WO2017170191A1 - Conveyance apparatus, cleaning apparatus, and substrate conveying method - Google Patents

Conveyance apparatus, cleaning apparatus, and substrate conveying method Download PDF

Info

Publication number
WO2017170191A1
WO2017170191A1 PCT/JP2017/011928 JP2017011928W WO2017170191A1 WO 2017170191 A1 WO2017170191 A1 WO 2017170191A1 JP 2017011928 W JP2017011928 W JP 2017011928W WO 2017170191 A1 WO2017170191 A1 WO 2017170191A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
substrate
cleaning module
wafer
module
Prior art date
Application number
PCT/JP2017/011928
Other languages
French (fr)
Japanese (ja)
Inventor
英立 磯川
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016144385A external-priority patent/JP2017188642A/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2017170191A1 publication Critical patent/WO2017170191A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present technology relates to a transfer mechanism, a cleaning apparatus, and a substrate transfer method, and more particularly, to a transfer apparatus, a cleaning apparatus, and a substrate transfer method that can be applied to a substrate processing apparatus used for polishing a substrate such as a semiconductor wafer flatly.
  • This chemical mechanical polishing (CMP) apparatus generally includes a polishing table to which a polishing pad is attached, a top ring for holding a wafer, and a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid onto the polishing pad from the nozzle, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten the surface.
  • CMP chemical mechanical polishing
  • the substrate processing apparatus is an apparatus having a function of cleaning and further drying the polished wafer in addition to such a CMP apparatus. In such a substrate processing apparatus, it is required to improve the throughput of the substrate processing.
  • the transport device configured to grip a substrate; A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between three or more cleaning modules, The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate.
  • the substrate gripping mechanism is put on standby at a standby position.
  • the cleaning apparatus according to one embodiment 3 or more cleaning modules; A substrate gripping mechanism configured to grip a substrate; A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between the three or more cleaning modules; The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate.
  • the substrate gripping mechanism is put on standby at a standby position.
  • a substrate carrying method is as follows: A substrate transfer method for transferring a substrate in sequence between three or more cleaning modules, Throwing the substrate into one of the cleaning modules from the substrate gripping mechanism; Of the three or more cleaning modules, the first cleaning module is cleaning the first substrate, and the second cleaning module whose transport order is not continuous with the first cleaning module is cleaning the second substrate. In this case, the substrate holding mechanism is caused to wait at a standby position corresponding to the cleaning module that finishes cleaning earlier among the first cleaning module and the second cleaning module.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a side view of the substrate processing apparatus shown in FIG. 1 viewed from the cleaning unit side.
  • FIG. 3 is an exploded perspective view showing the internal configuration of the first wafer station.
  • FIG. 4 is a perspective view showing the cleaning unit transport mechanism of the first cleaning unit of the cleaning unit.
  • FIG. 5 is a perspective view showing a state where the second wafer gripping mechanism grips the substrate by the upper chuck piece.
  • FIG. 6 is a perspective view showing a state in which the second wafer gripping mechanism grips the substrate with the lower chuck piece.
  • FIG. 7A is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 7A is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 7B is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 7C is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 7D is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 7E is a schematic diagram for explaining the operation of the second wafer gripping mechanism.
  • FIG. 8A is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8B is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8A is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8B is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are
  • FIG. 8C is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8D is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8E is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8F is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8G is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8H is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 8I is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module.
  • FIG. 9 is a flowchart for explaining the processing operation of the cleaning unit transport mechanism 32a.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment
  • FIG. 2 is a side view of the polishing apparatus shown in FIG.
  • the substrate processing apparatus 10 in the present embodiment includes a housing having a substantially rectangular shape in plan view. It is divided into a section 13 and a transport section 14.
  • the load / unload unit 11, the polishing unit 12, the cleaning unit 13, and the transport unit 14 are each assembled independently and exhausted independently.
  • the substrate processing apparatus 10 is provided with a control unit 15 (also referred to as a control panel) that controls operations of the load / unload unit 11, the polishing unit 12, the cleaning unit 13, and the transfer unit 14.
  • a control unit 15 also referred to as a control panel
  • the load / unload unit 11 includes a plurality of (four in the illustrated example) front load units 113 on which wafer cassettes for stocking a large number of wafers (substrates) W are placed. These front load portions 113 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10.
  • the front load unit 113 may be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • SMIF and FOUP are sealed containers that can maintain an environment independent of the external space by accommodating a wafer cassette inside and covering with a partition wall.
  • a traveling mechanism 112 is laid along the arrangement direction of the front load unit 113 in the load / unload unit 11, and the conveyance mechanism 112 is movable on the traveling mechanism 112 along the arrangement direction of the front load unit 113.
  • a robot 111 is installed.
  • the transfer robot 111 can access the wafer cassette mounted on the front load unit 113 by moving on the traveling mechanism 112.
  • the transfer robot 111 has two hands on the upper and lower sides. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. The upper and lower hands can be used properly.
  • the load / unload unit 11 is an area where it is necessary to maintain the cleanest state, the inside of the load / unload unit 11 is more than any of the outside of the apparatus, the polishing unit 12, the cleaning unit 13, and the transport unit 14. It is constantly maintained at a high pressure.
  • a filter fan unit (not shown) having a clean air filter such as a HEPA filter or a ULPA filter is provided above the traveling mechanism 112 of the transfer robot 111, and particles, toxic vapor, Clean air from which gas has been removed is constantly blowing downward.
  • the transfer unit 14 is a region for transferring a wafer before polishing from the load / unload unit 11 to the polishing unit 12, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10. As shown in FIG. 1, the transport unit 14 is disposed adjacent to both the load / unload unit 11 that is the cleanest region and the polishing unit 12 that is the cleanest region. Therefore, in order to prevent the particles in the polishing unit 12 from diffusing into the load / unload unit 11 through the transfer unit 14, the polishing unit 12 is provided inside the transfer unit 14 from the load / unload unit 11 side, as will be described later. An airflow flowing toward the 12 side is formed.
  • the polishing unit 12 is a region where the wafer W is polished, and includes a first polishing unit 20a having a first polishing device 21a and a second polishing device 21b, a third polishing device 21c, A second polishing unit 20b having a fourth polishing apparatus 21d, and a polishing unit transport mechanism 22 disposed adjacent to each of the transport unit 14, the first polishing unit 20a and the second polishing unit 20b. ing.
  • the transfer unit 14 is disposed between the transfer unit 14 and the first polishing unit 20 a and the second polishing unit 20 b in the width direction of the substrate processing apparatus 10.
  • the first polishing apparatus 21a, the second polishing apparatus 21b, the third polishing apparatus 21c, and the fourth polishing apparatus 21d are arranged along the longitudinal direction of the substrate processing apparatus 10.
  • the top ring of the first polishing apparatus 21a is moved between the polishing position and the first substrate transfer position TP1 by the swing operation of the top ring head, and the wafer is transferred to the first polishing apparatus 21a. Is performed at the first substrate transfer position TP1.
  • the top ring of the second polishing apparatus 21b is moved between the polishing position and the second substrate transfer position TP2 by the swing operation of the top ring head, and the wafer is transferred to the second polishing apparatus 21b by the second substrate.
  • the top ring of the third polishing apparatus 21c is moved between the polishing position and the third substrate transfer position TP3 by the swing operation of the top ring head, and the wafer is transferred to the third polishing apparatus 21c.
  • the delivery is performed at the third substrate transfer position TP3, and the top ring of the fourth polishing apparatus 21d is moved between the polishing position and the fourth substrate transfer position TP4 by the swing operation of the top ring head. Transfer of the wafer to 21d is performed at the fourth substrate transfer position TP4.
  • the polishing unit transport mechanism 22 includes a first transport unit 24a that transports the wafer W to the first polishing unit 20a, a second transport unit 24b that transports the wafer W to the second polishing unit 20b, a first transport unit 24a, And a transfer robot 23 which is disposed between the transfer unit 24b and transfers a wafer between the transfer unit 14 and the first transfer unit 24a and the second transfer unit 24b.
  • the transfer robot 23 is disposed substantially at the center of the housing of the substrate processing apparatus 10.
  • the cleaning unit 13 is a region for cleaning the polished wafer, and includes a first cleaning unit 30a and a second cleaning unit 30b arranged in two upper and lower stages.
  • the transport unit 14 described above is disposed between the first cleaning unit 30a and the second cleaning unit 30b. Since the 1st washing
  • the first cleaning unit 30a includes a plurality (four in the illustrated example) of cleaning modules 311a, 312a, 313a, 314a, a wafer station 33a, and a wafer between each of the cleaning modules 311a to 314a and the wafer station 33a. And a cleaning section transport mechanism 32a for transporting W.
  • the plurality of cleaning modules 311 a to 314 a and the wafer station 33 a are arranged in series along the longitudinal direction of the substrate processing apparatus 10.
  • a filter fan unit (not shown) having a clean air filter is provided above each of the cleaning modules 311a to 314a, and clean air from which particles have been removed by this filter fan unit always blows downward. Yes. Further, the inside of the first cleaning unit 30 a is always maintained at a pressure higher than that of the polishing unit 12 in order to prevent inflow of particles from the polishing unit 12.
  • the second cleaning unit 30b includes a plurality (four in the illustrated example) of cleaning modules 311b, 312b, 313b, 314b, a wafer station 33b, and between each of the cleaning modules 311b to 314b and the wafer station 33b. And a cleaning unit transfer mechanism 32b for transferring the wafer W.
  • the plurality of cleaning modules 311 b to 314 b and the wafer station 33 b are arranged in series along the longitudinal direction of the substrate processing apparatus 10.
  • a filter fan unit (not shown) having a clean air filter is provided above each of the cleaning modules 311b to 314b. Clean air from which particles have been removed by this filter fan unit always blows downward. Yes.
  • the inside of the second cleaning unit 30 b is always maintained at a pressure higher than that of the polishing unit 12 in order to prevent inflow of particles from the polishing unit 12.
  • FIG. 3 is an exploded perspective view showing the internal configuration of the wafer station 33a.
  • the wafer station 33 a includes a casing 71 having a substantially rectangular parallelepiped shape, a stage 72 that is disposed inside the casing 71 and holds the wafer W, and a drive mechanism 75 that moves the stage 72 up and down. ,have.
  • the casing 71 has a bottom plate, four side plates, and a top plate.
  • a carry-in port 73 communicating with the polishing unit 12 is formed at the lower end of the side plate facing the polishing unit 12 among the four side plates.
  • the carry-in port 73 can be opened and closed by a shutter (not shown).
  • the transfer robot 23 of the polishing unit 12 can access the inside of the housing 71 from the carry-in port 73.
  • the cleaning unit is transported to a height position higher than the carry-in port 73 of the remaining three side plates among the four side plates (that is, the side plate facing the cleaning unit transport mechanism 32a described later and the left and right side plates).
  • An arm passage opening 74 for passing the arm of the mechanism 32a is formed.
  • the arm passage (wafer transfer) opening 74 can be opened and closed by a shutter (not shown).
  • the cleaning unit transport mechanism 32 a of the first cleaning unit 30 a can access the inside of the housing 71 from the arm passage opening 74.
  • the drive mechanism 75 for example, a motor drive mechanism using a ball screw or an air cylinder is used.
  • the stage 72 is fixed to a movable portion of the drive mechanism 75, and is driven by a power applied from the drive mechanism 75 to a height position facing the carry-in port 73 and a height facing the arm passage (wafer transfer) opening 74. It is moved up and down between positions (see FIG. 3).
  • the outer periphery of the stage 72 is provided with four pins 76 protruding upward. Therefore, the wafer W placed on the stage 72 is supported on the stage 72 in a state where the outer peripheral edge is guided and positioned by the four pins 76.
  • These pins 76 are made of a resin such as polypropylene (PP), polychlorotrifluoroethylene (PCTFE), or polyetheretherketone (PEEK).
  • the cleaning unit transport mechanism 32b of the second cleaning unit 30b has the same configuration as the cleaning unit transport mechanism 32a of the first cleaning unit 30a, the cleaning unit transport mechanism 32a of the first cleaning unit 30a will be described below. To do.
  • FIG. 4 is a perspective view showing the cleaning unit transport mechanism 32a of the first cleaning unit 30a.
  • the cleaning unit transport mechanism 32 a includes a plurality of first wafer gripping mechanisms 601 and second wafer gripping mechanisms 602 that grip the wafer W, and a plurality of first wafer gripping mechanisms 601 and second wafer gripping mechanisms 602.
  • Arm transfer mechanism 62 that linearly moves along the direction in which the cleaning modules 311a to 314a are arranged. That is, in the present embodiment, the number of wafer gripping mechanisms 601 and 602 is smaller than the number of cleaning modules 311a to 314a.
  • the first wafer gripping mechanism 601 and the second wafer gripping mechanism 602 can be used properly according to the cleanliness of the wafer W.
  • the primary cleaning module 311a and the secondary cleaning module 312a in the first half of the cleaning process use the first wafer gripping mechanism 601 and the third cleaning module 313a in the second half of the cleaning process and
  • the second wafer gripping mechanism 602 in the fourth cleaning module 314a it is possible to prevent the wafer W in the latter half of the cleaning process from coming into contact with the first wafer gripping mechanism 601 and being contaminated.
  • the first wafer gripping mechanism 601 includes a pair of first arms 611 that can be opened and closed to grip a wafer, a first vertical movement mechanism 641 that moves the pair of first arms 611 up and down, and a pair of first arms.
  • a first rotation mechanism 631 that rotates 611 about a rotation shaft 631A parallel to the opening and closing direction, and a first opening and closing mechanism 661 that opens and closes the pair of first arms 611 in directions close to each other or in directions away from each other.
  • the second wafer gripping mechanism 602 includes a pair of openable and closable second arms 612 that grip a wafer, a second vertical movement mechanism 642 that moves the pair of second arms 612 up and down, and a pair of second arms 612. And a second opening / closing mechanism 662 for opening / closing the pair of second arms 612 in a direction close to each other or in a direction away from each other. is doing.
  • the arm transport mechanism 62 for example, a motor drive mechanism using a ball screw is used. As shown in FIG. 4, the ball screw of the arm transport mechanism 62 is provided above the cleaning modules 311a to 314a so as to extend in the arrangement direction of the cleaning modules 311a to 314a.
  • a main frame 68 is attached to the ball screw of the arm transport mechanism 62.
  • the main frame 68 is attached so as to hang downward from the ball screw of the arm transport mechanism 62, and faces the side surfaces of the cleaning modules 311a to 314a.
  • the main frame 68 is linearly moved along the arrangement direction of the cleaning modules 311a to 314a while facing the side surfaces of the cleaning modules 311a to 314a.
  • the main frame 68 has a depth direction moving mechanism 67 for adjusting the position in the depth direction (a direction perpendicular to both the arrangement direction of the cleaning modules 311a to 314a and the vertical direction).
  • a depth direction moving mechanism 67 for example, a motor driving mechanism using a rack and pinion is used.
  • the position of the main frame 68 in the depth direction is adjusted by driving the depth direction moving mechanism 67.
  • the first vertical movement mechanism 641 and the second vertical movement mechanism 642 are provided on the main frame 68.
  • a motor drive mechanism using a ball screw is used as the first vertical movement mechanism 641 and the second vertical movement mechanism 642 for example.
  • the ball screw of the first vertical movement mechanism 641 is attached to extend in the vertical direction at the left end portion of the main frame 68
  • the ball screw of the second vertical movement mechanism 642 is the main frame 68. It is attached so that it may extend in the up-and-down direction at the right end of the.
  • the first sub-frame 691 that supports the pair of first arms 611 is attached to the ball screw of the first vertical movement mechanism 641.
  • the first sub frame 691 is provided on the left side of the main frame 68 so as to be adjacent to the main frame 68, and is opposed to the side surfaces of the cleaning modules 311a to 314a.
  • the first subframe 691 is linearly moved along the vertical direction by driving a motor coupled to the ball screw of the first vertical movement mechanism 641.
  • a second sub-frame 692 that supports the pair of second arms 612 is attached to the ball screw of the second vertical movement mechanism 642.
  • the second sub frame 692 is provided on the right side of the main frame 68 so as to be adjacent to the main frame 68, and can face the side surfaces of the cleaning modules 311a to 314a.
  • the second sub-frame 692 is linearly moved along the vertical direction by driving a motor coupled to the ball screw of the second vertical movement mechanism 642.
  • the pair of second arms 612 are provided with chuck tops 612 a and 612 b that can contact the outer peripheral portion of the wafer W in two upper and lower stages.
  • a relatively clean wafer W is held by the upper chuck piece 612a
  • a relatively clean wafer is held by the lower chuck piece 612b, so that the lower chuck piece 612b is cleaned. It is possible to prevent the wafer W from being contaminated by coming into contact with the wafer W having a high degree.
  • each cleaning module is partitioned by the casing 91 so that the used fluid is not scattered outside during cleaning of the wafer W, and an arm passage opening 94 is formed on the side surface of the casing 91. .
  • the arm passage opening 94 is provided with a shutter 97 that can be opened and closed.
  • the pair of second arms 612 whose front ends are directed upward are adjacent to the housing 91 by driving the arm transport mechanism 62. Move to the standby position.
  • the pair of second arms 612 are placed on standby adjacent to the housing 91 by turning the tips of the pair of second arms 612 upward. Can be moved to a position. Therefore, the start timing of the wafer take-out operation can be advanced, and the throughput of the entire process can be improved.
  • the pair of second arms 612 are rotated about the rotation shaft 632 ⁇ / b> A by driving the second rotation mechanism 632.
  • the pair of second arms 612 is rotated 90 ° clockwise around the rotation axis 632A in a side view, and the ends of the pair of second arms 612 are directed sideways.
  • the second vertical movement mechanism 642 is driven to raise the pair of second arms 612 to the same height position as the arm passage opening 94.
  • the shutter 97 is retracted and the arm passage opening 94 is opened.
  • the pair of second arms 612 are closed in a direction approaching each other and inserted into the inside of the casing 91 through the arm passage opening 94. Then, the wafer W in the housing 91 is gripped. Then, the pair of second arms 612 holding the wafer W is moved to the next cleaning module by driving the arm transfer mechanism 62.
  • FIGS. 7A to 7E When the uncleaned wafer W is loaded into the casing 91, the above-described operations shown in FIGS. 7A to 7E are performed in the reverse order. That is, as shown in FIG. 7E, the pair of second arms 612 holding the wafer W is moved to the inside of the housing 91 through the arm passage opening 94 by the drive of the arm transfer mechanism 62.
  • the pair of second arms 612 is opened in a direction away from each other, and is projected to the outside of the housing 91 through the arm passage opening 94. It is.
  • the second vertical movement mechanism 642 is driven to lower the pair of second arms 612 to a height position lower than the arm passage opening 94.
  • the cleaning process of the wafer W is started inside the housing 91 by the shutter 97 through the arm passage opening 94.
  • the pair of second arms 612 is rotated about the rotation shaft 632 ⁇ / b> A by driving the second rotation mechanism 632.
  • the pair of second arms 612 are rotated 90 ° counterclockwise about the rotation shaft 632A in a side view, and the ends of the pair of second arms 612 are directed upward.
  • the pair of second arms 612 whose front ends are directed upward are moved to the next cleaning module by driving the arm transport mechanism 62.
  • the second vertical movement mechanism 642 moves the pair of second arms 612 down. The space required above the pair of second arms 612 can be reduced.
  • each of the cleaning modules 311a to 314a and 311b to 314b a plurality of wafers W can be cleaned in parallel.
  • FIGS. 8A to 8I as an example, the operation of the cleaning unit transport mechanism 32a when the plurality of wafers W are cleaned in parallel by the primary to tertiary cleaning modules 311a to 313a of the first cleaning unit 30a. explain.
  • the shutter 97 is closed to perform the first stage cleaning on the second wafer W2, and in the secondary cleaning module 312a, the first wafer is cleaned.
  • the second-stage cleaning for W1 is completed and the arm passage opening 94 is open.
  • the pair of first arms 611 is moved to the standby position for the secondary cleaning module 312a, and the tips of the pair of first arms 611 are directed sideways.
  • the pair of first arms 611 are closed so as to be close to each other, and the first wafer W1 in the secondary cleaning module 312a is held by the pair of first arms 611. Further, the shutter 97 of the tertiary cleaning module 313a is retracted and the arm passage opening 94 is opened.
  • the first wafer W1 held by the pair of first arms 611 is moved from the secondary cleaning module 312a to the tertiary cleaning module 313a through the arm passage opening 94.
  • a pair of 1st arm 611 is opened so that it may mutually space apart, and it comes out to the left-right outer side of the tertiary washing module 313a.
  • the shutter 97 is closed to prevent drying.
  • the shutter 97 of the tertiary cleaning module 313a is closed, and the tertiary cleaning module 313a performs the third stage cleaning on the first wafer W1.
  • the pair of first arms 611 are moved so as to avoid (skip) the tertiary cleaning module 313a and the secondary cleaning module 312a in which the shutter 97 is closed, and the primary cleaning module. It is arranged at the standby position 311a.
  • the pair of first arms 611 are rotated by the rotation mechanism, and the tips of the pair of first arms 611 are directed sideways.
  • the pair of first arms 611 are closed so as to be close to each other, and the second wafer W2 in the primary cleaning module 311a is held by the pair of first arms 611.
  • the second wafer W2 held by the pair of first arms 611 is transferred to the secondary cleaning module 312a, and the second stage cleaning is performed.
  • the throughput of the entire process can be improved.
  • wafers are not always transferred at equal time intervals between cleaning modules.
  • the cleaning start timing of the wafers W1 and W2 the primary cleaning modules 311a and the tertiary
  • the cleaning of the wafer W2 by the primary cleaning module 311a may be completed early, or the cleaning of the wafer W1 by the tertiary cleaning module 313a may be completed early.
  • the first arm 611 in the first wafer gripping mechanism 601 puts the wafer W2 into the tertiary cleaning module 313a and stands by at the standby position of the tertiary cleaning module 313a. Then, upon completion of the cleaning by the primary cleaning module 311a (FIG. 8F), the first arm 611 is disposed at the standby position of the primary cleaning module 311a (FIG. 8G).
  • FIG. 9 is a flowchart for explaining the processing operation of the cleaning unit transport mechanism 32a. As shown in FIG. 8E, it is assumed that the introduction of the wafer W1 from the first arm 611 to the tertiary cleaning module 313a is completed (step S1).
  • the secondary cleaning module 312a does not perform cleaning. That is, the next operation is to transfer the wafer W2 from the primary cleaning module 311a to the secondary cleaning module 312a, or to transfer the wafer W1 from the tertiary cleaning module 313a to another apparatus (for example, the fourth cleaning module 314a). It is to convey.
  • the arm transport mechanism 62 predicts which of the primary cleaning module 311a and the tertiary cleaning module 313a is expected to finish the cleaning earlier (step S2). Which one completes the cleaning earlier is specified based on, for example, a substrate processing recipe. For example, since the control unit 15 in FIG. 1 knows the substrate processing recipe, it can identify which one finishes the cleaning earlier. For this reason, the arm transport mechanism 62 may receive a notification from the control unit 15 as to which cleaning is completed earlier. Or cleaning part conveyance mechanism 32a itself may specify based on a substrate processing recipe.
  • the arm transport mechanism 62 moves the first arm 611 to the standby position of the primary cleaning module 311a and waits at this position. (Step S3a).
  • the first arm 611 immediately takes out the wafer W2 from the primary cleaning module 311a (step S5a).
  • the arm transport mechanism 62 makes the first arm 611 stand by at the standby position of the tertiary cleaning module 313a (step S3b).
  • the tertiary cleaning module 313a finishes cleaning (YES in step S4b)
  • the first arm 611 immediately takes out the wafer W1 from the tertiary cleaning module 313a (step S5b).
  • the cleaning module in which the cleaning is completed in advance without waiting for the cleaning by the primary cleaning module 311a and the tertiary cleaning module 313a to end.
  • the first arm 611 waits at the standby position. Therefore, the wafer can be transferred as soon as the cleaning is completed, the waiting time is minimized, and the throughput is improved.
  • this method can be applied to cases other than the situation shown in FIG. 8E.
  • the tertiary cleaning module 313a even if another wafer is loaded into the primary cleaning module 311a, the cleaning is completed earlier of the primary cleaning module 311a and the tertiary cleaning module 313a.
  • the first arm 611 can be put on standby at the standby position of the cleaning module to be used.
  • the wafer W before cleaning by the secondary cleaning module 332a is held and transported by the pair of first arms 611, and the wafer W after cleaning by the secondary cleaning module 332a is paired.
  • the present invention is not limited to this.
  • the wafer W before cleaning in the primary cleaning module 331a is gripped and transferred by the pair of first arms 611, and the wafer W after cleaning in the primary cleaning module 331a is gripped by the pair of second arms 612.
  • the wafer W before cleaning in the tertiary cleaning module 333a may be held and transported by the pair of first arms 611, and the wafer W after cleaning in the tertiary cleaning module 333a may be transferred to the pair of first arms.
  • the two arms 612 may be held and conveyed.
  • the polishing apparatus that polishes the wafer has been described as an example.
  • the present technology is not limited to the polishing apparatus, but can be applied to other substrate processing apparatuses.
  • a plurality of polishing units are replaced with another substrate processing unit (for example, a film processing unit such as a plating unit or a CVD unit, a wet etching unit or a dry etching unit), and a substrate processing apparatus different from the polishing apparatus is used. It may be configured. Also, a plurality of different substrate processing units may be combined and arranged in a predetermined direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

