WO2017169908A1 - Linear motor, voice coil motor, and stage device - Google Patents

Linear motor, voice coil motor, and stage device Download PDF

Info

Publication number
WO2017169908A1
WO2017169908A1 PCT/JP2017/010945 JP2017010945W WO2017169908A1 WO 2017169908 A1 WO2017169908 A1 WO 2017169908A1 JP 2017010945 W JP2017010945 W JP 2017010945W WO 2017169908 A1 WO2017169908 A1 WO 2017169908A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
linear motor
coil unit
resin layer
holder
Prior art date
Application number
PCT/JP2017/010945
Other languages
French (fr)
Japanese (ja)
Inventor
道太郎 臼井
池田 隆
康太郎 和田
敦志 柳川
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2018509053A priority Critical patent/JP6788664B2/en
Publication of WO2017169908A1 publication Critical patent/WO2017169908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor and a voice coil motor.
  • Patent Document 1 describes a linear motor including a stator composed of a permanent magnet and a field yoke, and a movable coil type armature having a coil unit including a plurality of coils in the movable element.
  • the linear motor described in Patent Document 1 is particularly equipped with a cooling unit.
  • This cooling unit is formed of a block-like high heat conductive member, and is provided detachably with respect to a mounting plate to which an armature is attached.
  • a plurality of heat pipes are provided inside the cooling unit, and a heat sink with fins is in contact with the heat radiating side of the heat pipe. That is, this linear motor improves the cooling performance of the armature coil by devising its arrangement using a heat pipe and a heat sink with fins.
  • the conventional linear motor technology has room for improvement from the viewpoint of suppressing the temperature rise of the coil unit while maintaining the productivity of the coil unit.
  • Such a problem is not limited to a linear motor, but may also occur for a voice coil motor.
  • One of the objects of the present invention is to provide a linear motor or a voice coil motor capable of suppressing the temperature rise of the coil unit.
  • a linear motor includes a mover including a coil unit and a coil holder that accommodates and supports a part of the coil unit.
  • the coil unit includes a plurality of coils, a resin layer that covers the plurality of coils, and a coating portion that covers at least a part of the resin layer.
  • the heat generated in the coil unit can be recovered to the coil holder through the resin layer and the coating portion covering at least a part of the resin layer.
  • the voice coil motor includes a coil unit and a coil holder that supports the coil unit.
  • the coil unit includes a coil, a resin layer that covers the coil, and a coating portion that covers at least a part of the resin layer.
  • a stage apparatus includes the linear motor described above.
  • FIG. 12 is a sectional view showing a longitudinal section along the line AA of the stator of FIG. 11. It is a top view which shows the state which remove
  • FIG. 12 is a sectional view showing a longitudinal section along the line AA of the stator of FIG. 11. It is a top view which shows the state which remove
  • FIG. 15 is a sectional view showing a longitudinal section along the line BB of the stator of FIG. 14. It is a top view which shows typically the stator of the voice coil motor which concerns on another modification.
  • FIG. 17 is a sectional view showing a longitudinal section along the line CC of the stator in FIG. 16.
  • FIG. 1 is a perspective view of a linear motor 2 according to the first embodiment.
  • FIG. 2 is a side view of the linear motor 2 according to the first embodiment.
  • the linear motor 2 includes a stator 20 and a mover 10.
  • the stator 20 mainly includes a yoke 22, a field magnet 24, and an auxiliary pole magnet 26 that is a magnet different from the field magnet 24, and forms a field magnetic field in the magnetic gap 34.
  • the mover 10 is provided in the magnetic gap 34 of the stator 20 so as to be movable in the movable direction.
  • description will be made based on the XYZ orthogonal coordinate system.
  • the X-axis corresponds to the horizontal left-right direction
  • the Y-axis corresponds to the horizontal front-rear direction
  • the Z-axis corresponds to the vertical up-down direction.
  • the Y-axis direction and the Z-axis direction are each orthogonal to the X-axis direction.
  • the X-axis direction may be referred to as the left direction or the right direction
  • the Y-axis direction may be referred to as the forward direction or the rear direction
  • the Z-axis direction may be referred to as the upward direction or the downward direction.
  • the movable direction of the mover 10 is set to the horizontal direction (X-axis direction). Such notation of the direction does not limit the use posture of the linear motor 2, and the linear motor 2 can be used in an arbitrary posture.
  • FIG. 3 is a plan view of the stator 20 according to the first embodiment.
  • the yoke 22 supports the field magnet 24 and the auxiliary pole magnet 26 and constitutes a magnetic circuit as a back yoke for the field magnet 24 and the auxiliary pole magnet 26.
  • the yoke 22 may be formed in, for example, a long and substantially rectangular shape.
  • the field magnet 24 forms a field magnetic field in the magnetic gap 34.
  • the auxiliary pole magnet 26 forms a Halbach array structure together with the field magnet 24 to reinforce the field magnetic field of the magnetic gap 34.
  • a plurality of field magnets 24 are bonded and fixed inside the yoke 22 (on the magnetic gap 34 side) in a plurality of straight lines in the moving direction (X-axis direction) of the mover 10.
  • the auxiliary pole magnet 26 is fixed between two adjacent field magnets 24.
  • the field magnet 24 and the auxiliary pole magnet 26 are formed of, for example, a magnetic material containing a rare earth element by a sintering method.
  • the field magnet 24 and the auxiliary pole magnet 26 may have a surface layer such as a plating layer.
  • the field magnet 24 and the auxiliary pole magnet 26 are formed in a rectangular plate shape, for example. In the present invention, it is not essential to provide the supplementary magnet 26.
  • the field magnet 24 has a thin rectangular parallelepiped shape in the Y-axis direction, has a front surface and a back surface on which magnetic pole surfaces are respectively formed, and the back surface is fixed to the inner side surface of the yoke 22. That is, the magnetization direction 24m of the field magnet 24 is formed parallel to the Y axis. As shown in FIG. 3, magnetic poles having opposite polarities are provided in front of the two field magnets 24 facing each other across the magnetic gap 34. For this reason, these field magnets 24 generate a magnetic attractive force attracting each other. Due to this magnetic attractive force, a load in the inward direction is input to the opposing yokes 22 via the magnetic gap 34.
  • the auxiliary pole magnet 26 has a thin rectangular parallelepiped shape in the Y-axis direction, has a front surface and a back surface parallel to the X-axis, and the back surface is fixed to the inner side surface of the yoke 22. Magnetic pole surfaces are formed on both side surfaces of the auxiliary magnet 26, respectively. That is, the magnetization direction 26m of the auxiliary pole magnet 26 is formed parallel to the X axis.
  • the magnetic circuit of the linear motor has a configuration in which the magnetic field of the auxiliary pole magnet 26 can be concentrated on the magnetic gap 34 side in order to improve the motor characteristics while suppressing the saturation of the yoke 22. Therefore, the magnetization direction 26m of the auxiliary pole magnet 26 of the first embodiment is formed in a direction 90 ° different from the magnetization direction 22m of the field magnet 24. With this configuration, the field magnet 24 and the auxiliary magnet 26 form a Halbach array structure, and the magnetic field of the field magnet 24 can be collected on the magnetic gap 34 side.
  • FIG. 4 is a perspective view of the mover 10.
  • FIG. 5 is a side sectional view of the mover 10 taken along a vertical plane along the line AA.
  • the mover 10 mainly includes a coil unit 18 and a coil holder 11.
  • the coil unit 18 includes a plurality of (for example, three) coils 15.
  • the coil holder 11 accommodates and supports the upper part (end part in the Z-axis direction) of the coil unit 18.
  • the coil holder 11 has a rectangular parallelepiped shape elongated in the X-axis direction, and is formed of a metal material such as an aluminum alloy having excellent thermal conductivity.
  • the coil holder 11 is provided with an accommodation recess 11 g for accommodating a part of the coil unit 18.
  • the housing recess 11 g extends in the X-axis direction on the lower surface of the coil holder 11.
  • the housing recess 11 g houses the upper part of the coil unit 18.
  • a portion of the housing recess 11 g facing the coil unit 18 has a shape corresponding to the shape of the coil unit 18.
  • the portion of the housing recess 11 g that faces the coil unit 18 has a shape along the undulation of the surface of the coil unit 18.
  • a protrusion 11j corresponding to the recess 18j of the coil unit 18 is formed at a portion of the housing recess 11g facing the coil unit 18. In this case, the gap between the coil unit 18 and the housing recess 11g is reduced, and the heat generated in the coil unit 18 can be effectively recovered in the coil holder 11.
  • the coil holder 11 is provided with a cooling passage that extends in the vicinity of the coil unit 18 and allows the refrigerant to pass therethrough.
  • the cooling passage includes a plurality of (for example, two) cooling passages 11e and 11f extending in the X-axis direction.
  • the cooling passages 11e and 11f penetrate the coil holder 11 in the X-axis direction.
  • the cooling passages 11e and 11f may be horizontal holes drilled in the coil holder 11 or pipes embedded in the coil holder 11.
  • the cooling passages 11e and 11f are passages for passing a cooling liquid.
  • the cooling passages 11 e and 11 f are provided in the vicinity of the coil unit 18.
  • the range of the cooling passages 11e and 11f in the Y-axis direction has a portion that overlaps the range of the coil unit 18 in the Y-axis direction.
  • both end surfaces of the coil holder 11 in the X-axis direction are covered with holder covers 12a and 12b, respectively.
  • the holder cover 12a covers the left end surface of the coil holder 11, and is provided with tubular end portions 12h and 12j communicating with the cooling passages 11e and 11f.
  • the tubular ends 12h and 12j may be connected to a radiator (not shown).
  • the holder cover 12b covers the right end surface of the coil holder 11 and connects the cooling passages 11e and 11f.
  • the holder cover 12b is provided with a folded passage 12g.
  • One opening 12f of the passage 12g is connected to the cooling passage 11f, and the other opening 12e is connected to the cooling passage 11e.
  • the refrigerant sent out from the passage 12g is sent out to the cooling passage 11f through the passage 12g.
  • the coil unit 18 mainly includes a plurality of coils 15, a resin layer 16, and a coating part 14.
  • the coil unit 18 is provided at an extension end of a fixing portion 18h that is received and fixed in the receiving recess 11g of the coil holder 11, and an intermediate portion 18m that extends from the fixing portion 18h in a direction away from the coil holder 11 (Z direction). And a non-fixed portion 18d provided.
  • the intermediate part 18m is a thin plate-like part in the Y-axis direction.
  • the intermediate portion 18m has a substantially rectangular shape when viewed from the front and a substantially I shape when viewed from the side.
  • the intermediate portion 18m mainly includes a first side 15p and a second side 15q, which will be described later, of the coil 15.
  • the fixing portion 18h is a block-shaped portion that is larger in the Y-axis direction than the intermediate portion 18m and is long in the X-axis direction.
  • the fixing portion 18h has a substantially rectangular shape when viewed from the front and a substantially V shape when viewed from the side.
  • the fixing portion 18h may be substantially T-shaped, substantially Y-shaped or substantially I-shaped in side view.
  • the fixing portion 18h mainly includes a third side 15h to be described later of the coil 15.
  • the non-fixed portion 18d is a block-shaped portion that is larger in the Y-axis direction than the intermediate portion 18m and is long in the X-axis direction.
  • the non-fixed portion 18d has a substantially rectangular shape when viewed from the front and a substantially rectangular shape or an inverted V shape when viewed from the side.
  • the non-fixed portion 18d mainly includes a later-described fourth side 15d of the coil 15.
  • FIG. 6 is a cross-sectional view of the mover 10 as viewed from the front.
  • FIG. 6 shows a longitudinal section cut through a longitudinal plane parallel to the X-axis direction through the front side of the coil closest to the front surface among the plurality of coils 15, and a longitudinal section of a cooling passage 11f and a longitudinal section of an end passage 11d described later. It is schematically shown with the surface overlapped.
  • Each of the plurality of coils 15 is disposed so as to partially overlap along the movable direction (X-axis direction) of the mover 10.
  • the coil 15 is an air-core coil formed by winding a conductive wire (for example, a copper wire) whose surface is insulated a predetermined number of times.
  • the coil 15 extends in the X-axis direction and the Z-axis direction and is thinly formed in the Y-axis direction.
  • the coil 15 has a substantially rectangular shape when viewed from the front.
  • the coil 15 includes a first side 15p and a second side 15q that are spaced apart in the movable direction (X-axis direction) of the mover 10, and a third side 15h and a fourth side 15d that are spaced apart in the Z-axis direction. And having.
  • the first side 15p and the second side 15q mainly face the field magnet 24 and the auxiliary pole magnet 26 in the Y-axis direction and extend substantially linearly along the Z-axis direction.
  • the third side 15h and the fourth side 15d extend substantially linearly along the X-axis direction.
  • the first side 15p and the second side 15q are working sides that generate a thrust when a current flows
  • the third side 15h and the fourth side 15d are non-working sides that generate substantially no thrust.
  • the third side 15h and the fourth side 15d may be bent in the Y-axis direction.
  • the resin layer 16 is a resin layer that covers the plurality of coils 15.
  • the resin layer 16 is configured to support the coil 15, collect heat generated in the coil 15, and transmit it to the coating portion 14.
  • the resin layer 16 may be a resin film formed by outsert molding so as to cover the entire plurality of coils 15.
  • Such a resin film can be formed by, for example, pouring resin into a mold in which a plurality of coils 15 are arranged and then solidifying the resin film.
  • a molding process for example, means such as an injection mold and a transfer mold can be used.
  • the resin layer 16 includes a first resin layer 16h, a second resin layer 16m, and a third resin layer 16d, and is integrally formed.
  • the first resin layer 16h mainly includes the third side 15h of the coil 15 corresponding to the fixing portion 18h.
  • the second resin layer 16m mainly includes the first side 15p and the second side 15q of the coil 15 corresponding to the intermediate portion 18m.
  • the third resin layer 16d mainly includes the fourth side 15d of the coil 15 corresponding to the non-fixed portion 18d.
  • the resin layer 16 is preferably formed of a material having high thermal conductivity. Therefore, the resin layer 16 of the coil unit 18 of the first embodiment is desirably formed of a material having a higher thermal conductivity than a general-purpose epoxy resin having a thermal conductivity of about 0.2 W / (m ⁇ K). More preferably, the resin layer 16 is made of a material having a thermal conductivity of 0.5 W / (m ⁇ K) or more, more preferably 1 W / (m ⁇ K) or more, and even more preferably 5 W / (m ⁇ K) or more. It is desirable to be formed. As such a material, a high thermal conductivity resin (for example, a high thermal conductivity PPS resin) can be used.
  • a high thermal conductivity resin for example, a high thermal conductivity PPS resin
  • the film part 14 is a film that covers at least a part of the resin layer 16.
  • the film part 14 is configured to recover the heat of the resin layer 16 and transmit it to the coil holder 11.
  • the film part 14 may be formed from a material having a higher thermal conductivity than the resin layer 16, for example.
  • the film part 14 may be formed from metal materials, such as aluminum alloy and stainless steel, for example.
  • the film part 14 may be formed from nonmetallic materials, such as a graphite sheet, for example.
  • membrane part 14 may be formed from the board
  • the coating portion 14 is preferably formed from a nonmagnetic material.
  • coat part 14 1 mm or less is desirable. More preferably, the thickness of the film part 14 is 0.2 mm or less, and more preferably 0.1 mm or less.
  • the film part 14 of the first embodiment is formed from nonmagnetic stainless steel having a thickness of 0.03 mm.
  • the coating portion 14 may be formed by winding a material around the resin layer 16.
  • the film part 14 may be formed by attaching a material pre-formed into a predetermined shape to the resin layer 16. In this case, the film part 14 may be preformed into a shape that encloses the resin layer 16.
  • An adhesive may be interposed between the film portion 14 and the resin layer 16, and these may be bonded and fixed. This adhesive desirably has a high thermal conductivity similar to that of the resin layer 16.
  • the film part 14 includes a first film part 14m and a second film part 14h.
  • the first coating portion 14m is a cylindrical portion that mainly covers the second resin layer 16m corresponding to the intermediate portion 18m. The first film part 14m recovers the heat of the intermediate part 18m.
  • the second coating portion 14h is a bowl-shaped portion that projects in the Y-axis direction from the coil holder 11 side of the first coating portion 14m.
  • the second coating portion 14 h may be formed so as to contact the coil holder 11.
  • the second coating part 14 h transfers heat to the coil holder 11.
  • the second film portion 14 h may be fixed to the coil holder 11 by the fixing tool 13.
  • the fixing tool 13 that is a screw passes through the second coating portion 14h and is screwed into a hole provided in the coil holder 11 to be fixed.
  • An adhesive may be interposed between the second film part 14 h and the coil holder 11. It is desirable that the second coating portion 14h is in close contact with the coil holder 11.
  • the linear motor 2 of the first embodiment is further provided with an end passage 11d that is a cooling passage for allowing the refrigerant to pass therethrough and is a cooling passage different from the cooling passage.
  • the end passage 11 d extends in the vicinity of the plurality of coils 15 at a position away from the coil holder 11.
  • the end passage 11d may be a passage extending in the X-axis direction at the non-fixed portion 18d of the coil unit 18, for example.
  • the end passage 11d may be a horizontal hole bored in the non-fixed portion 18d, or a pipe embedded in the non-fixed portion 18d.
  • the end passage 11d is configured so that the refrigerant collects and discharges the heat in the non-fixed portion 18d by allowing the refrigerant to pass therethrough. From the viewpoint of efficiently recovering heat generated in the coil 15, the end passage 11 d is desirably provided in the vicinity of the fourth side 15 d of the coil 15. More preferably, it is desirable that the Z-axis range of the end passage 11 d at least partially overlaps the Z-axis range of the plurality of coils 15. It is not essential that the connection passages 11h and 11m are provided in the coil unit 18.
  • Connection passages 11h and 11m that connect the cooling passages 11e and 11f and the end passage 11d may be provided.
  • the connection passages 11h and 11m are provided in the coil unit 18, for example. As shown in FIG. 6, the connection passages 11 h and 11 m extend in the Z-axis direction at the intermediate portion 18 m of the coil unit 18.
  • the connection passages 11h and 11m are passages for allowing the refrigerant to pass through the cooling passages 11e and 11f and the end passage 11d.
  • the connection passages 11h and 11m may be vertical holes formed in the intermediate portion 18m of the coil unit 18, or may be pipes embedded in the intermediate portion 18m of the coil unit 18.
  • the connection passages 11h and 11m are configured such that the refrigerant collects and discharges the heat of the intermediate portion 18m of the coil unit 18 by allowing the refrigerant to pass therethrough.
  • connection passages 11h and 11m include a portion extending between the first side 15p and the second side 15q. That is, the connection passages 11h and 11m are provided in the space between the first side 15p and the second side 15q.
  • the third side 15h and the fourth side 15d of the coil 15 are bent outward from the center of the coil 15 in the Y-axis direction, so that the central portion of the coil 15 is vacant and can be connected with little interference with the coil 15.
  • Passages 11h and 11m can be arranged. It is not essential that the connection passages 11h and 11m are provided in the coil unit 18.
  • FIG. 7 is a schematic diagram illustrating an example of a refrigerant path of the mover 10.
  • the left end sides of the cooling passages 11e and 11f are connected to the tubular ends 12h and 12j of the holder cover 12a.
  • the right end sides of the cooling passages 11e and 11f are connected through the passage 12g of the holder cover 12b.
  • the tubular ends 12h and 12j are each connected to a radiator (not shown).
  • the refrigerant whose temperature has been recovered by collecting heat is sent from the tubular end portion 12h to the radiator, and the refrigerant cooled by the radiator is sent to the tubular end portion 12j.
  • the refrigerant enters the tubular end 12j as indicated by the arrow A and passes through the cooling passage 11f as indicated by the arrow B. Subsequently, the refrigerant passes through the passage 12g as indicated by an arrow C and passes through the cooling passage 11e as indicated by an arrow D. Subsequently, the refrigerant is sent out from the tubular end portion 12h to the radiator as indicated by an arrow E. As described above, the refrigerant circulates in the cooling passages 11e and 11f, whereby the heat of the coil holder 11 is recovered by the radiator and discharged.
  • a part of the refrigerant sent to the tubular end portion 12j passes downward through the connection passage 11h as indicated by an arrow F and flows in the X-axis direction through the end passage 11d as indicated by an arrow G.
  • the refrigerant that has flowed into the end passage 11d flows upward through the connection passage 11m and reaches the cooling passage 11f.
