【0001】
【発明の属する技術分野】
本発明は、マイクロバブル放出による船体の表面摩擦逓減法に関する。
【0002】
【従来の技術】
船体の底面に空気を吹き込むことで発生するマイクロバブルまたはマイクロエアーシートによる摩擦逓減効果はよく知られた事実である(例えば非特許文献1参照。)。また実船による実海における実験結果はそれを実証している。
【0003】
【非特許文献1】
平成14年度秋季造船三学会連合大会、秋季講演論文集 発表論文No.1−1〜4、8、9
【0004】
【発明が解決しようとする課題】
しかし、船底に放出されるマイクロエアーバブルは波浪中の船体運動により、平水中の理論値と比べ、船体の摩擦逓減性能を十分に発揮できるまでにはいたっていないことが明白となった。これは船体の運動により目的とするところにマイクロエアーバブルが到達していないことによる。
本発明は、この欠点を知的なエアー制御を用いることにより解消するものである。
【0005】
【課題を解決するための手段】
船体には、その空気噴出制御装置(2)を介してノズル(3、3、...)より空気を噴出するエアーインジェクションユニット(1)を設け、また船体の底部にはその放出したエアーバブルやエアーシートを検出するセンサー(4、4、...)を設け、このセンサー(4、4、...)の信号は船体運動計測装置(5)に入力し、この船体運動計測装置(5)には波情報・相対波情報(10)、変位・運動速度・加速度(11)、方位(12)、泡の状態検出(24)と風速・風向(13)を入力し、船底圧力情報(20)、泡分布情報(21)、摩擦力情報(22)、船体抵抗情報(23)より泡の状態検出(24)を行い、放出空気膜、泡の状態を最適に制御することを特徴とする船体の表面摩擦逓減法である。
【0006】
【発明の実施の形態】
図1は、この船体の側面図を示すもので、エアーインジェクションユニット1はそのエアーインジェクション制御ユニット2を介して船体の前部に設けた複数個のノズル3、3、...より空気を噴出する。また船体の底部の後部にはその放出したエアーバブルやエアーシートを検出するセンサー4、4、...を設け、このセンサー4、4、...の信号は船体運動計測ユニット5に入力する。
【0007】
図2に示すように、この船体運動計測ユニット5には波情報・相対波情報10、変位・運動速度・加速度11、方位12、泡の状態検出24と風速・風向13を入力する。
船体の運動は、この船体運動計測ユニット5により計測される。
【0008】
図3に示すように、船底圧力情報20、泡分布情報21、摩擦力情報22、船体抵抗情報23により泡の状態検出24を行う。
図4に示すように、泡の状態検出24により前記ノズル3、3、...の放出気圧制御30、泡放出方向制御31、放出タイミング制御32、放出位置制御33を行う。
【0009】
これらの制御は計算機によりおこなうが、使用計算機は十分な演算能力を有し、必要なら並列処理も可能で情報は有機的に結合されている。
【0010】
次に、この装置の動作を説明する。
図1において、ノズル3、3、...より船底前部に放出された空気膜および泡は時間の経過と共に船体に近い流れに沿って流れていく。この泡はできるだけ船底全体を覆うようにする。船体運動計測ユニット5は検出されたエアー分布と船体運動より最適な放出条件を算出推定し、エアーインジェクションユニット1の出力を制御し、エアーインジェクション制御ユニット2はエアー放出の場所、方向、エアー量、泡の寸法、タイミング等を制御し、エアー放出の適正化を図る。
【0011】
次に、図5につきこの装置の処理フローを説明する。
船体運動計測ユニット5により最適な空気膜すなわち泡の放出位置を推定40する。かくして泡の状態を検出24し、この推定に従い、図4に示すノズル3、3、...の放出気圧制御30、泡放出方向制御31、放出タイミング制御32、放出位置制御33が行われる。かくして泡の状態検出24が行われ、ステップ50で最適泡状態か否かが判断され、OKならステップ51でそのまま、NOならステップ52で泡状態の放出が変化し、以下同じ操作を繰り返す。
【0012】
以上のように、本発明では、空気膜、泡の状態が最適状態より変化した場合には直ちに再計算により放出空気膜、泡の状態を制御することにより船体の摩擦抵抗成分を減少させるものである。
【0013】
【発明の効果】
以上のように、本発明では、船体運動をセンシングし、また船体表面のマイクロバブルやエアーシートの位置を検出し、マイクロバブルやエアーシートの放出制御を行い、空気膜、泡の状態が最適状態より変化した場合には直ちに再計算により放出空気膜、泡の状態を最適に制御することにより船体の摩擦抵抗の最大限の軽減が図られるものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態の船体の側面図である。
【図2】船体運動検出のフロー図である。
【図3】泡の状態検出のフロー図である。
【図4】泡の状態の放出変化のフロー図である。
【図5】船体運動計測ユニットの処理フロー図である。
【符号の説明】
1 エアーインジェクションユニット
2 エアーインジェクション制御ユニット(空気噴出制御装置)
3 ノズル
4 センサー
5 船体運動計測ユニット(船体運動計測装置)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for gradually reducing surface friction of a hull by discharging microbubbles.
