WO2019150718A1 - Linear motor and method for manufacturing linear motor - Google Patents

Linear motor and method for manufacturing linear motor Download PDF

Info

Publication number
WO2019150718A1
WO2019150718A1 PCT/JP2018/042986 JP2018042986W WO2019150718A1 WO 2019150718 A1 WO2019150718 A1 WO 2019150718A1 JP 2018042986 W JP2018042986 W JP 2018042986W WO 2019150718 A1 WO2019150718 A1 WO 2019150718A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
coil
coils
beam member
case
Prior art date
Application number
PCT/JP2018/042986
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 和田
達矢 吉田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2019568881A priority Critical patent/JPWO2019150718A1/en
Publication of WO2019150718A1 publication Critical patent/WO2019150718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor and a method for manufacturing the linear motor.
  • a linear motor is used to convert electrical energy into linear motion.
  • One type of linear motor is a moving magnet type linear motor in which a magnet travels along a coil.
  • Patent Document 1 describes a moving magnet type linear slider having an armature coil as a stator and a field magnet as a mover.
  • the present inventor has obtained the following recognition regarding a moving magnet type linear motor (hereinafter simply referred to as a linear motor).
  • the linear motor has different movable strokes of the mover depending on the application. Therefore, it is necessary for the linear motor to prepare armature coils having different lengths according to a desired movable stroke. That is, in order to cope with various applications, it is necessary to manufacture armature coils having different lengths for each application.
  • an armature coil is manufactured by resin molding a plurality of coils arranged in a movable direction. This is uneconomical because it is necessary to prepare molds having different lengths for each application. Further, when the armature coil is particularly long, there is a problem that it is difficult to manufacture with a normal mold or resin molding equipment. From these, the present inventors have recognized that there is room for improvement in the linear motor from the viewpoint of facilitating the manufacture of the armature coil. Such a problem may occur not only in an armature coil manufactured by resin molding but also in an armature coil manufactured by another method.
  • the present invention has been made in view of such problems, and an object thereof is to provide a linear motor that facilitates the manufacture of armature coils.
  • a linear motor includes a mover including a field magnet and a stator including a plurality of coil modules connected in the moving direction of the mover.
  • the coil module includes a plurality of coils arranged in a movable direction.
  • Another aspect of the present invention is a method of manufacturing a linear motor.
  • This method is a method of manufacturing the above-described linear motor, in which a plurality of coils are accommodated in the case 22, a resin is poured into the case accommodating the plurality of coils, a coil module is formed, and the plurality of coils It includes arranging the modules in the movable direction and fixing them to the beam member, and electrically connecting the wiring member 34 to the coil 26.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a top view which shows schematically the stator of the linear motor of FIG.
  • FIG. 2 is an explanatory diagram schematically illustrating wiring of the stator of FIG. 1. It is process drawing explaining the manufacturing process of the stator of the linear motor of FIG. It is sectional drawing of the linear motor which concerns on a 1st modification. It is sectional drawing of the linear motor which concerns on a 2nd modification. It is sectional drawing of the linear motor which concerns on a 3rd modification.
  • parallel and vertical include not only perfect parallel and vertical, but also include cases in which they deviate from parallel and vertical within an error range. Further, “substantially” means that they are the same in an approximate range.
  • terms including ordinal numbers such as first and second are used to describe various components, but this term is used only for the purpose of distinguishing one component from other components.
  • the constituent elements are not limited.
  • the linear motor includes one in which the mover moves on a curved track such as an arc, and is not limited to one in which the mover moves on a linear track.
  • FIG. 1 is a plan view showing a linear motor 100 according to an embodiment.
  • FIG. 2 is a side sectional view of the linear motor 100 taken along the line AA.
  • the X-axis direction corresponds to the left-right direction in FIG. 1 and corresponds to the direction perpendicular to the page in FIG.
  • the Y-axis direction corresponds to the vertical direction of the drawing in FIGS.
  • the Z-axis direction corresponds to the direction perpendicular to the paper surface in FIG. 1, and corresponds to the left-right direction on the paper surface in FIG.
  • the Y-axis direction and the Z-axis direction are each orthogonal to the X-axis direction.
  • each of the X axis, Y axis, and Z axis is defined in the direction of the arrow in each figure, and the negative direction is defined in the direction opposite to the arrow.
  • the positive direction side of the X axis may be referred to as “right side”, and the negative direction side of the X axis may be referred to as “left side”.
  • the positive direction side of the Y axis may be referred to as “front side”, the negative direction side of the Y axis as “rear side”, the positive direction side of the Z axis as “upper side”, and the negative direction side of the Z axis as “lower side”. is there.
  • Such notation of the direction does not limit the use posture of the linear motor 100, and the linear motor 100 can be used in any posture depending on the application.
  • the linear motor 100 includes a stator 10 and a mover 50.
  • the mover 50 forms a magnetic circuit in the magnetic gap 60.
  • the linear motor 100 functions as an energy conversion mechanism that generates thrust in the movable direction in the stator 10 in the magnetic gap 60.
  • the movable direction is arranged to coincide with the X-axis direction.
  • the mover 50 includes a pair of field magnets 52, a pair of yokes 54, and a spacer 56.
  • the field magnet 52 and the pair of yokes 54 constitute a magnetic circuit that forms a field magnetic field in the magnetic gap 60.
  • the magnetic gap 60 is a gap between the pair of field magnets 52.
  • the pair of yokes 54 are plate-like members that extend in the X-axis direction and the Y-axis direction and are thin in the Z-axis direction. In plan view, the pair of yokes 54 has a substantially rectangular outline having two sides parallel to the X-axis direction and two sides parallel to the Y-axis direction.
  • the pair of yokes 54 is formed of various known soft magnetic materials.
  • the pair of yokes 54 are arranged in parallel with each other apart in the Z-axis direction.
  • the spacer 56 is disposed in an upper region between the pair of yokes 54 and holds the distance between the pair of yokes 54 in the Z-axis direction.
  • the pair of yokes 54 are fixed to the spacer 56 by a fixing tool 58 (for example, bolts) through a plurality of through holes provided in the vicinity of the upper end thereof.
  • the field magnet 52 functions as a magnetic flux supply source that forms a field magnetic field in the magnetic gap 60.
  • the field magnet 52 may include one or more magnets.
  • the field magnet 52 may be configured by arranging a plurality of magnets in a Halbach array. A plurality of magnetic poles are provided on the surface of the field magnet 52 at predetermined intervals in the X-axis direction. In the embodiment, six magnetic poles are provided.
  • the field magnet 52 may be formed of various known magnet materials. In this example, the field magnet 52 is formed of a rare earth magnet material such as NdFeB.
  • the field magnet 52 may be fixed to the yoke 54 by a known means such as adhesion.
  • the stator 10 includes a plurality of coil modules 20 extending in the X-axis direction, a beam member 30, a second beam member 31, and a wiring member 34.
  • the plurality of coil modules 20 are arranged in the X-axis direction, which is the movable direction.
  • the coil module 20 is a substantially plate-like member that has a substantially rectangular shape in plan view and is thin in the Z-axis direction.
  • the coil module 20 is arranged so that the long side is along the X-axis direction and the short side is along the Y-axis direction in plan view.
  • the coil module 20 includes a coil assembly 24 and a case 22.
  • the coil assembly 24 includes a plurality of coils 26 arranged in the X-axis direction and a connector 36.
  • the plurality of coils 26 are integrated by being wrapped in resin 24m.
  • the coil assembly 24 is formed by injecting a resin 24m into the case 22 in which a plurality of coils 26 are arranged. It is not essential to provide the case 22.
  • the coil assembly 24 is formed by insert molding in which a resin 24m is injected into a mold in which a plurality of coils 26 are arranged. These manufacturing methods are merely examples, and the coil assembly 24 may be formed by various other manufacturing methods.
  • the coil 26 has two sides parallel to the X-axis direction and two sides parallel to the Y-axis direction, and has a substantially rectangular outline with four corners rounded into an R shape.
  • the coil 26 may have a contour formed by a curve such as an ellipse as a whole having no side, or may have contours of various other shapes.
  • the coil 26 may be an iron core coil, but in this example, is an air core coil.
  • the coil 26 is composed of a wire wound around the Z axis. When a drive current is supplied to the coil 26, the coil 26 functions as an armature coil that generates a magnetic flux in the Z-axis direction and causes the field magnet 52 to generate a thrust in the X-axis direction.
  • the connector 36 includes electrodes electrically connected to the lead wires of the plurality of coils 26.
  • the connector 36 may be connected to lead wires (lead wires) of the plurality of coils 26 before the insert molding, and may be integrated with the plurality of coils 26 by insert molding.
  • the connector 36 may be connected to the lead wires of the plurality of coils 26 after the insert molding. In this case, the lead wire may be directly taken out from the coil 26 and the connector 36 may be connected to the tip of the lead wire.
  • the case 22 is provided so as to cover the periphery of the coil assembly 24.
  • the case 22 suppresses outflow of gas generated from the coil 26 and the resin 24m surrounding the coil 26 to the outside.
  • the case 22 is a rectangular parallelepiped box composed of a box-shaped case main body 22b having five open upper surfaces and a lid 22c covering the upper surface of the case main body 22b.
  • the lid 22c may be fixed to the upper surface of the case body 22b that houses the coil assembly 24, for example, by welding.
  • the case 22 may be formed of a metal material such as nonmagnetic stainless steel or a nonmetal material such as ceramic.
  • FIG. 3 is a plan view schematically showing the stator 10.
  • FIG. 4 is an explanatory diagram for explaining the wiring of the stator 10.
  • the wiring member 34 functions as a path for supplying current from the drive circuit 40 to the coil 26.