This conveyance apparatus is provided with: a substrate gripping mechanism configured to grip substrates; and a conveying mechanism for conveying the substrate gripping mechanism so as to sequentially convey the substrates among three or more cleaning modules. After the substrates have been fed to any of the cleaning modules from the substrate gripping mechanism, when a first cleaning module among the three or more cleaning modules is currently engaged in cleaning of a first substrate and a second cleaning module not continuous in conveying order from the first cleaning module is currently engaged in cleaning of a second substrate, the conveying mechanism causes the substrate gripping mechanism to stand by at a stand-by position corresponding to whichever cleaning module that finishes cleaning earlier, between the first cleaning module and the second cleaning module.

Description

搬送装置、洗浄装置および基板搬送方法Conveying device, cleaning device, and substrate conveying method
 本技術は、搬送機構、洗浄装置および基板搬送方法に関し、特に半導体ウェハなどの基板を平坦に研磨するために用いられる基板処理装置に適用し得る搬送装置、洗浄装置および基板搬送方法に関する。 The present technology relates to a transfer mechanism, a cleaning apparatus, and a substrate transfer method, and more particularly, to a transfer apparatus, a cleaning apparatus, and a substrate transfer method that can be applied to a substrate processing apparatus used for polishing a substrate such as a semiconductor wafer flatly.
 近年、半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、配線間距離もより狭くなりつつある。半導体デバイスの製造では、シリコンウェハの上に多くの種類の材料が膜状に繰り返し形成され、積層構造が形成される。この積層構造を形成するためには、ウェハの表面を平坦にする技術が重要となっている。このようなウェハの表面を平坦化する一手段として、化学機械研磨(CMP)を行う研磨装置(化学的機械的研磨装置ともいう)が広く用いられている。 In recent years, as the integration of semiconductor devices has increased, circuit wiring has become finer, and the distance between wirings is becoming narrower. In the manufacture of semiconductor devices, many types of materials are repeatedly formed in a film shape on a silicon wafer to form a laminated structure. In order to form this laminated structure, a technique for flattening the surface of the wafer is important. As one means for flattening the surface of such a wafer, a polishing apparatus (also referred to as a chemical mechanical polishing apparatus) that performs chemical mechanical polishing (CMP) is widely used.
 この化学機械研磨(CMP)装置は、一般に、研磨パッドが取り付けられた研磨テーブルと、ウェハを保持するトップリングと、研磨液を研磨パッド上に供給するノズルとを備えている。ノズルから研磨液を研磨パッド上に供給しながら、トップリングによりウェハを研磨パッドに押し付け、さらにトップリングと研磨テーブルとを相対移動させることにより、ウェハを研磨してその表面を平坦にする。 This chemical mechanical polishing (CMP) apparatus generally includes a polishing table to which a polishing pad is attached, a top ring for holding a wafer, and a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid onto the polishing pad from the nozzle, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten the surface.
 基板処理装置は、このようなCMP装置に加え、研磨後のウェハを洗浄し、さらに乾燥させる機能を有する装置である。このような基板処理装置においては、基板処理のスループットを向上することが求められている。 The substrate processing apparatus is an apparatus having a function of cleaning and further drying the polished wafer in addition to such a CMP apparatus. In such a substrate processing apparatus, it is required to improve the throughput of the substrate processing.
 なお、関連する先行技術として、国際公開第2007/099976号がある。 As related prior art, there is International Publication No. 2007/099976.
 スループットを向上させることができる搬送装置、洗浄装置および基板搬送方法を提供することが望まれる。 It is desirable to provide a transfer device, a cleaning device, and a substrate transfer method that can improve throughput.
 一実施の形態に係る搬送装置は、
 基板を把持するように構成された基板把持機構と、
 前記基板が3以上の洗浄モジュール間で順に搬送されるよう、前記基板把持機構を搬送する搬送機構と、を備え、
 前記搬送機構は、前記基板が前記基板把持機構からいずれかの洗浄モジュールに投入された後、前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させる。
The transport device according to one embodiment
A substrate gripping mechanism configured to grip a substrate;
A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between three or more cleaning modules,
The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate. The substrate gripping mechanism is put on standby at a standby position.
 一実施の形態に係る洗浄装置は、
 3以上の洗浄モジュールと、
 基板を把持するように構成された基板把持機構と、
 前記基板が前記3以上の洗浄モジュール間で順に搬送されるよう、前記基板把持機構を搬送する搬送機構と、を備え、
 前記搬送機構は、前記基板が前記基板把持機構からいずれかの洗浄モジュールに投入された後、前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させる。
The cleaning apparatus according to one embodiment
3 or more cleaning modules;
A substrate gripping mechanism configured to grip a substrate;
A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between the three or more cleaning modules;
The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate. The substrate gripping mechanism is put on standby at a standby position.
 一実施の形態に係る基板搬送方法は、
 基板を3以上の洗浄モジュール間で順に搬送する基板搬送方法であって、
 基板把持機構から基板をいずれかの洗浄モジュールに投入することと、
 前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させることと、を備える。
A substrate carrying method according to an embodiment is as follows:
A substrate transfer method for transferring a substrate in sequence between three or more cleaning modules,
Throwing the substrate into one of the cleaning modules from the substrate gripping mechanism;
Of the three or more cleaning modules, the first cleaning module is cleaning the first substrate, and the second cleaning module whose transport order is not continuous with the first cleaning module is cleaning the second substrate. In this case, the substrate holding mechanism is caused to wait at a standby position corresponding to the cleaning module that finishes cleaning earlier among the first cleaning module and the second cleaning module.
図1は、一実施の形態における基板処理装置の全体構成を示す平面図である。FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment. 図2は、図1に示す基板処理装置を洗浄部側から見た側面図である。FIG. 2 is a side view of the substrate processing apparatus shown in FIG. 1 viewed from the cleaning unit side. 図3は、第1ウェハステーションの内部構成を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the internal configuration of the first wafer station. 図4は、洗浄部の第1洗浄ユニットの洗浄部搬送機構を示す斜視図である。FIG. 4 is a perspective view showing the cleaning unit transport mechanism of the first cleaning unit of the cleaning unit. 図5は、第2ウェハ把持機構が上段のチャックコマにて基板を把持した状態を示す斜視図である。FIG. 5 is a perspective view showing a state where the second wafer gripping mechanism grips the substrate by the upper chuck piece. 図6は、第2ウェハ把持機構が下段のチャックコマにて基板を把持した状態を示す斜視図である。FIG. 6 is a perspective view showing a state in which the second wafer gripping mechanism grips the substrate with the lower chuck piece. 図7Aは、第2ウェハ把持機構の動作を説明するための模式図である。FIG. 7A is a schematic diagram for explaining the operation of the second wafer gripping mechanism. 図7Bは、第2ウェハ把持機構の動作を説明するための模式図である。FIG. 7B is a schematic diagram for explaining the operation of the second wafer gripping mechanism. 図7Cは、第2ウェハ把持機構の動作を説明するための模式図である。FIG. 7C is a schematic diagram for explaining the operation of the second wafer gripping mechanism. 図7Dは、第2ウェハ把持機構の動作を説明するための模式図である。FIG. 7D is a schematic diagram for explaining the operation of the second wafer gripping mechanism. 図7Eは、第2ウェハ把持機構の動作を説明するための模式図である。FIG. 7E is a schematic diagram for explaining the operation of the second wafer gripping mechanism. 図8Aは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8A is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Bは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8B is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Cは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8C is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Dは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8D is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Eは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8E is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Fは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8F is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Gは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8G is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Hは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8H is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図8Iは、各洗浄モジュールにて複数のウェハを並行して洗浄する場合の洗浄部搬送機構の動作の一例を説明するための模式図である。FIG. 8I is a schematic diagram for explaining an example of the operation of the cleaning unit transport mechanism when a plurality of wafers are cleaned in parallel by each cleaning module. 図9は、洗浄部搬送機構32aの処理動作を説明するフローチャートである。FIG. 9 is a flowchart for explaining the processing operation of the cleaning unit transport mechanism 32a.
 以下、実施形態について、図面を参照しながら説明する。なお、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals are used for portions that can be configured identically, and redundant descriptions are omitted.
 図1は一実施形態による基板処理装置の全体構成を示す平面図であり、図2は図1に示す研磨装置を洗浄部側から見た側面図である。図1及び図2に示すように、本実施形態における基板処理装置10は、平面視略矩形状のハウジングを備えており、ハウジングの内部は隔壁によってロード/アンロード部11と研磨部12と洗浄部13と搬送部14とに区画されている。これらのロード/アンロード部11、研磨部12、洗浄部13、および搬送部14は、それぞれ独立に組み立てられ、独立に排気されるものである。また、基板処理装置10には、ロード/アンロード部11、研磨部12、洗浄部13、および搬送部14の動作を制御する制御部15(制御盤ともいう)が設けられている。 FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus according to an embodiment, and FIG. 2 is a side view of the polishing apparatus shown in FIG. As shown in FIGS. 1 and 2, the substrate processing apparatus 10 in the present embodiment includes a housing having a substantially rectangular shape in plan view. It is divided into a section 13 and a transport section 14. The load / unload unit 11, the polishing unit 12, the cleaning unit 13, and the transport unit 14 are each assembled independently and exhausted independently. In addition, the substrate processing apparatus 10 is provided with a control unit 15 (also referred to as a control panel) that controls operations of the load / unload unit 11, the polishing unit 12, the cleaning unit 13, and the transfer unit 14.
<ロード/アンロード部>
 ロード/アンロード部11は、多数のウェハ(基板)Wをストックするウェハカセットを載置する複数(図示された例では4つ)のフロントロード部113を備えている。これらのフロントロード部113は、基板処理装置10の幅方向(長手方向と垂直な方向)に隣接して配列されている。フロントロード部113には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができる。ここで、SMIF、FOUPは、内部にウェハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。
<Load / Unload section>
The load / unload unit 11 includes a plurality of (four in the illustrated example) front load units 113 on which wafer cassettes for stocking a large number of wafers (substrates) W are placed. These front load portions 113 are arranged adjacent to each other in the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 10. The front load unit 113 may be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod). Here, SMIF and FOUP are sealed containers that can maintain an environment independent of the external space by accommodating a wafer cassette inside and covering with a partition wall.