  • the refrigerant circulates through the connection passage 11h, the end passage 11d, and the connection passage 11m, whereby the heat of the coil unit 18 is recovered by the radiator and discharged.
  • the radiator may be provided with a pump that promotes circulation of the refrigerant.
  • a liquid having a fluorine-based hydrofluoroether structure may be used as the refrigerant. This liquid is excellent in thermal and chemical stability, has a substantially zero ozone depletion coefficient, and is easy to handle.
  • the linear motor 2 of the first embodiment may be used in a vacuum environment.
  • the linear motor 2 can be suitably used, for example, in a vacuum environment in a decompression chamber.
  • the vacuum environment refers to an environment where the pressure is reduced from atmospheric pressure including ultra-high vacuum to low vacuum.
  • the material constituting the resin layer of the coil unit may volatilize and generate gas. Such gassing can cause contamination of the vacuum chamber and the product being manufactured. Therefore, in the mover 10 of the first embodiment, at least a part of the resin layer 16 of the coil unit 18 is covered with the coating part 14. With this configuration, gas generation from the resin layer 16 can be suppressed.
  • the coating unit 14 is provided on the outer surface of the coil unit 18, and the coating unit 14 comes into contact with the coil holder 11, so that the heat generated in the coil unit 18 is generated by the coil holder 11. The temperature rise of the coil unit 18 is suppressed.
  • the coil unit 18 includes a plurality of coils 15, a resin layer 16 that covers the plurality of coils 15, and a coating portion 14 that covers at least a part of the resin layer 16.
  • the film part 14 has a part that contacts the coil holder 11. According to this configuration, the heat generated in the coil 15 can be recovered in the coil holder 11 through the resin layer 16 and the coating portion 14.
  • the coil holder 11 is provided with cooling passages 11e and 11f that extend in the vicinity of the coil unit 18 and allow the refrigerant to pass therethrough. According to this configuration, the heat of the coil holder 11 can be discharged through the cooling passages 11e and 11f.
  • the linear motor 2 further includes an end passage 11d that is a cooling passage for allowing the refrigerant to pass therethrough and is a cooling passage different from the cooling passages 11e and 11f. It extends in the vicinity of the plurality of coils 15 at a position away from the holder 11. According to this configuration, the end passage 11 d can recover the radiant heat in the vicinity of the plurality of coils 15.
  • the coil unit 18 is provided with connection passages 11h and 11m that connect the cooling passages 11e and 11f and the end passage 11d that is another cooling passage. According to this configuration, the refrigerant can go around the connection passages 11h and 11m and the end passage 11d.
  • the coil 15 has a first side 15p and a second side 15q that are spaced apart from each other in the movable direction, and the connection passages 11h and 11m have a first side 15p and a second side. A portion extending between the sides 15q is included. According to this configuration, the connection passages 11h and 11m can efficiently recover heat in the vicinity of the first side 15p and the second side 15q.
  • the coil holder 11 is provided with a housing recess 11g for housing a part of the coil unit 18, and the portion of the housing recess 11g that faces the coil unit 18 is the portion of the coil unit 18. It has a shape corresponding to the shape. According to this configuration, the gap between them becomes small, and the heat generated in the coil unit 18 can be effectively recovered in the coil holder 11.
  • the linear motor 2 of the first embodiment may be used in a vacuum environment. According to this structure, the gas generation to the said vacuum environment and the temperature rise of the coil unit 18 can be suppressed.
  • FIG. 9 is a plan view of the stage apparatus 100 using the linear motor 2 according to the first embodiment.
  • This stage apparatus 100 is called an XY stage, and positions an object in the X direction and the Y direction.
  • the stage apparatus 100 mainly includes a Y stage 120, an X stage 130, and a surface plate 140.
  • the Y stage 120 includes a pair of sliders 124 and a horizontal member 122 that extends horizontally between the pair of sliders 124.
  • An X linear motor 2X that moves the X stage 130 in the X direction is provided on the horizontal member 122.
  • the X linear motor 2 ⁇ / b> X includes a stator 20 that is fixed to the horizontal member 122 and extends in the X direction, and a mover (coil) 10 that is coupled to the lower surface of the X stage 130.
  • the mover 10 of the X linear motor 2X the X stage 130 is positioned in the X direction.
  • a pair of Y linear motors 2Y are provided at both ends of the surface plate 140.
  • Each of the Y linear motors 2Y includes a mover 10 and a stator 20.
  • the slider 124 is fixed to the stator 20 of the Y linear motor 2Y.
  • the Y stage 120 is positioned in the Y direction by controlling the mover 10 of the Y linear motor 2Y.
  • the above is the configuration of the stage apparatus 100.
  • the linear motor 2 according to the first embodiment can be suitably used for the X linear motor 2X or the Y linear motor 2Y of the stage apparatus 100.
  • the stage apparatus 100 can be used for positioning a wafer or a glass substrate in an exposure apparatus, or can be used for an actuator used in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 8 is a front sectional view of the mover 210 corresponding to FIG. 6.
  • the mover 210 is different from the mover 10 in the arrangement of the connection passages 11h and 11m, and the other configurations are the same. Therefore, the overlapping description is omitted and the differences are mainly described.
  • the connection passages 11 h and 11 m are disposed inside the coil unit 18, whereas in the mover 210, the connection passages 11 h and 11 m are disposed outside the coil unit 18. As shown in FIG. 8, both ends of the end passage 11d protrude from both end surfaces of the coil unit 18 in the X-axis direction.
  • connection passage 11 h connected to the left protruding end of the end passage 11 d is connected to the cooling passages 11 e and 11 f outside the coil unit 18.
  • the upper end of the connection passage 11h may be connected to the cooling passages 11e and 11f, for example, by a holder cover 12a.
  • the upper end of the connection passage 11m connected to the right protruding end of the end passage 11d is connected to the cooling passages 11e and 11f outside the coil unit 18.
  • the upper end of the connection passage 11m may be connected to the cooling passages 11e and 11f by a holder cover 12b, for example. According to the configuration of the first modification, since the connection passages 11h and 11m are disposed outside the coil unit 18, the coil unit 18 can be easily manufactured.
  • the film part 14 may be a film part formed by known film forming means such as a vapor deposition film, a sputtered film, and a plating film.
  • the coil unit 18 demonstrated the example containing the three coils 15, it is not restricted to this.
  • the coil unit may include four or more coils.
  • the cooling passage may include a portion extending in the Y-axis direction other than the X-axis direction, for example.
  • the end passage 11d is provided inside the coil unit 18 .
  • the end passage may be provided outside the coil unit.
  • the end passage may be provided in the yoke 22, for example.
  • the end passage may be provided at the bottom 28 of the yoke 22 (see FIG. 2). By providing the bottom portion 28 close to the Z-axis direction side of the non-fixed portion 18d, the heat generated in the coil unit 18 can be efficiently recovered in the end passage.
  • Such an end passage may be a hole drilled in the yoke 22 or a pipe embedded in the yoke 22.
  • FIG. 10 is a side view schematically showing a voice coil motor 300 according to the second embodiment.
  • the voice coil motor 300 according to the second embodiment includes a stator 320 and a mover 310 provided so as to be movable along a linear or arcuate track with respect to the stator 320.
  • the stator 320 and the mover 310 face each other in the Z-axis direction with the magnetic gap 318 interposed therebetween.
  • Stator 320 includes a coil unit 328.
  • the mover 310 mainly includes a field magnet 312 and a back yoke 314 provided on the opposite side of the field magnet 312 from the stator 320.
  • a surface of the field magnet 312 facing the stator 320 is provided with a plurality of magnetic poles (for example, two poles) arranged in the moving direction of the mover 310.
  • the coil unit 328 By energizing the coil unit 328, the coil unit 328 forms a coil magnetic flux. Due to the interaction between the coil magnetic flux and the field magnetic flux of the field magnet 312, a thrust in the Y-axis direction is generated in the field magnet 312.
  • the field magnet 312 extends in the X-axis direction and the Y-axis direction and is thinly formed in the Z-axis direction, and has a substantially rectangular shape or a substantially trapezoidal shape in plan view.
  • the field magnet 312 can be formed of various magnet materials such as an NdFeB magnet material.
  • the back yoke 314 extends in the X-axis direction and the Y-axis direction, is formed thin in the Z-axis direction, and has a substantially rectangular shape or a substantially trapezoidal shape in plan view.
  • the back yoke 314 can be formed of a metal material having soft magnetism such as a steel plate.
  • FIG. 11 is a plan view schematically showing the stator 320 of the voice coil motor 300.
  • FIG. FIG. 12 is a cross-sectional view showing a longitudinal section of the stator 320 along the line AA.
  • FIG. 13 is a plan view showing a state in which a later-described film portion 326 is removed from the stator 320.
  • the stator 320 mainly includes a coil unit 328 and a coil holder 322.
  • the coil unit 328 mainly includes a coil 330, a resin layer 332, and a coating portion 326.
  • the coil 330 is an air-core coil formed by winding a conductive wire (for example, copper wire) whose surface is insulated a predetermined number of times.
  • the coil 330 extends in the X-axis direction and the Y-axis direction, is formed thin in the Z-axis direction, and has a substantially oval shape in plan view.
  • the coil 330 forms a magnetic flux directed in the Z-axis direction according to the drive current.
  • the coil unit 328 includes one coil 330.
  • the coil unit 328 may include a plurality of coils.
  • the coil holder 322 is a member for holding the coil unit 328 in a chassis (not shown).
  • the coil holder 322 includes a base portion 322b and a frame portion 322c.
  • the base 322b is a part fixed to the chassis.
  • the base 322b extends in the X-axis direction and the Y-axis direction and is formed thin in the Z-axis direction, and has a substantially rectangular shape in plan view.
  • the long side of the base 322b extends in the Y-axis direction, and the short side extends in the X-axis direction.
  • the frame part 322c is a frame-shaped part surrounding the coil 330, and one side is fixed to the base part 322b.
  • the frame portion 322c is formed to be slightly larger than the outer shape of the coil 330, and a resin is interposed between the coil 330 and the frame portion 322c.
  • the coil holder 322 can integrally form the base portion 322b and the frame portion 322c with a metal material such as aluminum.
  • the base portion 322b and the frame portion 322c may be separately formed and combined.
  • the resin layer 332 is a resin layer provided so as to cover the coil 330.
  • the resin layer 332 includes a film-shaped portion that covers both end surfaces of the coil 330 in the Z-axis direction, and a portion that is filled between the coil 330 and the frame portion 322c.
  • the resin layer 332 is configured to support the coil 330 and collect and diffuse the heat generated in the coil 330 to make the temperature distribution uniform.
  • the resin layer 332 can be formed, for example, by pouring resin into a mold in which the coil holder 322 and the coil 330 are set. As such a molding process, for example, a molding process such as injection molding or transfer molding can be used.
  • the resin layer 332 is desirably formed of a material having high thermal conductivity.
  • the resin layer 332 is preferably formed of a material having a higher thermal conductivity than a general-purpose epoxy resin having a thermal conductivity of about 0.2 W / (m ⁇ K). More preferably, the resin layer 332 is made of a material having a thermal conductivity of 0.5 W / (m ⁇ K) or more, more preferably 1 W / (m ⁇ K) or more, and even more preferably 5 W / (m ⁇ K) or more. It is desirable to be formed. As such a material, a high thermal conductivity resin (for example, a high thermal conductivity PPS resin) can be used.
  • the thickness in the Z-axis direction between the coil 330 and the coating portion 326 is desirably small, and can be set to 3 mm or less, preferably 0.1 mm or less, for example.
  • the coating portion 326 is a coating provided so as to cover at least a part of the resin layer 332.
  • the film part 326 extends in the X-axis direction and the Y-axis direction and has a thin sheet shape in the Z-axis direction. As an example, the film portion 326 has an oval shape that is long in the Y-axis direction in plan view.
  • the film part 326 has a shape that substantially covers the coil 330 of the coil unit 328.
  • the film part 326 may be formed so as to cover the coil 330 in a planar shape, and the entire edge of the film part 326 may protrude outward beyond the outer edge of the coil 330.
  • the film portion 326 may be provided integrally when the resin layer 332 is formed on the coil 330.
  • the film portion 326 may be provided on the surface of the resin layer 332 by a method such as adhesion after the resin layer 332 is provided on the coil 330.
  • the film portion 326 may include a heat transfer layer 326b, an adhesive layer 326c, and a protective layer 326d.
  • the adhesive layer 326 c is a layer made of an adhesive for adhering the heat transfer layer 326 b to the resin layer 332.
  • the adhesive desirably has a thermal conductivity equal to or higher than that of the resin layer 332.
  • the protective layer 326d is a layer for protecting the surface side of the heat transfer layer 326b.
  • the protective layer 326d is desirably thin as long as the surface side of the heat transfer layer 326b can be protected.
  • the protective layer 326d can be formed using an organic material such as a resin or an inorganic material such as a metal.
  • a fluorine resin such as Teflon (registered trademark) or a polyimide resin film material such as Kapton (registered trademark) can be used.
  • the adhesive layer 326c and the protective layer 326d are not necessarily provided.
  • the heat transfer layer 326b integrally when the resin layer 332 is provided, the heat transfer layer 326b can be fixed to the resin layer 332 without an adhesive layer.
  • the heat transfer layer 326b is formed from aluminum or stainless steel, or when there is no physical contact with the heat transfer layer 326b, a configuration without a protective layer is also possible.
  • the heat transfer layer 326b may be formed of a material having a higher thermal conductivity than the resin layer 332, for example.
  • the heat transfer layer 326b can be formed of a metal material such as an aluminum alloy or stainless steel.
  • the heat transfer layer 326b can be formed of a nonmetallic material such as a graphite sheet.
  • the heat transfer layer 326b may be formed of a plate material or a foil material formed of these materials.
  • the heat transfer layer 326b may be formed of, for example, an anisotropic material having a different thermal conductivity depending on the direction, or may be formed of an isotropic material having a uniform thermal conductivity depending on the direction.
  • the heat transfer layer 326b is preferably formed from a material that does not generate eddy current or a material that does not easily generate eddy current. From this point of view, the heat transfer layer 326b can be, for example, a thin film such as copper, silver, or gold, a foil-like sheet, or a thin sheet formed of artificial or natural graphite.
  • the heat transfer layer 326b is preferably formed of a nonmagnetic material. If the heat transfer layer 326b is too thick, it is conceivable that the magnetic gap becomes wider and the magnetic resistance increases accordingly. For this reason, the thickness of the heat transfer layer 326b is desirably 1 mm or less. More preferably, the thickness of the heat transfer layer 326b may be 0.2 mm or less, more preferably 0.1 mm or less.
  • the heat transfer layer 326b of the second embodiment is made of an aluminum alloy having a thickness of 0.03 mm.
  • the heat generated in the peripheral part of the coil 330 is recovered in the base part 322b and the frame part 322c of the coil holder 322, and thus the temperature rise in the peripheral part is suppressed.
  • the heat generated in the central portion of the coil 330 is difficult to be recovered because the distance to the coil holder 322 is long, and the temperature rise in the central portion is increased. For this reason, the electric current which can be sent through the coil 330 is restrict
  • the voice coil motor 300 includes a coil unit 328 and a coil holder 322 that supports the coil unit 328.
  • the coil unit 328 includes a coil 330, a resin layer 332 that covers the coil 330, and a coating portion 326 that covers at least a part of the resin layer 332.
  • the coating portion 326 by providing the coating portion 326, the heat of the resin layer 332 can be recovered on the surface to facilitate its diffusion, and the temperature distribution of the resin layer 332 can be made uniform.
  • the coating portion 326 the heat of the resin layer 332 can be easily transmitted to the coil holder 322. By these actions, the temperature of the high temperature portion of the coil 330 is lowered, and the current that can be passed through the coil 330 can be increased.
  • the coating portion 326 includes a heat transfer layer 326b formed of a material having a higher thermal conductivity than the resin layer 332, and protection for protecting the surface of the heat transfer layer 326b.
  • Layer 326d the temperature distribution is further uniformed by forming the heat transfer layer 326b from a material having high thermal conductivity.
  • FIG. 14 is a plan view schematically showing the stator 340 of the voice coil motor 302 according to the second modification.
  • FIG. 15 is a cross-sectional view showing a vertical cross section of the stator 340 along the line BB.
  • the stator 340 according to Modification 1 is different from the stator 320 according to the second embodiment in the planar shape of the coating portion 346, and the other configurations are the same. Therefore, the overlapping description will be omitted and the coating portion 346 will be described. As shown in FIG.
  • the coating portion 346 has a portion 346 b that contacts the frame portion 322 c of the coil holder 322.
  • the film part 346 has a shape that covers at least a part of the frame part 322 c beyond the outer edge of the resin layer 332 in plan view.
  • An adhesive may be provided between the portion 346b and the frame portion 322c.
  • the film part 346 may include a part that contacts the base part 322b in addition to the frame part 322c.
  • the film portion 346 has a portion 346 b that contacts the coil holder 322. According to this configuration, the heat recovered from the resin layer 332 by the film portion 346 can be radiated to the coil holder 322 by the portion 346b. By dissipating heat to the coil holder 322, the temperature of the film part 346 can be lowered. Therefore, heat dissipation of the coil 330 can be facilitated, and the current that can flow through the coil 330 can be increased.
  • FIG. 16 is a plan view schematically showing the stator 350 of the voice coil motor 304 according to the second modification.
  • FIG. 17 is a cross-sectional view showing a vertical cross section of the stator 350 along the line CC.
  • the stator 350 according to the modified example 2 is different from the stator 320 according to the second embodiment in that a multilayer coil 360 and a heat transfer unit 356 provided between the layers of the coil 360 are provided.
  • the configuration of is the same. Therefore, the description which overlaps is abbreviate
  • the stator 350 according to Modification 2 is the same as the stator 320 according to the second embodiment in a planar shape.
  • the coil unit 358 of Modification 2 includes a multilayer coil 360 instead of the coil 330 of the second embodiment.
  • the coil 360 includes a plurality of thin coils 360b stacked in the Z-axis direction.
  • the coil 360 includes two thin coils 360 b stacked in the Z-axis direction.
  • the thin coil 360b has a thickness dimension in the Z-axis direction that is substantially half that of the coil 330 of the second embodiment.
  • the configuration and characteristics of the coil 330 described above can be referred to.
  • the heat transfer section 356 is provided between the two layers of thin coils 360b.
  • the heat transfer part 356 extends in the X-axis direction and the Y-axis direction and has a thin sheet shape in the Z-axis direction.
  • the heat transfer part 356 has a planar shape substantially equal to the film part 326.
  • the configuration and characteristics of the heat transfer section 356 the configuration and characteristics of the heat transfer layer 326b described above can be referred to.
  • the coil 360 includes a plurality of laminated thin coils 360b, and is formed of a material having higher thermal conductivity than the resin layer 332 between the plurality of thin coils 360b.
  • a heat transfer section 356 is provided. According to this configuration, by providing the heat transfer part 356, the heat of the resin layer 332 can be recovered not only at the surface part but also between the layers to facilitate its diffusion, and the temperature distribution can be made more uniform. By this action, the temperature of the high temperature portion is lowered between the layers of the coil 360, and the current that can be passed through the coil 360 can be further increased.
  • coat part 326 demonstrated the example containing 1 layer of heat-transfer layers 326b, it is not restricted to this.
  • the film part 326 may include a plurality of heat transfer layers.
  • membrane part 326 demonstrated the example provided in both surfaces of the Z-axis direction of the resin layer 332, it is not restricted to this.
  • the film part 326 may be provided only on one surface of the resin layer 332.
  • the example in which the respective film portions 326 are integrated has been described. However, the present invention is not limited to this.
  • the film part 326 may include a plurality of parts divided into two or more. These modified examples have the same operations and effects as those of the second embodiment.
  • the present invention can be used for a linear motor or a voice coil motor.