  • the current from the drive circuit 40 flows to the coil 26 through the wiring member 34, the connector 36, and the lead wire 26 b connected to the electrode of the connector 36.
  • the wiring member 34 is, for example, a wire module or a printed wiring board.
  • the wiring member 34 is a printed wiring board on which another connector (not shown) for connecting to the connector 36 is mounted.
  • the wiring member 34 is accommodated in a passage recess 30b of the beam member 30 described later.
  • the full excitation method and the partial excitation method can be considered as methods for supplying drive current to the plurality of coil modules 20.
  • the full excitation method is a method for supplying a drive current to all the coils constituting one phase.
  • the full excitation system has a feature that wiring is relatively easy.
  • the partial excitation method is a method for selectively supplying a drive current to the coil 26 in the vicinity of the mover 50.
  • the partial excitation method has a feature that wasteful power is small.
  • a partial excitation method is adopted. As shown in FIG. 4, each coil module 20 is connected to the drive circuit 40 independently of the other modules.
  • the beam member 30 and the second beam member 31 function as a beam for connecting the plurality of coil modules 20 and for imparting a desired rigidity to the stator 10.
  • the beam member 30 and the second beam member 31 are bar-shaped members having a rectangular cross section extending in the X-axis direction.
  • the beam member 30 is provided with a passage recess 30b extending in the X-axis direction.
  • the passage recess 30b is a recess that is open on the coil module 20 side and recedes upward.
  • the passage recess 30 b accommodates the connector 36 and the wiring member 34.
  • the beam member 30 is disposed on the upper surface of the coil module 20, and the second beam member 31 is disposed on the lower surface of the coil module 20.
  • the plurality of coil modules 20 are fixed to the beam member 30 and the second beam member 31 by fixing members 32 such as bolts.
  • the beam member 30 may be formed as a seamless integrated member, or a plurality of members may be integrated. The same applies to the second beam member 31.
  • the number of coils 26 (hereinafter simply referred to as the number of coils) constituting the coil module 20 will be described.
  • the number of coils is desirably an integer multiple of three.
  • the number of coils is not necessarily an integer multiple of 3, and the number of coils may be set arbitrarily. That is, the coil module 20 may be configured with a number of coils 26 other than an integral multiple of 3 as necessary.
  • the integer number of coils 26 in the case of partial excitation using a moving magnet type, it is only necessary to excite the integer number of coils 26, so that modules other than the integer number of 3 may be modularized.
  • the number of coils is preferably 3.
  • the number of coils is desirably six or less.
  • FIG. 5 is a process diagram illustrating the manufacturing process S80 of the linear motor 100.
  • the manufacturing process S80 includes processes S82 to S92 for manufacturing the stator 10.
  • step S82 the air core coil 26 is manufactured by winding a wire whose surface is insulated.
  • step S84 the plurality of coils 26 are accommodated in the case main body 22b.
  • a connector 36 is attached to the plurality of coils 26 before or after being accommodated in the case body 22b.
  • the connector 36 is attached to the coil 26 before being accommodated in the case main body 22b.
  • the connector 36 is integrated with the coil 26 by the resin 24m poured in the next process.
  • step S86 the resin 24m is poured into the case main body 22b in which the plurality of coils 26 are accommodated to integrate the plurality of coils 26 to form the coil assembly 24.
  • step S88 the lid 22c is placed over the case body 22b that houses the coil 26 into which the resin 24m has been poured.
  • step S90 the lid 22c is fixed to the case body 22b by, for example, welding.
  • the lid 22c is provided with an opening 22e, and the connector 36 is exposed from the opening 22e with the lid 22c fixed.
  • step S92 the plurality of coil modules 20 are arranged in the X-axis direction, the connector 36 is electrically connected to the wiring portion of the wiring member 34, and the beam member 30 and the second beam member 31 are fixed. In this way, the stator 10 is manufactured.
  • the linear motor 100 is manufactured by inserting the stator 10 manufactured in this way into the magnetic gap 60 of the mover 50 manufactured separately.
  • This manufacturing process S80 is only an example, and another process may be added, a part of the process may be changed or deleted, or the order of the processes may be changed.
  • the wall surface of the case 22 is doubled between the coil module 20 and the adjacent coil module 20.
  • the outflow of gas from the resin 24m can be reduced as compared with the case without such a wall surface.
  • the operation of the linear motor 100 configured as described above will be described.
  • the coil module 20 When an alternating drive current is supplied from the drive circuit 40 to the coil module 20, the coil module 20 generates a moving magnetic field in the movable direction and applies a thrust in the movable direction to the field magnet 52 of the mover 50.
  • the linear motor 100 drives the drive target connected to the mover 50 by this thrust.
  • the linear motor 100 includes a mover 50 including a field magnet 52 and a stator 10 including a plurality of coil modules 20 connected in a moving direction of the mover 50.
  • the coil module 20 includes a plurality of coils 26 arranged in a movable direction.
  • the design when the design is performed by changing the movable stroke of the linear motor 100, it is possible to cope with the change by changing the number of coil modules 20 to be connected, so that the design can be standardized and the design man-hours can be reduced.
  • the number of coil modules 20 to be connected can be changed, so that molds, jigs and manufacturing equipment can be shared. Since the coil module 20 can be made into a length suitable for manufacturing, when the long linear motor 100 is manufactured, the jigs and the coil module 20 can be easily handled. Further, the operation of connecting the coil modules 20 can be performed at the site where the linear motor 100 is installed.
  • the number of coils of the plurality of coils 26 may be an integer multiple of three. In this case, compared with the case where the number of coils is other than an integral multiple of 3, the possibility that the stator becomes unnecessarily long due to unnecessary coils can be reduced.
  • the number of coils of the plurality of coils 26 may be 6 or less. In this case, since the coil module 20 can be shortened compared with the case where the number of coils is seven or more, the possibility that the coil module 20 warps and contacts the mover 50 can be reduced.
  • the coil module 20 includes a connector 36 including electrodes that are electrically connected to the plurality of coils 26.
  • the connector 36 when connecting the coil module 20, the connector 36 can be easily connected to the wiring portion of the wiring member 34. If the connector is detachable, the existing linear motor can be easily disassembled and reused. When changing the stroke of the existing linear motor, the additional coil module 20 can be easily connected. Compared to the case where the existing linear motor is discarded and a new linear motor is installed, the wasteful resources can be greatly reduced.
  • Another aspect of the present invention is a method of manufacturing a linear motor.
  • This method includes housing a plurality of coils 26 in a case 22, forming a coil module 20 by pouring a resin 24m into the case 22 housing a plurality of coils 26, and arranging the plurality of coil modules 20 in a movable direction. It includes fixing to the beam member 30 and electrically connecting the wiring member 34 to the coil 26.
  • the design when the design is performed by changing the movable stroke of the linear motor 100, it is possible to cope with the change by changing the number of coil modules 20 to be connected, so that the design can be standardized and the design man-hours can be reduced.
  • the number of coil modules 20 to be connected can be changed, so that molds, jigs and manufacturing equipment can be shared.
  • Forming the coil module 20 may include fixing the lid 22c to the case body 22b into which the resin 24m is poured. In this case, since the lid 22c is fixed to the case main body 22b, gas generation from the resin 24m can be suppressed.
  • FIG. 6 is a cross-sectional view showing a linear motor 200a according to a first modification, and corresponds to FIG.
  • the linear motor 200a is different from the linear motor 100 in that the second beam member 31 is not provided, and the other configurations are the same. It is not essential to provide the second beam member 31.
  • FIG. 7 is a cross-sectional view showing a linear motor 200b according to a second modification, and corresponds to FIG.
  • the linear motor 200b is different from the linear motor 100 in that a beam member 30B, a second beam member 31B, and a spacer 35 are provided instead of the beam member 30 and the second beam member 31, and the other configurations are the same. is there.
  • the beam member 30B and the second beam member 31B project from the coil module 20 in the negative direction along the Y axis, and a spacer 35 is provided between these projecting portions.
  • the beam member 30B and the second beam member 31B are integrally coupled with the spacer 35 interposed therebetween.
  • the beam member 30B and the second beam member 31B have an entry portion 30e that enters the magnetic gap 60.
  • the entry portion 30e may be, for example, a plate-like portion that extends in the X-axis direction and the Y-axis direction and is thin in the Z-axis direction.
  • the entry portion 30e is provided so as to cover all or part of the coil module 20. By having the approach part 30e, the curvature of the coil module 20 can be suppressed.
  • the approach portion 30e can be applied to the embodiment and other modifications.
  • FIG. 8 is a cross-sectional view showing a linear motor 200c according to a third modification, and corresponds to FIG.
  • the linear motor 200c is different from the linear motor 200b in that it includes a beam member 30C instead of the beam member 30B, the second beam member 31B, and the spacer 35, and the other configurations are the same.
  • the beam member 30C has a shape in which the beam member 30B, the second beam member 31B, and the spacer 35 are seamlessly integrated.
  • the present invention is not limited to this. Moreover, it is not essential to provide the above-mentioned beam member.
  • the coil module 20 that does not include a beam member may be manufactured.
  • the coil module 20 without the beam member manufactured in this way may be stored for each specification such as size.
  • the step of connecting the coil modules 20 may be provided in another factory.
  • the stored coil module 20 having a desired specification may be transported to another factory, and the coil module 20 may be connected there.
  • the linear motor 100 may be configured by combining coil modules 20 having different numbers of coils.
  • the linear motor 100 may include a linear coil module 20 and a curved coil module.
  • the pair of yokes 54 and the spacers 56 may be formed seamlessly and integrally.
  • One of the pair of field magnets 52 sandwiching the coil module 20 may not be provided.