 また、ロード/アンロード部11には、フロントロード部113の配列方向に沿って走行機構112が敷設されており、この走行機構112上にフロントロード部113の配列方向に沿って移動可能な搬送ロボット111が設置されている。搬送ロボット111は走行機構112上を移動することによってフロントロード部113に搭載されたウェハカセットにアクセスできるようになっている。この搬送ロボット111は上下に2つのハンドを備えており、例えば、ウェハカセットにウェハWを戻すときに上側のハンドを使用し、研磨前のウェハWを搬送するときに下側のハンドを使用して、上下のハンドを使い分けることができるようになっている。 In addition, a traveling mechanism 112 is laid along the arrangement direction of the front load unit 113 in the load / unload unit 11, and the conveyance mechanism 112 is movable on the traveling mechanism 112 along the arrangement direction of the front load unit 113. A robot 111 is installed. The transfer robot 111 can access the wafer cassette mounted on the front load unit 113 by moving on the traveling mechanism 112. The transfer robot 111 has two hands on the upper and lower sides. For example, the upper hand is used when returning the wafer W to the wafer cassette, and the lower hand is used when transferring the wafer W before polishing. The upper and lower hands can be used properly.
 ロード/アンロード部11は最もクリーンな状態を保つ必要がある領域であるため、ロード/アンロード部11の内部は、装置外部、研磨部12、洗浄部13、および搬送部14のいずれよりも高い圧力に常時維持されている。また、搬送ロボット111の走行機構112の上方には、HEPAフィルタやULPAフィルタなどのクリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットによりパーティクルや有毒蒸気、ガスが除去されたクリーンエアが常時下方に向かって吹き出している。 Since the load / unload unit 11 is an area where it is necessary to maintain the cleanest state, the inside of the load / unload unit 11 is more than any of the outside of the apparatus, the polishing unit 12, the cleaning unit 13, and the transport unit 14. It is constantly maintained at a high pressure. In addition, a filter fan unit (not shown) having a clean air filter such as a HEPA filter or a ULPA filter is provided above the traveling mechanism 112 of the transfer robot 111, and particles, toxic vapor, Clean air from which gas has been removed is constantly blowing downward.
<搬送部>
 搬送部14は、研磨前のウェハをロード/アンロード部11から研磨部12へと搬送する領域であり、基板処理装置10の長手方向に沿って延びるように設けられている。図1に示すように、搬送部14は、最もクリーンな領域であるロード/アンロード部11と最もダーティな領域である研磨部12の両方に隣接して配置されている。そのため、研磨部12内のパーティクルが搬送部14を通ってロード/アンロード部11内に拡散しないように、後述するように、搬送部14の内部にはロード/アンロード部11側から研磨部12側へと流れる気流が形成されている。
<Transport section>
The transfer unit 14 is a region for transferring a wafer before polishing from the load / unload unit 11 to the polishing unit 12, and is provided so as to extend along the longitudinal direction of the substrate processing apparatus 10. As shown in FIG. 1, the transport unit 14 is disposed adjacent to both the load / unload unit 11 that is the cleanest region and the polishing unit 12 that is the cleanest region. Therefore, in order to prevent the particles in the polishing unit 12 from diffusing into the load / unload unit 11 through the transfer unit 14, the polishing unit 12 is provided inside the transfer unit 14 from the load / unload unit 11 side, as will be described later. An airflow flowing toward the 12 side is formed.
<研磨部>
 図1に示すように、研磨部12は、ウェハWの研磨が行われる領域であり、第1研磨装置21aと第2研磨装置21bとを有する第1研磨ユニット20aと、第3研磨装置21cと第4研磨装置21dとを有する第2研磨ユニット20bと、搬送部14と第1研磨ユニット20aおよび第2研磨ユニット20bのそれぞれに隣接するように配置された研磨部搬送機構22と、を有している。搬送部14は、基板処理装置10の幅方向において搬送部14と第1研磨ユニット20aおよび第2研磨ユニット20bとの間に配置されている。
<Polishing part>
As shown in FIG. 1, the polishing unit 12 is a region where the wafer W is polished, and includes a first polishing unit 20a having a first polishing device 21a and a second polishing device 21b, a third polishing device 21c, A second polishing unit 20b having a fourth polishing apparatus 21d, and a polishing unit transport mechanism 22 disposed adjacent to each of the transport unit 14, the first polishing unit 20a and the second polishing unit 20b. ing. The transfer unit 14 is disposed between the transfer unit 14 and the first polishing unit 20 a and the second polishing unit 20 b in the width direction of the substrate processing apparatus 10.
 第1研磨装置21a、第2研磨装置21b、第3研磨装置21c、および第4研磨装置21dは、基板処理装置10の長手方向に沿って配列されている。 The first polishing apparatus 21a, the second polishing apparatus 21b, the third polishing apparatus 21c, and the fourth polishing apparatus 21d are arranged along the longitudinal direction of the substrate processing apparatus 10.
 図1に示すように、第1研磨装置21aのトップリングは、トップリングヘッドのスイング動作により研磨位置と第1基板搬送位置TP1との間を移動し、第1研磨装置21aへのウェハの受け渡しは第1基板搬送位置TP1にて行われる。同様に、第2研磨装置21bのトップリングは、トップリングヘッドのスイング動作により研磨位置と第2基板搬送位置TP2との間を移動し、第2研磨装置21bへのウェハの受け渡しは第2基板搬送位置TP2にて行われ、第3研磨装置21cのトップリングは、トップリングヘッドのスイング動作により研磨位置と第3基板搬送位置TP3との間を移動し、第3研磨装置21cへのウェハの受け渡しは第3基板搬送位置TP3にて行われ、第4研磨装置21dのトップリングは、トップリングヘッドのスイング動作により研磨位置と第4基板搬送位置TP4との間を移動し、第4研磨装置21dへのウェハの受け渡しは第4基板搬送位置TP4にて行われる。 As shown in FIG. 1, the top ring of the first polishing apparatus 21a is moved between the polishing position and the first substrate transfer position TP1 by the swing operation of the top ring head, and the wafer is transferred to the first polishing apparatus 21a. Is performed at the first substrate transfer position TP1. Similarly, the top ring of the second polishing apparatus 21b is moved between the polishing position and the second substrate transfer position TP2 by the swing operation of the top ring head, and the wafer is transferred to the second polishing apparatus 21b by the second substrate. The top ring of the third polishing apparatus 21c is moved between the polishing position and the third substrate transfer position TP3 by the swing operation of the top ring head, and the wafer is transferred to the third polishing apparatus 21c. The delivery is performed at the third substrate transfer position TP3, and the top ring of the fourth polishing apparatus 21d is moved between the polishing position and the fourth substrate transfer position TP4 by the swing operation of the top ring head. Transfer of the wafer to 21d is performed at the fourth substrate transfer position TP4.
 研磨部搬送機構22は、第1研磨ユニット20aにウェハWを搬送する第1搬送ユニット24aと、第2研磨ユニット20bにウェハWを搬送する第2搬送ユニット24bと、第1搬送ユニット24aと第2搬送ユニット24bとの間に配置され、搬送部14と第1搬送ユニット24aおよび第2搬送ユニット24bとの間のウェハの受け渡しを行う搬送ロボット23とを有している。図示された例では、搬送ロボット23は、基板処理装置10のハウジングの略中央に配置されている。 The polishing unit transport mechanism 22 includes a first transport unit 24a that transports the wafer W to the first polishing unit 20a, a second transport unit 24b that transports the wafer W to the second polishing unit 20b, a first transport unit 24a, And a transfer robot 23 which is disposed between the transfer unit 24b and transfers a wafer between the transfer unit 14 and the first transfer unit 24a and the second transfer unit 24b. In the illustrated example, the transfer robot 23 is disposed substantially at the center of the housing of the substrate processing apparatus 10.
<洗浄部>
 図1及び図2に示すように、洗浄部13は、研磨後のウェハを洗浄する領域であり、上下二段に配置された第1洗浄ユニット30aおよび第2洗浄ユニット30bを有している。上述した搬送部14は、第1洗浄ユニット30aと第2洗浄ユニット30bとの間に配置されている。第1洗浄ユニット30aと搬送部14と第2洗浄ユニット30bとが上下方向に重なるように配列されているため、フットプリントが小さいという利点が得られる。
<Washing part>
As shown in FIGS. 1 and 2, the cleaning unit 13 is a region for cleaning the polished wafer, and includes a first cleaning unit 30a and a second cleaning unit 30b arranged in two upper and lower stages. The transport unit 14 described above is disposed between the first cleaning unit 30a and the second cleaning unit 30b. Since the 1st washing | cleaning unit 30a, the conveyance part 14, and the 2nd washing | cleaning unit 30b are arranged so that it may overlap with an up-down direction, the advantage that a footprint is small is acquired.
第1洗浄ユニット30aは、複数(図示された例では4つ)の洗浄モジュール311a、312a、313a、314aと、ウェハステーション33aと、各洗浄モジュール311a~314aとウェハステーション33aとの間にてウェハWを搬送する洗浄部搬送機構32aとを有している。複数の洗浄モジュール311a~314aとウェハステーション33aとは、基板処理装置10の長手方向に沿って直列に配置されている。各洗浄モジュール311a~314aの上部には、クリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットによりパーティクルが除去されたクリーンエアが常時下方に向かって吹き出している。また、第1洗浄ユニット30aの内部は、研磨部12からのパーティクルの流入を防止するために研磨部12よりも高い圧力に常時維持されている。 The first cleaning unit 30a includes a plurality (four in the illustrated example) of cleaning modules 311a, 312a, 313a, 314a, a wafer station 33a, and a wafer between each of the cleaning modules 311a to 314a and the wafer station 33a. And a cleaning section transport mechanism 32a for transporting W. The plurality of cleaning modules 311 a to 314 a and the wafer station 33 a are arranged in series along the longitudinal direction of the substrate processing apparatus 10. A filter fan unit (not shown) having a clean air filter is provided above each of the cleaning modules 311a to 314a, and clean air from which particles have been removed by this filter fan unit always blows downward. Yes. Further, the inside of the first cleaning unit 30 a is always maintained at a pressure higher than that of the polishing unit 12 in order to prevent inflow of particles from the polishing unit 12.
 同様に、第2洗浄ユニット30bは、複数(図示された例では4つ)の洗浄モジュール311b、312b、313b、314bと、ウェハステーション33bと、各洗浄モジュール311b~314bとウェハステーション33bとの間にてウェハWを搬送する洗浄部搬送機構32bとを有している。複数の洗浄モジュール311b~314bとウェハステーション33bとは、基板処理装置10の長手方向に沿って直列に配置されている。各洗浄モジュール311b~314bの上部には、クリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットによりパーティクルが除去されたクリーンエアが常時下方に向かって吹き出している。また、第2洗浄ユニット30bの内部は、研磨部12からのパーティクルの流入を防止するために研磨部12よりも高い圧力に常時維持されている。 Similarly, the second cleaning unit 30b includes a plurality (four in the illustrated example) of cleaning modules 311b, 312b, 313b, 314b, a wafer station 33b, and between each of the cleaning modules 311b to 314b and the wafer station 33b. And a cleaning unit transfer mechanism 32b for transferring the wafer W. The plurality of cleaning modules 311 b to 314 b and the wafer station 33 b are arranged in series along the longitudinal direction of the substrate processing apparatus 10. A filter fan unit (not shown) having a clean air filter is provided above each of the cleaning modules 311b to 314b. Clean air from which particles have been removed by this filter fan unit always blows downward. Yes. Further, the inside of the second cleaning unit 30 b is always maintained at a pressure higher than that of the polishing unit 12 in order to prevent inflow of particles from the polishing unit 12.
 図3は、ウェハステーション33aの内部構成を示す分解斜視図である。図3に示すように、ウェハステーション33aは、略直方体形状を有する筐体71と、筐体71の内部に配置され、ウェハWを保持するステージ72と、ステージ72を上下移動させる駆動機構75と、を有している。 FIG. 3 is an exploded perspective view showing the internal configuration of the wafer station 33a. As shown in FIG. 3, the wafer station 33 a includes a casing 71 having a substantially rectangular parallelepiped shape, a stage 72 that is disposed inside the casing 71 and holds the wafer W, and a drive mechanism 75 that moves the stage 72 up and down. ,have.
