WO2017169030A1 - Hull frictional resistance reduction device and ship - Google Patents

Hull frictional resistance reduction device and ship Download PDF

Info

Publication number
WO2017169030A1
WO2017169030A1 PCT/JP2017/002481 JP2017002481W WO2017169030A1 WO 2017169030 A1 WO2017169030 A1 WO 2017169030A1 JP 2017002481 W JP2017002481 W JP 2017002481W WO 2017169030 A1 WO2017169030 A1 WO 2017169030A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
bubble
hull
reduction device
inflow
Prior art date
Application number
PCT/JP2017/002481
Other languages
French (fr)
Japanese (ja)
Inventor
真一 ▲高▼野
千春 川北
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020187020105A priority Critical patent/KR102099523B1/en
Publication of WO2017169030A1 publication Critical patent/WO2017169030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a hull friction resistance reduction device that reduces hull friction resistance by covering the bottom of the hull with bubbly flow, and a vessel including the same.
  • Patent Document 1 There is known a technique for reducing the frictional resistance of the hull by generating a bubbly flow from the bow side to the stern side during sailing and covering the bottom of the vessel with the bubbly flow.
  • Patent Document 1 includes a navigation condition determination unit (100) and a sea condition determination unit (120), and performs control on the ejection of air bubbles to the bottom (3) based on the current condition of the ship and the sea condition, for example When the wave height becomes equal to or more than a predetermined value, the ejection of air bubbles is stopped (see paragraphs [0079]-[0083], [0097], etc. Reference numerals in parentheses are used in Patent Document 1) Show the sign).
  • the present invention was conceived in view of the above problems, and it is possible to effectively reduce the frictional resistance of the hull while suppressing the risk due to the inflow of air bubbles into the propeller. It aims at providing a reduction device and a vessel.
  • a plurality of hull frictional resistance reduction devices are provided along the hull width direction ahead of the propellers at the bottom of the boat, and a bubble jetting unit that jets bubbles; It is a hull friction resistance reduction device provided with an adjustment mechanism which adjusts the amount of bubbles of a blowout unit, and a control device, and there is a possibility that the bubbles flow into the propeller or the bubbles flow into the propeller
  • the amount of the bubble jetting is reduced to be smaller than a predetermined amount.
  • the inflow information acquisition means is an inflow detection means for detecting the inflow of the air bubbles into the propeller.
  • the adjustment mechanism control unit acquires the bubble inflow information from the inflow information acquisition unit, at least the bubble ejection unit disposed in front of the propeller in the plurality of bubble ejection units. Preferably, the ejection of the air bubbles is stopped.
  • the inflow detection means is provided in the imaging device for imaging the propeller and the control device, and whether or not the air bubble is inflowing to the propeller based on the image information imaged by the imaging device It is preferable to include a determination unit that performs the determination of
  • the imaging device be directly attached to the bottom of the ship in front of the propeller.
  • the imaging device be disposed just beside the propeller.
  • the imaging devices are arranged in a pair so as to sandwich the propeller from both sides in the width direction of the hull.
  • the inflow detection means includes vibration detection means for detecting vibration or vibration of the propeller, and the controller, and the air bubble is sent to the propeller based on detection information of the vibration detection means. It is preferable to include a determination unit that determines whether or not there is inflow.
  • a plurality of the vibration detection means are provided along the hull width direction, and the determination unit performs the determination based on detection information of the plurality of vibration detection means.
  • the mechanism control unit reduces the amount of ejection of the air bubble to be smaller than the predetermined amount at least for the air bubble ejection unit in front of the vibration detection unit determined to have the air bubble flowing therein.
  • the vibration detection means is a pressure sensor in which at least the detection end is exposed to the outside of the propeller above the propeller.
  • the vibration detection means is an acceleration sensor disposed in the ship above the propeller.
  • the propeller is provided at the center in the width direction of the hull, and the air bubble ejection unit in front of the front is disposed at the center in the width direction of the hull.
  • a plurality of the propellers are arranged in parallel along the hull width direction, the air bubble ejection units are respectively disposed in front of the plurality of propellers, and the inflow information is acquired for each of the plurality of propellers Preferably means are provided.
  • a ship of the present invention is characterized by including the hull friction resistance reduction device according to any one of (1) to (15).
  • a plurality of bubble jetting units provided along the hull width direction
  • the bubble blowing amount is reduced, so that the bubbles to the propeller are reduced.
  • the friction resistance of the hull can be reduced while suppressing the risk due to the inflow of water.
  • FIGS. 4A and 4B are schematic views showing the configuration of the main part of a ship according to a second embodiment of the present invention, FIG. 4A is a side view of the rear of the ship, and FIG.
  • FIG. 4B is a rear view (the rudder is omitted).
  • FIG. 5A and FIG. 5B are schematic diagrams for explaining the determination method by the determination unit according to the second embodiment of the present invention, showing an example of an image of a propeller captured from the side by the monitoring camera.
  • 6A and 6B are schematic views showing the configuration of the main part of a ship according to a third embodiment of the present invention, FIG. 6A is a side view of the rear of the ship, and FIG. 6B is a rear view (the rudder is omitted).
  • FIG. 7 is a schematic view of a hull friction resistance reduction device according to a third embodiment of the present invention.
  • FIG. 8A, 8B, 8C and 8D are schematic views for explaining the determination method by the determination unit according to the third embodiment of the present invention, and FIG. 8A shows an example of pressure fluctuation above the propeller FIG. 8B, FIG. 8C and FIG. 8D are diagrams showing an example of the frequency spectrum of the fluctuating pressure above the propeller.
  • FIG. 9 is a schematic rear view showing the main configuration of a ship according to a fourth embodiment of the present invention (the rudder is omitted).
  • FIG. 10 is a schematic view of a hull friction resistance reduction device according to a fourth embodiment of the present invention.
  • 11A and 11B are schematic diagrams for explaining the determination method by the determination unit according to the fourth embodiment of the present invention, in which the propeller is on the coordinates with the horizontal axis as the width direction and the vertical axis as the fluctuating pressure It is a figure which shows an example of upper fluctuation pressure distribution.
  • 12A and 12B are schematic bottom views showing the configuration of a ship according to a modification of the present invention.
  • FIGS. 13A and 13B are schematic bottom views showing the configuration of the stern side which is the main part of the ship of the modified example of the present invention.
  • a direction orthogonal to the longitudinal direction of the hull (hereinafter referred to as “longitudinal direction”) X is taken as a hull width direction Y (hereinafter referred to as “width direction” or “ship width direction”).
  • the side is an inside, and conversely, the side away from the center line CL is an outside.
  • the vertical direction, the left and right direction, and the front and back direction are determined based on the state in which the devices and parts are mounted on the ship 1.
  • FIGS. 1A and 1B are schematic views showing the entire configuration of a ship according to a first embodiment of the present invention
  • FIG. 1A is a side view
  • FIG. 1B is a bottom view. It is a figure showing a figure collectively.
  • the boat 1 includes a hull 10 which is a main body of the boat 1, a control room 20 in which various controls of the boat 1 are performed, and a hull friction resistance reduction device 30.
  • the ship 1 is not limited to this, it is a flat bottom ship in which the bottom 13 is flat.
  • one or more (one in this embodiment) propellers 16 for propelling the hull 10 are installed at the rear portion (closer to the stern 12), and further, behind the propellers 16 the traveling direction of the hull 10 is A rudder 17 to be determined is installed.
  • the rotational center C0 of the propeller 16 and the rudder 17 are both positioned on the center line CL in plan view.
  • the hull frictional resistance reduction device 30 ejects air from the bottom 13 to generate a bubble flow (hereinafter, also referred to as a bubble) 100 at the boundary between the bottom 13 and water, and the bubble flow 100 covers the bubble layer covering the bottom 13. By forming it, the frictional resistance of the hull 1 to be navigated is reduced.
  • FIG. 2 is a schematic view of the configuration of the hull frictional resistance reduction device 30, including a block diagram showing a control configuration of the control device 50.
  • the hull frictional resistance reduction device 30 includes an air supply source 31 configured by, for example, a blower or a compressor, an air supply passage 32 connected at one end to the air supply source 31, and an air supply.
  • a flow control valve 33 installed in the passage 32, a plurality (six in this case) of branch supply pipes 34 branched from the other end side of the air supply passage 32, and a shut valve installed in each branch supply pipe 34 Mechanism) 35, air bubble jet parts 36C, 36L, 36R connected to the branch ends of the respective branch supply pipes 34, a monitoring camera (imaging apparatus) 40 for monitoring the propeller 16, and a control unit arranged in the control room 20 And 50.
  • bubble ejection part 36C, 36L, 36R it describes with the foam
  • Each bubble spouting portion 36 is disposed at the front of the bottom 13.
  • the bubble jetting portion 36C is disposed on the center line CL
  • the bubble jetting portion 36L is disposed on the port 14 side
  • the bubble jetting portion 36R is disposed on the starboard 15 side.
  • the 36 ⁇ / b> R is disposed over substantially the entire width of the bottom 13.
  • the bubble ejection portion 36C is disposed at the frontmost position, and the bubble ejection portions 36L and 36R are disposed at the same position behind the bubble ejection portion 36C.
  • the bubble jetting parts 36C, 36L, 36R may be arranged side by side.
  • the bubble jetting portion 36C is located in front of and in front of the propeller 16. Being positioned forward of the front of the propeller 16, the bubbles 100 jetted from the bubble jet portion 36 C move relatively to the rear of the hull 1 and flow into the propeller 16 as the boat 1 runs. The position of the part 36 is said.
  • the respective center lines in the ship width direction Y of the bubble jet portion 36C and the propeller 16 coincide with the center line CL of the hull 1 in plan view (that is, the bubble jet portion 36C Centerline in the widthwise direction Y and the centerline in the widthwise direction Y of the propeller 16), the centerline in the widthwise direction Y of the air bubble jet portion 36C, and the widthwise direction Y of the propeller 16 It is not essential to match the centerline.
  • the bubble jet portion 36C is positioned forward of the front of the propeller 16 is that the bubble jet portion 36C is positioned so that at least a part is included in the upstream region A of the propeller 16 as shown in FIG. It can be defined that the bubble jetting part 36C is positioned so that at least a part thereof is present on the center line of the propeller 16, but it is not limited thereto.
  • the bubble jetting portion 36C is configured by a plurality of (here, two) bubble jetting units 36C-1 and 36C-2 arranged in parallel along the width direction Y of the vessel.
  • the bubble jetting portion 36L is configured of a plurality (two in this case) of bubble jetting units 36L-1 and 36L-2 arranged in parallel along the width direction Y
  • the bubble jetting portion 36R is a width of the ship.
  • a plurality of (two in this case) bubble ejection units 36R-1 and 36R-2 are arranged in parallel along the direction Y.
  • the bubble ejection units 36C-1 to 36R-2 will be referred to as bubble ejection units 36-u when not distinguished.
  • Each bubble jetting unit 36-u is composed of an air chamber 36 a disposed inside the bottom 13 and a plurality of jet holes 36 b penetrating the bottom 13.
  • the air chamber 36a is in the form of a rectangular box having an open bottom and is disposed inside the bottom 13 with its longitudinal direction oriented in the width direction Y.
  • the ejection holes 36b are surrounded by the air chamber 36a in the front, rear, left, right, and upper sides.
  • the opening degree of the flow rate adjustment valve 33 is controlled by the controller 50. By controlling the opening degree of the flow rate adjustment valve 33, the bubble ejection amount from each of the bubble ejection portions 36C, 36L, 36R is simultaneously controlled.
  • a branch supply pipe 34 is connected to each bubble injection unit 36-u, and a shut valve 35 is installed in each branch supply pipe 34.
  • the shut valve 35 is an on / off valve, and is controlled by the controller 50 to be fully open or fully closed. That is, when the shutoff valve 35 is controlled to be fully opened by the control device 50, air bubbles are ejected from the corresponding bubble ejection unit 36-u, and when the shutoff valve 35 is controlled to be fully closed by the control device 50. The ejection of air bubbles from the corresponding air bubble ejection unit 36-u is stopped.
  • the shut valve 35 also functions as a check valve that prevents seawater from flowing back from the air bubble jet unit 36-u in the stopped state and entering the branch supply pipe 34.
  • the surveillance camera 40 is installed at the rear of the bottom 13 of the boat and is submerged while traveling to monitor the inflow of air bubbles into the propeller 16.
  • the surveillance cameras 40 are disposed in a pair diagonally in front of the propellers 16 so as to sandwich the propellers 16 from both outer sides, and form a pair to image the entire propellers 16.
  • the surveillance camera 40 can image the whole propeller 16, the installation location and number are not limited to said thing.
  • FIGS. 3A and 3B are schematic diagrams for explaining the determination method by the determination unit 51 according to the first embodiment of the present invention, and are diagrams showing an example of an image of the propeller 16 captured by the monitoring camera 40. is there.
  • the surveillance camera 40 images the propeller 16 from diagonally forward, in fact, the image imaged by the surveillance camera 40 becomes a perspective image of the propeller 16 and a part of the hull 1 is reflected, but In 3A and 3B, for convenience, the front image of the propeller 16 is used and the hull 1 is omitted.
  • control device 50 controls the operation of the shutoff valve 35 based on the determination result of the determination unit 51 that determines whether air bubbles are flowing into the propeller 16 and the determination unit 51.
  • a control unit (adjustment mechanism control unit) 52 controls the operation of the shutoff valve 35 based on the determination result of the determination unit 51 that determines whether air bubbles are flowing into the propeller 16 and the determination unit 51.
  • the determination unit 51 acquires image information captured by each monitoring camera 40 as exemplified in FIGS. 3A and 3B, analyzes the image information, and binarizes the image based on, for example, lightness.
  • the bubble 100 is identified, and it is determined whether the bubble 100 flows into the bubble detection area R.
  • the air bubble detection area R is an area defined as a space between air bubble detection lines L1 and L2 set above and below the propeller 16.
  • the air bubble detection lines L1 and L2 are defined as positions separated vertically from the rotation center C0 of the propeller 16 by the propeller radius r. As described above, although front images of the propellers 16 are described for convenience in FIGS.
  • the determination unit 51 analyzes the image information of both monitoring cameras 40, and the image information of any of the monitoring cameras 40 does not flow into the bubble detection area R as shown in FIG. 3A. When it is shown, it is determined that the bubble flow 100 has not flowed into the propeller 16, and the image information of one of the monitoring cameras 40 indicates that the bubble is flowing into the bubble detection area R as shown in FIG. 3B. When shown, it is determined that the bubbly flow 100 is flowing into the propeller 16.
  • the determination unit 51 determines that the bubble stream 100 does not flow into the propeller 16 when the air bubbles do not flow into the air bubble detection region R, and that the air bubbles flow into the air bubble detection region R When this is the case, it is determined that the bubble stream 100 is flowing into the propeller 16 or the bubble stream 100 may be flowing into the propeller 16.
  • the bubble flow 100 is flowing into the propeller 16 by the determination unit 51 based on the image information of the monitoring camera 40, so the inflow detection means of the present invention is configured by the monitoring camera 40 and the determination unit 51. Further, since detecting the inflow of the bubble flow 100 is to acquire bubble inflow information indicating that the bubble flow 100 has flowed in, the inflow information acquiring means of the present invention is obtained by the monitoring camera 40 and the determination unit 51. Is configured.
  • the shut valve control unit 52 fully opens all the shut valves 35 when acquiring information indicating that the bubble flow 100 has not flowed into the propeller 16 from the determination unit 51 (hereinafter, also referred to as a normal time). That is, the bubble jetting parts 36C, 36L, and 36R are brought into the operating state.
  • the shutoff valve control unit 52 obtains information (bubble inflow information) indicating that the bubble flow 100 is flowing into the propeller 16 from the determination unit 51, the bubble injection unit 36C located in front of the propeller 16
  • the shutoff valve 35 of the branch supply pipe 34 connected to (the bubble jetting unit 36C-1, 36C-2) is fully closed, and the jetting of the bubble 100 from the bubble jetting unit 36C is stopped (in other words, the bubble jetting unit 36C
  • the amount of bubbles from the air bubbles 100 is reduced than usual. That is, the bubble ejection part 36C is brought into the stop state.
  • the determination unit 51 determines whether the bubble flow 100 has flowed into the propeller 16 based on the image information captured by the monitoring camera 40 A determination is made, and the determination result is output to the shutoff valve control unit 52.
  • the shut valve control unit 52 fully opens all the shut valves 35, as shown in FIG. 1B. All bubble injection units 36C-1 to 36R-2 are operated. Thereby, most of the area of the bottom 1 can be covered by the air bubbles 100.
  • the shut valve control unit 52 when the determination result of the determination unit 51 is the determination that the bubble flow 100 is flowing into the propeller 16, the shut valve control unit 52, as shown in FIG.
  • the shut valve 35 provided for the air bubble ejection units 36C-1 and 36C-2 located forward is fully closed, and the other air bubble ejection units 36L-1, 36L-2 and 36R-1 and 36R-2 are closed.
  • the shut valve 35 provided is fully opened.
  • All or most of the air bubbles 100 flowing into the propeller 16 are air bubbles ejected from air bubble ejection units 36C-1 and 36C-2 disposed in front of the propeller 16. Therefore, the shutoff valve 35 provided for the bubble jetting units 36C-1 and 36C-2 is fully closed to stop the bubble jetting units 36C-1 and 36C-2, whereby the inflow of the bubbles 100 to the propeller 16 is caused. Can be suppressed. As a result, it is possible to suppress a decrease in propulsive force due to the inflow of the air bubbles 100 into the propeller 16, an increase in ship vibration due to the propeller excitation force, and an increase in erosion risk.
  • the bubble jetting units 36L-1, 36L-2, 36R-1, and 36R-2 are operated so that the bubbles 100 do not flow into the propeller 16, many regions of the bottom 1 can be covered with the bubbles 100. Therefore, it is possible to reduce the frictional resistance of the hull 1 while suppressing the risk due to the inflow of the air bubbles 100 into the propeller 16 particularly at the time of high speed running where the air bubbles 100 easily flow into the propeller 16.
  • FIGS. 4A, 4B, 5A and 5B A hull friction resistance reduction device and a ship as a second embodiment of the present invention will be described with reference to FIGS. 4A, 4B, 5A and 5B.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • 4A and 4B are schematic views showing the configuration of the main part of a ship according to a second embodiment of the present invention, FIG. 4A is a side view of the rear of the ship, and FIG. 4B is a rear view (the rudder 17 is omitted).
  • FIG. 5A and FIG. 5B are schematic diagrams for explaining the determination method by the determination unit according to the second embodiment of the present invention, showing an example of an image of a propeller captured from the side by the monitoring camera. is there.
  • the hull friction resistance reduction device and the ship of the present embodiment are different from the first embodiment in the arrangement of the monitoring camera 40.
  • the monitoring cameras 40 are arranged in a pair on the outer sides of the propeller 16 in the boat width direction Y.
  • the monitoring camera 40 is disposed just beside the propeller 16 (that is, at the same position in the longitudinal direction X), but if it is outside the propeller 16 in the boat width direction Y, the front or rear It may be located at
  • Each surveillance camera 40 is supported by a pair of brackets (support members) 40 a depending from the outer edge of the lower surface of the stern 12. If it is possible to secure the attachment point to the hull 1, each monitoring camera 40 may be directly attached to the hull 1 respectively.
  • the surveillance camera 40 Since the surveillance camera 40 is disposed in proximity to the propeller 16, particularly in the submerged state while traveling, particularly when the bubble flow 100 flows into the propeller 16 (that is, when imaging by the surveillance camera 40 is most needed) It is conceivable that the bubble flow 100 flows into the monitoring camera 40 as well. In such a case, there is a concern that the surveillance camera 40 itself may be in the bubble flow 100, and the propeller 16 may not be imaged as clearly as image analysis is disturbed by the bubble flow 100. Therefore, by arranging the monitoring camera 40 on the outer side in the width direction Y of the propeller 16, the monitoring camera 40 is removed from the traveling path of the bubble flow 100 flowing into the propeller 16.
  • positioning the surveillance camera 40 to the outer side of the propeller 16 it installs in the both sides of the bubble injection part 36C.
  • the monitoring camera 40 it is preferable to arrange the monitoring camera 40 at the outer edge of the hull 1 as in the present embodiment so as to be out of the downstream region of all the bubble jetting portions 36 including the bubble jetting portions 36L and 36R.