Abstract

Disclosed is a linear motor wherein a mover 10 includes a coil unit 18, and a coil holder 11 that houses and supports a part of the coil unit 18. The coil unit 18 includes a plurality of coils 15, a resin layer 16, and a film section 14. The resin layer 16 covers the coils 15. The film section 14 covers at least a part of the resin layer 16. The film section 14 has a portion in contact with the coil holder 11.

Description

リニアモータ、ボイスコイルモータ、ステージ装置Linear motor, voice coil motor, stage device
 本発明は、リニアモータ、ボイスコイルモータに関する。 The present invention relates to a linear motor and a voice coil motor.
 電気エネルギーを直線運動に変換するためにリニアモータが利用される。例えば、特許文献1には、永久磁石および界磁ヨークからなる固定子と、可動子に複数のコイルを含むコイルユニットを有する可動コイル型の電機子を備えたリニアモータが記載されている。 A linear motor is used to convert electrical energy into linear motion. For example, Patent Document 1 describes a linear motor including a stator composed of a permanent magnet and a field yoke, and a movable coil type armature having a coil unit including a plurality of coils in the movable element.
 特許文献1に記載のリニアモータでは、特に冷却ユニットを具備している。この冷却ユニットは、ブロック状の高熱伝導部材で形成されており、電機子を取り付けた取付板に対して取り外し自在に設けられている。また、この冷却ユニットの内部には、複数のヒートパイプが設けられると共に、ヒートパイプの放熱側にフィン付きのヒートシンクが接触している。つまり、このリニアモータはヒートパイプとフィン付きのヒートシンクを用いてその配置を工夫することで電機子コイルの冷却性能を向上している。 The linear motor described in Patent Document 1 is particularly equipped with a cooling unit. This cooling unit is formed of a block-like high heat conductive member, and is provided detachably with respect to a mounting plate to which an armature is attached. A plurality of heat pipes are provided inside the cooling unit, and a heat sink with fins is in contact with the heat radiating side of the heat pipe. That is, this linear motor improves the cooling performance of the armature coil by devising its arrangement using a heat pipe and a heat sink with fins.
特開2002-238238号公報JP 2002-238238 A
 リニアモータをより高速で駆動するために、コイルユニットの電流を増やしてリニアモータの推力を向上する方法がある。しかし、コイルユニットの電流を増やすと、その発熱量が増加してコイルユニットの温度が上昇する。コイルユニットの温度が上昇すると、輻射により周辺の機器にも伝達され、これらの機器の温度を変化させることでその精度が低下する懸念がある。また、コイルユニットの温度が上昇すると、コイルユニット自身の電気抵抗が高くなり、また界磁磁石がその温度特性により磁束が減少することで、リニアモータの推力特性も低下する。したがって、リニアモータを搭載する機器の精度やリニアモータ自身の特性の低下を抑えるためには、コイルユニットの温度上昇を抑制することが望ましい。 There is a method to increase the thrust of the linear motor by increasing the coil unit current in order to drive the linear motor at a higher speed. However, when the current of the coil unit is increased, the amount of generated heat increases and the temperature of the coil unit rises. When the temperature of the coil unit rises, it is also transmitted to peripheral devices by radiation, and there is a concern that the accuracy of the coil unit may be reduced by changing the temperature of these devices. Further, when the temperature of the coil unit rises, the electrical resistance of the coil unit itself increases, and the magnetic flux of the field magnet decreases due to its temperature characteristics, so that the thrust characteristics of the linear motor also deteriorate. Therefore, it is desirable to suppress the temperature rise of the coil unit in order to suppress the accuracy of the device on which the linear motor is mounted and the deterioration of the characteristics of the linear motor itself.
 コイルユニットの温度上昇を抑制するために、コイルユニットに放熱用フィンを取付けることも考えられる。しかし、この場合には放熱用フィンの雰囲気温度が上昇して、周囲の部材の精度が低下する問題がある。また、空冷の場合は減圧した真空環境下では効果を殆ど生じない。また、コイルを小型化して空いた空間に冷却用の配管を設けることも考えられるが、この場合コイルが小型化されることで、リニアモータの推力特性が低下する問題がある。また、コイルユニットをジャケットで覆い、これらの間の隙間に冷媒を循環させて熱を回収することも考えられるが、この場合ジャケットを含めたコイルユニットの部品点数が多くなり、組み立て工数が増えて生産性が低下する問題がある。
 このように、従来のリニアモータの技術では、コイルユニットの生産性を維持しながら、コイルユニットの温度上昇を抑制する観点から改善する余地があった。
 このような課題は、リニアモータに限られずボイスコイルモータについても生じうる。
In order to suppress the temperature rise of the coil unit, it may be considered to attach a heat radiation fin to the coil unit. However, in this case, there is a problem that the ambient temperature of the heat dissipating fins rises and the accuracy of surrounding members is lowered. Further, in the case of air cooling, almost no effect is produced under a reduced vacuum environment. In addition, it is conceivable to provide a cooling pipe in an empty space by reducing the size of the coil. In this case, however, there is a problem that the thrust characteristics of the linear motor are reduced due to the size reduction of the coil. It is also conceivable to cover the coil unit with a jacket and circulate the refrigerant in the gap between them to recover the heat. In this case, however, the number of parts of the coil unit including the jacket increases and the number of assembly steps increases. There is a problem that productivity decreases.
Thus, the conventional linear motor technology has room for improvement from the viewpoint of suppressing the temperature rise of the coil unit while maintaining the productivity of the coil unit.
Such a problem is not limited to a linear motor, but may also occur for a voice coil motor.
 本発明の目的のひとつは、コイルユニットの温度上昇を抑制しうるリニアモータまたはボイスコイルモータを提供することにある。 One of the objects of the present invention is to provide a linear motor or a voice coil motor capable of suppressing the temperature rise of the coil unit.
 上記課題を解決するために、本発明のある態様のリニアモータは、コイルユニットと、コイルユニットの一部を収容して支持するコイルホルダと、を含む可動子を備える。コイルユニットは、複数のコイルと、複数のコイルを被覆する樹脂層と、樹脂層の少なくとも一部を覆う皮膜部と、を含む。 In order to solve the above problems, a linear motor according to an aspect of the present invention includes a mover including a coil unit and a coil holder that accommodates and supports a part of the coil unit. The coil unit includes a plurality of coils, a resin layer that covers the plurality of coils, and a coating portion that covers at least a part of the resin layer.
 この態様によると、コイルユニットで発生した熱を樹脂層と樹脂層の少なくとも一部を覆う皮膜部とを通じてコイルホルダに回収することができる。 According to this aspect, the heat generated in the coil unit can be recovered to the coil holder through the resin layer and the coating portion covering at least a part of the resin layer.
 本発明の別の態様は、ボイスコイルモータである。このボイスコイルモータは、コイルユニットと、コイルユニットを支持するコイルホルダと、を備える。コイルユニットは、コイルと、コイルを被覆する樹脂層と、樹脂層の少なくとも一部を覆う皮膜部と、を含む。 Another aspect of the present invention is a voice coil motor. The voice coil motor includes a coil unit and a coil holder that supports the coil unit. The coil unit includes a coil, a resin layer that covers the coil, and a coating portion that covers at least a part of the resin layer.
 本発明の別の態様のステージ装置は、上述のリニアモータを備える。 A stage apparatus according to another aspect of the present invention includes the linear motor described above.
 本発明によれば、コイルユニットの温度上昇を抑制しうるリニアモータまたはボイスコイルモータを提供することができる。 According to the present invention, it is possible to provide a linear motor or a voice coil motor that can suppress the temperature rise of the coil unit.
第1実施形態に係るリニアモータの斜視図である。It is a perspective view of the linear motor which concerns on 1st Embodiment. 第1実施形態に係るリニアモータの側面図である。It is a side view of the linear motor which concerns on 1st Embodiment. 第1実施形態に係る固定子の平面図である。It is a top view of the stator concerning a 1st embodiment. 第1実施形態に係る可動子の斜視図である。It is a perspective view of the needle | mover which concerns on 1st Embodiment. 第1実施形態に係る可動子の側断面図である。It is a sectional side view of the needle | mover which concerns on 1st Embodiment. 第1実施形態に係る可動子の正面視の断面図である。It is sectional drawing of the front view of the needle | mover which concerns on 1st Embodiment. 第1実施形態に係る可動子の冷媒の経路を示す模式図である。It is a schematic diagram which shows the path | route of the refrigerant | coolant of the needle | mover which concerns on 1st Embodiment. 変形例に係る可動子の正面視の断面図である。It is sectional drawing of the front view of the needle | mover which concerns on a modification. 第1実施形態に係るリニアモータを用いたステージ装置の平面図である。It is a top view of the stage apparatus using the linear motor which concerns on 1st Embodiment. 第2実施形態に係るボイスコイルモータを模式的に示す側面図である。It is a side view which shows typically the voice coil motor which concerns on 2nd Embodiment. 第2実施形態に係るボイスコイルモータの固定子を模式的に示す平面図である。It is a top view which shows typically the stator of the voice coil motor which concerns on 2nd Embodiment. 図11の固定子のA-A線に沿った縦断面を示す断面図である。FIG. 12 is a sectional view showing a longitudinal section along the line AA of the stator of FIG. 11. 図11の固定子から皮膜部を除いた状態を示す平面図である。It is a top view which shows the state which remove | excluded the film | membrane part from the stator of FIG. 変形例に係るボイスコイルモータの固定子を模式的に示す平面図である。It is a top view which shows typically the stator of the voice coil motor which concerns on a modification. 図14の固定子のB-B線に沿った縦断面を示す断面図である。FIG. 15 is a sectional view showing a longitudinal section along the line BB of the stator of FIG. 14. 別の変形例に係るボイスコイルモータの固定子を模式的に示す平面図である。It is a top view which shows typically the stator of the voice coil motor which concerns on another modification. 図16の固定子のC-C線に沿った縦断面を示す断面図である。FIG. 17 is a sectional view showing a longitudinal section along the line CC of the stator in FIG. 16.
 以下、本発明を好適な各実施形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において各実施形態を説明する上で重要ではない部材の一部は省略して表示する。また、各実施形態は、発明を限定するものではなく例示であって、各実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. In addition, in the drawings, some of the members that are not important in describing each embodiment are omitted. In addition, each embodiment does not limit the invention but is an exemplification, and all features and combinations described in each embodiment are not necessarily essential to the invention.
[第1実施形態]
 図1は第1実施形態に係るリニアモータ2の斜視図である。図2は第1実施形態に係るリニアモータ2の側面図である。リニアモータ2は、固定子20と、可動子10と、を備える。固定子20は、ヨーク22と、界磁磁石24と、界磁磁石24とは別の磁石である補極磁石26と、を主に含み、磁気的空隙34に界磁磁界を形成する。可動子10は固定子20の磁気的空隙34に可動方向に可動自在に設けられる。以下、XYZ直交座標系をもとに説明する。X軸は水平な左右方向に対応し、Y軸は水平な前後方向に対応し、Z軸は鉛直な上下方向に対応する。Y軸方向およびZ軸方向はそれぞれX軸方向に直交する。X軸方向は左方向あるいは右方向と、Y軸方向は前方向あるいは後方向と、Z軸方向は上方向あるいは下方向と表記することがある。図1は、可動子10の可動方向を水平方向(X軸方向)に設定している。このような方向の表記はリニアモータ2の使用姿勢を制限するものではなく、リニアモータ2は任意の姿勢で使用されうる。
[First Embodiment]
FIG. 1 is a perspective view of a linear motor 2 according to the first embodiment. FIG. 2 is a side view of the linear motor 2 according to the first embodiment. The linear motor 2 includes a stator 20 and a mover 10. The stator 20 mainly includes a yoke 22, a field magnet 24, and an auxiliary pole magnet 26 that is a magnet different from the field magnet 24, and forms a field magnetic field in the magnetic gap 34. The mover 10 is provided in the magnetic gap 34 of the stator 20 so as to be movable in the movable direction. Hereinafter, description will be made based on the XYZ orthogonal coordinate system. The X-axis corresponds to the horizontal left-right direction, the Y-axis corresponds to the horizontal front-rear direction, and the Z-axis corresponds to the vertical up-down direction. The Y-axis direction and the Z-axis direction are each orthogonal to the X-axis direction. The X-axis direction may be referred to as the left direction or the right direction, the Y-axis direction may be referred to as the forward direction or the rear direction, and the Z-axis direction may be referred to as the upward direction or the downward direction. In FIG. 1, the movable direction of the mover 10 is set to the horizontal direction (X-axis direction). Such notation of the direction does not limit the use posture of the linear motor 2, and the linear motor 2 can be used in an arbitrary posture.
(固定子)
 図3は第1実施形態に係る固定子20の平面図である。ヨーク22は、界磁磁石24と補極磁石26を支持すると共に、界磁磁石24と補極磁石26のバックヨークとして磁気回路を構成する。
(stator)
FIG. 3 is a plan view of the stator 20 according to the first embodiment. The yoke 22 supports the field magnet 24 and the auxiliary pole magnet 26 and constitutes a magnetic circuit as a back yoke for the field magnet 24 and the auxiliary pole magnet 26.
 ヨーク22は、例えば長尺の略矩形形状に形成されてもよい。界磁磁石24は磁気的空隙34に界磁磁界を形成する。補極磁石26は界磁磁石24と共にハルバッハ配列構造を構成し、磁気的空隙34の界磁磁界を補強する。界磁磁石24は、ヨーク22の内側(磁気的空隙34側)に、可動子10の可動方向(X軸方向)に複数個直線状に並べて接着固定される。補極磁石26は隣り合う2つの界磁磁石24の間に固定される。界磁磁石24と補極磁石26は、例えば希土類元素を含む磁性材料から、一例として焼結法によって形成される。界磁磁石24と補極磁石26はメッキ層などの表面層を有してもよい。界磁磁石24と補極磁石26は、例えば矩形の板状に形成される。なお、本発明は補極磁石26を備えることは必須ではない。 The yoke 22 may be formed in, for example, a long and substantially rectangular shape. The field magnet 24 forms a field magnetic field in the magnetic gap 34. The auxiliary pole magnet 26 forms a Halbach array structure together with the field magnet 24 to reinforce the field magnetic field of the magnetic gap 34. A plurality of field magnets 24 are bonded and fixed inside the yoke 22 (on the magnetic gap 34 side) in a plurality of straight lines in the moving direction (X-axis direction) of the mover 10. The auxiliary pole magnet 26 is fixed between two adjacent field magnets 24. The field magnet 24 and the auxiliary pole magnet 26 are formed of, for example, a magnetic material containing a rare earth element by a sintering method. The field magnet 24 and the auxiliary pole magnet 26 may have a surface layer such as a plating layer. The field magnet 24 and the auxiliary pole magnet 26 are formed in a rectangular plate shape, for example. In the present invention, it is not essential to provide the supplementary magnet 26.
 界磁磁石24は、Y軸方向に薄い直方体形状を有し、それぞれ磁極面が形成される正面と背面とを有し、その背面がヨーク22の内側側面に固定される。つまり、界磁磁石24の磁化方向24mはY軸に平行に形成される。図3に示すように、磁気的空隙34を挟んで互いに対向する2つの界磁磁石24の正面には、互いに逆極性の磁極が設けられる。このため、これらの界磁磁石24は互いに引き合う磁気的吸引力を発生する。この磁気的吸引力により、磁気的空隙34を介して対向するヨーク22にはそれぞれ内側に向かう方向の荷重が入力される。 The field magnet 24 has a thin rectangular parallelepiped shape in the Y-axis direction, has a front surface and a back surface on which magnetic pole surfaces are respectively formed, and the back surface is fixed to the inner side surface of the yoke 22. That is, the magnetization direction 24m of the field magnet 24 is formed parallel to the Y axis. As shown in FIG. 3, magnetic poles having opposite polarities are provided in front of the two field magnets 24 facing each other across the magnetic gap 34. For this reason, these field magnets 24 generate a magnetic attractive force attracting each other. Due to this magnetic attractive force, a load in the inward direction is input to the opposing yokes 22 via the magnetic gap 34.
 補極磁石26は、Y軸方向に薄い直方体形状を有し、X軸に平行な正面と背面とを有し、その背面がヨーク22の内側側面に固定される。補極磁石26の両側面にはそれぞれ磁極面が形成される。つまり、補極磁石26の磁化方向26mはX軸に平行に形成される。 The auxiliary pole magnet 26 has a thin rectangular parallelepiped shape in the Y-axis direction, has a front surface and a back surface parallel to the X-axis, and the back surface is fixed to the inner side surface of the yoke 22. Magnetic pole surfaces are formed on both side surfaces of the auxiliary magnet 26, respectively. That is, the magnetization direction 26m of the auxiliary pole magnet 26 is formed parallel to the X axis.
 リニアモータの磁気回路は、ヨーク22の飽和を抑制しつつモータの特性を向上するために、補極磁石26の磁界を磁気的空隙34側に集中可能な構成が望ましい。そこで、第1実施形態の補極磁石26の磁化方向26mは、界磁磁石24の磁化方向22mと90°異なる方向に形成される。このように構成することで、界磁磁石24と補極磁石26とはハルバッハ配列構造を形成し、界磁磁石24の磁界を磁気的空隙34側に集めることができる。 It is desirable that the magnetic circuit of the linear motor has a configuration in which the magnetic field of the auxiliary pole magnet 26 can be concentrated on the magnetic gap 34 side in order to improve the motor characteristics while suppressing the saturation of the yoke 22. Therefore, the magnetization direction 26m of the auxiliary pole magnet 26 of the first embodiment is formed in a direction 90 ° different from the magnetization direction 22m of the field magnet 24. With this configuration, the field magnet 24 and the auxiliary magnet 26 form a Halbach array structure, and the magnetic field of the field magnet 24 can be collected on the magnetic gap 34 side.
(可動子)
 次に第1実施形態に係る可動子10について説明する。図4は可動子10の斜視図である。図5は可動子10のA-A線に沿った鉛直平面で切断した側断面図である。可動子10は、コイルユニット18と、コイルホルダ11と、を主に含む。コイルユニット18はコイル15を複数(例えば3個)含む。コイルホルダ11はコイルユニット18の上部(Z軸方向の端部)を収容して支持する。
(Movable element)
Next, the mover 10 according to the first embodiment will be described. FIG. 4 is a perspective view of the mover 10. FIG. 5 is a side sectional view of the mover 10 taken along a vertical plane along the line AA. The mover 10 mainly includes a coil unit 18 and a coil holder 11. The coil unit 18 includes a plurality of (for example, three) coils 15. The coil holder 11 accommodates and supports the upper part (end part in the Z-axis direction) of the coil unit 18.
 コイルホルダ11は、X軸方向に長尺な直方体形状を有し、例えば熱伝導性に優れるアルミニウム合金などの金属材料から形成される。コイルホルダ11には、コイルユニット18の一部を収容するための収容凹部11gが設けられる。収容凹部11gはコイルホルダ11の下面にてX軸方向に延在する。収容凹部11gはコイルユニット18の上部を収容する。収容凹部11gのコイルユニット18と対向する部分はコイルユニット18の形状に対応する形状を有する。特に、収容凹部11gのコイルユニット18と対向する部分は、コイルユニット18の表面の起伏に沿った形状を有する。一例として、収容凹部11gのコイルユニット18と対向する部分には、コイルユニット18の凹み18jに対応する突部11jが形成される。この場合、コイルユニット18と収容凹部11gの間の隙間が小さくなり、コイルユニット18で発生した熱を効果的にコイルホルダ11に回収することができる。 The coil holder 11 has a rectangular parallelepiped shape elongated in the X-axis direction, and is formed of a metal material such as an aluminum alloy having excellent thermal conductivity. The coil holder 11 is provided with an accommodation recess 11 g for accommodating a part of the coil unit 18. The housing recess 11 g extends in the X-axis direction on the lower surface of the coil holder 11. The housing recess 11 g houses the upper part of the coil unit 18. A portion of the housing recess 11 g facing the coil unit 18 has a shape corresponding to the shape of the coil unit 18. In particular, the portion of the housing recess 11 g that faces the coil unit 18 has a shape along the undulation of the surface of the coil unit 18. As an example, a protrusion 11j corresponding to the recess 18j of the coil unit 18 is formed at a portion of the housing recess 11g facing the coil unit 18. In this case, the gap between the coil unit 18 and the housing recess 11g is reduced, and the heat generated in the coil unit 18 can be effectively recovered in the coil holder 11.
 図5に示すように、コイルホルダ11には、コイルユニット18の近傍に延在して冷媒を通過させるための冷却通路が設けられる。冷却通路は、X軸方向に延伸する複数(例えば2本)の冷却通路11e、11fを含む。冷却通路11e、11fはコイルホルダ11をX軸方向に貫通する。冷却通路11e、11fは、コイルホルダ11に穿設された横孔であってもよく、コイルホルダ11に埋め込まれたパイプであってもよい。冷却通路11e、11fは、冷却用の液体を通過させるための通路である。図5に示すように、冷却通路11e、11fは、コイルユニット18の近傍に設けられる。冷却通路11e、11fのY軸方向の範囲は、コイルユニット18のY軸方向の範囲とオーバーラップする部分を有する。 As shown in FIG. 5, the coil holder 11 is provided with a cooling passage that extends in the vicinity of the coil unit 18 and allows the refrigerant to pass therethrough. The cooling passage includes a plurality of (for example, two) cooling passages 11e and 11f extending in the X-axis direction. The cooling passages 11e and 11f penetrate the coil holder 11 in the X-axis direction. The cooling passages 11e and 11f may be horizontal holes drilled in the coil holder 11 or pipes embedded in the coil holder 11. The cooling passages 11e and 11f are passages for passing a cooling liquid. As shown in FIG. 5, the cooling passages 11 e and 11 f are provided in the vicinity of the coil unit 18. The range of the cooling passages 11e and 11f in the Y-axis direction has a portion that overlaps the range of the coil unit 18 in the Y-axis direction.
 図4に示すように、コイルホルダ11のX軸方向の両端面はそれぞれホルダカバー12a、12bによって覆われる。ホルダカバー12aはコイルホルダ11の左端面を覆い、冷却通路11e、11fに通じる管状端部12h、12jが設けられる。管状端部12h、12jはそれぞれ図外のラジエーターに接続されてもよい。ホルダカバー12bはコイルホルダ11の右端面を覆い、冷却通路11e、11fを接続する。ホルダカバー12bには折り返し通路12gが設けられ、通路12gの一方の開口12fは冷却通路11fに接続され、他方の開口12eは冷却通路11eに接続される。通路12gから送出された冷媒は通路12gを通って冷却通路11fに送出される。 As shown in FIG. 4, both end surfaces of the coil holder 11 in the X-axis direction are covered with holder covers 12a and 12b, respectively. The holder cover 12a covers the left end surface of the coil holder 11, and is provided with tubular end portions 12h and 12j communicating with the cooling passages 11e and 11f. The tubular ends 12h and 12j may be connected to a radiator (not shown). The holder cover 12b covers the right end surface of the coil holder 11 and connects the cooling passages 11e and 11f. The holder cover 12b is provided with a folded passage 12g. One opening 12f of the passage 12g is connected to the cooling passage 11f, and the other opening 12e is connected to the cooling passage 11e. The refrigerant sent out from the passage 12g is sent out to the cooling passage 11f through the passage 12g.