Abstract

A linear motor 100 is provided with: a movable element 50 that includes a field magnet 52; and a stator 10 that includes a plurality of coil modules 20 connected in the movable direction of the movable element 50. Each of the coil modules 20 includes a plurality of coils 26 arrayed in the movable direction.

Description

リニアモータ、リニアモータの製造方法Linear motor and linear motor manufacturing method
 本発明は、リニアモータおよびリニアモータの製造方法に関する。 The present invention relates to a linear motor and a method for manufacturing the linear motor.
 電気エネルギーを直線運動に変換するためにリニアモータが利用される。リニアモータの一種として、マグネットがコイルに沿って走行するムービングマグネット型のリニアモータがある。例えば、特許文献1には、固定子に電機子コイルを有し、可動子に界磁マグネットを有するムービングマグネット型のリニアスライダが記載されている。 A linear motor is used to convert electrical energy into linear motion. One type of linear motor is a moving magnet type linear motor in which a magnet travels along a coil. For example, Patent Document 1 describes a moving magnet type linear slider having an armature coil as a stator and a field magnet as a mover.
国際公開第2005/122369号International Publication No. 2005/122369
 本発明者はムービングマグネット型のリニアモータ(以下、単にリニアモータという)について以下の認識を得た。
 多くの場合、リニアモータは用途によって可動子の可動ストロークが異なる。したがって、リニアモータは所望の可動ストロークに応じて長さの異なる電機子コイルを用意する必要がある。つまり、様々な用途に対応するためには、用途ごとに異なる長さの電機子コイルを製造する必要がある。
The present inventor has obtained the following recognition regarding a moving magnet type linear motor (hereinafter simply referred to as a linear motor).
In many cases, the linear motor has different movable strokes of the mover depending on the application. Therefore, it is necessary for the linear motor to prepare armature coils having different lengths according to a desired movable stroke. That is, in order to cope with various applications, it is necessary to manufacture armature coils having different lengths for each application.
 可動方向に配列された複数のコイルを樹脂成形して電機子コイルを製造する場合がある。この場合、用途ごとに異なる長さの金型を用意する必要があるため不経済である。さらに、電機子コイルが特に長い場合には、通常の金型や樹脂成形設備では製造が難しい問題もある。これらから、本発明者らは、リニアモータには電機子コイルの製造を容易にする観点から、改善する余地があることを認識した。
 このような課題は、樹脂成形によって製造される電機子コイルに限らず、他の方法により製造される電機子コイルについても生じうる。
In some cases, an armature coil is manufactured by resin molding a plurality of coils arranged in a movable direction. This is uneconomical because it is necessary to prepare molds having different lengths for each application. Further, when the armature coil is particularly long, there is a problem that it is difficult to manufacture with a normal mold or resin molding equipment. From these, the present inventors have recognized that there is room for improvement in the linear motor from the viewpoint of facilitating the manufacture of the armature coil.
Such a problem may occur not only in an armature coil manufactured by resin molding but also in an armature coil manufactured by another method.
 本発明は、このような課題に鑑みてなされたもので、その目的は、電機子コイルの製造を容易にするリニアモータを提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide a linear motor that facilitates the manufacture of armature coils.
 上記課題を解決するために、本発明のある態様のリニアモータは、界磁磁石を含む可動子と、可動子の可動方向に連結された複数のコイルモジュールを含む固定子と、を備える。コイルモジュールは、可動方向に配列された複数のコイルを含む。 In order to solve the above-described problems, a linear motor according to an aspect of the present invention includes a mover including a field magnet and a stator including a plurality of coil modules connected in the moving direction of the mover. The coil module includes a plurality of coils arranged in a movable direction.
 本発明の別の態様はリニアモータを製造する方法である。この方法は、上述のリニアモータを製造する方法であって、ケース22に複数のコイルを収容することと、複数のコイルを収容したケースに樹脂を流し込みコイルモジュールを形成することと、複数のコイルモジュールを可動方向に並べて梁部材に固定することと、コイル26に配線部材34を電気的に接続することと、を含む。 Another aspect of the present invention is a method of manufacturing a linear motor. This method is a method of manufacturing the above-described linear motor, in which a plurality of coils are accommodated in the case 22, a resin is poured into the case accommodating the plurality of coils, a coil module is formed, and the plurality of coils It includes arranging the modules in the movable direction and fixing them to the beam member, and electrically connecting the wiring member 34 to the coil 26.
 本発明によれば、電機子コイルの製造を容易にするリニアモータを提供することができる。 According to the present invention, it is possible to provide a linear motor that facilitates the manufacture of armature coils.
本発明の実施の形態に係るリニアモータを示す平面図である。It is a top view which shows the linear motor which concerns on embodiment of this invention. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 図1のリニアモータの固定子を概略的に示す平面図である。It is a top view which shows schematically the stator of the linear motor of FIG. 図1の固定子の配線を概略的に説明する説明図である。FIG. 2 is an explanatory diagram schematically illustrating wiring of the stator of FIG. 1. 図1のリニアモータの固定子の製造工程を説明する工程図である。It is process drawing explaining the manufacturing process of the stator of the linear motor of FIG. 第1変形例に係るリニアモータの断面図である。It is sectional drawing of the linear motor which concerns on a 1st modification. 第2変形例に係るリニアモータの断面図である。It is sectional drawing of the linear motor which concerns on a 2nd modification. 第3変形例に係るリニアモータの断面図である。It is sectional drawing of the linear motor which concerns on a 3rd modification.
 以下、本発明を好適な実施の形態をもとに各図面を参照しながら説明する。実施の形態および変形例では、同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. In the embodiment and the modification, the same or equivalent components and members are denoted by the same reference numerals, and repeated description is appropriately omitted. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in the drawings, some of the members that are not important for describing the embodiment are omitted.
 なお、以下の説明において、「平行」、「垂直」は、完全な平行、垂直だけではなく、誤差の範囲で平行、垂直からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。
 また、第1、第2などの序数を含む用語は多様な構成要素を説明するために用いられるが、この用語は一つの構成要素を他の構成要素から区別する目的でのみ用いられ、この用語によって構成要素が限定されるものではない。
 また、リニアモータは、可動子が円弧状など湾曲した軌道を移動するものを含み、可動子が直線状の軌道を移動するものに限定されない。
In the following description, “parallel” and “vertical” include not only perfect parallel and vertical, but also include cases in which they deviate from parallel and vertical within an error range. Further, “substantially” means that they are the same in an approximate range.
In addition, terms including ordinal numbers such as first and second are used to describe various components, but this term is used only for the purpose of distinguishing one component from other components. However, the constituent elements are not limited.
In addition, the linear motor includes one in which the mover moves on a curved track such as an arc, and is not limited to one in which the mover moves on a linear track.
[実施の形態]
 図面を参照して、本発明の実施の形態に係るリニアモータ100について説明する。図1は、実施の形態に係るリニアモータ100を示す平面図である。図2はリニアモータ100のA-A線に沿った側断面図である。
[Embodiment]
A linear motor 100 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a linear motor 100 according to an embodiment. FIG. 2 is a side sectional view of the linear motor 100 taken along the line AA.
 以下、主にXYZ直交座標系をもとに説明する。X軸方向は、図1において紙面左右方向に対応し、図2において紙面に垂直な方向に対応する。Y軸方向は、図1、図2において紙面上下方向に対応する。Z軸方向は、図1において紙面に垂直な方向に対応し、図2において紙面左右方向に対応する。Y軸方向およびZ軸方向はそれぞれX軸方向に直交する。X軸、Y軸、Z軸のそれぞれの正の方向は、各図における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。また、X軸の正方向側を「右側」、X軸の負方向側を「左側」ということもある。また、Y軸の正方向側を「前側」、Y軸の負方向側を「後側」、Z軸の正方向側を「上側」、Z軸の負方向側を「下側」ということもある。このような方向の表記はリニアモータ100の使用姿勢を制限するものではなく、リニアモータ100は、用途に応じて任意の姿勢で使用されうる。 Hereinafter, description will be made mainly based on the XYZ rectangular coordinate system. The X-axis direction corresponds to the left-right direction in FIG. 1 and corresponds to the direction perpendicular to the page in FIG. The Y-axis direction corresponds to the vertical direction of the drawing in FIGS. The Z-axis direction corresponds to the direction perpendicular to the paper surface in FIG. 1, and corresponds to the left-right direction on the paper surface in FIG. The Y-axis direction and the Z-axis direction are each orthogonal to the X-axis direction. The positive direction of each of the X axis, Y axis, and Z axis is defined in the direction of the arrow in each figure, and the negative direction is defined in the direction opposite to the arrow. Further, the positive direction side of the X axis may be referred to as “right side”, and the negative direction side of the X axis may be referred to as “left side”. Also, the positive direction side of the Y axis may be referred to as “front side”, the negative direction side of the Y axis as “rear side”, the positive direction side of the Z axis as “upper side”, and the negative direction side of the Z axis as “lower side”. is there. Such notation of the direction does not limit the use posture of the linear motor 100, and the linear motor 100 can be used in any posture depending on the application.
(リニアモータ)
 リニアモータ100は、固定子10と、可動子50と、を備える。可動子50は磁気的空隙60に磁気回路を形成する。リニアモータ100は、磁気的空隙60において固定子10に可動方向の推力を生じさせるエネルギー変換機構として機能する。実施の形態では、可動方向はX軸方向と一致するように配置されている。
(Linear motor)
The linear motor 100 includes a stator 10 and a mover 50. The mover 50 forms a magnetic circuit in the magnetic gap 60. The linear motor 100 functions as an energy conversion mechanism that generates thrust in the movable direction in the stator 10 in the magnetic gap 60. In the embodiment, the movable direction is arranged to coincide with the X-axis direction.
(可動子)
 先に可動子を説明する。可動子50は、一対の界磁磁石52と、一対のヨーク54と、スペーサ56と、を含む。界磁磁石52、一対のヨーク54は、磁気的空隙60に界磁磁界を形成する磁気回路を構成する。磁気的空隙60は、一対の界磁磁石52の間の空隙である。