  • the image information as shown in FIGS. 5A and 5B captured from the side by the monitoring camera 40 is image-analyzed by the determination unit 51 (see FIG. 2) as in the first embodiment. That is, the determination unit 51 analyzes the image information of both monitoring cameras 40, and as for the image information of any monitoring camera 40, as shown in FIG. 5A, when the air bubble 100 does not flow into the air bubble detection area R, the propeller When it is determined that the bubble flow 100 has not flowed into 16, and the image information of any one of the monitoring cameras 40 shows that the bubble is flowing into the bubble detection area R, as shown in FIG. It is determined that the stream 100 is flowing. Since the other configuration is the same as that of the first embodiment, the description will be omitted.
  • FIGS. 6A, 6B, 7, 8A and 8B A hull friction resistance reduction device and a ship according to a third embodiment of the present invention will be described with reference to FIGS. 6A, 6B, 7, 8A and 8B.
  • symbol is attached
  • 6A and 6B are schematic views showing the configuration of the main part of a ship according to a third embodiment of the present invention, FIG. 6A is a side view of the rear of the ship, and FIG. Is omitted).
  • FIG. 7 is a schematic view of a hull friction resistance reduction device 30A according to a third embodiment of the present invention, including a block diagram showing a control configuration of the control device 50A.
  • FIG. 8A, 8B, 8C and 8D are schematic views for explaining the determination method by the determination unit according to the third embodiment of the present invention, and FIG. 8A shows an example of pressure fluctuation above the propeller FIG. 8B, FIG. 8C and FIG. 8D are diagrams showing an example of the frequency spectrum of the fluctuating pressure above the propeller.
  • the hull friction resistance reduction device 30A and the ship 1A of the present embodiment use a pressure sensor (vibration detection means) 41 instead of the monitoring camera 40 for the hull friction resistance reduction device 30 and the ship 1 of the first embodiment. Then, the inflow of the bubbly flow 100 to the propeller 16 is detected. That is, while the inflow information acquisition means and the inflow detection means of the present invention are configured by the monitoring camera 40 and the determination section 51 in the first embodiment, the pressure sensor 41 and the determination section 51A are the present invention.
  • the pressure sensor 41 is installed vertically above the propeller 16 in the boat 1A of the present embodiment.
  • the pressure sensor 41 is inserted and fixed in a mounting hole formed on the bottom wall of the stern 12, and the detection end 411 is exposed to the outside of the boat to face above the propeller 16.
  • the hull frictional resistance reduction device 30A includes the air supply source 31, the air supply passage 32, the flow rate adjustment valve 33, the branch supply pipe 34, the shut valve 35, and the bubble jetting parts 36C and 36L. 36R, the pressure sensor 41, and a control device 50A disposed in the control room 20 [see FIG. 1A].
  • the control device 50A controls the operation of the shutoff valve 35 based on the determination result of the determination unit 51A that determines whether air bubbles are flowing into the propeller 16 based on the detection result of the pressure sensor 41 and the determination unit 51A. And a shut valve control unit 52A.
  • the determination unit 51A obtains the pressure P above the propeller 16 at a predetermined cycle from the pressure sensor 41, and grasps time-series data Pp in which the pressure P and the time t are associated as shown in FIG. . Then, the determination unit 51A periodically acquires the frequency spectrum of the fluctuation pressure ⁇ P as shown in FIGS. 8B, 8C, and 8D by performing FFT analysis on the time-series data.
  • FIGS. 8B, 8C and 8D The fluctuating pressure ⁇ P is correlated with the vibration, and the vibration becomes large as the fluctuating pressure ⁇ P is large. Therefore, the vertical axis in FIGS. 8B, 8C and 8D can be considered as the vibration.
  • FIG. 8B shows the case where the ship frictional resistance reduction device 30A is stopped
  • FIG. 8C shows the case where the ship frictional resistance reduction device 30A is in operation but the bubbly flow 100 does not flow into the propeller 16
  • the bubbly flow 100 does not exist around the propeller.
  • the NZ frequency F1 defined by the rotational frequency N and the number of blades Z of the propeller 16 and the high-order components F2, F3 and F4 of the NZ frequency F1
  • peak values ⁇ P1, ⁇ P2 and ⁇ P3 of the fluctuation pressure ⁇ P respectively.
  • ⁇ P4 has occurred.
  • the high-order component F2 is a frequency twice as high as the NZ frequency F1
  • the high-order component F3 is a frequency three times as high as the NZ frequency F1
  • the high-order component F4 is a frequency four times as high as the NZ frequency F1.
  • the peak value ⁇ P1 at the NZ frequency F1 indicates the highest fluctuation pressure.
  • the bubbly flow 100 between the propeller 16 and the bottom 13 directly above and near the top of the propeller 16 functions as a damper, and the peak values ⁇ P2, ⁇ P3, ⁇ P4 of the high-order components F2, F3, F4 of the NZ frequency F1. Decreases, and only the peak value ⁇ P1 of the NZ frequency F1 remains at the same level as the peak value ⁇ P1 in FIG. 8B.
  • the peak value .DELTA.P1 at the NZ frequency F1 is shown in FIG.
  • the peak value ⁇ P1 of the example is increased.
  • the peak values ⁇ P2, ⁇ P3 and ⁇ P4 of the high-order components F2, F3 and F4 of the NZ frequency F1 are the example shown in FIG. 8C (the ship frictional resistance reduction device 30A is operating, but the bubble flow 100 corresponds to the propeller 16).
  • the damper function of the bubbly flow 100 dampens the same as in the example of not flowing).
  • the alarm line La set in advance is stored in the determination unit 51A.
  • the alarm line La is a level at which the bubble flow 100 is likely to flow into the propeller 16 when the fluctuation pressure ⁇ P exceeds this level. Therefore, when the fluctuation pressure ⁇ P is equal to or less than the alarm line La as shown in FIG. 8C, the determination unit 51A judges that the bubble flow 100 does not flow into the propeller 16 and changes the fluctuation pressure ⁇ P as shown in FIG. 8D. When it exceeds the alarm line La, it is determined that the bubbly flow 100 is flowing into the propeller 16.
  • the shut valve control unit (adjustment mechanism control unit) 52A is configured in the same manner as the shut valve control unit 52 of the first embodiment, and the information that the bubble flow 100 does not flow into the propeller 16 is determined from the determination unit 51A. When acquired, all the shut valves 35 are controlled to be fully open, and when information indicating that the bubble flow 100 is flowing into the propeller 16 is acquired from the determination unit 51A, the bubble ejection portion 36C located in front of the propeller 16 in front And shut the shutoff valve 35 of the branch supply pipe 34 connected thereto. Since the other configuration is the same as that of the first embodiment, the description will be omitted.
  • the pressure sensor 41 directly detects the vibration caused by the inflow of the air bubble 100 into the propeller 16 as the fluctuation pressure ⁇ P.
  • the inflow of the bubble flow 100 to the propeller 16 can be detected more accurately than in the case where the monitoring camera 40 is used as in the first and second embodiments. That is, in the detection using the monitoring camera 40, when the area around the propeller 16 is dark as in the nighttime or when the transparency of the water is low, the identification accuracy of the bubble flow 100 decreases and the bubble flow 100 flows into the propeller 16 The detection accuracy of H may also decrease. However, in the case of detection based on the fluctuating pressure ⁇ P, it is possible to accurately detect the inflow of the bubble flow 100 to the propeller 16 even in such a case.
  • the pressure sensor 41 installed vertically above the propeller 16 was used as the vibration detection means, but instead of the pressure sensor 41, an acceleration sensor installed vertically above the propeller 16 is used as the vibration detection means It is also good.
  • the acceleration sensor is used as the vibration detection means, since the vibration of the hull 1 is detected, it is not necessary to expose the detection end to the outside. Therefore, as in the case of using the pressure sensor 41, it is not necessary to process the mounting hole on the hull, and the mounting becomes easy.
  • the location where the pressure sensor 41 is installed does not have to be strictly above the propeller 16 and vertically out of the vertical direction from the vertical upper side of the propeller 16 within a range where the inflow of the bubble flow 100 to the propeller 16 can be detected as a fluctuating pressure. Good.
  • FIG. 9 is a schematic rear view showing the main configuration of a boat 1B according to a fourth embodiment of the present invention (the rudder 17 is omitted).
  • FIG. 10 is a schematic view of a hull friction resistance reduction device 30B according to a fourth embodiment of the present invention, including a block diagram showing a control configuration of the control device 50B.
  • 11A and 11B are schematic diagrams for explaining the determination method by the determination unit 51B according to the fourth embodiment of the present invention, in which coordinates in which the horizontal axis is the ship width direction Y and the vertical axis is the fluctuation pressure ⁇ P It is a figure which shows an example of the fluctuation pressure distribution above propeller 16 above. On the coordinates, the propeller 16 and the bubble jetting parts 36C, 36R, 36L are virtually shown with the position in the width direction Y aligned with the horizontal axis.
  • the hull friction resistance reduction device 30B and the ship 1B of the present embodiment are propellers using a plurality of pressure sensors (vibration detection means) 41a to 41g with respect to the hull friction resistance reduction device 30A and the ship 1A of the third embodiment.
  • the inflow of the bubbly flow 100 to 16 is detected. That is, while in the third embodiment the inflow information acquisition means and the inflow detection means of the present invention are configured by one pressure sensor 41 and the determination unit 51A, in the present embodiment, determination is made with a plurality of pressure sensors 41a to 41g.
  • the inflow information acquisition means and the inflow detection means of the present invention are configured by the part 51B.
  • the pressure sensors 41a to 41g respectively installed vertically above the propeller 16 in side view
  • a plurality of sets are installed along the width direction Y of the ship.
  • pressure sensor pressure sensors 41a to 41g are juxtaposed over substantially the entire width of the hull 10 including immediately above (vertically above) the propeller 16.
  • the hull frictional resistance reduction device 30B includes the air supply source 31, the air supply passage 32, the flow rate adjustment valve 33, the branch supply pipe 34, the shut valve 35, and the bubble jetting parts 36C and 36L. , 36R, the plurality of pressure sensors 41a to 41g, and a control device 50B disposed in the control room 20 (see FIG. 1A).
  • the control device 50B determines whether or not air bubbles are flowing into the propeller 16 based on the detection results of the plurality of pressure sensors 41a to 41g, and the control unit 50B determines the shut valve 35 based on the determination results of the determination unit 51B. And a shutoff valve control unit (adjustment mechanism control unit) 52B that controls the operation.
  • the determination unit 51B obtains the pressure P from each of the pressure sensors 41a to 41g at a predetermined cycle, and obtains the maximum peak value ⁇ P7 to ⁇ P13 of the fluctuation pressure ⁇ P for each of the pressure sensors 41a to 41g.
  • the maximum peak value refers to the maximum peak value among the peak values in the frequency spectrum. For example, in the examples shown in FIGS.
  • the peak value ⁇ P1 is the maximum peak It becomes a value. Then, from the positional information on the width direction Y of each pressure sensor 41a to 41g and the maximum peak values ⁇ P7 to ⁇ P13, the determination unit 51B determines the plurality of maximum peaks as shown in FIGS. 11A and 11B. The peak distribution Wp in the width direction Y is obtained by complementing the values ⁇ P7 to ⁇ P13. Then, the determination unit 51B sets the alarm region Ra [shown hatched in FIGS. 11A and 11B] exceeding the alarm line La of the peak distribution Wp as the region where the bubble flow 100 is flowing into the propeller 16 and the shut valve. It outputs to the control part 52B.
  • the predetermined shut valve 35 is fully closed to stop the bubble jetting unit 36-u in front of the alarm area Ra, and the other bubble jetting units 36-u are operated.
  • the ejection of the air bubble 100 from the air bubble ejection units 36C-1 and 36C-2 located in front of the alarm area Ra that is, in front of the propeller 16 where the air bubbles 100 flowed
  • Bubbles 100 are jetted from the other bubble jetting units 36R-1, 36R-2, 36L-1, and 36L-2.
  • FIG. 11A the ejection of the air bubble 100 from the air bubble ejection units 36C-1 and 36C-2 located in front of the alarm area Ra (that is, in front of the propeller 16 where the air bubbles 100 flowed) is stopped Bubbles 100 are jetted from the other bubble jetting units 36R-1, 36R-2, 36L-1, and 36L-2.
  • the bubble ejection unit 36C-2 located in front of the alarm area Ra ie, in front of the propeller 16 into which the air bubbles 100 flow
  • the other bubble ejection units 36R-1 and 36R -2, 36C-1, 36L-1, 36L-2 are operated.
  • the determination unit 51B outputs the pressure sensors 41a to 41g whose maximum peak values ⁇ P7 to ⁇ P13 of the fluctuation pressure ⁇ P exceed the alarm line La to the shut valve control unit 52B without using the peak distribution Wp or the alarm area Ra.
  • the shut valve control unit 52B may stop the air bubble ejection unit 36-u in front of and in front of the pressure sensors 41a to 41g exceeding the alarm line La.
  • the air bubble ejection unit 36-u located in front of the alarm area Ra in detail is the air bubble ejection unit 36-u located in front of the alarm area Ra in plan view. This refers to a bubble jetting unit 36-u at least a part of which overlaps with the alarm area Ra with respect to Y.
  • the air bubble ejection unit 36-u located in front of the pressure sensors 41a to 41g exceeding the alarm line La specifically refers to air bubbles located in front of the pressure sensors 41a to 41g exceeding the alarm line La in plan view.
  • the ejection unit 36-u refers to a bubble ejection unit 36-u at least partially overlapping in the width direction Y with the pressure sensors 41a to 41g crossing the alarm line La.
  • an acceleration sensor may be used instead of the pressure sensor. Since the other configuration is the same as that of the third embodiment, the description will be omitted.
  • the determination unit 51B determines the inflow of the bubble flow 100 based on the maximum peak value obtained from the detection results of the pressure sensors 41c, 41d, and 41e, and outputs the determination result to the shutoff valve control unit 52B. .
  • the determination unit 51B outputs, to the shutoff valve control unit 52B, the pressure sensors 41c to 41e whose maximum peak value of the fluctuation pressure ⁇ P exceeds the alarm line La.
  • the operator may be able to view an image captured by the monitoring camera 40 by the monitor installed in the control room 20, and further, control the imaging direction of the monitoring camera 40 The adjustment may be made from the room 20 by remote control.
  • the operator who was monitoring by the monitor performs “determination that the bubble flow 100 has flowed into the propeller 16 or the bubble flow 100 may have flow into the propeller 16” (hereinafter referred to as bubble flow determination)
  • a manual switch may be provided to stop the bubble jetting unit 36 by the manual operation of the operator.
  • the manual switch corresponds to the inflow information acquisition means of the present invention.
  • the shut valve 35 is fully closed as one mode of reducing the ejection amount of the bubble 100 from the bubble ejection portion 36C compared to the normal time when the judging portions 51, 51A, 51B make the bubble inflow judgment. And the ejection of the air bubble 100 by the air bubble ejection portion 36C is stopped (in other words, the adjustment mechanism of the present invention is configured by the shut valve 35), but the ejection amount of the air bubble 100 from the The aspect to which it is made to be not limited to this.
  • the adjustment mechanism of the present invention is replaced by the shutoff valve 35 and constituted by a control valve capable of adjusting the opening degree continuously or in stages, the judgment units 51, 51A, 51B make bubble inflow judgment.
  • the opening degree of the control valve may be set smaller than that at the normal time (when the judgment units 51, 51A, 51B do not make the bubble inflow judgment). In this case, even if the determination units 51, 51A, and 51B still make the bubble inflow determination even after the opening degree of the control valve is narrowed, the opening degree of the control valve may be further narrowed.
  • the ejection stop or the ejection amount reduction of the air bubble 100 of the air bubble injection portion 36C is performed, if the judging portions 51, 51A, 51B still make the air bubble inflow judgment (inflow of the air bubble 100 into the propeller 16 is eliminated
  • the ejection stop or the ejection amount reduction of the bubble 100 may be additionally performed for at least one of the bubble ejection portion 36L and the bubble ejection portion 36R.
  • the order of the bubble ejection portion 36C, the bubble ejection portion 36L, and the bubble ejection portion 36R may be sequentially added to the bubble ejection portion 36L in this order).
  • FIGS. 12A and 12B are schematic bottom views showing the configuration of the ship of the present modification.
  • the same components as those in each embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the present invention is not limited to this, for example, the center line CL as shown in FIGS. 12A and 12B.
  • the propellers 16L and 16R can be used on the vessels 1C and 1D provided on both sides of the propellers 16L and 16R, respectively. In the vessel 1C shown in FIG.
  • the rear portion of the bottom 13 is divided into two rear portions 13L and 13R, and propellers 16L and 16R are respectively installed on these rear portions 13L and 13R.
  • the propellers 16L and 16R are installed so as to project rearward from the left and right sides (both sides in the width direction) of the rear of the single bottom 13.
  • detection of inflow of bubble flow (here, detection by inflow information acquisition means using the monitoring camera 40 is not limited thereto, and pressure sensors and acceleration sensors are also used.
  • Control of the air bubble jet parts 36C, 36L, 36R is performed individually for each of the propellers 16L, 16R, for example, when the inflow of the bubble flow is detected for the left propeller 16L,
  • the ejection stop (or the ejection amount decrease) of the air bubble 100 is performed by the air bubble ejection unit 36L located in the front on the front, and the inflow of the air bubble flow is detected for the propeller 16R on the right
  • the ejection stop (or the ejection amount reduction) of the bubble 100 by a certain bubble ejection unit 36R is performed.
  • bubble flow inflow detection means are provided for each propeller 16, and air bubbles in the propeller 16 are detected by the bubble flow inflow detection means.
  • the ejection stop or the ejection amount decrease of the air bubble 100 by the air bubble ejection unit 36 located in front of the front of the propeller 16 where the inflow of air bubbles is detected may be performed.
  • FIGS. 13A and 13B are schematic bottom views showing the configuration of the stern side which is the main part of the ship of the present modification.
  • the same components as those in each embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the present invention is not limited to this, for example, the center line CL as shown in FIGS. 13A and 13B. It can also be used for ships 1E and 1F provided with a plurality of (two in this modification) propellers on the front (or on a plurality of lines along the center line CL).
  • a pod pusher 18 is provided at the rear of the propeller 16.
  • the pod propulsion unit 18 is provided with a propeller 18 a so as to face the front propeller 16, and the propeller 16 is driven by the built-in electric motor to generate propulsion.
  • the propeller 18 a of the pod propeller 18 is disposed on the center line CL together with the propeller 16.
  • propellers 16A and 16B are provided on the center line CL back and forth, and the propellers 16A and 16B are rotationally driven in opposite directions from each other by a drive shaft consisting of an inner shaft and an outer shaft. .
  • detection of inflow of bubble flow (here, detection by inflow information acquiring means using the monitoring camera 40 is not limited to this, and a pressure sensor or an acceleration sensor is also used) Is performed for the forward propellers 16 and 16A, but may be performed for at least one of the two propellers so that detection of inflow of bubble flow is performed for the rearward propellers 16B and 18a. You may
  • the bubble jetting units 36C-1 and 36C-2 in front of the front of the propeller 16 are integrally controlled based on the image information acquired by the two monitoring cameras 40.
  • the bubble jetting units 36C-1 and 36C-2 may be separately controlled for each piece of image information acquired by each monitoring camera 40.
  • the air bubble ejection unit 36 C-1 on the right eye 15 side is stopped and the propeller 16 is In the case where the inflow of the air bubble 100 into the propeller 16 is detected based on the image information of the monitoring camera 40 on the left side 14 side, the air bubble ejection unit 36C-2 on the left side 14 may be stopped.
  • the inflow of the air bubble 100 into the propeller 16 is detected based on the image information of the monitoring camera 40 on the starboard side 15, while the air bubble to the propeller 16 is detected based on the image information of the monitoring camera 40 on the port side 14
  • the air bubble ejection unit 36C-1 on the starboard 15 side is stopped, and the air bubble ejection unit 36C-2 on the port 14 side is operated.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Provided are a hull frictional resistance reduction device and a ship such that the frictional resistance of a hull can be effectively reduced while risks associated with bubbles flowing into a propeller are mitigated. This hull frictional resistance reduction device comprises: a plurality of bubble jetting units (36C, 36R, 36L) which are provided in the width direction forward of a propeller (16); an adjusting mechanism (35) which adjusts the amount of bubbles to be jetted from the bubble jetting units (36C, 36R, 36L); a control device (50); and a inflow information acquisition means for acquiring information relating to flow of bubbles (100) into the propeller (16). The control device (50) has an adjusting mechanism control unit (52), and upon acquiring the bubble inflow information from the inflow information acquisition means, the adjusting mechanism control unit (52) controls the operation of the adjusting mechanism (35) in such a manner that the amount of the bubbles (100) to be jetted to at least the bubble jetting unit (36C) disposed straight in front of the propeller (16) is reduced.

