), so that the reference display unit Ur
  • the light distribution characteristic value f ( ⁇ r , ⁇ r ) is also calculated.
  • the reference luminance calculation unit 41c receives the information Sr indicating the reference unit Ur from the reference unit selection unit 41a, acquires the luminance L r of the reference display unit Ur from the luminance measurement unit 38, and uses the luminance L r as the light distribution characteristic.
  • a reference luminance L ref is calculated by dividing by the value f ( ⁇ r , ⁇ r ). This calculation is expressed by the following formula (14).
  • the target luminance calculation unit 41d receives the information Sr indicating the reference unit Ur from the reference unit selection unit 41a, and the light distribution characteristic value f ( ⁇ n , ⁇ n ) for each display unit from the light distribution characteristic value calculation unit 41b. acquires, from the distance specifying unit 37 acquires the distance R n from the camera 22 for each display unit Un. By this process, the distance R r for the reference display unit Ur is also acquired.
  • Target luminance calculation unit 41d further light distribution characteristic value f ( ⁇ n, ⁇ n) and, with respect to the square of the distance R n to the screen DUn of each display unit U n, until the screen DUr standards of the display unit Ur
  • the target luminance L tn of each display unit is calculated by multiplying the reference luminance L ref by the ratio of the square of the distance R r to the reference luminance L ref . This calculation is expressed by the following equation (15).
  • Expression (15) is proportional to the light distribution characteristic value f ( ⁇ n , ⁇ n ) for each display unit Un, and the value inversely proportional to the square of the distance R n to the center of the display unit screen DUn It shows that it is obtained as the target luminance L tn for the display unit.
  • the division unit 41e divides the target luminance L tn for each display unit calculated by the target luminance calculation unit 41d by the luminance L n of the display unit measured by the luminance measurement unit 38, so that the display unit Un calculating a correction value H n used for brightness control. This calculation is expressed by the following equation (16).
  • the calculations according to the above formulas (15) and (16) are performed for all the display units other than the reference display unit.
  • the calculation by the above equations (15) and (16) may be performed, but the correction value obtained as a result of the calculation is 1. Therefore, for the reference display unit, the correction value may be set to 1 by omitting the calculations of the above equations (15) and (16).
  • the output of the division unit 41e becomes the output of the correction value calculation unit 41.
  • the correction value calculation unit 41 calculates the correction values H 1 to H N for all the display units U 1 to UN.
  • the calculated correction values H 1 to H N are stored in the correction value storage unit 42, and are used for adjusting the luminance of the video signal supplied from the outside in the subsequent video display mode. That is, the video signal correction unit 14 receives the correction value H n for each display unit Un from the correction value calculating unit 41 adjusts the luminance of the display unit Un by using the correction value H n received. The adjustment of the luminance of each display unit Un is performed by adjusting the luminance value of the video signal supplied to each display unit Un.
  • the video signal correction unit 14 by multiplying the correction value H n to the luminance value of the video signal Va for each display unit output from the video signal input section 13, the video signal for the display unit The luminance value is adjusted, and the video signal Vb having the adjusted luminance value is supplied to the display unit.
  • the light distribution characteristic equation f ( ⁇ , ⁇ ) and the shooting angle ( ⁇ n , ⁇ n ) with respect to the screen of each display unit are used.
  • a light distribution characteristic value f ( ⁇ n , ⁇ n ) for the screen is calculated, and the display is calculated from the calculated light distribution characteristic value f ( ⁇ n , ⁇ n ) and the distance R n to the screen of the display unit.
  • the image display device Since the target luminance L tn for the unit is determined and the correction value H n for matching the luminance L n of the screen of the display unit with the target luminance L tn for the display unit is calculated, the image display device The luminance of the plurality of display units can be adjusted so that luminance unevenness does not occur in the display 11.
  • the luminance L n of each unit screen DUn in the captured image is influenced by the distance R n from the camera 22 to each unit screen DUn, and the above-mentioned distance is used in determining the correction value H n. It has been decided to remove the influence of R n. Specifically, in order to remove the influence of the distance R n , the target luminance L tn is obtained by multiplying the luminance L n of each unit screen DUn obtained by the luminance measuring unit 38 by the reciprocal of the square of the distance, based on the target luminance L tn is set to be determined a correction value H n. Therefore, even when the distance from the camera is different between display units, the influence can be removed and the luminance of each display unit can be adjusted appropriately.
  • Embodiment 2 the light distribution characteristic equation f ( ⁇ , ⁇ ) is supplied from the outside, but the brightness adjusting device may have a function of determining the light distribution characteristic equation f ( ⁇ , ⁇ ).
  • the brightness adjusting apparatus having such a function can operate not only in the correction value calculation mode and the video display mode described in the first embodiment, but also in the light distribution characteristic calculation mode.
  • FIG. 8 shows the luminance adjustment device 12b of the present embodiment together with the image display device 11b used for displaying the pattern image in the light distribution characteristic calculation mode, the switching unit 15 and the control unit 16.
  • the luminance adjustment device 12b is connected to the image display device 11b by the switching unit 15, and displays the pattern image, and performs the luminance measurement and the camera position similarly to the processing in the correction value calculation mode.
  • the light distribution characteristic equation f ( ⁇ , ⁇ ) is determined and stored using the data obtained by specifying the image, specifying the shooting angle, specifying the distance, and the like.
  • the brightness adjusting device 12b in which the light distribution characteristic equation f ( ⁇ , ⁇ ) is stored is connected to other image display devices, for example, the image display device 11 shown in FIG. 1, the video signal input unit 13, and the video signal correction unit 14. Connected, the correction value is calculated in the correction value calculation mode, and the video signal is corrected in the video display mode.
  • the image display device 11b used in the light distribution characteristic calculation mode and the image display device 11 used in the correction value calculation mode and the video display mode may have the same or different numbers of display units. May be. However, each of the display units constituting the image display device 11b has the same type or the same specification as the display unit constituting the image display device 11, and has the same size (horizontal dimension and vertical dimension). And light distribution characteristics must be the same or similar.
  • the light distribution characteristic equation can be determined based on a photographed image obtained by displaying the pattern image once on the image display device 11b and photographing the displayed pattern image once.
  • processing image display, processing based on a photographed image
  • the light distribution characteristic formula may be determined based on data obtained by the plurality of processing.
  • the brightness adjusting device 12b is sequentially connected to a plurality of different image display devices, and the display of the image and the processing based on the photographed image are repeated using the connected image display devices, and the data obtained by the repeated processing is obtained.
  • the light distribution characteristic formula may be determined based on the above.
  • the brightness adjusting device 12b shown in FIG. 8 is generally the same as the brightness adjusting device 12 shown in FIG.
  • an arithmetic processing unit 23 b is provided instead of the arithmetic processing unit 23.
  • a configuration example of the arithmetic processing unit 23b is shown in FIG.
  • the arithmetic processing unit 23b in FIG. 9 is generally the same as the arithmetic processing unit 23 shown in FIG.
  • the light distribution characteristic input unit 39 is not provided, and a light distribution characteristic calculation unit 43 is provided instead.
  • the processing contents of the pattern image display processing unit 21 and the camera 22 in the light distribution characteristic calculation mode are the same as the processing contents of the pattern image display processing unit 21 and the camera 22 in the correction value calculation mode described in the first embodiment. . That is, the pattern image display processing unit 21 generates a pattern image and supplies the pattern image to the switching unit 15. The switching unit 15 selects the signal Vp representing the pattern image and supplies the signal Vp to the image display device 11b. 11b displays a pattern image represented by the supplied signal Vp. The pattern image may be the same as or different from the pattern image displayed in the correction value calculation mode.
  • the camera 22 captures the pattern image displayed on the image display device 11b.
  • the camera 22 performs shooting so that the entire screen DA of the image display device 11b is included in the shooting range.
  • the position of the camera 22 with respect to the screen DA of the image display device 11b may be the same as or different from the position in the correction value calculation mode.
  • the arithmetic processing unit 23b operates in the same manner as the arithmetic processing unit 23 in the correction value calculation mode described in the first embodiment. That is, the coordinate generation unit 31 has coordinates (S 1x , S 1y ), (S 2x , S 2y ), (S 2x , S 2y ), (4) indicating the positions of the four corners DA1 to DA4 as reference positions of the screen DA of the image display device 11 in real space.
  • the reference position specifying unit 32 receives a signal Ic representing a captured image from the camera 22 and specifies positions in the captured image corresponding to the reference positions of the screen DA of the image display device 11, for example, the positions of the four corners. Based on the positions of the four corners of the screen DA of the image display device in the real space and the corresponding positions in the captured image, the transformation matrix generation unit 33 determines the coordinates of the device coordinate system and the coordinates of the captured image. A projection transformation matrix M p indicating the correspondence relationship is generated.
  • the unit position specifying unit 34 uses the projective transformation matrix M p to calculate coordinates indicating the position in the captured image of the screen of each display unit.
  • the camera position specifying unit 35 specifies the position (S cx , S cy , S cz ) of the camera 22 in the real space.
  • the angle specifying unit 36 specifies the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the screen DUn of each display unit Un.
  • Distance specifying unit 37 specifies the distance R n to the screen DUn of the respective display units Un from the camera 22.
  • the luminance measuring unit 38 measures the luminance of the screen of each display unit in the captured image.
  • the light distribution characteristic calculation unit 43 calculates a light distribution characteristic formula f ( ⁇ , ⁇ ) and stores it in the light distribution characteristic storage unit 40 as described below. Note that the correction value calculation unit 41 does not operate in the light distribution characteristic calculation mode.
  • the light distribution characteristic calculating unit 43 includes coordinates (S cx , S cy , S cz ) indicating the camera position characterized by the camera position identifying unit 35 and the unit screens DU1 to DU1 identified by the angle identifying unit 36.
  • the light distribution characteristic equation f ( ⁇ , ⁇ ) is determined based on the luminance L 1 to L N of each of the unit screens DU1 to DUN specified by the luminance measuring unit 38.
  • the light distribution characteristic calculation unit 43 includes a normalization unit 43a, a reference unit region specifying unit 43b, a reference value calculation unit 43c, a relative value calculation unit 43d, a luminance information table generation unit 43e, and a regression analysis. It has a portion 43f.
  • the normalizing unit 43a receives data representing the luminance L n from the luminance measuring unit 38, receives data representing the distance R n from the distance specifying unit 37, and determines the luminance L n of each unit screen DUn and the unit screen DUn. distance and the square of R n, performs multiplication of a certain coefficient k a, the result of this multiplication, the distance (excluding the effect of the distance) which corrected the luminance value L cn. This multiplication is expressed by the following equation (18).
  • this luminance value L cn is referred to as a normalized luminance value.
  • the reference unit region specifying unit 43b receives the data Sc from the camera position specifying unit 35, and the coordinates (S cx , S cy , S cz ) of the position of the camera 22 represented by the data Sc and the reference unit region specifying unit Based on the data indicating the size (D ux , D uy ) of each unit screen held inside 43b, the point Pc (FIG. 11) on the device screen DA facing the camera 22 is centered. An area having the same size as each unit screen is specified as the reference unit area SU.
  • the reference unit region specifying unit 43b first specifies the point Pc on the device screen DA that the camera 22 is facing. This point Pc is in the orthogonally projected position the position of the camera 22 on the device screen DA, coordinates indicating the position coordinates indicating the position of the camera 22 (S cx, S cy, S cz) in, S cz Is replaced by 0 and is therefore represented by (S cx , S cy , 0) or (S cx , S cy ).
  • the coordinates of the positions of the four corners SU1 to SU4 of the reference unit area SU are obtained as follows from the coordinates of the position of the point Pc (S cx , S cy ) and the size of the unit screen (D ux , D uy ).
  • the reference value calculation unit 43c receives data indicating the normalized luminance value L cn from the normalization unit 43a, receives data indicating the coordinates of the four corners of the reference unit region SU from the reference unit region specifying unit 43b, and receives the data indicating the coordinate generation unit 31. From the received data Sn indicating the coordinates of the four corner positions of each unit screen DUn, and using the normalized luminance value L cn for the unit screen overlapping the reference unit region SU, the luminance value L cs of the reference unit region SU is obtained. calculate.
  • the luminance value L cs is for each display unit, the distance is a correction value corresponding to the luminance value L cn, called normalized luminance values or reference values of the reference unit region.
  • the reference unit area SU overlaps the four unit screens DU9, DU10, DU15, and DU16. Based on the positions of the four corners of each of the four unit screens DU9, DU10, DU15, and DU16, and the positions of the four corners SU1 to SU4 of the reference unit region SU, the reference unit region SU has four unit screens DU9, DU10. , DU15, the area of the portion overlapping with DU16 is obtained.
  • the normalized luminance values L c9 , L c10 , L c15 and L c16 of four unit screens DU9, DU10, DU15 and DU16 are overlapped with each other in the four unit screens DU9, DU10, DU15 and DU16.
  • An average value is obtained by assigning a weight proportional to the area of the existing portion, and the average value is used as the reference value Lcs .
  • the relative value calculation unit 43d receives data indicating the normalized luminance value L cn of each display unit from the normalization unit 43a, receives data indicating the reference value L cs from the reference value calculation unit 43c, and normalizes each display unit.
  • a ratio R Ln of the luminance value L cn to the reference value L cs is calculated. This ratio R Ln is also referred to as a relative value.
  • the luminance information table generation unit 43e receives data indicating the relative value R Ln from the relative value calculation unit 43d, receives data indicating the shooting angle ( ⁇ n , ⁇ n ) from the angle specifying unit 36, and identifies each display unit Un.
  • a luminance information table that stores the relative value R Ln for the display unit Un and the shooting angle ( ⁇ n , ⁇ n ) for the display unit Un in association with information (for example, the number of each display unit).
  • Information for identifying the display unit is supplied along with the data indicating the relative value R Ln and the data indicating the imaging angle ( ⁇ n , ⁇ n ). Note that information for identifying the display unit Un may be omitted.
  • the relative value R Ln for each display unit and the shooting angle ( ⁇ n , ⁇ n ) for the display unit may be stored in association with each other.
  • the regression analysis unit 43f refers to the luminance information table stored in the luminance information table generation unit 43e to obtain the light distribution characteristic formula of the image display device 11.
  • the light distribution characteristic equation of the image display device 11 for example, in the following equation (19), constants a to f are set to specific values.
  • Equation (19) The constants a, b, c, d, e, and f in Equation (19) can be determined by a known method such as a least square method using the data of the luminance information table.
  • Expression (19) is a generalized expression (in a state where the constant is not set to a specific value).
  • equation (20) an example of a light distribution characteristic equation that decreases in the same way regardless of whether ⁇ and ⁇ change in the increasing direction around 90 degrees or in the decreasing direction is expressed by the following equation (20).
  • equation (21) is obtained by modifying equation (20).
  • the regression analysis unit 43f calculates the light distribution characteristic formula f ( ⁇ , ⁇ ) of the image display device 11 using, for example, the formula (19). Determination of the light distribution characteristic equation means, for example, that constants a to f are determined in equation (19).
  • the light distribution characteristic formula f ( ⁇ , ⁇ ) obtained by the regression analysis unit 43 f is stored in the light distribution characteristic storage unit 40 as an output of the light distribution characteristic calculation unit 43.
  • the light distribution characteristic equation is determined based on the image obtained by one shooting. However, the image obtained by a plurality of shootings performed by setting the camera 22 at different positions. From this, the light distribution characteristic equation may be determined. For example, the light distribution characteristic formula may be determined by averaging the light distribution characteristics obtained by a plurality of shootings performed with the camera 22 installed at different positions.
  • the light distribution characteristic equation may be obtained by performing regression analysis using the luminance information table in which the corresponding relative value R Ln is stored.
  • different image display devices can be selected by sequentially selecting a plurality of different image display devices and performing processing based on the display of the pattern image and the captured image in a state where the brightness adjusting device 12b is connected to the selected image display device.
  • the imaging angles ⁇ n and ⁇ n and the relative value R Ln that are obtained from the processing used and are associated with each other are accumulated in the luminance information table, and the light distribution characteristic equation is determined based on the accumulated data. good.
  • the normalized luminance value L cn is obtained by multiplying the luminance L n of each unit screen DUn obtained by the luminance measuring unit 38 by the square of the distance, It is assumed that the light distribution characteristic equation f ( ⁇ , ⁇ ) is determined based on the normalized luminance value L cn .
  • the light distribution characteristic formula f ( ⁇ , ⁇ ) stored in the light distribution characteristic storage unit 40 is used to calculate a correction value in the correction value calculation mode, as described in the first embodiment.
  • the brightness adjusting device 12b storing the light distribution characteristic equation f ( ⁇ , ⁇ ) is connected to the image display device that is the object of brightness adjustment, and calculates the correction value as described in the first embodiment.
  • it is connected to the same video signal input unit and video signal correction unit as described in the first embodiment, and the luminance of the video signal is corrected using the calculated correction value.
  • the same effect as in the first embodiment can be obtained.
  • a light distribution characteristic equation is further obtained based on the light distribution characteristic of the display unit constituting the image display device used in the light distribution characteristic calculation mode. Therefore, if an image display device configured with a display unit having the same or similar light distribution characteristic as the display unit configuring the image display device used in the correction value calculation mode and the video display mode is used in the light distribution characteristic calculation mode, The brightness of each display unit can be adjusted appropriately in the video display mode.
  • the image display device used in the light distribution characteristic calculation mode is the same as the image display device used in the correction value calculation mode and the video display mode, the light distribution characteristic of the display unit of the image display device used in the video display mode.