 このうち筐体71は、底面板と、4つの側面板と、天面板とを有している。図3に示すように、4つの側面板のうち研磨部12に対向する側面板の下端部には、研磨部12に連通する搬入口73が形成されている。搬入口73は、不図示のシャッタにより開閉可能となっている。図3に示すように、研磨部12の搬送ロボット23は、搬入口73から筐体71の内側にアクセスすることができる。 Of these, the casing 71 has a bottom plate, four side plates, and a top plate. As shown in FIG. 3, a carry-in port 73 communicating with the polishing unit 12 is formed at the lower end of the side plate facing the polishing unit 12 among the four side plates. The carry-in port 73 can be opened and closed by a shutter (not shown). As shown in FIG. 3, the transfer robot 23 of the polishing unit 12 can access the inside of the housing 71 from the carry-in port 73.
 また、4つの側面板のうち残りの3つの側面板(すなわち、後述する洗浄部搬送機構32aに対向する側面板および左右の側面板)の搬入口73より高い高さ位置には、洗浄部搬送機構32aのアームを通過させるためのアーム通過用開口74が形成されている。アーム通過用(ウェハ搬送用)開口74は、不図示のシャッタにより開閉可能となっている。図3に示すように、第1洗浄ユニット30aの洗浄部搬送機構32aは、アーム通過用開口74から筐体71の内側にアクセス可能となっている。 Further, the cleaning unit is transported to a height position higher than the carry-in port 73 of the remaining three side plates among the four side plates (that is, the side plate facing the cleaning unit transport mechanism 32a described later and the left and right side plates). An arm passage opening 74 for passing the arm of the mechanism 32a is formed. The arm passage (wafer transfer) opening 74 can be opened and closed by a shutter (not shown). As shown in FIG. 3, the cleaning unit transport mechanism 32 a of the first cleaning unit 30 a can access the inside of the housing 71 from the arm passage opening 74.
 駆動機構75としては、例えばボールねじを用いたモータ駆動機構またはエアシリンダが用いられる。ステージ72は、駆動機構75の可動部に固定されており、駆動機構75から与えられる動力により、搬入口73に対向する高さ位置とアーム通過用(ウェハ搬送用)開口74に対向する高さ位置との間を上下移動される(図3参照)。 As the drive mechanism 75, for example, a motor drive mechanism using a ball screw or an air cylinder is used. The stage 72 is fixed to a movable portion of the drive mechanism 75, and is driven by a power applied from the drive mechanism 75 to a height position facing the carry-in port 73 and a height facing the arm passage (wafer transfer) opening 74. It is moved up and down between positions (see FIG. 3).
 ステージ72の外周部には、4本のピン76が上方に突き出すように設けられている。そのため、ステージ72上に載せられるウェハWは、その外周縁が4本のピン76によりガイドされて位置決めされた状態で、ステージ72上に支持されるようになっている。これらのピン76は、ポリプロピレン(PP)、ポリクロロトリフルオロエチレン(PCTFE)やポリエーテルエーテルケトン(PEEK)などの樹脂から形成されている。 The outer periphery of the stage 72 is provided with four pins 76 protruding upward. Therefore, the wafer W placed on the stage 72 is supported on the stage 72 in a state where the outer peripheral edge is guided and positioned by the four pins 76. These pins 76 are made of a resin such as polypropylene (PP), polychlorotrifluoroethylene (PCTFE), or polyetheretherketone (PEEK).
 第2洗浄ユニット30bの洗浄部搬送機構32bは、第1洗浄ユニット30aの洗浄部搬送機構32aと同様の構成を有しているので、以下、第1洗浄ユニット30aの洗浄部搬送機構32aについて説明する。 Since the cleaning unit transport mechanism 32b of the second cleaning unit 30b has the same configuration as the cleaning unit transport mechanism 32a of the first cleaning unit 30a, the cleaning unit transport mechanism 32a of the first cleaning unit 30a will be described below. To do.
 図4は、第1洗浄ユニット30aの洗浄部搬送機構32aを示す斜視図である。図4に示すように、洗浄部搬送機構32aは、ウェハWをそれぞれ把持する第1ウェハ把持機構601および第2ウェハ把持機構602と、第1ウェハ把持機構601および第2ウェハ把持機構602を複数の洗浄モジュール311a~314aの配列方向に沿って直線移動するアーム搬送機構62と、を有している。すなわち、本実施の形態では、ウェハ把持機構601、602の数は、洗浄モジュール311a~314aの数より少なくなっている。 FIG. 4 is a perspective view showing the cleaning unit transport mechanism 32a of the first cleaning unit 30a. As illustrated in FIG. 4, the cleaning unit transport mechanism 32 a includes a plurality of first wafer gripping mechanisms 601 and second wafer gripping mechanisms 602 that grip the wafer W, and a plurality of first wafer gripping mechanisms 601 and second wafer gripping mechanisms 602. Arm transfer mechanism 62 that linearly moves along the direction in which the cleaning modules 311a to 314a are arranged. That is, in the present embodiment, the number of wafer gripping mechanisms 601 and 602 is smaller than the number of cleaning modules 311a to 314a.
 本実施の形態では、例えばウェハWの清浄度に応じて第1ウェハ把持機構601と第2ウェハ把持機構602とを使い分けることができる。例えば、1次~4次洗浄モジュール311a~314aのうち洗浄処理前半の1次洗浄モジュール311aおよび2次洗浄モジュール312aでは第1ウェハ把持機構601を使用し、洗浄処理後半の3次洗浄モジュール313aおよび4次洗浄モジュール314aでは第2ウェハ把持機構602を使用することで、洗浄処理後半のウェハWが第1ウェハ把持機構601に接して汚染されることを防止できる。 In the present embodiment, for example, the first wafer gripping mechanism 601 and the second wafer gripping mechanism 602 can be used properly according to the cleanliness of the wafer W. For example, among the primary to quaternary cleaning modules 311a to 314a, the primary cleaning module 311a and the secondary cleaning module 312a in the first half of the cleaning process use the first wafer gripping mechanism 601 and the third cleaning module 313a in the second half of the cleaning process and By using the second wafer gripping mechanism 602 in the fourth cleaning module 314a, it is possible to prevent the wafer W in the latter half of the cleaning process from coming into contact with the first wafer gripping mechanism 601 and being contaminated.
 第1ウェハ把持機構601は、より詳しくは、ウェハを把持する開閉可能な一対の第1アーム611と、一対の第1アーム611を上下移動させる第1上下移動機構641と、一対の第1アーム611を開閉方向と平行な回転軸631Aを中心として回動させる第1回動機構631と、一対の第1アーム611を互いに近接する方向または互いに離間する方向に開閉する第1開閉機構661とを有している。 More specifically, the first wafer gripping mechanism 601 includes a pair of first arms 611 that can be opened and closed to grip a wafer, a first vertical movement mechanism 641 that moves the pair of first arms 611 up and down, and a pair of first arms. A first rotation mechanism 631 that rotates 611 about a rotation shaft 631A parallel to the opening and closing direction, and a first opening and closing mechanism 661 that opens and closes the pair of first arms 611 in directions close to each other or in directions away from each other. Have.
 同様に、第2ウェハ把持機構602は、ウェハを把持する開閉可能な一対の第2アーム612と、一対の第2アーム612を上下移動させる第2上下移動機構642と、一対の第2アーム612を開閉方向と平行な回転軸632Aを中心として回動させる第2回動機構632と、一対の第2アーム612を互いに近接する方向または互いに離間する方向に開閉する第2開閉機構662とを有している。 Similarly, the second wafer gripping mechanism 602 includes a pair of openable and closable second arms 612 that grip a wafer, a second vertical movement mechanism 642 that moves the pair of second arms 612 up and down, and a pair of second arms 612. And a second opening / closing mechanism 662 for opening / closing the pair of second arms 612 in a direction close to each other or in a direction away from each other. is doing.
 アーム搬送機構62としては、例えばボールねじを用いたモータ駆動機構が用いられる。図4に示すように、アーム搬送機構62のボールねじは、洗浄モジュール311a~314aの上方に洗浄モジュール311a~314aの配列方向に延びるように設けられている。 As the arm transport mechanism 62, for example, a motor drive mechanism using a ball screw is used. As shown in FIG. 4, the ball screw of the arm transport mechanism 62 is provided above the cleaning modules 311a to 314a so as to extend in the arrangement direction of the cleaning modules 311a to 314a.
 アーム搬送機構62のボールねじには、メインフレーム68が取り付けられている。メインフレーム68は、アーム搬送機構62のボールねじから下方に吊り下がるように取り付けられており、洗浄モジュール311a~314aの側面と対向するようになっている。アーム搬送機構62のボールねじに連結されたモータの駆動により、メインフレーム68は洗浄モジュール311a~314aの側面と対向したまま洗浄モジュール311a~314aの配列方向に沿って直線移動される。 A main frame 68 is attached to the ball screw of the arm transport mechanism 62. The main frame 68 is attached so as to hang downward from the ball screw of the arm transport mechanism 62, and faces the side surfaces of the cleaning modules 311a to 314a. By driving a motor connected to the ball screw of the arm transport mechanism 62, the main frame 68 is linearly moved along the arrangement direction of the cleaning modules 311a to 314a while facing the side surfaces of the cleaning modules 311a to 314a.
 図示された例では、メインフレーム68は、奥行方向(洗浄モジュール311a~314aの配列方向および上下方向の両方に対して垂直な方向)の位置を調整するための奥行方向移動機構67を有している。奥行方向移動機構67としては、例えばラック・アンド・ピニオンを用いたモータ駆動機構が用いられる。奥行方向移動機構67の駆動により、奥行方向におけるメインフレーム68の位置が調整される。 In the illustrated example, the main frame 68 has a depth direction moving mechanism 67 for adjusting the position in the depth direction (a direction perpendicular to both the arrangement direction of the cleaning modules 311a to 314a and the vertical direction). Yes. As the depth direction moving mechanism 67, for example, a motor driving mechanism using a rack and pinion is used. The position of the main frame 68 in the depth direction is adjusted by driving the depth direction moving mechanism 67.
 第1上下移動機構641および第2上下移動機構642は、メインフレーム68上に設けられている。第1上下移動機構641および第2上下移動機構642としては、例えばボールねじを用いたモータ駆動機構が用いられる。図4に示すように、第1上下移動機構641のボールねじは、メインフレーム68の左端部において上下方向に延びるように取り付けられており、第2上下移動機構642のボールねじは、メインフレーム68の右端部において上下方向に延びるように取り付けられている。 The first vertical movement mechanism 641 and the second vertical movement mechanism 642 are provided on the main frame 68. As the first vertical movement mechanism 641 and the second vertical movement mechanism 642, for example, a motor drive mechanism using a ball screw is used. As shown in FIG. 4, the ball screw of the first vertical movement mechanism 641 is attached to extend in the vertical direction at the left end portion of the main frame 68, and the ball screw of the second vertical movement mechanism 642 is the main frame 68. It is attached so that it may extend in the up-and-down direction at the right end of the.
 第1上下移動機構641のボールねじには、一対の第1アーム611を支持する第1サブフレーム691が取り付けられている。第1サブフレーム691は、メインフレーム68の左側にメインフレーム68と隣り合うように設けられており、洗浄モジュール311a~314aの側面と対向するようになっている。第1上下移動機構641のボールねじに連結されたモータの駆動により、第1サブフレーム691は上下方向に沿って直線移動される。 The first sub-frame 691 that supports the pair of first arms 611 is attached to the ball screw of the first vertical movement mechanism 641. The first sub frame 691 is provided on the left side of the main frame 68 so as to be adjacent to the main frame 68, and is opposed to the side surfaces of the cleaning modules 311a to 314a. The first subframe 691 is linearly moved along the vertical direction by driving a motor coupled to the ball screw of the first vertical movement mechanism 641.
 同様に、第2上下移動機構642のボールねじには、一対の第2アーム612を支持する第2サブフレーム692が取り付けられている。第2サブフレーム692は、メインフレーム68の右側にメインフレーム68隣り合うように設けられており、洗浄モジュール311a~314aの側面と対向できるようになっている。第2上下移動機構642のボールねじに連結されたモータの駆動により、第2サブフレーム692は上下方向に沿って直線移動される。 Similarly, a second sub-frame 692 that supports the pair of second arms 612 is attached to the ball screw of the second vertical movement mechanism 642. The second sub frame 692 is provided on the right side of the main frame 68 so as to be adjacent to the main frame 68, and can face the side surfaces of the cleaning modules 311a to 314a. The second sub-frame 692 is linearly moved along the vertical direction by driving a motor coupled to the ball screw of the second vertical movement mechanism 642.