(Movable element)
First, the mover will be described. The mover 50 includes a pair of field magnets 52, a pair of yokes 54, and a spacer 56. The field magnet 52 and the pair of yokes 54 constitute a magnetic circuit that forms a field magnetic field in the magnetic gap 60. The magnetic gap 60 is a gap between the pair of field magnets 52.
 一対のヨーク54は、X軸方向およびY軸方向に延在してZ軸方向に薄い板状の部材である。平面視において、一対のヨーク54は、X軸方向に平行な2辺とY軸方向に平行な2辺とを有する略矩形の輪郭を有する。一対のヨーク54は、公知の様々な軟磁性材料で形成される。一対のヨーク54は、Z軸方向に離れて互いに平行に配置されている。 The pair of yokes 54 are plate-like members that extend in the X-axis direction and the Y-axis direction and are thin in the Z-axis direction. In plan view, the pair of yokes 54 has a substantially rectangular outline having two sides parallel to the X-axis direction and two sides parallel to the Y-axis direction. The pair of yokes 54 is formed of various known soft magnetic materials. The pair of yokes 54 are arranged in parallel with each other apart in the Z-axis direction.
 スペーサ56は、一対のヨーク54間の上側領域に配置され、一対のヨーク54のZ軸方向の間隔を保持する。一対のヨーク54は、その上端近傍に設けられた複数の貫通孔を介して固定具58(例えばボルト)によりスペーサ56に固定される。 The spacer 56 is disposed in an upper region between the pair of yokes 54 and holds the distance between the pair of yokes 54 in the Z-axis direction. The pair of yokes 54 are fixed to the spacer 56 by a fixing tool 58 (for example, bolts) through a plurality of through holes provided in the vicinity of the upper end thereof.
 界磁磁石52は、磁気的空隙60に界磁磁界を形成する磁束の供給源として機能する。界磁磁石52は、1または複数の磁石を含んでもよい。界磁磁石52は、複数の磁石をハルバッハ配列に配置して構成されてもよい。界磁磁石52の表面には、X軸方向に所定の間隔で複数の磁極が設けられる。実施の形態では6極の磁極が設けられている。界磁磁石52は、公知の様々な磁石材料で形成されてもよい。この例では、界磁磁石52は、NdFeBなどの希土類磁石材料で形成されている。界磁磁石52は、接着など公知の手段によってヨーク54に固定されてもよい。 The field magnet 52 functions as a magnetic flux supply source that forms a field magnetic field in the magnetic gap 60. The field magnet 52 may include one or more magnets. The field magnet 52 may be configured by arranging a plurality of magnets in a Halbach array. A plurality of magnetic poles are provided on the surface of the field magnet 52 at predetermined intervals in the X-axis direction. In the embodiment, six magnetic poles are provided. The field magnet 52 may be formed of various known magnet materials. In this example, the field magnet 52 is formed of a rare earth magnet material such as NdFeB. The field magnet 52 may be fixed to the yoke 54 by a known means such as adhesion.
(固定子)
 固定子10は、X軸方向に延在する複数のコイルモジュール20と、梁部材30と、第2梁部材31と、配線部材34と、を含む。複数のコイルモジュール20は可動方向であるX軸方向に並べられている。コイルモジュール20は、例えば、平面視にて略矩形を呈し、Z軸方向に薄い略板状の部材である。この例では、コイルモジュール20は、平面視にて、長辺がX軸方向に沿い、短辺がY軸方向に沿うように配置されている。
(stator)
The stator 10 includes a plurality of coil modules 20 extending in the X-axis direction, a beam member 30, a second beam member 31, and a wiring member 34. The plurality of coil modules 20 are arranged in the X-axis direction, which is the movable direction. For example, the coil module 20 is a substantially plate-like member that has a substantially rectangular shape in plan view and is thin in the Z-axis direction. In this example, the coil module 20 is arranged so that the long side is along the X-axis direction and the short side is along the Y-axis direction in plan view.
 コイルモジュール20は、コイル組立24と、ケース22と、を含む。コイル組立24は、X軸方向に配列された複数のコイル26と、コネクタ36と、を含む。複数のコイル26は樹脂24mに包まれることによって一体化されている。ケース22を設ける場合、一例として、コイル組立24は、複数のコイル26が配置されたケース22に樹脂24mを注入することによって形成される。なお、ケース22を設けることは必須ではない。ケース22を設けない場合、一例として、コイル組立24は、複数のコイル26が配置された金型内に樹脂24mを注入して成形するインサート成形によって形成される。これらの製法はあくまでも一例であって、コイル組立24は、その他の様々な製造方法によって形成されてもよい。 The coil module 20 includes a coil assembly 24 and a case 22. The coil assembly 24 includes a plurality of coils 26 arranged in the X-axis direction and a connector 36. The plurality of coils 26 are integrated by being wrapped in resin 24m. When the case 22 is provided, as an example, the coil assembly 24 is formed by injecting a resin 24m into the case 22 in which a plurality of coils 26 are arranged. It is not essential to provide the case 22. When the case 22 is not provided, as an example, the coil assembly 24 is formed by insert molding in which a resin 24m is injected into a mold in which a plurality of coils 26 are arranged. These manufacturing methods are merely examples, and the coil assembly 24 may be formed by various other manufacturing methods.
 コイル26は、X軸方向に平行な2辺とY軸方向に平行な2辺とを有し、四隅がR形状に丸められた略矩形の輪郭を有する。コイル26は、辺を有しない全体として楕円などの曲線により構成される輪郭を備えてもよいし、その他の様々な形状の輪郭を備えてもよい。コイル26は、有鉄芯コイルであってもよいが、この例では、空芯コイルである。コイル26は、Z軸の周りを周回するように巻かれたワイヤから構成される。コイル26に駆動電流が供給されると、コイル26は、Z軸方向の磁束を発生させ、界磁磁石52にX軸方向の推力を発生させる電機子コイルとして機能する。 The coil 26 has two sides parallel to the X-axis direction and two sides parallel to the Y-axis direction, and has a substantially rectangular outline with four corners rounded into an R shape. The coil 26 may have a contour formed by a curve such as an ellipse as a whole having no side, or may have contours of various other shapes. The coil 26 may be an iron core coil, but in this example, is an air core coil. The coil 26 is composed of a wire wound around the Z axis. When a drive current is supplied to the coil 26, the coil 26 functions as an armature coil that generates a magnetic flux in the Z-axis direction and causes the field magnet 52 to generate a thrust in the X-axis direction.
 コネクタ36は、複数のコイル26のリード線に電気的に接続された電極を含む。コネクタ36は、インサート成形前に、複数のコイル26のリードワイヤ(引き出し線)に接続され、インサート成形により複数のコイル26と一体化されてもよい。あるいは、コネクタ36は、インサート成形後の複数のコイル26のリード線に接続されてもよい。この場合、コイル26のからリード線を直出しにして、そのリード線の先端にコネクタ36を接続するようにしてもよい。 The connector 36 includes electrodes electrically connected to the lead wires of the plurality of coils 26. The connector 36 may be connected to lead wires (lead wires) of the plurality of coils 26 before the insert molding, and may be integrated with the plurality of coils 26 by insert molding. Alternatively, the connector 36 may be connected to the lead wires of the plurality of coils 26 after the insert molding. In this case, the lead wire may be directly taken out from the coil 26 and the connector 36 may be connected to the tip of the lead wire.
 ケース22は、コイル組立24の周囲を覆うように設けられる。ケース22は、コイル26やコイル26の周囲を取り囲む樹脂24mから発生するガスの外部への流出を抑制する。ケース22は、上面が開放された5面からなる箱形状のケース本体22bと、ケース本体22bの上面を覆う蓋22cと、から構成される直方体の箱体である。蓋22cは、コイル組立24を収容したケース本体22bの上面に、例えば溶接などによって固定されてもよい。ケース22は、非磁性ステンレスなどの金属材料や、セラミックなどの非金属材料で形成されてもよい。 The case 22 is provided so as to cover the periphery of the coil assembly 24. The case 22 suppresses outflow of gas generated from the coil 26 and the resin 24m surrounding the coil 26 to the outside. The case 22 is a rectangular parallelepiped box composed of a box-shaped case main body 22b having five open upper surfaces and a lid 22c covering the upper surface of the case main body 22b. The lid 22c may be fixed to the upper surface of the case body 22b that houses the coil assembly 24, for example, by welding. The case 22 may be formed of a metal material such as nonmagnetic stainless steel or a nonmetal material such as ceramic.
 次に、配線部材34について説明する。図3は、固定子10を概略的に示す平面図である。図4は、固定子10の配線を説明する説明図である。配線部材34は、駆動回路40からコイル26に電流を供給する経路として機能する。駆動回路40からの電流は、配線部材34とコネクタ36とコネクタ36の電極に接続されたリードワイヤ26bとを介してコイル26に流れる。配線部材34は、例えばワイヤモジュールやプリント配線基板である。実施の形態では、配線部材34は、コネクタ36と接続するための別のコネクタ(不図示)を搭載したプリント配線基板である。実施の形態では、配線部材34は、後述する梁部材30の通路凹部30bに収容される。 Next, the wiring member 34 will be described. FIG. 3 is a plan view schematically showing the stator 10. FIG. 4 is an explanatory diagram for explaining the wiring of the stator 10. The wiring member 34 functions as a path for supplying current from the drive circuit 40 to the coil 26. The current from the drive circuit 40 flows to the coil 26 through the wiring member 34, the connector 36, and the lead wire 26 b connected to the electrode of the connector 36. The wiring member 34 is, for example, a wire module or a printed wiring board. In the embodiment, the wiring member 34 is a printed wiring board on which another connector (not shown) for connecting to the connector 36 is mounted. In the embodiment, the wiring member 34 is accommodated in a passage recess 30b of the beam member 30 described later.
 複数のコイルモジュール20に駆動電流を供給する方式として、全励磁方式と部分励磁方式とが考えられる。全励磁方式は、1つの相を構成する全コイルに駆動電流を供給する方式である。全励磁方式は、配線が比較的容易であるという特徴を有する。部分励磁方式は、可動子50の近傍のコイル26に選択的に駆動電流を供給する方式である。部分励磁方式は、無駄な電力が小さいという特徴を有する。実施の形態では、部分励磁方式を採用している。図4に示すように、それぞれのコイルモジュール20は、他のモジュールとは独立して駆動回路40に接続されている。 The full excitation method and the partial excitation method can be considered as methods for supplying drive current to the plurality of coil modules 20. The full excitation method is a method for supplying a drive current to all the coils constituting one phase. The full excitation system has a feature that wiring is relatively easy. The partial excitation method is a method for selectively supplying a drive current to the coil 26 in the vicinity of the mover 50. The partial excitation method has a feature that wasteful power is small. In the embodiment, a partial excitation method is adopted. As shown in FIG. 4, each coil module 20 is connected to the drive circuit 40 independently of the other modules.