Description

船体摩擦抵抗低減装置及び船舶Hull friction drag reduction device and ship
 本発明は、船底を気泡流で覆うことにより船体摩擦抵抗を低減する船体摩擦抵抗低減装置及びそれを備えた船舶に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a hull friction resistance reduction device that reduces hull friction resistance by covering the bottom of the hull with bubbly flow, and a vessel including the same.
 航行時に、船首側から船尾側に向けて気泡流を発生させて、船底を気泡流で覆うことにより船体摩擦抵抗を低減する技術が知られている。
 このような技術として、例えば特許文献1に開示された技術がある。特許文献1に開示された技術では、航行状況判断部(100)及び海象判断部(120)を備え、船舶の現況や海象に基づき船底(3)への気泡の噴出に関する制御を行い、例えば、波高が所定値以上になった場合には気泡の噴出を停止するようにしている(段落[0079]-[0083],[0097]など参照。括弧内の符号は特許文献1で使用されている符号を示す)。
There is known a technique for reducing the frictional resistance of the hull by generating a bubbly flow from the bow side to the stern side during sailing and covering the bottom of the vessel with the bubbly flow.
As such a technique, there is a technique disclosed in Patent Document 1, for example. The technology disclosed in Patent Document 1 includes a navigation condition determination unit (100) and a sea condition determination unit (120), and performs control on the ejection of air bubbles to the bottom (3) based on the current condition of the ship and the sea condition, for example When the wave height becomes equal to or more than a predetermined value, the ejection of air bubbles is stopped (see paragraphs [0079]-[0083], [0097], etc. Reference numerals in parentheses are used in Patent Document 1) Show the sign).
特開2009-248611号公報JP, 2009-248611, A
 しかしながら、気泡流により船体摩擦抵抗を低減する技術では、気泡流の一部が、特に高速航走時に、船尾のプロペラに流入してしまうことがある。気泡がプロペラに流れこんでしまうと、プロペラの推進力の低下、プロペラ変動圧の増大に起因したプロペラ起振力による船体振動の増大、プロペラのエロージョンリスクの増大を招いてしまう。
 特許文献1に開示された技術では、種々のセンサを設けて、これらのセンサの検出結果に基づいて航行状況や海象に関する判断を行い、この判断に基づいて気泡の噴出に関する制御を行っているものの、プロペラへの気泡の流入を課題として認識すらしておらず、当該課題を解決しうるものではない。
However, in the technology of reducing the frictional resistance of the hull by the bubbly flow, a portion of the bubbly flow may flow into the stern propeller, particularly when traveling at high speed. If air bubbles flow into the propeller, the propeller's propulsive force is reduced, the vibration of the hull is increased due to the propeller's oscillating force caused by the increase in propeller fluctuating pressure, and the propeller's erosion risk is increased.
According to the technology disclosed in Patent Document 1, various sensors are provided to judge the navigation condition and the sea state based on the detection results of these sensors, and control on the ejection of air bubbles is performed based on this judgment. And the inflow of air bubbles into the propeller is not recognized as a problem, and the problem can not be solved.
 本発明は、上記のような課題に鑑み創案されたもので、プロペラへの気泡の流入によるリスクを抑制しつつ、船体の摩擦抵抗を効果的に低減することができるようにした、船体摩擦抵抗低減装置及び船舶を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention was conceived in view of the above problems, and it is possible to effectively reduce the frictional resistance of the hull while suppressing the risk due to the inflow of air bubbles into the propeller. It aims at providing a reduction device and a vessel.
 (1)上記の目的を達成するために、本発明の船体摩擦抵抗低減装置は、船底においてプロペラよりも前方に船体幅方向に沿って複数設けられ、気泡を噴出する気泡噴出ユニットと、前記気泡噴出ユニットの気泡噴出量を調整する調整機構と、制御装置とを備えた、船体摩擦抵抗低減装置であって、前記プロペラに前記気泡が流入したこと又は前記プロペラに前記気泡が流入するおそれがあることを示す気泡流入情報を取得する流入情報取得手段を備え、前記制御装置は、前記調整機構の作動を制御する調整機構制御部を有し、前記調整機構制御部は、前記流入情報取得手段から前記気泡流入情報を取得しない場合には、前記複数の気泡噴出ユニットのそれぞれから所定量の気泡が噴射されるように前記調整機構の作動を制御する一方、前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、少なくとも、前記プロペラの正面前方に配置された気泡噴出ユニットについて、前記気泡の噴出量を前記所定量よりも減少させるように前記調整機構の作動を制御することを特徴としている。 (1) In order to achieve the above object, a plurality of hull frictional resistance reduction devices according to the present invention are provided along the hull width direction ahead of the propellers at the bottom of the boat, and a bubble jetting unit that jets bubbles; It is a hull friction resistance reduction device provided with an adjustment mechanism which adjusts the amount of bubbles of a blowout unit, and a control device, and there is a possibility that the bubbles flow into the propeller or the bubbles flow into the propeller The inflow information acquiring means for acquiring air bubble inflow information indicating that, the control device has an adjusting mechanism control unit for controlling the operation of the adjusting mechanism, and the adjusting mechanism control unit is configured to receive the inflow information acquiring means When the air bubble inflow information is not acquired, the operation of the adjustment mechanism is controlled such that air bubbles of a predetermined amount are ejected from each of the plurality of air bubble ejection units, while When the air bubble inflow information is acquired from the inflow information acquiring means, at least the air bubble ejection unit disposed in front of the propeller in the plurality of air bubble ejection units has the predetermined amount of the air bubbles ejected. It is characterized in that the operation of the adjusting mechanism is controlled so as to be reduced more.
 ここで、プロペラの正面前方に配置された気泡噴出ユニットが複数ある場合には、プロペラの正面前方の気泡噴出ユニットを、一つでも気泡噴出ユニットについて気泡の噴出量を減少させれば、「少なくとも、プロペラの正面前方に配置された気泡噴出ユニットについて、気泡の噴出量を所定量よりも減少させる」ことに相当する。 Here, in the case where there are a plurality of bubble jetting units arranged in front of the propeller, if at least one bubble jetting unit in front of the propeller is reduced with respect to the bubble jetting unit, then In the case of the bubble jetting unit disposed in front of the propeller, the amount of the bubble jetting is reduced to be smaller than a predetermined amount.
 (2)前記流入情報取得手段は、前記プロペラへの前記気泡の流入を検出する流入検出手段であることが好ましい。 (2) Preferably, the inflow information acquisition means is an inflow detection means for detecting the inflow of the air bubbles into the propeller.
 (3)前記調整機構制御部は、前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、少なくとも、前記プロペラの正面前方に配置された気泡噴出ユニットについて、前記気泡の噴出を停止させることが好ましい。 (3) When the adjustment mechanism control unit acquires the bubble inflow information from the inflow information acquisition unit, at least the bubble ejection unit disposed in front of the propeller in the plurality of bubble ejection units. Preferably, the ejection of the air bubbles is stopped.
 (4)前記調整機構制御部は、前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、前記プロペラの正面前方の気泡噴出ユニットだけ、前記気泡の噴出量を前記所定量よりも減少させることが好ましい。 (4) When the adjustment mechanism control unit acquires the air bubble inflow information from the inflow information acquisition unit, only the air bubble ejection unit in front of the propeller in the plurality of air bubble ejection units is It is preferable to reduce the amount of ejection more than the predetermined amount.
 (5)前記流入検出手段は、前記プロペラを撮像する撮像装置と、前記制御装置に備えられ、前記撮像装置により撮像された画像情報に基づいて、前記プロペラへ前記気泡が流入しているか否かの判定を行う判定部とを備えることが好ましい。 (5) The inflow detection means is provided in the imaging device for imaging the propeller and the control device, and whether or not the air bubble is inflowing to the propeller based on the image information imaged by the imaging device It is preferable to include a determination unit that performs the determination of
 (6)前記撮像装置は、前記プロペラよりも前方において前記船底に直接取り付けられることが好ましい。 (6) It is preferable that the imaging device be directly attached to the bottom of the ship in front of the propeller.
 (7)前記撮像装置は、前記プロペラの真横に配置されることが好ましい。 (7) It is preferable that the imaging device be disposed just beside the propeller.
 (8)前記撮像装置は、前記プロペラを前記船体幅方向両側から挟むようにして一対に配置されることが好ましい。 (8) Preferably, the imaging devices are arranged in a pair so as to sandwich the propeller from both sides in the width direction of the hull.
 (9)前記流入検出手段は、前記プロペラの振動又は振動に相関するパラメータを検出する振動検出手段と、前記制御装置に備えられ、前記振動検出手段の検出情報に基づいて、前記プロペラへ前記気泡が流入しているか否かの判定を行う判定部とを備えることが好ましい。 (9) The inflow detection means includes vibration detection means for detecting vibration or vibration of the propeller, and the controller, and the air bubble is sent to the propeller based on detection information of the vibration detection means. It is preferable to include a determination unit that determines whether or not there is inflow.
 (10)前記振動検出手段が、前記船体幅方向に沿って複数設けられ、前記判定部は、前記複数の振動検出手段の各検出情報に基づいて前記判定を行うことが好ましい。 (10) Preferably, a plurality of the vibration detection means are provided along the hull width direction, and the determination unit performs the determination based on detection information of the plurality of vibration detection means.
 (11)前記複数の振動検出手段の内、前記判定部により、前記検出情報に基づいて前記プロペラへ前記気泡が流入していると判定された前記振動検出手段があった場合には、前記調整機構制御部は、少なくとも、前記気泡が流入していると判定された前記振動検出手段の前方の気泡噴出ユニットについて、前記気泡の噴出量を前記所定量よりも減少させることが好ましい。 (11) In the case where there is the vibration detection unit determined by the determination unit that the air bubble is flowing to the propeller based on the detection information, among the plurality of vibration detection units, the adjustment is performed. Preferably, the mechanism control unit reduces the amount of ejection of the air bubble to be smaller than the predetermined amount at least for the air bubble ejection unit in front of the vibration detection unit determined to have the air bubble flowing therein.
 (12)前記振動検出手段は、少なくとも検出端を、前記プロペラの上方において船外に露出させた圧力センサであることが好ましい。 (12) Preferably, the vibration detection means is a pressure sensor in which at least the detection end is exposed to the outside of the propeller above the propeller.
 (13)前記振動検出手段は、前記プロペラの上方において船内に配置された加速度センサであることが好ましい。 (13) Preferably, the vibration detection means is an acceleration sensor disposed in the ship above the propeller.
 (14)前記プロペラは、前記船体幅方向で中央に設けられており、前記正面前方の気泡噴出ユニットが、前記船体幅方向で中央に配置されることが好ましい。 (14) It is preferable that the propeller is provided at the center in the width direction of the hull, and the air bubble ejection unit in front of the front is disposed at the center in the width direction of the hull.
 (15)前記プロペラは、前記船体幅方向に沿って複数並設されており、前記複数のプロペラの正面前方には前記気泡噴出ユニットがそれぞれ配置され、前記複数のプロペラのそれぞれに前記流入情報取得手段が備えられることが好ましい。 (15) A plurality of the propellers are arranged in parallel along the hull width direction, the air bubble ejection units are respectively disposed in front of the plurality of propellers, and the inflow information is acquired for each of the plurality of propellers Preferably means are provided.
 (16)上記の目的を達成するために、本発明の船舶は、(1)~(15)の何れかに記載の船体摩擦抵抗低減装置を備えたことを特徴としている。 (16) In order to achieve the above object, a ship of the present invention is characterized by including the hull friction resistance reduction device according to any one of (1) to (15).
 本発明によれば、プロペラに気泡が流入したこと又はプロペラに気泡が流入するおそれがあることを示す気泡流入情報を取得しない場合には、船体幅方向に沿って設けられた複数の気泡噴出ユニットのそれぞれから所定量の気泡を噴射させる一方、気泡流入情報を取得した場合には、少なくとも、プロペラの正面前方に配置された気泡噴出ユニットについて、気泡の噴出量を減少させるので、プロペラへの気泡の流入によるリスクを抑制しつつ、船体の摩擦抵抗を低減することができる。 According to the present invention, in the case where bubble inflow information indicating that air bubbles have flowed into the propeller or air bubbles may have flowed into the propeller is not acquired, a plurality of bubble jetting units provided along the hull width direction In the case where bubble inflow information is acquired from at least a bubble blowing unit disposed forward of the front of the propeller, the bubble blowing amount is reduced, so that the bubbles to the propeller are reduced. The friction resistance of the hull can be reduced while suppressing the risk due to the inflow of water.
図1A及び図1Bは、本発明の第1実施形態としての船舶の全体構成を示す模式図であり、図1Aは側面図、図1Bは底面図である。1A and 1B are schematic views showing the entire structure of a ship according to a first embodiment of the present invention, FIG. 1A is a side view, and FIG. 1B is a bottom view. 図2は、本発明の第1実施形態の船体摩擦抵抗低減装置の構成を模式図である。FIG. 2 is a schematic view of the configuration of the hull friction resistance reduction device according to the first embodiment of the present invention. 図3A及び図3Bは、本発明の第1実施形態に係る判定部による判定方法を説明するための模式図であって、監視カメラにより撮像されたプロペラの画像の例を示す図である。FIG. 3A and FIG. 3B are schematic diagrams for explaining the determination method by the determination unit according to the first embodiment of the present invention, and showing an example of an image of a propeller captured by a surveillance camera. 図4A及び図4Bは、本発明の第2実施形態としての船舶の要部構成を示す模式図であり、図4Aは船舶後部の側面図、図4Bは背面図である(舵は省略)。FIGS. 4A and 4B are schematic views showing the configuration of the main part of a ship according to a second embodiment of the present invention, FIG. 4A is a side view of the rear of the ship, and FIG. 4B is a rear view (the rudder is omitted). 図5A及び図5Bは、本発明の第2実施形態に係る判定部による判定方法を説明するための模式図であって、監視カメラにより側方から撮像されたプロペラの画像の例を示す図である。FIG. 5A and FIG. 5B are schematic diagrams for explaining the determination method by the determination unit according to the second embodiment of the present invention, showing an example of an image of a propeller captured from the side by the monitoring camera. is there. 図6A及び図6Bは、本発明の第3実施形態としての船舶の要部構成を示す模式図であり、図6Aは船舶後部の側面図、図6Bは背面図である(舵は省略)。6A and 6B are schematic views showing the configuration of the main part of a ship according to a third embodiment of the present invention, FIG. 6A is a side view of the rear of the ship, and FIG. 6B is a rear view (the rudder is omitted). 図7は、本発明の第3実施形態の船体摩擦抵抗低減装置の構成を模式図である。FIG. 7 is a schematic view of a hull friction resistance reduction device according to a third embodiment of the present invention. 図8A,図8B,図8C及び図8Dは、本発明の第3実施形態に係る判定部による判定方法を説明するための模式図であって、図8Aはプロペラ上方の圧力変動の一例を示す図、図8B,図8C及び図8Dはプロペラ上方の変動圧の周波数スペクトルの一例を示す図である。8A, 8B, 8C and 8D are schematic views for explaining the determination method by the determination unit according to the third embodiment of the present invention, and FIG. 8A shows an example of pressure fluctuation above the propeller FIG. 8B, FIG. 8C and FIG. 8D are diagrams showing an example of the frequency spectrum of the fluctuating pressure above the propeller. 図9は、本発明の第4実施形態としての船舶の要部構成を示す模式的な背面図である(舵は省略)。FIG. 9 is a schematic rear view showing the main configuration of a ship according to a fourth embodiment of the present invention (the rudder is omitted). 図10は、本発明の第4実施形態に係る船体摩擦抵抗低減装置の構成を模式図である。FIG. 10 is a schematic view of a hull friction resistance reduction device according to a fourth embodiment of the present invention. 図11A及び図11Bは、本発明の第4実施形態に係る判定部による判定方法を説明するための模式図であって、横軸を船幅方向とし縦軸を変動圧とする座標上にプロペラ上方の変動圧分布の一例を示す図である。11A and 11B are schematic diagrams for explaining the determination method by the determination unit according to the fourth embodiment of the present invention, in which the propeller is on the coordinates with the horizontal axis as the width direction and the vertical axis as the fluctuating pressure It is a figure which shows an example of upper fluctuation pressure distribution. 図12A及び図12Bは、本発明の変形例の船舶の構成を示す模式な底面図である。12A and 12B are schematic bottom views showing the configuration of a ship according to a modification of the present invention. 図13A及び図13Bは、本発明の変形例の船舶の要部である船尾側の構成を示す模式な底面図である。FIGS. 13A and 13B are schematic bottom views showing the configuration of the stern side which is the main part of the ship of the modified example of the present invention.
 以下、図面を参照して、本発明の各実施の形態について説明する。なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の各実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の各実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。
 なお、以下の説明では、船舶1の船首11側(進行方向)を前方とし、船尾12側を後方とし、前方を基準に左右を定め、重力の方向を下方とし、その逆を上方として説明する。また、船体前後方向(以下「前後方向」ともいう)Xと直交する方向を船体幅方向Y(以下「幅方向」又は「船幅方向」ともいう)とし、幅方向Yに関するセンターラインCLに近づく側を内側とし、その逆にセンターラインCLから離れる側を外側として説明する。
 また、船舶1に搭載される装置や部品の説明では、それらの装置や部品が船舶1に搭載された状態を基準として、上下方向,左右方向及び前後方向を定める。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, each embodiment shown below is only an illustration to the last, and there is no intention which excludes the application of the various deformation | transformation and technology which are not specified by each following embodiment. The configurations of the following embodiments can be variously modified and implemented without departing from the scope of the invention.
In the following description, the bow 11 side (advancing direction) of the ship 1 is forward, the stern 12 is backward, the left and right are defined on the basis of forward, the direction of gravity is downward, and the opposite is upward. . In addition, a direction orthogonal to the longitudinal direction of the hull (hereinafter referred to as "longitudinal direction") X is taken as a hull width direction Y (hereinafter referred to as "width direction" or "ship width direction"). The side is an inside, and conversely, the side away from the center line CL is an outside.