 図5および図6に示すように、一対の第2アーム612には、ウェハWの外周部に当接可能なチャックコマ612a、612bが上下二段に設けられている。例えば相対的に清浄度の高いウェハWは上段のチャックコマ612aにて保持され、相対的に清浄度の低いウェハを下段のチャックコマ612bにて保持されることで、下段のチャックコマ612bが清浄度の高いウェハWに接触してこのウェハWが汚染されることを防止できる。 As shown in FIGS. 5 and 6, the pair of second arms 612 are provided with chuck tops 612 a and 612 b that can contact the outer peripheral portion of the wafer W in two upper and lower stages. For example, a relatively clean wafer W is held by the upper chuck piece 612a, and a relatively clean wafer is held by the lower chuck piece 612b, so that the lower chuck piece 612b is cleaned. It is possible to prevent the wafer W from being contaminated by coming into contact with the wafer W having a high degree.
 次に、図7A~図7Eを参照して、一対の第2アーム612の動作の一例を説明する。上述したように各洗浄モジュールは、ウェハWの洗浄中に外部に使用流体が飛散しないように筐体91によって区画されており、筐体91の側面にはアーム通過用開口94が形成されている。アーム通過用開口94には、開閉可能なシャッタ97が設けられている。 Next, an example of the operation of the pair of second arms 612 will be described with reference to FIGS. 7A to 7E. As described above, each cleaning module is partitioned by the casing 91 so that the used fluid is not scattered outside during cleaning of the wafer W, and an arm passage opening 94 is formed on the side surface of the casing 91. . The arm passage opening 94 is provided with a shutter 97 that can be opened and closed.
 洗浄後のウェハWを筐体91から取り出す場合には、図7Aに示すように、先端が上向きに向けられた一対の第2アーム612は、アーム搬送機構62の駆動より筐体91に隣接する待機位置へと移動される。本実施の形態では、筐体91のシャッタ97が閉じられていても、一対の第2アーム612の先端を上向きに向けておくことで、一対の第2アーム612を筐体91に隣接する待機位置へと移動させることができる。したがって、ウェハ取り出し作業の開始タイミングを早くすることができ、プロセス全体のスループットが向上させることができる。 When the wafer W after cleaning is taken out from the housing 91, as shown in FIG. 7A, the pair of second arms 612 whose front ends are directed upward are adjacent to the housing 91 by driving the arm transport mechanism 62. Move to the standby position. In the present embodiment, even when the shutter 97 of the housing 91 is closed, the pair of second arms 612 are placed on standby adjacent to the housing 91 by turning the tips of the pair of second arms 612 upward. Can be moved to a position. Therefore, the start timing of the wafer take-out operation can be advanced, and the throughput of the entire process can be improved.
 次に、図7Bおよび図7Cに示すように、第2回動機構632の駆動により、一対の第2アーム612は、回転軸632Aを中心として回動される。図示された例では、一対の第2アーム612は、側面視において回転軸632Aを中心として時計回りに90°回転され、一対の第2アーム612の先端は横向きに向けられる。 Next, as shown in FIG. 7B and FIG. 7C, the pair of second arms 612 are rotated about the rotation shaft 632 </ b> A by driving the second rotation mechanism 632. In the illustrated example, the pair of second arms 612 is rotated 90 ° clockwise around the rotation axis 632A in a side view, and the ends of the pair of second arms 612 are directed sideways.
 次に、図7Dに示すように、第2上下移動機構642の駆動により、一対の第2アーム612は、アーム通過用開口94と同じ高さ位置まで上昇される。このとき、シャッタ97が退避されアーム通過用開口94が開けられる。 Next, as shown in FIG. 7D, the second vertical movement mechanism 642 is driven to raise the pair of second arms 612 to the same height position as the arm passage opening 94. At this time, the shutter 97 is retracted and the arm passage opening 94 is opened.
 次に、図7Eに示すように、第2開閉機構662の駆動により、一対の第2アーム612は、互いに近接する方向に閉じられ、アーム通過用開口94を通って筐体91内側に挿入され、筐体91内のウェハWを把持する。そして、ウェハWを把持した一対の第2アーム612は、アーム搬送機構62の駆動より次の洗浄モジュールへと移動される。 Next, as shown in FIG. 7E, by driving the second opening / closing mechanism 662, the pair of second arms 612 are closed in a direction approaching each other and inserted into the inside of the casing 91 through the arm passage opening 94. Then, the wafer W in the housing 91 is gripped. Then, the pair of second arms 612 holding the wafer W is moved to the next cleaning module by driving the arm transfer mechanism 62.
 洗浄前のウェハWを筐体91に搬入する場合には、図7A~図7Eに示す上述した動作が逆の順序で行われる。すなわち、図7Eに示すように、ウェハWを把持した一対の第2アーム612は、アーム搬送機構62の駆動よりアーム通過用開口94を通って筐体91内側に移動される。 When the uncleaned wafer W is loaded into the casing 91, the above-described operations shown in FIGS. 7A to 7E are performed in the reverse order. That is, as shown in FIG. 7E, the pair of second arms 612 holding the wafer W is moved to the inside of the housing 91 through the arm passage opening 94 by the drive of the arm transfer mechanism 62.
 次に、図7Eに示すように、第2開閉機構662の駆動により、一対の第2アーム612は、互いに離間する方向に開かれ、アーム通過用開口94を通って筐体91の外側に出される。 Next, as shown in FIG. 7E, by driving the second opening / closing mechanism 662, the pair of second arms 612 is opened in a direction away from each other, and is projected to the outside of the housing 91 through the arm passage opening 94. It is.
 次に、図7Cに示すように、第2上下移動機構642の駆動により、一対の第2アーム612は、アーム通過用開口94より低い高さ位置まで下降される。このとき、アーム通過用開口94がシャッタ97により、筐体91の内側にウェハWの洗浄処理が開始される。 Next, as shown in FIG. 7C, the second vertical movement mechanism 642 is driven to lower the pair of second arms 612 to a height position lower than the arm passage opening 94. At this time, the cleaning process of the wafer W is started inside the housing 91 by the shutter 97 through the arm passage opening 94.
 次に、図7Bおよび図7Aに示すように、第2回動機構632の駆動により、一対の第2アーム612は、回転軸632Aを中心として回動される。図示された例では、一対の第2アーム612は、側面視において回転軸632Aを中心として反時計回りに90°回転され、一対の第2アーム612の先端は上向きに向けられる。そして、先端が上向きに向けられた一対の第2アーム612は、アーム搬送機構62の駆動より次の洗浄モジュールへと移動される。本実施の形態では、第2回動機構632が一対の第2アーム612を先端が上向きになるように回動させる際に、第2上下移動機構642が一対の第2アーム612を下降させるため、一対の第2アーム612の上方に必要なスペースを削減できる。 Next, as shown in FIGS. 7B and 7A, the pair of second arms 612 is rotated about the rotation shaft 632 </ b> A by driving the second rotation mechanism 632. In the illustrated example, the pair of second arms 612 are rotated 90 ° counterclockwise about the rotation shaft 632A in a side view, and the ends of the pair of second arms 612 are directed upward. Then, the pair of second arms 612 whose front ends are directed upward are moved to the next cleaning module by driving the arm transport mechanism 62. In the present embodiment, when the second rotation mechanism 632 rotates the pair of second arms 612 so that the tip ends upward, the second vertical movement mechanism 642 moves the pair of second arms 612 down. The space required above the pair of second arms 612 can be reduced.
 各洗浄モジュール311a~314aおよび311b~314bでは複数のウェハWを並行して洗浄することができる。図8A~図8Iを参照して、第1洗浄ユニット30aの1次~3次洗浄モジュール311a~313aにて複数のウェハWを並行して洗浄する場合の洗浄部搬送機構32aの動作を一例として説明する。 In each of the cleaning modules 311a to 314a and 311b to 314b, a plurality of wafers W can be cleaned in parallel. Referring to FIGS. 8A to 8I, as an example, the operation of the cleaning unit transport mechanism 32a when the plurality of wafers W are cleaned in parallel by the primary to tertiary cleaning modules 311a to 313a of the first cleaning unit 30a. explain.
 まず、図8Aに示すように、1次洗浄モジュール311aでは、シャッタ97が閉じられて第2ウェハW2に対して第1段階の洗浄が行われており、2次洗浄モジュール312aでは、第1ウェハW1に対する第2段階の洗浄が終了してアーム通過用開口94が開いている状況を想定する。この場合、一対の第1アーム611は2次洗浄モジュール312aに対する待機位置へと移動され、一対の第1アーム611の先端は横向きに向けられる。 First, as shown in FIG. 8A, in the primary cleaning module 311a, the shutter 97 is closed to perform the first stage cleaning on the second wafer W2, and in the secondary cleaning module 312a, the first wafer is cleaned. Assume that the second-stage cleaning for W1 is completed and the arm passage opening 94 is open. In this case, the pair of first arms 611 is moved to the standby position for the secondary cleaning module 312a, and the tips of the pair of first arms 611 are directed sideways.
 そして、図8Bに示すように、一対の第1アーム611が互いに近接するように閉じられ、2次洗浄モジュール312a内の第1ウェハW1は、一対の第1アーム611により保持される。また、3次洗浄モジュール313aのシャッタ97が退避されてアーム通過用開口94が開かれる。 8B, the pair of first arms 611 are closed so as to be close to each other, and the first wafer W1 in the secondary cleaning module 312a is held by the pair of first arms 611. Further, the shutter 97 of the tertiary cleaning module 313a is retracted and the arm passage opening 94 is opened.
 次に、図8Cに示すように、一対の第1アーム611により保持された第1ウェハW1は、アーム通過用開口94を通って、2次洗浄モジュール312aから3次洗浄モジュール313aへと移動される。 Next, as shown in FIG. 8C, the first wafer W1 held by the pair of first arms 611 is moved from the secondary cleaning module 312a to the tertiary cleaning module 313a through the arm passage opening 94. The
 そして、図8Dに示すように、一対の第1アーム611は互いに離間するように開かれ、3次洗浄モジュール313aの左右外側に出される。2次洗浄モジュール312aでは乾燥を防止するためにシャッタ97が閉じられる。 And as shown to FIG. 8D, a pair of 1st arm 611 is opened so that it may mutually space apart, and it comes out to the left-right outer side of the tertiary washing module 313a. In the secondary cleaning module 312a, the shutter 97 is closed to prevent drying.
 次に、図8Eに示すように、3次洗浄モジュール313aのシャッタ97が閉じられ、3次洗浄モジュール313aにて第1ウェハW1に対する第3段階の洗浄が行われる。 Next, as shown in FIG. 8E, the shutter 97 of the tertiary cleaning module 313a is closed, and the tertiary cleaning module 313a performs the third stage cleaning on the first wafer W1.
 次に、図8Fに示すように、1次洗浄モジュール311aでの第2ウェハW2に対する第1段階の洗浄が終了すると、1次洗浄モジュール311aのシャッタ97が退避されてアーム通過用開口94が開かれる。このとき、一対の第1アーム611は回動機構により回動され、一対の第1アーム611の先端が上向きに向けられる。 Next, as shown in FIG. 8F, when the first cleaning of the second wafer W2 in the primary cleaning module 311a is completed, the shutter 97 of the primary cleaning module 311a is retracted and the arm passage opening 94 is opened. It is. At this time, the pair of first arms 611 are rotated by the rotation mechanism, and the tips of the pair of first arms 611 are directed upward.
 そして、図8Gに示すように、一対の第1アーム611は、シャッタ97が閉じられた3次洗浄モジュール313aおよび2次洗浄モジュール312aを回避する(スキップする)ように移動され、1次洗浄モジュール311aの待機位置へと配置される。 Then, as shown in FIG. 8G, the pair of first arms 611 are moved so as to avoid (skip) the tertiary cleaning module 313a and the secondary cleaning module 312a in which the shutter 97 is closed, and the primary cleaning module. It is arranged at the standby position 311a.
 次に、図8Hに示すように、一対の第1アーム611は回動機構により回動され、一対の第1アーム611の先端が横向きに向けられる。そして、図8Iに示すように、一対の第1アーム611が互いに近接するように閉じられ、1次洗浄モジュール311a内の第2ウェハW2は、一対の第1アーム611により保持される。その後、一対の第1アーム611に保持された第2ウェハW2は、2次洗浄モジュール312aへと搬送されて第2段階の洗浄が行われる。 Next, as shown in FIG. 8H, the pair of first arms 611 are rotated by the rotation mechanism, and the tips of the pair of first arms 611 are directed sideways. Then, as shown in FIG. 8I, the pair of first arms 611 are closed so as to be close to each other, and the second wafer W2 in the primary cleaning module 311a is held by the pair of first arms 611. Thereafter, the second wafer W2 held by the pair of first arms 611 is transferred to the secondary cleaning module 312a, and the second stage cleaning is performed.