 梁部材30および第2梁部材31は、複数のコイルモジュール20を連結するとともに、固定子10に所望の剛性を付与するための梁として機能する。この例では、梁部材30および第2梁部材31は、X軸方向に延びる断面矩形の棒状部材である。図2に示すように、梁部材30には、X軸方向に延びる通路凹部30bが設けられている。通路凹部30bは、コイルモジュール20側が開放されており、上向きに後退する凹部である。通路凹部30bは、コネクタ36および配線部材34を収容する。梁部材30はコイルモジュール20の上面に、第2梁部材31はコイルモジュール20の下面にそれぞれ接するように配置される。複数のコイルモジュール20は、梁部材30および第2梁部材31にボルトなどの固定部材32によって固定される。梁部材30は、シームレスな一体部材として形成されてもよいし、複数の部材が一体化されてもよい。第2梁部材31についても同様である。 The beam member 30 and the second beam member 31 function as a beam for connecting the plurality of coil modules 20 and for imparting a desired rigidity to the stator 10. In this example, the beam member 30 and the second beam member 31 are bar-shaped members having a rectangular cross section extending in the X-axis direction. As shown in FIG. 2, the beam member 30 is provided with a passage recess 30b extending in the X-axis direction. The passage recess 30b is a recess that is open on the coil module 20 side and recedes upward. The passage recess 30 b accommodates the connector 36 and the wiring member 34. The beam member 30 is disposed on the upper surface of the coil module 20, and the second beam member 31 is disposed on the lower surface of the coil module 20. The plurality of coil modules 20 are fixed to the beam member 30 and the second beam member 31 by fixing members 32 such as bolts. The beam member 30 may be formed as a seamless integrated member, or a plurality of members may be integrated. The same applies to the second beam member 31.
 次に、コイルモジュール20を構成する複数のコイル26のコイル数(以下、単にコイル数という)について説明する。3相駆動する場合は、コイル数は3の整数倍であることが望ましい。なお、コイル数は3の整数倍であることは必須ではなく、コイル数は任意に設定されてもよい。つまり、コイルモジュール20は必要に応じて3の整数倍以外の個数のコイル26で構成されてもよい。特に、ムービングマグネット型で部分励磁をする場合、3の整数個のコイル26を励磁すればよいため、3の整数個以外でモジュール化してもよい。 Next, the number of coils 26 (hereinafter simply referred to as the number of coils) constituting the coil module 20 will be described. In the case of three-phase driving, the number of coils is desirably an integer multiple of three. Note that the number of coils is not necessarily an integer multiple of 3, and the number of coils may be set arbitrarily. That is, the coil module 20 may be configured with a number of coils 26 other than an integral multiple of 3 as necessary. In particular, in the case of partial excitation using a moving magnet type, it is only necessary to excite the integer number of coils 26, so that modules other than the integer number of 3 may be modularized.
 可動ストロークが長いモータの場合、コイル数が3個だと、コイルモジュール数が増えて製造コストが高くなるので、コイル数は6個が望ましい。可動ストロークが短いモータの場合、コイル数が6個以上だと、固定子が不必要に長くなる可能性があるのでコイル数は3個が望ましい。 In the case of a motor with a long movable stroke, if the number of coils is three, the number of coil modules increases and the manufacturing cost increases, so six coils are desirable. In the case of a motor having a short movable stroke, if the number of coils is 6 or more, the stator may become unnecessarily long. Therefore, the number of coils is preferably 3.
 1つのコイルモジュール20が長くなり過ぎると、コイルモジュール20が反って可動子50に接触する可能性が高くなる。この観点から、コイル数は6個以下が望ましい。 If one coil module 20 becomes too long, the possibility that the coil module 20 warps and contacts the mover 50 increases. From this viewpoint, the number of coils is desirably six or less.
 次に、リニアモータ100の製造工程の一例について説明する。図5は、リニアモータ100の製造工程S80を説明する工程図である。特に、製造工程S80は、固定子10を製造する工程S82~S92を含んでいる。 Next, an example of the manufacturing process of the linear motor 100 will be described. FIG. 5 is a process diagram illustrating the manufacturing process S80 of the linear motor 100. FIG. In particular, the manufacturing process S80 includes processes S82 to S92 for manufacturing the stator 10.
 工程S82において、表面が絶縁されたワイヤを巻線して空芯のコイル26を製造する。 In step S82, the air core coil 26 is manufactured by winding a wire whose surface is insulated.
 工程S84において、複数のコイル26をケース本体22bに収容する。ケース本体22bに収容する前または後に複数のコイル26にコネクタ36を取付ける。実施の形態では、コネクタ36は、ケース本体22bに収容する前にコイル26に取付けられる。コネクタ36は、次工程で流し込まれる樹脂24mによってコイル26と一体化される。 In step S84, the plurality of coils 26 are accommodated in the case main body 22b. A connector 36 is attached to the plurality of coils 26 before or after being accommodated in the case body 22b. In the embodiment, the connector 36 is attached to the coil 26 before being accommodated in the case main body 22b. The connector 36 is integrated with the coil 26 by the resin 24m poured in the next process.
 工程S86において、複数のコイル26を収容したケース本体22bに、樹脂24mを流し込むことによって複数のコイル26を一体化し、コイル組立24を形成する。
 工程S88において、樹脂24mが流し込まれたコイル26を収容したケース本体22bに蓋22cを被せる。
In step S86, the resin 24m is poured into the case main body 22b in which the plurality of coils 26 are accommodated to integrate the plurality of coils 26 to form the coil assembly 24.
In step S88, the lid 22c is placed over the case body 22b that houses the coil 26 into which the resin 24m has been poured.
 工程S90において、ケース本体22bに蓋22cを例えば溶接により固定する。蓋22cには、開口22eが設けられており、蓋22cを固定した状態で、コネクタ36は開口22eから露出している。 In step S90, the lid 22c is fixed to the case body 22b by, for example, welding. The lid 22c is provided with an opening 22e, and the connector 36 is exposed from the opening 22e with the lid 22c fixed.
 工程S92において、複数のコイルモジュール20をX軸方向に配列し、コネクタ36を配線部材34の配線部に電気的に接続し、梁部材30および第2梁部材31を固定する。このようにして固定子10は製造される。 In step S92, the plurality of coil modules 20 are arranged in the X-axis direction, the connector 36 is electrically connected to the wiring portion of the wiring member 34, and the beam member 30 and the second beam member 31 are fixed. In this way, the stator 10 is manufactured.
 このように製造された固定子10を、別に製造された可動子50の磁気的空隙60に挿入することにより、リニアモータ100が製造される。この製造工程S80は一例に過ぎず、他の工程を追加したり、工程の一部を変更または削除したり、工程の順序を入れ替えたりしてもよい。 The linear motor 100 is manufactured by inserting the stator 10 manufactured in this way into the magnetic gap 60 of the mover 50 manufactured separately. This manufacturing process S80 is only an example, and another process may be added, a part of the process may be changed or deleted, or the order of the processes may be changed.
 図1に示すように、コイルモジュール20と隣のコイルモジュール20の間にはケース22の壁面が2重に介在する。このような壁面を有しない場合と比べて、樹脂24mからのガスの流出を減らすことができる。 As shown in FIG. 1, the wall surface of the case 22 is doubled between the coil module 20 and the adjacent coil module 20. The outflow of gas from the resin 24m can be reduced as compared with the case without such a wall surface.
 このように構成されたリニアモータ100の動作を説明する。駆動回路40からコイルモジュール20に交番する駆動電流が供給されると、コイルモジュール20は可動方向の移動磁界を発生し、可動子50の界磁磁石52に可動方向の推力を付与する。リニアモータ100は、この推力により可動子50に連結された駆動対象を駆動する。 The operation of the linear motor 100 configured as described above will be described. When an alternating drive current is supplied from the drive circuit 40 to the coil module 20, the coil module 20 generates a moving magnetic field in the movable direction and applies a thrust in the movable direction to the field magnet 52 of the mover 50. The linear motor 100 drives the drive target connected to the mover 50 by this thrust.
 本発明の一態様の概要は、次の通りである。本発明のある態様のリニアモータ100は、界磁磁石52を含む可動子50と、可動子50の可動方向に連結された複数のコイルモジュール20を含む固定子10と、を備える。コイルモジュール20は、可動方向に配列された複数のコイル26を含む。 The outline of one embodiment of the present invention is as follows. The linear motor 100 according to an aspect of the present invention includes a mover 50 including a field magnet 52 and a stator 10 including a plurality of coil modules 20 connected in a moving direction of the mover 50. The coil module 20 includes a plurality of coils 26 arranged in a movable direction.
 この態様によると、リニアモータ100の可動ストロークを変更して設計する場合、連結するコイルモジュール20の数を変更することで対応できるので、設計の標準化が可能になり、設計工数を低減できる。リニアモータ100の可動ストロークを変更して製造する場合、連結するコイルモジュール20の数を変更することで対応できるので、金型、治工具および製造設備などを共用できる。コイルモジュール20を製造に適した長さにできるので、長尺なリニアモータ100を製造する場合、治工具やコイルモジュール20の取り回しが容易になる。また、コイルモジュール20を連結する作業を、リニアモータ100を設置する現場において行うことができる。 According to this aspect, when the design is performed by changing the movable stroke of the linear motor 100, it is possible to cope with the change by changing the number of coil modules 20 to be connected, so that the design can be standardized and the design man-hours can be reduced. When manufacturing by changing the movable stroke of the linear motor 100, the number of coil modules 20 to be connected can be changed, so that molds, jigs and manufacturing equipment can be shared. Since the coil module 20 can be made into a length suitable for manufacturing, when the long linear motor 100 is manufactured, the jigs and the coil module 20 can be easily handled. Further, the operation of connecting the coil modules 20 can be performed at the site where the linear motor 100 is installed.
 複数のコイル26のコイル数は、3の整数倍であってもよい。この場合、コイルの数が3の整数倍以外の場合と比べて、不必要なコイルにより固定子が不必要に長くなる可能性を低減できる。 The number of coils of the plurality of coils 26 may be an integer multiple of three. In this case, compared with the case where the number of coils is other than an integral multiple of 3, the possibility that the stator becomes unnecessarily long due to unnecessary coils can be reduced.
 複数のコイル26のコイル数は、6以下であってもよい。この場合、コイルの数が7以上の場合と比べて、コイルモジュール20を短くできるので、コイルモジュール20が反って可動子50に接触する可能性を低減できる。 The number of coils of the plurality of coils 26 may be 6 or less. In this case, since the coil module 20 can be shortened compared with the case where the number of coils is seven or more, the possibility that the coil module 20 warps and contacts the mover 50 can be reduced.