[0002]
[Prior art]
The effect of reducing friction by microbubbles or micro air sheets generated by blowing air into the bottom of a hull is a well-known fact (for example, see Non-Patent Document 1). In addition, the experimental results in the actual sea by the actual ship demonstrate it.
[0003]
[Non-patent document 1]
The 2002 Autumn Meeting of the Shipbuilding Society of Japan, Autumn Lecture Papers. 1-1 to 4, 8, 9
[0004]
[Problems to be solved by the invention]
However, it became clear that the micro-air bubbles discharged to the bottom of the ship were not yet able to exhibit the hull's gradual friction reduction performance compared to the theoretical value in plain water due to the motion of the ship in waves. This is due to the fact that the micro air bubbles have not reached the target due to the movement of the hull.
The present invention addresses this drawback by using intelligent air control.
[0005]
[Means for Solving the Problems]
The hull is provided with an air injection unit (1) for jetting air from nozzles (3, 3, ...) through the air jet control device (2), and the discharged air bubbles are provided at the bottom of the hull. (4, 4,...) For detecting the hull motion measurement device (5), and the signals of the sensors (4, 4,...) Are input to the hull motion measurement device (5). 5) Wave information / relative wave information (10), displacement / motion velocity / acceleration (11), azimuth (12), bubble state detection (24) and wind speed / wind direction (13) are input, and ship bottom pressure information (20) The state of the foam is detected (24) from the foam distribution information (21), the friction force information (22), and the hull resistance information (23), and the released air film and the state of the foam are optimally controlled. It is a method of gradually reducing the surface friction of the hull.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a side view of the hull. An air injection unit 1 has a plurality of nozzles 3, 3,. . . Blow out more air. At the rear of the bottom of the hull, sensors 4, 4,. . . , And the sensors 4, 4,. . . Is input to the hull motion measurement unit 5.
[0007]
As shown in FIG. 2, wave information / relative wave information 10, displacement / movement speed / acceleration 11, azimuth 12, bubble state detection 24, and wind speed / wind direction 13 are input to the hull movement measurement unit 5.
The motion of the hull is measured by the hull motion measurement unit 5.
[0008]
As shown in FIG. 3, foam state detection 24 is performed based on ship bottom pressure information 20, foam distribution information 21, friction force information 22, and hull resistance information 23.
As shown in FIG. 4, the nozzles 3, 3,. . . Pressure control 30, bubble discharge direction control 31, discharge timing control 32, and discharge position control 33.
[0009]
These controls are performed by a computer, but the computer used has a sufficient calculation capability, parallel processing can be performed if necessary, and information is organically connected.
[0010]
Next, the operation of this device will be described.
In FIG. 1, the nozzles 3, 3,. . . The air film and the bubbles discharged to the front of the ship bottom flow along the flow close to the hull over time. This foam should cover the entire bottom of the ship as much as possible. The hull motion measurement unit 5 calculates and estimates the optimal discharge condition from the detected air distribution and the hull motion, controls the output of the air injection unit 1, and the air injection control unit 2 controls the location, direction, air amount, Control the size, timing, etc. of bubbles to optimize air release.
[0011]
Next, the processing flow of this apparatus will be described with reference to FIG.
The hull motion measurement unit 5 estimates 40 the optimum air film, that is, the bubble discharge position. Thus, the state of the bubble is detected 24, and according to this estimation, the nozzles 3, 3,. . . , A bubble discharge direction control 31, a discharge timing control 32, and a discharge position control 33 are performed. Thus, the bubble state detection 24 is performed, and it is determined in step 50 whether or not the bubble state is the optimum.
[0012]
As described above, in the present invention, when the state of the air film and the bubble changes from the optimal state, the frictional resistance component of the hull is reduced by controlling the state of the released air film and the bubble by recalculation immediately. is there.
[0013]
【The invention's effect】
As described above, in the present invention, the hull motion is sensed, the position of microbubbles and air sheets on the hull surface is detected, and the release of microbubbles and air sheets is controlled. In the event of a further change, the state of the released air film and bubbles is optimally controlled by recalculation immediately to minimize the frictional resistance of the hull.
[Brief description of the drawings]
FIG. 1 is a side view of a hull according to an embodiment of the present invention.
FIG. 2 is a flowchart of hull motion detection.
FIG. 3 is a flowchart of bubble state detection.
FIG. 4 is a flow chart of a change in the release of a bubble state.
FIG. 5 is a processing flowchart of a hull motion measurement unit.
[Explanation of symbols]
1 air injection unit 2 air injection control unit (air injection control device)
3 Nozzle 4 Sensor 5 Hull motion measurement unit (hull motion measurement device)