  • the light distribution characteristic formula reflected more accurately can be obtained, and the luminance of each display unit in the video display mode can be adjusted more appropriately.
  • the light distribution characteristic calculation mode after removing the effect of the distance R n from the camera 22 to each unit screen DUn, since a to define a light distribution characteristic equation, the light distribution characteristic determined in that way
  • the equation in the correction value calculation mode it is possible to calculate a correction value that more reliably removes the influence of the distance from the camera 22.
  • Embodiment 3 the coordinates indicating the position of each display unit (for example, the center position) generated by the coordinate generation unit 31 and the position of the camera 22 generated by the camera position specifying unit 35 are used.
  • the distance R n is specified, but instead of the position of the camera 22, the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the screen DUn of each display unit Un specified by the angle specifying unit 36 are used. , it may be performed a specific distance R n.
  • the arithmetic processing unit 23c shown in FIG. 12 is generally the same as the arithmetic processing unit 23 shown in FIG. 3, but a distance specifying unit 37b is provided instead of the distance specifying unit 37 of FIG.
  • the distance specifying unit 37b includes coordinates (S n0x , S n0y , S n0z ) indicating the center position of each unit screen DUn generated by the coordinate generating unit 31, and each unit screen DUn specified by the angle specifying unit 36. With reference to the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the center, the distance R n from the camera 22 to the center of each unit screen DUn is specified.
  • a horizontal distance and a vertical distance between the center of each unit screen DUn and the center of an adjacent unit screen (indicated by reference numeral “DUn ′” in FIG. 2), and photographing with respect to the center of each unit screen DUn
  • the distance from the camera 22 to the center of each unit screen is determined by the principle of triangulation based on the angles ⁇ n and ⁇ n and the shooting angle (represented by the symbols “ ⁇ n ′ and ⁇ n ′”) with respect to the adjacent unit screen DUn ′.
  • Embodiment 3 was demonstrated as a deformation
  • FIG. 1 is a deformation
  • the pattern image display processing unit 21 displays a single color image on each display unit as a pattern image, performs luminance measurement based on the displayed pattern image, For example, the positions of four corners are detected.
  • the pattern image display processing unit 21 displays a pattern image including an element indicating the position of each display unit, and the arithmetic processing unit has a feature corresponding to the element indicating the position from the captured image. It is good also as specifying the position of each display unit by detecting.
  • a position detection pattern image for example, a pattern image in which only the display elements at the four corners of each display unit are turned on can be used.
  • the arithmetic processing unit may identify the positions of the four corners of each display unit by performing image recognition on the captured image.
  • image recognition method for example, a known method such as labeling can be used.
  • the configuration of the brightness adjusting apparatus in this case is the same as the configuration shown in FIG.
  • the pattern image display processing unit 21 associates and displays a single color image and a pattern image that lights only the display elements at the four corners of each display unit as the pattern image.
  • the arithmetic processing unit 23d shown in FIG. 13 is generally the same as the arithmetic processing unit 23 shown in FIG. 3, but a unit position specifying unit 34b is provided instead of the unit position specifying unit 34 of FIG.
  • the unit position specifying unit 34b receives the signal Ic representing the captured image obtained by capturing the pattern image, performs image recognition on the captured image, and displays the image.
  • the positions of the four corners of each display unit in the pattern image are specified. In each display unit, only the display elements at the four corners are lit, so the portions corresponding to the above four corners in the captured image become bright. Therefore, the four corners can be specified based on the characteristics of such a captured image.
  • all four corners of the plurality of display units become bright, a plurality of bright portions appear in the photographed image, and each of the bright portions corresponds to which corner of which display unit based on their relative positions. It can be judged whether it is a thing. In order to easily or reliably determine which display unit each bright portion corresponds to, a plurality of display units may be turned on sequentially instead of simultaneously.
  • Data Iu indicating the position of each display unit specified by the unit position specifying unit 34b is supplied to the luminance measuring unit 38.
  • the luminance measurement unit 38 Based on the data Iu, the luminance measurement unit 38 recognizes the position of each display unit in the captured image, for example, the positions of the four corners QUn1 to QUn4 of the area QUn corresponding to each display unit shown in FIG.
  • the brightness of each region QUn is measured and output as the screen brightness L n of the corresponding display unit.
  • specification part 32 also specifies a reference position based on the picked-up image acquired by image
  • the reference position is other than the four corners of the device screen DA.
  • the center of the unit screen located at the four corners of the apparatus screen can be used as the reference position, and the four corners or the center of the unit screen other than the unit screen located at the four corners of the apparatus screen can be used as the reference position.
  • an element indicating the position to be used as the reference position may be included in the pattern image.
  • Embodiment 5 the photographed image signal Ic obtained by photographing with the camera 22 is used as it is.
  • a lens provided in the camera 22 has a shading characteristic in which a peripheral part of a captured image is darker than a central part, and a distortion characteristic in which an image of the peripheral part of the captured image is distorted.
  • a mechanism for correcting these characteristics between the camera 22 and the arithmetic processing unit 23 may be provided.
  • FIG. 14 shows the luminance adjustment device 12c of the present embodiment together with the image display device 11, the switching unit 15, and the control unit 16.
  • the brightness adjustment device 12 c includes a camera characteristic correction unit 62 between the camera 22 and the arithmetic processing unit 23.
  • FIG. 15 shows the configuration of the camera characteristic correction unit.
  • the camera characteristic correction unit 62 includes a shading correction unit 63, a distortion correction unit 64, a shading characteristic holding unit 65, and a distortion characteristic holding unit 66.
  • the captured image signal Ic input from the camera 22 is input to the shading correction unit 63, and is output as a shading correction image signal Is whose brightness is corrected for each position in the image. Then, the shading correction image signal Is input from the shading correction unit 63 is input to the distortion correction unit 64, and is output as a distortion correction image signal Id in which the distortion at the periphery of the image is corrected.
  • the shading correction unit 63 corrects the brightness for each position in the image in accordance with the shading correction information Cs from the shading characteristic holding unit 65 with respect to the captured image signal Ic.
  • the shading correction information Cs is information indicating the magnification for correcting the brightness for each position in the image, and may be in the form of a magnification table for the position in the image, or a calculation formula for the magnification for the position in the image. It may be in the form of
  • the shading correction unit 63 calculates the shading correction image signal Is by multiplying the photographic image signal Ic by the magnification described above. This multiplication is performed for each pixel.
  • the pixel value of the corresponding pixel of the shading correction image signal Is is calculated by multiplying the value (pixel value) of each pixel of the captured image signal Ic by the magnification described above.
  • the shading correction information Cs may be set for the shading characteristic holding unit 65 by the operator using a man-machine interface such as a keyboard (not shown).
  • the distortion correction unit 64 corrects image distortion for each position in the image in accordance with the distortion correction information Cd from the distortion characteristic holding unit 66 with respect to the shading correction image signal Is.
  • the distortion correction information Cd is reference position information indicating where in the image the pixel value should be generated for each position in the image.
  • the reference position is determined by the amount of distortion (direction and distance). For example, if a certain part (point) in the image is shifted by a certain distance s in a certain direction due to distortion, the image part at a position shifted by the same distance (s) in the opposite direction is referred to.
  • the reference position information is information necessary for obtaining the corrected image value.
  • the distortion correction information Cd may be in the form of a table of reference positions with respect to positions in the image, or may be in the form of an arithmetic expression for reference positions with respect to positions in the image.
  • the distortion correction unit 64 calculates the pixel value of the distortion corrected image signal Id by interpolation processing from the pixel values around the reference position for the shading corrected image signal Is. The interpolation process need not be limited to a specific process.
  • the distortion correction information Cd may be set for the distortion characteristic holding unit 66 by the operator using a man-machine interface such as a keyboard (not shown).
  • the captured image signal Ic is input to the arithmetic processing unit 23, but in the fifth embodiment, the distortion-corrected image signal Id is input to the arithmetic processing unit 23.
  • the processing in the arithmetic processing unit 23 is the same as that in the first embodiment. However, processing is performed on the distortion corrected image signal Id instead of the captured image signal Ic. Although a method for performing both shading correction and distortion correction has been described, only one of them may be performed.
  • the same effect as in the first embodiment can be obtained.
  • the influence on the captured image signal Ic due to the shading characteristics and distortion characteristics of the lens provided in the camera 22 is further corrected. Therefore, it is possible to correct the phenomenon that the peripheral portion of the image becomes dark and the phenomenon that the image of the peripheral portion of the image is distorted. For this reason, the brightness
  • Embodiment 6 FIG. In the first to fifth embodiments, it is assumed that the entire screen DA of the image display device 11 is shot by one shot by the camera 22. Instead, the screen DA may be divided and photographed.
  • FIG. 16 shows a state in which the screen DA is divided into four and taken by the camera 22.
  • the screen DA is divided into four divided screens DAa, DAb, DAc, and DAd, and each screen is captured by the camera 22.
  • Reference numerals CPa, CPb, CPc, and CPd represent the positions of the camera 22 when photographing the divided screen.
  • the images of the divided screens DAa to DAd are formed on the imaging surfaces PSa to PSd by the lens, and each divided photographed image is formed.
  • the imaging surfaces PSa to PSd are the same as each other, but are provided with different symbols because images of different divided screens are formed.
  • FIG. 17 shows the brightness adjusting apparatus 12d of the sixth embodiment.
  • FIG. 18 shows a configuration example of an arithmetic processing device used in the brightness adjusting device 12d of FIG.
  • the pattern image display processing unit 21 shown in FIG. 17 displays, as the pattern image, for example, a single color image such as one green color in order on the divided screens DAa to DAd. Pattern images supplied to the divided screens DAa to DAd are indicated by symbols Vpa to Vpd, respectively.
  • the camera 22 sequentially captures the displayed pattern images and outputs captured images for each divided screen. That is, the camera 22 takes four divided photographed image signals Ica, Icb, obtained by photographing four divided screens DAa to DAd, respectively, instead of the photographed image signal Ic obtained by photographing the entire screen DA. Icc and Icd are output in order.
  • the divided captured image signals Ica, Icb, Icc and Icd are input to the arithmetic processing unit 23 and supplied to the reference position specifying unit 32.
  • the reference position specifying unit 32 receives the divided captured image signals Ica to Icd, specifies a position in each divided captured image corresponding to the reference position of the divided screens DAa to DAd, and generates coordinates of the specified position.
  • the reference positions of the divided screens DAa to DAd are, for example, the four corners. In that case, the reference position specifying unit 32 detects four corners of each of the divided areas QAa to QAd corresponding to the divided screens DAa to DAd in each divided photographed image.
  • the four corners of each of the divided screens DAa to DAd are indicated by reference numerals DAa1 to DAa4, DAb1 to DAb4, DAc1 to DAc4, DAd1 to DAd4.
  • the four corners of the divided areas QAa to QAd corresponding to are denoted by reference numerals QAa1 to QAa4, QAb1 to QAb4, QAc1 to QAc4, and QAd1 to QAd4.
  • the horizontal axis and the vertical axis of the coordinate system of the imaging surfaces PSa to PSd on which the divided captured images are formed are indicated by symbols Iax, Iay to Idx, and Idy
  • the four corners of the imaging surfaces are denoted by symbols PSa1 to PSa4 and PSb1 to PSb4.
  • PSc1 to PSc4 PSd1 to PSd4.
  • the reference position specifying unit 32 generates the coordinates of the detected positions of the four corners.
  • the generated coordinates are shown in FIG.
  • the X coordinates of the detected four corners QAa1 to QAa4, QAb1 to QAb4, QAc1 to QAc4, QAd1 to QAd4 are indicated by reference numerals Ia1x to Ia4x, Ib1x to Ib4x, Ic1x to Ic4x, Id1x to Id4x,
  • the coordinates are indicated by reference numerals Ia1y to Ia4y, Ib1y to Ib4y, Ic1y to Ic4y, and Id1y to Id4y.
  • Data Iaa, Iab, Iac, and Iad representing the positions of the detected four corners of each region are supplied to the transformation matrix generation unit 33.
  • the coordinate generation unit 31 outputs data Saa to Sad indicating the coordinates of the reference positions of the divided screens DAa to DAd instead of the data Sa indicating the coordinates of the reference positions DA1 to DA4 of the screen DA.
  • Other operations are the same as the operations of the coordinate generation unit 31 of the first embodiment.
  • the transformation matrix generator 33 coordinates the positions of the four corners as reference positions of the divided screens DAa to DAd of the image display device in real space, and the corresponding positions specified in the reference position specifying unit 32 in the divided photographed image. That is, a projective transformation matrix indicating the correspondence between the coordinates in the real space and the coordinates indicating the position in the captured image based on the coordinates Iaa to Iad of the reference positions of the divided screens DAa to DAd in the divided captured image. M pa to M pd are generated.
  • the unit position specifying unit 34 uses coordinates indicating the position of the screen DUn of the display unit Un included in each of the divided screens DAa to DAd images generated by the coordinate generation unit 31 using the projective transformation matrices M pa to M pd. By converting, coordinates Iua to Iud indicating positions in the divided photographed image of the screen DUn of the display unit Un included in each of the divided screens DAa to DAd are calculated.
  • the camera position specifying unit 35 a projection transformation matrix M pa ⁇ M pd generated by the transformation matrix generating unit 33, based on the camera internal matrix M c held therein, the position CPa ⁇ CPd camera 22
  • the coordinates Sca to Scd are output.
  • the angle specifying unit 36 is a coordinate Sm that is generated by the coordinate generating unit 31 and indicates the position (for example, the center position) of the screen DUn of each display unit Un, and the position of the camera 22 that is specified by the camera position specifying unit 35.
  • the shooting angles ⁇ n and ⁇ n of the camera 22 with respect to the screen DUn of each display unit Un are specified on the basis of the coordinates Sca to Scd indicating.
  • the distance specifying unit 37 specifies the distance R n from the position CPa to CPd of the camera 22 to the screen DUn of each display unit Un.
  • Distance particular R n is, for example, generated by the coordinate generating unit 31, a coordinate Sm indicating a position (e.g., position of the center) of each display unit, the position of the camera 22, which is identified by the camera position determination unit 35 This is performed based on the coordinates Sca to Scd shown.
  • the luminance measuring unit 38 shoots based on the divided photographed image signals Ica to Icd from the camera 22 and the screen positions Iua to Iud of each display unit in the divided photographed image specified by the unit position specifying unit 34. The luminance Ln of the screen of each display unit in the image is measured.
  • Processing in the light distribution characteristic input unit 39, the light distribution characteristic storage unit 40, the correction value calculation unit 41, and the correction value storage unit 42 is the same as that described in the first embodiment.
  • the number of divisions of the screen DA is four has been described above, the number of divisions may be other than four, that is, it may be divided into a plurality of division screens.
  • the screen DA is divided and processing such as specifying the reference position is performed based on the captured image signal for each divided screen. Therefore, even when the screen DA is large, the brightness for each portion of the screen is increased. Therefore, it is possible to obtain a photographed image that more accurately reflects the image quality, and more accurately measure the luminance and calculate the correction value based on the measured image.
  • the shooting angle for each unit screen is calculated to calculate the shooting angle for the center of each unit screen, and the distance to each unit screen is calculated to the center of each unit screen.
  • the representative point is a point other than the center of each unit screen, such as a specific corner of each unit screen, the center of a specific side of each unit screen, or a specific corner of each unit screen. It is also possible to calculate the shooting angle for the point and the distance to the representative point.
  • a plurality of representative points are set for each unit screen, and the average of the shooting angles for the plurality of representative points and the average of the distances to the plurality of representative points are used as the shooting angle for the unit screen and the distance to the unit screen May be.
  • the unit screen and the device screen are rectangular.
  • the unit screen and the device screen may have a shape other than the rectangular shape.
  • the angle specifying unit 36 determines the angle of the shooting vector with respect to the apparatus screen as the shooting angle.
  • the normal vector with respect to the screen DA is set as the shooting angle with respect to an arbitrary point on the screen DA.
  • the angle between the point and the vector connecting the position of the camera 22 may be obtained as the shooting angle.
  • the common video signal correction unit is provided for the plurality of display units.
  • a video signal correction unit may be provided in each display unit Un.
  • the correction value H n calculated by the correction value calculation unit 41 is supplied to the display unit Un, to the video signal supplied to the display unit Un through the switching unit 15 from the video signal input section 13 Thus, correction is performed.
  • the present invention has been described above as a brightness adjusting device, the brightness adjusting method implemented by the brightness adjusting device described above also forms part of the present invention.
  • each part of the brightness adjusting device (part shown as a functional block) is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or a CPU that executes a program stored in a memory.
  • the functions of the respective parts in FIGS. 1, 3, 8, 9, 12, 13, 14, and 15 may be realized by separate processing circuits, or the functions of a plurality of parts. May be realized by a single processing circuit.
  • the processing circuit When the processing circuit is a CPU, the function of each part of the brightness adjusting device is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in a memory.
  • the processing circuit reads out and executes the program stored in the memory, thereby realizing the function of each unit. That is, when the brightness adjusting device is executed by the processing circuit, the function of each part shown in FIG. 1, FIG. 3, FIG. 8, FIG. 9, FIG. A memory for storing programs to be executed automatically. Further, it can be said that these programs cause a computer to execute the processing method or the procedure in the luminance adjusting method implemented by the luminance adjusting apparatus.