 コイルモジュール20は、複数のコイル26に電気的に接続された電極を含むコネクタ36を有する。この場合、コイルモジュール20を連結する際、コネクタ36を配線部材34の配線部に容易に接続できる。また、コネクタが着脱可能であれば、既存のリニアモータを容易に分解して再利用できる。既設のリニアモータのストロークを変更する場合に、追加のコイルモジュール20を容易に連結できる。既設のリニアモータを廃棄して新たなリニアモータを設置する場合と比べて、無駄になる資源を大幅に低減できる。 The coil module 20 includes a connector 36 including electrodes that are electrically connected to the plurality of coils 26. In this case, when connecting the coil module 20, the connector 36 can be easily connected to the wiring portion of the wiring member 34. If the connector is detachable, the existing linear motor can be easily disassembled and reused. When changing the stroke of the existing linear motor, the additional coil module 20 can be easily connected. Compared to the case where the existing linear motor is discarded and a new linear motor is installed, the wasteful resources can be greatly reduced.
 本発明の別の態様はリニアモータを製造する方法である。この方法は、ケース22に複数のコイル26を収容することと、複数のコイル26を収容したケース22に樹脂24mを流し込みコイルモジュール20を形成することと、複数のコイルモジュール20を可動方向に並べて梁部材30に固定することと、コイル26に配線部材34を電気的に接続することと、を含む。 Another aspect of the present invention is a method of manufacturing a linear motor. This method includes housing a plurality of coils 26 in a case 22, forming a coil module 20 by pouring a resin 24m into the case 22 housing a plurality of coils 26, and arranging the plurality of coil modules 20 in a movable direction. It includes fixing to the beam member 30 and electrically connecting the wiring member 34 to the coil 26.
 この態様によると、リニアモータ100の可動ストロークを変更して設計する場合、連結するコイルモジュール20の数を変更することで対応できるので、設計の標準化が可能になり、設計工数を低減できる。リニアモータ100の可動ストロークを変更して製造する場合、連結するコイルモジュール20の数を変更することで対応できるので、金型、治工具および製造設備などを共用できる。 According to this aspect, when the design is performed by changing the movable stroke of the linear motor 100, it is possible to cope with the change by changing the number of coil modules 20 to be connected, so that the design can be standardized and the design man-hours can be reduced. When manufacturing by changing the movable stroke of the linear motor 100, the number of coil modules 20 to be connected can be changed, so that molds, jigs and manufacturing equipment can be shared.
 コイルモジュール20を形成することは、樹脂24mを流し込んだケース本体22bに蓋22cを固定することを含んでもよい。この場合、ケース本体22bに蓋22cを固定するので、樹脂24mからの発ガスを抑制することができる。 Forming the coil module 20 may include fixing the lid 22c to the case body 22b into which the resin 24m is poured. In this case, since the lid 22c is fixed to the case main body 22b, gas generation from the resin 24m can be suppressed.
 以上、本発明の実施の形態の例について詳細に説明した。前述した実施の形態は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施の形態では、このような設計変更が可能な内容に関して、「実施の形態の」「実施の形態では」等との表記を付して説明しているが、そのような表記のない内容に設計変更が許容されないわけではない。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 As described above, the example of the embodiment of the present invention has been described in detail. The above-described embodiments are merely specific examples for carrying out the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as changes, additions, deletions, and the like of components are made without departing from the spirit of the invention defined in the claims. Is possible. In the above-described embodiment, the contents that can be changed in design have been described with the notation “in the embodiment”, “in the embodiment”, etc., but there is no such description. The content is not unacceptable to design changes. Moreover, the hatching given to the cross section of drawing does not limit the material of the hatched object.
 以下、変形例について説明する。変形例の図面および説明では、実施の形態と同一または同等の構成要素、部材には、同一の符号を付する。実施の形態と重複する説明を適宜省略し、実施の形態と相違する構成について重点的に説明する。 Hereinafter, modified examples will be described. In the drawings and description of the modification, the same reference numerals are given to the same or equivalent components and members as those in the embodiment. The description overlapping with the embodiment will be omitted as appropriate, and the configuration different from the embodiment will be described mainly.
(第1変形例)
 図6は、第1変形例に係るリニアモータ200aを示す断面図であり、図2に対応する。リニアモータ200aは、リニアモータ100に対して、第2梁部材31を備えない点で相違し、他の構成は同様である。第2梁部材31を備えることは必須ではない。
(First modification)
FIG. 6 is a cross-sectional view showing a linear motor 200a according to a first modification, and corresponds to FIG. The linear motor 200a is different from the linear motor 100 in that the second beam member 31 is not provided, and the other configurations are the same. It is not essential to provide the second beam member 31.
(第2変形例)
 リニアモータ100では、梁部材30と第2梁部材31とは結合されない例について説明したが、これに限定されない。図7は、第2変形例に係るリニアモータ200bを示す断面図であり、図2に対応する。リニアモータ200bは、リニアモータ100に対して、梁部材30と第2梁部材31の代わりに梁部材30Bと第2梁部材31Bとスペーサ35とを備える点で相違し、他の構成は同様である。梁部材30Bおよび第2梁部材31Bは、コイルモジュール20からY軸で負方向に張出しており、これらの張出部分の間にスペーサ35が設けられている。梁部材30Bおよび第2梁部材31Bは、スペーサ35を挟んで一体に結合される。
(Second modification)
In the linear motor 100, the example in which the beam member 30 and the second beam member 31 are not coupled has been described. However, the present invention is not limited to this. FIG. 7 is a cross-sectional view showing a linear motor 200b according to a second modification, and corresponds to FIG. The linear motor 200b is different from the linear motor 100 in that a beam member 30B, a second beam member 31B, and a spacer 35 are provided instead of the beam member 30 and the second beam member 31, and the other configurations are the same. is there. The beam member 30B and the second beam member 31B project from the coil module 20 in the negative direction along the Y axis, and a spacer 35 is provided between these projecting portions. The beam member 30B and the second beam member 31B are integrally coupled with the spacer 35 interposed therebetween.
 リニアモータ200bでは、梁部材30Bおよび第2梁部材31Bは、磁気的空隙60内に進入する進入部30eを有する。進入部30eは、例えばX軸方向およびY軸方向に延在してZ軸方向に薄い板状の部分であってもよい。進入部30eは、コイルモジュール20の全部または一部を覆うように設けられる。進入部30eを有することにより、コイルモジュール20の反りを抑制できる。進入部30eは、実施の形態および他の変形例にも適用できる。 In the linear motor 200b, the beam member 30B and the second beam member 31B have an entry portion 30e that enters the magnetic gap 60. The entry portion 30e may be, for example, a plate-like portion that extends in the X-axis direction and the Y-axis direction and is thin in the Z-axis direction. The entry portion 30e is provided so as to cover all or part of the coil module 20. By having the approach part 30e, the curvature of the coil module 20 can be suppressed. The approach portion 30e can be applied to the embodiment and other modifications.
(第3変形例)
 図8は、第3変形例に係るリニアモータ200cを示す断面図であり、図2に対応する。リニアモータ200cは、リニアモータ200bに対して、梁部材30Bと第2梁部材31Bとスペーサ35の代わりに梁部材30Cを備える点で相違し、他の構成は同様である。梁部材30Cは、梁部材30Bと第2梁部材31Bとスペーサ35とをシームレスに一体化した形状を有する。
(Third Modification)
FIG. 8 is a cross-sectional view showing a linear motor 200c according to a third modification, and corresponds to FIG. The linear motor 200c is different from the linear motor 200b in that it includes a beam member 30C instead of the beam member 30B, the second beam member 31B, and the spacer 35, and the other configurations are the same. The beam member 30C has a shape in which the beam member 30B, the second beam member 31B, and the spacer 35 are seamlessly integrated.
(第4変形例)
 実施の形態では、コイルモジュール20を製造する工程と、コイルモジュール20を連結する工程と、を連続して設ける例について説明したが、本発明はこれに限定されない。また、上述の梁部材を備えることは必須ではない。例えば、コイルモジュール20を製造する工程では、梁部材を備えないコイルモジュール20を製造するようにしてもよい。このように製造された梁部材を備えないコイルモジュール20はサイズなどの仕様ごとに保管されてもよい。この場合、コイルモジュール20を連結する工程は別工場に設けられてもよい。保管されたものうち所望の仕様のコイルモジュール20を別工場に輸送し、そこでコイルモジュール20を連結するようにしてもよい。
(Fourth modification)
In the embodiment, the example in which the process of manufacturing the coil module 20 and the process of connecting the coil module 20 are continuously provided has been described, but the present invention is not limited to this. Moreover, it is not essential to provide the above-mentioned beam member. For example, in the process of manufacturing the coil module 20, the coil module 20 that does not include a beam member may be manufactured. The coil module 20 without the beam member manufactured in this way may be stored for each specification such as size. In this case, the step of connecting the coil modules 20 may be provided in another factory. The stored coil module 20 having a desired specification may be transported to another factory, and the coil module 20 may be connected there.
(その他の変形例)
 リニアモータ100は、コイル数が異なるコイルモジュール20を組み合わせて構成されてもよい。
 リニアモータ100は、直線状のコイルモジュール20と湾曲したコイルモジュールとを含んでもよい。
 一対のヨーク54とスペーサ56とはシームレスに一体に形成されてもよい。
 コイルモジュール20を挟む一対の界磁磁石52のうちの一方は設けられなくてもよい。
 上述の各変形例は、実施の形態と同様の作用・効果を奏する。
(Other variations)
The linear motor 100 may be configured by combining coil modules 20 having different numbers of coils.
The linear motor 100 may include a linear coil module 20 and a curved coil module.
The pair of yokes 54 and the spacers 56 may be formed seamlessly and integrally.
One of the pair of field magnets 52 sandwiching the coil module 20 may not be provided.
Each of the above-described modifications has the same operations and effects as the embodiment.
 10・・固定子、 18・・コイル、 20・・コイルモジュール、 22・・ケース、 22b・・ケース本体、 22c・・蓋、 24・・コイル組立、 24m・・樹脂、 26・・コイル、 30・・梁部材、 31・・第2梁部材、 34・・配線部材、 36・・コネクタ、 50・・可動子、 52・・界磁磁石、 54・・ヨーク、 60・・磁気的空隙、100・・リニアモータ。 10 ·· Stator, 18 · Coil, 20 · Coil module, 22 · Case, 22b · Case body, 22c ·· Lid, 24 · Coil assembly, 24m ·· Resin, 26 · Coil, 30・ ・ Beam member, 31 ・ ・ Second beam member, 34 ・ ・ Wiring member, 36 ・ ・ Connector, 50 ・ ・ Mover, 52 ・ ・ Field magnet, 54 ・ ・ Yoke, 60 ・ ・ Magnetic gap, 100 ..Linear motor.
 本発明によれば、電機子コイルの製造を容易にするリニアモータを提供することができる。 According to the present invention, it is possible to provide a linear motor that facilitates the manufacture of armature coils.