 コイルユニット18は、複数のコイル15と、樹脂層16と、皮膜部14とを主に含む。コイルユニット18は、コイルホルダ11の収容凹部11gに収容され固定される固定部18hと、固定部18hから、コイルホルダ11から遠ざかる方向(Z方向)に延伸する中間部18mと、の延伸端に設けられる非固定部18dと、を含む。中間部18mはY軸方向に薄い板状の部分である。中間部18mは正面視が略矩形状で側面視が略I字形状である。中間部18mは主にコイル15の後述する第1辺15pおよび第2辺15qを内包する。固定部18hは中間部18mよりY軸方向に大きく、X軸方向に長尺なブロック形状の部分である。固定部18hは正面視が略矩形状で側面視が略V字形状である。固定部18hは、側面視が略T字形状または略Y字形状あるいは略I字形状であってもよい。固定部18hは主にコイル15の後述する第3辺15hを内包する。非固定部18dは中間部18mよりY軸方向に大きく、X軸方向に長尺なブロック形状の部分である。非固定部18dは正面視が略矩形状で側面視が略矩形状または逆V字形状である。非固定部18dは主にコイル15の後述する第4辺15dを内包する。 The coil unit 18 mainly includes a plurality of coils 15, a resin layer 16, and a coating part 14. The coil unit 18 is provided at an extension end of a fixing portion 18h that is received and fixed in the receiving recess 11g of the coil holder 11, and an intermediate portion 18m that extends from the fixing portion 18h in a direction away from the coil holder 11 (Z direction). And a non-fixed portion 18d provided. The intermediate part 18m is a thin plate-like part in the Y-axis direction. The intermediate portion 18m has a substantially rectangular shape when viewed from the front and a substantially I shape when viewed from the side. The intermediate portion 18m mainly includes a first side 15p and a second side 15q, which will be described later, of the coil 15. The fixing portion 18h is a block-shaped portion that is larger in the Y-axis direction than the intermediate portion 18m and is long in the X-axis direction. The fixing portion 18h has a substantially rectangular shape when viewed from the front and a substantially V shape when viewed from the side. The fixing portion 18h may be substantially T-shaped, substantially Y-shaped or substantially I-shaped in side view. The fixing portion 18h mainly includes a third side 15h to be described later of the coil 15. The non-fixed portion 18d is a block-shaped portion that is larger in the Y-axis direction than the intermediate portion 18m and is long in the X-axis direction. The non-fixed portion 18d has a substantially rectangular shape when viewed from the front and a substantially rectangular shape or an inverted V shape when viewed from the side. The non-fixed portion 18d mainly includes a later-described fourth side 15d of the coil 15.
(コイル)
 図6は可動子10の正面視の断面図である。図6は複数のコイル15のうち一番正面に近いコイルの正面側を通りX軸方向に平行な縦平面で切断した縦断面に、冷却通路11fの縦断面と後述する端部通路11dの縦断面とを重ねて模式的に示している。複数のコイル15それぞれは、可動子10の可動方向(X軸方向)に沿って、一部がオーバーラップするように配置される。コイル15は表面が絶縁された導線(例えば銅線)を所定の回数巻いて形成された空心コイルである。コイル15はX軸方向およびZ軸方向に延在してY軸方向に薄く形成される。コイル15は正面視で略矩形形状を有する。コイル15は、可動子10の可動方向(X軸方向)に離間して設けられる第1辺15pおよび第2辺15qと、Z軸方向に離間して設けられる第3辺15hおよび第4辺15dと、を有する。第1辺15pおよび第2辺15qは、主に界磁磁石24や補極磁石26とY軸方向に対向して、Z軸方向に沿って略直線的に延在する。第3辺15hおよび第4辺15dはX軸方向に沿って略直線的に延在する。第1辺15pおよび第2辺15qは電流が流れることにより推力を発生する作用辺であり、第3辺15hおよび第4辺15dは実質的に殆ど推力を発生しない非作用辺である。図5に示すように、第3辺15hおよび第4辺15dはY軸方向に折り曲げられてもよい。
(coil)
FIG. 6 is a cross-sectional view of the mover 10 as viewed from the front. FIG. 6 shows a longitudinal section cut through a longitudinal plane parallel to the X-axis direction through the front side of the coil closest to the front surface among the plurality of coils 15, and a longitudinal section of a cooling passage 11f and a longitudinal section of an end passage 11d described later. It is schematically shown with the surface overlapped. Each of the plurality of coils 15 is disposed so as to partially overlap along the movable direction (X-axis direction) of the mover 10. The coil 15 is an air-core coil formed by winding a conductive wire (for example, a copper wire) whose surface is insulated a predetermined number of times. The coil 15 extends in the X-axis direction and the Z-axis direction and is thinly formed in the Y-axis direction. The coil 15 has a substantially rectangular shape when viewed from the front. The coil 15 includes a first side 15p and a second side 15q that are spaced apart in the movable direction (X-axis direction) of the mover 10, and a third side 15h and a fourth side 15d that are spaced apart in the Z-axis direction. And having. The first side 15p and the second side 15q mainly face the field magnet 24 and the auxiliary pole magnet 26 in the Y-axis direction and extend substantially linearly along the Z-axis direction. The third side 15h and the fourth side 15d extend substantially linearly along the X-axis direction. The first side 15p and the second side 15q are working sides that generate a thrust when a current flows, and the third side 15h and the fourth side 15d are non-working sides that generate substantially no thrust. As shown in FIG. 5, the third side 15h and the fourth side 15d may be bent in the Y-axis direction.
(樹脂層)
 樹脂層16は複数のコイル15を被覆する樹脂製の層である。樹脂層16はコイル15を支持すると共に、コイル15に発生した熱を回収して皮膜部14に伝達するように構成される。樹脂層16は複数のコイル15全体を覆うようにアウトサートモールド成型により形成された樹脂膜であってもよい。このような樹脂膜は、例えば複数のコイル15を配置した状態の金型内に樹脂を流し込んだ後に固化させて形成することができる。このような成型プロセスとしては、例えばインジェクションモールドやトランスファーモールドなどの手段を用いることができる。樹脂層16は、第1樹脂層16hと、第2樹脂層16mと、第3樹脂層16dとを含んで、一体に形成される。第1樹脂層16hは固定部18hに対応して主にコイル15の第3辺15hを内包する。第2樹脂層16mは中間部18mに対応して主にコイル15の第1辺15pおよび第2辺15qを内包する。第3樹脂層16dは非固定部18dに対応して主にコイル15の第4辺15dを内包する。
(Resin layer)
The resin layer 16 is a resin layer that covers the plurality of coils 15. The resin layer 16 is configured to support the coil 15, collect heat generated in the coil 15, and transmit it to the coating portion 14. The resin layer 16 may be a resin film formed by outsert molding so as to cover the entire plurality of coils 15. Such a resin film can be formed by, for example, pouring resin into a mold in which a plurality of coils 15 are arranged and then solidifying the resin film. As such a molding process, for example, means such as an injection mold and a transfer mold can be used. The resin layer 16 includes a first resin layer 16h, a second resin layer 16m, and a third resin layer 16d, and is integrally formed. The first resin layer 16h mainly includes the third side 15h of the coil 15 corresponding to the fixing portion 18h. The second resin layer 16m mainly includes the first side 15p and the second side 15q of the coil 15 corresponding to the intermediate portion 18m. The third resin layer 16d mainly includes the fourth side 15d of the coil 15 corresponding to the non-fixed portion 18d.
 コイルに発生した熱を効率的に回収するためには、樹脂層16は熱伝導率が高い材料から形成されることが望ましい。そこで第1実施形態のコイルユニット18の樹脂層16は、熱伝導率が0.2W/(m・K)程度である汎用エポキシ樹脂より熱伝導率が高い材料から形成されることが望ましい。より好ましくは樹脂層16が、熱伝導率が0.5W/(m・K)以上、さらに好ましくは1W/(m・K)以上、一層好ましくは5W/(m・K)以上である材料から形成されることが望ましい。このような材料としては、高熱伝導性樹脂(例えば、高熱伝導性PPS樹脂)を使用することができる。 In order to efficiently recover the heat generated in the coil, the resin layer 16 is preferably formed of a material having high thermal conductivity. Therefore, the resin layer 16 of the coil unit 18 of the first embodiment is desirably formed of a material having a higher thermal conductivity than a general-purpose epoxy resin having a thermal conductivity of about 0.2 W / (m · K). More preferably, the resin layer 16 is made of a material having a thermal conductivity of 0.5 W / (m · K) or more, more preferably 1 W / (m · K) or more, and even more preferably 5 W / (m · K) or more. It is desirable to be formed. As such a material, a high thermal conductivity resin (for example, a high thermal conductivity PPS resin) can be used.
(皮膜部)
 皮膜部14は樹脂層16の少なくとも一部を覆う皮膜である。皮膜部14は樹脂層16の熱を回収してコイルホルダ11に伝達するように構成される。皮膜部14は、例えば樹脂層16より高い熱伝導率を有する材料から形成されてもよい。皮膜部14は、例えばアルミニウム合金やステンレス鋼などの金属材料から形成されてもよい。皮膜部14は、例えばグラファイトシートなどの非金属材料から形成されてもよい。皮膜部14は、これらの材料から形成された板材や箔材から形成されてもよい。皮膜部14は非磁性材料から形成されることが望ましい。皮膜部14が過度に厚い場合は、その分だけ磁気的空隙34が広くなりその磁気抵抗が増加することが考えられる。このため、皮膜部14の厚みは1mm以下が望ましい。より好ましくは皮膜部14の厚みは0.2mm以下、さらに好ましくは0.1mm以下であることが望ましい。第1実施形態の皮膜部14は厚みが0.03mmの非磁性のステンレス鋼から形成される。
(Coating part)
The film part 14 is a film that covers at least a part of the resin layer 16. The film part 14 is configured to recover the heat of the resin layer 16 and transmit it to the coil holder 11. The film part 14 may be formed from a material having a higher thermal conductivity than the resin layer 16, for example. The film part 14 may be formed from metal materials, such as aluminum alloy and stainless steel, for example. The film part 14 may be formed from nonmetallic materials, such as a graphite sheet, for example. The film | membrane part 14 may be formed from the board | plate material and foil material which were formed from these materials. The coating portion 14 is preferably formed from a nonmagnetic material. When the film part 14 is excessively thick, it is conceivable that the magnetic air gap 34 becomes wider and the magnetic resistance increases accordingly. For this reason, as for the thickness of the membrane | film | coat part 14, 1 mm or less is desirable. More preferably, the thickness of the film part 14 is 0.2 mm or less, and more preferably 0.1 mm or less. The film part 14 of the first embodiment is formed from nonmagnetic stainless steel having a thickness of 0.03 mm.
 皮膜部14は、一例として、樹脂層16の周囲に素材を巻装して形成されてもよい。皮膜部14は、別の一例として、事前に所定形状にプリフォーミングされた素材を樹脂層16に装着して形成されてもよい。この場合、皮膜部14は樹脂層16を包む形状にプリフォーミングされてもよい。皮膜部14と樹脂層16の間には接着剤が介在して、これらは接着固定されてもよい。この接着剤は樹脂層16と同様の高い熱伝導率を有することが望ましい。皮膜部14は第1皮膜部14mと第2皮膜部14hとを含む。第1皮膜部14mは中間部18mに対応して主に第2樹脂層16mを覆う筒状の部分である。第1皮膜部14mは中間部18mの熱を回収する。第2皮膜部14hは、第1皮膜部14mのコイルホルダ11側からY軸方向に張出す鍔状の部分である。第2皮膜部14hは、コイルホルダ11に接触するように形成されてもよい。第2皮膜部14hは熱をコイルホルダ11に伝達する。第2皮膜部14hは固定具13によってコイルホルダ11に固定されてもよい。第1実施形態の第2皮膜部14hでは、ねじである固定具13が第2皮膜部14hを貫通してコイルホルダ11に設けた孔にねじ込まれて固定される。第2皮膜部14hとコイルホルダ11の間には接着剤が介在してもよい。第2皮膜部14hはコイルホルダ11に密着することが望ましい。 As an example, the coating portion 14 may be formed by winding a material around the resin layer 16. As another example, the film part 14 may be formed by attaching a material pre-formed into a predetermined shape to the resin layer 16. In this case, the film part 14 may be preformed into a shape that encloses the resin layer 16. An adhesive may be interposed between the film portion 14 and the resin layer 16, and these may be bonded and fixed. This adhesive desirably has a high thermal conductivity similar to that of the resin layer 16. The film part 14 includes a first film part 14m and a second film part 14h. The first coating portion 14m is a cylindrical portion that mainly covers the second resin layer 16m corresponding to the intermediate portion 18m. The first film part 14m recovers the heat of the intermediate part 18m. The second coating portion 14h is a bowl-shaped portion that projects in the Y-axis direction from the coil holder 11 side of the first coating portion 14m. The second coating portion 14 h may be formed so as to contact the coil holder 11. The second coating part 14 h transfers heat to the coil holder 11. The second film portion 14 h may be fixed to the coil holder 11 by the fixing tool 13. In the second coating portion 14h of the first embodiment, the fixing tool 13 that is a screw passes through the second coating portion 14h and is screwed into a hole provided in the coil holder 11 to be fixed. An adhesive may be interposed between the second film part 14 h and the coil holder 11. It is desirable that the second coating portion 14h is in close contact with the coil holder 11.
(端部通路)
 第1実施形態のリニアモータ2は、冷媒を通過させるための冷却通路であって、前記冷却通路とは別の冷却通路である端部通路11dをさらに備える。端部通路11dは、コイルホルダ11から離れた位置にて複数のコイル15の近傍に延在する。端部通路11dは、例えばコイルユニット18の非固定部18dにてX軸方向に延伸する通路であってもよい。端部通路11dは、非固定部18dに穿設された横孔であってもよく、非固定部18dに埋め込まれたパイプであってもよい。端部通路11dは、冷媒を通過させることによってその冷媒が非固定部18d内の熱を回収して排出するように構成される。コイル15に発生した熱を効率的に回収する観点から、端部通路11dはコイル15の第4辺15dの近傍に設けられることが望ましい。より好ましくは、端部通路11dのZ軸範囲が複数のコイル15のZ軸範囲と少なくとも部分的にオーバーラップすることが望ましい。なお、接続通路11h、11mがコイルユニット18中に設けられることは必須ではない。
(End passage)
The linear motor 2 of the first embodiment is further provided with an end passage 11d that is a cooling passage for allowing the refrigerant to pass therethrough and is a cooling passage different from the cooling passage. The end passage 11 d extends in the vicinity of the plurality of coils 15 at a position away from the coil holder 11. The end passage 11d may be a passage extending in the X-axis direction at the non-fixed portion 18d of the coil unit 18, for example. The end passage 11d may be a horizontal hole bored in the non-fixed portion 18d, or a pipe embedded in the non-fixed portion 18d. The end passage 11d is configured so that the refrigerant collects and discharges the heat in the non-fixed portion 18d by allowing the refrigerant to pass therethrough. From the viewpoint of efficiently recovering heat generated in the coil 15, the end passage 11 d is desirably provided in the vicinity of the fourth side 15 d of the coil 15. More preferably, it is desirable that the Z-axis range of the end passage 11 d at least partially overlaps the Z-axis range of the plurality of coils 15. It is not essential that the connection passages 11h and 11m are provided in the coil unit 18.
(接続通路)
 冷却通路11e、11fと端部通路11dとを連通する接続通路11h、11mが設けられてもよい。接続通路11h、11mは、例えばコイルユニット18に設けられる。図6に示すよう、接続通路11h、11mはコイルユニット18の中間部18mにZ軸方向に延在する。接続通路11h、11mは、冷却通路11e、11fと端部通路11dとを連通して冷媒を通過させるための通路である。接続通路11h、11mは、コイルユニット18の中間部18mに穿設された縦孔であってもよく、コイルユニット18の中間部18mに埋め込まれたパイプであってもよい。接続通路11h、11mは、冷媒を通過させることによってその冷媒がコイルユニット18の中間部18mの熱を回収して排出するように構成される。
(Connection passage)
Connection passages 11h and 11m that connect the cooling passages 11e and 11f and the end passage 11d may be provided. The connection passages 11h and 11m are provided in the coil unit 18, for example. As shown in FIG. 6, the connection passages 11 h and 11 m extend in the Z-axis direction at the intermediate portion 18 m of the coil unit 18. The connection passages 11h and 11m are passages for allowing the refrigerant to pass through the cooling passages 11e and 11f and the end passage 11d. The connection passages 11h and 11m may be vertical holes formed in the intermediate portion 18m of the coil unit 18, or may be pipes embedded in the intermediate portion 18m of the coil unit 18. The connection passages 11h and 11m are configured such that the refrigerant collects and discharges the heat of the intermediate portion 18m of the coil unit 18 by allowing the refrigerant to pass therethrough.
 コイルの熱を効率的に回収する観点で、接続通路はコイルのより近傍に延在することが望ましい。そこで、接続通路11h、11mは、第1辺15pと第2辺15qの間に延在する部分を含む。つまり第1辺15pと第2辺15qの間の空いたスペースに接続通路11h、11mが設けられる。コイル15の第3辺15hおよび第4辺15dは、Y軸方向においてコイル15の中心から外側に曲がっていることで、コイル15の中心部は空いており、コイル15と殆ど干渉せずに接続通路11h、11mを配置することができる。なお、接続通路11h、11mがコイルユニット18中に設けられることは必須ではない。 From the viewpoint of efficiently recovering the heat of the coil, it is desirable that the connection passage extends closer to the coil. Therefore, the connection passages 11h and 11m include a portion extending between the first side 15p and the second side 15q. That is, the connection passages 11h and 11m are provided in the space between the first side 15p and the second side 15q. The third side 15h and the fourth side 15d of the coil 15 are bent outward from the center of the coil 15 in the Y-axis direction, so that the central portion of the coil 15 is vacant and can be connected with little interference with the coil 15. Passages 11h and 11m can be arranged. It is not essential that the connection passages 11h and 11m are provided in the coil unit 18.
(冷媒経路)
 図7は可動子10の冷媒の経路の一例を示す模式図である。冷却通路11e、11fの左端側はホルダカバー12aの管状端部12h、12jに接続される。冷却通路11e、11fの右端側はホルダカバー12bの通路12gを通じて接続されている。管状端部12h、12jはそれぞれ図外のラジエーターに接続される。熱を回収して昇温した冷媒が管状端部12hからラジエーターに送出され、管状端部12jにはラジエーターで冷やされた冷媒が送り込まれるように構成される。冷媒は、矢印Aに示すよう管状端部12jに入り、矢印Bに示すように冷却通路11fを通過する。続いて冷媒は、矢印Cに示すように通路12gを通過して、矢印Dに示すように冷却通路11eを通過する。続いて冷媒は矢印Eに示すように管状端部12hからラジエーターに送出される。このように、冷媒が冷却通路11e、11fを循環することによって、コイルホルダ11の熱がラジエーターに回収されて排出される。
(Refrigerant path)
FIG. 7 is a schematic diagram illustrating an example of a refrigerant path of the mover 10. The left end sides of the cooling passages 11e and 11f are connected to the tubular ends 12h and 12j of the holder cover 12a. The right end sides of the cooling passages 11e and 11f are connected through the passage 12g of the holder cover 12b. The tubular ends 12h and 12j are each connected to a radiator (not shown). The refrigerant whose temperature has been recovered by collecting heat is sent from the tubular end portion 12h to the radiator, and the refrigerant cooled by the radiator is sent to the tubular end portion 12j. The refrigerant enters the tubular end 12j as indicated by the arrow A and passes through the cooling passage 11f as indicated by the arrow B. Subsequently, the refrigerant passes through the passage 12g as indicated by an arrow C and passes through the cooling passage 11e as indicated by an arrow D. Subsequently, the refrigerant is sent out from the tubular end portion 12h to the radiator as indicated by an arrow E. As described above, the refrigerant circulates in the cooling passages 11e and 11f, whereby the heat of the coil holder 11 is recovered by the radiator and discharged.
 また、管状端部12jに送出された冷媒の一部は、矢印Fに示すように接続通路11hを下向きに通過して、矢印Gに示すように端部通路11dをX軸方向に流れる。端部通路11dに流れた冷媒は、矢印Hに示すように接続通路11mを上向きに流れて冷却通路11fに至る。このように、冷媒が接続通路11hと、端部通路11dと、接続通路11mを循環することによって、コイルユニット18の熱がラジエーターに回収されて排出される。より効率的に熱を回収する観点から、ラジエーターには冷媒の循環を促進するポンプが設けられてもよい。また、冷媒としては、一例としてフッ素系のハイドロフルオロエーテル構造を持つ液体を使用してもよい。この液体は、熱的・化学的安定性に優れ、オゾン破壊係数が実質的にゼロで、取り扱いが容易である。 Further, a part of the refrigerant sent to the tubular end portion 12j passes downward through the connection passage 11h as indicated by an arrow F and flows in the X-axis direction through the end passage 11d as indicated by an arrow G. As indicated by an arrow H, the refrigerant that has flowed into the end passage 11d flows upward through the connection passage 11m and reaches the cooling passage 11f. As described above, the refrigerant circulates through the connection passage 11h, the end passage 11d, and the connection passage 11m, whereby the heat of the coil unit 18 is recovered by the radiator and discharged. From the viewpoint of recovering heat more efficiently, the radiator may be provided with a pump that promotes circulation of the refrigerant. Further, as the refrigerant, for example, a liquid having a fluorine-based hydrofluoroether structure may be used. This liquid is excellent in thermal and chemical stability, has a substantially zero ozone depletion coefficient, and is easy to handle.
(真空環境)
 第1実施形態のリニアモータ2は真空環境下で使用されてもよい。リニアモータ2は、例えば減圧チャンバー内の真空環境下で好適に使用することができる。なお、ここで真空環境とは、超高真空から低真空を含む大気圧より減圧された環境をいうものとする。
(Vacuum environment)
The linear motor 2 of the first embodiment may be used in a vacuum environment. The linear motor 2 can be suitably used, for example, in a vacuum environment in a decompression chamber. Here, the vacuum environment refers to an environment where the pressure is reduced from atmospheric pressure including ultra-high vacuum to low vacuum.
 リニアモータを真空環境下で使用すると、コイルユニットの樹脂層を構成する物質が揮発して発ガスを生じることがある。このような発ガスは真空チャンバーや製造対象の製品を汚染する原因となりうる。そこで、第1実施形態の可動子10は、コイルユニット18の樹脂層16の少なくとも一部が皮膜部14によって覆われる。この構成により、樹脂層16の発ガスを抑制することができる。 ¡When a linear motor is used in a vacuum environment, the material constituting the resin layer of the coil unit may volatilize and generate gas. Such gassing can cause contamination of the vacuum chamber and the product being manufactured. Therefore, in the mover 10 of the first embodiment, at least a part of the resin layer 16 of the coil unit 18 is covered with the coating part 14. With this configuration, gas generation from the resin layer 16 can be suppressed.