  • each part of the brightness adjusting device may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the processing circuit can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the above processing circuit is a CPU, and a computer (indicated by reference numeral 50) including a single CPU (mostly shown in FIG. 1, FIG. 3, FIG. 8, FIG. 9, FIG. 13, FIG. 14, and FIG. 15), and an example of a configuration in the case of realizing the function of the control unit 16, the image display devices 11 and 11 b, the video signal input unit 13, the video signal correction unit 14, It is shown together with the switching unit 15 and the camera 22.
  • a CPU 51 includes a memory 52, a first input interface 53A, a second input interface 53B, a first output interface 54A, a second output interface 54B, and a third output interface 54C. These are connected by a bus 55.
  • the memory 52 stores a program for controlling the operation of the CPU 51 and plays the same role as the light distribution characteristic storage unit 40 and the correction value storage unit 42 in FIGS. 3, 9, 12, and 13.
  • the memory 52 may hold the camera internal matrix M c and the display unit screen size (D ux , D uy ).
  • the camera internal matrix Mc is described as being held in the camera position specifying unit 35 in the first embodiment.
  • the unit screen size (D ux , D uy ) has been described as being held in the reference unit area specifying unit 43b in the second embodiment.
  • the first input interface 53A receives a signal Ic representing a captured image from the camera 22.
  • the second input interface 53B is composed of a man-machine interface such as a keyboard (not shown). The operator inputs the number N rt and the number N ct of columns of the display unit, and selects the reference display unit Ur. Used to do.
  • the CPU 51 operates according to a program stored in the memory 52, and includes a control unit 16, a pattern image display processing unit 21, a camera characteristic correction unit 62, a coordinate generation unit 31, a reference position specifying unit 32, a transformation matrix generation unit 33, a unit position. It plays the same role as the specifying units 34 and 34b, the camera position specifying unit 35, the angle specifying unit 36, the distance specifying unit 37, the luminance measuring unit 38, the correction value calculating unit 41, and the light distribution characteristic calculating unit 43.
  • the CPU 51 operates in a light distribution characteristic calculation mode, a correction value calculation mode, or a video display mode.
  • the image display device 11b for calculating the light distribution characteristic is connected to the switching unit 15.
  • the CPU 51 outputs a signal Vp representing a pattern image via the first output interface 54A, and gives the control signal Sw to the switching unit 15 via the second output interface 54B to select the signal Vp.
  • the CPU 51 refers to the number of rows N rt and the number of columns N ct of the display unit constituting the image display device 11b input via the second input interface 53B, and displays the device screen DA in the real space.
  • the position and the position of the screen DUn of each display unit are specified.
  • CPU51 also performs processing on the first photographed image inputted through the input interface 53A, performs such measurement of the luminance L n of each unit screen.
  • the CPU 51 further determines the light distribution characteristic equation f ( ⁇ , ⁇ ) using the data obtained by these processes, and stores the determined light distribution characteristic equation f ( ⁇ , ⁇ ) in the memory 52. .
  • the video display image display device 11 is connected to the switching unit 15.
  • the CPU 51 outputs a signal Vp representing a pattern image via the first output interface 54A, and gives the control signal Sw to the switching unit 15 via the second output interface 54B.
  • the signal Vp is selected.
  • the CPU 51 refers to the number of rows N rt and the number of columns N ct of the display unit constituting the image display device 11 input via the second input interface 53B, and the device screen DA in the real space. And the position of the screen DUn of each display unit are specified.
  • CPU51 also performs processing on the first photographed image inputted through the input interface 53A, performs such measurement of the luminance L n of each unit screen.
  • the CPU 51 further reads the light distribution characteristic equation f ( ⁇ , ⁇ ) from the memory 52, and based on the read light distribution characteristic equation f ( ⁇ , ⁇ ), the luminance L n of each display unit, and the like, based on the designation of the display unit Ur of the reference made through the input interface 53B, to determine the correction value H n, and stores the determined correction value H n in the memory 52.
  • Video signal correction unit 14 corrects the image signal Va by using the correction value supplied H n, corrected video signal Vb is supplied to the image display apparatus 11 via the switching unit 15.
  • the computer 50, the image display device 11, the video signal input unit 13, and the video signal correction unit 14 are switched while the image display device 11 is connected to the switching unit 15.
  • the image display system is configured by the unit 15 and the camera 22.
  • the luminance adjustment method implemented by the luminance adjustment device, the processing of each part of the luminance adjustment device, the program for causing the computer to execute each processing in the luminance adjustment method, and the computer-readable recording medium on which the program is recorded The same effect as described for the adjusting device can be obtained. Therefore, a program for causing a computer to execute a part of the process in the brightness adjusting device or a part of the process in the brightness adjusting method, and a computer-readable recording medium storing such a program are also included in the present invention. Part of

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

複数の表示ユニットから成る画像表示装置を撮影することで各表示ユニットに表示される画像の輝度を計測し、計測結果に基づいて輝度を調整する輝度調整装置において、各表示ユニットに対する撮影角度(α,β)に基づいて、カメラ(22)から各表示ユニットまでの距離(R)を特定し(37)、配光特性式(f(α,β))と、撮影角度(α,β)とから配光特性値(f(α,β))を算出し、算出した配光特性値(f(α,β))と距離(R)とから、目標輝度(Ltn)を定め、計測された輝度(L)を目標輝度(Ltn)に一致させるための補正値(H)を算出する(41)。カメラからの距離が、表示ユニット相互間で異なることによって、計測される輝度に違いが現れても、輝度調整を正しく行うことができる。

Description

輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体
 本発明は、画像表示装置を構成している複数の表示ユニットの輝度を調整する輝度調整装置及び方法に関する。本発明はまた、上記の輝度調整装置と上記の画像表示装置とを備えた画像表示システムに関する。本発明はさらに、上記の輝度調整装置における処理の一部又は上記の輝度調整方法における処理の一部をコンピュータに実行させるためのプログラム、及びそのようなプログラムを記録したコンピュータで読取り可能な記録媒体に関する。
 画像表示装置を構成している複数の表示ユニットの輝度を調整する輝度調整装置が、例えば、下記の特許文献1に開示されている。
 特許文献1に開示されている輝度調整装置においては、パターン画像を複数の表示ユニットに表示させ、表示された画像をカメラで撮影し、撮影により得られた画像における各表示ユニットの位置を特定する。さらに、撮影により得られた画像から、各表示ユニットに対する撮影角度、及び各表示ユニットの表示画像の輝度を計測する。そして、各表示ユニットに対する撮影角度、並びに計測された各表示ユニットの表示画像の輝度から、各表示ユニットの輝度調整に用いる補正値を算出する。
特許第5300981号公報(段落0009-0013、第1図)
Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
 非特許文献1については後に言及する。
 従来の輝度調整装置ではカメラと各表示ユニットとの間の距離が考慮されていなかった。そのため、視野角の広いレンズ、例えば、超広角レンズを備えたカメラを画像表示装置の近くに配置して撮影を行った場合に、カメラからの距離が表示ユニット相互間で大幅に異なり、そのために、撮影画像上の明るさが表示ユニット相互間で大幅に異なり、輝度の調整を正しく行うことができないという問題があった。例えば、カメラを画像表示装置の近くに、画像表示装置の中央部に正対するように配置して撮影を行った場合に、カメラから画像表示装置の中央部に位置する表示ユニットまでの距離とカメラから画像表示装置の端部近くに位置する表示ユニットまでの距離との違いのために、撮影画像上の明るさの違いが大きくなり、輝度の調整を正しく行うことができないという問題があった。
 本発明は上記の従来の技術の課題を解決するためのものである。
 本発明に係る輝度調整装置は、
 複数の表示ユニットの画面を並べることで構成される組合せ画面を有する画像表示装置の、前記複数の表示ユニットに表示される画像の輝度を調整する輝度調整装置であって、
 前記複数の表示ユニットに、パターン画像を表示させるパターン画像表示処理部と、
 前記複数の表示ユニットに表示された前記パターン画像を撮影するカメラと、
 前記カメラによる撮影で得られた撮影画像中の前記複数の表示ユニットの各々の画面の位置を特定するユニット位置特定部と、
 実空間内における前記カメラの位置を特定するカメラ位置特定部と、
 実空間内における前記複数の表示ユニットの各々の画面の位置と、前記カメラ位置特定部で特定された前記カメラの位置とから、前記複数の表示ユニットの各々の画面に対する前記カメラの撮影角度を特定する角度特定部と、
 実空間内における前記複数の表示ユニットの各々の画面の位置に基づいて、前記カメラから前記複数の表示ユニットの各々の画面までの距離を特定する距離特定部と、
 前記ユニット位置特定部により特定された前記複数の表示ユニットの各々の画面の前記撮影画像内における位置に基づいて、前記撮影画像内において前記複数の表示ユニットの各々の画面が占める領域を特定し、特定した領域内の輝度を、前記複数の表示ユニットの各々の画面の輝度として計測する輝度計測部と、
 配光特性式と、前記角度特定部で特定された前記複数の表示ユニットの各々の画面に対する撮影角度とから、前記複数の表示ユニットの各々の画面についての配光特性値を算出し、算出した配光特性値と、前記距離特定部で特定された前記複数の表示ユニットの各々の画面までの距離とから、当該表示ユニットについての目標輝度を定め、前記輝度計測部で計測された前記複数の表示ユニットの各々の画面の輝度を、当該表示ユニットについての前記目標輝度に一致させるための補正値を算出する補正値算出部と
 を有する。
 本発明によれば、カメラからの距離の違いのために撮影画像上の明るさが表示ユニット相互間で異なっていても、輝度を正しく調整することができる。