Claims (6)

  1.  界磁磁石を含む可動子と、
     前記可動子の可動方向に連結された複数のコイルモジュールを含む固定子と、
     を備え、
     前記コイルモジュールは、前記可動方向に配列された複数のコイルを含むことを特徴とするリニアモータ。
    A mover including a field magnet;
    A stator including a plurality of coil modules coupled in a movable direction of the mover;
    With
    The linear motor, wherein the coil module includes a plurality of coils arranged in the movable direction.
  2.  前記複数のコイルのコイル数は、3の整数倍であることを特徴とする請求項1に記載のリニアモータ。 2. The linear motor according to claim 1, wherein the number of coils of the plurality of coils is an integer multiple of three.
  3.  前記複数のコイルのコイル数は、6以下であることを特徴とする請求項1または2に記載のリニアモータ。 3. The linear motor according to claim 1, wherein the number of coils of the plurality of coils is 6 or less.
  4.  前記コイルモジュールは、前記複数のコイルに電気的に接続された電極を含むコネクタを有することを特徴とする請求項1から3のいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 3, wherein the coil module includes a connector including electrodes electrically connected to the plurality of coils.
  5.  請求項1に記載のリニアモータを製造する方法であって、
     ケースに複数のコイルを収容することと、
     複数のコイルを収容したケースに樹脂を流し込みコイルモジュールを形成することと、
     複数のコイルモジュールを前記可動方向に並べて梁部材に固定することと、
     コイルに配線部材を電気的に接続することと、
     を含むことを特徴とするリニアモータの製造方法。
    A method of manufacturing the linear motor according to claim 1,
    Housing a plurality of coils in a case;
    Pouring resin into a case containing a plurality of coils to form a coil module;
    Arranging a plurality of coil modules in the movable direction and fixing them to the beam member;
    Electrically connecting a wiring member to the coil;
    The manufacturing method of the linear motor characterized by including.
  6.  コイルモジュールを形成することは、
     樹脂を流し込んだケースに蓋を固定することを含むことを特徴とする請求項5に記載のリニアモータの製造方法。
    Forming a coil module
    The method for manufacturing a linear motor according to claim 5, further comprising fixing a lid to a case into which resin is poured.
PCT/JP2018/042986 2018-01-31 2018-11-21 Linear motor and method for manufacturing linear motor WO2019150718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568881A JPWO2019150718A1 (en) 2018-01-31 2018-11-21 Linear motor, manufacturing method of linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015032 2018-01-31
JP2018-015032 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150718A1 true WO2019150718A1 (en) 2019-08-08