 リニアモータを真空環境下で使用すると、大気圧下で使用する場合と比較して、コイルが発生する熱の対流による放散が大幅に減少して、コイルの温度上昇が大きくなる。そこで、第1実施形態の可動子10は、コイルユニット18の外表面に皮膜部14が設けられ、皮膜部14がコイルホルダ11に接触することで、コイルユニット18で発生する熱はコイルホルダ11に回収されて、コイルユニット18の温度上昇が抑制される。 When the linear motor is used in a vacuum environment, the heat dissipation generated by the coil due to convection is greatly reduced and the temperature rise of the coil is larger than when the linear motor is used under atmospheric pressure. Therefore, in the mover 10 of the first embodiment, the coating unit 14 is provided on the outer surface of the coil unit 18, and the coating unit 14 comes into contact with the coil holder 11, so that the heat generated in the coil unit 18 is generated by the coil holder 11. The temperature rise of the coil unit 18 is suppressed.
 次に、このように構成された第1実施形態のリニアモータ2の特徴について説明する。
 第1実施形態のリニアモータ2では、コイルユニット18は、複数のコイル15と、複数のコイル15を被覆する樹脂層16と、樹脂層16の少なくとも一部を覆う皮膜部14と、を含み、皮膜部14はコイルホルダ11に接触する部分を有する。この構成によれば、コイル15で発生した熱を樹脂層16と皮膜部14とを通じてコイルホルダ11に回収することができる。
Next, features of the linear motor 2 according to the first embodiment configured as described above will be described.
In the linear motor 2 of the first embodiment, the coil unit 18 includes a plurality of coils 15, a resin layer 16 that covers the plurality of coils 15, and a coating portion 14 that covers at least a part of the resin layer 16. The film part 14 has a part that contacts the coil holder 11. According to this configuration, the heat generated in the coil 15 can be recovered in the coil holder 11 through the resin layer 16 and the coating portion 14.
 第1実施形態のリニアモータ2では、コイルホルダ11には、コイルユニット18の近傍に延在して冷媒を通過させるための冷却通路11e、11fが設けられる。この構成によれば、コイルホルダ11の熱を冷却通路11e、11fを通じて排出することができる。 In the linear motor 2 of the first embodiment, the coil holder 11 is provided with cooling passages 11e and 11f that extend in the vicinity of the coil unit 18 and allow the refrigerant to pass therethrough. According to this configuration, the heat of the coil holder 11 can be discharged through the cooling passages 11e and 11f.
 第1実施形態のリニアモータ2では、冷媒を通過させるための冷却通路であって、冷却通路11e、11fとは別の冷却通路である端部通路11dをさらに備え、端部通路11dは、コイルホルダ11から離れた位置で複数のコイル15の近傍に延在する。この構成によれば、端部通路11dは複数のコイル15の近傍でその輻射熱を回収することができる。 The linear motor 2 according to the first embodiment further includes an end passage 11d that is a cooling passage for allowing the refrigerant to pass therethrough and is a cooling passage different from the cooling passages 11e and 11f. It extends in the vicinity of the plurality of coils 15 at a position away from the holder 11. According to this configuration, the end passage 11 d can recover the radiant heat in the vicinity of the plurality of coils 15.
 第1実施形態のリニアモータ2では、コイルユニット18には冷却通路11e、11fと別の冷却通路である端部通路11dとを連通する接続通路11h、11mが設けられる。この構成によれば、冷媒は接続通路11h、11mと端部通路11dとを巡ることができる。 In the linear motor 2 of the first embodiment, the coil unit 18 is provided with connection passages 11h and 11m that connect the cooling passages 11e and 11f and the end passage 11d that is another cooling passage. According to this configuration, the refrigerant can go around the connection passages 11h and 11m and the end passage 11d.
 第1実施形態のリニアモータ2では、コイル15は、可動方向に離間して設けられる第1辺15pと第2辺15qとを有し、接続通路11h、11mは、第1辺15pと第2辺15qの間に延在する部分を含む。この構成によれば、接続通路11h、11mは、第1辺15pと第2辺15qの近傍で効率的に熱を回収することができる。 In the linear motor 2 according to the first embodiment, the coil 15 has a first side 15p and a second side 15q that are spaced apart from each other in the movable direction, and the connection passages 11h and 11m have a first side 15p and a second side. A portion extending between the sides 15q is included. According to this configuration, the connection passages 11h and 11m can efficiently recover heat in the vicinity of the first side 15p and the second side 15q.
 第1実施形態のリニアモータ2では、コイルホルダ11には、コイルユニット18の一部を収容するための収容凹部11gが設けられ、収容凹部11gのコイルユニット18と対向する部分はコイルユニット18の形状に対応する形状を有する。この構成によれば、これらの間の隙間が小さくなり、コイルユニット18で発生した熱を効果的にコイルホルダ11に回収することができる。 In the linear motor 2 of the first embodiment, the coil holder 11 is provided with a housing recess 11g for housing a part of the coil unit 18, and the portion of the housing recess 11g that faces the coil unit 18 is the portion of the coil unit 18. It has a shape corresponding to the shape. According to this configuration, the gap between them becomes small, and the heat generated in the coil unit 18 can be effectively recovered in the coil holder 11.
 第1実施形態のリニアモータ2は真空環境下で使用されてもよい。この構成によれば、当該真空環境への発ガスとコイルユニット18の温度上昇を抑制することができる。 The linear motor 2 of the first embodiment may be used in a vacuum environment. According to this structure, the gas generation to the said vacuum environment and the temperature rise of the coil unit 18 can be suppressed.
 次に、リニアモータ2の用途を説明する。図9は、第1実施形態に係るリニアモータ2を用いたステージ装置100の平面図である。このステージ装置100はXYステージと称され、対象物をX方向、Y方向に位置決めする。 Next, the use of the linear motor 2 will be described. FIG. 9 is a plan view of the stage apparatus 100 using the linear motor 2 according to the first embodiment. This stage apparatus 100 is called an XY stage, and positions an object in the X direction and the Y direction.
 ステージ装置100は、主としてYステージ120と、Xステージ130と、定盤140と、を備える。Yステージ120は、一対のスライダ124と、一対のスライダ124の間に横架する横架材122と、を備える。横架材122の上には、Xステージ130をX方向に移動させるXリニアモータ2Xが設けられている。Xリニアモータ2Xは、横架材122に固定されX方向に延在する固定子20と、Xステージ130の下面に結合された可動子(コイル)10とを備える。かくしてXリニアモータ2Xの可動子10を制御することにより、Xステージ130がX方向に位置決めされる。 The stage apparatus 100 mainly includes a Y stage 120, an X stage 130, and a surface plate 140. The Y stage 120 includes a pair of sliders 124 and a horizontal member 122 that extends horizontally between the pair of sliders 124. An X linear motor 2X that moves the X stage 130 in the X direction is provided on the horizontal member 122. The X linear motor 2 </ b> X includes a stator 20 that is fixed to the horizontal member 122 and extends in the X direction, and a mover (coil) 10 that is coupled to the lower surface of the X stage 130. Thus, by controlling the mover 10 of the X linear motor 2X, the X stage 130 is positioned in the X direction.
 定盤140の両端には、一対のYリニアモータ2Yが設けられる。Yリニアモータ2Yはそれぞれ、可動子10および固定子20を備える。Yリニアモータ2Yの固定子20には、上述のスライダ124が固定される。Yリニアモータ2Yの可動子10を制御することによりYステージ120がY方向に位置決めされる。 A pair of Y linear motors 2Y are provided at both ends of the surface plate 140. Each of the Y linear motors 2Y includes a mover 10 and a stator 20. The slider 124 is fixed to the stator 20 of the Y linear motor 2Y. The Y stage 120 is positioned in the Y direction by controlling the mover 10 of the Y linear motor 2Y.
 以上がステージ装置100の構成である。第1実施形態に係るリニアモータ2は、ステージ装置100のXリニアモータ2XあるいはYリニアモータ2Yに好適に用いることができる。ステージ装置100は、露光装置におけるウェハやガラス基板の位置決めに用いることができ、あるいは走査型電子顕微鏡(SEM)に使用されるアクチュエータなどにも利用可能である。 The above is the configuration of the stage apparatus 100. The linear motor 2 according to the first embodiment can be suitably used for the X linear motor 2X or the Y linear motor 2Y of the stage apparatus 100. The stage apparatus 100 can be used for positioning a wafer or a glass substrate in an exposure apparatus, or can be used for an actuator used in a scanning electron microscope (SEM).
 以上、本発明の第1実施形態をもとに説明した。これらの第1実施形態は例示であり、色々な変形および変更が本発明の特許請求の範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。 The description has been given based on the first embodiment of the present invention. Those skilled in the art will appreciate that these first embodiments are examples, and that various modifications and changes are possible within the scope of the claims of the present invention, and that such modifications and changes are also within the scope of the claims of the present invention. Is understood. Accordingly, the description and drawings herein are to be regarded as illustrative rather than restrictive.
 以下、第1実施形態に係るリニアモータ2の変形例について説明する。変形例の図面および説明では、第1実施形態と同一または同等の構成要素、部材には、同一の符号を付する。第1実施形態と重複する説明を適宜省略し、第1実施形態と相違する構成について重点的に説明する。 Hereinafter, modified examples of the linear motor 2 according to the first embodiment will be described. In the drawings and description of the modified example, the same reference numerals are given to the same or equivalent components and members as those in the first embodiment. The description which overlaps with 1st Embodiment is abbreviate | omitted suitably, and demonstrates the structure different from 1st Embodiment mainly.
(変形例1)
 次に、変形例1に係る可動子210について説明する。図8は、図6に対応する可動子210の正面視の断面図である。可動子210は、可動子10に対して接続通路11h、11mの配置が異なる点で相違し、その他の構成は同様である。したがって、重複する説明を省略し相違点を重点的に説明する。可動子10では、接続通路11h、11mがコイルユニット18の内部に配設されるのに対して、可動子210では、接続通路11h、11mがコイルユニット18の外部に配設される。図8に示すように、端部通路11dの両端はコイルユニット18のX軸方向の両端面から突出している。端部通路11dの左突出端に接続される接続通路11hの上端は、コイルユニット18の外部で冷却通路11e、11fに接続される。接続通路11hの上端は、例えばホルダカバー12aにて冷却通路11e、11fに接続されてもよい。端部通路11dの右突出端に接続される接続通路11mの上端は、コイルユニット18の外部で冷却通路11e、11fに接続される。接続通路11mの上端は、例えばホルダカバー12bにて冷却通路11e、11fに接続されてもよい。変形例1の構成によれば、接続通路11h、11mがコイルユニット18の外部に配設されるから、コイルユニット18の製造が容易になる。
(Modification 1)
Next, the needle | mover 210 which concerns on the modification 1 is demonstrated. FIG. 8 is a front sectional view of the mover 210 corresponding to FIG. 6. The mover 210 is different from the mover 10 in the arrangement of the connection passages 11h and 11m, and the other configurations are the same. Therefore, the overlapping description is omitted and the differences are mainly described. In the mover 10, the connection passages 11 h and 11 m are disposed inside the coil unit 18, whereas in the mover 210, the connection passages 11 h and 11 m are disposed outside the coil unit 18. As shown in FIG. 8, both ends of the end passage 11d protrude from both end surfaces of the coil unit 18 in the X-axis direction. The upper end of the connection passage 11 h connected to the left protruding end of the end passage 11 d is connected to the cooling passages 11 e and 11 f outside the coil unit 18. The upper end of the connection passage 11h may be connected to the cooling passages 11e and 11f, for example, by a holder cover 12a. The upper end of the connection passage 11m connected to the right protruding end of the end passage 11d is connected to the cooling passages 11e and 11f outside the coil unit 18. The upper end of the connection passage 11m may be connected to the cooling passages 11e and 11f by a holder cover 12b, for example. According to the configuration of the first modification, since the connection passages 11h and 11m are disposed outside the coil unit 18, the coil unit 18 can be easily manufactured.
(変形例2)
 第1実施形態では、皮膜部14が所定の材料から形成される板材や箔材から形成される例について説明したが、これに限られない。皮膜部14は、例えば蒸着膜、スパッタ膜およびメッキ膜などの既知の成膜手段による皮膜部であってもよい。
(Modification 2)
In 1st Embodiment, although the film | membrane part 14 demonstrated the example formed from the board | plate material and foil material which are formed from a predetermined material, it is not restricted to this. The film part 14 may be a film part formed by known film forming means such as a vapor deposition film, a sputtered film, and a plating film.
(変形例3)
 第1実施形態では、コイルユニット18は3つのコイル15を含む例について説明したが、これに限られない。コイルユニットは4以上のコイルを含んでもよい。
(Modification 3)
In 1st Embodiment, although the coil unit 18 demonstrated the example containing the three coils 15, it is not restricted to this. The coil unit may include four or more coils.
(変形例4)
 第1実施形態では、冷却通路がX軸方向に延伸する例について説明したが、これに限られない。冷却通路はX軸方向以外の、例えばY軸方向に延伸する部分を含んでもよい。
(Modification 4)
In the first embodiment, the example in which the cooling passage extends in the X-axis direction has been described, but the present invention is not limited to this. The cooling passage may include a portion extending in the Y-axis direction other than the X-axis direction, for example.
(変形例5)
 第1実施形態では、冷却通路が2本設けられる例について説明したが、これに限られない。冷却通路は1本または3本以上設けられてもよい。
(Modification 5)
In the first embodiment, an example in which two cooling passages are provided has been described, but the present invention is not limited to this. One or three or more cooling passages may be provided.
(変形例6)
 第1実施形態では、端部通路11dがコイルユニット18の内部に設けられる例について説明したが、これに限られない。端部通路はコイルユニットの外部に設けられてもよい。端部通路は、例えばヨーク22に設けられてもよい。一例として、端部通路はヨーク22の底部28(図2を参照)に設けられてもよい。底部28が非固定部18dのZ軸方向側に接近して設けられることにより、コイルユニット18で発生した熱を効率的に端部通路に回収することができる。このような端部通路は、ヨーク22中に穿設された孔であってもよく、ヨーク22中に埋め込まれたパイプであってもよい。
(Modification 6)
In the first embodiment, the example in which the end passage 11d is provided inside the coil unit 18 has been described. However, the present invention is not limited to this. The end passage may be provided outside the coil unit. The end passage may be provided in the yoke 22, for example. As an example, the end passage may be provided at the bottom 28 of the yoke 22 (see FIG. 2). By providing the bottom portion 28 close to the Z-axis direction side of the non-fixed portion 18d, the heat generated in the coil unit 18 can be efficiently recovered in the end passage. Such an end passage may be a hole drilled in the yoke 22 or a pipe embedded in the yoke 22.
(変形例7)
 第1実施形態では、端部通路11dが冷却通路11e、11fに連通される例について説明したが、これに限られない。端部通路は冷却通路11e、11fとは別の冷媒循環手段に接続されてもよい。
(Modification 7)
In the first embodiment, the example in which the end passage 11d communicates with the cooling passages 11e and 11f has been described, but the present invention is not limited thereto. The end passage may be connected to a refrigerant circulation means different from the cooling passages 11e and 11f.
[第2実施形態]
 本発明の第2実施形態はボイスコイルモータに関する。図10は、第2実施形態に係るボイスコイルモータ300を模式的に示す側面図である。第2実施形態に係るボイスコイルモータ300は、固定子320と、固定子320に対して直線状または円弧状の軌道に沿って移動可能に設けられる可動子310と、を備える。固定子320と可動子310とは磁気的空隙318を挟んでZ軸方向に対向する。固定子320はコイルユニット328を含む。可動子310は、界磁磁石312と、界磁磁石312の固定子320とは反対側に設けられるバックヨーク314と、を主に含む。界磁磁石312の固定子320と対向する面には、可動子310の可動方向に配列された複数の磁極(例えば2極)が設けられる。コイルユニット328に通電することによって、コイルユニット328はコイル磁束を形成する。コイル磁束と界磁磁石312の界磁磁束との相互作用により、界磁磁石312にはY軸方向の推力が発生する。
[Second Embodiment]
The second embodiment of the present invention relates to a voice coil motor. FIG. 10 is a side view schematically showing a voice coil motor 300 according to the second embodiment. The voice coil motor 300 according to the second embodiment includes a stator 320 and a mover 310 provided so as to be movable along a linear or arcuate track with respect to the stator 320. The stator 320 and the mover 310 face each other in the Z-axis direction with the magnetic gap 318 interposed therebetween. Stator 320 includes a coil unit 328. The mover 310 mainly includes a field magnet 312 and a back yoke 314 provided on the opposite side of the field magnet 312 from the stator 320. A surface of the field magnet 312 facing the stator 320 is provided with a plurality of magnetic poles (for example, two poles) arranged in the moving direction of the mover 310. By energizing the coil unit 328, the coil unit 328 forms a coil magnetic flux. Due to the interaction between the coil magnetic flux and the field magnetic flux of the field magnet 312, a thrust in the Y-axis direction is generated in the field magnet 312.
 界磁磁石312は、X軸方向およびY軸方向に延在してZ軸方向に薄く形成され、平面視で略矩形形状または略台形形状を呈する。界磁磁石312は、NdFeB系の磁石材料など種々の磁石材料で形成することができる。バックヨーク314は、X軸方向およびY軸方向に延在してZ軸方向に薄く形成され、平面視で略矩形形状または略台形形状を呈する。バックヨーク314は、鋼板など軟磁性を有する金属材料で形成することができる。 The field magnet 312 extends in the X-axis direction and the Y-axis direction and is thinly formed in the Z-axis direction, and has a substantially rectangular shape or a substantially trapezoidal shape in plan view. The field magnet 312 can be formed of various magnet materials such as an NdFeB magnet material. The back yoke 314 extends in the X-axis direction and the Y-axis direction, is formed thin in the Z-axis direction, and has a substantially rectangular shape or a substantially trapezoidal shape in plan view. The back yoke 314 can be formed of a metal material having soft magnetism such as a steel plate.
 図11は、ボイスコイルモータ300の固定子320を模式的に示す平面図である。図12は、固定子320のA-A線に沿った縦断面を示す断面図である。図13は、固定子320から後述する皮膜部326を除いた状態を示す平面図である。固定子320は、コイルユニット328と、コイルホルダ322と、を主に含んでいる。コイルユニット328は、コイル330と、樹脂層332と、皮膜部326と、を主に含んでいる。 FIG. 11 is a plan view schematically showing the stator 320 of the voice coil motor 300. FIG. FIG. 12 is a cross-sectional view showing a longitudinal section of the stator 320 along the line AA. FIG. 13 is a plan view showing a state in which a later-described film portion 326 is removed from the stator 320. The stator 320 mainly includes a coil unit 328 and a coil holder 322. The coil unit 328 mainly includes a coil 330, a resin layer 332, and a coating portion 326.
 コイル330は、表面が絶縁された導線(例えば銅線)を所定の回数巻いて形成された空心コイルである。コイル330は、X軸方向およびY軸方向に延在してZ軸方向に薄く形成され、平面視で略長円形状を呈する。コイル330は、駆動電流に応じてZ軸方向に向いた磁束を形成する。コイルユニット328は、コイル330を1つ備える。コイルユニット328は複数のコイルを備えてもよい。 The coil 330 is an air-core coil formed by winding a conductive wire (for example, copper wire) whose surface is insulated a predetermined number of times. The coil 330 extends in the X-axis direction and the Y-axis direction, is formed thin in the Z-axis direction, and has a substantially oval shape in plan view. The coil 330 forms a magnetic flux directed in the Z-axis direction according to the drive current. The coil unit 328 includes one coil 330. The coil unit 328 may include a plurality of coils.
 コイルホルダ322は、図示しないシャーシにコイルユニット328を保持するための部材である。コイルホルダ322は、基部322bと、枠部322cと、を含む。基部322bは、シャーシに固定される部分である。基部322bは、X軸方向及びY軸方向に延在してZ軸方向に薄く形成されており、平面視で略矩形状を呈する。基部322bの長辺はY軸方向に延び、短辺はX軸方向に延びている。 The coil holder 322 is a member for holding the coil unit 328 in a chassis (not shown). The coil holder 322 includes a base portion 322b and a frame portion 322c. The base 322b is a part fixed to the chassis. The base 322b extends in the X-axis direction and the Y-axis direction and is formed thin in the Z-axis direction, and has a substantially rectangular shape in plan view. The long side of the base 322b extends in the Y-axis direction, and the short side extends in the X-axis direction.
 枠部322cは、コイル330を囲むフレーム状の部分であり、一辺が基部322bに固定されている。枠部322cはコイル330の外形よりやや大きく形成されており、コイル330と枠部322cとの間には樹脂が介在している。コイルホルダ322は、例えばアルミニウムなどの金属材料によって、基部322bと枠部322cとを一体に形成することができる。基部322bと枠部322cとは別々に形成されて結合されてもよい。 The frame part 322c is a frame-shaped part surrounding the coil 330, and one side is fixed to the base part 322b. The frame portion 322c is formed to be slightly larger than the outer shape of the coil 330, and a resin is interposed between the coil 330 and the frame portion 322c. The coil holder 322 can integrally form the base portion 322b and the frame portion 322c with a metal material such as aluminum. The base portion 322b and the frame portion 322c may be separately formed and combined.
 樹脂層332は、コイル330を覆うように設けられた樹脂製の層である。樹脂層332は、コイル330のZ軸方向の両端面を覆う膜状の部分と、コイル330と枠部322cとの間に充填された部分と、を含む。樹脂層332はコイル330を支持し、コイル330に発生した熱を回収して拡散し温度分布を均一化するように構成されている。樹脂層332は、例えば、コイルホルダ322およびコイル330がセットされた状態の金型に、樹脂を流し込むことによって形成することができる。このような成形工程としては、例えば、射出成形やトランスファー成形などの成形工程を用いることができる。 The resin layer 332 is a resin layer provided so as to cover the coil 330. The resin layer 332 includes a film-shaped portion that covers both end surfaces of the coil 330 in the Z-axis direction, and a portion that is filled between the coil 330 and the frame portion 322c. The resin layer 332 is configured to support the coil 330 and collect and diffuse the heat generated in the coil 330 to make the temperature distribution uniform. The resin layer 332 can be formed, for example, by pouring resin into a mold in which the coil holder 322 and the coil 330 are set. As such a molding process, for example, a molding process such as injection molding or transfer molding can be used.