本発明の実施の形態1に係る輝度調整装置を備えた画像表示システムを示すブロック図である。 図1の画像表示装置を構成する複数個の表示ユニットの画面の配列の一例を示す図である。 図1の演算処理部の構成例を示すブロック図である。 図1の画像表示装置の画面の撮影の様子を示す概略図である。 撮影画像中の、各表示ユニットの画面に対応する領域を示す図である。 図1の画像表示装置の画面の水平方向の撮影角度及び垂直方向の撮影角度を示す説明図である。 図3の補正値算出部の構成例を示すブロック図である。 本発明の実施の形態2で用いられる輝度調整装置の構成例を示すブロック図である。 図8の演算処理部の構成例を示すブロック図である。 図9の配光特性算出部の構成例を示すブロック図である。 基準ユニット領域を示す説明図である。 本発明の実施の形態3で用いられる演算処理部の構成例を示すブロック図である。 本発明の実施の形態4で用いられる演算処理部の構成例を示すブロック図である。 本発明の実施の形態5に係る輝度調整装置の構成例を示すブロック図である。 図14のカメラ特性補正部の構成例を示すブロック図である。 図1の画像表示装置の画面の分割撮影の様子を示す概略図である。 本発明の実施の形態6に係る輝度調整装置の構成例を示すブロック図である。 図17の演算処理部の構成例を示すブロック図である。 分割画面、分割撮影画像、分割領域、分割位置データ、分割領域の4頂点、及び分割領域の4頂点座標の記号を示す図である。 図1又は図8の輝度調整装置の各部の機能を実現するコンピュータを含む画像表示システムの構成の一例を示すブロック図である。
 以下、本発明の実施の形態を添付の図面を参照して説明する。
実施の形態1.
 図1は本発明の実施の形態1に係る輝度調整装置を備えた画像表示システムを示す。
 図示の画像表示システムは、画像表示装置11、輝度調整装置12、映像信号入力部13、映像信号補正部14、切り替え部15、及び制御部16を有する。
 画像表示装置11は、複数の表示ユニットの画面を水平方向及び垂直方向に並べることで構成された画面を有する、大画面の表示装置である。表示ユニットの数を「N」で表す。表示ユニットの画面は、例えば図2に示すように行列を成すように並べられている。行の数を「Nrt」で表し、列の数を「Nct」で表す。図2に示す例では、Nが18であり、Nrtが3であり、Nctが6である。
 各表示ユニットUn(nは1からNのいずれか)の画面DUnは矩形状であり、画像表示装置11の画面DAも全体として矩形状である。
 映像信号入力部13は、外部から供給される映像信号Vaを受けて映像信号補正部14に供給する。
 映像信号補正部14は、映像信号入力部13から出力される映像信号Vaを補正し、補正後の映像信号Vbを切り替え部15に供給する。
 切り替え部15は、映像信号補正部14から出力される映像信号Vb、又は輝度調整装置12から出力される後述のパターン画像を表す信号Vpのいずれかを選択して、画像表示装置11に供給する。
 制御部16は、画像表示システムを補正値算出モード又は映像表示モードで動作させる。
 補正値算出モードにおいて、制御部16は、切り替え部15に、輝度調整装置12から出力されるパターン画像を表す信号Vpを選択させ、輝度調整装置12に輝度調整のための処理を行わせ、該処理の結果として、補正値H~Hを算出させ、記憶させる。
 映像表示モードにおいて、制御部16は、切り替え部15に、映像信号補正部14から出力される映像信号Vbを選択させ、記憶されている補正値H~Hを映像信号補正部14に供給させる。映像信号補正部14は、供給された補正値H~Hを用いて映像信号Vaの補正を行い、補正後の映像信号Vbを、切り替え部15を介して画像表示装置11に供給する。この結果、画像表示装置11は、補正後の映像信号Vbに応じた映像の表示を行う。
 制御部16による切り替え部15の制御は、制御部16が制御信号Swを切り替え部15に与えることにより行われる。
 輝度調整装置12は、パターン画像表示処理部21、カメラ22、及び演算処理部23を有する。
 演算処理部23は、図3に示すように、座標生成部31、参照位置特定部32、変換行列生成部33、ユニット位置特定部34、カメラ位置特定部35、角度特定部36、距離特定部37、輝度計測部38、配光特性入力部39、配光特性格納部40、補正値算出部41、及び補正値格納部42を有する。
 上記の補正値算出モードにおいて、パターン画像表示処理部21は、パターン画像を生成して、切り替え部15に供給し、画像表示装置11は、供給されたパターン画像を表示する。このパターン画像は、輝度計測及び画面の参照位置、例えば4隅の位置の検出に用いられるものであり、例えば、単一色の画像、即ち、画像表示装置11の画面DAの全体に亘り、同じ色の画像である。
 カメラ22は、画像表示装置11に表示されたパターン画像を撮影する。撮影は、画像表示装置11の画面DAの全体が撮影範囲に含まれるように行われる。
 座標生成部31は、画像表示装置11を構成している表示ユニットの行の数Nrt及び列の数Nct基づいて、実空間、即ち画像表示装置11が設置されている空間における画像表示装置11の画面DAの各部の位置を特定し、特定した位置を示す座標を生成する。具体的には、画面DAの参照位置、例えば、4隅の位置を示す座標と、各表示ユニットUnの画面DUnの中心の位置を示す座標と、各表示ユニットUnの画面DUnの4隅の位置を示す座標とを生成する。
 参照位置特定部32は、カメラ22から撮影画像を表す信号Icを受け、画像表示装置11の画面DAの参照位置、例えば4隅の位置に対応する、撮影画像中の位置を特定する。
 変換行列生成部33は、座標生成部31で生成された、実空間における画像表示装置の画面DAの参照位置としての4隅の位置の座標と、参照位置特定部32で特定された、撮影画像中の対応する位置、即ち、撮影画像中の、画面DAの参照位置の座標とに基づいて、実空間における座標と、撮影画像中の位置を示す座標との対応関係を示す射影変換行列Mを生成する。
 ユニット位置特定部34は、射影変換行列Mを用いて座標生成部31で生成された各表示ユニットUnの画面DUnの位置を示す座標を変換することで、各表示ユニットUnの画面DUnの、撮影画像中の位置を示す座標を算出する。各表示ユニットUnの画面DUnの位置としては、その4隅の位置が算出される。
 カメラ位置特定部35は、変換行列生成部33で生成された射影変換行列Mと、内部に保持されているカメラ内部行列Mとに基づいて、実空間におけるカメラ22の位置を特定する。カメラ22の実空間における位置は、一定であるとは限らず、撮影を行うごとに異なるものとなる可能性がある。従って、カメラ22の実空間における位置は可変であると言える。
 角度特定部36は、座標生成部31で生成された、各表示ユニットUnの画面DUnの位置(例えばその中心の位置)を示す座標と、カメラ位置特定部35で特定されたカメラ22の位置とに基づいて、各表示ユニットUnの画面DUnに対するカメラ22の撮影角度α,βを特定する。撮影角度αは画像表示装置11の画面DAの水平方向の撮影角度であり、撮影角度βは画面DAの垂直方向の撮影角度である。各表示ユニットUnの画面DUnに対する撮影角度として、例えば、該画面DUnの中心に対する撮影角度が特定される。
 距離特定部37は、カメラ22から各表示ユニットUnの画面DUnまでの距離Rを特定する。各表示ユニットUnの画面DUnまでの距離として、例えば、該画面DUnの中心までの距離が特定される。
 距離Rの特定は、例えば、座標生成部31で生成された、各表示ユニットの位置(例えばその中心の位置)を示す座標と、カメラ位置特定部35で特定されたカメラ22の位置とに基づいて行われる。
 輝度計測部38は、カメラ22からの撮影画像を表す信号Icと、ユニット位置特定部34で特定された、撮影画像中の各表示ユニットの画面の位置とに基づいて、撮影画像における、各表示ユニットの画面の輝度を計測する。
 配光特性入力部39は、補正値算出モードでの処理に先立って、外部から供給される配光特性式f(α,β)を受けて、配光特性格納部40に格納させる。
 外部から供給される配光特性式f(α,β)は、例えば、輝度調整の対象となっている画像表示装置11について、専用の配光特性計測装置により測定されたデータから生成されたものである。
 代わりに、輝度調整の対象となっている画像表示装置11を構成している表示ユニットと配光特性が類似の表示ユニットについて別途定められた配光特性式f(α,β)を外部から供給することとしても良い。
 配光特性格納部40に格納された配光特性式f(α,β)は、補正値算出モードにおいて読み出されて、補正値算出部41に供給される。
 補正値算出部41は、各表示ユニットUnについての補正値Hを算出する。各表示ユニットUnについての補正値Hの算出は、配光特性格納部40に記憶されている配光特性式f(α,β)と、角度特定部36で特定された各表示ユニットUnについての撮影角度α,βと、距離特定部37で特定された各表示ユニットUnについての距離Rと、輝度計測部38で計測された各表示ユニットUnについての輝度Lとに基づいて行われる。
 算出された各表示ユニットUnについての補正値Hは補正値格納部42に格納される。
 補正値Hが格納されると、その後の映像表示モードでの動作に際し、格納された補正値Hが読み出されて、映像信号補正部14に供給される。映像信号補正部14は、各補正値Hを、対応する表示ユニットUnに供給される映像信号の補正に用いる。
 映像信号補正部14は、補正値格納部42から読み出された補正値Hを、映像表示モードでの動作が続く間、繰り返し使用して、補正を行う。
 なお、補正値算出部41で算出された補正値Hを、映像信号補正部14内で記憶することとしても良い。この場合、輝度調整装置12内の補正値格納部42は省略できる。
 以下、輝度調整装置12の各部の動作をより詳しく説明する。
 パターン画像表示処理部21は、パターン画像として、例えば、緑一色などの単一色の画像を、画像表示装置11の画面DAに表示させる。単一色の画像とは、画面の全体が同じ色である画像である。単一色の画像は、画像表示装置11の画面DAの全体を、同じ色で、かつ同じ輝度を表す信号で表示素子を駆動することで生成される。
 上記のように、画像表示装置11の画面DAはN個の表示ユニットの画面で構成される。図2に示す例では、Nが18であり、18個の画面DU1~DUN(N=18)は、垂直方向に3行、水平方向に6列の行列を成すように配列されている。
 画面DU1~DUNは、相互間に隙間なく配置されているものとする。また、画面DU1~DUNは形状及びサイズが互いに同じであるとする。さらに、各画面DUn(nは1からNのいずれか)の水平方向の寸法がDuxであり、垂直方向の寸法がDuyであるとする。この場合、画面相互間の水平方向の間隔(中心間の距離)もDuxであり、画面相互間の垂直方向の間隔(中心間の距離)もDuyである。
 以下では、各表示ユニットUnの画面DUnをユニット画面と言い、画像表示装置11の画面DAを、装置画面或いは組合せ画面と言うことがある。
 演算処理部23内の座標生成部31は、画像表示装置11を構成している表示ユニットの行の数Nrt及び列の数Nctと、各ユニット画面DUnのサイズ、即ち、水平方向の寸法Dux及び垂直方向の寸法Duyとに基づいて、実空間内における位置を特定し、上記実空間の座標系における装置画面DAの各部の位置を示す座標を生成する。
 実空間の座標系として、装置画面DAを基準として定義された座標系(S,S,S)が用いられる。この座標系(S,S,S)においては、装置画面DAがS=0の位置にあり、装置画面DAの左上隅DA1が原点(S=0,S=0, S=0)であり、Sx軸(水平軸)が装置画面DAの上辺に沿って右方向に延び、Sy軸(垂直軸)が装置画面DAの左辺に沿って下方向に延びている。
 以下では、実空間の座標系を装置座標系とも言う。
 上記のように、装置画面DAがS=0の位置にあるので、装置画面DA上の位置を装置座標系の座標で表す場合に、Sを省略して、「(S,S)」と表現することがある。
 装置画面DAの各部の位置の座標として、具体的には、画面DAの参照位置、例えば、4隅DA1~DA4の位置を示す座標(S1x,S1y)、(S2x,S2y)、(S3x,S3y)、及び(S4x,S4y)と、各表示ユニットUnの画面DUnの中心DUn0の位置を示す座標(Sn0x,Sn0y)と、各表示ユニットUnの画面DUnの4隅DUn1~DUn4の位置を示す座標(Sn1x,Sn1y)、(Sn2x,Sn2y)、(Sn3x,Sn3y)、及び(Sn4x,Sn4y)とが生成される。
 画面DAの参照位置DA1~DA4を示す座標(S1x,S1y)、(S2x,S2y)、(S3x,S3y)、及び(S4x,S4y)を示すデータを符号「Sa」で示し、各表示ユニットUnの画面DUnの中心DUn0の位置を示す座標(Sn0x,Sn0y)を、符号「Sm」で示し、各表示ユニットUnの画面DUnの4隅DUn1~DUn4の位置を示す座標(Sn1x,Sn1y)、(Sn2x,Sn2y)、(Sn3x,Sn3y)、及び(Sn4x,Sn4y)を示すデータを符号「Sn」で示す。
 各ユニット画面DUnのサイズ、即ち水平方向の寸法Dux及び垂直方向の寸法Duyは、予め座標生成部31内に予め保持されている。
 表示ユニットの行の数Nrt及び列の数Nctは、例えば、図示しないキーボードなどのマンマシンインタフェースを用いて、操作者が入力することとしても良い。例えば、演算処理部23が、行の数及び列の数を入力するよう操作者に対して案内し、この案内に応じて操作者が行の数及び列の数を入力する。行の数Nrt及び列の数Nctは操作者には既知であり、図2に示す例では行の数Nrtとして「3」、列の数Nctとして「6」が入力される。
 なお、行の数Nrt及び列の数Nctを操作者に入力させる代わりに、例えば、画像表示装置11から座標生成部31に、行の数Nrt及び列の数Nctが自動的に入力されるようにしてもよい。
 上記のように、ユニット画面DU1~DUNは、図2に示すように、行列を成すように配列されており、各ユニット画面の水平方向の寸法がDuxであり、各ユニット画面の垂直方向の寸法がDuyであり、また装置画面DAの左上隅DA1が原点である。このことから、装置画面DAの各部の位置を表す座標は以下のように求められる。
 装置画面DAの4隅DA1~DA4の座標は、それぞれ以下の式で求められる。
 即ち、左上隅DA1の位置の座標(S1x,S1y)は、
 S1x=0
 S1y=0
で求められる。
 右上隅DA2の位置の座標(S2x,S2y)は、
 S2x=Nct×Dux
 S2y=0
で求められる。
 左下隅DA3の位置の座標(S3x,S3y)は、
 S3x=0
 S3y=Nrt×Duy
で求められる。
 右下隅DA4の位置の座標(S4x,S4y)は、
 S4x=Nct×Dux
 S4y=Nrt×Duy
で求められる。
 各ユニット画面DUnの中心DUn0の位置及び4隅DUn1~DUn4の位置を表す座標は、以下のように求められる。即ち、当該ユニット画面DUnが左からN番目の列、上からN番目の行にあるとすると、その中心の位置及び4隅の位置における座標は、それぞれ以下の式で求められる。
 中心DUn0の位置の座標(Sn0x,Sn0y)は、
 Sn0x=(N-0.5)×Dux
 Sn0y=(N-0.5)×Duy
で求められる。
 左上隅DUn1の位置の座標(Sn1x,Sn1y)は、
 Sn1x=(N-1)×Dux
 Sn1y=(N-1)×Duy
で求められる。
 右上隅DUn2の位置の座標(Sn2x,Sn2y)は、
 Sn2x=N×Dux
 Sn2y=(N-1)×Duy
で求められる。
 左下隅DUn3の位置の座標(Sn3x,Sn3y)は、
 Sn3x=(N-1)×Dux
 Sn3y=N×Duy
で求められる。
 右下隅DUn4の位置の座標(Sn4x,Sn4y)は、
 Sn4x=N×Dux
 Sn4y=N×Duy
で求められる。
 座標(S1x,S1y)、(S2x,S2y)、(S3x,S3y)、及び(S4x,S4y)を示すデータSaは、変換行列生成部33に供給される。座標(Sn0x,Sn0y)を示すデータSmは、角度特定部36及び距離特定部37に供給される。座標(Sn1x,Sn1y)、(Sn2x,Sn2y)、(Sn3x,Sn3y)、及び(Sn4x,Sn4y)を示すデータSnは、ユニット位置特定部34に供給される。
 カメラ22は、装置画面DA全体を撮影範囲に含むように撮影を行う。上記のように、矩形のパターン画像が表示される場合、矩形のパターン画像の全体が、撮影範囲に含まれる。カメラ22による撮影の様子を図4に示す。図4において、符号CPがカメラ22の位置、即ちカメラ22のレンズの中心の位置を表す。装置画面DAの画像がレンズにより撮像面PSに結像され、撮影画像が形成される。
 撮影画像には、パターン画像、即ち、装置画面DAに対応する領域QAのほか、装置画面DAの外側に対応する領域QEが含まれる。以下この装置画面DAに対応する領域QAをパターン画像の領域と言うことがある。
 図4に示すように、撮影画像中の、パターン画像の領域QAは四角形となる。カメラ22の光軸が装置画面DAに垂直であり、且つ装置画面DAの中心を通るものであれば、撮影画像中の、パターン画像の領域QAも矩形となる。
 図4に示されるパターン画像の領域QAは、図5に示すように、それぞれのユニット画面DU1~DUNに対応する領域QU1~QUNを含む。
 領域QU1~QUNは、実空間における表示ユニットU1~UNの画面DU1~DUNに対応するものであるので、領域QU1~QUNを、撮影画像中の表示ユニットの画面とも言う。
 図4に示すように、カメラ22による撮影は、撮影の対象となる装置画面DAの、撮像面PSへの射影として把握することができる。撮像面PS上の位置を表す座標系として、撮像面PSの一つの隅PS1を原点として、当該一つの隅PS1を一端とする、互いに直交する辺に沿う直線を、水平軸(Ix軸)及び垂直軸(Iy軸)とする座標系を定義し、この座標系を撮像面の座標系と呼ぶ。装置座標系における座標は、射影変換により撮像面の座標系における座標に変換することができる。撮像面の座標系は、撮像面PS上の位置を表し、従って撮影画像内の位置を表すものであるので、撮影画像の座標系とも呼ばれる。
 参照位置特定部32は、カメラ22から撮影画像を表す信号Icを受け、装置画面DAの参照位置に対応する撮影画像中の位置を特定し、特定した位置の座標を生成する。装置画面DAの参照位置は例えばその4隅である。その場合、参照位置特定部32は、撮影画像中の、装置画面DAに対応する領域QAの4隅QA1~QA4(図4及び図5)を検出し、検出した4隅QA1~QA4の位置の座標を生成する。4隅QA1~QA4の位置を示す座標として、撮影画像の座標系における座標(I1x,I1y)、(I2x,I2y)、(I3x,I3y)及び(I4x,I4y)が生成される。
 撮影画像中の4隅QA1~QA4の検出は、例えば、画像中の特定の色(パターン画像の色)の領域のエッジを検出することで該領域の4つの頂点を検出し、検出した4つの頂点を4隅として認識することで行っても良い。代わりに、装置画面DAに対応する領域QAのうち、撮像面PSの4隅PS1~PS4(図4及び図5)にそれぞれ最も近い点を、該領域QAの4隅として検出することとしても良い。
 検出された4隅QA1~QA4の位置を表すデータIaは、変換行列生成部33に供給される。