Family

ID=67479201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042986 WO2019150718A1 (en) 2018-01-31 2018-11-21 Linear motor and method for manufacturing linear motor

Country Status (3)

Country Link
JP (1) JPWO2019150718A1 (en)
TW (1) TWI713283B (en)
WO (1) WO2019150718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993240A1 (en) * 2020-10-28 2022-05-04 Schneider Electric Industries SAS Transport system, set for constructing a transport system and method for retrofitting a connector in a transport system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723608B (en) * 2019-11-01 2021-04-01 高明鐵企業股份有限公司 Thin bipolar opposite phase linear stepper motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275336A (en) * 2000-03-29 2001-10-05 Sodick Co Ltd Modularized coil side linear motor
JP2004023954A (en) * 2002-06-19 2004-01-22 Yaskawa Electric Corp Armature block for moving-magnet type linear motor, linear motor armature, linear drive block, and linear motor
JP2004357353A (en) * 2003-05-27 2004-12-16 Fuji Electric Fa Components & Systems Co Ltd Linear electromagnetic actuator
WO2008152876A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP2011205841A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Connector unit, and linear motor armature equipped with the same
JP2015039263A (en) * 2013-08-19 2015-02-26 株式会社安川電機 Armature of linear motor and linear motor
WO2017169908A1 (en) * 2016-03-29 2017-10-05 住友重機械工業株式会社 Linear motor, voice coil motor, and stage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010402A (en) * 1973-06-06 1975-02-03
JPH09117088A (en) * 1995-10-16 1997-05-02 Matsushita Electric Ind Co Ltd Stator for motor
TWI244253B (en) * 2003-11-21 2005-11-21 Ind Tech Res Inst Modular permanent-magnet synchronous linear motor
JP5151309B2 (en) * 2007-08-14 2013-02-27 トヨタ自動車株式会社 Rotating electric machine
DE102012204919A1 (en) * 2012-03-27 2013-10-02 Beckhoff Automation Gmbh STATOR DEVICE FOR A LINEAR MOTOR AND LINEAR TRANSPORT SYSTEM
JP6224380B2 (en) * 2013-08-30 2017-11-01 ヤマハ発動機株式会社 Cover member for linear conveyor and linear conveyor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275336A (en) * 2000-03-29 2001-10-05 Sodick Co Ltd Modularized coil side linear motor
JP2004023954A (en) * 2002-06-19 2004-01-22 Yaskawa Electric Corp Armature block for moving-magnet type linear motor, linear motor armature, linear drive block, and linear motor
JP2004357353A (en) * 2003-05-27 2004-12-16 Fuji Electric Fa Components & Systems Co Ltd Linear electromagnetic actuator
WO2008152876A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP2011205841A (en) * 2010-03-26 2011-10-13 Mitsubishi Electric Corp Connector unit, and linear motor armature equipped with the same
JP2015039263A (en) * 2013-08-19 2015-02-26 株式会社安川電機 Armature of linear motor and linear motor
WO2017169908A1 (en) * 2016-03-29 2017-10-05 住友重機械工業株式会社 Linear motor, voice coil motor, and stage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993240A1 (en) * 2020-10-28 2022-05-04 Schneider Electric Industries SAS Transport system, set for constructing a transport system and method for retrofitting a connector in a transport system

Also Published As

Publication number Publication date
TW201935819A (en) 2019-09-01
TWI713283B (en) 2020-12-11
JPWO2019150718A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US8110950B2 (en) Coreless linear motor having a non-magnetic reinforcing member
EP3136552B1 (en) Axial air gap rotating electric machine and rotating electric machine bobbin
US7576452B2 (en) Coreless linear motor and canned linear motor
JP5418558B2 (en) Linear motor stator and linear motor
US9978492B2 (en) Coil, rotating electrical machine, and linear motor
US7696651B2 (en) Linear motor
WO2019150718A1 (en) Linear motor and method for manufacturing linear motor
JP5224050B2 (en) Linear motor armature, linear motor, and table feed device using the same.
CN107615630B (en) Armature core, armature and linear motor
JP2005176464A (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
US20150054357A1 (en) Armature of coreless linear motor and coreless linear motor using the same
JP5369265B2 (en) Linear motor and linear moving stage device
CN103814509A (en) Linear moving magnet motor cogging force ripple reducing
JP2013027054A (en) Coreless linear motor
JP2013046500A (en) Linear motor, linear motor coil, and method for manufacturing linear motor coil
JP5403008B2 (en) Linear motor armature and linear motor
JP2013038824A (en) Armature of linear motor and linear motor
JP2000278929A (en) Linear motor
JP2011193553A (en) Coreless linear motor of two-degrees-of-freedom
JP6197346B2 (en) Linear motor
JP2007143216A (en) Linear motor
JP2018164371A (en) Linear motor and stage apparatus
KR20030067073A (en) Linear motor having coil modules
JP2013027055A (en) Coreless linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903663

Country of ref document: EP

Kind code of ref document: A1