 以上のように本実施の形態では、各洗浄モジュール311a~314aおよび311b~314bにて複数のウェハWを並行して洗浄することができるため、プロセス全体のスループットを向上させることができる。 As described above, in the present embodiment, since the plurality of wafers W can be cleaned in parallel by the cleaning modules 311a to 314a and 311b to 314b, the throughput of the entire process can be improved.
 ところで、洗浄モジュール間で、ウェハが必ずしも均等な時間間隔で搬送されるとは限らない。例えば、図8Eに示すように1次洗浄モジュール311aおよび3次洗浄モジュール313aにおいてウェハW2、W1がそれぞれ洗浄されている場合、ウェハW1、W2の洗浄開始タイミングや、1次洗浄モジュール311aおよび3次洗浄モジュール313aによる洗浄時間の違いによって、1次洗浄モジュール311aによるウェハW2の洗浄が早く終了することもあるし、3次洗浄モジュール313aによるウェハW1の洗浄が早く完了することもある。 By the way, wafers are not always transferred at equal time intervals between cleaning modules. For example, as shown in FIG. 8E, when the wafers W2 and W1 are cleaned in the primary cleaning module 311a and the tertiary cleaning module 313a, respectively, the cleaning start timing of the wafers W1 and W2, the primary cleaning modules 311a and the tertiary Depending on the difference in cleaning time by the cleaning module 313a, the cleaning of the wafer W2 by the primary cleaning module 311a may be completed early, or the cleaning of the wafer W1 by the tertiary cleaning module 313a may be completed early.
 図8Eにおいては、第1ウェハ把持機構601における第1アーム611が3次洗浄モジュール313aにウェハW2を投入し、3次洗浄モジュール313aの待機位置でそのまま待機している。そして、1次洗浄モジュール311aによる洗浄が終了したことを受けて(図8F)、第1アーム611は1次洗浄モジュール311aの待機位置へと配置されている(図8G)。 In FIG. 8E, the first arm 611 in the first wafer gripping mechanism 601 puts the wafer W2 into the tertiary cleaning module 313a and stands by at the standby position of the tertiary cleaning module 313a. Then, upon completion of the cleaning by the primary cleaning module 311a (FIG. 8F), the first arm 611 is disposed at the standby position of the primary cleaning module 311a (FIG. 8G).
 この場合、図8Fから図8Gまで第1アーム611が移動する間、ウェハW1の基板洗浄が終了しているにもかかわらず、ウェハW1を次の2次洗浄モジュール312aに搬送させることができず、時間の無駄が生じる。よって、ウェハW1、W2が、搬送順が連続しない3次洗浄モジュール313a及び1次洗浄モジュール311aで洗浄中である場合、先にウェハW2の洗浄が終了したのであれば、直ちに次の2次洗浄モジュール312aで洗浄を開始できるのが望ましい。 In this case, while the substrate cleaning of the wafer W1 is completed while the first arm 611 moves from FIG. 8F to FIG. 8G, the wafer W1 cannot be transported to the next secondary cleaning module 312a. This wastes time. Therefore, when the wafers W1 and W2 are being cleaned by the tertiary cleaning module 313a and the primary cleaning module 311a whose transfer order is not continuous, if the cleaning of the wafer W2 is completed first, the next secondary cleaning is immediately performed. Desirably, cleaning can be initiated at module 312a.
 そこで、本実施の形態では次のようにする。
 図9は、洗浄部搬送機構32aの処理動作を説明するフローチャートである。図8Eに示すように、第1アーム611から3次洗浄モジュール313aへウェハW1の投入が完了したこと(ステップS1)を前提とする。
Therefore, in the present embodiment, the following is performed.
FIG. 9 is a flowchart for explaining the processing operation of the cleaning unit transport mechanism 32a. As shown in FIG. 8E, it is assumed that the introduction of the wafer W1 from the first arm 611 to the tertiary cleaning module 313a is completed (step S1).
 その後、1次洗浄モジュール311aがウェハW2を洗浄しつつ、1次洗浄モジュール311aとは搬送順が連続しない3次洗浄モジュール313aがウェハW1を洗浄する。ただし、2次洗浄モジュール312aは洗浄を行っていない。すなわち、次に発生する動作は、1次洗浄モジュール311aから2次洗浄モジュール312aにウェハW2を搬送することか、3次洗浄モジュール313aから他の装置(例えば4次洗浄モジュール314a)にウェハW1を搬送することである。 Then, while the primary cleaning module 311a cleans the wafer W2, the tertiary cleaning module 313a whose transport order is not continuous with the primary cleaning module 311a cleans the wafer W1. However, the secondary cleaning module 312a does not perform cleaning. That is, the next operation is to transfer the wafer W2 from the primary cleaning module 311a to the secondary cleaning module 312a, or to transfer the wafer W1 from the tertiary cleaning module 313a to another apparatus (for example, the fourth cleaning module 314a). It is to convey.
 そこで、アーム搬送機構62は、1次洗浄モジュール311aおよび3次洗浄モジュール313aのうち、いずれが早く洗浄を終了する見込みであるか予測する(ステップS2)。いずれが早く洗浄を終了するかは、例えば基板処理レシピに基づいて特定される。例えば、図1の制御部15は基板処理レシピを把握していているので、いずれが早く洗浄を終了するのかを特定できる。そのため、アーム搬送機構62は制御部15からいずれが早く洗浄を終了するのかの通知を受けてもよい。あるいは、洗浄部搬送機構32a自身が基板処理レシピに基づいて特定してもよい。 Therefore, the arm transport mechanism 62 predicts which of the primary cleaning module 311a and the tertiary cleaning module 313a is expected to finish the cleaning earlier (step S2). Which one completes the cleaning earlier is specified based on, for example, a substrate processing recipe. For example, since the control unit 15 in FIG. 1 knows the substrate processing recipe, it can identify which one finishes the cleaning earlier. For this reason, the arm transport mechanism 62 may receive a notification from the control unit 15 as to which cleaning is completed earlier. Or cleaning part conveyance mechanism 32a itself may specify based on a substrate processing recipe.
 1次洗浄モジュール311aが先に洗浄を終了する見込みである場合(ステップS2のYES)、アーム搬送機構62は第1アーム611を1次洗浄モジュール311aの待機位置に移動させ、この位置で待機させる(ステップS3a)。そして、1次洗浄モジュール311aが洗浄を終了すると(ステップS4aのYES)、直ちに第1アーム611が1次洗浄モジュール311aからウェハW2を取り出す(ステップS5a)。 When the primary cleaning module 311a is expected to finish the cleaning first (YES in step S2), the arm transport mechanism 62 moves the first arm 611 to the standby position of the primary cleaning module 311a and waits at this position. (Step S3a). When the primary cleaning module 311a finishes cleaning (YES in step S4a), the first arm 611 immediately takes out the wafer W2 from the primary cleaning module 311a (step S5a).
 一方、3次洗浄モジュール313aが先に洗浄を終了する見込みである場合(ステップS2のNO)、アーム搬送機構62は第1アーム611を3次洗浄モジュール313aの待機位置で待機させる(ステップS3b)。そして、3次洗浄モジュール313aが洗浄を終了すると(ステップS4bのYES)、直ちに第1アーム611が3次洗浄モジュール313aからウェハW1を取り出す(ステップS5b)。 On the other hand, when the tertiary cleaning module 313a is expected to finish the cleaning first (NO in step S2), the arm transport mechanism 62 makes the first arm 611 stand by at the standby position of the tertiary cleaning module 313a (step S3b). . When the tertiary cleaning module 313a finishes cleaning (YES in step S4b), the first arm 611 immediately takes out the wafer W1 from the tertiary cleaning module 313a (step S5b).
 このように、第1アーム611から3次洗浄モジュール313aへのウェハ投入後、1次洗浄モジュール311aおよび3次洗浄モジュール313aによる洗浄が終了するのを待たず、前もって先に洗浄が終了する洗浄モジュールの待機位置で第1アーム611が待機する。そのため、洗浄が終了するとすぐにウェハの搬送を行うことができ、待ち時間が最小化されてスループットが向上する。 In this way, after the wafer is loaded from the first arm 611 to the tertiary cleaning module 313a, the cleaning module in which the cleaning is completed in advance without waiting for the cleaning by the primary cleaning module 311a and the tertiary cleaning module 313a to end. The first arm 611 waits at the standby position. Therefore, the wafer can be transferred as soon as the cleaning is completed, the waiting time is minimized, and the throughput is improved.
 なお、本手法は、図8Eの状況以外にも適用可能である。例えば、3次洗浄モジュール313aでウェハを洗浄している際に、1次洗浄モジュール311aに別のウェハを投入した場合にも、1次洗浄モジュール311aおよび3次洗浄モジュール313aのうち早く洗浄が終了する洗浄モジュールの待機位置に第1アーム611を待機させることもできる。 It should be noted that this method can be applied to cases other than the situation shown in FIG. 8E. For example, when a wafer is being cleaned by the tertiary cleaning module 313a, even if another wafer is loaded into the primary cleaning module 311a, the cleaning is completed earlier of the primary cleaning module 311a and the tertiary cleaning module 313a. The first arm 611 can be put on standby at the standby position of the cleaning module to be used.
 また、4以上の洗浄モジュールに順にウェハを搬送して洗浄を行う場合、ある洗浄モジュールでウェハ洗浄中に、搬送順が連続しない他の洗浄モジュールにウェハを投入した後、最も早く洗浄が終了する洗浄モジュールの待機位置に、基板を把持するアームを待機させればよい。 In addition, when cleaning is performed by sequentially transporting wafers to four or more cleaning modules, cleaning is completed earliest after a wafer is loaded into another cleaning module whose transport order is not continuous during wafer cleaning with a certain cleaning module. What is necessary is just to make the arm which hold | grips a substrate stand by in the stand-by position of a cleaning module.
 なお、上述した実施の形態では、2次洗浄モジュール332aでの洗浄前のウェハWが一対の第1アーム611により把持されて搬送され、2次洗浄モジュール332aでの洗浄後のウェハWが一対の第2アーム612により把持されて搬送されたが、これに限定されない。例えば、1次洗浄モジュール331aでの洗浄前のウェハWが一対の第1アーム611により把持されて搬送され、1次洗浄モジュール331aでの洗浄後のウェハWが一対の第2アーム612により把持されて搬送されてもよいし、3次洗浄モジュール333aでの洗浄前のウェハWが一対の第1アーム611により把持されて搬送され、3次洗浄モジュール333aでの洗浄後のウェハWが一対の第2アーム612により把持されて搬送されてもよい。 In the above-described embodiment, the wafer W before cleaning by the secondary cleaning module 332a is held and transported by the pair of first arms 611, and the wafer W after cleaning by the secondary cleaning module 332a is paired. Although gripped and transported by the second arm 612, the present invention is not limited to this. For example, the wafer W before cleaning in the primary cleaning module 331a is gripped and transferred by the pair of first arms 611, and the wafer W after cleaning in the primary cleaning module 331a is gripped by the pair of second arms 612. The wafer W before cleaning in the tertiary cleaning module 333a may be held and transported by the pair of first arms 611, and the wafer W after cleaning in the tertiary cleaning module 333a may be transferred to the pair of first arms. The two arms 612 may be held and conveyed.
 なお、上述の実施形態では、ウェハを研磨する研磨装置を例に説明したが、本技術は研磨装置に限らず他の基板処理装置にも適用できるものである。例えば、複数の研磨ユニットを他の基板処理ユニット(例えば、めっき処理ユニットやCVDユニットなどの成膜処理ユニット、ウェットエッチングユニットやドライエッチングユニットなど)に置き換え、研磨装置とは別の基板処理装置を構成してもよい。また、異なる複数の基板処理ユニットを組み合わせ、これらを所定の方向に並べて配置してもよい。 In the above-described embodiment, the polishing apparatus that polishes the wafer has been described as an example. However, the present technology is not limited to the polishing apparatus, but can be applied to other substrate processing apparatuses. For example, a plurality of polishing units are replaced with another substrate processing unit (for example, a film processing unit such as a plating unit or a CVD unit, a wet etching unit or a dry etching unit), and a substrate processing apparatus different from the polishing apparatus is used. It may be configured. Also, a plurality of different substrate processing units may be combined and arranged in a predetermined direction.
 これまで本技術の好ましい実施形態について説明したが、本技術は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although preferred embodiments of the present technology have been described so far, it is needless to say that the present technology is not limited to the above-described embodiments, and may be implemented in various forms within the scope of the technical idea.