 変換行列生成部33は、座標生成部31から供給されるデータSaと、参照位置特定部32から供給されるデータIaとから、装置座標系と撮影画像の座標系との対応関係を表す射影変換行列Mを生成する。
 射影変換行列Mは、係数p11~p33から成る、下記の式(1)で表される行列である。
Figure JPOXMLDOC01-appb-M000001
 射影変換行列Mは、図4に示されている装置座標系において、装置画面DAの参照位置DA1~DA4の位置を表す座標(S1x,S1y)、(S2x,S2y)、(S3x,S3y)、及び(S4x,S4y)と、撮影画像中の、装置画面DAの参照位置DA1~DA4に対応する点QA1~QA4の座標(I1x,I1y)、(I2x,I2y)、(I3x,I3y)、及び(I4x,I4y)との間にある、下記の式(2)で表される関係から求められる。
Figure JPOXMLDOC01-appb-M000002
 上記の式(2)の右辺の8行8列の行列の逆行列を算出し、算出した逆行列を左辺の8次元の列ベクトル(8行1列の行列)に乗算することで、係数p11,p12,p13,p21,p22,p23,p31,p32を求めることができる。
 なお、式(1)の係数p33は固定値であり、「1」である。
 生成された射影変換行列Mは、ユニット位置特定部34及びカメラ位置特定部35に供給される。
 ユニット位置特定部34は、カメラ22から撮影画像を表す信号Icを受け、各表示ユニットUnの画面(各ユニット画面)DUnの、撮影画像中の位置、即ち実空間における画面DUnの位置に対応する撮影画像中の位置を特定する。撮影画像中の各ユニット画面QUnの位置としては、該ユニット画面QUnの4隅QUn1~QUn4の位置が特定される。
 撮影画像中の位置の特定は、変換行列生成部33で生成された射影変換行列Mを用いて、装置座標系における座標(S,S)を撮像面PSの座標(I,I)に変換することで行われる。この変換には式(3)が用いられる。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、λは定数である。
 式(3)の(S,S)として、(Sn1x,Sn1y)を適用することで、(I,I)として(In1x,In1y)を求めることができる。同様に、(Sn2x,Sn2y)、(Sn3x,Sn3y)、(Sn4x,Sn4y)を適用することで、(In2x,In2y)、(In3x,In3y)、(In4x,In4y)を求めることができる。
この変換により、撮影画像における各ユニット画面の4隅QUn1~QUn4の位置が特定される。このような座標変換をすべてのユニット画面について行うことで、ユニット位置特定部34は、すべてのユニット画面DU1~DNについて、撮影画像における、それぞれの4隅QUn1~QUn4の位置を特定する。
 ユニット画面DU1~DNのそれぞれの4隅の位置を示すデータIuは、輝度計測部38に供給される。
 カメラ位置特定部35は、装置座標系におけるカメラ22の位置を特定し、特定したカメラ22の位置を示す座標(Scx,Scy,Scz)を出力する。
 カメラ位置特定部35は、カメラ位置の特定のために、装置座標系と撮影画像の座標系(I,I)との関係を表す射影変換行列Mと、内部に保持されているカメラ内部行列Mとを用いる。
 装置座標系における任意の点の座標(S,S,S)と、撮影画像の座標系における上記の任意の点に対応する点の座標(I,I)とは、下記の式(4)によって対応付けることができる。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、Mは3行3列の回転行列であり、3行1列の構成行列Mr1,Mr2,Mr3を用いると、
 M=[Mr1r2r3
と表される。
 また、Mは3行1列の並進行列である。したがって、[Mr1r2r3]は3行4列の行列となる。
 Mは3行3列のカメラ内部行列である。カメラの内部パラメータは、例えば、上記の非特許文献1に記載されている手法を用いて計算することができる。カメラ22の内部パラメータは予め計算され、カメラ位置特定部35内に保持されているものとする。
 またλは定数である。
 上記の任意の点が装置画面DA上にある場合には、式(4)において、S=0となるため、Mr3を無視することができる。
 従って、式(4)は、下記の式(5)のように書き換えられる。
Figure JPOXMLDOC01-appb-M000005
 式(3)と式(5)は等価であるので、式(3)と式(5)から、下記の式(6)が成立する。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、Mは、式(1)の射影変換行列である。
 式(6)において、カメラ内部行列Mは既知であり、射影変換行列Mは変換行列生成部33で生成されるので、これらに基づき、行列Mr1、Mr2、Mを求めることができる。
 また、行列Mr3は、行列Mr1と行列Mr2の外積(Mr1×Mr2)によって求めることができる。
 次に、図4に示すように、カメラ22の位置CPを原点(0,0,0)とし、撮影画像の水平軸(Ix軸)及び垂直軸(Iy軸)と平行で、かつ同じ方向に延びた水平軸(Cx軸)及び垂直軸(Cy軸)を持つ座標系を定義し、この座標系をカメラ座標系と呼ぶ。
 実空間における任意の点の、カメラ座標系における座標(C,C,C)と、撮影画像の座標系における、上記の点に対応する点の座標(I,I)とは、カメラ内部行列Mを用いると、下記の式(7)によって対応付けることができる。
Figure JPOXMLDOC01-appb-M000007
 式(5)と式(7)とから、任意の点についてのカメラ座標系における座標(C,C,C)と、装置座標系における座標(S,S,S)との対応は、下記の式(8)で示すことができる。
Figure JPOXMLDOC01-appb-M000008
 カメラ位置特定部35は、式(8)を用いて、カメラ座標におけるカメラ22の位置を表す座標(0,0,0)を装置座標系の座標(Scx,Scy,Scz)に変換する。変換で求められた座標(Scx,Scy,Scz)が、装置座標系におけるカメラ22の位置(レンズの中心の位置)を示す。
 カメラ22の位置を示す座標(Scx,Scy,Scz)を表すデータScは、角度特定部36及び距離特定部37に供給される。
 角度特定部36は、各ユニット画面DUnの中心に対するカメラ22の撮影角度α,βを特定する。撮影角度αは、装置座標系のSx軸方向における撮影角度であり、撮影角度βは、装置座標系のSy軸方向における撮影角度である。即ち、撮影角度α及びβは、カメラ22から各ユニット画面DUnの中心に延びた直線で表される撮影ベクトルと、装置画面DAとの成す角のうち、それぞれSx軸方向の成分及びSy軸方向の成分である。
 角度特定部36は、撮影角度の特定のために、装置座標系において、各ユニット画面DUnの中心の位置を表す座標(Sn0x,Sn0y,Sn0z)と、カメラの位置を示す座標(Scx,Scy,Scz)とを用いる。
 各ユニット画面DUnの中心DUn0の中心の位置を表す座標(Sn0x,Sn0y,Sn0z)としては、座標生成部31で生成されたものを用いることができる。カメラ22の位置を示す座標(Scx,Scy,Scz)としては、カメラ位置特定部35で特定されたものを用いることができる。
 角度特定部36は、カメラ22の位置から、上記の各ユニット画面DUnの中心DUn0の位置に向かう撮影ベクトルVcnを求める。
 具体的には、カメラ22から各ユニット画面DUnの中心に向かう撮影ベクトルVcnのSx軸方向成分Vcnx、Sy軸方向成分Vcny及びSz軸方向成分Vcnzを下記の式により求める。
 Vcnx=Sn0x-Scx
 Vcny=Sn0y-Scy
 Vcnz=Sn0z-Scz
 但し、Scz=0であるので、
 Vcnz=Sn0z
 角度特定部36は、上記の撮影ベクトルVcnを、図6に示すように、Sy軸に垂直な平面PLXZに正射影し、射影ベクトルVcnxzとSx軸方向の単位ベクトルV(1,0,0)との角度αを、各ユニット画面DUnの中心に対するカメラ22の水平方向の撮影角度として求める。
 射影ベクトルVcnxzのSx軸方向成分及びSz軸方向成分は、撮影ベクトルVcnのSx軸方向成分Vcnx及びSz軸方向成分Vcnzに等しい。
 図6に示すように、射影ベクトルVcnxzのSx軸方向成分Vcnx及びSz軸方向成分Vcnzと角度αとの間には、
Figure JPOXMLDOC01-appb-M000009
の関係がある。式(9)を変形することで、下記の式(10)が得られる。
Figure JPOXMLDOC01-appb-M000010
 式(10)により、角度αを求めることができる。
 また、角度特定部36は、上記の撮影ベクトルVcnを、図6に示すように、Sx軸に垂直な平面PLYZに正射影し、射影ベクトルVcnyzとSy軸方向の単位ベクトルV(0,1,0)との角度βを、各ユニット画面DUnの中心に対するカメラ22の垂直方向の撮影角度として求める。
 射影ベクトルVcnyzのSy軸方向成分及びSz軸方向成分は、撮影ベクトルVcnのSy軸方向成分Vcny及びSz軸方向成分Vcnzに等しい。
 図6に示すように、射影ベクトルVcnyzのSy軸方向成分Vcny及びSz軸方向成分Vcnzと角度βとの間には、
Figure JPOXMLDOC01-appb-M000011
の関係がある。式(11)を変形することで、下記の式(12)が得られる。
Figure JPOXMLDOC01-appb-M000012
 式(12)により、角度βを求めることができる。
 角度特定部36は、すべてのユニット画面DU1~DUNについて、それぞれの中心に対する撮影角度(α)を特定する。
 撮影角度(α)を表すデータは、補正値算出部41に供給される。
 距離特定部37は、カメラ22から各ユニット画面DUnの中心までの距離Rを特定する。
 距離特定部37は、例えば、カメラ22の位置を示す座標と、各ユニット画面DUnの中心を示す座標とから、各ユニット画面の中心までの距離を求める。即ち、カメラ22の位置を示す座標を(Scx,Scy,Scz)とし、各ユニット画面の中心を示す座標を(Sn0x,Sn0y,Sn0z)とすれば、当該ユニット画面の中心までの距離Rは下記の式(13)で表される演算により求めることができる。
Figure JPOXMLDOC01-appb-M000013
 距離特定部37は、上記の式(13)で用いるカメラの位置を示す座標(Scx,Scy,Scz)として、カメラ位置特定部35で求められたものを利用することができる。また、各ユニット画面の中心の位置を示す座標(Sn0x,Sn0y,Sn0z)として、座標生成部31で生成されたものを用いることができる。
 距離特定部37は、すべてのユニット画面DU1~DUNについて、それぞれの中心までの距離R~Rを特定する。距離Rを表すデータは、補正値算出部41に供給される。
 輝度計測部38は、撮影画像における、各表示ユニットの画面の輝度を計測する。即ち、輝度計測部38はユニット位置特定部34により特定された各表示ユニットの画面の位置を参照して、撮影画像内において各表示ユニットの画面が占める範囲、即ち、撮影画像中の、当該画面の領域QUn(図5)を特定し、その領域QUnを構成している複数の画素の値の平均値Lを算出し、当該表示ユニットUnの画面DUnの輝度として出力する。各表示ユニットの画面の位置として、例えば、その4隅の位置を参照して、撮影画像中の、当該画面の領域QUnが特定される。この4隅の位置を示す座標として、ユニット位置特定部34により算出された4隅QUn1~QUn4の位置の座標(In1x,In1y)、(In2x,In2y)、(In3x,In3y)、及び(In4x,In4y)が用いられる。
 このような処理で求められる輝度Lは、上記の領域QUnに対応する実空間のユニット画面DUnをカメラ22の位置から見たときの輝度である。輝度Lは、ユニット画面DUnの配光特性及びカメラ22から当該ユニット画面DUnまでの距離Rに依存する。
 輝度計測部38は、すべての表示ユニットU1~UNについて、それぞれの輝度L~Lを算出する。
 輝度Lを表すデータは、補正値算出部41に供給される。
 配光特性格納部40に格納されている配光特性式f(α,β)は、各ユニット画面DUnを見る角度(α,β)と、その方向から見たときの輝度との関係を表す数式である。例えば、各ユニット画面DUnの中心を通り、当該ユニット画面DUnに垂直な線の方向(当該ユニット画面DUnに対して90度の方向)から見たときの輝度を基準輝度として、それ以外の方向から見た時の輝度の、基準輝度に対する比で配光特性を表す。
 補正値算出部41は、配光特性格納部40に格納されている配光特性式f(α,β)と、角度特定部36により特定された当該表示ユニットの画面の中心に対する撮影角度α,βと、距離特定部37により特定された当該表示ユニットの画面の中心までの距離Rと、輝度計測部38により計測された各表示ユニットの画面の輝度Lとに基づいて、当該表示ユニットUnの輝度調整に用いるべき補正値Hを算出する。
 より詳しく述べれば、補正値算出部41は、配光特性式f(α,β)と、各表示ユニットの画面に対する撮影角度(α,β)とから当該表示ユニットの画面についての配光特性値f(α,β)を得て、当該配光特性値f(α,β)と、当該表示ユニットまでの距離Rとから、目標輝度Ltnを定め、当該表示ユニットの画面の輝度Lを目標輝度に一致させるための補正で用いられる補正値Hを算出する。
 補正値算出部41は、例えば、図7に示すように基準ユニット選択部41a、配光特性値算出部41b、基準輝度算出部41c、目標輝度算出部41d、及び除算部41eを有する。
 基準ユニット選択部41aは、画像表示装置11を構成している複数の表示ユニットU1~UNの中から、基準の表示ユニットUrを選択する。
 基準の表示ユニットUrの選択は、操作者が図示しないキーボードなどのマンマシンインタフェースを使用して行う基準の表示ユニットの指定に従って行うこととしても良い。例えば、画像表示装置11の中央付近の表示ユニットが指定される。
 基準ユニット選択部41aは、選択したユニットを示す情報Srを出力する。
 配光特性値算出部41bは、角度特定部36から各表示ユニットの撮影角度α,βを取得して、配光特性格納部40に格納されている配光特性の算出式にα,βを適用して、各表示ユニットの配光特性値f(α,β)を算出する。
 基準の表示ユニットUrもここで言う「各表示ユニットUn」に該当する。即ち、配光特性値算出部41bは、基準の表示ユニットUrの画面DUrに対する撮影角度α,βを配光特性式f(α,β)に適用することで、基準の表示ユニットUrの配光特性値f(α,β)をも算出する。
 基準輝度算出部41cは、基準ユニット選択部41aから、基準ユニットUrを示す情報Srを受け、輝度計測部38から基準の表示ユニットUrの輝度Lを取得し、その輝度Lを配光特性値f(α,β)で除算することで、基準輝度Lrefを計算する。この計算は下記の式(14)で表される。
Figure JPOXMLDOC01-appb-M000014
 目標輝度算出部41dは、基準ユニット選択部41aから、基準ユニットUrを示す情報Srを受け、配光特性値算出部41bから、各表示ユニットについての配光特性値f(α)を取得し、距離特定部37から、各表示ユニットUnについてのカメラ22からの距離Rを取得する。この処理によって、基準の表示ユニットUrについての距離Rも取得される。
 目標輝度算出部41dは、さらに、配光特性値f(α)と、各表示ユニットUの画面DUnまでの距離Rの2乗に対する、基準の表示ユニットUrの画面DUrまでの距離Rの2乗の比とを基準輝度Lrefに乗算することで、各表示ユニットの目標輝度Ltnを計算する。この計算は下記の式(15)で表される。
Figure JPOXMLDOC01-appb-M000015
 式(15)は、各表示ユニットUnについての配光特性値f(α,β)に比例し、当該表示ユニット画面DUnの中心までの距離Rの2乗に反比例する値が、当該表示ユニットについての目標輝度Ltnとして求められることを示している。
 除算部41eは、目標輝度算出部41dで算出された各表示ユニットについての目標輝度Ltnを、輝度計測部38により計測された当該表示ユニットの輝度Lで除算することで、当該表示ユニットUnの輝度調整に用いる補正値Hを計算する。この計算は下記の式(16)で表される。
Figure JPOXMLDOC01-appb-M000016
 上記の式(15)及び(16)による計算は、基準の表示ユニット以外の全ての表示ユニットの各々について行われる。基準の表示ユニットについても、上記の式(15)及び(16)による計算を行っても良いが、計算の結果求められる補正値は1となる。従って、基準の表示ユニットについては、上記の式(15)及び(16)の計算を省略して、補正値を1と定めても良い。
 除算部41eの出力が補正値算出部41の出力となる。
 補正値算出部41は、すべての表示ユニットU1~UNについて、それぞれの補正値H~Hを算出する。
 算出された補正値H~Hは、補正値格納部42に格納され、その後の映像表示モードにおいて、外部から供給される映像信号の輝度の調整に用いられる。即ち、映像信号補正部14は、補正値算出部41からの各表示ユニットUnのための補正値Hを受信し、受信した補正値Hを用いて当該表示ユニットUnの輝度を調整する。各表示ユニットUnの輝度の調整は、各表示ユニットUnに供給される映像信号の輝度値を調整することで行われる。即ち、映像信号補正部14は、映像信号入力部13から出力される各表示ユニット用の映像信号Vaの輝度値に対して補正値Hを乗算することで、当該表示ユニット用の映像信号の輝度値を調整し、輝度値が調整された映像信号Vbを当該表示ユニットに供給する。
 調整前の輝度値(映像信号Vaの輝度値)をLva、調整後の輝度値(映像信号Vbの輝度値)をLvbとすると、上記の乗算は、次の式(17)で表される。
Figure JPOXMLDOC01-appb-M000017
 以上で明らかなように、この実施の形態1によれば、配光特性式f(α,β)と、各表示ユニットの画面に対する撮影角度(α,β)とから、当該表示ユニットの画面についての配光特性値f(α,β)を算出し、算出した配光特性値f(α,β)と、当該表示ユニットの画面までの距離Rとから、当該表示ユニットについての目標輝度Ltnを定め、当該表示ユニットの画面の輝度Lを、当該表示ユニットについての目標輝度Ltnに一致させるための補正値Hを算出することとしたので、画像表示装置11に輝度ムラが発生しないように、複数の表示ユニットの輝度を調整することができる。
 特に、撮影画像中の各ユニット画面DUnの輝度Lは、カメラ22から各ユニット画面DUnまでの距離Rの影響を受けていることを考慮し、補正値Hを求めるに当たり、上記の距離Rの影響を除去することとしている。具体的には、距離Rの影響の除去のため、輝度計測部38で求められた各ユニット画面DUnの輝度Lに距離の2乗の逆数を掛けることで目標輝度Ltnを求め、この目標輝度Ltnに基づいて補正値Hを定めることとしている。従って、カメラからの距離が、表示ユニット相互間で異なる場合にも、その影響を除去し、各表示ユニットの輝度を適切に調整することができる。
実施の形態2.