Further, in the description of the devices and parts mounted on the ship 1, the vertical direction, the left and right direction, and the front and back direction are determined based on the state in which the devices and parts are mounted on the ship 1.
 [1.第1実施形態]
  [1-1.船舶の全体構成]
 本発明の第1実施形態としての船舶の全体構成について、図1A及び図1Bを参照して説明する。
 図1A及び図1Bは、本発明の第1実施形態としての船舶の全体構成を示す模式図であり、図1Aは側面図、図1Bは底面図であって船体摩擦抵抗低減装置に係る空気系統図を併せて示す図である。
 図1A及び図1Bに示すように、船舶1は、船舶1の本体である船体10と、船舶1の各種制御が行われるコントロールルーム20と、船体摩擦抵抗低減装置30とを備える。船舶1は、これに限定されるものではないが、船底13が平坦となる平底船である。
 船体10には、その後部(船尾12寄り)に、船体10を推進するプロペラ16が一基又は複数(本実施形態では一基)設置され、さらにプロペラ16の後方に、船体10の進行方向を定める舵17が設置されている。プロペラ16の回転中心C0及び舵17は何れも平面視においてセンターラインCL上に位置設定されている。
 船体摩擦抵抗低減装置30は、船底13から空気を噴出して船底13と水との境界に気泡流(以下、気泡ともいう)100を発生させ、この気泡流100により船底13を覆う気泡層を形成することで航行する船体1の摩擦抵抗を低減するものである。
[1. First embodiment]
[1-1. Overall configuration of the ship]
The entire configuration of a ship according to a first embodiment of the present invention will be described with reference to FIGS. 1A and 1B.
1A and 1B are schematic views showing the entire configuration of a ship according to a first embodiment of the present invention, FIG. 1A is a side view, and FIG. 1B is a bottom view. It is a figure showing a figure collectively.
As shown in FIGS. 1A and 1B, the boat 1 includes a hull 10 which is a main body of the boat 1, a control room 20 in which various controls of the boat 1 are performed, and a hull friction resistance reduction device 30. Although the ship 1 is not limited to this, it is a flat bottom ship in which the bottom 13 is flat.
On the hull 10, one or more (one in this embodiment) propellers 16 for propelling the hull 10 are installed at the rear portion (closer to the stern 12), and further, behind the propellers 16 the traveling direction of the hull 10 is A rudder 17 to be determined is installed. The rotational center C0 of the propeller 16 and the rudder 17 are both positioned on the center line CL in plan view.
The hull frictional resistance reduction device 30 ejects air from the bottom 13 to generate a bubble flow (hereinafter, also referred to as a bubble) 100 at the boundary between the bottom 13 and water, and the bubble flow 100 covers the bubble layer covering the bottom 13. By forming it, the frictional resistance of the hull 1 to be navigated is reduced.
  [1-2.船体摩擦抵抗低減装置]
   [1-2-1.船体摩擦抵抗低減装置の全体構成]
 図1A,図1B及び図2を参照して、船体摩擦抵抗低減装置30の全体構成についてさらに説明する。
 図2は、船体摩擦抵抗低減装置30の構成を模式図であって、制御装置50の制御構成を示すブロック図を含む。
 船体摩擦抵抗低減装置30は、図1B及び図2に示すように、例えばブロアやコンプレッサにより構成される空気供給源31と、空気供給源31に一端を接続された空気供給通路32と、空気供給通路32に設置された流量調整弁33と、空気供給通路32の他端側から分岐する複数(ここでは6本)の分岐供給管34と、各分岐供給管34に設置されたシャット弁(調整機構)35と、各分岐供給管34の分岐端に接続された気泡噴出部36C,36L,36Rと、プロペラ16を監視する監視カメラ(撮像装置)40と、コントロールルーム20に配置される制御装置50とを備える。
 以下、気泡噴出部36C,36L,36Rを区別しない場合には、気泡噴出部36と表記する。
[1-2. Ship Frictional Resistance Reduction Device]
[1-2-1. Overall Configuration of Ship Frictional Resistance Reduction Device]
The entire configuration of the hull frictional resistance reduction device 30 will be further described with reference to FIGS. 1A, 1B and 2. FIG.
FIG. 2 is a schematic view of the configuration of the hull frictional resistance reduction device 30, including a block diagram showing a control configuration of the control device 50. As shown in FIG.
As shown in FIG. 1B and FIG. 2, the hull frictional resistance reduction device 30 includes an air supply source 31 configured by, for example, a blower or a compressor, an air supply passage 32 connected at one end to the air supply source 31, and an air supply. A flow control valve 33 installed in the passage 32, a plurality (six in this case) of branch supply pipes 34 branched from the other end side of the air supply passage 32, and a shut valve installed in each branch supply pipe 34 Mechanism) 35, air bubble jet parts 36C, 36L, 36R connected to the branch ends of the respective branch supply pipes 34, a monitoring camera (imaging apparatus) 40 for monitoring the propeller 16, and a control unit arranged in the control room 20 And 50.
Hereinafter, when not distinguishing foam | bubble ejection part 36C, 36L, 36R, it describes with the foam | bubble ejection part 36. FIG.
 各気泡噴出部36は船底13の前部に配置される。船幅方向Yに関しては、気泡噴出部36CはセンターラインCL上に、気泡噴出部36Lは左舷14側に、気泡噴出部36Rは右舷15側にそれぞれ配置されており、気泡噴出部36C,36L,36Rは、船底13の略全幅に亘って配置されている。前後方向Xに関しては、気泡噴出部36Cが最も前方に配置され、気泡噴出部36L,36Rは、気泡噴出部36Cよりも後方において同じ位置に配置されている。気泡噴出部36C,36L,36Rを横並びに配置してもよい。 Each bubble spouting portion 36 is disposed at the front of the bottom 13. In the width direction Y, the bubble jetting portion 36C is disposed on the center line CL, the bubble jetting portion 36L is disposed on the port 14 side, and the bubble jetting portion 36R is disposed on the starboard 15 side. The 36 </ b> R is disposed over substantially the entire width of the bottom 13. With respect to the front-rear direction X, the bubble ejection portion 36C is disposed at the frontmost position, and the bubble ejection portions 36L and 36R are disposed at the same position behind the bubble ejection portion 36C. The bubble jetting parts 36C, 36L, 36R may be arranged side by side.
 気泡噴出部36Cの位置についてさらに説明すると、気泡噴出部36Cはプロペラ16の正面前方に位置している。プロペラ16の正面前方に位置するとは、気泡噴出部36Cから噴出された気泡100が、船舶1の航走に伴い相対的に船体1の後方へと移動してプロペラ16へ流入するような気泡噴出部36の位置をいう。したがって、本実施形態では、平面視において、気泡噴出部36Cとプロペラ16との船幅方向Yの各中心線が、船体1のセンターラインCLと一致しているが(つまり、気泡噴出部36Cの船幅方向Yの中心線と、プロペラ16の船幅方向Yの中心線とが一致しているが)、気泡噴出部36Cの船幅方向Yの中心線と、プロペラ16の船幅方向Yの中心線とを一致させることは必須ではない。
 例えば、プロペラ16の正面前方に気泡噴出部36Cが位置するとは、図1Bに示すようなプロペラ16の上流側領域Aに、少なくとも一部が含まれるように気泡噴出部36Cが位置すること、又は、プロペラ16の中心線上に少なくとも一部が存在するように気泡噴出部36Cが位置することと規定できるが、これに限定されるものではない。
Further describing the position of the bubble jetting portion 36C, the bubble jetting portion 36C is located in front of and in front of the propeller 16. Being positioned forward of the front of the propeller 16, the bubbles 100 jetted from the bubble jet portion 36 C move relatively to the rear of the hull 1 and flow into the propeller 16 as the boat 1 runs. The position of the part 36 is said. Therefore, in the present embodiment, the respective center lines in the ship width direction Y of the bubble jet portion 36C and the propeller 16 coincide with the center line CL of the hull 1 in plan view (that is, the bubble jet portion 36C Centerline in the widthwise direction Y and the centerline in the widthwise direction Y of the propeller 16), the centerline in the widthwise direction Y of the air bubble jet portion 36C, and the widthwise direction Y of the propeller 16 It is not essential to match the centerline.
For example, that the bubble jet portion 36C is positioned forward of the front of the propeller 16 is that the bubble jet portion 36C is positioned so that at least a part is included in the upstream region A of the propeller 16 as shown in FIG. It can be defined that the bubble jetting part 36C is positioned so that at least a part thereof is present on the center line of the propeller 16, but it is not limited thereto.
 気泡噴出部36Cは、船幅方向Yに沿って並設される複数(ここでは2つ)の気泡噴出ユニット36C-1,36C-2により構成される。同様に、気泡噴出部36Lは、船幅方向Yに沿って並設される複数(ここでは2つ)の気泡噴出ユニット36L-1,36L-2により構成され、気泡噴出部36Rは、船幅方向Yに沿って並設される複数(ここでは2つ)の気泡噴出ユニット36R-1,36R-2により構成される。以下、気泡噴出ユニット36C-1~36R-2を区別しない場合には気泡噴出ユニット36-uと表記する。 The bubble jetting portion 36C is configured by a plurality of (here, two) bubble jetting units 36C-1 and 36C-2 arranged in parallel along the width direction Y of the vessel. Similarly, the bubble jetting portion 36L is configured of a plurality (two in this case) of bubble jetting units 36L-1 and 36L-2 arranged in parallel along the width direction Y, and the bubble jetting portion 36R is a width of the ship. A plurality of (two in this case) bubble ejection units 36R-1 and 36R-2 are arranged in parallel along the direction Y. Hereinafter, the bubble ejection units 36C-1 to 36R-2 will be referred to as bubble ejection units 36-u when not distinguished.
 各気泡噴出ユニット36-uは、船底13の内部に配置されるエアチャンバ36aと、船底13に貫設される多数の噴出孔36bとから構成される。エアチャンバ36aは、底面が開放された長方体箱形状のものであり、その長手方向を船幅方向Yに向けた姿勢で船底13の内部に配置される。噴出孔36bは、エアチャンバ36aにより前後左右及び上方を包囲される。
 流量調整弁33の開度は制御装置50により制御される。流量調整弁33の開度が制御されることで、各気泡噴出部36C,36L,36Rからの気泡噴出量が一斉に制御される。
 各気泡噴出ユニット36-uにはそれぞれ分岐供給管34が接続され、各分岐供給管34にはそれぞれシャット弁35が設置されている。シャット弁35は、オンオフ弁であり、制御装置50により全開又は全閉に制御される。すなわち、シャット弁35が制御装置50により全開に制御された場合には、対応する気泡噴出ユニット36-uから気泡が噴出され、シャット弁35が制御装置50により全閉に制御された場合には、対応する気泡噴出ユニット36-uからの気泡の噴出が停止される。また、シャット弁35は、海水が、停止状態の気泡噴出ユニット36-uから逆流して分岐供給管34に浸入すること防止する逆止弁としての機能も担っている。
Each bubble jetting unit 36-u is composed of an air chamber 36 a disposed inside the bottom 13 and a plurality of jet holes 36 b penetrating the bottom 13. The air chamber 36a is in the form of a rectangular box having an open bottom and is disposed inside the bottom 13 with its longitudinal direction oriented in the width direction Y. The ejection holes 36b are surrounded by the air chamber 36a in the front, rear, left, right, and upper sides.
The opening degree of the flow rate adjustment valve 33 is controlled by the controller 50. By controlling the opening degree of the flow rate adjustment valve 33, the bubble ejection amount from each of the bubble ejection portions 36C, 36L, 36R is simultaneously controlled.
A branch supply pipe 34 is connected to each bubble injection unit 36-u, and a shut valve 35 is installed in each branch supply pipe 34. The shut valve 35 is an on / off valve, and is controlled by the controller 50 to be fully open or fully closed. That is, when the shutoff valve 35 is controlled to be fully opened by the control device 50, air bubbles are ejected from the corresponding bubble ejection unit 36-u, and when the shutoff valve 35 is controlled to be fully closed by the control device 50. The ejection of air bubbles from the corresponding air bubble ejection unit 36-u is stopped. The shut valve 35 also functions as a check valve that prevents seawater from flowing back from the air bubble jet unit 36-u in the stopped state and entering the branch supply pipe 34.
 監視カメラ40は、船底13の後部に設置され、航走中は水没状態となって、プロペラ16への気泡の流入を監視する。監視カメラ40は、プロペラ16を両外側から挟むようにしてプロペラ16の斜め前方に一対に配置され、一対となってプロペラ16の全体を撮像する。
 なお、監視カメラ40は、プロペラ16の全体を撮像できるのであれば、設置個所や個数は上記のものに限定されない。
The surveillance camera 40 is installed at the rear of the bottom 13 of the boat and is submerged while traveling to monitor the inflow of air bubbles into the propeller 16. The surveillance cameras 40 are disposed in a pair diagonally in front of the propellers 16 so as to sandwich the propellers 16 from both outer sides, and form a pair to image the entire propellers 16.
In addition, if the surveillance camera 40 can image the whole propeller 16, the installation location and number are not limited to said thing.
   [1-2-2.船体摩擦抵抗低減装置の制御構成]
 図2,図3A及び図3Bを参照して、船体摩擦抵抗低減装置30の制御装置50の制御構成について説明する。
 図3A及び図3Bは、本発明の第1実施形態に係る判定部51による判定方法を説明するための模式図であって、監視カメラ40により撮像されたプロペラ16の画像の例を示す図である。なお、監視カメラ40は斜め前方よりプロペラ16を撮像するため、実際には、監視カメラ40により撮像された画像は、プロペラ16の斜視画像となり、また、船体1の一部が映り込むが、図3A及び図3Bでは、便宜的に、プロペラ16の正面画像とすると共に船体1を省略している。
 制御装置50は、図2に示すように、プロペラ16に気泡が流入しているか否かを判定する判定部51と、判定部51の判定結果に基づいてシャット弁35の作動を制御するシャット弁制御部(調整機構制御部)52とを備える。
1-2-2. Control Configuration of Ship Frictional Resistance Reduction Device]
A control configuration of the control device 50 of the hull frictional resistance reduction device 30 will be described with reference to FIGS. 2, 3A and 3B.
FIGS. 3A and 3B are schematic diagrams for explaining the determination method by the determination unit 51 according to the first embodiment of the present invention, and are diagrams showing an example of an image of the propeller 16 captured by the monitoring camera 40. is there. In addition, since the surveillance camera 40 images the propeller 16 from diagonally forward, in fact, the image imaged by the surveillance camera 40 becomes a perspective image of the propeller 16 and a part of the hull 1 is reflected, but In 3A and 3B, for convenience, the front image of the propeller 16 is used and the hull 1 is omitted.
As shown in FIG. 2, the control device 50 controls the operation of the shutoff valve 35 based on the determination result of the determination unit 51 that determines whether air bubbles are flowing into the propeller 16 and the determination unit 51. And a control unit (adjustment mechanism control unit) 52.
 判定部51は、図3A及び図3Bに例示されるような各監視カメラ40により撮像された画像情報を取得し、これらの画像情報を解析し、例えば明度に基づき画像を二値化することにより気泡100を識別し、気泡100が気泡検知領域Rに流入しているか否かを判定する。気泡検知領域Rは、プロペラ16の上下に設定された気泡検知ラインL1,L2の相互間として規定される領域である。本実施形態では、気泡検知ラインL1,L2は、プロペラ16の回転中心C0からプロペラ半径rだけ上下に離隔した位置として規定される。
 上述したように図3A及び図3Bでは便宜的にプロペラ16の正面画像を記載しているが、実際には、監視カメラ40は、プロペラ16を左右両側から撮像しているため、一台単独では左右片側しか十分に撮像できない。このため、判定部51は、両監視カメラ40の画像情報を解析し、何れの監視カメラ40の画像情報も、図3Aに示すように、気泡検知領域Rに気泡100が流入していないことを示すときには、プロペラ16に気泡流100は流入していないと判定し、何れか一方の監視カメラ40の画像情報が、図3Bに示すように、気泡検知領域Rに気泡が流入していることを示すときには、プロペラ16に気泡流100が流入していると判定する。
The determination unit 51 acquires image information captured by each monitoring camera 40 as exemplified in FIGS. 3A and 3B, analyzes the image information, and binarizes the image based on, for example, lightness. The bubble 100 is identified, and it is determined whether the bubble 100 flows into the bubble detection area R. The air bubble detection area R is an area defined as a space between air bubble detection lines L1 and L2 set above and below the propeller 16. In the present embodiment, the air bubble detection lines L1 and L2 are defined as positions separated vertically from the rotation center C0 of the propeller 16 by the propeller radius r.
As described above, although front images of the propellers 16 are described for convenience in FIGS. 3A and 3B, in fact, since the surveillance camera 40 images the propellers 16 from both the left and right sides, Only the left and right sides can be imaged sufficiently. Therefore, the determination unit 51 analyzes the image information of both monitoring cameras 40, and the image information of any of the monitoring cameras 40 does not flow into the bubble detection area R as shown in FIG. 3A. When it is shown, it is determined that the bubble flow 100 has not flowed into the propeller 16, and the image information of one of the monitoring cameras 40 indicates that the bubble is flowing into the bubble detection area R as shown in FIG. 3B. When shown, it is determined that the bubbly flow 100 is flowing into the propeller 16.
 なお、気泡検知ラインL1,L2を、プロペラ16の回転中心C0から、プロペラ半径rに余裕Δrを加算したr′(=r+Δr,Δr>0)だけ上下に離隔した位置として規定してもよい。この場合、判定部51は、気泡検知領域Rに気泡が流入していないときには、プロペラ16に気泡流100は流入していないし、そのおそれもないと判定する一方、気泡検知領域Rに気泡が流入しているときには、プロペラ16に気泡流100が流入している或いはプロペラ16に気泡流100が流入するおそれがあると判定することとなる。 The air bubble detection lines L1 and L2 may be defined as positions separated vertically from the rotation center C0 of the propeller 16 by r ′ (= r + Δr, Δr> 0) obtained by adding the margin Δr to the propeller radius r. In this case, the determination unit 51 determines that the bubble stream 100 does not flow into the propeller 16 when the air bubbles do not flow into the air bubble detection region R, and that the air bubbles flow into the air bubble detection region R When this is the case, it is determined that the bubble stream 100 is flowing into the propeller 16 or the bubble stream 100 may be flowing into the propeller 16.
 このように監視カメラ40の画像情報に基づいて判定部51がプロペラ16に気泡流100が流入しているので、監視カメラ40と判定部51とにより本発明の流入検出手段が構成されている。また、気泡流100の流入を検出することは、気泡流100が流入したことを示す気泡流入情報を取得することであるから、監視カメラ40と判定部51とにより、本発明の流入情報取得手段が構成されている。 As described above, the bubble flow 100 is flowing into the propeller 16 by the determination unit 51 based on the image information of the monitoring camera 40, so the inflow detection means of the present invention is configured by the monitoring camera 40 and the determination unit 51. Further, since detecting the inflow of the bubble flow 100 is to acquire bubble inflow information indicating that the bubble flow 100 has flowed in, the inflow information acquiring means of the present invention is obtained by the monitoring camera 40 and the determination unit 51. Is configured.