Claims (5)

  1.  基板を把持するように構成された基板把持機構と、
     前記基板が3以上の洗浄モジュール間で順に搬送されるよう、前記基板把持機構を搬送する搬送機構と、を備え、
     前記搬送機構は、前記基板が前記基板把持機構からいずれかの洗浄モジュールに投入された後、前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させることを特徴とする搬送装置。
    A substrate gripping mechanism configured to grip a substrate;
    A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between three or more cleaning modules,
    The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate. A transport apparatus, wherein the substrate gripping mechanism is placed on standby at a standby position.
  2.  基板処理レシピに基づいて、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールが特定されることを特徴とする請求項1に記載の搬送装置。 2. The transfer device according to claim 1, wherein a cleaning module that finishes cleaning earlier is identified based on a substrate processing recipe among the first cleaning module and the second cleaning module.
  3.  前記搬送機構は、前記第1洗浄モジュールおよび前記第2洗浄モジュールのいずれも基板の洗浄が終了する前に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させることを特徴とする請求項1または2に記載の搬送装置。 The transport mechanism corresponds to a cleaning module in which cleaning is completed earlier among the first cleaning module and the second cleaning module before both the first cleaning module and the second cleaning module are cleaned. The transport apparatus according to claim 1, wherein the substrate gripping mechanism is placed on standby at a standby position where the substrate is held.
  4.  3以上の洗浄モジュールと、
     基板を把持するように構成された基板把持機構と、
     前記基板が前記3以上の洗浄モジュール間で順に搬送されるよう、前記基板把持機構を搬送する搬送機構と、を備え、
     前記搬送機構は、前記基板が前記基板把持機構からいずれかの洗浄モジュールに投入された後、前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させることを特徴とする洗浄装置。
    3 or more cleaning modules;
    A substrate gripping mechanism configured to grip a substrate;
    A transport mechanism that transports the substrate gripping mechanism so that the substrate is transported in order between the three or more cleaning modules;
    The transport mechanism is configured such that the first cleaning module of the three or more cleaning modules is cleaning the first substrate after the substrate is put into any of the cleaning modules from the substrate gripping mechanism; and The first cleaning module corresponds to the first cleaning module and the cleaning module that finishes cleaning earlier when the second cleaning module whose transport order is not continuous is cleaning the second substrate. A cleaning apparatus, wherein the substrate holding mechanism is made to wait at a standby position.
  5.  基板を3以上の洗浄モジュール間で順に搬送する基板搬送方法であって、
     基板把持機構から基板をいずれかの洗浄モジュールに投入することと、
     前記3以上の洗浄モジュールのうちの第1洗浄モジュールが第1基板を洗浄中であり、かつ、前記第1洗浄モジュールとは搬送順が連続しない第2洗浄モジュールが第2基板を洗浄中である場合に、前記第1洗浄モジュールおよび前記第2洗浄モジュールのうち早く洗浄が終了する洗浄モジュールと対応する待機位置に前記基板把持機構を待機させることと、を備えることを特徴とする基板搬送方法。
    A substrate transfer method for transferring a substrate in sequence between three or more cleaning modules,
    Throwing the substrate into one of the cleaning modules from the substrate gripping mechanism;
    Of the three or more cleaning modules, the first cleaning module is cleaning the first substrate, and the second cleaning module whose transport order is not continuous with the first cleaning module is cleaning the second substrate. In this case, the substrate transport method comprises: waiting the substrate gripping mechanism at a standby position corresponding to a cleaning module that finishes cleaning earlier among the first cleaning module and the second cleaning module.
PCT/JP2017/011928 2016-03-31 2017-03-24 Conveyance apparatus, cleaning apparatus, and substrate conveying method WO2017170191A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016072907 2016-03-31
JP2016-072907 2016-03-31
JP2016144385A JP2017188642A (en) 2016-03-31 2016-07-22 Transfer device, cleaning device and substrate transfer method
JP2016-144385 2016-07-22