 実施の形態1では、配光特性式f(α,β)が外部から供給されるが、輝度調整装置が配光特性式f(α,β)を決定する機能を有していても良い。そのような機能を有する輝度調整装置は、実施の形態1で説明した補正値算出モード、及び映像表示モードのみならず、配光特性算出モードでも動作することができるものである。
 図8には、本実施の形態の輝度調整装置12bを、配光特性算出モードにおいてパターン画像の表示に用いられる画像表示装置11b、並びに切り替え部15及び制御部16とともに示す。配光特性算出モードでは、輝度調整装置12bは、切り替え部15によって画像表示装置11bに接続され、補正値算出モードにおける処理と同様に、パターン画像の表示を行わせ、輝度の計測、カメラ位置の特定、撮影角度の特定、距離の特定などを行って、これらにより得られたデータを用いて配光特性式f(α,β)を決定し、格納する。
 配光特性式f(α,β)が格納された輝度調整装置12bは、他の画像表示装置、例えば図1に示される画像表示装置11、並びに映像信号入力部13及び映像信号補正部14に接続され、補正値算出モードで補正値の算出が行われ、映像表示モードで、映像信号に対する補正が行われる。
 配光特性算出モードで用いられる画像表示装置11bと、補正値算出モード及び映像表示モードで用いられる画像表示装置11とは、それらを構成する表示ユニットの数が同じであっても良く、異なっていても良い。ただし、画像表示装置11bを構成する表示ユニットの各々は、画像表示装置11を構成する表示ユニットと同じ型式或いは同じ仕様のものであり、サイズ(水平方向の寸法及び垂直方向の寸法)が同じで、かつ配光特性が同一又は類似のものである必要がある。
 配光特性式の決定は、画像表示装置11bにパターン画像を1回表示させ、表示されたパターン画像を1回撮影することで得られた撮影画像に基づいて行うことも可能であるが、そのような処理(画像の表示、撮影画像に基づく処理)を複数回行い、複数回の処理で得られるデータに基づいて配光特性式を決定することとしても良い。
 また、輝度調整装置12bを、複数個の互いに異なる画像表示装置に順に接続し、接続した画像表示装置を用いて画像の表示、撮影画像に基づく処理を繰り返し、繰り返しの処理で得られたデータに基づいて配光特性式を決定することとしても良い。
 図8に示される輝度調整装置12bは、図1に示される輝度調整装置12と概して同じである。但し、演算処理部23の代わりに演算処理部23bを備えている。
 演算処理部23bの構成例を図9に示す。図9の演算処理部23bは、図3に示される演算処理部23と概して同じである。但し、配光特性入力部39が設けられておらず、代わりに、配光特性算出部43が設けられている。
 配光特性算出モードにおけるパターン画像表示処理部21及びカメラ22の処理の内容は、実施の形態1で説明した補正値算出モードにおけるパターン画像表示処理部21及びカメラ22の処理の内容と同様である。
 即ち、パターン画像表示処理部21は、パターン画像を生成して、切り替え部15に供給し、切り替え部15は、パターン画像を表す信号Vpを選択して画像表示装置11bに供給し、画像表示装置11bは、供給された信号Vpで表されるパターン画像を表示する。
 パターン画像は、補正値算出モードで表示されるパターン画像と同じであっても良く、異なっていてもよい。
 カメラ22は、画像表示装置11bに表示されたパターン画像を撮影する。
 カメラ22は、画像表示装置11bの画面DAの全体を撮影範囲に含むように撮影を行う。
 画像表示装置11bの画面DAに対するカメラ22の位置は、補正値算出モードにおける位置と同じであっても良く、異なっていても良い。
 演算処理部23bは、実施の形態1で説明した、補正値算出モードにおける演算処理部23と同様に動作する。
 即ち、座標生成部31は、実空間における画像表示装置11の画面DAの参照位置としての4隅DA1~DA4の位置を示す座標(S1x,S1y)、(S2x,S2y)、(S3x,S3y)、及び(S4x,S4y)と、各表示ユニットUnの画面DUnの中心DUn0の位置を示す座標(Sn0x,Sn0y)と、各表示ユニットUnの画面DUnの4隅DUn1~DUn4の位置を示す座標(Sn1x,Sn1y)、(Sn2x,Sn2y)、(Sn3x,Sn3y)、及び(Sn4x,Sn4y)とを生成する。
 参照位置特定部32は、カメラ22から撮影画像を表す信号Icを受け、画像表示装置11の画面DAの参照位置、例えば4隅の位置に対応する、撮影画像中の位置を特定する。
 変換行列生成部33は、実空間における画像表示装置の画面DAの4隅の位置と、撮影画像中の対応する位置とに基づいて、装置座標系の座標と、撮影画像の座標系の座標との対応関係を示す射影変換行列Mを生成する。
 ユニット位置特定部34は、射影変換行列Mを用いて、各表示ユニットの画面の、撮影画像中の位置を示す座標を算出する。
 カメラ位置特定部35は、実空間におけるカメラ22の位置(Scx,Scy,Scz)を特定する。
 角度特定部36は、各表示ユニットUnの画面DUnに対するカメラ22の撮影角度α,βを特定する。
 距離特定部37は、カメラ22から各表示ユニットUnの画面DUnまでの距離Rを特定する。
 輝度計測部38は、撮影画像における、各表示ユニットの画面の輝度を計測する。
 配光特性算出部43は、以下に述べるように、配光特性式f(α,β)を算出し、配光特性格納部40に格納する。
 なお、配光特性算出モードにおいては、補正値算出部41は動作しない。
 以下、配光特性算出部43に動作について詳しく説明する。
 配光特性算出部43は、カメラ位置特定部35で特性されたカメラの位置を示す座標(Scx,Scy,Scz)と、角度特定部36で特定された、それぞれのユニット画面DU1~DUNの中心に対する撮影角度(α)~(α)と、距離特定部37で特定された、それぞれのユニット画面DU1~DUNの中心までの距離R~Rと、輝度計測部38で特定された、それぞれのユニット画面DU1~DUNの輝度L~Lとに基づいて、配光特性式f(α,β)を決定する。
 配光特性算出部43は、例えば図10に示すように、正規化部43a、基準ユニット領域特定部43b、基準値算出部43c、相対値算出部43d、輝度情報テーブル生成部43e、及び回帰分析部43fを有する。
 正規化部43aは、輝度計測部38から輝度Lを表すデータを受け、距離特定部37から距離Rを表すデータを受け、各ユニット画面DUnの輝度Lと、当該ユニット画面DUnまでの距離Rの2乗と、一定の係数kとの乗算を行い、この乗算の結果を、距離補正された(距離の影響を除いた)輝度値Lcnとする。この乗算は下記の式(18)で表される。以下では、この輝度値Lcnを正規化輝度値と呼ぶ。
Figure JPOXMLDOC01-appb-M000018
 基準ユニット領域特定部43bは、カメラ位置特定部35からデータScを受け、該データScで表される、カメラ22の位置の座標(Scx,Scy,Scz)と、基準ユニット領域特定部43bの内部に保持されている、各ユニット画面のサイズ(Dux,Duy)を示すデータとに基づいて、カメラ22が正対している装置画面DA上の点Pc(図11)を中心とし、各ユニット画面と同じサイズの領域を基準ユニット領域SUとして特定する。
 この処理のため、基準ユニット領域特定部43bはまず、カメラ22が正対している装置画面DA上の点Pcを特定する。この点Pcは、カメラ22の位置を装置画面DA上に正射影した位置にあり、その位置を示す座標は、カメラ22の位置を示す座標(Scx,Scy,Scz)において、Sczを0に置き換えることで得られ、従って、(Scx,Scy,0)又は(Scx,Scy)で表される。
 基準ユニット領域SUの4隅SU1~SU4の位置の座標は、点Pcの位置の座標(Scx,Scy)及びユニット画面のサイズ(Dux,Duy)から、以下のように求められる。
 左上隅SU1の位置の座標(SU1x,SU1y)は、
 SU1x=Scx-0.5×Dux
 SU1y=Scy-0.5×Duy
で求められる。
 右上隅SU2の位置の座標(SU2x,SU2y)は、
 SU2x=Scx+0.5×Dux
 SU2y=Scy-0.5×Duy
で求められる。
 左下隅SU3の位置の座標(SU3x,SU3y)は、
 SU3x=Scx-0.5×Dux
 SU3y=Scy+0.5×Duy
で求められる。
 右上隅SU4の位置の座標(SU4x,SU4y)は、
 SU4x=Scx+0.5×Dux
 SU4y=Scy+0.5×Duy
で求められる。
 基準値算出部43cは、正規化部43aから正規化輝度値Lcnを示すデータを受け、基準ユニット領域特定部43bから基準ユニット領域SUの4隅の座標を示すデータを受け、座標生成部31から、各ユニット画面DUnの4隅の位置の座標を示すデータSnを受け、基準ユニット領域SUと重なるユニット画面についての正規化輝度値Lcnを用いて、基準ユニット領域SUの輝度値Lcsを算出する。この輝度値Lcsは、各表示ユニットについての、距離補正された輝度値Lcnに相当する値であり、基準ユニット領域の正規化輝度値或いは基準値と呼ばれる。
 図11の例では、基準ユニット領域SUは、4つのユニット画面DU9、DU10、DU15、DU16と重なり合う。上記の4つのユニット画面DU9、DU10、DU15、DU16の各々の4隅の位置、並びに基準ユニット領域SUの4隅SU1~SU4の位置に基づいて、基準ユニット領域SUが4つのユニット画面DU9、DU10、DU15、DU16と重なっている部分の面積を求める。
 基準ユニット領域SUが4つのユニット画面DU9、DU10、DU15及びDU16と重なっている部分の面積の比率と、4つのユニット画面DU9、DU10、DU15及びDU16の正規化輝度値Lc9、Lc10、Lc15及びLc16とから、基準値Lcsを算出する。例えば、4つのユニット画面DU9、DU10、DU15及びDU16の正規化輝度値Lc9、Lc10、Lc15及びLc16を、それぞれ4つのユニット画面DU9、DU10、DU15及びDU16のうちの上記の重なっている部分の面積に比例する重みを付けて平均値を求め、該平均値を基準値Lcsとして用いる。
 相対値算出部43dは、正規化部43aから各表示ユニットの正規化輝度値Lcnを示すデータを受け、基準値算出部43cから基準値Lcsを示すデータを受け、各表示ユニットの正規化輝度値Lcnの、基準値Lcsに対する比RLnを計算する。この比RLnを相対値とも言う。
 輝度情報テーブル生成部43eは、相対値算出部43dから相対値RLnを示すデータを受け、角度特定部36から撮影角度(α)を示すデータを受け、各表示ユニットUnを識別する情報(例えば各表示ユニットの番号)に、当該表示ユニットUnについての相対値RLnと、当該表示ユニットUnについての撮影角度(α)とを対応付けて記憶する輝度情報テーブルを生成する。表示ユニットを識別する情報は、相対値RLnを示すデータにも、撮影角度(α)を示すデータにも付随して供給される。
 なお、表示ユニットUnを識別する情報を省略しても良い。要するに、各表示ユニットについての上記の相対値RLnと、当該表示ユニットについての撮影角度(α,β)とを対応づけて格納すればよい。
 回帰分析部43fは、輝度情報テーブル生成部43eに格納された輝度情報テーブルを参照して、画像表示装置11の配光特性式を求める。
 画像表示装置11の配光特性式としては、例えば下記の式(19)において、定数a~fを特定の値に定めたものが考えられる。
Figure JPOXMLDOC01-appb-M000019
 式(19)における定数a,b,c,d,e,fは、輝度情報テーブルのデータを用いて、最小二乗法などの既知の方法で決定することが可能である。
 式(19)は、(定数が特定の値に定められていない状態では、)一般化した形の式である。例えば、α、βが90度を中心として増加する方向に変化しても、減少する方向に変化しても同じように減少する配光特性式の一例は、下記の式(20)で表されるが、この式(20)を変形することで式(21)が得られる。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 式(21)は、式(19)において、a=-0.01、b=-0.01、c=0、d=1.8、e=1.8、f=-62としたものに相当する。
 回帰分析部43fは、例えば、式(19)を用いて、画像表示装置11の配光特性式f(α,β)を算出する。配光特性式の決定は、例えば式(19)において、定数a~fを決定することを意味する。
 回帰分析部43fで求められた配光特性式f(α,β)は、配光特性算出部43の出力として、配光特性格納部40に格納される。
 なお、上記の例では、1回の撮影で得られた画像に基づいて配光特性式を定めることとしているが、カメラ22を異なる位置に設置して行われる複数回の撮影で得られた画像から、配光特性式を定めることとしてもよい。例えば、カメラ22を異なる位置に設置して行われる複数回の撮影で得られた配光特性を平均化することで、配光特性式を定めることとしても良い。
 具体的には、撮影を行う度に得られる撮影角度αと対応する相対値RLnとを輝度情報テーブルに蓄積し、複数回の撮影で得られた撮影角度αと対応する相対値RLnとが蓄積された輝度情報テーブルを用いて、回帰分析を行うことで、配光特性式を求めることとしても良い。
 また、複数の異なる画像表示装置を順次選択し、選択した画像表示装置に輝度調整装置12bを接続した状態で、パターン画像の表示、及び撮影画像に基づく処理を行うことで、異なる画像表示装置を用いた処理から得られる、互いに対応付けられた撮影角度αと相対値RLnとを輝度情報テーブルに蓄積し、蓄積されたデータに基づいて配光特性式を決定することとしても良い。
 以上のように、撮影画像中の各ユニット画面の輝度Lは、カメラ22から各ユニット画面DUnまでの距離Rの影響を受けていることを考慮し、本実施の形態では、配光特性を求めるに当たり、上記の距離Rの影響を除去することとしている。具体的には、距離Rの影響の除去のため、輝度計測部38で求められた各ユニット画面DUnの輝度Lに距離の2乗を掛けることで、正規化輝度値Lcnを求め、正規化輝度値Lcnに基づいて配光特性式f(α,β)を定めるとしている。
 配光特性格納部40に格納された配光特性式f(α,β)は、補正値算出モードにおいて、実施の形態1で説明したのと同様に、補正値の算出に用いられる。即ち配光特性式f(α,β)を格納した輝度調整装置12bは、輝度調整の対象となる画像表示装置に接続され、実施の形態1で説明したのと同様に補正値の算出を行い、また、実施の形態1で説明したのと同様の映像信号入力部及び映像信号補正部に接続され、算出した補正値を用いて映像信号の輝度の補正を行う。
 実施の形態2でも実施の形態1と同様の効果が得られる。
 実施の形態2ではさらに、配光特性算出モードで用いられる画像表示装置を構成する表示ユニットの配光特性に基づいて配光特性式を得ることとしている。従って、補正値算出モード及び映像表示モードで用いられる画像表示装置を構成する表示ユニットと同一又は類似の配光特性を有する表示ユニットで構成された画像表示装置を配光特性算出モードで用いれば、映像表示モードで各表示ユニットの輝度の調整を適切に行うことができる。
 特に、配光特性算出モードで用いる画像表示装置を、補正値算出モード及び映像表示モードで用いる画像表示装置と同じものとすれば、映像表示モードで用いられる画像表示装置の表示ユニットの配光特性により正確に反映した配光特性式を得ることができ、映像表示モードでの各表示ユニットの輝度の調整をより適切に行うことができる。
 また、配光特性算出モードにおいて、カメラ22から各ユニット画面DUnまでの距離Rの影響を除去した上で、配光特性式を定めることとしているので、そのようにして決定された配光特性式を補正値算出モードで用いることで、カメラ22からの距離の影響をより確実に除去した補正値を算出することができる。
実施の形態3.
 実施の形態1及び2では、座標生成部31で生成された、各表示ユニットの位置(例えばその中心の位置)を示す座標と、カメラ位置特定部35で生成されたカメラ22の位置とに基づいて、距離Rの特定を行っているが、カメラ22の位置の代わりに、角度特定部36により特定された各表示ユニットUnの画面DUnに対するカメラ22の撮影角度α,βを用いて、距離Rの特定を行うこととしても良い。
 この場合に用いられる演算処理部の構成例を図12に示す。
 図12に示される演算処理部23cは、図3に示される演算処理部23と概して同じであるが、図3の距離特定部37の代わりに、距離特定部37bが設けられている。
 距離特定部37bは、座標生成部31で生成された各ユニット画面DUnの中心の位置を示す座標(Sn0x,Sn0y,Sn0z)と、角度特定部36により特定された各ユニット画面DUnの中心に対するカメラ22の撮影角度α,βを参照して、カメラ22から各ユニット画面DUnの中心までの距離Rを特定する。
 例えば、各ユニット画面DUnの中心と、隣接するユニット画面(図2に符号「DUn’」で示す)の中心と間の水平方向の距離及び垂直方向の距離と、各ユニット画面DUnの中心に対する撮影角度α,β及び隣接するユニット画面DUn’に対する撮影角度(符号「α’,β’」で表す)とから三角測量の原理で、カメラ22から各ユニット画面の中心までの距離を求めることができる。
 以上、実施の形態3を実施の形態1に対する変形として説明したが、実施の形態2に対しても同様の変形を加えることができる。
実施の形態4.
 実施の形態1乃至3では、パターン画像表示処理部21がパターン画像として、単一色の画像を各表示ユニットに表示させ、表示されたパターン画像に基づいて輝度計測を行うとともに、画面の参照位置、例えば4隅の位置を検出することとしている。このようなパターン画像に加え、パターン画像表示処理部21が各表示ユニットの位置を示す要素を含むパターン画像を表示させ、演算処理部が、撮影画像から、上記位置を示す要素に対応する特徴を検出することで、各表示ユニットの位置を特定することとしても良い。
 そのような位置検出用のパターン画像として、例えば、各表示ユニットの4隅の表示素子のみを点灯させるパターン画像を用いることができる。
 その場合、演算処理部が、撮影画像に対する画像認識を行って各表示ユニットの4隅の位置を特定するようにしてもよい。画像認識の方法として、例えば、ラベリングなどの既知の方法を用いることができる。
 この場合の輝度調整装置の構成は、図1に示す構成と同様である。
 ただし、パターン画像表示処理部21は、パターン画像として、単一色の画像と、各表示ユニットの4隅の表示素子のみを点灯させるパターン画像とを互いに関連づけて、相前後して表示させる。
 演算処理部としては、図13に示されるものが用いられる。
 図13に示される演算処理部23dは、図3に示される演算処理部23と概して同じであるが、図3のユニット位置特定部34の代わりに、ユニット位置特定部34bが設けられている。
 各表示ユニットの位置を示すパターン画像が表示されると、ユニット位置特定部34bは、該パターン映像の撮影で得られた撮影画像を表す信号Icを受け、撮影画像に対する画像認識を行い、表示されたパターン画像中の各表示ユニットの4隅の位置を特定する。
 各表示ユニットは、4隅の表示素子のみが点灯されるので、撮影画像中の、上記の4隅に対応する部分が明るくなる。従って、そのような撮影画像の特徴に基づいて、4隅の特定を行うことができる。
 複数個の表示ユニットの4隅がすべて明るくなると、撮影画像中には、複数個の明るい部分が現れるが、それらの相対位置に基づいて、明るい部分の各々がどの表示ユニットのどの隅に対応するものであるかを判断することができる。
 なお、明るい部分の各々がどの表示ユニットに対応するものであるかの判断を容易或いは確実にするため、複数の表示ユニットを同時にではなく順番に点灯させることとしても良い。
 ユニット位置特定部34bで特定された各表示ユニットの位置を示すデータIuは、輝度計測部38に供給される。輝度計測部38は、データIuに基づいて、撮影画像中の各表示ユニットの位置、例えば、図5に示される、各表示ユニットに対応する領域QUnの4隅QUn1~QUn4の位置を認識する。そして、各表示ユニットの位置を示す要素を含むパターン画像の表示に関連づけて、その前又は後に表示された、単一色のパターン画像を撮影することで得られた撮影画像を表す信号Icに基づいて、各領域QUnの輝度を計測し、対応する表示ユニットの画面の輝度Lとして出力する。
 なお、各表示ユニットの位置を示す要素を含むパターン画像が表示される場合、参照位置特定部32も、そのようなパターン画像を撮影することで得られる撮影画像に基づいて参照位置を特定することとしても良い。例えば、参照位置が装置画面DAの4隅である場合、左上隅に位置する表示ユニットの左上隅、右上隅に位置する表示ユニットの右上隅、左下隅に位置する表示ユニットの左下隅、及び右下隅に位置する表示ユニットの右下隅を、それぞれ装置画面の左上隅、右上隅、左下隅及び右下隅として認識することとすれば良い。
 表示ユニットの位置を示す要素を含むパターン画像が表示される場合、参照位置が装置画面DAの4隅以外である構成の実現が容易である。例えば、装置画面の4隅に位置するユニット画面の中心を参照位置とすることもでき、装置画面の4隅に位置するユニット画面以外のユニット画面の4隅或いは中心を参照位置とすることもできる。いずれの場合にもそれぞれ参照位置としたい位置を示す要素をパターン画像に含ませればよい。
 実施の形態4を実施の形態1に対する変形として説明したが、実施の形態2及び3に対しても同様の変形を加えることができる。
実施の形態5.