 シャット弁制御部52は、判定部51からプロペラ16に気泡流100が流入していない旨の情報を取得したとき(以下、通常時ともいう)には、全てのシャット弁35を全開にする。つまり、気泡噴出部36C,36L,36Rを作動状態とする。その一方、シャット弁制御部52は、判定部51からプロペラ16に気泡流100が流入している旨の情報(気泡流入情報)を取得したときには、プロペラ16の正面前方に位置する気泡噴出部36C(気泡噴出ユニット36C-1,36C-2)に繋がる分岐供給管34のシャット弁35を全閉にして、気泡噴出部36Cからの気泡100の噴出を停止する(換言すれば、気泡噴出部36Cからの気泡100の噴出量を通常時よりも減少させる)。つまり、気泡噴出部36Cを停止状態とする。 The shut valve control unit 52 fully opens all the shut valves 35 when acquiring information indicating that the bubble flow 100 has not flowed into the propeller 16 from the determination unit 51 (hereinafter, also referred to as a normal time). That is, the bubble jetting parts 36C, 36L, and 36R are brought into the operating state. On the other hand, when the shutoff valve control unit 52 obtains information (bubble inflow information) indicating that the bubble flow 100 is flowing into the propeller 16 from the determination unit 51, the bubble injection unit 36C located in front of the propeller 16 The shutoff valve 35 of the branch supply pipe 34 connected to (the bubble jetting unit 36C-1, 36C-2) is fully closed, and the jetting of the bubble 100 from the bubble jetting unit 36C is stopped (in other words, the bubble jetting unit 36C The amount of bubbles from the air bubbles 100 is reduced than usual. That is, the bubble ejection part 36C is brought into the stop state.
  [1-3.作用・効果]
 本発明の第1実施形態としての船体摩擦抵抗低減装置30及び船舶1によれば、監視カメラ40により撮像された画像情報から判定部51により、プロペラ16に気泡流100が流入したか否かの判定が行われ、この判定結果がシャット弁制御部52に出力される。
 シャット弁制御部52は、この判定結果が、プロペラ16に気泡流100は流入していない旨の判定であった場合には、図1Bに示すように、全てのシャット弁35を全開にして、全ての気泡噴出ユニット36C-1~気泡噴出ユニット36R-2を作動させる。これにより、船底1の殆どの領域を気泡100により覆うことができる。
 その一方、シャット弁制御部52は、判定部51の判定結果が、プロペラ16に気泡流100が流入している旨の判定であった場合には、図2に示すように、プロペラ16の正面前方に位置する気泡噴出ユニット36C-1,36C-2に対して設けられたシャット弁35を全閉にし、その他の気泡噴出ユニット36L-1,36L-2,36R-1,36R-2に対して設けられたシャット弁35を全開にする。
[1-3. Action / Effect]
According to the hull friction resistance reduction device 30 and the ship 1 as the first embodiment of the present invention, the determination unit 51 determines whether the bubble flow 100 has flowed into the propeller 16 based on the image information captured by the monitoring camera 40 A determination is made, and the determination result is output to the shutoff valve control unit 52.
When the determination result indicates that the bubble flow 100 has not flowed into the propeller 16, the shut valve control unit 52 fully opens all the shut valves 35, as shown in FIG. 1B. All bubble injection units 36C-1 to 36R-2 are operated. Thereby, most of the area of the bottom 1 can be covered by the air bubbles 100.
On the other hand, when the determination result of the determination unit 51 is the determination that the bubble flow 100 is flowing into the propeller 16, the shut valve control unit 52, as shown in FIG. The shut valve 35 provided for the air bubble ejection units 36C-1 and 36C-2 located forward is fully closed, and the other air bubble ejection units 36L-1, 36L-2 and 36R-1 and 36R-2 are closed. The shut valve 35 provided is fully opened.
 プロペラ16に流入する気泡100の全て又は殆どは、プロペラ16の前方に配置された気泡噴出ユニット36C-1,36C-2から噴出された気泡である。したがって、気泡噴出ユニット36C-1,36C-2に対して設けられたシャット弁35を全閉にして気泡噴出ユニット36C-1,36C-2を停止することで、プロペラ16への気泡100の流入を抑制することができる。これにより、プロペラ16への気泡100の流入による推進力の低下、プロペラ起振力による船体振動の増大、エロージョンリスクの増大を抑制できる。また、プロペラ16へ気泡100が流入しない気泡噴出ユニット36L-1,36L-2,36R-1,36R-2については作動させるので、船底1の多くの領域を気泡100により覆うことができる。
 したがって、特にプロペラ16へ気泡100が流入し易い高速航走時において、プロペラ16への気泡100の流入によるリスクを抑制しつつ、船体1の摩擦抵抗を低減することができる。
All or most of the air bubbles 100 flowing into the propeller 16 are air bubbles ejected from air bubble ejection units 36C-1 and 36C-2 disposed in front of the propeller 16. Therefore, the shutoff valve 35 provided for the bubble jetting units 36C-1 and 36C-2 is fully closed to stop the bubble jetting units 36C-1 and 36C-2, whereby the inflow of the bubbles 100 to the propeller 16 is caused. Can be suppressed. As a result, it is possible to suppress a decrease in propulsive force due to the inflow of the air bubbles 100 into the propeller 16, an increase in ship vibration due to the propeller excitation force, and an increase in erosion risk. In addition, since the bubble jetting units 36L-1, 36L-2, 36R-1, and 36R-2 are operated so that the bubbles 100 do not flow into the propeller 16, many regions of the bottom 1 can be covered with the bubbles 100.
Therefore, it is possible to reduce the frictional resistance of the hull 1 while suppressing the risk due to the inflow of the air bubbles 100 into the propeller 16 particularly at the time of high speed running where the air bubbles 100 easily flow into the propeller 16.
 [2.第2実施形態]
 本発明の第2実施形態としての船体摩擦抵抗低減装置及び船舶について、図4A,図4B,図5A及び図5Bを参照して説明する。なお、第1実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
 図4A及び図4Bは、本発明の第2実施形態としての船舶の要部構成を示す模式図であり、図4Aは船舶後部の側面図、図4Bは背面図である(舵17は省略)。
 図5A及び図5Bは、本発明の第2実施形態に係る判定部による判定方法を説明するための模式図であって、監視カメラにより側方から撮像されたプロペラの画像の例を示す図である。
[2. Second embodiment]
A hull friction resistance reduction device and a ship as a second embodiment of the present invention will be described with reference to FIGS. 4A, 4B, 5A and 5B. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
4A and 4B are schematic views showing the configuration of the main part of a ship according to a second embodiment of the present invention, FIG. 4A is a side view of the rear of the ship, and FIG. 4B is a rear view (the rudder 17 is omitted). .
FIG. 5A and FIG. 5B are schematic diagrams for explaining the determination method by the determination unit according to the second embodiment of the present invention, showing an example of an image of a propeller captured from the side by the monitoring camera. is there.
  [2-1.構成]
 本実施形態の船体摩擦抵抗低減装置及び船舶は、上記第1実施形態に対して、監視カメラ40の配置が異なる。
 具体的には、図4A及び図4Bに示すように、船幅方向Yでプロペラ16の両外側に監視カメラ40を一対に配置している。本実施形態ではプロペラ16の真横(つまり前後方向Xに関して同じ位置に)に監視カメラ40を配置しているが、船幅方向Yでプロペラ16よりも外側であればプロペラ16よりも前側又は後側に配置してもよい。
 また、各監視カメラ40は、船尾12の下面の外側縁から垂下した一対のブラケット(支持部材)40aによりそれぞれ支持されている。船体1に取り付け箇所を確保できるのであれば各監視カメラ40をそれぞれ船体1に直接取り付けるようにしてもよい。
[2-1. Constitution]
The hull friction resistance reduction device and the ship of the present embodiment are different from the first embodiment in the arrangement of the monitoring camera 40.
Specifically, as shown in FIGS. 4A and 4B, the monitoring cameras 40 are arranged in a pair on the outer sides of the propeller 16 in the boat width direction Y. In the present embodiment, the monitoring camera 40 is disposed just beside the propeller 16 (that is, at the same position in the longitudinal direction X), but if it is outside the propeller 16 in the boat width direction Y, the front or rear It may be located at
Each surveillance camera 40 is supported by a pair of brackets (support members) 40 a depending from the outer edge of the lower surface of the stern 12. If it is possible to secure the attachment point to the hull 1, each monitoring camera 40 may be directly attached to the hull 1 respectively.
 監視カメラ40はプロペラ16に近接して配置されるため、航走中の水没状態においては、特にプロペラ16に気泡流100が流れ込むとき(つまり監視カメラ40による撮像が最も必要とされるとき)には、監視カメラ40にも気泡流100が流れ込むことが考えられる。そうなると、監視カメラ40自体が気泡流100の中に入ってしまい、気泡流100に邪魔されて画像解析するほど鮮明にプロペラ16を撮像できないことが懸念される。
 そこで、監視カメラ40を、プロペラ16の船幅方向Yに関して外側に配置することにより、プロペラ16に流れ込む気泡流100の進行経路から監視カメラ40を外すようにしている。
Since the surveillance camera 40 is disposed in proximity to the propeller 16, particularly in the submerged state while traveling, particularly when the bubble flow 100 flows into the propeller 16 (that is, when imaging by the surveillance camera 40 is most needed) It is conceivable that the bubble flow 100 flows into the monitoring camera 40 as well. In such a case, there is a concern that the surveillance camera 40 itself may be in the bubble flow 100, and the propeller 16 may not be imaged as clearly as image analysis is disturbed by the bubble flow 100.
Therefore, by arranging the monitoring camera 40 on the outer side in the width direction Y of the propeller 16, the monitoring camera 40 is removed from the traveling path of the bubble flow 100 flowing into the propeller 16.
 なお、監視カメラ40をプロペラ16の外側に配置しただけでは、センターラインCL上に設置された気泡噴出部36Cからの気泡流100が流れ込むリスクは低減するものの、気泡噴出部36Cの両外側に設置された気泡噴出部36L,36Rからの気泡流100が流れ込むリスクが残る。このため、監視カメラ40を、気泡噴出部36L,36Rを含む全ての気泡噴出部36の下流領域から外れるように、本実施形態のように船体1の外縁に配置するのが好ましい。 In addition, although the risk that the bubble flow 100 from the bubble injection part 36C installed on the center line CL flows in only by arrange | positioning the surveillance camera 40 to the outer side of the propeller 16, it installs in the both sides of the bubble injection part 36C. There remains a risk that the bubbly flow 100 from the bubbly jet parts 36L, 36R will flow. For this reason, it is preferable to arrange the monitoring camera 40 at the outer edge of the hull 1 as in the present embodiment so as to be out of the downstream region of all the bubble jetting portions 36 including the bubble jetting portions 36L and 36R.
 監視カメラ40により側方から撮像された図5A及び図5Bに示すような画像情報は、第1実施形態と同様に判定部51(図2参照)により画像解析される。つまり、判定部51は、両監視カメラ40の画像情報を解析し、何れの監視カメラ40の画像情報も、図5Aに示すように、気泡検知領域Rに気泡100が流入していないときには、プロペラ16に気泡流100は流入していないと判定し、何れか一方の監視カメラ40の画像情報が、図5Bに示すように、気泡検知領域Rに気泡が流入しているときには、プロペラ16に気泡流100が流入していると判定する。
 この他の構成は第1実施形態と同様なので説明を省略する。
The image information as shown in FIGS. 5A and 5B captured from the side by the monitoring camera 40 is image-analyzed by the determination unit 51 (see FIG. 2) as in the first embodiment. That is, the determination unit 51 analyzes the image information of both monitoring cameras 40, and as for the image information of any monitoring camera 40, as shown in FIG. 5A, when the air bubble 100 does not flow into the air bubble detection area R, the propeller When it is determined that the bubble flow 100 has not flowed into 16, and the image information of any one of the monitoring cameras 40 shows that the bubble is flowing into the bubble detection area R, as shown in FIG. It is determined that the stream 100 is flowing.
Since the other configuration is the same as that of the first embodiment, the description will be omitted.
  [2-2.作用・効果]
 本発明の第2実施形態としての船体摩擦抵抗低減装置及び船舶によれば、監視カメラ40が気泡流100の中に入り込むことが抑制されるので、気泡流100の影響のない鮮明な画像情報を監視カメラ40により取得することができる。したがって、鮮明な画像情報に基づいて、プロペラ16への気泡流100の流れ込みの検出精度を向上することができ、一層効果的に、プロペラ16への気泡100の流入によるリスクを抑制しつつ、船体1の摩擦抵抗を低減することができる。
[2-2. Action / Effect]
According to the hull friction resistance reduction device and the ship as the second embodiment of the present invention, since the monitoring camera 40 is suppressed from entering the bubble flow 100, clear image information without the influence of the bubble flow 100 can be obtained. It can be acquired by the surveillance camera 40. Therefore, the detection accuracy of the inflow of the bubble flow 100 into the propeller 16 can be improved based on the clear image information, and the hull body while suppressing the risk due to the inflow of the bubble 100 into the propeller 16 more effectively. The frictional resistance of 1 can be reduced.
 [3.第3実施形態]
 本発明の第3実施形態としての船体摩擦抵抗低減装置及び船舶について、図6A,図6B,図7,図8A及び図8Bを参照して説明する。なお、上記各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
 図6A及び図6Bは、本発明の第3実施形態としての船舶の要部構成を示す模式図であり、図6Aは船舶後部の側面図、図6B(b)は背面図である(舵17は省略)。
 図7は、本発明の第3実施形態に係る船体摩擦抵抗低減装置30Aの構成を模式図であって、制御装置50Aの制御構成を示すブロック図を含む。
 図8A,図8B,図8C及び図8Dは、本発明の第3実施形態に係る判定部による判定方法を説明するための模式図であって、図8Aはプロペラ上方の圧力変動の一例を示す図、図8B,図8C及び図8Dはプロペラ上方の変動圧の周波数スペクトルの一例を示す図である。
[3. Third embodiment]
A hull friction resistance reduction device and a ship according to a third embodiment of the present invention will be described with reference to FIGS. 6A, 6B, 7, 8A and 8B. In addition, about the component same as said each embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
6A and 6B are schematic views showing the configuration of the main part of a ship according to a third embodiment of the present invention, FIG. 6A is a side view of the rear of the ship, and FIG. Is omitted).
FIG. 7 is a schematic view of a hull friction resistance reduction device 30A according to a third embodiment of the present invention, including a block diagram showing a control configuration of the control device 50A.
8A, 8B, 8C and 8D are schematic views for explaining the determination method by the determination unit according to the third embodiment of the present invention, and FIG. 8A shows an example of pressure fluctuation above the propeller FIG. 8B, FIG. 8C and FIG. 8D are diagrams showing an example of the frequency spectrum of the fluctuating pressure above the propeller.
  [3-1.構成]
 本実施形態の船体摩擦抵抗低減装置30A及び船舶1Aは、第1実施形態の船体摩擦抵抗低減装置30及び船舶1に対して、監視カメラ40に替えて圧力センサ(振動検出手段)41を使用してプロペラ16への気泡流100の流入を検出したものである。すなわち、第1実施形態では監視カメラ40と判定部51とにより本発明の流入情報取得手段及び流入検出手段を構成したのに対し、本実施形態では、圧力センサ41と判定部51Aとにより本発明の流入情報取得手段及び流入検出手段を構成している。
3-1. Constitution]
The hull friction resistance reduction device 30A and the ship 1A of the present embodiment use a pressure sensor (vibration detection means) 41 instead of the monitoring camera 40 for the hull friction resistance reduction device 30 and the ship 1 of the first embodiment. Then, the inflow of the bubbly flow 100 to the propeller 16 is detected. That is, while the inflow information acquisition means and the inflow detection means of the present invention are configured by the monitoring camera 40 and the determination section 51 in the first embodiment, the pressure sensor 41 and the determination section 51A are the present invention. The inflow information acquisition means and the inflow detection means of
 具体的には、図6A,図6B及び図7に示すように、本実施形態の船舶1Aでは、プロペラ16の鉛直上方に圧力センサ41が設置されている。この圧力センサ41は、船尾12の底壁に加工された取り付け孔に挿入・固定されており、その検出端411を船外に露出させてプロペラ16の上方に臨ませている。
 船体摩擦抵抗低減装置30Aは、図7に示すように、空気供給源31と、空気供給通路32と、流量調整弁33と、分岐供給管34と、シャット弁35と、気泡噴出部36C,36L,36Rと、前記圧力センサ41と、コントロールルーム20〔図1A参照〕に配置される制御装置50Aとを備える。
Specifically, as shown in FIGS. 6A, 6B and 7, the pressure sensor 41 is installed vertically above the propeller 16 in the boat 1A of the present embodiment. The pressure sensor 41 is inserted and fixed in a mounting hole formed on the bottom wall of the stern 12, and the detection end 411 is exposed to the outside of the boat to face above the propeller 16.
As shown in FIG. 7, the hull frictional resistance reduction device 30A includes the air supply source 31, the air supply passage 32, the flow rate adjustment valve 33, the branch supply pipe 34, the shut valve 35, and the bubble jetting parts 36C and 36L. 36R, the pressure sensor 41, and a control device 50A disposed in the control room 20 [see FIG. 1A].
 制御装置50Aは、圧力センサ41の検出結果に基づいてプロペラ16に気泡が流入しているか否かを判定する判定部51Aと、判定部51Aの判定結果に基づいてシャット弁35の作動を制御するシャット弁制御部52Aとを備える。
 判定部51Aは、圧力センサ41からプロペラ16上方の圧力Pを所定の周期で取得して、図8Aに示すように圧力Pと時間tとを関連付けた時系列データPp、すなわち圧力変動を把握する。そして、判定部51Aは、この時系列データをFFT解析することにより、図8B,図8C及び図8Dに示すような変動圧ΔPの周波数スペクトルを周期的に取得する。変動圧ΔPは振動と相関し、変動圧ΔPが大きければ振動も大きくなるので、図8B,図8C及び図8Dの縦軸を振動と置き換えて考えることができる。
 ここで、図8Bは船体摩擦抵抗低減装置30Aが停止している場合、図8Cは船体摩擦抵抗低減装置30Aが作動中であるが気泡流100がプロペラ16に流入していない場合、図8Dは船体摩擦抵抗低減装置30Aが作動中であり気泡流100がプロペラ16に流入している場合における変動圧ΔPの周波数スペクトルの一例である。
The control device 50A controls the operation of the shutoff valve 35 based on the determination result of the determination unit 51A that determines whether air bubbles are flowing into the propeller 16 based on the detection result of the pressure sensor 41 and the determination unit 51A. And a shut valve control unit 52A.
The determination unit 51A obtains the pressure P above the propeller 16 at a predetermined cycle from the pressure sensor 41, and grasps time-series data Pp in which the pressure P and the time t are associated as shown in FIG. . Then, the determination unit 51A periodically acquires the frequency spectrum of the fluctuation pressure ΔP as shown in FIGS. 8B, 8C, and 8D by performing FFT analysis on the time-series data. The fluctuating pressure ΔP is correlated with the vibration, and the vibration becomes large as the fluctuating pressure ΔP is large. Therefore, the vertical axis in FIGS. 8B, 8C and 8D can be considered as the vibration.
Here, FIG. 8B shows the case where the ship frictional resistance reduction device 30A is stopped, FIG. 8C shows the case where the ship frictional resistance reduction device 30A is in operation but the bubbly flow 100 does not flow into the propeller 16, FIG. This is an example of the frequency spectrum of the fluctuating pressure ΔP when the hull frictional resistance reduction device 30A is in operation and the bubbly flow 100 flows into the propeller 16.