 コイル330に発生した熱を効率的に回収するためには、樹脂層332は熱伝導率が高い材料から形成されることが望ましい。樹脂層332は、熱伝導率が0.2W/(m・K)程度である汎用エポキシ樹脂より熱伝導率が高い材料から形成されることが望ましい。より好ましくは樹脂層332が、熱伝導率が0.5W/(m・K)以上、さらに好ましくは1W/(m・K)以上、一層好ましくは5W/(m・K)以上である材料から形成されることが望ましい。このような材料としては、高熱伝導性樹脂(例えば、高熱伝導性PPS樹脂)を使用することができる。コイル330と皮膜部326との間のZ軸方向の厚みは小さいことが望ましく、例えば、3mm以下、好ましくは0.1mm以下に設定することができる。 In order to efficiently recover the heat generated in the coil 330, the resin layer 332 is desirably formed of a material having high thermal conductivity. The resin layer 332 is preferably formed of a material having a higher thermal conductivity than a general-purpose epoxy resin having a thermal conductivity of about 0.2 W / (m · K). More preferably, the resin layer 332 is made of a material having a thermal conductivity of 0.5 W / (m · K) or more, more preferably 1 W / (m · K) or more, and even more preferably 5 W / (m · K) or more. It is desirable to be formed. As such a material, a high thermal conductivity resin (for example, a high thermal conductivity PPS resin) can be used. The thickness in the Z-axis direction between the coil 330 and the coating portion 326 is desirably small, and can be set to 3 mm or less, preferably 0.1 mm or less, for example.
 皮膜部326は、樹脂層332の少なくとも一部を覆うように設けられた皮膜である。皮膜部326は、X軸方向及びY軸方向に延在してZ軸方向に薄いシート状を呈する。皮膜部326は、一例として、平面視でY軸方向に長い長円形状を有する。皮膜部326は、コイルユニット328のコイル330を概略覆う形状を有する。皮膜部326は、平面形状において、コイル330を覆い、皮膜部326の縁全体がコイル330の外縁を越えて外側に張り出すように形成されてもよい。皮膜部326は、コイル330に樹脂層332を形成する際に一体に設けられてもよい。皮膜部326は、コイル330に樹脂層332を設けた後に、その樹脂層332の表面に接着などの方法により設けられてもよい。 The coating portion 326 is a coating provided so as to cover at least a part of the resin layer 332. The film part 326 extends in the X-axis direction and the Y-axis direction and has a thin sheet shape in the Z-axis direction. As an example, the film portion 326 has an oval shape that is long in the Y-axis direction in plan view. The film part 326 has a shape that substantially covers the coil 330 of the coil unit 328. The film part 326 may be formed so as to cover the coil 330 in a planar shape, and the entire edge of the film part 326 may protrude outward beyond the outer edge of the coil 330. The film portion 326 may be provided integrally when the resin layer 332 is formed on the coil 330. The film portion 326 may be provided on the surface of the resin layer 332 by a method such as adhesion after the resin layer 332 is provided on the coil 330.
 図12に示すように、皮膜部326は、伝熱層326bと、接着層326cと、保護層326dと、を含んでもよい。図12では、理解を容易にするため、各層の厚みの比率は、実際と異なる比率で示している。接着層326cは、伝熱層326bを樹脂層332に接着するための接着材からなる層である。この接着材は樹脂層332と同等以上の熱伝導率を有することが望ましい。保護層326dは、伝熱層326bの表面側を保護するための層である。保護層326dは、伝熱層326bの表面側を保護可能な範囲で薄いことが望ましい。保護層326dは、樹脂などの有機材料、金属などの無機材料で形成することができる。保護層326dには、例えば、テフロン(登録商標)などのフッ素系樹脂や、カプトン(登録商標)などのポリイミド系樹脂のフィルム材を用いることができる。なお、接着層326cや保護層326dを設けることは必須ではない。例えば、樹脂層332を設ける際に伝熱層326bを一体に設けることで、接着層がなくても伝熱層326bを樹脂層332に固定することができる。例えば、伝熱層326bがアルミニウムやステンレス鋼から形成されている場合や、伝熱層326bに物理的な接触がない場合には、保護層を設けない構成も可能である。 As shown in FIG. 12, the film portion 326 may include a heat transfer layer 326b, an adhesive layer 326c, and a protective layer 326d. In FIG. 12, for easy understanding, the ratio of the thickness of each layer is shown as a ratio different from the actual one. The adhesive layer 326 c is a layer made of an adhesive for adhering the heat transfer layer 326 b to the resin layer 332. The adhesive desirably has a thermal conductivity equal to or higher than that of the resin layer 332. The protective layer 326d is a layer for protecting the surface side of the heat transfer layer 326b. The protective layer 326d is desirably thin as long as the surface side of the heat transfer layer 326b can be protected. The protective layer 326d can be formed using an organic material such as a resin or an inorganic material such as a metal. For the protective layer 326d, for example, a fluorine resin such as Teflon (registered trademark) or a polyimide resin film material such as Kapton (registered trademark) can be used. Note that the adhesive layer 326c and the protective layer 326d are not necessarily provided. For example, by providing the heat transfer layer 326b integrally when the resin layer 332 is provided, the heat transfer layer 326b can be fixed to the resin layer 332 without an adhesive layer. For example, when the heat transfer layer 326b is formed from aluminum or stainless steel, or when there is no physical contact with the heat transfer layer 326b, a configuration without a protective layer is also possible.
 伝熱層326bは、例えば、樹脂層332より熱伝導率が高い材料から形成されてもよい。伝熱層326bは、例えばアルミニウム合金やステンレス鋼などの金属材料で形成することができる。伝熱層326bは、例えばグラファイトシートなどの非金属材料で形成することができる。伝熱層326bは、これらの材料で形成された板材や箔材で形成されてもよい。伝熱層326bは、例えば、方向によって熱伝導率が異なる異方性の材料で形成されてもよく、方向によって熱伝導率が均等な等方性の材料で形成されてもよい。伝熱層326bは、渦電流を生じない材料または渦電流を生じにくい材料から形成することが望ましい。この観点から、伝熱層326bには、例えば、銅、銀、金などの薄膜や箔状のシート、人工または天然グラファイトで形成された薄いシートを用いることができる。 The heat transfer layer 326b may be formed of a material having a higher thermal conductivity than the resin layer 332, for example. The heat transfer layer 326b can be formed of a metal material such as an aluminum alloy or stainless steel. The heat transfer layer 326b can be formed of a nonmetallic material such as a graphite sheet. The heat transfer layer 326b may be formed of a plate material or a foil material formed of these materials. The heat transfer layer 326b may be formed of, for example, an anisotropic material having a different thermal conductivity depending on the direction, or may be formed of an isotropic material having a uniform thermal conductivity depending on the direction. The heat transfer layer 326b is preferably formed from a material that does not generate eddy current or a material that does not easily generate eddy current. From this point of view, the heat transfer layer 326b can be, for example, a thin film such as copper, silver, or gold, a foil-like sheet, or a thin sheet formed of artificial or natural graphite.
 伝熱層326bは非磁性材料で形成されることが望ましい。伝熱層326bが厚すぎると、その分だけ磁気的空隙が広くなり磁気抵抗が増加することが考えられる。このため、伝熱層326bの厚さは1mm以下であることが望ましい。より好ましくは、伝熱層326bの厚さは0.2mm以下、より好ましくは0.1mm以下にしてもよい。第2実施形態の伝熱層326bは、厚さが0.03mmのアルミニウム合金で形成されている。 The heat transfer layer 326b is preferably formed of a nonmagnetic material. If the heat transfer layer 326b is too thick, it is conceivable that the magnetic gap becomes wider and the magnetic resistance increases accordingly. For this reason, the thickness of the heat transfer layer 326b is desirably 1 mm or less. More preferably, the thickness of the heat transfer layer 326b may be 0.2 mm or less, more preferably 0.1 mm or less. The heat transfer layer 326b of the second embodiment is made of an aluminum alloy having a thickness of 0.03 mm.
 皮膜部326を設けない構成では、コイル330の周辺部で発生した熱はコイルホルダ322の基部322bおよび枠部322cに回収されるため、周辺部での温度上昇は抑制される。しかし、コイル330の中央部で発生した熱は、コイルホルダ322までの距離が長いために回収されにくく、中央部での温度上昇が大きくなる。このため、コイル330に流せる電流は、コイル330の中央部の温度が線材の許容温度を超えない範囲に制限される。 In the configuration in which the coating part 326 is not provided, the heat generated in the peripheral part of the coil 330 is recovered in the base part 322b and the frame part 322c of the coil holder 322, and thus the temperature rise in the peripheral part is suppressed. However, the heat generated in the central portion of the coil 330 is difficult to be recovered because the distance to the coil holder 322 is long, and the temperature rise in the central portion is increased. For this reason, the electric current which can be sent through the coil 330 is restrict | limited to the range in which the temperature of the center part of the coil 330 does not exceed the allowable temperature of a wire.
 第2実施形態に係るボイスコイルモータ300は、コイルユニット328と、前記コイルユニット328を支持するコイルホルダ322と、を備える。前記コイルユニット328は、コイル330と、前記コイル330を被覆する樹脂層332と、前記樹脂層332の少なくとも一部を覆う皮膜部326と、を含む。この構成によれば、皮膜部326を備えることにより、表面において樹脂層332の熱を回収してその拡散を容易にし、樹脂層332の温度分布を均一化することができる。また、皮膜部326を備えることにより、樹脂層332の熱をコイルホルダ322に伝わりやすくすることができる。これらの作用により、コイル330の高温部の温度が下がり、コイル330に流せる電流を増加させることができる。 The voice coil motor 300 according to the second embodiment includes a coil unit 328 and a coil holder 322 that supports the coil unit 328. The coil unit 328 includes a coil 330, a resin layer 332 that covers the coil 330, and a coating portion 326 that covers at least a part of the resin layer 332. According to this configuration, by providing the coating portion 326, the heat of the resin layer 332 can be recovered on the surface to facilitate its diffusion, and the temperature distribution of the resin layer 332 can be made uniform. In addition, by providing the coating portion 326, the heat of the resin layer 332 can be easily transmitted to the coil holder 322. By these actions, the temperature of the high temperature portion of the coil 330 is lowered, and the current that can be passed through the coil 330 can be increased.
 第2実施形態に係るボイスコイルモータ300では、前記皮膜部326は、前記樹脂層332より熱伝導率が高い材料で形成される伝熱層326bと、前記伝熱層326bの表面を保護する保護層326dと、を含む。この構成によれば、伝熱層326bが熱伝導率の高い材料から形成されることにより、温度分布が一層均一化される。保護層326dを備えることにより、伝熱層326bがグラファイトなどの軟らかい材料から形成された場合でも傷付きを抑制し、傷による熱拡散効果の低下を抑制することができる。 In the voice coil motor 300 according to the second embodiment, the coating portion 326 includes a heat transfer layer 326b formed of a material having a higher thermal conductivity than the resin layer 332, and protection for protecting the surface of the heat transfer layer 326b. Layer 326d. According to this configuration, the temperature distribution is further uniformed by forming the heat transfer layer 326b from a material having high thermal conductivity. By providing the protective layer 326d, even when the heat transfer layer 326b is formed from a soft material such as graphite, it is possible to suppress scratching and to suppress a decrease in the thermal diffusion effect due to the scratch.
 以上、本発明の第2実施形態をもとに説明した。以下、第2実施形態に係るボイスコイルモータ300の変形例について説明する。変形例の図面および説明では、第2実施形態と同一または同等の構成要素、部材には、同一の符号を付する。第2実施形態と重複する説明を適宜省略し、第2実施形態と相違する構成について重点的に説明する。 The description has been given based on the second embodiment of the present invention. Hereinafter, modified examples of the voice coil motor 300 according to the second embodiment will be described. In the drawings and description of the modified example, the same or equivalent components and members as those in the second embodiment are denoted by the same reference numerals. The description overlapping with the second embodiment will be omitted as appropriate, and the configuration different from the second embodiment will be described mainly.
(変形例1)
 第2実施形態では、皮膜部326がコイルホルダ322に接触していない例について説明したが、これに限られない。例えば、皮膜部326はコイルホルダ322に接触するように設けられてもよい。図14は、変形例2に係るボイスコイルモータ302の固定子340を模式的に示す平面図である。図15は、固定子340のB-B線に沿った縦断面を示す断面図である。変形例1に係る固定子340は、第2実施形態に係る固定子320に対して、皮膜部346の平面形状が異なり、他の構成は同様である。したがって、重複する説明を省略し皮膜部346について説明する。図14に示すように、皮膜部346は、コイルホルダ322の枠部322cに接触する部分346bを有する。皮膜部346は、平面視にて、樹脂層332の外縁を越えて枠部322cの少なくとも一部を覆う形状を有する。部分346bと枠部322cとの間には接着材が設けられてもよい。皮膜部346は、枠部322cに加えて基部322bに接触する部分を含むようにしてもよい。
(Modification 1)
In 2nd Embodiment, although the film | membrane part 326 demonstrated the example which is not contacting the coil holder 322, it is not restricted to this. For example, the film part 326 may be provided so as to contact the coil holder 322. FIG. 14 is a plan view schematically showing the stator 340 of the voice coil motor 302 according to the second modification. FIG. 15 is a cross-sectional view showing a vertical cross section of the stator 340 along the line BB. The stator 340 according to Modification 1 is different from the stator 320 according to the second embodiment in the planar shape of the coating portion 346, and the other configurations are the same. Therefore, the overlapping description will be omitted and the coating portion 346 will be described. As shown in FIG. 14, the coating portion 346 has a portion 346 b that contacts the frame portion 322 c of the coil holder 322. The film part 346 has a shape that covers at least a part of the frame part 322 c beyond the outer edge of the resin layer 332 in plan view. An adhesive may be provided between the portion 346b and the frame portion 322c. The film part 346 may include a part that contacts the base part 322b in addition to the frame part 322c.
 変形例1に係るボイスコイルモータ302では、皮膜部346は、コイルホルダ322に接触する部分346bを有する。この構成によれば、皮膜部346によって樹脂層332から回収した熱を、部分346bによりコイルホルダ322に放熱することができる。コイルホルダ322に放熱することによって、皮膜部346の温度を下げることが可能になるので、コイル330の放熱を容易にして、コイル330に流せる電流を増加させることができる。 In the voice coil motor 302 according to the first modification, the film portion 346 has a portion 346 b that contacts the coil holder 322. According to this configuration, the heat recovered from the resin layer 332 by the film portion 346 can be radiated to the coil holder 322 by the portion 346b. By dissipating heat to the coil holder 322, the temperature of the film part 346 can be lowered. Therefore, heat dissipation of the coil 330 can be facilitated, and the current that can flow through the coil 330 can be increased.
(変形例2)
 第2実施形態では、皮膜部326がコイル330の表層に設けられる例について説明したが、これに限られない。例えば、複数のコイルがZ軸方向に積層されている場合において、皮膜部がコイルの表層に設けられるとともに、高い伝熱性を有するシートが各層のコイルの層間に設けられてもよい。図16は、変形例2に係るボイスコイルモータ304の固定子350を模式的に示す平面図である。図17は、固定子350のC-C線に沿った縦断面を示す断面図である。変形例2に係る固定子350は、第2実施形態に係る固定子320に対して、多層のコイル360と、コイル360の層間に設けられる伝熱部356と、を備える点で相違し、他の構成は同様である。したがって、重複する説明を省略しコイル360および伝熱部356について説明する。図16に示すように、変形例2に係る固定子350は、平面形状において、第2実施形態に係る固定子320と同様である。
(Modification 2)
In 2nd Embodiment, although the film | membrane part 326 demonstrated the example provided in the surface layer of the coil 330, it is not restricted to this. For example, when a plurality of coils are stacked in the Z-axis direction, the coating portion may be provided on the surface layer of the coil, and a sheet having high heat conductivity may be provided between the coils of each layer. FIG. 16 is a plan view schematically showing the stator 350 of the voice coil motor 304 according to the second modification. FIG. 17 is a cross-sectional view showing a vertical cross section of the stator 350 along the line CC. The stator 350 according to the modified example 2 is different from the stator 320 according to the second embodiment in that a multilayer coil 360 and a heat transfer unit 356 provided between the layers of the coil 360 are provided. The configuration of is the same. Therefore, the description which overlaps is abbreviate | omitted and the coil 360 and the heat-transfer part 356 are demonstrated. As shown in FIG. 16, the stator 350 according to Modification 2 is the same as the stator 320 according to the second embodiment in a planar shape.
 変形例2のコイルユニット358は、第2実施形態のコイル330の代わりに多層のコイル360を備える。コイル360は、Z軸方向に積層された複数の薄形コイル360bを含む。図17の例では、コイル360は、2層の薄形コイル360bがZ軸方向に積層されている。薄形コイル360bは、Z軸方向の厚み寸法が、第2実施形態のコイル330の略半分である。薄形コイル360bの他の構成および特徴については、上述したコイル330の構成および特徴を参照することができる。 The coil unit 358 of Modification 2 includes a multilayer coil 360 instead of the coil 330 of the second embodiment. The coil 360 includes a plurality of thin coils 360b stacked in the Z-axis direction. In the example of FIG. 17, the coil 360 includes two thin coils 360 b stacked in the Z-axis direction. The thin coil 360b has a thickness dimension in the Z-axis direction that is substantially half that of the coil 330 of the second embodiment. For other configurations and characteristics of the thin coil 360b, the configuration and characteristics of the coil 330 described above can be referred to.
 伝熱部356は、2層の薄形コイル360bの間に設けられる。伝熱部356は、X軸方向及びY軸方向に延在してZ軸方向に薄いシート状を呈する。伝熱部356は、皮膜部326と略等しい平面形状を有する。伝熱部356の構成および特徴については、上述した伝熱層326bの構成および特徴を参照することができる。 The heat transfer section 356 is provided between the two layers of thin coils 360b. The heat transfer part 356 extends in the X-axis direction and the Y-axis direction and has a thin sheet shape in the Z-axis direction. The heat transfer part 356 has a planar shape substantially equal to the film part 326. For the configuration and characteristics of the heat transfer section 356, the configuration and characteristics of the heat transfer layer 326b described above can be referred to.
 変形例2に係るボイスコイルモータ304では、コイル360は、積層された複数の薄形コイル360bを含み、複数の薄形コイル360bの層間には樹脂層332より熱伝導率が高い材料で形成される伝熱部356が設けられる。この構成によれば、伝熱部356を備えることにより、表面部だけでなく層間においても樹脂層332の熱を回収してその拡散を容易にし、温度分布を一層均一化することができる。この作用により、コイル360の層間においても高温部の温度が下がり、コイル360に流せる電流を一層増加させることができる。 In the voice coil motor 304 according to the second modification, the coil 360 includes a plurality of laminated thin coils 360b, and is formed of a material having higher thermal conductivity than the resin layer 332 between the plurality of thin coils 360b. A heat transfer section 356 is provided. According to this configuration, by providing the heat transfer part 356, the heat of the resin layer 332 can be recovered not only at the surface part but also between the layers to facilitate its diffusion, and the temperature distribution can be made more uniform. By this action, the temperature of the high temperature portion is lowered between the layers of the coil 360, and the current that can be passed through the coil 360 can be further increased.
(その他の変形例)
 第2実施形態では、各皮膜部326が1層の伝熱層326bを含む例について説明したが、これに限られない。皮膜部326は複数の伝熱層を含んで構成されてもよい。
 第2実施形態では、皮膜部326が樹脂層332のZ軸方向の両面に設けられる例について説明したがこれに限られない。皮膜部326は樹脂層332の一方の面のみに設けられてもよい。
 第2実施形態では、各皮膜部326が一体である例について説明したが、これに限られない。皮膜部326は、2以上に分割された複数の部分を含んでもよい。
 これらの変形例は、第2実施形態と同様の作用・効果を奏する。
(Other variations)
In 2nd Embodiment, although each membrane | film | coat part 326 demonstrated the example containing 1 layer of heat-transfer layers 326b, it is not restricted to this. The film part 326 may include a plurality of heat transfer layers.
In 2nd Embodiment, although the film | membrane part 326 demonstrated the example provided in both surfaces of the Z-axis direction of the resin layer 332, it is not restricted to this. The film part 326 may be provided only on one surface of the resin layer 332.
In the second embodiment, the example in which the respective film portions 326 are integrated has been described. However, the present invention is not limited to this. The film part 326 may include a plurality of parts divided into two or more.
These modified examples have the same operations and effects as those of the second embodiment.
 説明に使用した図面では、部材の関係を明瞭にするために一部の部材の断面にハッチングを施しているが、当該ハッチングはこれらの部材の素材や材質を制限するものではない。 In the drawings used for the description, in order to clarify the relationship between the members, the cross sections of some of the members are hatched, but the hatching does not limit the materials and materials of these members.
 2・・リニアモータ、 10・・可動子、 11・・コイルホルダ、 11d・・端部通路、 11e・・冷却通路、 11f・・冷却通路、 11g・・収容凹部、 11h・・接続通路、 11m・・接続通路、 14・・皮膜部、 15・・コイル、 15p・・第1辺、 15q・・第2辺、 16・・樹脂層、 18・・コイルユニット、 20・・固定子、 24・・界磁磁石、 26・・補極磁石、 34・・磁気的空隙、 100・・ステージ装置、 300・・ボイスコイルモータ、 310・・可動子、 312・・界磁磁石、 320・・固定子、 322・・コイルホルダ、 326・・皮膜部、 326b・・伝熱層、 328・・コイルユニット、 330・・コイル、 332・・樹脂層、 360b・・薄形コイル。 2. Linear motor, 10. Movable element, 11. Coil holder, 11d ... End passage, 11e ... Cooling passage, 11f ... Cooling passage, 11g ... Containing recess, 11h ... Connection passage, 11m・ ・ Connection passage, 14 ・ ・ Coating part, 15 ・ Coil, 15p ・ ・ First side, 15q ・ ・ Second side, 16 ・ ・ Resin layer, 18 ・ ・ Coil unit, 20 ・ ・ Stator, 24 ・・ Field magnet, 26 ・ ・ Supplementary magnet, 34 ・ ・ Magnetic air gap, 100 ・ ・ Stage device, 300 ・ ・ Voice coil motor, 310 ・ ・ Motor, 312 ・ ・ Field magnet, 320 ・ ・ Stator 322 ·· Coil holder 326 ·· Coating part · 326b · · Heat transfer layer · 328 · · Coil unit · 330 · Coil · 332 · · Resin layer · 360b · · · Shape coil.
 本発明は、リニアモータまたはボイスコイルモータに利用することができる。 The present invention can be used for a linear motor or a voice coil motor.