Publications (1)

Publication Number Publication Date
WO2017170191A1 true WO2017170191A1 (en) 2017-10-05

Family

ID=59965640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011928 WO2017170191A1 (en) 2016-03-31 2017-03-24 Conveyance apparatus, cleaning apparatus, and substrate conveying method

Country Status (1)

Country Link
WO (1) WO2017170191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208223A (en) * 1987-02-25 1988-08-29 Hitachi Ltd Wafer treating apparatus
JPH08236491A (en) * 1995-02-22 1996-09-13 Tokyo Electron Ltd Device and method for cleaning
JP2006156843A (en) * 2004-11-30 2006-06-15 Kaijo Corp Substrate processing apparatus and substrate transfer method
JP2009135275A (en) * 2007-11-30 2009-06-18 Panasonic Corp Conveyance system, and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208223A (en) * 1987-02-25 1988-08-29 Hitachi Ltd Wafer treating apparatus
JPH08236491A (en) * 1995-02-22 1996-09-13 Tokyo Electron Ltd Device and method for cleaning
JP2006156843A (en) * 2004-11-30 2006-06-15 Kaijo Corp Substrate processing apparatus and substrate transfer method
JP2009135275A (en) * 2007-11-30 2009-06-18 Panasonic Corp Conveyance system, and control method thereof

Similar Documents

Publication Publication Date Title
KR102614540B1 (en) Substrate processing apparatus
TWI475629B (en) Substrate processing apparatus
JP6190645B2 (en) Substrate transfer method
JP6596375B2 (en) Teaching apparatus and teaching method
US20150290767A1 (en) Substrate processing apparatus
TW201601875A (en) Substrate processing apparatus
JP2000294616A (en) Alignment mechanism with temporary loading table and polishing device
JP6895341B2 (en) Board processing equipment
JP6987184B2 (en) Board processing equipment
WO2017170191A1 (en) Conveyance apparatus, cleaning apparatus, and substrate conveying method
JP2022072570A (en) Method for determining extraction timing of substrate from cassette in substrate processing apparatus, device, program, and substrate processing apparatus
WO2020179804A1 (en) Substrate processing device
JP2017188642A (en) Transfer device, cleaning device and substrate transfer method
JP5778944B2 (en) Substrate processing equipment
JP7394821B2 (en) Substrate processing equipment
JP7200345B2 (en) Substrate processing equipment
TW202111796A (en) Coating and developing device
TW202417181A (en) Substrate processing equipment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774728

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774728

Country of ref document: EP

Kind code of ref document: A1