 図8Bに示す例では、船体摩擦抵抗低減装置30Aが停止しているので、プロペラの周辺に気泡流100が存在しない。そして、プロペラ16の回転周波数N及び翼数Zにより規定されるNZ周波数F1と、このNZ周波数F1の高次成分F2,F3,F4とに、それぞれ、変動圧ΔPのピーク値ΔP1,ΔP2,ΔP3,ΔP4が生じている。高次成分F2はNZ周波数F1の2倍の周波数、高次成分F3はNZ周波数F1の3倍の周波数、高次成分F4はNZ周波数F1の4倍の周波数である。図8Bに示す例では、NZ周波数F1におけるピーク値ΔP1が最も高い変動圧を示している。 In the example shown in FIG. 8B, since the hull frictional resistance reduction device 30A is stopped, the bubbly flow 100 does not exist around the propeller. Then, for the NZ frequency F1 defined by the rotational frequency N and the number of blades Z of the propeller 16 and the high-order components F2, F3 and F4 of the NZ frequency F1, peak values ΔP1, ΔP2 and ΔP3 of the fluctuation pressure ΔP, respectively. , ΔP4 has occurred. The high-order component F2 is a frequency twice as high as the NZ frequency F1, the high-order component F3 is a frequency three times as high as the NZ frequency F1, and the high-order component F4 is a frequency four times as high as the NZ frequency F1. In the example shown in FIG. 8B, the peak value ΔP1 at the NZ frequency F1 indicates the highest fluctuation pressure.
 図8Cに示す例ではNZ周波数F1におけるピーク値ΔP1だけが生じているが、これは、船体摩擦抵抗低減装置30Aが作動しているためである、つまり、図6A及び図6Bに示すように気泡流100が、プロペラ16とこのプロペラ16の直上及び直上付近の船底13との間に介在するため、気泡流100により、図8Bに示すようなNZ周波数F1の高次成分F2,F3,F4が減衰し、変動圧ΔPとしてピーク値ΔP1のみが検出されている。
 つまり、プロペラ16とこのプロペラ16の直上及び直上付近の船底13との間の気泡流100がダンパとして機能して、NZ周波数F1の高次成分F2,F3,F4のピーク値ΔP2,ΔP3,ΔP4は減衰し、NZ周波数F1のピーク値ΔP1のみが、図8Bのピーク値ΔP1と同等のレベルのまま残っている。
In the example shown in FIG. 8C, only the peak value ΔP1 occurs at the NZ frequency F1, which is because the hull frictional resistance reduction device 30A is operating, that is, as shown in FIGS. 6A and 6B Since the flow 100 intervenes between the propeller 16 and the vessel bottom 13 immediately above and near the propeller 16, the bubbly flow 100 provides high-order components F2, F3, F4 of the NZ frequency F1 as shown in FIG. 8B. It attenuates and only the peak value ΔP1 is detected as the fluctuating pressure ΔP.
That is, the bubbly flow 100 between the propeller 16 and the bottom 13 directly above and near the top of the propeller 16 functions as a damper, and the peak values ΔP2, ΔP3, ΔP4 of the high-order components F2, F3, F4 of the NZ frequency F1. Decreases, and only the peak value ΔP1 of the NZ frequency F1 remains at the same level as the peak value ΔP1 in FIG. 8B.
 図8Dに示す例では、気泡流100がプロペラ16に流入してプロペラ16の翼面上でのキャビテーションが増大しているため、NZ周波数F1におけるピーク値ΔP1が、図8Cに示す例(船体摩擦抵抗低減装置30Aは作動しているが気泡流100はプロペラ16に流入していない例)のピーク値ΔP1よりも増加している。また、NZ周波数F1の高次成分F2,F3,F4のピーク値ΔP2,ΔP3,ΔP4は、図8Cに示す例(船体摩擦抵抗低減装置30Aは作動しているが、気泡流100はプロペラ16に流入していない例)と同様に、気泡流100のダンパ機能により減衰している。 In the example shown in FIG. 8D, since the bubbly flow 100 flows into the propeller 16 and cavitation on the blade surface of the propeller 16 is increased, the peak value .DELTA.P1 at the NZ frequency F1 is shown in FIG. In the example where the drag reduction device 30A is in operation, but the bubbly flow 100 does not flow into the propeller 16, the peak value ΔP1 of the example is increased. The peak values ΔP2, ΔP3 and ΔP4 of the high-order components F2, F3 and F4 of the NZ frequency F1 are the example shown in FIG. 8C (the ship frictional resistance reduction device 30A is operating, but the bubble flow 100 corresponds to the propeller 16). The damper function of the bubbly flow 100 dampens the same as in the example of not flowing).
 判定部51Aには、予め設定されたアラームラインLaが記憶されている。アラームラインLaとは、変動圧ΔPがこのレベルを越えているとプロペラ16に気泡流100が流入している可能性が高いレベルのことである。したがって、判定部51Aは、図8Cに示すように変動圧ΔPがアラームラインLa以下の場合には、プロペラ16に気泡流100は流入していないと判断し、図8Dに示すように変動圧ΔPがアラームラインLaを越えた場合には、プロペラ16に気泡流100が流入していると判断する。
 シャット弁制御部(調整機構制御部)52Aは、第1実施形態のシャット弁制御部52と同様に構成されており、判定部51Aからプロペラ16に気泡流100が流入していない旨の情報を取得したときには、全てのシャット弁35を全開に制御し、判定部51Aからプロペラ16に気泡流100が流入している旨の情報を取得したときには、プロペラ16の正面前方に位置する気泡噴出部36Cに繋がる分岐供給管34のシャット弁35を全閉にする。
 この他の構成は第1実施形態と同様なので説明を省略する。
The alarm line La set in advance is stored in the determination unit 51A. The alarm line La is a level at which the bubble flow 100 is likely to flow into the propeller 16 when the fluctuation pressure ΔP exceeds this level. Therefore, when the fluctuation pressure ΔP is equal to or less than the alarm line La as shown in FIG. 8C, the determination unit 51A judges that the bubble flow 100 does not flow into the propeller 16 and changes the fluctuation pressure ΔP as shown in FIG. 8D. When it exceeds the alarm line La, it is determined that the bubbly flow 100 is flowing into the propeller 16.
The shut valve control unit (adjustment mechanism control unit) 52A is configured in the same manner as the shut valve control unit 52 of the first embodiment, and the information that the bubble flow 100 does not flow into the propeller 16 is determined from the determination unit 51A. When acquired, all the shut valves 35 are controlled to be fully open, and when information indicating that the bubble flow 100 is flowing into the propeller 16 is acquired from the determination unit 51A, the bubble ejection portion 36C located in front of the propeller 16 in front And shut the shutoff valve 35 of the branch supply pipe 34 connected thereto.
Since the other configuration is the same as that of the first embodiment, the description will be omitted.
  [3-2.作用・効果]
 本発明の第3実施形態としての船体摩擦抵抗低減装置30A及び船舶1Aによれば、プロペラ16への気泡100の流入により生じる振動を、圧力センサ41により変動圧ΔPとして直接的に検出するため、上記第1実施形態及び第2実施形態のように監視カメラ40を使用する場合よりも、精度良くプロペラ16への気泡流100の流入を検出することができる。つまり、監視カメラ40を使用した検出では、夜間のようにプロペラ16の周辺が暗い場合や水の透明度が低い場合には気泡流100の識別精度が低下してプロペラ16への気泡流100の流入の検出精度も低下する可能性があるが、変動圧ΔPに基づく検知であれば、このような場合でもプロペラ16への気泡流100の流入を精度良く検出することが可能となる。
[3-2. Action / Effect]
According to the hull friction resistance reduction device 30A and the ship 1A as the third embodiment of the present invention, the pressure sensor 41 directly detects the vibration caused by the inflow of the air bubble 100 into the propeller 16 as the fluctuation pressure ΔP. The inflow of the bubble flow 100 to the propeller 16 can be detected more accurately than in the case where the monitoring camera 40 is used as in the first and second embodiments. That is, in the detection using the monitoring camera 40, when the area around the propeller 16 is dark as in the nighttime or when the transparency of the water is low, the identification accuracy of the bubble flow 100 decreases and the bubble flow 100 flows into the propeller 16 The detection accuracy of H may also decrease. However, in the case of detection based on the fluctuating pressure ΔP, it is possible to accurately detect the inflow of the bubble flow 100 to the propeller 16 even in such a case.
  [3-3.その他]
 上記では、振動検出手段として、プロペラ16の鉛直上方に設置した圧力センサ41を使用したが、この圧力センサ41に替えて、プロペラ16の鉛直上方に設置した加速度センサを振動検出手段として使用してもよい。加速度センサを振動検出手段に使用する場合は、船体1の振動を検出するので、検出端を船外に露出させる必要がない。したがって、圧力センサ41を使用する場合のように船体に取り付け孔を加工することが不要となり、取り付けが容易となる。
 圧力センサ41の設置個所は、プロペラ16の厳格に鉛直上方でなくともよく、プロペラ16への気泡流100流入を変動圧として検出できる範囲で、プロペラ16の鉛直上方から左右前後に外れていてもよい。
[3-3. Other]
In the above, the pressure sensor 41 installed vertically above the propeller 16 was used as the vibration detection means, but instead of the pressure sensor 41, an acceleration sensor installed vertically above the propeller 16 is used as the vibration detection means It is also good. When the acceleration sensor is used as the vibration detection means, since the vibration of the hull 1 is detected, it is not necessary to expose the detection end to the outside. Therefore, as in the case of using the pressure sensor 41, it is not necessary to process the mounting hole on the hull, and the mounting becomes easy.
The location where the pressure sensor 41 is installed does not have to be strictly above the propeller 16 and vertically out of the vertical direction from the vertical upper side of the propeller 16 within a range where the inflow of the bubble flow 100 to the propeller 16 can be detected as a fluctuating pressure. Good.
 [4.第4実施形態]
 本発明の第4実施形態としての船体摩擦抵抗低減装置及び船舶について、図9,図10,図11A及び図11Bを参照して説明する。なお、上記の各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
 図9は、本発明の第4実施形態としての船舶1Bの要部構成を示す模式的な背面図である(舵17は省略)。
 図10は、本発明の第4実施形態に係る船体摩擦抵抗低減装置30Bの構成を模式図であって、制御装置50Bの制御構成を示すブロック図を含む。
 図11A及び図11Bは、本発明の第4実施形態に係る判定部51Bによる判定方法を説明するための模式図であって、横軸を船幅方向Yとし縦軸を変動圧ΔPとする座標上にプロペラ16上方の変動圧分布の一例を示す図である。座標上に、プロペラ16と気泡噴出部36C,36R,36Lとを、船幅方向Yに関する位置を横軸にあわせて仮想的に示す。
[4. Fourth embodiment]
A hull friction resistance reduction device and a ship as a fourth embodiment of the present invention will be described with reference to FIGS. 9, 10, 11A and 11B. In addition, about the component same as said each embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
FIG. 9 is a schematic rear view showing the main configuration of a boat 1B according to a fourth embodiment of the present invention (the rudder 17 is omitted).
FIG. 10 is a schematic view of a hull friction resistance reduction device 30B according to a fourth embodiment of the present invention, including a block diagram showing a control configuration of the control device 50B.
11A and 11B are schematic diagrams for explaining the determination method by the determination unit 51B according to the fourth embodiment of the present invention, in which coordinates in which the horizontal axis is the ship width direction Y and the vertical axis is the fluctuation pressure ΔP It is a figure which shows an example of the fluctuation pressure distribution above propeller 16 above. On the coordinates, the propeller 16 and the bubble jetting parts 36C, 36R, 36L are virtually shown with the position in the width direction Y aligned with the horizontal axis.
  [4-1.構成]
 本実施形態の船体摩擦抵抗低減装置30B及び船舶1Bは、第3実施形態の船体摩擦抵抗低減装置30A及び船舶1Aに対して、複数の圧力センサ(振動検出手段)41a~41gを使用してプロペラ16への気泡流100の流入を検出したものである。すなわち、第3実施形態では一つの圧力センサ41と判定部51Aとにより本発明の流入情報取得手段及び流入検出手段を構成したのに対し、本実施形態では、複数の圧力センサ41a~41gと判定部51Bとにより本発明の流入情報取得手段及び流入検出手段を構成している。
[4-1. Constitution]
The hull friction resistance reduction device 30B and the ship 1B of the present embodiment are propellers using a plurality of pressure sensors (vibration detection means) 41a to 41g with respect to the hull friction resistance reduction device 30A and the ship 1A of the third embodiment. The inflow of the bubbly flow 100 to 16 is detected. That is, while in the third embodiment the inflow information acquisition means and the inflow detection means of the present invention are configured by one pressure sensor 41 and the determination unit 51A, in the present embodiment, determination is made with a plurality of pressure sensors 41a to 41g. The inflow information acquisition means and the inflow detection means of the present invention are configured by the part 51B.
 具体的には、本実施形態の船舶1Bでは、図6Aに示す第3実施形態の圧力センサ41と同様に、側面視でプロペラ16の鉛直上方にそれぞれ設置された圧力センサ41a~41gが、図9及び図10に示すように、船幅方向Yに沿って複数設置されている。本実施形態では、プロペラ16の真上(鉛直上方)を含む船体10の略全幅に亘って圧力センサ圧力センサ41a~41gが並設されている。
 船体摩擦抵抗低減装置30Bは、図10に示すように、空気供給源31と、空気供給通路32と、流量調整弁33と、分岐供給管34と、シャット弁35と、気泡噴出部36C,36L,36Rと、前記の複数の圧力センサ41a~41gと、コントロールルーム20〔図1A参照〕に配置される制御装置50Bとを備える。
Specifically, in the ship 1B of the present embodiment, as in the pressure sensor 41 of the third embodiment shown in FIG. 6A, the pressure sensors 41a to 41g respectively installed vertically above the propeller 16 in side view As shown in FIG. 9 and FIG. 10, a plurality of sets are installed along the width direction Y of the ship. In the present embodiment, pressure sensor pressure sensors 41a to 41g are juxtaposed over substantially the entire width of the hull 10 including immediately above (vertically above) the propeller 16.
As shown in FIG. 10, the hull frictional resistance reduction device 30B includes the air supply source 31, the air supply passage 32, the flow rate adjustment valve 33, the branch supply pipe 34, the shut valve 35, and the bubble jetting parts 36C and 36L. , 36R, the plurality of pressure sensors 41a to 41g, and a control device 50B disposed in the control room 20 (see FIG. 1A).
 制御装置50Bは、複数の圧力センサ41a~41gの検出結果に基づいてプロペラ16に気泡が流入しているか否かを判定する判定部51Bと、判定部51Bの判定結果に基づいてシャット弁35の作動を制御するシャット弁制御部(調整機構制御部)52Bとを備える。
 判定部51Bは、各圧力センサ41a~41gから圧力Pを所定の周期で取得して、これらの圧力センサ41a~41gの各々について、変動圧ΔPの最大ピーク値ΔP7~ΔP13を求める。最大ピーク値とは、周波数スペクトルにおけるピーク値の中で最大のピーク値をいい、例えば、第3実施形態の説明で使用した図8B,図8C及び図8Dに示す例ではピーク値ΔP1が最大ピーク値となる。そして、判定部51Bは、予め記憶した各圧力センサ41a~41gの船幅方向Yに関する位置情報と最大ピーク値ΔP7~ΔP13とから、図11A及び図11Bに示すように、これらの複数の最大ピーク値ΔP7~ΔP13を補完して船幅方向Yに関するピーク分布Wpを求める。そして、判定部51Bは、このピーク分布WpのアラームラインLaを越えるアラーム領域Ra〔図11A及び図11Bに斜線を引いて示す〕を、プロペラ16に気泡流100が流入している領域としてシャット弁制御部52Bに出力する。
The control device 50B determines whether or not air bubbles are flowing into the propeller 16 based on the detection results of the plurality of pressure sensors 41a to 41g, and the control unit 50B determines the shut valve 35 based on the determination results of the determination unit 51B. And a shutoff valve control unit (adjustment mechanism control unit) 52B that controls the operation.
The determination unit 51B obtains the pressure P from each of the pressure sensors 41a to 41g at a predetermined cycle, and obtains the maximum peak value ΔP7 to ΔP13 of the fluctuation pressure ΔP for each of the pressure sensors 41a to 41g. The maximum peak value refers to the maximum peak value among the peak values in the frequency spectrum. For example, in the examples shown in FIGS. 8B, 8C and 8D used in the description of the third embodiment, the peak value ΔP1 is the maximum peak It becomes a value. Then, from the positional information on the width direction Y of each pressure sensor 41a to 41g and the maximum peak values ΔP7 to ΔP13, the determination unit 51B determines the plurality of maximum peaks as shown in FIGS. 11A and 11B. The peak distribution Wp in the width direction Y is obtained by complementing the values ΔP7 to ΔP13. Then, the determination unit 51B sets the alarm region Ra [shown hatched in FIGS. 11A and 11B] exceeding the alarm line La of the peak distribution Wp as the region where the bubble flow 100 is flowing into the propeller 16 and the shut valve. It outputs to the control part 52B.
 シャット弁制御部52Bでは、所定のシャット弁35を全閉にしてアラーム領域Raの正面前方にある気泡噴出ユニット36-uを停止させ、その他の気泡噴出ユニット36-uは作動させる。図11Aに示す例では、アラーム領域Raの正面前方にある(つまり気泡100が流入したプロペラ16の正面前方にある)気泡噴出ユニット36C-1,36C-2からの気泡100の噴出を停止させ、その他の気泡噴出ユニット36R-1,36R-2,36L-1,36L-2からは気泡100を噴射させる。図11Bに示す例では、アラーム領域Raの正面前方にある(つまり気泡100が流入したプロペラ16の正面前方にある)気泡噴出ユニット36C-2を停止させ、その他の気泡噴出ユニット36R-1,36R-2,36C-1,36L-1,36L-2は動作させる。 In the shut valve control unit 52B, the predetermined shut valve 35 is fully closed to stop the bubble jetting unit 36-u in front of the alarm area Ra, and the other bubble jetting units 36-u are operated. In the example shown in FIG. 11A, the ejection of the air bubble 100 from the air bubble ejection units 36C-1 and 36C-2 located in front of the alarm area Ra (that is, in front of the propeller 16 where the air bubbles 100 flowed) is stopped Bubbles 100 are jetted from the other bubble jetting units 36R-1, 36R-2, 36L-1, and 36L-2. In the example shown in FIG. 11B, the bubble ejection unit 36C-2 located in front of the alarm area Ra (ie, in front of the propeller 16 into which the air bubbles 100 flow) is stopped, and the other bubble ejection units 36R-1 and 36R -2, 36C-1, 36L-1, 36L-2 are operated.
 なお、ピーク分布Wpやアラーム領域Raを使用せずに、判定部51Bは、変動圧ΔPの最大ピーク値ΔP7~ΔP13がアラームラインLaを越える圧力センサ41a~41gをシャット弁制御部52Bに出力し、シャット弁制御部52Bは、アラームラインLaを越える圧力センサ41a~41gの正面前方にある気泡噴出ユニット36-uを停止させるようにしても良い。
 なお、アラーム領域Raの正面前方にある気泡噴出ユニット36-uとは、詳しくは、平面視においてアラーム領域Raの正面前方にある気泡噴出ユニット36-u、別の表現をすれば、船幅方向Yに関して少なくとも一部がアラーム領域Raに重なる気泡噴出ユニット36-uをいう。同様に、アラームラインLaを越える圧力センサ41a~41gの正面前方にある気泡噴出ユニット36-uとは、詳しくは、平面視において、アラームラインLaを越える圧力センサ41a~41gの正面前方にある気泡噴出ユニット36-u、別の表現をすれば、アラームラインLaを越える圧力センサ41a~41gに、船幅方向Yに関して少なくとも一部が重なる気泡噴出ユニット36-uをいう。
 なお、第3実施形態と同様に圧力センサに替えて加速センサを使用してもよい。
 この他の構成は第3実施形態と同様なので説明を省略する。
The determination unit 51B outputs the pressure sensors 41a to 41g whose maximum peak values ΔP7 to ΔP13 of the fluctuation pressure ΔP exceed the alarm line La to the shut valve control unit 52B without using the peak distribution Wp or the alarm area Ra. The shut valve control unit 52B may stop the air bubble ejection unit 36-u in front of and in front of the pressure sensors 41a to 41g exceeding the alarm line La.
Note that the air bubble ejection unit 36-u located in front of the alarm area Ra in detail is the air bubble ejection unit 36-u located in front of the alarm area Ra in plan view. This refers to a bubble jetting unit 36-u at least a part of which overlaps with the alarm area Ra with respect to Y. Similarly, the air bubble ejection unit 36-u located in front of the pressure sensors 41a to 41g exceeding the alarm line La specifically refers to air bubbles located in front of the pressure sensors 41a to 41g exceeding the alarm line La in plan view. In other words, the ejection unit 36-u refers to a bubble ejection unit 36-u at least partially overlapping in the width direction Y with the pressure sensors 41a to 41g crossing the alarm line La.