Claims (13)

  1.  コイルユニットと、前記コイルユニットの一部を収容して支持するコイルホルダと、を含む可動子を備え、
     前記コイルユニットは、
      複数のコイルと、
      前記複数のコイルを被覆する樹脂層と、
      前記樹脂層の少なくとも一部を覆う皮膜部と、
     を含むことを特徴とするリニアモータ。
    A mover including a coil unit and a coil holder that accommodates and supports a part of the coil unit;
    The coil unit is
    A plurality of coils;
    A resin layer covering the plurality of coils;
    A coating covering at least part of the resin layer;
    A linear motor comprising:
  2.  前記皮膜部は前記コイルホルダに接触する部分を有することを特徴とする請求項1に記載のリニアモータ。 The linear motor according to claim 1, wherein the coating portion has a portion that contacts the coil holder.
  3.  前記コイルホルダには、前記コイルユニットの近傍に延在して冷媒を通過させるための冷却通路が設けられることを特徴とする請求項1または2に記載のリニアモータ。 The linear motor according to claim 1 or 2, wherein the coil holder is provided with a cooling passage extending in the vicinity of the coil unit and allowing the refrigerant to pass therethrough.
  4.  冷媒を通過させるための冷却通路であって、前記冷却通路とは別の冷却通路をさらに備え、
     前記別の冷却通路は、前記コイルホルダから離れた位置にて前記複数のコイルの近傍に延在することを特徴とする請求項3に記載のリニアモータ。
    A cooling passage for allowing the refrigerant to pass therethrough, further comprising a cooling passage different from the cooling passage;
    The linear motor according to claim 3, wherein the another cooling passage extends in the vicinity of the plurality of coils at a position away from the coil holder.
  5.  前記コイルユニットには前記冷却通路と前記別の冷却通路とを連通する接続通路が設けられることを特徴とする請求項4に記載のリニアモータ。 The linear motor according to claim 4, wherein the coil unit is provided with a connection passage that communicates the cooling passage with the another cooling passage.
  6.  前記コイルは、前記可動子の可動方向に離間して設けられる第1辺と第2辺とを有し、
     前記接続通路は、前記第1辺と前記第2辺の間に延在する部分を含むことを特徴とする請求項5に記載のリニアモータ。
    The coil has a first side and a second side that are spaced apart in the moving direction of the mover,
    The linear motor according to claim 5, wherein the connection passage includes a portion extending between the first side and the second side.
  7.  前記コイルホルダには、前記コイルユニットの一部を収容するための収容凹部が設けられ、
     前記収容凹部の前記コイルユニットと対向する部分は前記コイルユニットの形状に対応する形状を有することを特徴とする請求項1から6のいずれかに記載のリニアモータ。
    The coil holder is provided with an accommodating recess for accommodating a part of the coil unit,
    The linear motor according to claim 1, wherein a portion of the housing recess facing the coil unit has a shape corresponding to the shape of the coil unit.
  8.  請求項1から7のいずれかに記載のリニアモータであって、
     真空環境下で使用されることを特徴とするリニアモータ。
    A linear motor according to any one of claims 1 to 7,
    A linear motor characterized by being used in a vacuum environment.
  9.  請求項1から8のいずれかに記載のリニアモータを備えることを特徴とするステージ装置。 A stage apparatus comprising the linear motor according to any one of claims 1 to 8.
  10.  コイルユニットと、
     前記コイルユニットを支持するコイルホルダと、
     を備え、
     前記コイルユニットは、
      コイルと、
      前記コイルを被覆する樹脂層と、
      前記樹脂層の少なくとも一部を覆う皮膜部と、
     を含むことを特徴とするボイスコイルモータ。
    A coil unit;
    A coil holder for supporting the coil unit;
    With
    The coil unit is
    Coils,
    A resin layer covering the coil;
    A coating covering at least part of the resin layer;
    A voice coil motor comprising:
  11.  前記皮膜部は、前記コイルホルダに接触する部分を有することを特徴とする請求項10に記載のボイスコイルモータ。 The voice coil motor according to claim 10, wherein the coating portion has a portion that contacts the coil holder.
  12.  前記皮膜部は、前記樹脂層より熱伝導率が高い材料で形成される伝熱層と、前記伝熱層の表面を保護する保護層と、を含むことを特徴とする請求項10または11に記載のボイスコイルモータ。 The said coating | coated part contains the heat-transfer layer formed with the material whose heat conductivity is higher than the said resin layer, and the protective layer which protects the surface of the said heat-transfer layer, The Claim 10 or 11 characterized by the above-mentioned. The voice coil motor described.
  13.  前記コイルは、積層された複数の薄形コイルを含み、
     前記複数の薄形コイルの層間には前記樹脂層より熱伝導率が高い材料で形成される伝熱部が設けられることを特徴とする請求項10から12のいずれかに記載のボイスコイルモータ。
    The coil includes a plurality of laminated thin coils,
    The voice coil motor according to any one of claims 10 to 12, wherein a heat transfer portion formed of a material having a higher thermal conductivity than the resin layer is provided between the plurality of thin coils.
PCT/JP2017/010945 2016-03-29 2017-03-17 Linear motor, voice coil motor, and stage device WO2017169908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509053A JP6788664B2 (en) 2016-03-29 2017-03-17 Linear motor, voice coil motor, stage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065078 2016-03-29
JP2016-065078 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169908A1 true WO2017169908A1 (en) 2017-10-05