 実施の形態1乃至4では、カメラ22での撮影で得られた撮影画像信号Icをそのまま使用していた。一般的にカメラ22に備えられているレンズは、撮影画像の周辺部分が中央部分よりも暗くなるシェーディング特性と、撮影画像の周辺部分の像が歪む歪み特性を持っている。これら特性に対してカメラ22と演算処理部23の間にこれらの特性を補正する仕組みを持たせることとしても良い。
 図14には、本実施の形態の輝度調整装置12cを、画像表示装置11、並びに切り替え部15及び制御部16とともに示す。輝度調整装置12cはカメラ22と演算処理部23の間にカメラ特性補正部62を備えている。
 図15にカメラ特性補正部の構成を示す。カメラ特性補正部62はシェーディング補正部63、歪み補正部64、シェーディング特性保持部65および歪み特性保持部66を備えている。
 カメラ22から入力された撮影画像信号Icはシェーディング補正部63に入力され、画像中の位置毎に明るさが補正されたシェーディング補正画像信号Isとして出力される。そしてシェーディング補正部63から入力されたシェーディング補正画像信号Isは歪み補正部64に入力され、画像周辺部の歪みが補正された歪み補正画像信号Idとして出力される。
 シェーディング補正部63では撮影画像信号Icに対してシェーディング特性保持部65からのシェーディング補正情報Csに従って、画像中の位置毎に明るさを補正する。シェーディング補正情報Csは画像中の位置毎に明るさを補正するための倍率を示す情報であり、画像中の位置に対する倍率のテーブルの形のものでも構わないし、画像中の位置に対する倍率の演算式の形のものでも構わない。シェーディング補正部63では撮影画像信号Icに対して上記の倍率を乗算してシェーディング補正画像信号Isを算出する。この乗算は画素毎に行われる。即ち、撮影画像信号Icの各画素の値(画素値)に上記の倍率を乗算することで、シェーディング補正画像信号Isの対応する画素の画素値を算出する。なおシェーディング補正情報Csは、操作者が図示しないキーボードなどのマンマシンインタフェースを使用してシェーディング特性保持部65に対して設定することとしても良い。
 歪み補正部64ではシェーディング補正画像信号Isに対して歪み特性保持部66からの歪み補正情報Cdに従って、画像中の位置毎に像の歪みを補正する。歪み補正情報Cdは画像中の位置毎に画像中のどこを参照して画素値を生成すべきかを示す参照位置の情報である。参照位置は、歪みの量(方向及び距離)によって決まる。例えば歪みにより画像中のある部分(点)が、ある方向にある距離sだけシフトしたとすれば、逆方向に同じ距離(s)だけずれた位置の画像部分を参照する。逆方向に同じ距離だけずれた位置に画素の中心がない場合には、該位置の画像部分の値を、その周囲の画素の画素値から補間する。参照位置の情報は、このような、補正後の画像の値を求めるのに必要な情報である。歪み補正情報Cdは、画像中の位置に対する参照位置のテーブルの形のものでも構わないし、画像中の位置に対する参照位置の演算式の形のものでも構わない。歪み補正部64ではシェーディング補正画像信号Isに対して上記の参照位置の周辺の画素値から補間処理で歪み補正画像信号Idの画素値を算出する。なお補間処理については特定の処理に限定する必要はない。なお歪み補正情報Cdは、操作者が図示しないキーボードなどのマンマシンインタフェースを使用して歪み特性保持部66に対して設定することとしても良い。
 実施の形態1では撮影画像信号Icを演算処理部23に入力していたが、実施の形態5では歪み補正画像信号Idを演算処理部23に入力する。演算処理部23での処理は実施の形態1と同様である。但し、撮影画像信号Icの代わりに、歪み補正画像信号Idに対して処理が行われる。なおシェーディング補正および歪み補正の両方を実施する方法について説明したが、いずれか一方のみを実施しても構わない。
 実施の形態5でも実施の形態1と同様の効果が得られる。
 実施の形態5ではさらに、カメラ22に備えられているレンズのシェーディング特性および歪み特性による撮影画像信号Icへの影響を補正することとしている。従って、画像周辺部分が暗くなる現象および画像周辺部分の像が歪む現象を補正できる。このため、各表示ユニットの輝度を正確に計測することができ、各表示ユニットの輝度の調整を適切に行うことができる。
 実施の形態5を実施の形態1に対する変形として説明したが、実施の形態2乃至及び4に対しても同様の変形を加えることができる。
実施の形態6.
 実施の形態1乃至5では、カメラ22による一度の撮影で画像表示装置11の画面DA全体を撮影することを想定していた。代わりに、画面DAを複数枚に分けて撮影しても構わない。
 一例として画面DAを4分割してカメラ22で撮影する様子を図16に示す。図16において、画面DAを分割画面DAa、DAb、DAcおよびDAdの4個に分割してそれぞれの画面をカメラ22で撮影する。符号CPa、CPb、CPcおよびCPdが分割画面を撮影する際のカメラ22の位置を表す。分割画面DAa~DAdの画像がレンズにより撮像面PSa~PSdに結像され、各分割撮影画像が形成される。なお、撮像面PSa~PSdは互いに同じものであるが、互いに異なる分割画面の画像が結像されるので、互いに異なる符号を付している。
 図17は、実施の形態6の輝度調整装置12dを示す。図18は、図17の輝度調整装置12dで用いられる演算処理装置の構成例を示す。
 図17に示されるパターン画像表示処理部21は、パターン画像として、例えば、緑一色などの単一色の画像を、分割画面DAa~DAdに対して順番に表示させる。分割画面DAa~DAdに対して供給されるパターン画像をそれぞれ符号Vpa~Vpdで示す。
 カメラ22は、表示されたパターン画像を順番に撮影して分割画面毎の撮影画像を出力する。即ち、カメラ22は画面DA全体を撮影することで得られる撮影画像信号Icの代わりに、それぞれ4枚の分割画面DAa~DAdを撮影することで得られる4枚の分割撮影画像信号Ica、Icb、IccおよびIcdを順に出力する。分割撮影画像信号Ica、Icb、IccおよびIcdは演算処理部23に入力されて、参照位置特定部32に供給される。
 参照位置特定部32は分割撮影画像信号Ica~Icdを受け、分割画面DAa~DAdの参照位置に対応する各分割撮影画像中の位置を特定し、特定した位置の座標を生成する。
 分割画面DAa~DAdの参照位置は例えばそれぞれの4隅である。
 その場合、参照位置特定部32は、各分割撮影画像中の、分割画面DAa~DAdに対応する分割領域QAa~QAdのそれぞれの4隅を検出する。
 図16には、分割画面DAa~DAdのそれぞれの4隅が符号DAa1~DAa4、DAb1~DAb4、DAc1~DAc4、DAd1~DAd4で示されており、各分割撮影画像中の、分割画面DAa~DAdに対応する分割領域QAa~QAdのそれぞれの4隅が、符号QAa1~QAa4、QAb1~QAb4、QAc1~QAc4、QAd1~QAd4で示されている。
 また分割撮影画像が形成される撮像面PSa~PSdの座標系の水平軸及び垂直軸が符号Iax、Iay~Idx、Idyで示され、該撮像面の4隅が符号PSa1~PSa4、PSb1~PSb4、PSc1~PSc4、PSd1~PSd4で示されている。
 参照位置特定部32は、検出されたそれぞれの4隅の位置の座標を生成する。生成される座標を図19に示す。図19には、検出された4隅QAa1~QAa4、QAb1~QAb4、QAc1~QAc4、QAd1~QAd4のX座標が符号Ia1x~Ia4x、Ib1x~Ib4x、Ic1x~Ic4x、Id1x~Id4xで示され、Y座標が符号Ia1y~Ia4y、Ib1y~Ib4y、Ic1y~Ic4y、Id1y~Id4yで示されている。検出された各領域の4隅の位置を表すデータIaa、Iab、IacおよびIadは、変換行列生成部33に供給される。
 座標生成部31は、画面DAの参照位置DA1~DA4の座標を示すデータSaの代わりに分割画面DAa~DAdの参照位置の座標を示すデータSaa~Sadを出力する。その他の動作については実施の形態1の座標生成部31の動作と同様である。
 変換行列生成部33は、実空間における画像表示装置の分割画面DAa~DAdの参照位置としての4隅の位置の座標と、参照位置特定部32で特定された、分割撮影画像中の対応する位置、即ち、分割撮影画像中の、分割画面DAa~DAdの参照位置の座標Iaa~Iadとに基づいて、実空間における座標と、撮影画像中の位置を示す座標との対応関係を示す射影変換行列Mpa~Mpdを生成する。
 ユニット位置特定部34は、射影変換行列Mpa~Mpdを用いて座標生成部31で生成された分割画面DAa~DAdの画像の各々に含まれる表示ユニットUnの画面DUnの位置を示す座標を変換することで、分割画面DAa~DAdの画像の各々に含まれる表示ユニットUnの画面DUnの、分割撮影画像中の位置を示す座標Iua~Iudを算出する。
 カメラ位置特定部35は、変換行列生成部33で生成された射影変換行列Mpa~Mpdと、内部に保持されているカメラ内部行列Mとに基づいて、カメラ22の位置CPa~CPdを特定し、その座標Sca~Scdを出力する。
 角度特定部36は、座標生成部31で生成された、各表示ユニットUnの画面DUnの位置(例えばその中心の位置)を示す座標Smと、カメラ位置特定部35で特定されたカメラ22の位置を示す座標Sca~Scdとに基づいて、各表示ユニットUnの画面DUnに対するカメラ22の撮影角度α,βを特定する。
 距離特定部37は、カメラ22の位置CPa~CPdから各表示ユニットUnの画面DUnまでの距離Rを特定する。距離Rの特定は、例えば、座標生成部31で生成された、各表示ユニットの位置(例えばその中心の位置)を示す座標Smと、カメラ位置特定部35で特定されたカメラ22の位置を示す座標Sca~Scdとに基づいて行われる。
 輝度計測部38は、カメラ22からの分割撮影画像信号Ica~Icdと、ユニット位置特定部34で特定された、分割撮影画像中の各表示ユニットの画面の位置Iua~Iudとに基づいて、撮影画像における、各表示ユニットの画面の輝度Lnを計測する。
 配光特性入力部39、配光特性格納部40、補正値算出部41及び補正値格納部42における処理は実施の形態1で説明したのと同様である。
 以上画面DAの分割数が4である場合について説明したが、分割数は4以外であっても良く要するに複数個の分割画面に分割すれば良い。
 実施の形態6では、画面DAを分割して分割画面毎の撮影画像信号に基づいて、参照位置の特定などの処理を行っているので、画面DAが大きい場合にも、画面の部分ごとの明るさをより正確に反映した撮影画像を得ることができ、輝度の計測、及びそれに基づく補正値の算出をより正確に行うことができる。
 実施の形態6を実施の形態1に対する変形として説明したが、実施の形態2乃至及び5に対しても同様の変形を加えることができる。
 なお、上記の実施の形態1乃至6では、各ユニット画面に対する撮影角度の算出に当たり、各ユニット画面の中心に対する撮影角度を算出し、各ユニット画面までの距離の算出に当たり、各ユニット画面の中心までの距離を算出しているが、本発明はこれに限定されない。例えば、各ユニット画面の特定の一つの隅、各ユニット画面の特定の一つの辺の中心、各ユニット画面の特定の一つの隅など、各ユニット画面の中心以外の点を代表点として、当該代表点に対する撮影角度の算出、当該代表点までの距離の算出を行うこととしても良い。また、各ユニット画面について複数の代表点を設定し、複数の代表点に対する撮影角度の平均、複数の代表点までの距離の平均を、当該ユニット画面に対する撮影角度、当該ユニット画面までの距離として用いても良い。
 また、上記の実施の形態1乃至6では、ユニット画面及び装置画面が矩形状であるが、ユニット画面及び装置画面の形状は矩形状以外の形状のものであっても良い。
 また、上記の実施の形態1乃至6では、角度特定部36が撮影角度として、装置画面に対する撮影ベクトルの角度を求めるが、画面DA上の任意の点に対する撮影角度として、画面DAに対する法線ベクトルと、当該点とカメラ22の位置とを結ぶベクトルとの角度を撮影角度として求めることとしても良い。
 また、上記の実施の形態1乃至6では、複数の表示ユニットに対して共通の映像信号補正部が設けられているが、各表示ユニットUn内に映像信号補正部を設けても良い。この場合、補正値算出部41で算出された補正値Hが各表示ユニットUnに供給され、映像信号入力部13から切り替え部15を通過して各表示ユニットUnに供給された映像信号に対して、補正が行われることになる。
 以上本発明を輝度調整装置として説明したが、上記の輝度調整装置で実施される輝度調整方法もまた本発明の一部を成す。
 以上実施の形態1乃至6において、輝度調整装置の各部分(機能ブロックとして図示した部分)は、処理回路により実現される。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPUであっても良い。
 例えば、図1、図3、図8、図9、図12、図13、図14、及び図15の各部分の機能をそれぞれ別個の処理回路で実現してもよいし、複数の部分の機能をまとめて一つの処理回路で実現しても良い。
 処理回路がCPUの場合、輝度調整装置の各部分の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組合せにより実現される。ソフトウェア或いはファームウェアはプログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。即ち、輝度調整装置は、処理回路により実行されるときに、図1、図3、図8、図9、図12、図13、図14、及び図15に示される各部分の機能が、結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、輝度調整装置で実施される輝度調整方法における処理の方法、或いはその手順をコンピュータに実行させるものであるともいえる。
 なおまた、輝度調整装置の各部分の機能のうち、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしても良い。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組合せによって、上述の各機能を実現することができる。
 図20に上記の処理回路がCPUであって、単一のCPUを含むコンピュータ(符号50で示す)で輝度調整装置12の大部分(図1、図3、図8、図9、図12、図13、図14、及び図15の各部)の機能、並びに制御部16の機能を実現する場合の構成の一例を、画像表示装置11、11b、映像信号入力部13、映像信号補正部14、切り替え部15、及びカメラ22とともに示す。
 図20に示されるコンピュータ50は、CPU51、メモリ52、第1の入力インターフェース53A、第2の入力インターフェース53B、第1の出力インターフェース54A、第2の出力インターフェース54B、及び第3の出力インターフェース54Cを有し、これらはバス55で接続されている。
 メモリ52は、CPU51の動作を制御するプログラムを記憶するほか、図3、図9、図12、及び図13の配光特性格納部40及び補正値格納部42と同じ役割を果たす。
 メモリ52が、カメラ内部行列M、及び表示ユニット画面のサイズ(Dux,Duy)を保持することとしても良い。カメラ内部行列Mは、実施の形態1で、カメラ位置特定部35内に保持されているとして説明されたものである。ユニット画面のサイズ(Dux,Duy)は、実施の形態2で、基準ユニット領域特定部43b内に保持されているとして説明されたものである。
 第1の入力インターフェース53Aは、カメラ22から、撮影画像を表す信号Icを受ける。
 第2の入力インターフェース53Bは、図示しないキーボードなどのマンマシンインターフェースで構成され、操作者が表示ユニットの行の数Nrt及び列の数Nctを入力するため、及び基準の表示ユニットUrの選択を行うために利用される。
 CPU51は、メモリ52に記憶されたプログラムに従って動作し、制御部16、パターン画像表示処理部21、カメラ特性補正部62、座標生成部31、参照位置特定部32、変換行列生成部33、ユニット位置特定部34、34b、カメラ位置特定部35、角度特定部36、距離特定部37、輝度計測部38、補正値算出部41、及び配光特性算出部43と同じ役割を果たす。
 CPU51は、配光特性算出モード、補正値算出モード、又は映像表示モードで動作する。
 配光特性算出モードにおいては、配光特性算出のための画像表示装置11bが切り替え部15に接続される。CPU51は、第1の出力インターフェース54Aを介して、パターン画像を表す信号Vpを出力するとともに、第2の出力インターフェース54Bを介して制御信号Swを切り替え部15に与えて、信号Vpを選択させる。
 そして、CPU51は、第2の入力インターフェース53Bを介して入力された画像表示装置11bを構成する表示ユニットの行の数Nrt及び列の数Nctを参照して、実空間における装置画面DAの位置及び各表示ユニットの画面DUnの位置の特定を行う。
 CPU51はまた、第1の入力インターフェース53Aを介して入力された撮影画像に対して処理を行って、各ユニット画面の輝度Lの計測などを行う。
 CPU51はさらに、これらの処理で得られたデータなどを用いて、配光特性式f(α,β)を決定し、決定された配光特性式f(α,β)をメモリ52に記憶させる。
 補正値算出モード及び映像表示モードにおいては、映像表示用の画像表示装置11が切り替え部15に接続される。
 補正値算出モードにおいて、CPU51は、第1の出力インターフェース54Aを介して、パターン画像を表す信号Vpを出力するとともに、第2の出力インターフェース54Bを介して制御信号Swを切り替え部15に与えて、信号Vpを選択させる。
 そして、CPU51は、第2の入力インターフェース53Bを介して入力された、画像表示装置11を構成する表示ユニットの行の数Nrt及び列の数Nctを参照して、実空間における装置画面DAの位置及び各表示ユニットの画面DUnの位置の特定を行う。
 CPU51はまた、第1の入力インターフェース53Aを介して入力された撮影画像に対して処理を行って、各ユニット画面の輝度Lの計測などを行う。
 CPU51は、さらに、メモリ52から配光特性式f(α,β)を読み出し、読み出した配光特性式f(α,β)と、各表示ユニットの輝度Lなどに基づき、さらに、第2の入力インターフェース53Bを介して行われた基準の表示ユニットUrの指定に基づいて、補正値Hを決定し、決定した補正値Hをメモリ52に記憶させる。
 映像表示モードにおいてCPU51は、メモリ52に記憶されている補正値Hを第3の出力インターフェース54Cを介して、映像信号補正部14に供給するとともに、第2の出力インターフェース54Bを介して制御信号Swを切り替え部15に与えて、信号Vbを選択させる。
 映像信号補正部14は、供給された補正値Hを用いて映像信号Vaを補正し、補正された映像信号Vbが切り替え部15を介して画像表示装置11に供給される。
 補正値算出モード及び映像表示モードにおいて、画像表示装置11が切り替え部15に接続された状態で、コンピュータ50と、画像表示装置11と、映像信号入力部13と、映像信号補正部14と、切り替え部15と、カメラ22とで画像表示システムが構成されている。
 輝度調整装置で実施される輝度調整方法、輝度調整装置の各部分の処理、或いは輝度調整方法における各処理をコンピュータに実行させるプログラム及び該プログラムを記録したコンピュータで読取り可能な記録媒体についても、輝度調整装置について述べたのと同様の効果が得られる。従って、上記した輝度調整装置における処理の一部又は上記の輝度調整方法における処理の一部をコンピュータに実行させるためのプログラム、及びそのようなプログラムを記録したコンピュータで読取り可能な記録媒体も本発明の一部を成す。
 11 画像表示装置、 12 輝度調整装置、 13 映像信号入力部、 14 映像信号補正部、 15 切り替え部、 16 制御部、 21 パターン画像表示処理部、 22 カメラ、 23、23b、23c、23d 演算処理部、 31 座標生成部、 32 参照位置特定部、 33 変換行列生成部、 34、34b ユニット位置特定部、 35 カメラ位置特定部、 36 角度特定部、 37 距離特定部、 38 輝度計測部、 39 配光特性入力部、 40 配光特性格納部、 41 補正値算出部、 42 補正値格納部、 43 配光特性算出部、 41a 基準ユニット選択部、 41b 配光特性値算出部、 41c 基準輝度算出部、 41d 目標輝度算出部、 41e 除算部、 43a 正規化部、 43b 基準ユニット領域特定部、 43c 基準値算出部、 43d 相対値算出部、 43e 輝度情報テーブル生成部、 43f 回帰分析部、 51 CPU、 52 メモリ、 53A、53B 入力インターフェース、 54A、54B、54C 出力インターフェース、 55 バス、 62 カメラ特性補正部、 63 シェーディング補正部、 64 歪み補正部、 65 シェーディング特性保持部、 66 歪み特性保持部。