As in the third embodiment, an acceleration sensor may be used instead of the pressure sensor.
Since the other configuration is the same as that of the third embodiment, the description will be omitted.
  [4-2.作用・効果]
 本発明の第4実施形態としての船体摩擦抵抗低減装置30B及び船舶1Bによれば、第3実施形態と同様の効果が得られる他、変動圧ΔPのピーク分布Wpに応じて気泡100を停止すべき気泡噴出ユニット36-uをより細かく設定することができ、一層効果的にプロペラ16への気泡100の流入によるリスクを抑制しつつ、船体1の摩擦抵抗を低減することができる。
[4-2. Action / Effect]
According to the hull friction resistance reduction device 30B and the vessel 1B as the fourth embodiment of the present invention, the same effect as the third embodiment can be obtained, and the air bubble 100 is stopped according to the peak distribution Wp of the fluctuating pressure ΔP. The bubble ejection unit 36-u to be set can be set more finely, and the friction resistance of the hull 1 can be reduced while suppressing the risk due to the inflow of the bubbles 100 to the propeller 16 more effectively.
  [4-3.その他]
 (1)上記では、アラーム領域Raの前方にある気泡噴出ユニットの作動を停止させ、或いは、アラームラインLaを越える圧力センサ41a~41gの正面前方にある気泡噴出ユニット36-uを停止するようにしたが、アラーム領域Raが発生する場合や、アラームラインLaを越える圧力センサが一つでも存在する場合には、プロペラ16の前方にある気泡噴出部36C(気泡噴出ユニット36C-1,36C-2)を停止するようにしてもよい。
[4-3. Other]
(1) In the above, the operation of the air bubble ejection unit in front of the alarm area Ra is stopped, or the air bubble ejection unit 36-u in front of the front of the pressure sensors 41a to 41g exceeding the alarm line La is stopped. However, when the alarm area Ra occurs or when there is only one pressure sensor that exceeds the alarm line La, the air bubble ejection portion 36C (air bubble ejection unit 36C-1, 36C-2 located in front of the propeller 16) ) May be stopped.
 (2)上記第4実施形態では、図9に示すように、プロペラ16の鉛直上方に位置する圧力センサ41c,41d,41eに加えて、船幅方向Wでプロペラ16よりも外側に位置する圧力センサ41a,41b,41f,41gを使用した。これに対し、プロペラ16の鉛直上方に位置する圧力センサ41c,41d,41eだけを設置してもよい。
 この場合、判定部51Bは、これらの圧力センサ41c,41d,41eの検出結果から求めた最大ピーク値に基づいて気泡流100の流入を判定し、この判定結果をシャット弁制御部52Bに出力する。或いは、判定部51Bは、変動圧ΔPの最大ピーク値がアラームラインLaを越える圧力センサ41c~41eをシャット弁制御部52Bに出力する。
(2) In the fourth embodiment, as shown in FIG. 9, in addition to the pressure sensors 41c, 41d and 41e located vertically above the propeller 16, the pressure located outside the propeller 16 in the width direction W Sensors 41a, 41b, 41f and 41g were used. On the other hand, only the pressure sensors 41c, 41d and 41e located vertically above the propeller 16 may be installed.
In this case, the determination unit 51B determines the inflow of the bubble flow 100 based on the maximum peak value obtained from the detection results of the pressure sensors 41c, 41d, and 41e, and outputs the determination result to the shutoff valve control unit 52B. . Alternatively, the determination unit 51B outputs, to the shutoff valve control unit 52B, the pressure sensors 41c to 41e whose maximum peak value of the fluctuation pressure ΔP exceeds the alarm line La.
 [5.その他]
 (1)変形例1
 上記の第1実施形態及び第2実施形態において、コントロールルーム20に設置したモニタにより監視カメラ40により撮像された画像をオペレータが見られるようにしてもよく、さらに、監視カメラ40の撮像方向をコントロールルーム20から遠隔操作により調整できるようにしてもよい。
 また、モニタで監視していたオペレータが、「気泡流100がプロペラ16に流入した又は気泡流100がプロペラ16に流入するおそれがあるとの判断」(以下、気泡流入判断という)を行ったときに、オペレータのマニュアル操作により気泡噴出部36を停止させるマニュアルスイッチを設けてもよい。この場合、マニュアルスイッチが本発明の流入情報取得手段に相当する。
[5. Other]
(1) Modification 1
In the first embodiment and the second embodiment described above, the operator may be able to view an image captured by the monitoring camera 40 by the monitor installed in the control room 20, and further, control the imaging direction of the monitoring camera 40 The adjustment may be made from the room 20 by remote control.
In addition, when the operator who was monitoring by the monitor performs “determination that the bubble flow 100 has flowed into the propeller 16 or the bubble flow 100 may have flow into the propeller 16” (hereinafter referred to as bubble flow determination) Alternatively, a manual switch may be provided to stop the bubble jetting unit 36 by the manual operation of the operator. In this case, the manual switch corresponds to the inflow information acquisition means of the present invention.
 (2)変形例2
 上記各実施形態では、判断部51,51A,51Bが気泡流入判断を行ったときには、気泡噴出部36Cからの気泡100の噴出量を通常時よりも減少させる一態様として、シャット弁35を全閉にして気泡噴出部36Cによる気泡100の噴出を停止した(換言すれば本発明の調整機構をシャット弁35により構成した)が、気泡噴出部36Cからの気泡100の噴出量を通常時よりも減少させる態様は、これに限定されない。例えば、本発明の調整機構を、シャット弁35に替えて連続的又は段階的に開度を調節可能な調節弁により構成し、判断部51,51A,51Bが気泡流入判断を行った場合には、調節弁の開度を通常時(判断部51,51A,51Bが気泡流入判断を行わなかった場合)よりも開度を絞るようにしてもよい。この場合、調節弁の開度を絞った後も、判断部51,51A,51Bが、依然として気泡流入判断を行った場合には、さらに調節弁の開度を絞るようにしてもよい。
(2) Modification 2
In each of the above embodiments, the shut valve 35 is fully closed as one mode of reducing the ejection amount of the bubble 100 from the bubble ejection portion 36C compared to the normal time when the judging portions 51, 51A, 51B make the bubble inflow judgment. And the ejection of the air bubble 100 by the air bubble ejection portion 36C is stopped (in other words, the adjustment mechanism of the present invention is configured by the shut valve 35), but the ejection amount of the air bubble 100 from the The aspect to which it is made to be not limited to this. For example, when the adjustment mechanism of the present invention is replaced by the shutoff valve 35 and constituted by a control valve capable of adjusting the opening degree continuously or in stages, the judgment units 51, 51A, 51B make bubble inflow judgment. The opening degree of the control valve may be set smaller than that at the normal time (when the judgment units 51, 51A, 51B do not make the bubble inflow judgment). In this case, even if the determination units 51, 51A, and 51B still make the bubble inflow determination even after the opening degree of the control valve is narrowed, the opening degree of the control valve may be further narrowed.
 (3)変形例3
 上記各実施形態では、判断部51,51A,51Bが気泡流入判断を行った場合、気泡噴出部36Cについてだけ気泡100の噴出を停止したが、気泡噴出部36Cの気泡100の噴出停止(又は噴出量減少)と共に気泡噴出部36L,気泡噴出部36Rの少なくとも一方について気泡100の噴出停止(又は噴出量減少)を実施するようにしてもよい。
(3) Modification 3
In the above embodiments, when the judgment units 51, 51A and 51B make the bubble inflow judgment, the ejection of the air bubbles 100 is stopped only for the air bubble ejection portion 36C, but the ejection of the air bubbles 100 in the air bubble ejection portion 36C is stopped (or the ejection In addition to the volume reduction), the ejection stop (or the ejection amount reduction) of the bubble 100 may be performed on at least one of the bubble ejection portion 36L and the bubble ejection portion 36R.
 或いは、気泡噴出部36Cの気泡100の噴出停止又は噴出量減少を実施しても、判断部51,51A,51Bが、依然として気泡流入判断を行った場合(プロペラ16への気泡100の流入が解消されなかった場合)は、追加的に、気泡噴出部36L,気泡噴出部36Rの少なくとも一方について、気泡100の噴出停止又は噴出量減少を実施するようにしてもよい。または、判断部51,51A,51Bが継続して気泡流入判断を行う場合には、気泡噴出部36C,気泡噴出部36L,気泡噴出部36Rの順(又は、気泡噴出部36C,気泡噴出部36R,気泡噴出部36Lの順)に気泡100の噴出停止又は噴出量減少を順次追加していくようにしてもよい。 Alternatively, even if the ejection stop or the ejection amount reduction of the air bubble 100 of the air bubble injection portion 36C is performed, if the judging portions 51, 51A, 51B still make the air bubble inflow judgment (inflow of the air bubble 100 into the propeller 16 is eliminated In the case of not being performed, the ejection stop or the ejection amount reduction of the bubble 100 may be additionally performed for at least one of the bubble ejection portion 36L and the bubble ejection portion 36R. Alternatively, in the case where the judgment units 51, 51A, 51B continuously perform the bubble inflow judgment, the order of the bubble ejection portion 36C, the bubble ejection portion 36L, and the bubble ejection portion 36R (or the bubble ejection portion 36C, the bubble ejection portion 36R , And may be sequentially added to the bubble ejection portion 36L in this order).
 (4)変形例4
 本変形例について図12A及び図12Bを参照して説明する。
 図12A及び図12Bは、本変形例の船舶の構成を示す模式な底面図である。なお、各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
 上記各実施形態では、船舶1として、プロペラ16をセンターラインCL上に一基設けたものを例示したが、本発明はこれに限定されず、例えば図12A及び図12Bに示すようなセンターラインCLの両外側にプロペラ16L,16Rをそれぞれ設けた船舶1C,1Dにも使用することができる。
 図12Aに示す船舶1Cでは、船底13の後部が、後部13L,13Rの二つに分かれており、これらの後部13L,13Rにプロペラ16L,16Rがそれぞれ設置されている。これに対し、図12Bに示す船舶1Dでは、プロペラ16L,16Rが、単一の船底13の後部の左右両側(幅方向両側)から後方に突出して設置されている。
(4) Modification 4
This modification will be described with reference to FIGS. 12A and 12B.
12A and 12B are schematic bottom views showing the configuration of the ship of the present modification. The same components as those in each embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In each of the above-mentioned embodiments, although one propeller 16 is provided on the center line CL as the ship 1 is illustrated, the present invention is not limited to this, for example, the center line CL as shown in FIGS. 12A and 12B. The propellers 16L and 16R can be used on the vessels 1C and 1D provided on both sides of the propellers 16L and 16R, respectively.
In the vessel 1C shown in FIG. 12A, the rear portion of the bottom 13 is divided into two rear portions 13L and 13R, and propellers 16L and 16R are respectively installed on these rear portions 13L and 13R. On the other hand, in the ship 1D shown in FIG. 12B, the propellers 16L and 16R are installed so as to project rearward from the left and right sides (both sides in the width direction) of the rear of the single bottom 13.
 図12A及び図12Bに示す例では、気泡流の流入の検出(ここでは、監視カメラ40を使用した流入情報取得手段による検出であるがこれに限定されるものではなく、圧力センサや加速度センサでもよい)及び気泡噴出部36C,36L,36Rの制御が各プロペラ16L,16Rについて個別に行われ、例えば、左側のプロペラ16Lについて気泡流の流入が検出された場合には、この左側のプロペラ16Lの正面前方にある気泡噴出ユニット36Lによる気泡100の噴出停止(又は噴出量減少)が行われ、右側のプロペラ16Rについて気泡流の流入が検出された場合には、この右側のプロペラ16Rの正面前方にある気泡噴出ユニット36Rによる気泡100の噴出停止(又は噴出量減少)が行われる。 In the example shown in FIG. 12A and FIG. 12B, detection of inflow of bubble flow (here, detection by inflow information acquisition means using the monitoring camera 40 is not limited thereto, and pressure sensors and acceleration sensors are also used. Control of the air bubble jet parts 36C, 36L, 36R is performed individually for each of the propellers 16L, 16R, for example, when the inflow of the bubble flow is detected for the left propeller 16L, When the ejection stop (or the ejection amount decrease) of the air bubble 100 is performed by the air bubble ejection unit 36L located in the front on the front, and the inflow of the air bubble flow is detected for the propeller 16R on the right, The ejection stop (or the ejection amount reduction) of the bubble 100 by a certain bubble ejection unit 36R is performed.
 さらに、船体にプロペラ16が船幅方向Yに沿って3基以上設置される場合には、各々のプロペラ16に対して気泡流流入検出手段を設け、気泡流流入検出手段によりプロペラ16への気泡の流入が検出された場合には、気泡の流入が検出されたプロペラ16の正面前方にある気泡噴出ユニット36による気泡100の噴出停止(又は噴出量減少)が行われるようにすればよい。 Furthermore, when three or more propellers 16 are installed on the hull along the ship width direction Y, bubble flow inflow detection means are provided for each propeller 16, and air bubbles in the propeller 16 are detected by the bubble flow inflow detection means. When the inflow of the air bubble is detected, the ejection stop (or the ejection amount decrease) of the air bubble 100 by the air bubble ejection unit 36 located in front of the front of the propeller 16 where the inflow of air bubbles is detected may be performed.
 (5)変形例5
 本変形例について図13A及び図13Bを参照して説明する。
 図13A及び図13Bは、本変形例の船舶の要部である船尾側の構成を示す模式な底面図である。なお、各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
 上記各実施形態では、船舶1として、プロペラ16をセンターラインCL上に一基設けたものを例示したが、本発明はこれに限定されず、例えば図13A及び図13Bに示すようなセンターラインCL上に(又はセンターラインCLに沿った複数のライン上にそれぞれ)、複数(本変形例では2つ)のプロペラを前後に設けた船舶1E,1Fにも使用することができる。
 図13Aに示す船舶1Eでは、プロペラ16の後方にポッド推進器18が設けられている。ポッド推進器18は、前方のプロペラ16に対向するようにプロペラ18aを備えており、内蔵した電動機によりこのプロペラ16を駆動して推進力を発生させる。ポッド推進器18のプロペラ18aは、プロペラ16と共にセンターラインCL上に配置されている。
 図13Bに示す船舶1Fでは、プロペラ16A,16BがセンターラインCL上で前後に設けられており、内軸及び外軸からなる駆動軸によりこれらのプロペラ16A,16Bは相互に反対方向に回転駆動する。
(5) Modification 5
This modification will be described with reference to FIGS. 13A and 13B.
13A and 13B are schematic bottom views showing the configuration of the stern side which is the main part of the ship of the present modification. The same components as those in each embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In each of the above-mentioned embodiments, although one propeller 16 is provided on the center line CL as the ship 1 is exemplified, the present invention is not limited to this, for example, the center line CL as shown in FIGS. 13A and 13B. It can also be used for ships 1E and 1F provided with a plurality of (two in this modification) propellers on the front (or on a plurality of lines along the center line CL).
In the ship 1E shown in FIG. 13A, a pod pusher 18 is provided at the rear of the propeller 16. The pod propulsion unit 18 is provided with a propeller 18 a so as to face the front propeller 16, and the propeller 16 is driven by the built-in electric motor to generate propulsion. The propeller 18 a of the pod propeller 18 is disposed on the center line CL together with the propeller 16.
In the ship 1F shown in FIG. 13B, propellers 16A and 16B are provided on the center line CL back and forth, and the propellers 16A and 16B are rotationally driven in opposite directions from each other by a drive shaft consisting of an inner shaft and an outer shaft. .
 図13A及び図13Bに示す例では、気泡流の流入の検出(ここでは、監視カメラ40を使用した流入情報取得手段による検出であるがこれに限定されるものではなく、圧力センサや加速度センサでもよい)が前方のプロペラ16,16Aに対して行われているが、2つのプロペラの少なくとも一方に対して行われればよく、後方のプロペラ16B,18aに対して気泡流の流入の検出を行うようにしてもよい。 In the example shown in FIG. 13A and FIG. 13B, detection of inflow of bubble flow (here, detection by inflow information acquiring means using the monitoring camera 40 is not limited to this, and a pressure sensor or an acceleration sensor is also used) Is performed for the forward propellers 16 and 16A, but may be performed for at least one of the two propellers so that detection of inflow of bubble flow is performed for the rearward propellers 16B and 18a. You may
 (6)上記変形例(4),(5)に例示されるようにプロペラ16の配置やプロペラ16の設置数は、何ら限定されない。 (6) As exemplified in the above-described modified examples (4) and (5), the arrangement of the propeller 16 and the number of the propellers 16 installed are not limited at all.
 (7)上記第1実施形態及び第2実施形態では、2つの監視カメラ40により取得した画像情報に基づいて、プロペラ16の正面前方の気泡噴出ユニット36C-1,36C-2を一体に制御したが、各監視カメラ40により取得した画像情報毎に気泡噴出ユニット36C-1,36C-2を別々に制御するようにしてもよい。
 つまり、プロペラ16の右舷15側の監視カメラ40の画像情報に基づいてプロペラ16への気泡100の流入が検出された場合には、右舷15側の気泡噴出ユニット36C-1を停止させ、プロペラ16の左舷14側の監視カメラ40の画像情報に基づいてプロペラ16への気泡100の流入が検出された場合には、左舷14側の気泡噴出ユニット36C-2を停止させるようにしてもよい。
 この場合、例えば、右舷15側の監視カメラ40の画像情報に基づいてプロペラ16への気泡100の流入が検出される一方、左舷14側の監視カメラ40の画像情報に基づいてプロペラ16への気泡100の流入が検出されない場合には、右舷15側の気泡噴出ユニット36C-1を停止させ、左舷14側の気泡噴出ユニット36C-2を作動させることとなる。
(7) In the first and second embodiments, the bubble jetting units 36C-1 and 36C-2 in front of the front of the propeller 16 are integrally controlled based on the image information acquired by the two monitoring cameras 40. However, the bubble jetting units 36C-1 and 36C-2 may be separately controlled for each piece of image information acquired by each monitoring camera 40.
That is, when the inflow of the air bubble 100 to the propeller 16 is detected based on the image information of the monitoring camera 40 on the right eye 15 side of the propeller 16, the air bubble ejection unit 36 C-1 on the right eye 15 side is stopped and the propeller 16 is In the case where the inflow of the air bubble 100 into the propeller 16 is detected based on the image information of the monitoring camera 40 on the left side 14 side, the air bubble ejection unit 36C-2 on the left side 14 may be stopped.
In this case, for example, the inflow of the air bubble 100 into the propeller 16 is detected based on the image information of the monitoring camera 40 on the starboard side 15, while the air bubble to the propeller 16 is detected based on the image information of the monitoring camera 40 on the port side 14 When the inflow of 100 is not detected, the air bubble ejection unit 36C-1 on the starboard 15 side is stopped, and the air bubble ejection unit 36C-2 on the port 14 side is operated.
 1,1A,1B,1C,1D,1E,1F 船舶
 10 船体
 11 船首
 12 船尾
 13 船底
 16,16A,16B,16L,16R プロペラ
 18 ポッド推進器
 18a ポッド推進器18のプロペラ
 20 コントロールルーム
 30,30A,30B 船体摩擦抵抗低減装置
 32 空気供給通路
 34 分岐供給管
 35 シャット弁(調整機構)
 36C,36L,36R 気泡噴出部
 36C-1~36R-2 気泡噴出ユニット
 40 監視カメラ(撮像装置)
 40a ブラケット(支持部材)
 41,41a~41g 圧力センサ(振動検出手段)
 411 検出端
 50,50A,50B 制御装置
 51,51A,51B 判定部
 52,52A,52B シャット弁制御部(調整機構制御部)
 100 気泡流
 CL 船体1,1A,1B,1C,1D,1E,1Fのセンターライン
 