Family

ID=59965393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010945 WO2017169908A1 (en) 2016-03-29 2017-03-17 Linear motor, voice coil motor, and stage device

Country Status (3)

Country Link
JP (1) JP6788664B2 (en)
TW (1) TWI642260B (en)
WO (1) WO2017169908A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150718A1 (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Linear motor and method for manufacturing linear motor
CN115549394A (en) * 2022-10-14 2022-12-30 广东畅能达科技发展有限公司 Heat dissipation device based on embedded soaking plate type U-shaped linear motor
JP7461435B2 (en) 2021-10-22 2024-04-03 マルコ システマナリセ ウント エントヴィックルング ゲーエムベーハー Linear motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783877A (en) * 1996-04-12 1998-07-21 Anorad Corporation Linear motor with improved cooling
JP2002165434A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Coreless linear motor
JP2002171742A (en) * 2000-11-30 2002-06-14 Shicoh Eng Co Ltd Coil movable type linear motor and method of manufacturing moving element of the same
JP2003032993A (en) * 2001-07-10 2003-01-31 Canon Inc Linear motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459979B2 (en) * 2000-03-29 2003-10-27 住友重機械工業株式会社 Seal structure of coil cooling jacket
JP4636354B2 (en) * 2001-02-06 2011-02-23 株式会社安川電機 Linear motor and table feeding device having the same
JP4534194B2 (en) * 2004-02-18 2010-09-01 日立金属株式会社 Moving coil type linear motor and magnetic circuit assembling method thereof
JP4819745B2 (en) * 2007-05-08 2011-11-24 住友重機械工業株式会社 Linear motor and method for manufacturing linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783877A (en) * 1996-04-12 1998-07-21 Anorad Corporation Linear motor with improved cooling
JP2002165434A (en) * 2000-11-21 2002-06-07 Yaskawa Electric Corp Coreless linear motor
JP2002171742A (en) * 2000-11-30 2002-06-14 Shicoh Eng Co Ltd Coil movable type linear motor and method of manufacturing moving element of the same
JP2003032993A (en) * 2001-07-10 2003-01-31 Canon Inc Linear motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150718A1 (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Linear motor and method for manufacturing linear motor
JPWO2019150718A1 (en) * 2018-01-31 2021-01-14 住友重機械工業株式会社 Linear motor, manufacturing method of linear motor
JP7461435B2 (en) 2021-10-22 2024-04-03 マルコ システマナリセ ウント エントヴィックルング ゲーエムベーハー Linear motor
CN115549394A (en) * 2022-10-14 2022-12-30 广东畅能达科技发展有限公司 Heat dissipation device based on embedded soaking plate type U-shaped linear motor
WO2024077924A1 (en) * 2022-10-14 2024-04-18 广东畅能达科技发展有限公司 Embedded vapor chamber-based u-shaped linear motor heat dissipation apparatus

Also Published As

Publication number Publication date
TWI642260B (en) 2018-11-21
JPWO2017169908A1 (en) 2019-02-14
TW201735506A (en) 2017-10-01
JP6788664B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP4672315B2 (en) Linear motor and linear moving stage device
TWI288521B (en) Coreless linear motor
KR100757709B1 (en) Coreless linear motor and canned linear motor
JP3891545B2 (en) Linear motor
JPWO2008152876A1 (en) Canned linear motor armature and canned linear motor
WO2017169908A1 (en) Linear motor, voice coil motor, and stage device
US7176593B2 (en) Actuator coil cooling system
US9680352B2 (en) Convection cooling system for motors
JP5419384B2 (en) Vacuum processing equipment
JP2001327152A (en) Linear motor
JP5126652B2 (en) Moving coil linear motor
JP2009100509A (en) Linear motor
JP5347596B2 (en) Canned linear motor armature and canned linear motor
JP2008220020A (en) Movable magnet type linear motor
JP2007336765A (en) Armature for refrigerant-cooling linear motor, and refrigerant-cooling linear motor
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JP2004289911A (en) Linear slider
JP2024042354A (en) Moving coil type linear motor
JP4721211B2 (en) Coreless linear motor
JP2003061331A (en) Linear motor
JP2004064874A (en) High acceleration type linear motor
JP2005094902A (en) Shifter
JP2011188622A (en) Canned linear motor armature and canned linear motor
JP2008259374A (en) Linear motor, and stage apparatus
JP2005039959A (en) Attraction force offset type linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509053

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774449

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774449

Country of ref document: EP

Kind code of ref document: A1