Claims (21)

  1.  複数の表示ユニットの画面を並べることで構成される組合せ画面を有する画像表示装置の、前記複数の表示ユニットに表示される画像の輝度を調整する輝度調整装置であって、
     前記複数の表示ユニットに、パターン画像を表示させるパターン画像表示処理部と、
     前記複数の表示ユニットに表示された前記パターン画像を撮影するカメラと、
     前記カメラによる撮影で得られた撮影画像中の前記複数の表示ユニットの各々の画面の位置を特定するユニット位置特定部と、
     実空間内における前記カメラの位置を特定するカメラ位置特定部と、
     実空間内における前記複数の表示ユニットの各々の画面の位置と、前記カメラ位置特定部で特定された前記カメラの位置とから、前記複数の表示ユニットの各々の画面に対する前記カメラの撮影角度を特定する角度特定部と、
     実空間内における前記複数の表示ユニットの各々の画面の位置に基づいて、前記カメラから前記複数の表示ユニットの各々の画面までの距離を特定する距離特定部と、
     前記ユニット位置特定部により特定された前記複数の表示ユニットの各々の画面の前記撮影画像内における位置に基づいて、前記撮影画像内において前記複数の表示ユニットの各々の画面が占める領域を特定し、特定した領域内の輝度を、前記複数の表示ユニットの各々の画面の輝度として計測する輝度計測部と、
     配光特性式と、前記角度特定部で特定された前記複数の表示ユニットの各々の画面に対する撮影角度とから、前記複数の表示ユニットの各々の画面についての配光特性値を算出し、算出した配光特性値と、前記距離特定部で特定された前記複数の表示ユニットの各々の画面までの距離とから、当該表示ユニットについての目標輝度を定め、前記輝度計測部で計測された前記複数の表示ユニットの各々の画面の輝度を、当該表示ユニットについての前記目標輝度に一致させるための補正値を算出する補正値算出部と
     を有する輝度調整装置。
  2.  前記実空間内におけるカメラの位置が可変であることを特徴とする請求項1に記載の輝度調整装置。
  3.  前記補正値算出部は、
     前記複数の表示ユニットの各々についての前記配光特性値に比例し、前記距離特定部で特定された当該表示ユニットの画面までの距離の2乗に反比例する値を、当該表示ユニットについての前記目標輝度として求め、
     求めた目標輝度の、前記輝度計測部で計測された当該表示ユニットの輝度に対する比を、当該表示ユニットについての前記補正値として算出する
     ことを特徴とする請求項1又は2に記載の輝度調整装置。
  4.  前記補正値算出部は、前記複数の表示ユニットの各々についての前記補正値を定めるにあたり、
     複数の表示ユニットの一つを基準の表示ユニットとして選択し、
     前記基準の表示ユニットについては、前記補正値を1と定め、
     前記基準の表示ユニットの輝度を前記基準の表示ユニットの配光特性値で割った値を基準輝度とし、
     前記基準の表示ユニット以外の表示ユニットの各々について、当該表示ユニットの配光特性値に、前記基準輝度を掛け、さらに、当該表示ユニットの画面までの距離の2乗に対する、前記基準の表示ユニットの画面までの距離の2乗の比を掛けることで得られる値を前記目標輝度として求める
     ことを特徴とする請求項3に記載の輝度調整装置。
  5.  前記角度特定部でそれぞれ前記複数の表示ユニットについて特定された前記撮影角度と、前記距離特定部でそれぞれ前記複数の表示ユニットについて特定された前記距離と、前記輝度計測部でそれぞれ前記複数の表示ユニットについて計測された前記輝度と、実空間内における前記カメラの位置とから、前記配光特性式を決定する配光特性算出部をさらに有することを特徴とする請求項1から4のいずれか1項に記載の輝度調整装置。
  6.  前記配光特性算出部は、
     前記輝度計測部で計測された前記複数の表示ユニットの各々の画面の輝度に、当該表示ユニットの画面までの距離の2乗と、一定の係数とを掛けることで、距離の影響を除いた正規化輝度値を求め、
     前記複数の表示ユニットについてそれぞれ求められた前記正規化輝度値に基づいて、前記配光特性式を求める
     ことを特徴とする請求項5に記載の輝度調整装置。
  7.  前記画像表示装置の組合せ画面を基準とする装置座標系と、前記撮影画像の座標系との対応関係を示す座標変換行列を求める変換行列生成部をさらに有し、
     前記ユニット位置特定部は、前記座標変換行列を用いて、前記装置座標系において、前記複数の表示ユニットの各々の画面の位置を示す座標を、前記撮影画像の座標系における座標に変換することで、前記撮影画像中の、前記複数の表示ユニットの各々の位置を特定する
     ことを特徴とする請求項1から6のいずれか1項に記載の輝度調整装置。
  8.  前記パターン画像表示処理部が、前記パターン画像として、各表示ユニットの画面の位置を示す要素を有するパターン画像を前記複数の表示ユニットに表示させ、
     前記ユニット位置特定部が、前記撮影画像中に現れる、前記要素に対応する特徴に基づいて、前記撮影画像中の、前記複数の表示ユニットの各々の位置を特定する
     ことを特徴とする請求項1から6のいずれか1項に記載の輝度調整装置。
  9.  前記表示ユニットの各々の画面及び前記組合せ画面がともに矩形であり、
     前記ユニット位置特定部が、前記複数の表示ユニットの各々の画面の、前記撮影画像内における位置として、当該画面の4隅の位置を特定することを特徴とする請求項1から8のいずれか1項に記載の輝度調整装置。
  10.  前記角度特定部が、前記複数の表示ユニットの各々の画面に対する前記撮影角度として、当該画面の中心に対する撮影角度を特定することを特徴とする請求項1から9のいずれか1項に記載の輝度調整装置。
  11.  前記距離特定部が、実空間内における前記複数の表示ユニットの各々の画面の位置と、前記カメラ位置特定部で特定された前記カメラの位置とに基づいて、前記距離を特定することを特徴とする請求項1から10のいずれか1項に記載の輝度調整装置。
  12.  前記距離特定部が、実空間内における前記複数の表示ユニットの各々の画面の位置と、前記角度特定部で特定された前記複数の表示ユニットの各々の画面に対する撮影角度とに基づいて、前記距離を特定することを特徴とする請求項1から10のいずれか1項に記載の輝度調整装置。
  13.  前記距離特定部が、前記複数の表示ユニットの各々の画面までの前記距離として、当該画面の中心までの距離を特定することを特徴とする請求項1から12のいずれか1項に記載の輝度調整装置。
  14.  前記複数の表示ユニットのサイズと、前記複数の表示ユニットの数とに基づいて、実空間内における、前記複数の表示ユニットの各々の位置を特定する座標生成部をさらに有することを特徴とする請求項1から13のいずれか1項に記載の輝度調整装置。
  15.  前記カメラによる撮影で得られた撮影画像に対して、前記撮影画像中の位置毎の輝度感度の違いを補正するシェーディング補正部をさらに有することを特徴とする請求項1から14のいずれか1項に記載の輝度調整装置。
  16.  前記カメラによる撮影で得られた撮影画像に対して、前記撮影画像中の位置毎の像の歪みを補正する歪み補正部をさらに有することを特徴とする請求項1から15のいずれか1項に記載の輝度調整装置。
  17.  前記カメラでの前記パターン画像の撮影は、前記複数の表示ユニットの各々によって表示される画像が複数回の撮影で得られる複数枚の撮影画像のいずれかに含まれるように行われることを特徴とする請求項1から16のいずれか1項に記載の輝度調整装置。
  18.  請求項1から17のいずれか1項に記載の輝度調整装置と、
     前記輝度調整装置の前記補正値算出部で算出された補正値を用いて映像信号の補正を行う映像信号補正部とを有し、
     前記画像表示装置は、前記補正値を用いて補正された映像信号に基づいて映像の表示を行うことを特徴とする画像表示システム。
  19.  複数の表示ユニットの画面を並べることで構成される組合せ画面を有する画像表示装置の、前記複数の表示ユニットで表示される画像の輝度を調整する輝度調整方法であって、
     前記複数の表示ユニットに、パターン画像を表示させ、
     前記複数の表示ユニットに表示された前記パターン画像をカメラで撮影し、
     前記カメラによる撮影で得られた撮影画像中の前記複数の表示ユニットの各々の画面の位置を特定し、
     実空間内における前記カメラの位置を特定し、
     実空間内における前記複数の表示ユニットの各々の画面の位置と、特定された前記カメラの位置とから、前記複数の表示ユニットの各々の画面に対する前記カメラの撮影角度を特定し、
     実空間内における前記複数の表示ユニットの各々の画面の位置に基づいて、前記カメラから前記複数の表示ユニットの各々の画面までの距離を特定し、
     特定された前記複数の表示ユニットの各々の画面の前記撮影画像内における位置に基づいて、前記撮影画像内において前記複数の表示ユニットの各々の画面が占める領域を特定し、特定した領域内の輝度を、前記複数の表示ユニットの各々の画面の輝度として計測し、
     配光特性式と、特定された前記複数の表示ユニットの各々の画面に対する撮影角度とから、前記複数の表示ユニットの各々の画面についての配光特性値を算出し、算出した配光特性値と、特定された前記複数の表示ユニットの各々の画面までの距離とから、当該表示ユニットについての目標輝度を定め、計測された前記複数の表示ユニットの各々の画面の輝度を、当該表示ユニットについての前記目標輝度に一致させるための補正値を算出する
     輝度調整方法。
  20.  請求項19に記載の輝度調整方法における各処理をコンピュータに実行させるためのプログラム。
  21.  請求項20に記載のプログラムを記録したコンピュータで読取り可能な記録媒体。
PCT/JP2017/012932 2016-03-31 2017-03-29 輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体 WO2017170710A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509346A JP6461426B2 (ja) 2016-03-31 2017-03-29 輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070892 2016-03-31
JP2016070892 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170710A1 true WO2017170710A1 (ja) 2017-10-05

Family

ID=59965684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012932 WO2017170710A1 (ja) 2016-03-31 2017-03-29 輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体

Country Status (2)

Country Link
JP (1) JP6461426B2 (ja)
WO (1) WO2017170710A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712561A (zh) * 2019-02-23 2019-05-03 福建工程学院 一种led屏显示亮度调整装置及其控制方法
CN110232885A (zh) * 2019-07-26 2019-09-13 武汉精立电子技术有限公司 一种显示屏亮度测量方法、系统及终端
WO2020042110A1 (zh) * 2018-08-30 2020-03-05 深圳市大疆创新科技有限公司 屏幕亮度调整方法、拍摄装置和系统
DE102018131040A1 (de) 2018-12-05 2020-06-10 Forschungsverbund Berlin E.V. Hochfrequenz-Leistungstransistor und Hochfrequenz-Leistungsverstärker
CN116504178A (zh) * 2023-06-25 2023-07-28 广东保伦电子股份有限公司 Led屏模块一致性校正方法、计算机设备及可读存储介质
WO2023176269A1 (ja) * 2022-03-15 2023-09-21 ソニーグループ株式会社 情報処理装置、情報処理方法、プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214806A (ja) * 2004-01-29 2005-08-11 Sony Corp 光測定装置、照明装置、および、評価システム
WO2011024232A1 (ja) * 2009-08-28 2011-03-03 三菱電機株式会社 輝度調整装置
US20130107060A1 (en) * 2011-11-02 2013-05-02 Stmicroelectronics, Inc. System and method for light compensation in a video panel display
JP2013206812A (ja) * 2012-03-29 2013-10-07 Iwasaki Electric Co Ltd 調光システム
JP2015201715A (ja) * 2014-04-07 2015-11-12 キヤノン株式会社 表示制御装置、表示制御装置の制御方法、及び、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214806A (ja) * 2004-01-29 2005-08-11 Sony Corp 光測定装置、照明装置、および、評価システム
WO2011024232A1 (ja) * 2009-08-28 2011-03-03 三菱電機株式会社 輝度調整装置
US20130107060A1 (en) * 2011-11-02 2013-05-02 Stmicroelectronics, Inc. System and method for light compensation in a video panel display
JP2013206812A (ja) * 2012-03-29 2013-10-07 Iwasaki Electric Co Ltd 調光システム
JP2015201715A (ja) * 2014-04-07 2015-11-12 キヤノン株式会社 表示制御装置、表示制御装置の制御方法、及び、プログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020042110A1 (zh) * 2018-08-30 2020-03-05 深圳市大疆创新科技有限公司 屏幕亮度调整方法、拍摄装置和系统
DE102018131040A1 (de) 2018-12-05 2020-06-10 Forschungsverbund Berlin E.V. Hochfrequenz-Leistungstransistor und Hochfrequenz-Leistungsverstärker
CN109712561A (zh) * 2019-02-23 2019-05-03 福建工程学院 一种led屏显示亮度调整装置及其控制方法
CN110232885A (zh) * 2019-07-26 2019-09-13 武汉精立电子技术有限公司 一种显示屏亮度测量方法、系统及终端
CN110232885B (zh) * 2019-07-26 2022-05-17 武汉精立电子技术有限公司 一种显示屏亮度测量方法、系统及终端
WO2023176269A1 (ja) * 2022-03-15 2023-09-21 ソニーグループ株式会社 情報処理装置、情報処理方法、プログラム
CN116504178A (zh) * 2023-06-25 2023-07-28 广东保伦电子股份有限公司 Led屏模块一致性校正方法、计算机设备及可读存储介质
CN116504178B (zh) * 2023-06-25 2023-09-05 广东保伦电子股份有限公司 Led屏模块一致性校正方法、计算机设备及可读存储介质

Also Published As

Publication number Publication date
JP6461426B2 (ja) 2019-01-30
JPWO2017170710A1 (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6461426B2 (ja) 輝度調整装置及び方法、並びに画像表示システム、並びにプログラム及び記録媒体
JP5300981B2 (ja) 輝度調整装置
JP3925521B2 (ja) スクリーンの一部の辺を用いたキーストーン補正
US8445830B2 (en) Correction information calculating device, image processing apparatus, image display system, and image correcting method including detection of positional relationship of diagrams inside photographed images
CN110232885B (zh) 一种显示屏亮度测量方法、系统及终端
JP5257616B2 (ja) プロジェクター、プログラム、情報記憶媒体および台形歪み補正方法
CN102170545B (zh) 校正信息计算装置、图像处理装置、显示系统及校正方法
CN111935465B (zh) 投影系统、投影装置以及其显示影像的校正方法
JP4581927B2 (ja) 表示装置のぎらつき測定方法およびぎらつき測定装置
JP5672848B2 (ja) 表示画像の調整方法
JP2004312690A (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
WO2019041650A1 (zh) 摄像机标定参数的校正方法、装置、设备和存储介质
JP2011211276A (ja) 画像処理装置、画像表示システム、画像処理方法
CN114359055B (zh) 一种多相机拍摄屏体的图像拼接方法及相关装置
WO2005064584A1 (ja) 表示システム
JP5151922B2 (ja) 画素位置対応関係特定システム、画素位置対応関係特定方法および画素位置対応関係特定プログラム
JP2013192240A (ja) プロジェクター、プログラム、情報記憶媒体および台形歪み補正方法
US10097736B2 (en) Image processing device and image processing method
JP7474137B2 (ja) 情報処理装置およびその制御方法
JP7340381B2 (ja) 空間周波数比測定装置およびそのプログラム
JP2008211356A (ja) プロジェクタ、プログラムおよび情報記憶媒体
CN113375803B (zh) 投影仪径向色差的测量方法、装置、存储介质及设备
JP5240703B2 (ja) シェーディング補正用均一光源の輝度ムラ計測法
CN113419909A (zh) 显示均匀性检测方法和计算机设备
JP5592834B2 (ja) 光学投影制御装置、光学投影制御方法、及びプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775244

Country of ref document: EP

Kind code of ref document: A1