1, 1A, 1B, 1C, 1D, 1E, 1F Vessel 10 Hull 11 Bow 12 Stern 13 Bottom 16,16A, 16B, 16L, 16R Propeller 18 Pod Propeller 18a Pod Propeller 18 Propeller 20 Control Room 30, 30A, 30B Hull friction drag reduction device 32 air supply passage 34 branch supply pipe 35 shut valve (adjustment mechanism)
36C, 36L, 36R bubble ejection part 36C-1 to 36R-2 bubble ejection unit 40 surveillance camera (imaging device)
40a Bracket (supporting member)
41, 41a to 41 g Pressure sensor (vibration detection means)
411 Detection end 50, 50A, 50B Control device 51, 51A, 51B Judgment unit 52, 52A, 52B Shut valve control unit (adjustment mechanism control unit)
100 Bubbly Flow CL Centerline for Hull 1, 1A, 1B, 1C, 1D, 1E, 1F

Claims (16)

  1.  船底においてプロペラよりも前方に船体幅方向に沿って複数設けられ、気泡を噴出する気泡噴出ユニットと、前記気泡噴出ユニットの気泡噴出量を調整する調整機構と、制御装置とを備えた、船体摩擦抵抗低減装置であって、
     前記プロペラに前記気泡が流入したこと又は前記プロペラに前記気泡が流入するおそれがあることを示す気泡流入情報を取得する流入情報取得手段を備え、
     前記制御装置は、前記調整機構の作動を制御する調整機構制御部を有し、
     前記調整機構制御部は、
     前記流入情報取得手段から前記気泡流入情報を取得しない場合には、前記複数の気泡噴出ユニットのそれぞれから所定量の気泡が噴射されるように前記調整機構の作動を制御する一方、
     前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、少なくとも、前記プロペラの正面前方に配置された気泡噴出ユニットについて、前記気泡の噴出量を前記所定量よりも減少させるように前記調整機構の作動を制御する
    ことを特徴とする、船体摩擦抵抗低減装置。
    A plurality of bubble discharge units are provided along the width direction of the ship ahead of the propeller at the ship bottom, and include a control unit and an adjustment mechanism that adjusts the amount of bubble discharge of the bubble discharge unit, and a control device. A resistance reduction device,
    The propeller includes an inflow information acquisition unit that acquires bubble inflow information indicating that the bubble has flowed into the propeller or that the bubble may flow into the propeller.
    The control device includes an adjustment mechanism control unit that controls the operation of the adjustment mechanism.
    The adjustment mechanism control unit
    When the air bubble inflow information is not acquired from the inflow information acquisition means, the operation of the adjustment mechanism is controlled so that a predetermined amount of air bubbles are ejected from each of the plurality of air bubble ejection units,
    In the case where the bubble inflow information is acquired from the inflow information acquiring means, at least the bubble ejection unit of the plurality of bubble ejection units arranged in front of the propeller in front of the propeller, A hull friction resistance reduction device characterized by controlling operation of said adjustment mechanism so that it may reduce rather than a fixed quantity.
  2.  前記流入情報取得手段は、前記プロペラへの前記気泡の流入を検出する流入検出手段である
    ことを特徴とする、請求項1に記載の船体摩擦抵抗低減装置。
    The hull friction resistance reduction device according to claim 1, wherein the inflow information acquisition means is an inflow detection means for detecting the inflow of the air bubbles into the propeller.
  3.  前記調整機構制御部は、前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、少なくとも、前記プロペラの正面前方に配置された気泡噴出ユニットについて、前記気泡の噴出を停止させる
    ことを特徴とする、請求項1又は2に記載の船体摩擦抵抗低減装置。
    When the adjustment mechanism control unit acquires the air bubble inflow information from the inflow information acquisition unit, at least the air bubble ejection unit disposed in front of the propeller in the plurality of air bubble ejection units is the air bubble injection unit. The hull friction resistance reduction device according to claim 1 or 2, characterized in that ejection of air bubbles is stopped.
  4.  前記調整機構制御部は、前記流入情報取得手段から前記気泡流入情報を取得した場合には、前記複数の気泡噴出ユニットの内、前記プロペラの正面前方の気泡噴出ユニットだけ、前記気泡の噴出量を前記所定量よりも減少させる
    ことを特徴とする、請求項1~3の何れか一項に記載の船体摩擦抵抗低減装置。
    When the adjustment mechanism control unit acquires the air bubble inflow information from the inflow information acquisition unit, only the air bubble ejection unit in front of the propeller among the plurality of air bubble ejection units is the ejection amount of the air bubbles. The hull friction resistance reduction device according to any one of claims 1 to 3, wherein the reduction amount is smaller than the predetermined amount.
  5.  前記流入検出手段は、
     前記プロペラを撮像する撮像装置と、
     前記制御装置に備えられ、前記撮像装置により撮像された画像情報に基づいて、前記プロペラへ前記気泡が流入しているか否かの判定を行う判定部とを備えた
    ことを特徴とする、請求項2、又は、請求項2を引用する請求項3又は請求項4に記載の船体摩擦抵抗低減装置。
    The inflow detection means is
    An imaging device for imaging the propeller;
    The control device is provided with a determination unit that determines whether the air bubble is flowing into the propeller based on the image information captured by the imaging device. The hull friction resistance reduction device according to claim 3 or 4 which cites 2 or claim 2.
  6.  前記撮像装置は、前記プロペラよりも前方において前記船底に直接取り付けられた
    ことを特徴とする、請求項5に記載の船体摩擦抵抗低減装置。
    6. The hull friction resistance reduction device according to claim 5, wherein the imaging device is directly attached to the bottom of the boat in front of the propeller.
  7.  前記撮像装置は、前記プロペラの真横に配置された
    ことを特徴とする、請求項5に記載の船体摩擦抵抗低減装置。
    6. The hull friction resistance reduction device according to claim 5, wherein the imaging device is disposed just beside the propeller.
  8.  前記撮像装置は、前記プロペラを前記船体幅方向両側から挟むようにして一対に配置された
    ことを特徴とする、請求項5~7の何れか一項に記載の船体摩擦抵抗低減装置。
    The hull friction resistance reduction device according to any one of claims 5 to 7, wherein the imaging devices are arranged in a pair so as to sandwich the propellers from both sides in the width direction of the hull.
  9.  前記流入検出手段は、
     前記プロペラの振動又は振動に相関するパラメータを検出する振動検出手段と、
     前記制御装置に備えられ、前記振動検出手段の検出情報に基づいて、前記プロペラへ前記気泡が流入しているか否かの判定を行う判定部とを備えた
    ことを特徴とする、請求項2、又は、請求項2を引用する請求項3又は請求項4に記載の船体摩擦抵抗低減装置。
    The inflow detection means is
    Vibration detection means for detecting a vibration or a parameter correlated with the vibration of the propeller;
    3. The apparatus according to claim 2, further comprising: a determination unit provided in the control device to determine whether the air bubble is flowing into the propeller based on the detection information of the vibration detection means. Or, the hull friction resistance reduction device according to claim 3 or 4 which refers claim 2.
  10.  前記振動検出手段が、前記船体幅方向に沿って複数設けられ、
     前記判定部は、前記複数の振動検出手段の各検出情報に基づいて前記判定を行う
    ことを特徴とする、請求項9に記載の船体摩擦抵抗低減装置。
    A plurality of the vibration detection means are provided along the hull width direction;
    10. The hull friction resistance reduction device according to claim 9, wherein the determination unit makes the determination based on detection information of the plurality of vibration detection means.
  11.  前記複数の振動検出手段の内、前記判定部により、前記検出情報に基づいて前記プロペラへ前記気泡が流入していると判定された前記振動検出手段があった場合には、前記調整機構制御部は、少なくとも、前記気泡が流入していると判定された前記振動検出手段の前方の気泡噴出ユニットについて、前記気泡の噴出量を前記所定量よりも減少させる
    ことを特徴とする、請求項10に記載の船体摩擦抵抗低減装置。
    Among the plurality of vibration detection means, when there is the vibration detection means determined by the determination unit that the air bubbles are flowing into the propeller based on the detection information, the adjustment mechanism control unit 11. The apparatus according to claim 10, characterized in that, for at least a bubble jetting unit in front of the vibration detecting means determined that the bubble is flowing, the amount of jetting of the bubble is reduced more than the predetermined amount. The hull friction resistance reduction device of description.
  12.  前記振動検出手段は、少なくとも検出端を、前記プロペラの上方において船外に露出させた圧力センサである
    ことを特徴とする、請求項9~11の何れか一項に記載の船体摩擦抵抗低減装置。
    The ship body frictional resistance reduction device according to any one of claims 9 to 11, wherein the vibration detection means is a pressure sensor in which at least a detection end is exposed to the outside of the propeller above the propeller. .
  13.  前記振動検出手段は、前記プロペラの上方において船内に配置された加速度センサである
    ことを特徴とする、請求項9~11の何れか一項に記載の船体摩擦抵抗低減装置。
    The hull friction resistance reduction device according to any one of claims 9 to 11, wherein the vibration detection means is an acceleration sensor disposed in the ship above the propeller.
  14.  前記プロペラは、前記船体幅方向で中央に設けられており、前記正面前方の気泡噴出ユニットが、前記船体幅方向で中央に配置された
    ことを特徴とする、請求項1~13の何れか一項に記載の船体摩擦抵抗低減装置。
    14. The propeller according to claim 1, wherein the propeller is provided at the center in the width direction of the hull, and the air bubble jetting unit at the front of the front is disposed at the center in the width direction of the hull. The hull friction resistance reduction device according to Item.
  15.  前記プロペラは、前記船体幅方向に沿って複数並設されており、前記複数のプロペラの正面前方には前記気泡噴出ユニットがそれぞれ配置され、前記複数のプロペラのそれぞれに前記流入情報取得手段が備えられた
    ことを特徴とする、請求項1~13の何れか一項に記載の船体摩擦抵抗低減装置。
    A plurality of the propellers are arranged in parallel along the hull width direction, the air bubble ejection units are respectively disposed in front of the plurality of propellers, and the inflow information acquiring unit is provided in each of the plurality of propellers. The hull friction resistance reduction device according to any one of claims 1 to 13, characterized in that
  16.  請求項1~15の何れか一項に記載の船体摩擦抵抗低減装置を備えた
    ことを特徴とする、船舶。
     
    A vessel comprising the hull friction resistance reduction device according to any one of claims 1 to 15.
PCT/JP2017/002481 2016-03-31 2017-01-25 Hull frictional resistance reduction device and ship WO2017169030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187020105A KR102099523B1 (en) 2016-03-31 2017-01-25 Hull friction resistance reduction device and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071335 2016-03-31
JP2016071335A JP6665012B2 (en) 2016-03-31 2016-03-31 Hull friction resistance reduction device and ship

Publications (1)

Publication Number Publication Date
WO2017169030A1 true WO2017169030A1 (en) 2017-10-05

Family

ID=59963003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002481 WO2017169030A1 (en) 2016-03-31 2017-01-25 Hull frictional resistance reduction device and ship

Country Status (3)

Country Link
JP (1) JP6665012B2 (en)
KR (1) KR102099523B1 (en)
WO (1) WO2017169030A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477482B1 (en) * 2018-09-05 2022-12-13 삼성중공업 주식회사 Resistance reduction apparatus
KR20220141133A (en) 2021-04-12 2022-10-19 주식회사 번영중공업 Aluminium boat for testing of wind resist by wind turbine blade
WO2023191096A1 (en) * 2022-03-31 2023-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Ship hull frictional resistance reducing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137891U (en) * 1986-02-26 1987-08-31
JP2004188993A (en) * 2002-12-06 2004-07-08 Tokai Univ Surface friction reducing method for hull
JP2009248831A (en) * 2008-04-08 2009-10-29 National Maritime Research Institute Bubble entrainment preventing device for ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604736B2 (en) 2008-04-01 2014-10-15 独立行政法人海上技術安全研究所 Ship frictional resistance reduction device
KR20120054118A (en) * 2010-11-19 2012-05-30 현대중공업 주식회사 Air-cavity vessel for preventing propeller cavitation
JP2014012443A (en) * 2012-07-04 2014-01-23 Japan Marine United Corp Frictional resistance reducing ship
KR20140145775A (en) * 2013-06-14 2014-12-24 삼성중공업 주식회사 Air lubrication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137891U (en) * 1986-02-26 1987-08-31
JP2004188993A (en) * 2002-12-06 2004-07-08 Tokai Univ Surface friction reducing method for hull
JP2009248831A (en) * 2008-04-08 2009-10-29 National Maritime Research Institute Bubble entrainment preventing device for ship

Also Published As

Publication number Publication date
JP6665012B2 (en) 2020-03-13
KR102099523B1 (en) 2020-04-09
JP2017178180A (en) 2017-10-05
KR20180091916A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US8939104B2 (en) Lateral thruster for a vessel
WO2017169030A1 (en) Hull frictional resistance reduction device and ship
AU2016219737B1 (en) Wake adjustment system for boats
US20150100185A1 (en) Arrangement and method in a ship
JP2015515413A (en) Hull propulsion and direction change device
JP5030080B2 (en) Hull frictional resistance reduction device
US7827925B2 (en) Apparatus and method for drop-down/lift-up boat mounted on marine vessel
JP6253021B2 (en) Water jet propulsion assist type propeller propulsion ship
JP5612120B2 (en) Ship moving method on water and ship moving on water by said method
JP4057412B2 (en) Small planing boat
JP2017178180A5 (en)
KR20110000079A (en) Jet injection device installed inside the horn portion of a ship rudder to enhance the rudder force and mitigate the gap cavitation
JP2009113781A (en) Front drive power device
JP5791342B2 (en) Friction resistance reduction type ship
WO2013099301A1 (en) Resistance reduction device for ship
JPH11152077A (en) Friction reduced ship and friction reducing method of hull
KR200481513Y1 (en) Air Drag Reduction Device of Ship
US10422267B2 (en) Marine rudder exhaust system
KR102394958B1 (en) Separate type tunnel thruster for vessel
KR101444145B1 (en) A ship for reducing vibromotive force
KR101225176B1 (en) Ship having reduced noise
KR101497393B1 (en) Ship
JP5850507B2 (en) Air bubble entrainment prevention device for ships
RU2012147418A (en) METHOD FOR REDUCING ENVIRONMENTAL RESISTANCE OF THE ENVIRONMENT TO MOVING A VEHICLE AND DEVICE FOR ITS IMPLEMENTATION
KR101281481B1 (en) Apparatus for decreasing drag of side thruster hole of ship

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187020105

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020105

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773580

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773580

Country of ref document: EP

Kind code of ref document: A1